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Nonlinear deformations of relativistic symmetries at the Planck scale are usually addressed in terms of

modified dispersion relations. We explore here an alternative route by directly deforming the two-point

functions of an underlying field theory. The proposed deformations depend on a length parameter (Planck

length) and preserve the basic symmetries of the corresponding theory. We also study the physical

consequences implied by these modifications at the Planck scale by analyzing the response function of an

accelerated detector in Minkowski space, an inertial one in de Sitter space, and also in a black hole

spacetime.
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I. INTRODUCTION

One of the most profound principles of physics is the
principle of relativity, which establishes the physical
equivalence of all inertial observers. Discovered by Gali-
leo in his studies on the laws of motion, the principle of
relativity was employed by Einstein, assuming as funda-
mental physical laws the equations of electrodynamics, to
propose the special theory of relativity. The theory predicts
a relation between the energy and momentum of any body
given by the well-known expression

E2 � p2c2 ¼ m2c4: (1)

The theory was later generalized in two directions. One
was the incorporation of the quantum uncertainty prin-
ciple, which after many years gave rise to the well-
established framework of quantum field theory. One of
the basic features of the relativistic quantum theory is the
existence of vacuum fluctuations, typically of the form

h�ðx1Þ�ðx2Þi � 1

4�2

@

ðx1 � x2Þ2
; (2)

as x1 ! x2. On the other hand the principle of relativity
was generalized by Einstein to assume the physical equiva-
lence of all freely falling observers, when gravity is
present, and culminated in the formulation of the general
theory of relativity. One of the main consequences of it
is the possibility of deforming the causal structure of

Minkowsky spacetime. This happens, typically, in a gravi-
tational collapse producing a Schwarzschild black hole

ds2 ¼ �
�
1� 2GM

c2r

�
c2dt2 þ dr2

ð1� 2GM
c2r

Þ þ r2d�2; (3)

or, in a cosmological context, in a de Sitter spacetime

ds2 ¼ �c2dt2 þ e2Htd ~x2; (4)

with a cosmological constant � ¼ 3H2=c2.
The construction of a fully consistent quantum gravity

theory, incorporating both fundamental theories in some
limit, is one of the basic open problems of theoretical
physics. Despite this, there appears to be some robust re-
sults when quantum field theory and general relativity are
combined at the semiclassical level [1,2]. The thermal
properties associated with black hole and cosmological
horizons [3,4], with temperature

T ¼ �

2�

@

ckB
; (5)

where � is the surface gravity of the corresponding hori-
zon, emerge as very deep and robust results, and are likely
to be fundamental to unraveling the basic features of a
quantum theory of gravity. The vacuum fluctuations (2)
play a crucial role in the derivation of these thermal results.
A phenomenological way to explore the properties of a

quantum gravity theory, which is expected to incorporate

the Planck scale lP ¼ ðG@=c3Þ1=2,1 is by modifying one of
the basic equations of special relativity, namely, the dis-
persion relation (1), to incorporate the Planck scale. At low*ivan.agullo@uv.es,
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energies the dispersion relation is very well approximated
by the standard one, but when the energy or momentum
saturates the Planck scale the physics potentially departs
from special relativity. There are two different attitudes in
doing this. One is to allow a violation of the principle of
relativity by distinguishing a particular frame to which the
modified dispersion relation refers. This line of thought,
motivated by condensed-matter analogies, was originally
aimed at explaining gamma ray phenomenology [6] and
has led to the formulation of generally covariant theories of
gravity coupled to a dynamical timelike vector field [7]
(see, also [8]). A different attitude is to preserve the prin-
ciple of relativity, equivalence of all inertial frames, by
allowing a nonlinear action of Lorentz transformations
keeping then invariant the modified dispersion relation.
This perspective was pushed forward in [9,10] and has
some important connections to previous mathematical
studies concerning quantum deformations of the Poincaré
group [11].

In any case, although the modified dispersion relations
are designed to be applied to microscopic particles, nothing
prevents them from being applied to macroscopic bodies,
as in conventional special relativity. The Planck scale is
then saturated immediately, giving rise to some sort of
paradox. Although this issue can be bypassed by adding
extra hypotheses, it strongly suggests that one should ex-
plore alternative routes to deform special relativity. In
this sense, one could consider the deformation ab initio
of an intrinsic quantum mechanical object, with no classi-
cal analogue and, therefore, with no possibility of being
applied to conventional macroscopic bodies. On the other
hand, an important lesson that follows from working with
deformed dispersion relations and nonlinear realizations of
the Lorentz symmetry in momentum space, is the difficulty
or perhaps impossibility of getting a proper realization of
the kinematical symmetry in position space (independent
of the energy-momentum degrees of freedom). The non-
linear action in the spacetime has been implemented in the
(eight-dimensional) extended phase-space. In other words,
one must double the number of dimensions to find a non-
linear realization of the Lorentz symmetry. We thus find
the following problem. How can one naturally consider
quantum objects, depending on eight variables, on which
Lorentz transformations may act nonlinearly? The two-
point correlation functions of matter fields seem to be the
simplest such quantum objects. The aim of this paper is
to explore this possibility. First, as a legitimate mathemati-
cal problem. But also by looking carefully at its physi-
cal consequences concerning the thermal properties of
horizons.

