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2Departamento de Fı́sica Teórica and IFIC, Centro Mixto Universidad de Valencia-CSIC. Facultad de Fı́sica,
Universidad de Valencia, Burjassot-46100, Valencia, Spain.

3Instituto de Estructura de la Materia, CSIC, Serrano 121, 28006 Madrid, Spain
(Received 3 July 2009; published 18 August 2009)

A disturbing aspect of Hawking’s derivation of black hole radiance is the need to invoke extreme

conditions for the quantum field that originates the emitted quanta. It is widely argued that the derivation

requires the validity of the conventional relativistic field theory to arbitrarily high, trans-Planckian scales.

We stress in this note that this is not necessarily the case if the question is presented in a covariant way. We

point out that Hawking radiation is immediately robust against an invariant Planck-scale cutoff. This

important feature of Hawking radiation is relevant for a quantum gravity theory that preserves, in some

way, the Lorentz symmetry.
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The Hawking effect [1] plays a pivotal role in the inter-
play between quantum mechanics and general relativity
and, hence, it is of special relevance in any proposal for a
quantum gravity theory. The original derivation of
Hawking is based on the general framework of particle
creation on curved spacetimes, first developed in a cosmo-
logical setting in [2] (see also [3,4]). The derivation con-
siders the propagation of modes that represent particles in
the asymptotically flat regions; the first at early times
before a dust cloud has begun to collapse, and the second
at late times long after it has collapsed to form a black hole
as seen by a distant observer. In short, the expansion of a
field in two different sets of modes, uinj ðxÞ (that are positive
frequency on past null infinity) and uoutj ðxÞ (that are posi-

tive frequency on future null infinity) leads to a relation for
the corresponding creation and annihilation operators:

aouti ¼ P
jð��

ija
in
j � ��

ija
iny
j Þ. When the coefficients �ij

do not vanish, the ‘‘in’’ and ‘‘out’’ vacuum states do not
coincide and, therefore, the number of particles measured
in the ith mode by an out observer in the in vacuum state, is
given by hNii ¼ P

kj�ikj2. For a Schwarzschild black hole,
one obtains [1] for the average number of particles ob-
served at late times in the state in which no particles are
present at early times (we omit angular quantum numbers)

hNwi ¼
Z þ1

0
dw0j�ww0 j2; (1)

where the beta coefficients, up to a transmission amplitude
factor and a trivial phase are given by

�w;w0 ¼ 1

2��

ffiffiffiffiffi
w0

w

s
�ð1þ ��1wiÞ

ð���1w0Þ1þ��1wi
; (2)

where � is the surface gravity. Since these coefficients

behave like 1=
ffiffiffiffiffi
w0p

for large w0, the integral (1) diverges.
This is naturally interpreted as the fact that the total num-
ber of created quanta is infinite, as corresponds to a finite
steady rate of emission. The steady rate can be easily
obtained from (1) and turns out to be thermal

h _Nwi ¼ 1

2�

1

e2��
�1w � 1

: (3)

However, there is a disturbing point in this derivation. One
needs to perform an unbounded integration in the frequen-
cies w0 to obtain the steady thermal rate of radiation [5–8].
Any outgoing Hawking quanta at infinity will have an
exponentially increasing frequency as they are propagated
backwards in time to reach the near-horizon region.
A cutoff in the frequencies w0 of order of the Planck

length (we take units with c ¼ 1) would require that we
consider only early-time frequencies satisfying

w0 < ‘�1
P ; (4)

where ‘P is the Planck length. This will change completely
the Hawking effect. It will introduce a damping time-
dependent factor in formula (3). The Hawking radiation
is then converted into a transient phenomena (see, for
instance, [9] and also [10]).
However, as first shown in [11], it is possible to rederive

the Hawking radiation from a different perspective. In this
derivation it is just the universal Hadamard short-distance
behavior of the two-point function for all physically al-
lowed states near horizon, namely
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Gðx1; x2Þ � @

4�2�
; (5)

where � is the squared geodesic distance between x1 and
x2, that is responsible for the steady thermal emission. A
somewhat related approach was developed in [9,12]. The
mean number operator at late times can be expressed, in
general, as [9,12]

hNii ¼ @
�1

Z
�
d�

�
1 d�

�
2½uouti ðx1Þ@

$
��

� ½uout�i ðx2Þ@
$
��Gðx1; x2Þ: (6)

After some algebra, one arrives at the expression

hNwi ¼ � 1

4�2w

Z 0

�1
dU1dU2

e�iwðuðU1Þ�uðU2ÞÞ

ðU1 �U2 � i�Þ2 ; (7)

where U is the null Kruskal coordinate U ¼ ���1e��u

and u ¼ t� r� is the corresponding retarded time of a
Schwarzschild black hole. The double integral above is
divergent, but this divergence is expected due to the infinite
number of quanta emitted in the infinite amount of time
involved in the formula. Restricting the computation to the
mean particle number per unit time one gets the finite
thermal result

h _Nwi ¼ � 1

4�2w

d

du

Z 0

�1
dU1dU2

e�iwðuðU1Þ�uðU2ÞÞ

ðU1 �U2 � i�Þ2

¼ 1

2�

1

e2��
�1w � 1

: (8)

