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We study isotropic and anisotropic (Bianchi I) cosmologies in Palatini fðRÞ and fðR;R��R
��Þ theories

of gravity with a perfect fluid and consider the existence of nonsingular bouncing solutions in the early

universe. We find that all fðRÞ models with isotropic bouncing solutions develop shear singularities in the

anisotropic case. On the contrary, the simple quadratic model Rþ aR2=RP þ R��R
��=RP exhibits

regular bouncing solutions in both isotropic and anisotropic cases for a wide range of equations of state,

including dust (for a < 0) and radiation (for arbitrary a). It thus represents a purely gravitational solution

to the big bang singularity and anisotropy problems of general relativity without the need for exotic

(w> 1) sources of matter/energy or extra degrees of freedom.
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I. INTRODUCTION

Ever since its publication, Einstein’s theory of general
relativity (GR) has fascinated theoretical physicists. Not
only is it in excellent quantitative agreement with all
observations [1] (if a cosmological constant is included),
but it also allows us to determine at which stage it should
not be trusted. The existence of cosmological (big bang)
and black hole singularities is a clear symptom that the
theory is not complete. To overcome this drawback, it is
common to argue that in such extreme circumstances
quantum gravitational effects should play an important
role and would avoid the breakdown of predictability,
i.e., the disappearance of physical laws [2]. The details of
how this should actually happen are another mystery and
probably different quantum theories of gravity would lead
to different mechanisms for removing the singularities.

If we accept that the idea of gravitation as a geometric
phenomenon still persists at the quantum level,1 with per-
haps quantized areas and volumes in the fashion of loop
quantum gravity [3], it seems reasonable to expect that the
quantum corrected gravitational dynamics could be de-
scribed in terms of some effective action incorporating a
number of regulating parameters (while keeping the matter
sector untouched). In the absence of fully understood quan-
tum theories of gravity and of their corresponding effective
actions, it would be desirable to have a working model
which, as an intermediate step between classical GR and
the final quantum theory of gravity, could capture,at least
qualitatively, some aspects of the sought for nonsingular

theory of gravity. Stated differently, can we find a regulated
gravitational theory (free from singularities) and as suc-
cessful as GR at low energies? Obviously, such a theory
would be very welcome from a phenomenological point of
view and could provide new insights on fundamental prop-
erties of the geometry at very high energies.
In this work we elaborate in this direction and propose a

family of modified Lagrangians which departs from GR by
quadratic curvature corrections

fðR;R��R
��Þ ¼ Rþ a

R2

RP

þ b
R��R

��

RP

; (1.1)

whereRP � l�2
P is the Planck curvature, and show that for a

wide range of parameters a and b they lead to nonsingular
cosmologies both in isotropic and anisotropic Bianchi I
universes for all reasonable sources of matter and energy.
In particular, we find that radiation dominated universes
are always nonsingular. The novelty of our approach,
obviously, is not the particular Lagrangian considered,
which is well known (see [4] and references therein) and
naturally arises in perturbative approaches to quantum
gravity [5]. The new ingredient that makes our model
successful in removing cosmological singularities is the
fact that we follow a first-order (Palatini) formulation of
the theory, in which metric and connection are assumed to
be independent fields. In this approach, the metric satisfies
second-order partial differential equations, like in GR, and
the independent connection does not introduce any addi-
tional dynamical degrees of freedom (like in the Palatini
version of GR [6]). In fact, the connection can be expressed
in terms of the metric, its first derivatives, and functions of
the matter fields and their first derivatives. As a result, the
theory is identical to GR in vacuum but exhibits different
dynamics when matter and/or radiation are present (more
details on this later). For the model (1.1), this means that
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1Note that string theory predicts the existence of fields with

couplings that violate the equivalence principle [1]. For this
reason, the idea of gravitation as a purely geometric phenome-
non is somehow broken in that context.
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the dynamics is identical to that of GR at low curvatures
but departures arise at high energies/curvatures. Since the
equations are of second order, there cannot be more solu-
tions in this theory than there are in GR. Therefore, the
modified solutions that we find represent deformations (at
the Planck scale) of the solutions corresponding to GR.
Such deformations, as we will see, are able to avoid the big
bang singularity by means of a bounce from an initially
contracting phase to the current expanding universe.

Our approach is motivated by previous studies on non-
singular bouncing cosmologies initiated in [7] and contin-
ued in [8,9]. In [7] it was shown that the effective dynamics
of loop quantum cosmology [10], which describes an iso-
tropic bouncing universe, can be exactly derived from an
fðRÞ action with high-curvature corrections in Palatini
formalism. Different attempts to find effective actions for
those equations followed that work but either failed [11] or
are limited to the low-energy, perturbative regime [12].
The existence and characterization of bouncing cosmolo-
gies in the fðRÞ Palatini framework was studied in [8],
where it was also shown that, unlike in the usual metric
approach, the simple quadratic Palatini Lagrangian fðRÞ ¼
Rþ R2=RP exhibits bouncing solutions for a wide range of
equations of state. This, in part, justifies our study of the
Lagrangian (1.1), which here is proposed on phenomeno-
logical grounds to explore the kind of new physical effects
present in this family of theories. The evolution of cosmo-
logical perturbations in fðRÞ models has been recently
considered in [13]. The field equations of extended
Palatini theories fðR;QÞ, in which the gravity Lagrangian
is also a function of the squared Ricci tensorQ ¼ R��R

��,

were investigated in [9], where it was found that in models

of the form fðR;QÞ ¼ ~fðRÞ þQ=RP, the scalar Q is ge-
nerically bounded from above irrespective of the symme-
tries of the theory. Unlike in the more conventional metric
formalism, Palatini Lagrangians of the form fðR;QÞ lead
to second-order equations for the metric and, therefore, are
presumably free from ghosts and similar instabilities for
arbitrary values of the parameters a and b.

The successful results of [7,8] motivate and force us to
explore scenarios with less symmetry to see if Palatini
theories are generically an appropriate framework for the
construction of nonsingular theories. We will see that fðRÞ
models which lead to bouncing cosmologies in the iso-
tropic case also lead to anisotropic Bianchi I universes with
expansion and energy density bounded from above. As we
show here, however, such models have an unavoidable
shear divergence, which occurs when the condition
@RfðRÞ ¼ 0 is met. This important result implies that
Palatini fðRÞ theories do not have the necessary ingredients
to allow for a fully successful regulated theory in the sense
defined above. Such limitation, however, is not present in
fðR;QÞ Palatini theories. We explicitly show that for
the model (1.1) there exist bouncing solutions for which
the expansion, energy density, and shear are all bounded.

This model, therefore, avoids the well-known problems of
anisotropic universes in GR, where anisotropies grow
faster than the energy density during the contraction
phase leading to a singularity, which can only be avoided
by means of matter sources with equation of state
w ¼ P=� > 1 [14] (see also [15]).
The content of the paper is organized as follows. In

Sec. II we summarize the field equations of Palatini
fðR;QÞ theories with a perfect fluid, which were first
derived and discussed in [9]. In Sec. III we obtain expres-
sions for the expansion and shear in both fðRÞ and fðR;QÞ
theories. Section IV is devoted to the analysis of fðRÞ
theories in isotropic and anisotropic scenarios, paying
special attention to the possible existence of isotropic
bouncing solutions which are not of the type @Rf ¼ 0.
In Sec. V we study the model (1.1) and characterize the
different bouncing solutions according to the values of
the Lagrangian parameters a and b, and the equation of
state w. We end with a brief discussion and conclusions.