In Sec. II, we shall briefly review the main aspects of
the standard approach to introduce nonlinear actions of
Lorentz symmetry via deformed dispersion relations.
This will help the reader to better understand our proposal,
in Sec. III, to deform the action of the kinematical sym-

metry via two-point correlation functions. In this context,
the natural thermal effect to be analyzed with deformed
actions of the Lorentz symmetry is the acceleration radia-
tion in Minkowski space. This will be done in Sec. IV by
analyzing the response function of an accelerated detector
with a modified two-point function. In Secs. V and VI we
shall extend our considerations to de Sitter space and black
holes, respectively. Finally, in Sec. VII, we shall briefly
summarize the main conclusions.

II. DEFORMED DISPERSION RELATIONS AND
NONLINEAR LORENTZ ACTIONS

Given a modified dispersion relation of the general form
(from now on we shall assume c ¼ 1)

E2f2ðE;pÞ � p2g2ðE;pÞ ¼ m2; (6)

the easiest way to modify the action of Lorentz transfor-
mations on the energy-momentum p� is by introducing a
nonlinear invertible mapU between the physical quantities
ð�E;piÞ and an auxiliary energy-momentum ð��;�iÞ

U: p� � ð�E;piÞ ! �� � ð��;�iÞ
¼ ð�fðE; pÞE; gðE; pÞpiÞ: (7)

While the auxiliary vector ð��;�iÞ transforms linearly
under the Lorentz group, the physical energy-momentum
transforms as

Lðp�Þ ¼ ½U�1LU�ðp�Þ: (8)

The simplest choice for the function U�1 is

E ¼ �

1þ lP@
�1�

pi ¼ �i

1þ lP@
�1�

; (9)

as was proposed in [10] (it has a deformed dispersion
relation of the form ðE2 � p2Þ=ð1þ ElP@

�1Þ2 ¼ m2). In
the limit lP ! 0 the auxiliary energy-momentum coincides
with the physical one and the nonlinear action becomes the
standard linear transformation. Note also that, in special
relativity the energy � is unbounded. Using arbitrarily large
boosts one can get �! þ1, but then the energy in the
deformed theory is saturated to the observer-independent
Planck scale E! @=lP.
The above framework for nonlinear actions on momen-

tum space can be extended to the full (covariant) phase-
space, parametrized by ðp�; x�Þ, by further extending the
map U

U: ðp�; x�Þ ! ð��; X
�Þ; (10)

where

X� ¼ X�ðx�; p�Þ: (11)

The above action X�ðx�; p�Þ, and the corresponding one

between physical variables x0� ¼ ðx�; p�Þ, can be deter-

mined uniquely by imposing some extra physical condi-
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tion. There are essentially two different proposals in the
literature. One demands that plane-waves remain solutions
of free field theories [12]. The other proposal requires that
the full transformation be a canonical one on phase-space
[13–15].

As remarked in the introduction, the proposal for real-
izing the bold idea of deforming a relativistic theory in
terms of deformed dispersion relations has an apparent
drawback. The deformation is intended to be relevant for
subatomic particles and in such a way that either the energy
and/or the momentum of the particle is saturated at the
Planck scale. But a formulation in phase-space applies
equally to microscopic and macroscopic objects (or, in
other words, to quantum and classical objects). In the latter
case it is very easy to reach Planck energies, but Nature
does not seem to deform the established kinematical sym-
metries in this situation. This fact motivates the approach
of the next section. Instead of working initially in phase-
space and deformed dispersion relations, we shall put
forward an alternative way to further explore the physical
consequences of deforming the action of kinematic sym-
metries. Instead of taking, as the starting point, a modifi-
cation of dispersion relations we shall consider, ab initio,
a modification of the two-point function of a free field
theory, which makes sense only at the quantum level.