Again, the disturbing point in the above derivation is that a
cutoff in distances requiring that

ðU1 �U2Þ2 > ‘2P; (9)

turns the otherwise steady Hawking radiation into a tran-
sient phenomenon. One notices immediately that the com-
mon point in the cutoff (9) and that of (4) is that both are
not Lorentz-invariant. Since we have put an upper limit,
w0 � 1=‘P, on the early-time frequencies, the in modes
remaining after this amputation are not sufficient to gen-
erate the radiated out modes at late times. This produces
the described decay of Hawking radiation with time as a
consequence of breaking the principle of relativity by
means of a noninvariant cutoff.

It is possible, however, to introduce a cutoff in an
invariant way. On dimensional grounds, one can demand
that the two-point function Gðx1; x2Þ that appears in our
integrals does not exceed the inverse of Newton’s constant

jGðx1; x2Þj< @‘�2
P � G�1

N : (10)

It is not difficult to show, as we will see, that this condition
translates into a restriction in the integration range of the
U1, U2 coordinates in (8) given by

ðU1 �U2Þ2 > ‘2P�
2U1U2=4�

2: (11)

The factor �2U1U2 on the right-hand side of (11) is absent
in Eq. (9). This factor is required to have an invariant cutoff
for all locally inertial observers and immediately ensures
the robustness of Hawking radiation.
An understanding of how (11) follows from (10) can be

obtained in a simple way by considering the Unruh effect
[13]. A detector held at constant r just outside the horizon
behaves like a uniformly accelerated detector in
Minkowski space (equivalence principle). The thermal
radiation detected by the accelerated observer can be re-
lated to the Hawking emission. The detector will have
some internal energy states jEi and it can interact with
the field by absorbing or emitting quanta. The interaction
can be modeled in the standard way by coupling the field
	ðxÞ along the detector trajectory x ¼ xð
Þ (
 is the detec-
tor proper time) to some operator mð
Þ acting on the
internal detector eigenstates

g
Z

d
mð
Þ�ðxð
ÞÞ; (12)

where g is the strength of the coupling. The probability
for the detector to make the transition from jEii to jEfi
is given by the expression PðEi ! EfÞ ¼
g2jhEfjmð0ÞjEiij2Fð�EÞ, where Fð�EÞ is the so-called

response function

Fð�EÞ ¼
Z þ1

�1
d
1d
2e

�i�E�
=@h0Mj�ðxð
1ÞÞ
��ðxð
2ÞÞj0Mi; (13)

where �
 ¼ 
1 � 
2. For a massless field the Wightman
two-point function in (13), where j0Mi is the Minkowski
vacuum, is given by

h0Mj�ðx1Þ�ðx2Þj0Mi ¼ � @

4�2½ð�t� i�Þ2 � ð� ~xÞ2� :
(14)

For trajectories having a proper-time translational symme-
try under 
 ! 
þ 
0, it is natural to consider the constant
transition probability per unit proper time and the corre-
sponding response rate per unit proper time

_Fð�EÞ ¼
Z þ1

�1
d�
e�i�E�
=@h0Mj�ðxð
1ÞÞ�ðxð
2ÞÞj0Mi:

(15)

Both the inertial detector and the uniformly accelerated
detector possess proper-time translational symmetry. For
an inertial detector trajectory, the response rate is given by

_Fð�EÞ ¼ �
Z þ1

�1
d�
e�i�E�
=@

�
@

4�2ð�
� i�Þ2
�

¼ ��E

2�
�ð��EÞ; (16)

in agreement with the principle of relativity. If the detec-
tor’s initial state is the ground state Ei ¼ E0, then �E> 0
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and the probability for an inertial detector to be excited is
exactly zero, irrespective of the velocity of the detector.
(When �E< 0 the result is nonvanishing and this leads to
the expected nonzero probability for the spontaneous de-
cay Ei ! Ef < Ei.)

For a uniformly accelerated trajectory in Minkowski
spacetime

t ¼ 1

a
sinha
; x ¼ 1

a
cosha
; (17)

where a is the acceleration, the response function is then

Fð�EÞ ¼
Z þ1

�1
d
1d
2e

�ið�E�
=@Þ �@ða=2Þ2
4�2sinh2½a2 ð�
� i�Þ� :

(18)

The corresponding response rate function turns out to

be _Fð�EÞ ¼ ð�E=2�Þðe2��E=@a � 1Þ�1, which implies,

via the detailed balance relation, _Pð�EÞ ¼
_Pð��EÞe�2��E=a@, that a uniformly accelerated observer
in Minkowski space feels himself immersed in a thermal
bath at the temperature kBT ¼ a@

2� .