II. FIELD EQUATIONS

The field equations corresponding to the Lagrangian
(1.1) can be derived from the action

S ¼ 1

2�2

Z
d4x

ffiffiffiffiffiffiffi�g
p

fðR;QÞ þ Smðg��;�Þ; (2.1)

where �2 � 8�G, R � g��R��, Q � R��R
��, R�� �

�@��
�
�� þ @��

�
�� þ ��

���
�
�� � ��

���
�
��, �

�
�� is the inde-

pendent connection, and� represents generically the mat-
ter fields, which are not coupled to the independent
connection. Variation of the action with respect to the
metric leads to

fRR�� � f

2
g�� þ 2fQR��R

�
� ¼ �2T��; (2.2)

where fR � @Rf and fQ � @Qf. Variation with respect to

the independent connection gives

r�½ ffiffiffiffiffiffiffi�g
p ðfRg�� þ 2fQR

��Þ� ¼ 0: (2.3)

For details on how to obtain these equations see [9]. Note
that the literature has mainly dealt with Palatini fðRÞ
theories [16] (see also the reviews [17–19] for more details
and references) and that fðR;QÞ theories have received
much less attention due, in part, to the more complicated
field equations. In [20], the cosmology of fðRÞ and
fðR��R

��Þ theories was considered in some detail. In

[21], theories of the form Rþ fðR��R
��Þ rather than

simply fðR��R
��Þ were considered, and the main focus

was on the cosmology at the first-order perturbation level
(density perturbation growth). In that work a 3þ 1 decom-
position was introduced in order to solve the connection
equation (2.3), and the solution was given at first order in
the metric variables. In [9], the connection equation was
solved in a fully covariant and nonperturbative way
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without resorting to the 3þ 1 decomposition. The connec-
tion equation (2.3) can be solved in general introducing2 an
auxiliary metric h�� such that (2.3) takes the form

r�½
ffiffiffiffiffiffiffi�h

p
h��� ¼ 0. If a solution to this equation exists,

then �
�
�� can be written as the Levi-Civita connection of

the metric h��. When the matter sources are represented by

a perfect fluid, T�� ¼ ð�þ PÞu�u� þ Pg��, one can

show that h�� and its inverse h�� are given by [9]

h�� ¼ �

�
g�� � �2

�1 ��2

u�u�

�
; (2.4)

h�� ¼ 1

�

�
g�� þ�2

�1

u�u�
�
; (2.5)

where

� ¼ ½�1ð�1 ��2Þ�1=2; (2.6)

�1 ¼
ffiffiffiffiffiffiffiffiffi
2fQ

q
�þ fR

2
; (2.7)

�2 ¼
ffiffiffiffiffiffiffiffiffi
2fQ

q
½��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � �2ð�þ PÞ

q
�; (2.8)

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2Pþ f

2
þ f2R

8fQ

vuut ; (2.9)

In terms of h�� and the above definitions, the metric field

equation (2.2) takes the following form [in Sec. III C we
show that these equations recover the fðRÞ field equations
in the corresponding limit]

R��ðhÞ ¼ 1

�1

�ðfþ 2�2PÞ
2�

h�� þ�1�
2ð�þ PÞ

�1 ��2

u�u�

�
:

(2.10)

In this expression, the functions f, �1, and �2 are func-
tions of the density � and pressure P. In particular, for
our quadratic model one finds that R ¼ �2ð�� 3PÞ and
Q ¼ Qð�; PÞ is given by

bQ

2RP

¼ �
�
�2Pþ

~f

2
þ RP

8b
~f2R

�
þ RP

32b

�
3

�
bR

RP

þ ~fR

�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
bR

RP

þ ~fR

�
2 � 4b�2ð�þ PÞ

RP

s �
2
; (2.11)

where ~f ¼ Rþ aR2=RP, and the minus sign in front of the
square root has been chosen to recover the correct limit at
low curvatures.

Before proceeding further, note that an expansion in
inverse powers of RP of the Lagrangian (1.1), the functions
(2.6), (2.7), and (2.8), and of the field equation (2.10)
leads to

h�� �
�
1þ 2a�2ð�� 3PÞ � 2�2P

RP

�
g��

� 2�2ð�þ PÞ
RP

u�u�; (2.12)

R��ðhÞ � �2

�ð�� PÞ
2

g�� þ ð�þ PÞu�u�
�

þ �4AðP;�Þ
RP

ðg�� þ 4u�u�Þ; (2.13)

where AðP; �Þ ¼ Pð�þ PÞ þ að�Pþ 3P2=2� �2=2Þ.
This shows that at energy-density scales well below the
Planck scale RP=�

2, the auxiliary metric coincides with the
physical metric, h�� � g�� þOð1=RPÞ, and the field

equations boil down to those of GR plus Oð1=RPÞ correc-
tions, R��ðhÞ � �2ðT�� � 1

2g��TÞ þOð1=RPÞ. Note also

that at this order the parameter b does not appear in the
expansion, though it does show up at higher orders.
Therefore, the theory (1.1) recovers the standard solutions
of GR in all those scenarios in which the energy density is
much smaller than the Planck scale, which confirms its
complete observational viability. Only at very high energy
scales will our theory predict significant deviations with
respect to GR. Such conditions, in particular, may arise
during the last stages of stellar gravitational collapse to
form a black hole (where the density diverges) and during
the very early universe (near the big bang singularity). This
last scenario will be the main focus of our analysis.
In what follows, we will use (2.10) to find equations

governing the evolution of physical magnitudes such as the
expansion, shear, matter/energy density, and so on. Note
that (2.10) is written in terms of the auxiliary metric h��,

not in terms of the physical metric g��. In terms of g��,

Eq. (2.10) would be much less transparent and more diffi-
cult to handle. As we will see in the next section, working
with (2.10) will simplify many manipulations and will
allow us to obtain a number of analytical expressions for
all the physical magnitudes of interest.

III. EXPANSION AND SHEAR

In this section we derive the equations for the evolution
of the expansion and shear for an arbitrary Palatini fðR;QÞ
theory. We also particularize our results to the case of fðRÞ
theories, i.e., no dependence onQ. We consider a Bianchi I
spacetime with physical line element of the form

ds2 ¼ g��dx
�dx� ¼ �dt2 þX3

i¼1

a2i ðtÞðdxiÞ2: (3.1)

2We assume without proof that such a metric exists. The
existence of a solution to the equation for the connection with
this ansatz is, in fact, a proof of the existence of the auxiliary
metric h��.
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In terms of this line element, the nonzero components of
the auxiliary metric h�� are the following:

htt ¼ �
�

��1

�1 ��2

�
� �S; (3.2)

hij ¼ �gij ¼ �a2i 	ij: (3.3)

The relevant Christoffel symbols associated with h�� are

the following:

�t
tt ¼

_S

2S
; (3.4)

�t
ij ¼

�a2i
2S

� _�

�
þ 2 _ai

ai

�
	ij; (3.5)

�i
tj ¼

	i
j

2

� _�

�
þ 2 _ai

ai

�
: (3.6)

The nonzero components of the corresponding Ricci
tensor are

RttðhÞ ¼ �X
i

_Hi �
X
i

H2
i �

3

2

€�

�
þ 3

4

_�

�

� _S

S
þ

_�

�

�

þ 1

2

� _S

S
� 2 _�

�

�X
i

Hi; (3.7)