III. NONLINEAR ACTIONS AND DEFORMED
TWO-POINT FUNCTIONS

A. Conformal field theories

To illustrate our approach, it is convenient to con-
sider the largest kinematical symmetry allowed by a rela-
tivistic theory in a generic d-dimensional flat spacetime.
This is the conformal group SOðd; 2Þ. In a conformal field
theory [16] there is a particular set of fields with well-
defined transformation laws under conformal transforma-
tions x! x0:

�jðxÞ !
��������
@x0

@x

��������
�j=d

�jðx0Þ; (12)

where j @x0@x j stands for the Jacobian of the transformation

and �j is the dimension (or conformal weight) of �jðxÞ.
Restricting attention to the two-point correlation function
of a single field, covariance under the transformation (12)
implies2

h�jðx1Þ�jðx2Þi ¼
��������
@x0

@x

��������
�j=d

x1

��������
@x0

@x

��������
�j=d

x2

h�jðx01Þ�jðx02Þi:
(13)

As is well known, invariance under Lorentz transforma-
tions, translations, and dilations largely restricts the form
of the two-point function. One gets

h�jðx1Þ�jðx2Þi ¼
Cj

ðx1 � x2Þ2�j
; (14)

where Cj is a constant related to the normalization of the

field. A typical example is a massless scalar field in d ¼ 4,
for which � ¼ 1 and then

h�ðx1Þ�ðx2Þi ¼ 1

4�2

@

ðx1 � x2Þ2
; (15)

where ðx1 � x2Þ2 � �ðT2 � T1Þ2 þ ðX2 � X1Þ2 þ ðY2 �
Y1Þ2 þ ðZ2 � Z1Þ2.3 In d ¼ 2 the formalism should be
refined since then the global conformal group SOð2; 2Þ is
enlarged to the infinite-dimensional group of local trans-
formation x� ! x0�ðx�Þ, where x� ¼ t� x are null coor-
dinates. Relevant fields (usually called primary fields)
should have a weight �þ for xþ ! x0þðxþÞ and another
one �� with respect to x� ! x0�ðx�Þ. Typical examples
are the derivatives @�� of a two-dimensional massless
scalar field �. In this case we also have �þ=d ¼ 1 and
��=d ¼ 0 for @þ�, and the opposite weights for @��.
This implies that

h@��ðx1Þ@��ðx2Þi ¼ � 1

4�

@

ðx�1 � x�2 Þ2
: (16)

B. Deforming the conformal two-point functions

Let us now deform the action of the kinematical sym-
metry on two-point functions mimicking the scheme fol-
lowed above for modified dispersion relations. We can
introduce an invertible map U defined as

U: h�jðx1Þ�jðx2Þi ! h�jðx1Þ�jðx2Þi: (17)

The action of conformal transformations on the correla-
tions h�jðx1Þ�jðx2Þi induce, viaU, an action on the (physi-
cal) two-point functions h�jðx1Þ�jðx2Þi. This can be seen

with the following example. Let us choose the function
U�1 similarly as in (9)

U�1: h�jðx1Þ�jðx2Þi ¼
h�jðx1Þ�jðx2Þi

1� l2P@
�1h�jðx1Þ�jðx2Þi

; (18)

where the constant l2P@
�1, which (up to a factor c�3) turns

out to be equivalent to Newton’s constant G, is naturally
chosen for dimensional reasons. Accordingly, the de-
formed action of conformal transformations is

2Unless explicitly stated otherwise, all expectation values are
computed with respect to the vacuum state j0i.

3When the two-point function is regarded as a distribution one
should replace, as usual, T2 � T1 by ðT2 � T1 � i�Þ
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h�jðx1Þ�jðx2Þi

! j @x0@x j�j=dðx1Þj @x0@x j�j=dðx2Þh�jðx01Þ�jðx02Þi
1� l2P@

�1j @x0@x j�j=dðx1Þj @x0@x j�j=dðx2Þh�jðx01Þ�jðx02Þi
:

(19)

1. Case d ¼ 4

For the massless scalar field in four dimensions the
above formulas lead to the following deformed two-point
function

h�ðx1Þ�ðx2Þi ¼ @

4�2ðx1 � x2Þ2 � l2P
; (20)

and a modified action of conformal transformations

1

4�2ðx1 � x2Þ2 � l2P

! j @x0@x j1=4ðx1Þj @x
0

@x j1=4ðx2Þ
4�2ðx1 � x2Þ2 � l2Pj @x0@x j1=4ðx1Þj @x

0
@x j1=4ðx2Þ

: (21)

Note that for the deformed two-point function an invariant
(Planck) scale emerges as

h�ðx1Þ�ðx2Þijx1!x2 � � @

l2P
¼ � 1

G
: (22)

Furthermore, that invariant quantity is not necessarily tied
to the expectation value in the vacuum state. If instead we
have a different quantum state �, the Hadamard condition
for the relativistic theory, namely, the universality of the
short distance behavior

h�j�ðx1Þ�ðx2Þj�ijx1!x2 � h�ðx1Þ�ðx2Þijx1!x2 (23)

ensures that

h�j�ðx1Þ�ðx2Þj�ijx1!x2 � � @

l2P
¼ � 1

G
: (24)

We would like to remark that the invariant (observer-
independent) scale l2P@

�1 acts as a natural regulator for
the two-point functions. This admits a nice physical inter-
pretation. When we probe quantum field theory at scales
ðx1 � x2Þ2 � l2P, gravity is negligible (G! 0) and the
Green functions seem to diverge like �1=ðx1 � x2Þ2. For
point separations of order lP, the role of gravity in con-
straining the spacetime structure can no longer be ne-
glected (G � 0), which results in l2P@

�1 providing a
natural cutoff for the Green functions.

