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Swapnil Tripathi

Physics Department, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201, USA
(Received 12 June 2009; published 14 July 2009)

We study the field equations of modified theories of gravity in which the Lagrangian is a general

function of the Ricci scalar and Ricci-squared terms in Palatini formalism. We show that the independent

connection can be expressed as the Levi-Cività connection of an auxiliary metric which, in particular

cases of interest, is related with the physical metric by means of a disformal transformation. This relation

between physical and auxiliary metric boils down to a conformal transformation in the case of fðRÞ
theories. We also show with explicit models that the inclusion of Ricci-squared terms in the action can

impose upper bounds on the accessible values of pressure and density, which might have important

consequences for the early time cosmology and black hole formation scenarios. Our results indicate that

the phenomenology of fðR;R��R
��Þ theories is much richer than that of fðRÞ and fðR��R

��Þ theories and
that they also share some similarities with Bekenstein’s relativistic theory of MOND.
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I. INTRODUCTION

The existence of a cosmological constant is a challeng-
ing problem for theoretical physics which has gained in-
creasing attention since the discovery of the cosmic
speedup [1]. If it is thought as vacuum energy, a naive
quantum mechanical analysis raises the question of why it
is so small. If quantum field theory in curved space-times is
invoked, then the question turns into why it is so large [2].
If it is seen as having a quantum gravitational origin, then
the dimensionless combination �ðG@=c3Þ & 10�123 sug-
gests that this is 123 orders of magnitude away from the
right solution. Interpreting it as a new fundamental con-
stant could imply the existence of new physics in much the
same way as the Planck constant did. For these and many
other reasons, a strictly constant cosmological term is
undesirable.

Different versions of dark energy sources have been
proposed in the literature aimed at relaxing the condition
of strict constancy of the so-called vacuum energy. A scalar
field with very low kinetic energy can closely mimic an
effective cosmological constant, though away from the
minimum it might exhibit characteristic features that could
help distinguish it from a purely constant term. In the arena
of modified theories of gravity, there exists a family of
theories in which a strictly constant cosmological term
arises in certain circumstances. We refer to the so-called
fðRÞ theories in Palatini formalism, which are dynamically

inequivalent to their (nonidentical) twin brother fðRÞ in
metric formalism. In these theories, the field equations for
any Lagrangian fðRÞ become exactly the same as those of
general relativity (GR) plus an effective cosmological
constant whenever the trace of the energy-momentum
tensor is constant. When the trace is not constant, one
gets modified dynamics induced by the time and/or spatial
derivatives of T. It is this property of generating an effec-
tive cosmological constant that first attracted attention on
these theories in relation with the cosmic speedup problem
[3]. Any fðRÞ theory which at low cosmic densities (T !
0) generates a cosmological constant of the right magni-
tude will produce the desired accelerating effect. However,
the fðRÞmodels with infrared corrections considered in the
literature so far, besides producing late time cosmic
speedup, also lead to catastrophic effects at microscopic
scales. Such models induce severe instabilities in atoms
due to the strong gravitational backreaction that occurs
near the zeros of the atomic wave functions. In those
regions the energy density drops virtually to zero and
that excites the characteristic infrared scale of the gravita-
tional theory, producing undesired effects which disinte-
grate the atom [4].
The negative features of infrared corrected models,

however, are not present in models with just high curvature
corrections. Moreover, there is no fundamental reason that
prevents an fðRÞ theory with high curvature corrections
from producing an effective cosmological constant com-
patible with observations. We believe that that line of
research has not yet been sufficiently explored. On the*olmo@iem.cfmac.csic.es
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other hand, high curvature effects have already been ob-
served in Palatini fðRÞ theories. In fact, it is possible to find
an fðRÞ Palatini Lagrangian which avoids the big bang
singularity. In [5] it was shown that the effective dynamics
of loop quantum cosmology can be exactly reproduced by
an fðRÞ Palatini theory consisting on an infinite series in
R=Rc, where Rc � RPlanck [5]. That result is important
because it establishes links between an approach to quan-
tum gravity based on nonperturbative Hamiltonian quanti-
zation techniques and a covariant action in Palatini
formalism. It is well known that perturbative quantization
techniques require the addition of quadratic curvature in-
variants R2; R��R

��; . . . (in metric formalism) to the

Einstein-Hilbert Lagrangian to keep divergences under
control. However, it was not known what kind of effective
actions, if any, could be associated with the nonperturba-
tive loop quantization until the results of [5] were
published.