RijðhÞ ¼
	ija

2
i

2

�

S

�
2 _Hiþ

€�

�
�
� _�

�

�
2þ

_�

�

X
k

Hk

þ1

2

_�

�

�
3 _�

�
�

_S

S

�
þ2Hi

�X
k

Hkþ1

2

�
3 _�

�
�

_S

S

���
;

(3.8)

where Hk � _ak=ak. These expressions define the Ricci
tensor R��ðhÞ on the left-hand side of Eq. (2.10). For

completeness, we give an expression for the corresponding
scalar curvature

RðhÞ ¼ 1

S

�
2
X
k

_Hkþ
X
k

H2
k þ

�X
k

Hk

�
2

þ
�
3
_�

�
�
� _S
S
�

_�

�

��X
k

Hk þ 3
€�

�
� 3

2

_�

�

_S

S

�
: (3.9)

From the above formulas, one can readily find the cor-
responding ones in the isotropic, flat configuration by just
replacingHi ! H. For the spatially nonflat case, the RttðhÞ
component is the same as in the flat case. The RijðhÞ
component, however, picks up a new piece, 2K
ij, where


ij represents the nonflat spatial metric of gij ¼ a2i 
ij. The

Ricci scalar then becomes RðhÞ ! RK¼0ðhÞ þ 6K
a2�

.

A. Shear

From the previous formulas and the field equation (2.10),
we find that the combination Ri

i � Rj
j (no summation over

indices) leads to

Ri
i � Rj

j ¼ 1

S

�
_Hij þHij

�X
k

Hk þ 1

2

�
3 _�

�
�

_S

S

���
¼ 0;

(3.10)

where we have defined Hij � Hi �Hj. Note that the final

equality Ri
i � Rj

j ¼ 0, follows from the fact that we are

using an isotropic perfect fluid and, therefore, the right-
hand sides ofRi

i andRj
j as given by (2.10) are equal. Using

the matter conservation equation for a fluid with constant
equation of state P ¼ w�,

_� ¼ �ð1þ wÞ�X
k

Hk; (3.11)

the above equation can be readily integrated (for this reason
we consider constant equations of state throughout the rest
of the paper). This leads to

Hij ¼ Cij

S1=2�1=ð1þwÞ

�3=2
¼ Cij

�1=ð1þwÞ

�1 ��2

; (3.12)

where the constants Cij ¼ �Cji satisfy the relation C12 þ
C23 þ C31 ¼ 0. It is worth noting that writing explicitly the
three equations (3.12) and combining them in pairs, one can
write the individual Hubble rates as follows:

H1 ¼ �

3
þ ðC12 � C31Þ �

1=ð1þwÞ

�1 ��2

;

H2 ¼ �

3
þ ðC23 � C12Þ �

1=ð1þwÞ

�1 ��2

;

H3 ¼ �

3
þ ðC31 � C23Þ �

1=ð1þwÞ

�1 ��2

;

(3.13)

where � is the expansion of a congruence of comoving
observers and is defined as � ¼ P

iHi. Using these rela-
tions, the shear �2 ¼ P

iðHi � �
3Þ2 of the congruence takes

the form

�2 ¼ �2=ð1þwÞ

ð�1 ��2Þ2
ðC2

12 þ C2
23 þ C2

31Þ
3

; (3.14)

where we have used the relation ðC12 þ C23 þ C31Þ2 ¼ 0.

B. Expansion

We now derive an equation for the evolution of the
expansion with time and a relation between expansion
and shear. From previous results, one finds that

GttðhÞ � � 1

2

X
k

H2
k þ

1

2

�X
k

Hk

�
2 þ

_�

�

X
k

Hk þ 3

4

� _�

�

�
2
:

(3.15)

In terms of the expansion and shear, this equation becomes

Gtt � ��2

2
þ �2

3

�
1þ 3

2
�1

�
2
; (3.16)

CARLOS BARRAGÁN AND GONZALO J. OLMO PHYSICAL REVIEW D 82, 084015 (2010)

084015-4



where we have defined

�1 ¼ �ð1þ wÞ�@��

�
: (3.17)

The right-hand side of (3.16) is given by G�� ¼ 
�� �
1
2 h��h

��
��, with 
�� being the right-hand side of (2.10).

A bit of algebra leads to the following relation between the
expansion, shear, and the matter:

�2

3

�
1þ 3

2
�1

�
2 ¼ fþ �2ð�þ 3PÞ

2ð�1 ��2Þ þ �2

2
: (3.18)

Note that once a particular Lagrangian is specified, an
equation of state P ¼ w� is given, and the anisotropy
constants Cij are chosen, the right-hand side of

Eqs. (3.14) and (3.18) can be parametrized in terms of �.
This, in turn, allows us to parametrize the Hi functions of
(3.13) in terms of � as well. This will be very useful later
for our discussion of particular models.

In the isotropic case (�2 ¼ 0, � ¼ 3 _a=a � 3H ) with
nonzero spatial curvature, (3.18) takes the following form:

H 2 ¼ 1

6ð�1 ��2Þ
½fþ �2ð�þ 3PÞ � 6K�1

a2
�

½1þ 3
2 �1�2

: (3.19)

The evolution equation for the expansion can be
obtained by noting that the Rij equations, which are of

the form Rij � ð�=2SÞgij½� � �� ¼ ðf=2þ �2PÞgij=�1,

can be summed up to give

2ð _�þ �2Þ þ �

�
6 _�

�
�

_S

S

�
þ 3

� €�
�

þ 1

2

_�

�

� _�

�
�

_S

S

��

¼ 3½fþ 2�2P�
�1 ��2

: (3.20)

Using the relations _� � �ð1þ wÞ����, _S �
�ð1þ wÞ�S��, and €� ¼ ð1þ wÞ2��2½�� þ ����� �
ð1þ wÞ���

_�, the above expression turns into

½2þ 3�1� _�þ
�
2þð2� 3wÞ�1 þ 3�2

�ð1þwÞ�
�
1þ 3

2
�1

��
��

�
�S�

S

��
�2 ¼ 3½fþ 2�2P�

�1 ��2

;

(3.21)

where we have used the definition (3.17) and have defined
the quantity

�2 � ð1þ wÞ2�2
���

�
: (3.22)

Note that the function _� can also be plotted as a function
of �. In the isotropic, nonflat case the evolution equation
for the expansion (� ¼ 3H) can be obtained from (3.21) by
just replacing the term ½fþ 2�2P� on the right-hand side
by ½fþ 2�2P� 4K�1=a

2�.