2. Case d ¼ 2

The generic nonlinear realization (19) can be displayed
more explicitly for the deformed correlations of the d ¼ 2
model mentioned above. The deformed correlations de-
rived from (16) and (18) are then

h@��ðx1Þ@��ðx2Þi ¼ �@

4�ðx�1 � x�2 Þ2 þ l2P
: (25)

The deformed action of conformal transformations reads as

h@��ðx1Þ@��ðx2Þi

!
dx0�
dx� ðx1Þ dx0�dx� ðx2Þh��ðx01Þ��ðx02Þi

1� l2P@
�1 dx0�

dx� ðx1Þ dx0�dx� ðx2Þh��ðx01Þ��ðx02Þi
: (26)

Therefore

�@

4�ðx�1 � x�2 Þ2 þ l2P

! �@
dx0�
dx� ðx1Þ dx0�dx� ðx2Þ

4�ðx0�1 � x0�2 Þ2 þ l2P
dx0�
dx� ðx1Þ dx0�dx� ðx2Þ

; (27)

which clearly shows the emergence of an invariant Planck
scale. For instance, under a boost of rapidity � : x� !
x0� ¼ e��x�, the deformed two-point functions are

�@

4�ðx�1 � x�2 Þ2 þ l2P
! �@e�2�

4�ðx0�1 � x0�2 Þ2 þ l2Pe
�2�

; (28)

so all inertial observers agree for the coincident-point limit
� @

l2P
of these correlation functions.

C. Massive scalar field

The approach presented above for conformal field theo-
ries can be extended easily to other theories. To illustrate
this let us consider a massive scalar field in four dimen-
sions. One can deform the corresponding two-point func-
tion in a way parallel to that used for conformal theories.
Taking into account that the two-point function for a
relativistic massive scalar field in four dimensions is

h�ðx1Þ�ðx2Þi ¼ m@

4�2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðx1 � x2Þ2

p K1ðm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � x2Þ2

q
Þ;

(29)

where K1 is a modified Bessel function, the deformed two-
point function reads

h�ðx1Þ�ðx2Þi � h�mðx1Þ�mðx2Þi
1� l2P@

�1h�mðx1Þ�mðx2Þi

¼ m@K1ðm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðx1 � x2Þ2

p Þ
4�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðx1 � x2Þ2
p �ml2PK1ðm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðx1 � x2Þ2
p Þ

:

(30)

Note that, since the short-distance behavior of (29) coin-
cides with that of a massless field, the invariant (Planck)
scale emerges in the same way

h�ðx1Þ�ðx2Þijx1!x2 � � @

l2P
: (31)
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D. Relation to other approaches

It is interesting to stress that a method to modify the two-
point function in a Lorentz-invariant way has also been
suggested in [17], by invoking some sort of path-integral
duality. In terms of the Schwinger’s proper time formalism,
this approach is equivalent to deforming the symmetric
two-point function

h�ðx1Þ�ðx2Þi ¼
Z þ1

�1
dse�im2sKðx1; x2; sÞ

¼ @

4�2ðx1 � x2Þ2
; (32)

where Kðx1; x2; sÞ is the heat kernel of the matter field �,
as follows

h�ðx1Þ�ðx2Þi ¼
Z þ1

�1
dse�im2seil

2
P=ð4�2sÞKðx1; x2; sÞ;

(33)

where Kðx1; x2; sÞ is the same relativistic heat kernel. For a
massless field the above proposal for deforming the Green
functions and that of (18) leads to the same deformed two-
point function. However, one does not get the same result
for generic massive fields.