Motivated by those results, one may wonder about the
role that other curvature invariants besides R might play in
the dynamics of Palatini theories. Do R��R

�� terms in-

troduce new dynamical effects not present in fðRÞ theo-
ries? Another practical question is how such terms could
affect or contribute to the form of the resulting effective
cosmological constant in the vacuum limit of the theory. In
other words, can we find new insights or mechanisms to
obtain a cosmological constant of the right magnitude at
low energies? To answer these questions, we are forced to
go beyond the simple fðRÞ models. That is the goal of this
paper.

Palatini theories with Ricci-squared terms have been
already studied in the literature. In [6], the cosmology of
fðRÞ and fðR��R

��Þ theories was considered in some de-

tail. It was found that the scalar R��R
�� could be ex-

pressed as a function of the trace T of the matter energy-
momentum tensor and that new dynamics arises in a way
similar to that of fðRÞ theories, where R can also be
expressed as a function of T. In [7], theories of the form
Rþ fðR��R

��Þ rather than simply fðR��R
��Þ were con-

sidered, and the main focus was on the cosmology at the
first-order perturbation level (density perturbation growth).
In that work a 3þ 1 decomposition was introduced in
order to solve the connection equation, and the solution
was given at first order in the metric variables. In this work
we go a bit farther and consider Palatini theories in which
the Lagrangian is a generic function of the form
fðR;R��R

��Þ. We study their field equations and focus

on the basic manipulations that will allow us to write the
theory in a form suitable for applications. To be precise, we
show how to exactly solve the connection equation in terms
of the metric and the matter sources (without introducing
the 3þ 1 decomposition used in [7]), and discuss how the
scalars R and R��R

�� can be expressed as functions of the

density and pressure. We illustrate this point with a family
of exactly solvable models and point out that the value of

R��R
�� in such models is bounded from above, which also

sets upper bounds on the energy density and pressure. We
comment on the possible consequences that this aspect
might have for the early time cosmology of such models.
We also find that R and R��R

�� are not just functions of

the trace T, as it happens in the simpler fðRÞ and
fðR��R

��Þ theories. This fact implies that fðR; R��R
��Þ

theories have a much richer phenomenology during the
early universe and, in particular, during the radiation domi-
nated era. This is so because in that era, which is charac-
terized by T ¼ 0, the Palatini corrections of fðRÞ and
fðR��R

��Þ theories boil down to just a cosmological con-

stant, whereas in the fðR; R��R
��Þ case the modified

dynamics is more involved.
The paper is organized as follows. In Sec. II, we illus-

trate how to solve for the connection in general
fðR; R��R

��Þ theories. We start with the fðRÞ case to

describe the basic steps of the algorithm and then focus
on the general fðR; R��R

��Þ case applied to a perfect fluid.
Then we write the field equations of the metric in a form
suitable for applications and discuss the vacuum limit. In
Sec. IV, we provide a family of models for which R and
R��R

�� can be explicitly solved in terms of the density �

and pressure �, and show that those quantities must be
bounded from above for consistency of the equations. We
conclude with a summary and discussions.

II. SOLVING FOR THE CONNECTION

The action that defines a Palatini fðR; R��R
��Þ theory is

as follows:

S½g;�; c m� ¼ 1

2�2

Z
d4x

ffiffiffiffiffiffiffi�g
p

fðR;QÞ þ Sm½g; c m�; (1)

where g�� represents the space-time metric, ��
�� is the

connection (which is independent of the metric), c m rep-
resents the matter fields, R ¼ g��R��, and Q ¼ R��R

��.

The Ricci tensor R�� ¼ R���
� is defined in terms of the

connection as follows:

R��ð�Þ ¼ �@��
�
�� þ @��

�
�� þ ��

���
�
�� � ��

���
�
��: (2)

This definition follows from the relation ½r�;r��w� ¼
R���

	w	 and is valid for any derivative operator r� [8].