C. Limit to fðRÞ
We now consider the limit fQ ! 0, namely, the case in

which the Lagrangian only depends on the Ricci scalar R.
Doing this we will obtain the corresponding equations for
shear and expansion in the fðRÞ case without the need
for extra work. This limit can be obtained from Eqs. (2.6),
(2.7), (2.8), and (2.9) by taking fQ ! 0 in those definitions.
One then finds that

�1 ! fR; �2 ! 0; (3.23)

S ! � ! fR: (3.24)

With these rules it is easy to see that h�� ¼ fRg��, which

makes (2.10) boil down to the expected field equations for

Palatini fðRÞ theories, namely, fRR��ðhÞ � f
2 g�� ¼

�2T��. Equation (3.12) turns into

Hij ¼ Cij

�1=ð1þwÞ

fR
; (3.25)

which leads to

H1 ¼ �

3
þ ðC12 � C31Þ�

1=ð1þwÞ

fR
;

H2 ¼ �

3
þ ðC23 � C12Þ�

1=ð1þwÞ

fR
;

H3 ¼ �

3
þ ðC31 � C23Þ�

1=ð1þwÞ

fR
:

(3.26)

The shear is thus given by

�2 ¼ �2=ð1þwÞ

f2R

ðC2
12 þ C2

23 þ C2
31Þ

3
; (3.27)

where C12 þ C23 þ C31 ¼ 0. The relation between expan-
sion and shear now becomes

�2

3

�
1þ 3

2
~�1

�
2 ¼ fþ �2ð�þ 3PÞ

2fR
þ �2

2
; (3.28)

where ~�1 is given by (3.17) but with � replaced by fR. In
the isotropic case with nonzero K we find

H 2 ¼ 1

6fR

½fþ �2ð�þ 3PÞ � 6KfR
a2

�
½1þ 3

2
~�1�2

: (3.29)

The evolution equation for the expansion is now given by

½2þ 3~�1� _�þ ½2þ ð2� 3wÞ~�1 þ 3~�2��2

¼ 3½fþ 2�2P� 4KfR
a2

�
fR

; (3.30)

where ~�2 is defined as in (3.22) but with� replaced by fR.
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IV. ISOTROPIC AND ANISOTROPIC BOUNCING
fðRÞ COSMOLOGIES

An isotropic and homogeneous cosmological model
experiences a bounce when the Hubble function H 2 van-
ishes (see Fig. 1), thus defining a minimum of the expan-
sion factor (see Fig. 2). According to the formulas derived
in previous sections, isotropic bouncing fðRÞ cosmologies
occur either when the denominator of (3.29) blows up to

infinity or when the numerator ½fþ �2ð�þ 3PÞ � 6KfR
a2

�
vanishes. The divergence of the denominator only depends

on the form of the Lagrangian, whereas the vanishing of the
numerator also depends on the value of the spatial curva-
ture K. In order to characterize the anisotropic bouncing
models, it is convenient to study first the isotropic case. For
this reason, we will focus first on the existence of diver-
gences in the denominator and will postpone until the end
the other case.

A. Divergences of ~�1 and importance of anisotropies

As can be easily verified from the definition of ~�1 in
(3.17), the existence of divergences in the denominator of
(3.29) can only be due to the vanishing of the combination
fRðRfRR � fRÞ:

~� 1 ¼ ð1þ wÞð1� 3wÞ�2�fRR
fRðRfRR � fRÞ : (4.1)

The Lagrangian that reproduces the dynamics of loop
quantum cosmology with a massless scalar, which is well
approximated by the function fðRÞ ¼ �R

dR tanhð 5
103 �

ln½ R
12Rc

�2Þ [7], satisfies the condition fR ¼ 0 at R ¼ 12Rc,

where Rc is a scale related with the Planck curvature RP,

thus leading to a divergence of ~�1 at that point. One
can construct other models with simple functions
such as fðRÞ ¼ Rþ aR2=RP or fðRÞ ¼ Rþ R2=RPðaþ
b ln½R2=R2

P�Þ which also have bounces when fR ¼ 0. The
fR ¼ 0 bouncing condition seems to be quite generic and
arises even when one tries to find models which satisfy the
condition RfRR � fR ¼ 0 at some point. An illustrative

example is the model fðRÞ ¼ RPðeR=RP � 1Þ, which leads

to fR ¼ eR=RP and RfRR � fR ¼ eR=RPðR� RPÞ=RP,
which vanishes at R ¼ RP. In this model one either finds
a divergentH 2, due to the vanishing of the denominator of
(3.29) for w< 1=3, or a bounce when the density
approaches the limiting value �2�B ¼ 2RP=ð3w� 1Þ for
w> 1=3. This bounce occurs as R=RP � ln½1� �=�B� !
�1, which corresponds to fR ! 0 and, therefore, lies in
the standard class of bouncing models.
The importance of finding fðRÞ models for which the

bounce occurs when fR � 0 becomes apparent when one
studies anisotropic (homogeneous) scenarios. In these
cases, the shear diverges as �1=f2R, as is evident from
(3.27). This shows that any isotropic bouncing cosmology
of the fR ¼ 0 type will develop divergences when anisot-
ropies are present. And this is so regardless of how small
the anisotropies are initially. It is worth noting that even
though �2 diverges at fR ¼ 0, the expansion and its time
derivative are smooth and finite functions at that point if
the density and curvature are finite. In fact, from (3.28) and
(3.30) we find that3

0.2 0.4 0.6 0.8 1.0
2 RP

0.01

0.02

0.03

0.04

0.05

H2

f R R
R2

2 RP
, 0

K 0

K 0

K 0

FIG. 1 (color online). Representation of the Hubble function in
terms of � for the model fðRÞ ¼ R� R2=2RP and w ¼ 0 for
K < 0, K ¼ 0, and K > 0.

300 250 200 150 100 50 0
t

0.2

0.4

0.6

0.8

1.0
a t

GR Vs f R R
R2

2 Rp

GR , K 0

f R , K 0

GR , K 0

f R , K 0

GR , K 0

f R , K 0

FIG. 2 (color online). Time evolution of the expansion factor
for the model fðRÞ ¼ R� R2=2RP and w ¼ 0 for K > 0,
K ¼ 0, and K < 0 (solid curves from left to right). From left
to right, we see that the universe is initially contracting, reaches a
minimum, and then bounces into an expanding phase. The
dashed lines, which are only discernible near the bounces,
represent the expanding solutions of GR, which begin with a
big bang singularity (aðtÞ ¼ 0) and quickly tend to the non-
singular solutions.

3Note that the case w ¼ 1=3 must be excluded from the
analysis because in that case the theory behaves like GR with
an effective cosmological constant and the manipulations that
lead to (4.2) and (4.3) are not valid.

CARLOS BARRAGÁN AND GONZALO J. OLMO PHYSICAL REVIEW D 82, 084015 (2010)

084015-6



�20 ¼
2ðC2

12 þ C2
23 þ C2

31Þ
9

�
�

R0

ð1þ wÞð1� 3wÞ�2�0

�
2
�2=ð1þwÞ
0 ; (4.2)

_� 0 ¼ �ð2� 3wÞ
3

�20 þ
R0

2ð1� 3wÞ ; (4.3)

where the subindex denotes the point at which fR ¼ 0
(where the shear diverges). It is worth noting that in GR
_� < 0 always, whereas in fðRÞ the point fR ¼ 0 is charac-
terized by (4.3), which may be positive, negative, or zero. If
the anisotropy is sufficiently small, which is measured by
the constant ðC2

12 þ C2
23 þ C2

31Þ in (4.2), then _� may be

positive. This indicates that some repulsive force is trying
to halt the contraction. However, if the anisotropy is too
large, then it can dominate the expansion and keep _� < 0 at
all times (see Fig. 3 and note how the first local maximum
tends to disappear in the upper curves as the anisotropy
grows).