IV. RESPONSE FUNCTION OFAN ACCELERATED
DETECTOR: THE ROLE OF PLANCK SCALE

A natural way to show that the notion of particle is,
in general, observer-dependent was proposed in [18]. The
particle content of the vacuum perceived by an observer
with trajectory x ¼ xð	Þ and equipped with a detector, can
be analyzed by considering the interaction of the matter
field �ðxÞ with the detector, modeled by the interaction
Lagrangian (see, for instance, [1])

g
Z
d	mð	Þ�ðxð	ÞÞ; (34)

where mð	Þ represents the detector’s monopole moment
and g is the strength of the coupling. It is assumed that the
detector has some internal energy eigenstates jEi, provid-
ing the internal matrix elements hEjmð0ÞjE0i with the
detector ground state jE0i. For a general trajectory, the
detector will not remain in its ground state jE0i, but will
undergo a transition to an excited state jEi. To first order in
perturbation theory, the transition amplitude from jE0ij0Mi
to jEij i, where j0Mi is the Minkowski vacuum state of the
scalar field and j i an arbitrary field state, is given by

g
Z
d	hE jmð	Þ�ðxð	ÞÞjE00Mi: (35)

The probability for the detector to make the transition from
jE0i to jEi (summing over all final states of the scalar field)
is then given by

g2jhEjmð0ÞjE0ij2FðE� E0Þ; (36)

where FðE� E0Þ is the so-called response function of the
detector

FðE� E0Þ
¼

Z þ1

�1
d	1

Z þ1

�1
d	2e

�iðE�E0Þð	1�	2Þ=@

� h0Mj�ðxð	1ÞÞ�ðxð	2ÞÞj0Mi: (37)

When dealing with particular examples, one finds it useful
to introduce the response rate function

_FðE� E0Þ
¼

Z þ1

�1
d�	e�iðE�E0Þ�	=@h0Mj�ðxð	1ÞÞ�ðxð	2ÞÞj0Mi:

(38)

To work out the above expressions one should be careful
when dealing with the typical short-distance singularity
of the two-point function. Usually one considers the ‘‘
i�-prescription’’ for the two-point function.
For a uniformly accelerated trajectory in Minkowski

spacetime

t ¼ 1

a
sinha	; x ¼ 1

a
cosha	; (39)

where a is the acceleration, the two-point function, which
for simplicity is chosen for a massless scalar field, becomes

h0Mj�ðxð	1ÞÞ�ðxð	2ÞÞj0Mi ¼
�@ða2Þ2

4�2sinh2 a2 ð�	� i�Þ :
(40)

Unlike for inertial trajectories, the response rate function
_FðE� E0Þ of a uniformly accelerated observer does not
vanish, and turns out to be

_FðE� E0Þ

¼
Z þ1

�1
d�	e�iðE�E0Þ�	=@ �@ða2Þ2

4�2sinh2 a2 ð�	� i�Þ
¼ 1

2�

E� E0

e2�ðE�E0Þ=@a � 1
: (41)

This result tells us that a uniformly accelerated observer in
Minkowski space feels himself immersed in a thermal bath
at the temperature kBT ¼ a@

2� . Note that even if one con-

siders the massive scalar, the thermal result still holds in
the sense of the detailed balance relation [19].
We would like to remark that the use of the ‘‘ i�—

prescription’’ in treating the two-point function in the
distributional sense guarantees the vanishing of the re-
sponse function for an inertial observer. However, there
is an alternative, and more natural, way to enforce the
vanishing of the response function for inertial detectors.
Essentially, we can calibrate the detector with the accel-
erated (Rindler) vacuum j0Ri
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_FðE� E0Þ
¼

Z þ1

�1
d�	e�iðE�E0Þ�	½h0Mj�ðxð	1ÞÞ�ðxð	2ÞÞj0Mi

� h0Rj�ðxð	1ÞÞ�ðxð	2ÞÞj0Ri�: (42)

The integrand is now a smooth function, thanks to the
universal short-distance behavior of the two-point func-
tion, and the result is equivalent to (41)

_FðE� E0Þ ¼
Z þ1

�1
d�	e�iðE�E0Þ�	=@

� �@ða2Þ2
4�2sinh2 a2 �	

þ @

4�2ð�	Þ2
�

¼ 1

2�

E� E0

e2�ðE�E0Þ=@a � 1
: (43)

Although both expressions are mathematically equivalent,
they lead to different results when the correlation functions
are deformed, as we will see later.

A. Deforming the two-point function

Let us now explore what happens when one deforms the
standard two-point function according to (30). For sim-
plicity we shall consider the case of a massless scalar field,
which leads to

h0Mj�ðx1Þ�ðx2Þj0Mi ¼ @

4�2ðx1 � x2Þ2 � l2P
: (44)

The rate _FðwÞ, where we define w ¼ E=@ and set E0 ¼ 0
for simplicity, can be worked out in a parallel way to the
standard relativistic theory. The novelty is that one has now
modified two-point functions. Therefore (38) should be
replaced by (42) and, accordingly, (43) by

_FlPðwÞ¼� @

4�2

�
Z þ1

�1
d�	e�iw�	

�
1

ð2=aÞ2sinh2ða2�	Þþ l2P=4�2

� 1

ð�	Þ2þ l2P=4�2

�
: (45)

The final result is then

_F lPðwÞ ¼
@

2�

�
we�w=a

ðe2�w=a � 1Þ
sinh½wa ð
� �Þ�

w
a sin


þ �e�wlP

lP

�
;