In order to obtain the field equations, we must vary the
action with respect to the various fields present in it. For
completeness, in the Appendix we detail the process of
variation to get the field equations. Variation with respect
to metric and connection leads to the following equations:

fRR�� � f

2
g�� þ 2fQR��R

�
� ¼ �2T�� (3)

r�½ ffiffiffiffiffiffiffi�g
p ðfRg�� þ 2fQR

��Þ� ¼ 0; (4)

where we have used the short-hand notation fR � @Rf, and
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fQ � @Qf. We now focus on working out a solution for

(4).
At first sight, Eq. (4) seems a highly nontrivial equation

because of the terms fR and fQR
��. In fact, since R and

R�� are functions of the connection and its first derivatives,
(4) can be seen as a nonlinear, second-order equation for
the unknown connection. However, there exist algebraic
relations between R, R�� and the energy-momentum ten-

sor of the matter that will make the problem easier. To
illustrate the general algorithm that solves (4), we will first
focus on the fðRÞ case, which is just the case fQ ¼ 0.

A. Solving for the connection in fðRÞ
In this case, the connection equation becomes

r�½ ffiffiffiffiffiffiffi�g
p

fRg
��� ¼ 0: (5)

From the metric field equation (3), we find

fRR�� � f

2
g�� ¼ �2T��: (6)

The contraction of this equation with the metric yields

fRR� 2f ¼ �2T: (7)

This expression is an algebraic equation that generalizes
the relation R ¼ ��2T of GR to arbitrary Lagrangian
fðRÞ. This means that given a Lagrangian, say fðRÞ ¼ Rþ
aR3, the above equation can be solved as R ¼ RðTÞ. In
this particular example, the equation is just �Rþ aR3 ¼
�2T. Note that RðTÞ is now a function of the matter and,
for this reason, fðRÞ and fRðRÞ are also functions of the
matter. According to this, the connection equation (5) can
be seen as a first-order equation for the connection that
depends on the metric g�� and the matter:

r�½ ffiffiffiffiffiffiffi�g
p

fRðRðTÞÞg��� ¼ 0: (8)

We now discuss how to solve this equation for the connec-
tion. In GR, this equation is simplyr�½ ffiffiffiffiffiffiffi�g

p
g��� ¼ 0, and

the solution [9] is given by the Christoffel symbols

��
�� ¼ g��

2
ð@�g�� þ @�g�� � @�g��Þ: (9)

In order to find a solution for (8), we can do the following.
We assume that there exists a metric h�� such that the

connection that solves (8) is the Levi-Cività connection of
h��. This means that the metric h�� satisfies

r�½
ffiffiffiffiffiffiffi�h

p
h��� ¼ 0. In other words, our ansatz satisfiesffiffiffiffiffiffiffi�h

p
h�� ¼ ffiffiffiffiffiffiffi�g

p
fRg��: (10)

It is useful to rewrite this equation using matrix notation to

suppress indices: h�� ! ĥ, h�� ! ĥ�1. We then haveffiffiffiffiffiffiffi�h
p

ĥ�1 ¼ ffiffiffiffiffiffiffi�g
p

fRĝ�1: (11)

If we compute the determinant of the left- and the right-
hand sides, we find

ð ffiffiffiffiffiffiffi�h
p Þ4h�1 ¼ ð ffiffiffiffiffiffiffi�g

p Þ4f4Rg�1 ) h ¼ gf4R: (12)

Introducing this result back into (11), we find ĥ�1 ¼
ĝ�1=fR, or equivalently, h�� ¼ g��=fR and h�� ¼
fRg��. We thus see that the metric h�� that defines our

independent connection is conformally related to the
space-time metric g��.