In Fig. 3 we find that there exist anisotropic solutions for
which � ¼ 0 at densities beyond the point fR ¼ 0, which
sets the bounce of the isotropic case. One could thus be
tempted to claim that for universes with low degree of
anisotropy bouncing solutions really exist if we allow for
slightly negative values of fR, which lead to � ¼ 0.
However, the shear divergences of these anisotropic mod-
els at fR ¼ 0 are physically unacceptable because any
detector crossing the singularity would be ripped apart by
the infinite tidal forces (see [22] for a nice discussion on
divergences and singularities in cosmology). Moreover,
from Eqs. (3.26) it is easy to see that the Kretschman
scalar R����R

���� ¼ 4ðPið _Hi þH2
i Þ2 þH2

1H
2
2 þ

H2
1H

2
3 þH2

2H
2
3Þ diverges at least as �1=f4R, which is a

clear geometrical pathology. Additionally, the vanishing

of fR suggests that the field equations may not be valid for
negative values of fR because the conformal transforma-
tion needed to solve for the connection becomes ill defined
at fR ¼ 0, which seems to be a generic problem of
anisotropic models in modified theories of gravity [23].
Note also that the evolution of inhomogeneous perturba-
tions in isotropic models develops divergences when fR
vanishes [13].
When the bounce is due to the vanishing of RfRR � fR

at R ¼ RB (with fR � 0 at that point), then the shear is
finite and the expansion is given by

�2B � ðRfRR � fRÞ2 ! 0; (4.4)

_� B ¼ 4R3
BfRRR

3ð1þ3Þð1�3wÞ�2�B

�
fþ�2ð1þ3wÞ�B

2fR
þ�2

2

�
RB

:

(4.5)

The fact that �2B ¼ 0 at RB implies that the density reaches
a maximum at that point (recall the conservation equation
_� ¼ ��ð�þ PÞ). Also, since in this case the shear is finite,
this family of bouncing fðRÞ models seems to be the right
family of Lagrangians to construct nonsingular models.
However, as we show next, there are no Lagrangians of
this type able to recover GR at low curvatures.

1. Nonexistence of RfRR � fR ¼ 0 models

The existence of bounces in the isotropic case is due to

the unbounded growth of ð1þ 3
2
~�1Þ. One may try to build

bouncing models by defining an always positive function
gðRÞ which has a divergence at R ¼ RP such that

gðRÞ ¼ 2

�
1þ 3

2
~�1

�

¼ ðfRR½6ð1þ wÞf� ð1þ 3wÞRfR� � f2RÞ
fRðRfRR � fRÞ : (4.6)

Given the function gðRÞ, one can find the Lagrangian fðRÞ
that generates the corresponding bouncing universe by just
solving a second-order differential equation. The function
gðRÞ also needs to satisfy the condition gðRÞ � 1 as R ! 0
to force fðRÞ � R in that limit. Simple manipulations
of (4.6) lead to

fRR
f2R

¼ ½2� gðRÞ�
6ð1þ wÞf� ½1þ 3wþ gðRÞ�RfR : (4.7)

Since in GR R> 0 if w< 1=3 and R< 0 if w> 1=3, we

may perform the change of variable fðRÞ ¼ �R0e
�ðRÞ,

which leads to fR ¼ �Rf, fRR ¼ ð�RR þ �2
RÞf, and allows

us to rewrite (4.7) as follows

�RR þ �2
R

�2
R

¼ ½2� gðRÞ�
6ð1þ wÞ � ½1þ 3wþ gðRÞ�R�R

: (4.8)

By construction, the function gðRÞ goes like gðRÞ � 1 at
low curvatures, then may change in an unspecified way

0.2 0.4 0.6 0.8 1.0 1.2 1.4
2 RP

0.05

0.05

0.10

2 9
f R R

R2

2 RP
, 0

Isotropic

Anisotropic

Anisotropic

Anisotropic

FIG. 3 (color online). Evolution of the expansion �2 with the
amount of anisotropy. The solid (blue) line represents the iso-
tropic case. As the anisotropy grows, the first local maximum of
�2 disappears (dashed curves). This indicates that anisotropies
can overcome the repulsive forces of the modified fðRÞ
Lagrangian.
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though always being positive at intermediate curvatures,
and finally blows up to infinity at R ¼ RP, which sets the
high-curvature scale. Since gðRÞ grows unboundedly near
RP, we see that the denominator of (4.8) could vanish at
some point. This is in fact what one finds systematically
when using a numerical trial and error scheme to find fðRÞ
bouncing models. We now show that this always occurs for
any function gðRÞ satisfying the conditions required above.
Since at low curvatures we demand fðRÞ � R, which
implies �R � 1=R, it follows that the denominator of
(4.8) is Den � 6ð1þ wÞ � ð1þ 3wþ 1Þ1 ¼ ð4þ 3wÞ,
which is positive for all reasonable matter sources (w>
�4=3). After this initial positive value, since gðRÞ> 0will
grow as R�R remains positive,4 unavoidably we will have
Den ¼ 0 at some later point. Then:

(i) If �R � 0whenDen ¼ 0, then gðRÞ and �R are finite
whereas �RR ! 1 at that point. However, since gðRÞ
is finite, the divergence of �RR cannot imply a cos-
mic bounce, since by construction that only happens
when gðRÞ diverges. Therefore, this case does not
correspond to a bounce.

(ii) If we admit that gðRÞ can indeed go to infinity, it
follows that that must be the only point at which
Den ¼ 0. This requires that the product gðRÞ�R be
finite at RP, which implies that �R ! 0 at RP to
exactly compensate the divergence of gðRÞ and
give a final result which exactly cancels with the
6ð1þ wÞ of the denominator of (4.8). Note that in
this case the left-hand side of (4.8) diverges as 1=�2

R

and the right-hand side goes like �gðRÞ=zero.

This shows that the bouncing condition gðRÞ ! 1 at RP

can only be satisfied if �R vanishes at that point, which
implies that fR ¼ 0 and excludes the possibility of having
RfRR � fR ¼ 0 as the condition for the bounce.

B. Vanishing of the numerator of H 2

In the previous section, we concluded that the denomi-
nator of H 2 can only diverge if fR ¼ 0. We now inves-
tigate if there exists some other mechanism able to
generate isotropic bouncing models. We begin by noting
that the bounce should occur when fB þ ð1þ 3wÞ�2�B �
6KfBR=a

2
B ¼ 0. Using the well-known relation

RfR � 2f ¼ �2T; (4.9)

which follows from the trace of the field equations of
Palatini fðRÞ theories, we find that

�
RB � 12K

a2B

�
fBR ¼ �3ð1þ wÞ�2�B: (4.10)

Now, since at low curvatures fR � 1> 0 and must remain
positive always (to avoid a bounce of the type fR ¼ 0), at
the bounce we have ðRB � 12K=a2BÞ< 0 for all w>�1.
Since at low densities R � ð1� 3wÞ�2� is positive for
w< 1=3, the negative sign of (RB � 12K=a2B) implies
that for K 	 0 the rate of growth of R with � must vanish
and change sign at some point before the bounce. Using
Eq. (4.9), we find that

@�R ¼ ð1� 3wÞ�2

fR � RfRR
: (4.11)

A change of sign in @�R implies a divergence in the

denominator of this last equation, which means that fR !
1 and/or fRR ! �1. In none of those cases the theory is
well defined beyond the divergence, which implies that R
is monotonic with �. Therefore, for K 	 0 the only hope is
a bouncing model with w> 1=3 because for such equa-
tions of state R< 0 always. For K > 0 this constraint can,
in principle, be avoided.
Let us now focus on the case K ¼ 0. We can parallel the

strategy followed in the previous section and build fðRÞ
models starting with a function gðRÞ which goes like R at
low curvatures and has a zero at R ¼ RP such that

H 2 ¼ gðRÞ
3ð1� 3wÞfRð1þ 3~�1

2 Þ
: (4.12)

The function gðRÞ determines a first-order differential
equation, 2gðRÞ ¼ ð1þ 3wÞRfR � 3ð1þ wÞf, from
which fðRÞ can be easily obtained as

fðRÞ ¼ � 2R


ð1þ 3wÞ
Z R

dx
gðxÞ
x1þ


; (4.13)

where 
 ¼ 3ð1þwÞ
1þ3w . Though this is a convenient method for

model building, a trial and error analysis does not lead to
any successful model.5 Numerically, we find that either an
fR ¼ 0 bounce occurs or that the denominator of H 2

vanishes before the zeros of gðRÞ can be reached, which
leads to a singularity.
When K � 0, the above method can also be applied,

though the resulting differential equation becomes highly
nonlinear and the solutions can only be found numerically.
The results are similar to the case K ¼ 0. We systemati-
cally find that the models with a hope to lead to a bounce
are those for which fR ! 0 at some point. As a result, the
spatial curvature term �6KfR=a

2 is suppressed in that
region and becomes negligible, giving rise to a bounce of
the type fR ¼ 0. Though a rigorous proof similar to that
given in the case of RfRR � fR ¼ 0 models is not yet
available, we believe that no models of this type which
recover GR at low curvatures exist.