(46)

where 
 � 2 arcsinðlPa4�Þ. The thermal Planckian spectrum

is smoothly recovered in the limit lP ! 0. In fact, the rate
_FlPðwÞ can be expanded as

_F lPðwÞ �
@

2�

�
w

e2�w=a � 1
� lPa

2

32�
þOðl3PÞ

�
: (47)

Thermality is maintained until some frequency scale �,
which can be estimated by requiring that the correction
does not exceed the leading term in the above approxi-
mated expression. A simple calculation leads to the con-
dition 32��e�2��=a � lPa

2. Planck-scale effects could
potentially emerge at the scale �, which is roughly some
orders above T ¼ a=2�, if the acceleration is not very high
(in comparison with the Planck scale). This shows that
the thermal spectrum is essentially robust against trans-
Planckian physics. We would like to remark that the ro-
bustness of the effect can also be explained within the
standard relativistic field theory framework [20]4

Note that, if one ignores the calibration term, and
naively works out the response rate as

� 1

4�2

Z þ1

�1
d�	e�iw�	

@

ð2=aÞ2sinh2ða2 �	Þ þ l2P=4�
2
;

(48)

the resulting expression

w@

2�

e�w=a

ðe2�w=a � 1Þ
sinh½wa ð
� �Þ�

w
a sin


; (49)

largely departs from the thermal spectrum. Even worse, for
an inertial observer, a ¼ 0, the response rate does not
vanish, as one should expect according to the principle of
relativity. To produce a physically sound result one must
necessarily subtract the naive ‘‘inertial’’ contribution, as in
(43), replacing (48) by (45).

V. THERMAL PROPERTIES OF DE SITTER SPACE

It is well known that a geodesic observer in de Sitter
space (4) feels a thermal bath of particles at a temperature

kBT ¼ H@

2� , whereH ¼
ffiffiffi
�
3

q
. One can derive this result [4] in

a parallel way to acceleration radiation effect of the pre-
vious section. We shall now consider a scalar field in de
Sitter space �

h�m2

@
2
� �R

�
� ¼ 0; (50)

where m is the mass and � stands for the coupling to the
curvature. The response rate function is also given by the
general expression

_FðwÞ ¼
Z þ1

�1
d�	e�iw�	h�ðxð	1ÞÞ�ðxð	2ÞÞi; (51)

where now the expectation value is understood with respect
to the (global) de Sitter vacuum j0dSi, invariant under the
SOð4; 1Þ isometries of the de Sitter spacetime. For sim-
plicity, without loss of generality, we shall restrict our

4In terms of modified dispersion relations the robustness of the
effect has been addressed in [21]
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discussion to conformal coupling � ¼ 1=6 and m ¼ 0. In
this situation the two-point function takes the simple form

h�ðx1Þ�ðx2Þi ¼ H2�1�2@

4�2½�ð�1 � �2 � i�Þ2 þ ð ~x1 � ~x2Þ2�
;

(52)

where � ¼ �H�1e�Ht is the conformal time, for which
the metric takes the form

ds2 ¼ 1

H2�2
ð�d�2 þ d~x2Þ: (53)

Freely falling detectors with trajectories

t ¼ 	 ~x ¼ ~x0; (54)

will have a response function with rate

_FðwÞ ¼
Z þ1

�1
d�	e�iw�	

�@H2

16�2sinh2 H2 ð�	� i�Þ : (55)

This is exactly the same integral as (41), producing now
thermal radiation at the temperature kBT ¼ H@

2� .

A. Deforming the two-point function

Following the same strategy as for the uniformly ac-
celerated observer in Minkowski, we shall now deform
the two-point function preserving the de Sitter invariance
SOð4; 1Þ instead of the Poincaré invariance of the (global)
Minkowskian vacuum. We can choose the function U as in
previous sections, which leads to

U�1: h�ðx1Þ�ðx2Þi ¼ h�ðx1Þ�ðx2Þi
1� l2P@

�1h�ðx1Þ�ðx2Þi
¼ H2�1�2@

4�2½�ð�1 � �2 � i�Þ2 þ ð ~x1 � ~x2Þ2� � l2PH
2�1�2

: (56)

Armed with this deformed two-point function we can
evaluate the new response rate function. As in (42), the in-
tegral for _FlPðwÞ involves the difference between the above
correlation function, evaluated in the global de Sitter vac-
uum, and the two-point function evaluated in the vacuum
of a comoving observer. The two-point function of the
comoving (inertial) observer h0Ij�ðxð	1ÞÞ�ðxð	2ÞÞj0Ii can
be easily obtained by summing over modes evaluated
along the observer’s trajectory. To find the modes, one
must solve the field equation