At this point, we must make some clarifications about
our notation. First of all, since we are dealing with two
metrics, we can also construct two different Ricci tensors
and two different scalar curvatures. The curvature of the
metric g�� is defined as RðgÞ ¼ g��R��ðgÞ, where R��ðgÞ
is the Ricci tensor constructed from the Levi-Cività con-
nection of g��. Analogously, we can define the scalar

curvature of the metric h�� as the contraction RðhÞ ¼
h��R��ðhÞ, which is equivalent to h��R��ð�Þ, where � is

the Levi-Cività connection of h��. Now, in the above

equations we have been dealing with something different
from RðgÞ and RðhÞ. What we called R orRðTÞ is a hybrid
object, it is the contraction g��R��ð�Þ, which is defined in
terms of the independent connection via R��ð�Þ ¼ R��ðhÞ
and the space-time metric g��. In all our previous formu-
las, we dealt with the object R, which is a function of the
matter via the trace T. Whenever we write R it should be
understood that it is a function of the matter. In any other
case, we will write either RðgÞ or RðhÞ.
For completeness, let us now focus on the equation for

the metric. In order to write a second-order equation for the
metric, we must use the solution that we just found for the
connection and introduce the result in (6), which is written

in terms of R��ðhÞ and g��. Since ĥ and ĝ are conformally

related, it is straightforward to relate R��ðhÞ with R��ðgÞ
(see Appendix D of [8]). The result is that (6) becomes

G��ðgÞ ¼ �2

fR
T�� �RfR � f

2fR
g�� þ 1

fR
ðr�r�fR

� g��hfRÞ � 3

2f2R

�
@�fR@�fR

� 1

2
g��ð@fRÞ2

�
; (13)

where nowr� is the usual covariant derivative of g��. The

lesson to learn here is that the right-hand side of (13)
behaves like a modified energy-momentum tensor in which
the trace T plays a role nonexisting in GR via the termsR,
fðRÞ and the various derivatives of fRðRÞ. When T is
constant, all @�fR terms vanish and the equations boil

down to those of GR plus an effective cosmological con-

stant given by RfR�f
2fR

evaluated at constant T.

B. Solving for the connection in general fðR;QÞ
We now face the problem of solving the constraint

equation (4). In this case, the metric variation leads to
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fRR�� � f

2
g�� þ 2fQR��R

�
� ¼ �2T��: (14)

In order to solve (4) we will follow the same steps as above
but adding the complexity inherent to the new problem.

Step 1.—We need to find an algebraic relation between
R and R�� with the matter sources. This will allow us to

reinterpret (4) as a first-order equation for the connection.

To proceed, we first define the matrix P̂, whose compo-
nents are P�

� � R��g
��, which allows us to express (14)

as

fRP�
� � f

2
	�

� þ 2fQP�
�P�

� ¼ �2T�
�: (15)

In matrix notation, this equation reads

2fQP̂
2 þ fRP̂� f

2
Î ¼ �2T̂; (16)

where T̂ is the matrix representation of T�
�. Note that R

and Q are the trace of P̂ and the trace of P̂2, respectively.
Solving this equation will thus lead to a relation of the form

P̂ ¼ P̂ðT̂Þ, which is analogous to the solution RðTÞ of the
fðRÞ case. For the moment we will not care about the
particular form of this solution, which depends on the
particular model chosen, and will just assume that it exists.
This is what we need to reinterpret (4) as a first-order
equation for the connection. The solution should thus
depend on the metric g�� and the T�� of the matter.

Step 2.—We now propose an ansatz of the same form as

above. We look for a metric ĥ such thatr�½
ffiffiffiffiffiffiffi�h

p
h��� ¼ 0.

This guarantees that the connection will be the Levi-Cività

connection of ĥ. Using matrix notation, we haveffiffiffiffiffiffiffi�h
p

ĥ�1 ¼ ffiffiffiffiffiffiffi�g
p

ĝ�1ðfRÎ þ 2fQP̂Þ: (17)

We now compute the determinant of the left- and the right-

hand sides, which give h ¼ g detðfRÎ þ 2fQP̂Þ. Once we

know the explicit expression for P̂ we will be able to
compute this determinant. In any case, we have the formal
expression

ĥ�1 ¼ ĝ�1�̂ffiffiffiffiffiffiffiffiffiffi
det�̂

q ; (18)

where we have defined �̂ ¼ ðfRÎþ 2fQP̂Þ. Taking the

inverse of the above matrix, we find

ĥ ¼ ð
ffiffiffiffiffiffiffiffiffiffi
det�̂

q
Þ�̂�1

ĝ: (19)

We have thus shown that the connection of fðR;QÞ theories
can be explicitly solved in terms of the physical metric g��

and the matter sources. To proceed further, we need to

consider particular choices for T�� and/or particular mod-

els. This is the task of the next sections.