4Note that the product R�R is initially positive and can only
change sign if �R vanishes at some point, which would force
fR ¼ 0 at that point.

5Among many others, we considered families of models
characterized by functions such as gðRÞ ¼ Rð1� Rs=Rs

PÞn and
gðRÞ ¼ Rð1� ðR=RPÞs lnRq=Rq

PÞ.
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C. Conclusions for fðRÞ models

Using Eqs. (3.28) and (3.29), the expansion can be
written as follows:

�2 ¼ 9H2 þ 3

2

�2

ð1þ 3
2
~�1Þ2

; (4.14)

where H represents the Hubble function in the K ¼ 0
isotropic case, and �2 is defined in (3.27). From this
representation of the expansion, it is clear that the only
way to get a true bouncing model without singularities is
by satisfying the condition RfRR � fR ¼ 0, which would
generate a finite shear, a divergent denominator in the
second term of (4.14), and hence a vanishing expansion.
However, we have explicitly shown that such condition can
never be satisfied. Moreover, even if the numerator of H2

could vanish and produce a different kind of isotropic
bouncing models, in the anisotropic case the expansion
would not vanish and, therefore, that could not be regarded
as an anisotropic bounce. For all these reasons, it follows
that Palatini fðRÞ models do not have the necessary ingre-
dients to build a complete alternative to GR free from
cosmic singularities.

V. NONSINGULAR UNIVERSES IN fðR;QÞ
The previous section represents a no go theorem for the

existence of nonsingular Palatini fðRÞ models able to
produce a complete alternative to GR in idealized uni-
verses filled with a single perfect fluid with constant equa-
tion of state.6 Though the isotropic case greatly improves
the situation with respect to GR, the anisotropic shear
divergences kill any hopes deposited on this kind of
Lagrangians. The most natural next step is to study the
behavior in anisotropic scenarios of some simple general-
ization of the fðRÞ family to see if the situation improves.
Using the Lagrangian (1.1), we will show next that com-
pletely regular bouncing solutions exist for both isotropic
and anisotropic homogeneous cosmologies.

A. Isotropic universe

Consider Eq. (3.19) together with the definitions (2.6),
(2.7), (2.8), and (2.9) particularized to the fðR;QÞ
Lagrangian (1.1). In this theory, we found that R ¼ �2ð��
3PÞ and Q ¼ Qð�; PÞ is given by (2.11). From now on we
assume that the parameter b of the Lagrangian is positive
and has been absorbed into a redefinition of RP, which is
assumed positive. This restriction is necessary (though
not sufficient) if one wants the scalar Q to be bounded

for w>�1. The Lagrangian then becomes fðR;QÞ ¼
Rþ aR2=RP þQ=RP. When b=RP > 0, positivity of the
square root of Eq. (2.11) establishes that there may exist a
maximum for the combination �þ P.
The first difficulty that we find is the choice of sign in

front of the square root of Eq. (2.8). In order to recover the
fðRÞ limit and GR at low curvatures, we must take the
minus sign. However, when considering particular models,
which are characterized by the constant a and an equation
of state w, one realizes that the positive sign and the
negative sign expressions for �2 may coincide at some
high-curvature scale, when the argument of the square rootffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � �2ð�þ PÞp

vanishes. When this happens, one must
make sure that the function �2 at higher energies is con-
tinuous and differentiable. These two conditions force us to
switch at that point from the negative to the positive sign
expression (see Fig. 4 for an illustration of this problem),
which then defines a continuous and differentiable function
on the physical domain. Bearing in mind this subtlety, one
can then proceed to represent the Hubble function for
different choices of parameters to determine whether
bouncing solutions exist or not.
We observe that for every value of the parameter a there

exist an infinite number of bouncing solutions, which
depend on the particular equation of state w. The bouncing
solutions can be divided into two large classes:
Class I: a 
 0.

In this case, the bounce occurs when the scalar Q reaches
its maximum value Qmax, which happens when the argu-
ment of the square root of (2.12) vanishes. At that point the
denominator of the Hubble function diverges and forces
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FIG. 4 (color online). Illustration of the need to combine the
two branches of �2 to obtain a continuous and differentiable
curve. The branch that starts at the origin has the minus sign in
front of the square root (solid line). When the square root
vanishes, the function must be continued through the growing
dashed branch, which corresponds to the positive sign in front of
the square root. The matching point of the radiation universe
(w ¼ 1=3) occurs at �2� ¼ RP=6 and appears highlighted in
green (online only).

6The consideration of several fluids, fluids with varying equa-
tion of state [24], or fluids with anisotropic stresses, see for
instance [25], could affect the dynamics providing new bouncing
mechanisms and preventing the extension of this conclusion to
such more realistic cases. Such aspects will be explored in future
works.
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the vanishing of H2 (for more details see Sec. VB). In
general, the density at that point satisfies

�2�Qmax

RP

¼ 1þ 5w� 2að1� 3wÞ� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8ð1þwÞð2w�að1� 3wÞÞp

ð1þ 2aÞ2ð1� 3wÞ2 :

(5.1)

The bounce occurs at that density for all equations of state
satisfying the condition

w>wmin ¼ a

2þ 3a
; (5.2)

which follows from the requirement of positivity of the
argument of the square root of (5.1). Note that, except for
a ¼ 0, the case w ¼ wmin is not contained in the set of
bouncing solutions. From (5.2) it follows that a radiation
dominated universe, w ¼ 1=3, always bounces for any
a > 0. In fact, when w ¼ 1=3, we find that (5.1) must be
replaced by

�2�
Qw¼1=3

max
¼ 3RP

16
: (5.3)

Note that this last expression is independent of the value of
a and, thus, holds also for the case a 	 0. This was to be
expected since the coefficient a multiplies the quadratic
term R2=RP, which is zero in a radiation dominated uni-
verse. Remarkably, this implies that all radiation domi-
nated universes in the family of Lagrangians considered
here always lead to a big bounce. This clearly demonstrates
that fðR;QÞ theories possess interesting dynamical prop-
erties that cannot be reproduced by any fðRÞ Palatini
Lagrangian [26]. The modified dynamics in the fðRÞ case
is generated by new terms that depend on the trace T ¼
�ð1� 3wÞ�, which do not produce any effect in a radia-
tion scenario.