ðh� 1
6RÞ�ð~t; ~~xÞ ¼ 0; (57)

where R ¼ 4� ¼ 12H2, using the static line element

ds2 ¼ �ð1�H2~r2Þd~t2 þ d~r2

1�H2~r2
þ ~r2d�2; (58)

where

~t ¼ � 1

2H
ln½H2ð�2 � r2Þ�; ~r ¼ � r

H�
: (59)

Along the observer’s trajectory (~r ¼ 0) only the s-wave
modes5 contribute, and the two-point function becomes

h0Ij�ðxð	1ÞÞ�ðxð	2ÞÞj0Ii ¼ @

Z 1

0
dw

1

4�2
we�iw�	

¼ � @

4�2ð�	� i�Þ2 : (60)

The corresponding deformed two-point function is

h0Ij�ðxð	1ÞÞ�ðxð	2ÞÞj0Ii ¼ � @

4�2ð�	Þ2 þ l2P
: (61)

It is now immediate to see that the final result is equivalent
to that of the accelerated detector in Minkowski, equa-
tion (46), with the replacement a! H.

VI. BLACK HOLE RADIANCE AND
CONFORMAL SYMMETRY

In this section we shall stress that the Hawking effect can
be analyzed in the general framework presented in Sec. II.
Although there are not global isometries in the space-
time of a collapsing star, a powerful symmetry emerges
in the near-horizon region. This region is effectively two-
dimensional and conformally invariant, as can be seen
easily by writing the wave equation of a scalar field in a
Schwarzschild background. Expanding the field in spheri-
cal harmonics

�ðx�Þ ¼ X
l;m

�lðt; rÞ
r

Ylmð
;’Þ; (62)

the four-dimensional Klein–Gordon equation for� is then
converted into a two-dimensional wave equation, for each
angular momentum component

�
� @2

@t2
þ @2

@r	2
� VlðrÞ

�
�lðt; rÞ ¼ 0; (63)

with the potential VlðrÞ ¼ ð1� 2GM
r Þ½lðlþ 1Þ=r2 þ

2GM=r3�, and r	 � rþ 2GM lnjr=2GM� 1j is the radial
tortoise coordinate. In the near-horizon limit r! 2GM
(r	 ! �1) the potential vanishes and (63) becomes the
two-dimensional free wave equation, which in null coor-

5For completeness, these modes are �w;l¼0ð~t; ~r; 
; ’Þ ¼
1

2�
ffiffiffi
w

p e�iw~t 1~r sin½wH tanh�1ð~rHÞ�.
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dinates ðu � t� r	; v � tþ r	Þ reads @u@v�l ¼ 0. This
equation is very important since it exhibits the emergence
of the two-dimensional conformal invariance u! u0 ¼
u0ðuÞ, v! v0 ¼ v0ðvÞ, which is at the heart of the thermo-
dynamic properties of black holes. This symmetry plays a
pivotal role in unraveling the universal behavior of black
hole entropy (see, for instance [22–24]) and in the deriva-
tion of Hawking radiation. To make explicit this latter fact
we shall rewrite the number of particles in terms of the
two-point functions of a two-dimensional conformal field
theory. To be more precise, in the conventional analysis in
terms of Bogolubov coefficients, one first performs the
integration in distances (i.e., evaluation of the scalar prod-
uct between ‘‘in’’ and ‘‘out’’ modes) and leaves to the end
the sum of in modes. In contrast, we can invert the order
and perform first the sum of in modes, which naturally
leads to introduce the two-point function of the matter
field, and leave the integration in distances to the end

hinjNout
i jini ¼ X

k

�ik�
	
ik ¼ �X

k

ðuouti ; uin	k Þðuout	i ; uink Þ

¼ X
k

�Z
�
d��

1 u
out
i ðx1Þ@�

$
uink ðx1Þ

�

�
�Z

�
d��

2u
out	
i ðx2Þ@�

$
uin	k ðx2Þ

�
; (64)

where � is an initial Cauchy hypersurface. Taking into
account that

hinj�ðx1Þ�ðx2Þjini ¼ @
X
k

uink ðx1Þuin	k ðx2Þ; (65)

we obtain a simple expression for the particle production
number in terms of the two-point function

hinjNout
i jini ¼ @

�1
Z
�
d��

1 d�
�
2½uouti ðx1Þ@�

$ �½uout	i ðx2Þ@�
$ �

� hinj�ðx1Þ�ðx2Þjini; (66)

where the ‘‘ i�—prescription’’ is assumed to regulate the
integrand. Alternatively, one can subtract houtjNout

i jouti �
0 from (64) to obtain

hinjNout
i jini ¼ @

�1
Z
�
d�

�
1 d�

�
2½uouti ðx1Þ@�

$ �½uout	i ðx2Þ@�
$ �

� ½hinj�ðx1Þ�ðx2Þjini
� houtj�ðx1Þ�ðx2Þjouti�; (67)