C. fðR;QÞ with a perfect fluid

We now consider the case of matter described by T�
� ¼

�	�
� þ ð�þ�Þu�u�, where � represents pressure to

avoid misunderstanding with the matrix P̂. The first thing

that we need to do is to compute the matrix �̂ and its

inverse, because that will allow us to compute ĥ and ĥ�1.

To find �̂, we first need to find P̂, which is a solution of
(16). That equation can be rewritten as follows:

2fQ

�
P̂þ fR

4fQ
Î

�
2¼

�
�2�þf

2
þ f2R
8fQ

�
Îþ�2ð�þ�Þu�u�;

(20)

which can formally be denoted as

2fQM̂
2 ¼ �Îþ �u�u

�; (21)

so that we can look for a solution of the formffiffiffiffiffiffiffiffiffi
2fQ

q
M̂ ¼ �I þ 
u�u

�; (22)

where fQ > 0 has been assumed. We can now take the

square of this matrix to find the relation between ð�;
Þ and
ð�;�Þ:

�2 ¼ �; 
 ¼ ð��� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ �nu

p Þ
nu

; (23)

where nu � u�u
� is the norm of the vector u�, which for

the perfect fluid is just nu ¼ �1. If fQ < 0, then the same

manipulations hold up to the redefinitions fQ ! �jfQj,
� ! ��, and � ! ��. The matrix �̂ can then be written
as

��
� ¼ �1	

�
� þ�2u�u

�; (24)

where we have defined

�1 ¼
ffiffiffiffiffiffiffiffiffi
2fQ

q
�þ fR

2
(25)

�2 ¼
ffiffiffiffiffiffiffiffiffi
2fQ

q

: (26)

The determinant of a matrix of the form (24) can be

computed straightforwardly using the definition detM̂ ¼
�abcdM0

aM1
bM2

cM3
d and leads to

det�̂ ¼ �3
1ð�1 þ nu�2Þ: (27)

The inverse ð��1Þ�� has the form

ð��1Þ�� ¼ 1

�1

	�
� ��2

�1

1

ð�1 þ�2nuÞu�u
�: (28)

We are thus ready to express the metric in terms of known
quantities:
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h�� ¼ �

�
g�� �

ffiffiffiffiffiffiffiffiffi
2fQ

p



½ ffiffiffiffiffiffiffiffiffi
2fQ

p ð�þ nu
Þ þ fR
2 �

u�u�

�
(29)

h�� ¼ 1

�

�
g�� þ

ffiffiffiffiffiffiffiffiffi
2fQ

p



½ ffiffiffiffiffiffiffiffiffi
2fQ

p
�þ fR

2 �
u�u�

�
; (30)

where � ¼
ffiffiffiffiffiffiffiffiffiffi
det�̂

q
=�1. It is worth noting that in the limit

fQ ! 0 we find � ! fR and 
 ! 0 when the plus sign in

front of the square root of (23) is taken, which recovers the
equations of fðRÞ theories. A relation between two metrics
of the form found in (29) and (30), namely h�� ¼
�1g�� ��2u�u�, involving a vector field and two inde-

pendent functions �1 and�2, is known in the literature as
‘‘disformal transformation.’’ A relation of this form be-
tween two metrics has already been studied in inflationary
models characterized by nonminimal couplings between
curvature and a scalar field [10], and naturally arises in
Bekenstein’s relativistic theory of MOND [11] and in
previous versions of it. In the MOND theory, the vector
u� is an independent dynamical vector field and the func-

tions in front of it and in front of g�� depend on another

dynamical scalar field. In the theory described here, on the
contrary, the metric tensor is the only dynamical field of the
gravitational sector.