Class II: a 	 0.
This case is more involved and must be divided into several
intervals. In general, the bounce occurs at a density given
by the following expression:

�2�B

RP

¼
8<
:

1þ6w�2að1�3wÞ�3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wð2þ3wÞ�að1þwÞð1�3wÞ

p
ð1þaÞð1þ4aÞð1�3wÞ2 if w	w0;

�2�Qmax

RP
if w
w0;

(5.4)

where w0 represents the value of w at which the two
branches of �2�B=RP coincide. The generic expression
for w0 as a function of a is very complicated, though its
computation for a given a is straightforward. Note that the
curve defined by Eq. (5.4) is smooth and differentiable with

respect to w even at w0. It is important to note that w0 is
always negative. This means that the bouncing solutions
that occur at �Qmax

can be extended to negative values of w

until the value w0. As of that point, the range of bouncing
solutions is extended to even more negative values of w
through the new branch w 	 w0 of Eq. (5.4). What hap-
pens before and afterw0 to make that particular equation of
state so relevant? The answer is as follows. For w 
 w0,
the bounce occurs at a density for which Q is maximum
[when the square root of (2.12) vanishes]. For w 	 w0, the
bounce occurs at a density for which the function�1 ��2

vanishes. At w ¼ w0 we find that Q reaches its maximum
at the same density as �1 ��2 vanishes.
How far into the negative axis can w be extended beyond
the matching pointw0? The answer depends on the value of
a. We split the a < 0 axis into five elements:
Case IIa: �1=4< a 	 0.

The values of w in this interval are restricted by the argu-
ment of the square root of (5.4) for w 	 w0. We thus find
that

� 1

3
þ 1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4a

1þ a

s
<w<1: (5.5)

We see that when a ¼ 0 we find agreement with the
discussion of case I. As a approaches the limiting value
�1=4, the bouncing solutions extend up to w ! �1=3.
However, since the branch w 	 w0 of (5.4) is singular at
a ¼ �1=4, that particular model must be studied
separately.
Case IIb: a ¼ �1=4.

In this case, the density at the bounce is given by the
following expression:

�2�B

RP

¼
8<
:

1
3ð1þ3wÞ if w 	 � 1

9 ;

�2�Qmax

RP
if w 
 � 1

9 ;
(5.6)

which is always finite except for the limiting value w ¼
�1=3. Thus, bouncing solutions exist for any w within the
interval �1=3 	 w<1.
Case IIc: �1=3 	 a 	 �1=4.

Though in this interval the argument of the square root in
(5.4) is always positive, we observe numerically that the
bouncing solutions cannot be extended beyond the value
w<�1, where �B reaches a maximum. Therefore, in this
interval we find that the bouncing solutions occur if �1<
w<1, where w ¼ �1 is excluded.
Case IId: �1 	 a 	 �1=3.

Here we also find that the negative values of w cannot be
extended beyond w<�1. Surprisingly, we also find re-
strictions for w> 1 which are due to the existence of zeros
in the denominator of H2. Because of the algebraic com-
plexity of the functions involved, it is not straightforward
to find a clean way to characterize the origin of those
zeros. However, numerically we find that they arise when
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w � ð�þ �aÞ=ð1þ 3aÞ2, where � ¼ 1:1335 and � ¼
�3:3608 (this fit is very good near a � �1=3 and slightly
worsens as we approach a ¼ �1). Summarizing, the
bouncing solutions are restricted to the interval�1<w<
ð�þ �aÞ=ð1þ 3aÞ2 > 1. This expression agrees in the
limiting value a ¼ �1=3 with the expected values �1<
w<1 of case IIc. The case a ¼ �1 must be treated
separately, though it does not present any undesired fea-
ture. Note that in this interval one finds the case a ¼ �1=2,
which is singular according to (5.1) and must be treated
separately. We find that Eq. (5.1) must be replaced by
�2�Qmax

¼ 1=ð4þ 4wÞ. Other than that, this case satisfies

the same rules as the other models in this interval.
Case IIe: a 	 �1.

Similarly as the family a 
 0, this set of models also
allows for a simple characterization of the bouncing
solutions, which correspond to the interval �1<w<
a=ð2þ 3aÞ. In the limiting case a ¼ �1 we obtain the
condition�1<w< 1 (compare this with the numerical fit
above, which gives �1<w< 1:12). In that case, the
density at the bounce is given by

�2�B

RP

¼
8<
:

1
6 if w 	 � 1

3 ;

�2�Qmax

RP
if w 
 � 1

3 :
(5.7)

For a <�1, the equations of state that generate bouncing
solutions get reduced from the right and approach �1<
w 	 1=3 as a ! �1, with the case w ¼ 1=3 always
included.

B. Anisotropic universe

Using Eqs. (3.18) and (3.19), the expansion can be
written as follows:

�2 ¼ 9H2 þ 3

2

�2

ð1þ 3
2 �1Þ2

; (5.8)

where H represents the Hubble function in the K ¼ 0
isotropic case. To better understand the behavior of �2,
let us consider when and why H2 vanishes. Using the
results of the previous section, we know that H2 vanishes
either when the density reaches the value �Qmax

or when the

function �1 ��2 vanishes. These two conditions imply a
divergence in the quantity ð1þ 3

2 �1Þ2, which appears in

the denominator of H2 and, therefore, force the vanishing
of H2 (isotropic bounce). Technically, these two types of
divergences can be easily characterized. From the defini-
tion of �1 in (3.17), one can see that �1 � @��=�. Since

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1ð�1 ��2Þ

p
, it is clear that �1 diverges when

�1 ��2 ¼ 0. The divergence due to reaching �Qmax
is a

bit more elaborate. One must note that @��� @��1 �
@��2 and that @��1;2 contain terms that are finite plus a

term of the form @��, with � given by (2.9). In this � there

is a Q term hidden in the function fðR;QÞ, which implies

that @��� @�Q=RP plus other finite terms. From the

definition of Q it follows that @�Q has finite contributions

plus the term @��=
ffiffiffiffiffi
�

p
, where � � ð1þ ð1þ

2aÞR=RPÞ2 � 4�2ð�þ PÞ=RP, which diverges when �
vanishes. This divergence of @�Q indicates that Q cannot

be extended beyond the maximum value Qmax.
Now, since the shear goes like �2 � 1=ð�1 ��2Þ2 [see

Eq. (3.14)], we see that the condition�1 ��2 ¼ 0 implies
a divergence on �2 (though �2 remains finite). This is
exactly the same type of divergence that we already found
in the fðRÞ models. In fact, the decomposition (5.8) is also
valid in the fðRÞ case, where �2 ! 0 and �1 ! fR [see
Eq. (4.14)]. Since in those models the bounce can only
occur when fR ¼ 0, which is equivalent to the condition
�1 ��2 ¼ 0, there is no way to achieve a completely
regular bounce using an fðRÞ theory. On the contrary,
since the quadratic fðR;QÞ model (1.1) allows for a
second mechanism for the bounce, which takes place at
�Qmax

, there is a natural way out of the problem with

the shear.
When the density reaches the value �Qmax

, we found in

the previous section that the combination �1 ��2 is al-
ways greater than zero except for the particular equation of
state w ¼ w0 [recall that w0 was defined as the matching
condition in Eq. (5.4), and represents the case in which
�Qmax

is reached at the same time as �1 ��2 ¼ 0].