Performing the change of variable

U � t� x ¼ �a�1e�a
; (19)

one can rewrite the integral (18) in the form

Fð�EÞ ¼ �
Z 0

�1
dU1dU2e

�i�E�
=@ @

4�2ðU1 �U2 � i�Þ2 :
(20)

The time derivative of this expression is exactly the same
(up to the factor 1=@w) as (8) obtained before in computing
the expectation value of the number operator in the
Hawking effect (identifying the acceleration a with the
surface gravity � and the coordinate U with the corre-
sponding Kruskal coordinate). It is now easy to see that
the invariant cutoff condition��������

@

4�2½ð�tÞ2 � ð� ~xÞ2�
��������<G�1

N (21)

on the accelerated trajectory (17) becomes

@ða2Þ2
4�2sinh2 a

2 �

< G�1

N : (22)

Expanding the denominator of (22) to lowest order in �

and using (19) to express ð�
Þ2 in terms of ð�UÞ2 �
ðU1 �U2Þ2, it is straightforward to show that this inequal-
ity is equivalent to (11). This confirms our statement that
(10) implies (11).

The natural question now is to see if the invariant cutoff
suffices to preserve the bulk of the Hawking effect. The
answer is in the affirmative, but to see this requires an
additional step [9,12]. Let us use again the Unruh effect to
illustrate the argument. We want to take advantage of the
fact that there is a state of the field, j0Ai, for which the

response function of the accelerated detector vanishes for
�E> 0

FAð�E> 0Þ ¼
Z þ1

�1
d
1d
2e

�i�E�
 � h0Aj�ðxð
1ÞÞ
��ðxð
2ÞÞj0Ai ¼ 0: (23)

Taking this into account, it is possible to obtain an
equivalent expression for the response function of the
uniformly accelerating detector in the Minkowski vacuum,
j0Mi, by subtracting the previous quantity from the right-
hand-side of Eq. (13)

Fð�E> 0Þ ¼
Z þ1

�1
d
1d
2e

�i�E�


� ½h0Mj�ðxð
1ÞÞ�ðxð
2ÞÞj0Mi
� h0Aj�ðxð
1ÞÞ�ðxð
2ÞÞj0Ai�: (24)

This expression presents several advantages over (13). It
explicitly shows that the difference between two-point
correlation functions of the field in the vacuum states
j0Mi and j0Ai is at the root of a nonvanishing response
function. (Notice that although the integral of
h0Aj�ðxð
1ÞÞ�ðxð
2ÞÞj0Ai in the response function is
zero, the correlation function itself is not zero.)
Moreover, the integrand is now a smooth and symmetric
function, thanks to the universal short-distance behavior of
the two-point functions. Thus, the usual ‘‘i�-prescription’’
in the two-point functions is now redundant and can be
omitted. Additionally, expression (24) shows a remarkable
fact when an invariant cutoff is considered. It manifestly
produces a vanishing result in the limit a ! 0, respecting
in that way the principle of relativity that we want to
preserve.
Now, one can consistently implement the invariant and

universal cutoff condition

jh0Mj�ðxð
1ÞÞ�ðxð
2ÞÞj0Mij<G�1
N ; (25)

and

jh0Aj�ðxð
1ÞÞ�ðxð
2ÞÞj0Aij<G�1
N (26)

in (24). The first inequality is equivalent to (22) and the
second one to �
2 > ‘2P=4�

2. Moreover, both inequalities
are essentially equivalent since all quantum states (in
particular j0Mi and j0Ai) have the same short distance
behavior, as is seen explicitly from the short distance
asymptotic form of (22).
In the black hole case, the same argument can be applied

for the computation of the mean particle number [9,12],
and Gðx1; x2Þ in Eq. (6) can be substituted by

Gðx1; x2Þ � houtj�ðx1Þ�ðx2Þjouti; (27)

where jouti is, as usual, the vacuum state defined by the
modes uoutj ðxÞ. This leads to an expression for the mean

particle number per unit time
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h _Nwi ¼ � 1

4�2w

d

du

�Z 0

�1
dU1dU2

e�iwðuðU1Þ�uðU2ÞÞ

ðU1 �U2Þ2

�
Z þ1

�1
du1du2

e�iwðu1�u2Þ

ðu1 � u2Þ2
�
; (28)

where now we want to restrict the ranges of integration, so
ðU1 �U2Þ2 > ‘2P�

2U1U2=4�
2 and ðu1 � u2Þ2 > ‘2P=4�

2.
The explicit evaluation of these integrals, with the corre-
sponding bounds for ðU1 �U2Þ2 and ðu1 � u2Þ2, leads to

h _Nwi � 1

2�

1

e2��
�1w � 1

� �‘P
96�4ðw=�Þ þOð�‘PÞ3: (29)

For black hole radii much bigger than the Planck length

(� � ‘�1
P ) and for reasonable values of the frequency, the

correction terms are negligible, which shows the irrele-
vance of ultrahigh energy physics in the derivation of the
Hawking effect.
In summary, we have shown that a universal invariant

cutoff condition for two-point functions is able to preserve
the bulk of the thermal Hawking radiation.
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