III. FIELD EQUATIONS AND �eff

To find the field equations for the metric in a way that
reminds those of GR, we can take (15) and put it as

P�
���

� ¼ �2T�
� þ f

2
	�

�: (31)

Using the inverse of �̂ and the definition of P�
� ¼

R��g
��, we can express these equations as

R��ð�Þ ¼
�
�2T�

� þ f

2
	�

�

�
ð��1Þ��g�� � ���: (32)

In the case of a perfect fluid, nu ¼ �1, the right-hand side
of this equation becomes

��� ¼ ðf2 þ �2�Þ
�1

g��

þ�1�
2ð�þ�Þ ��2ðf2 þ �2�Þ

�1ð�1 ��2Þ u�u�: (33)

The field equations for the metric g�� can now be obtained

from (32) by expressing the connection �ðhÞ in terms of
g�� and the matter using (29) and (30). In the case of fðRÞ
theories, this process leads to (13). [Recall that the fðRÞ
field equations are recovered in the limit fQ ! 0 when the
plus sign in front of the square root of (23) is taken.] In the
case of fðR;QÞ theories, we find it more convenient to
work directly with (32). Examples of applications will be
given elsewhere [12].

Let us now consider the effective cosmological constant
�eff that follows from a generic fðR;QÞ theory in vacuum.
With the same choice of sign that recovers the right fðRÞ
limit, (32) in vacuum becomes

R�
�ð�Þvac ¼ f

2�1

���������;�¼0
	�

�: (34)

Since in vacuum the relation between h�� and g�� is just a

constant conformal factor, h�� ¼ �j�;�¼0g�� (with

�j�;�¼0 ¼ �1j�;�¼0), it follows that R��ð�Þvac ¼
R��ðgÞvac, which implies that

R��ðgÞvac ¼ f

2�1

���������;�¼0
g�� ¼ �effg��: (35)

This equation indicates that �eff is the result of evaluating
the Lagrangian f in vacuum, up to a factor 1=2�1. Now,
from the trace of (16) we see that in vacuum f=2 ¼
ðRfR þ 2QfQÞ=4. Since we assume Lagrangians f which

recover GR at low curvatures, which implies that fR ! 1
in vacuum, it follows that to get a nonzero �eff we must
have Rvac � 0, or QfQ � 0 or a combination of both. In

any case, we see that the inclusion ofQ-dependent terms in
the Lagrangian provides new mechanisms besides those
present in fðRÞ theories to generate a nonzero cosmologi-
cal constant.

IV. SOLVING FOR Rð�;�Þ AND Qð�;�Þ
In order to study physical predictions of the theories

considered in this work, we must specify particular models.
Once a model is chosen, the problem of finding R ¼
Rð�;�Þ and Q ¼ Qð�;�Þ is difficult in general because
it can involve nonlinear equations with multiple solutions.
In principle, one only needs two independent equations
relating R, Q with �, � but it will not be obvious always
how to construct two such equations to make the problem
analytically tractable. Here we will impose some restric-
tions on the Lagrangian to simplify and illustrate the
problem. We will consider fðR;QÞ functions of the form

fðR;QÞ ¼ ~fðRÞ þ R��R
��

RP
, where RP is a constant of the

order of the Planck curvature. The reason for this choice
becomes apparent when we take the trace of Eq. (16):

2QfQ þ RfR � 2f ¼ �2T: (36)

This equation relates R and Q with T, but in the particular

case of fðR;QÞ ¼ ~fðRÞ þ R��R
��=RP, it becomes

R~fR � 2~f ¼ �2T (37)

which is exactly the same expression as in fðRÞ theories
and implies that R ¼ RðTÞ. There still remains to obtain
Q ¼ Qð�;�Þ. This function can be found taking the trace
of (22):
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ffiffiffiffiffiffiffiffiffi
2fQ

q �
Rþ fR

fQ

�
¼ 3�þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � �

q
; (38)

which can be cast as� ffiffiffiffiffiffiffiffiffi
2fQ

q �
Rþ fR

fQ

�
� 3�

�
2 ¼ �2 � �: (39)

After a bit of algebra we find that

� ¼
ffiffiffiffiffiffiffiffiffi
2fQ

p
8

�
3

�
Rþ fR

fQ

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
Rþ fR

fQ

�
2 � 4�

fQ

s �
: (40)

For our choice of fðR;QÞ we see that the fQ term appear-

ing on the right-hand side of (40) is just the constant fQ ¼
1=RP. We can then use the definition of �2 [see (20)–(22)],
to solve for Q as a function of RðTÞ, �, and �. The
solution is