which is now regular provided jini and jouti satisfy the
Hadamard condition.6

Let us apply this scheme in the formation process of a
spherically symmetric black hole (for details see [26]) and
restrict the out region to Iþ. The in region is, as usual,
defined by I�. At Iþ the radial plane-wave modes are

uoutwlmðt; r; 
; �ÞjIþ � uoutwl ðuÞ
Yml ð
;�Þ

r
; (68)

where uoutwl ðuÞ ¼ e�iwuffiffiffiffiffiffiffi
4�w

p . Integrating the angular degrees of

freedom the emission rate, evaluated at Iþ, takes the form

hinj _Nout
wlmjini ¼

jtlðwÞj2
�@w

Z 1

�1
dðu1

� u2Þe�iwðu1�u2Þhinj@u�lðx1Þ@u�lðx2Þjini;
(69)

where tlðwÞ represent the transmission coefficients associ-
ated with the potential barrier and

h@u�lðx1Þ@u�lðx2Þi ¼� @

4�

dv
du ðu1Þ dvdu ðu2Þ

½vðu1Þ�vðu2Þ� i��2 (70)

is the two-point function of a two-dimensional conformal
field theory of the primary fields @u� (see subsection III A)
transformed under the conformal rescaling7 uðvÞ � vH �
��1 ln�ðvH � vÞ, where � ¼ 1=4GM. Performing the in-
tegration in �u � u1 � u2 we recover the Planckian spec-
trum and the particle production rate

hinj _Nout
wlmjini ¼

jtlðwÞj2
e2��

�1w � 1
: (71)

Now that Hawking radiation has been derived using
two-point functions, it is worth comparing Eqs. (38),
(51), and (69). In the three cases, the two-point function
is evaluated in the coordinates of the detector. Let us see
now how deformations of the two-point function would
affect Hawking radiation provided we use again the same
deformation function U. In this case, as explained in
subsection III B 2, the effect of the Planck scale is encap-
sulated in the deformed correlation function

h@u�lðx1Þ@u�lðx2Þi

¼ � @

4�

dv
du ðu1Þ dvdu ðu2Þ

½vðu1Þ � vðu2Þ�2 þ l2P
dv
du ðu1Þ dvdu ðu2Þ

; (72)

which preserves the conformal invariance by construction.
Following the analogy with the case of the accelerated de-

6The two-point distribution should have (for all physical
states) a short-distance structure similar to that of the ordinary
vacuum state in Minkowski space: ð2�Þ�2ð
þ 2i�tþ �2Þ�1,
where 
ðx1; x2Þ is the squared geodesic distance [25].

7Note that, due to the particular spacetime geometry of a
gravitational collapse, there is always a reflection at r ¼ 0 which
transforms v! u. This explains why this transformation is of
the form v! vðuÞ.
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tector in Minkowski space and the inertial one in de Sitter
space, one should use expression (67) to evaluate the
emission rate in the modified theory. As the final result
we find again the function (46), up to the overall factor
w@=2� and the gray-body coefficients, with the replace-
ment a! �

hinj _Nout
wlmjini ¼ jtlðwÞj2

�
e�w=�

ðe2�w=� � 1Þ
sinh½w� ð
� �Þ�

w
� sin


þ �e�wlP

wlP

�
; (73)

where 
 � 2 arcsinðlP�4�Þ.

VII. CONCLUSIONS

In this paper we have offered a unified view of the
typical thermal effects of quantum field theory in curved
space aiming at showing their robustness against trans-
Planckian physics. We have shown that all these effects can
be easily derived in terms of two-point correlation func-
tions, which allowed us to explore the effects of Planck-
scale physics by suitable deformations of such functions.
The deformations proposed here are somehow parallel to
the approach presented in [10], where dispersion relations
were modified while keeping the principle of relativity. In
our case, the two-point functions were deformed respecting
the symmetries of the original theory: Lorentz symmetry
for the acceleration radiation effect, de Sitter SOð4; 1Þ

symmetry for the Gibbons-Hawking effect, and the two-
dimensional conformal symmetry for the Hawking effect.
One of the advantages of our approach is that it is

relatively straightforward to modify the theory maintaining
the relevant symmetries of the problem and, since our basic
objects are two-point functions, the physical consequences
can be easily evaluated. On the other hand, it is worth
noting that using the result (46), which corresponds to the
acceleration radiation problem, we have been able to show
that the three effects described are robust under Planck-
scale deformations. This fact together with the elegant
kinematic method of connecting the acceleration, de Sitter
and black hole radiation given in [27] may support our
view that none of the semiclassical thermal effects depend
on ultra-high-energy physics.
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