Q

2RP

¼ �
�
�2�þ

~f

2
þ RP

8
~f2R

�
þ RP

32

�
3

�
R

RP

þ ~fR

�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
R

RP

þ ~fR

�
2 � 4�2ð�þ�Þ

RP

s �
2
: (41)

The correct limit when RP ! 1 is obtained for the minus
sign in front of the square root. Had we chosen RP nega-
tive, i.e., RP ! �RP, (41) would still hold but the positive
sign in front of the square root should be needed to obtain
the right limit. This can be easily verified for particular
choices of f.

It is remarkable that (41) with RP > 0 implies that Q is
bounded in the real line. Consistency requires that the term
under the square root be non-negative, i.e.,�

R

RP

þ ~fR

�
2 � 4�2ð�þ�Þ

RP

� 0 (42)

which places bounds on the accessible values of � and �.
To illustrate this point, let us consider the family of
Lagrangians fðR;QÞ ¼ Rþ aR2=RP þQ=RP, for which
R turns out to go exactly like in GR,R ¼ ��2T. If in this

example we choose a ¼ �1=2, i.e., ~fðRÞ ¼ R�
R2=ð2RPÞ, then (41) becomes

Q ¼ 3R2
P

8

�
1� 2�2ð�þ�Þ

RP

þ 2�4ð�� 3�Þ2
3R2

P

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�2ð�þ�Þ

RP

s �
: (43)

At low energies, this expression recovers the GR limit

Q � ð3P2 þ �2Þ þ 3ðPþ �Þ3
2RP

þ 15ðPþ �Þ4
4RP

2
þ � � � :

(44)

However, positivity of the argument in the square root of
(43) implies that at high energies

�2ð�þ�Þ 	 RP

4
; (45)

which clearly shows that the combination �þ� is
bounded from above. Taking an equation of state of the
form � ¼ w�, we find that the maximum value of Q
occurs at �2�max ¼ RP=ð4þ 4wÞ and is given by

Qmax ¼ 3R2
P

16

�
1þ ð1� 3wÞ2

12ð1þ wÞ2
�
: (46)

It is important to note that the upper bound on � and� is a
consequence of the field equations, which have been used
to obtain (41), and is independent of the symmetries or
equation of state that our particular problem might have.
As a consequence, we may expect to observe important
new effects in critical scenarios such as in stellar collapse
processes or in the very early Universe, where singularities
are unavoidable in the context of GR. We would like to
remark that, within the metric formalism, theories with
bounded curvature scalars were proposed time ago in
[13] to construct nonsingular isotropic universes. In such
constructions, the big bang singularity is cured by the self-
interactions introduced by two scalar fields, whose role was
to place bounds on the upper limits accessible to certain
curvature scalars. In the theory discussed here, no new
degrees of freedom have been introduced. It is the
Palatini dynamics that constraints the physical range of �
and� and, therefore, suggests that all curvature invariants
will be bounded. This contrasts with the generic behavior
of the models Rþ ðaR��R

�� þ bR2Þ=RP in metric for-

malism, where all solutions which at late times recover a
Friedmann-Lemaı̂tre-Robertson-Walker Universe start
with a big bang singularity and, therefore, with divergent
scalars R and Q [14].

V. SUMMARYAND CONCLUSIONS

In this work we have studied the field equations of
Palatini theories of gravity in which the Lagrangian is a
function of the form fðR;R��R

��Þ. We have shown that

the independent connection can be expressed as the Levi-
Cività connection of an auxiliary metric which is related to
the physical metric g�� and the energy-momentum tensor

by means of a nonstandard transformation, which becomes
disformal when matter is described as a perfect fluid and
boils down to conformal when the R��R

�� dependence

disappears. The emergence of two metrics related by a
disformal transformation, a basic requirement of relativis-
tic MOND theories to properly account for gravitational
lensing, could make these theories interesting for the con-
sideration of dark-matter-related problems.
We have also shown that in Palatini fðR;R��R

��Þ theo-
ries the scalars R and R��R

�� can in general be written as

functions of � and� but not necessarily via the trace T. As
a result, the phenomenology of these theories is much
richer than that of the individual fðRÞ or fðR��R

��Þ theo-
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ries. Furthermore, for some simple models, we have shown
explicitly that the scalar R��R

�� sets bounds on the physi-

cally accessible range of � and �, which suggests that
scenarios such as the very early Universe and the last stages
of stellar collapse could be seriously affected by the new
dynamics possibly leading to singularity resolution.

The results obtained in this work open new avenues of
research in the context of the very early Universe, the
radiation dominated epoch, and the accelerating
Universe, with new mechanisms to generate an effective
cosmological constant, within a framework that does not
introduce new degrees of freedom and, therefore, is closer
to GR than other type of modified theories of gravity or
dark energy models.
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APPENDIX A: VARIATION OF THE ACTION

The variation of the action (1) can be expressed as

	S ¼ 1

2�2

Z
d4x

ffiffiffiffiffiffiffi�g
p �

� f

2
g��	g

�� þ 	fðR;QÞ
�
;

(A1)

where 	fðR;QÞ represents
	fðR;QÞ ¼ fR	Rþ fQ	Q (A2)

and the subindex in fR and fQ denotes partial derivative.

Since R ¼ g��R�� and Q ¼ g��g��R��R��, it is easy to

see that

	R ¼ 	ðg��R��Þ ¼ R��	g
�� þ g��	R�� (A3)

	Q ¼ 	ðg��g��R��R��Þ ¼ 2R��R
�
�	g

�� þ 2R��	R��:

(A4)

Inserting these results in 	S we find

	S ¼ 1

2�2

Z
d4x

ffiffiffiffiffiffiffi�g
p ��

fRR�� � f

2
g��

þ 2fQR��R
�
�

�
	g�� þ ðfRg�� þ 2fQR

��Þ	R��

�
:

(A5)

The next step requires to express 	R�� in terms of 	��
��.

This can be done using the so-called Palatini identity

	R�� ¼ �r�ð	��
��Þ þ r�ð	��

��Þ: (A6)

We now manipulate the 	R�� term. That contribution is of

the form

M ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p
���	R��; (A7)

where, in our case, ��� � ðfRg�� þ 2fQR
��Þ. Using the

Palatini identity, we get

M ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p
���½�r�ð	��

��Þ þ r�ð	��
��Þ�: (A8)

Using integration by parts and rearranging indices, we find

M ¼
Z

d4xfr�½ ffiffiffiffiffiffiffi�g
p ð���	��

�� ����	��
��Þ�

þ r�½ ffiffiffiffiffiffiffi�g
p ð���	�

� � 	�
��

��Þ�	��
��g: (A9)

The first term in brackets is a total derivative and can be
discarded. The second term is the one we need. Putting this
back into 	S we end up with

	S¼ 1

2�2

Z
d4x

ffiffiffiffiffiffiffi�g
p ��

fRR���f

2
g��þ2fQR��R

�
�

�
	g��

þr�½ ffiffiffiffiffiffiffi�g
p ð���	�

��	�
��

��Þ�	��
��

�
: (A10)

Knowing that the matter action gives 	Sm ¼ � 1
2 
R

d4x
ffiffiffiffiffiffiffi�g

p
T��	g

��, the field equations can be written as

follows:

fRR�� � f

2
g�� þ 2fQR��R

�
� ¼ �2T�� (A11)

r�½ ffiffiffiffiffiffiffi�g
p ð���	�

� � 	
�
��

��Þ� ¼ 0: (A12)

Note that the second equation is equated to zero because
matter is not coupled to the independent connection (	�
does not appear in 	Sm). Equation (A12) can be further
simplified if one notices that when � ¼ � then the equa-
tion is identically zero. Taking � � � then it boils down to
r�½ ffiffiffiffiffiffiffi�g

p
���� ¼ 0, which is explicitly given by

r�½ ffiffiffiffiffiffiffi�g
p ðfRg�� þ 2fQR

��Þ� ¼ 0: (A13)

It is straightforward to verify that when f ¼ fðRÞ, no
explicit dependence on Q, all the above equations reduce
to the case of Palatini fðRÞ.
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