Therefore, for any w>w0 the shear will always be finite
at �Qmax

. Moreover, since at that point the denominator ð1þ
3
2 �1Þ2 blows up to infinity, it follows that the expansion

vanishes there, which sets a true maximum for � like in the
isotropic case. At this point one may wonder about
the consequences of the divergence of @�Q at �Qmax

for

the consistency of the theory. This question is pertinent
because the connection that defines the Riemann tensor
involves derivatives of � and hence of Q. In this sense, it
should be noted that because of the spatial homogeneity
only time derivatives of such quantities need to be consid-
ered. We are thus interested in objects such as @tQ and
higher time derivatives. One can check by direct computa-
tion that @tQ ¼ ð@�QÞ _� yields a finite result because the

divergence of @�Q is exactly compensated by the vanishing

of _�, which is due to the vanishing of the expansion at the
bounce. Explicit computation of higher derivatives of Q
and other relevant objects (such as �; S; . . . needed to
compute the components of the Ricci tensor) shows that
all them are well behaved at the point of the bounce.7 This
guarantees that the bounce is a completely regular point
that does not spoil the well posedness of the time evolution
nor the disformal transformation needed to relate the physi-
cal and the auxiliary metrics g�� and h��, respectively.

7This same reasoning can be used to confirm the pathological
character of the other type of bounce, the one characterized by
the condition �1 ��2 ¼ 0.
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Summarizing, we conclude that the Lagrangian (1.1)
leads to completely regular bouncing solutions in the an-
isotropic case for w> a

2þ3a if a 
 0, for w0 <w<1 if

�1=3 	 a 	 0, for w0 <w< ð�þ �aÞ=ð1þ 3aÞ2 if
�1 	 a 	 �1=3, and for�1=3<w< a=ð2þ 3aÞ if a 	
�1, where w0 < 0 is defined using (5.4) and its corre-
sponding subcases. These results imply that for a < 0 the
interval 0 	 w 	 1=3 is always included in the family of
bouncing solutions, which contain the dust and radiation
cases. For a 
 0, the radiation case is always nonsingular
too.

C. An example: Radiation universe

As an illustrative example, we consider here the particu-
lar case of a universe filled with radiation. Besides its
obvious physical interest, this case leads to a number of

algebraic simplifications that make more transparent the
form of some basic definitions

Q ¼ 3R2
P

8

�
1� 8�2�

3RP

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 16�2�

3RP

s �
; (5.9)

� ¼ 3

4

�
1� 1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 16�2�

3RP

s � ffiffiffiffiffiffi
RP

2

s
; (5.10)

�1 ¼ 1

2
þ 3

4

�
1� 1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 16�2�

3RP

s �
: (5.11)

It is easy to see that the coincidence of the two branches of
�2 occurs at �

2� ¼ RP=6. Therefore, the physical�2 must
be defined as follows (see Fig. 4):

�2 ¼

8>>><
>>>:

1ffiffi
8

p
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

5� 8�2�
3RP

� 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 16�2�

3RP

qr
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5� 24�2�

RP
� 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 16�2�

3RP

qr �
if �2� 	 RP

6 ;

1ffiffi
8

p
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

5� 8�2�
3RP

� 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 16�2�

3RP

qr
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5� 24�2�

RP
� 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 16�2�

3RP

qr �
if �2� 
 RP

6 :

(5.12)

This definition by parts unavoidably obscures the repre-
sentation of other derived quantities. Nonetheless, it is
necessary to obtain continuous and differentiable expres-
sions for the physical magnitudes of interest such as the
expansion and shear (plotted in Figs. 5–7). It is easy to see
that at low densities (5.9) leads to Q � 4ð�2�Þ2=3
þ32ð�2�Þ3=9RP þ 320ð�2�Þ4=27R2

P þ � � � , which recov-
ers the expected result for GR, namely, Q ¼ 3P3 þ �2.
From this formula we also see that the maximum value of
Q occurs at �2�max ¼ 3RP=16 and leads to Qmax ¼
3R2

P=16. At this point the shear also takes its maximum

allowed value, namely, �2
max ¼

ffiffiffiffiffiffiffiffiffiffiffi
3=16

p
R3=2
P ðC2

12 þ C2
23 þ

C2
31Þ, which is always finite. At �max the expansion van-

ishes producing a cosmic bounce regardless of the amount
of anisotropy.

VI. DISCUSSION AND CONCLUSIONS

In this work we have shown that simple modifications of
GR with high-curvature corrections in Palatini formalism
successfully avoid the big bang singularity in isotropic and
anisotropic (Bianchi I) homogeneous cosmologies giving
rise to bouncing solutions. And this type of solutions seems

0.05 0.10 0.15
2 RP
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10

Log 2
f R,Q R a

R2
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Q
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C2 5 104

C2 5 103

C2 5 102

C2 5 10

FIG. 5 (color online). Logarithmic representation of the shear
as a function of �2�=RP in radiation universes with different
values of the anisotropy, which is controlled by the combination
C2 ¼ C2

12 þ C2
23 þ C2

31. In this representation, the difference

between the curves is just a constant shift of magnitude logC2.
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FIG. 6 (color online). Evolution of the expansion as a function
of �2�=RP in radiation universes with low anisotropy, which is
controlled by the combination C2 ¼ C2

12 þ C2
23 þ C2

31. The case

with C2 ¼ 0 corresponds to the isotropic flat case, �2 ¼ 9H2.
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to be the rule rather than the exception. The fðR;QÞ model
(1.1) in Palatini formalism is just an example. This type of
model is motivated by the fact that the effective dynamics
of loop quantum cosmology [10] is described by second-
order equations and by the need to go beyond the dynamics
of Palatini fðRÞ theories, which cannot avoid the develop-
ment of shear singularities in anisotropic scenarios (as has
been shown in Sec. IV).

In the model (1.1), regular sources of matter and radia-
tion can remove the singularities thanks to the unconven-
tional interplay between the matter and the geometry at
very high energies. Because of the form of the gravity
Lagrangian (1.1), at low energies the theory recovers
almost exactly the dynamics of GR because the connection
coincides with the Levi-Civita connection of the metric up
to completely negligible corrections of order��2�=RP. At
high energies, however, the departure is significant and that
results in modified dynamics that resolves the singularity.
The assumption that metric and connection are regarded as
independent fields (Palatini variational principle) is at the
root of this phenomenon, which could provide new insights
on the properties of the quantum geometry and its interac-
tion with matter. Because of this independence between
metric and connection, the dynamics of our model turns
out to be governed by second-order equations. As a result,
the avoidance of the big bang singularity is not due to the
existence of multiple new solutions of the field equations
suitably tuned to get the desired result. Rather, the physi-
cally disconnected contracting and expanding solutions
found in GR, which end or start in singularities, are suit-
ably deformed due to the nonlinear dependence of the
expansion on the matter/radiation density and produce a
single regular branch (this nonlinear density dependence is
also manifest in loop quantum cosmology [10] and has
recently been identified in [27] as a possible solution to the
anisotropy problem). At low energies, the standard solu-
tions of GR are smoothly recovered, and such solutions

uniquely determine the high energy behavior. This should
be contrasted with the same fðR;QÞ Lagrangian formu-
lated in the metric formalism, where due to the existence of
additional degrees of freedom multiple new solutions arise
and one must use an ad hoc procedure to single out those
which recover a Friedmann-Robertson-Walker expansion
at late times.
The fact that for all negative values of the parameter a

one finds isotropic and anisotropic bouncing solutions in
universes filled with dust indicates that with the Palatini
modified dynamics the mere presence of matter is enough
to significantly alter the geometry to avoid the singularity.
Unlike in pure GR, there is no need for exotic sources of
matter/energy with unusual interactions or unnatural equa-
tions of state. Regular matter is able by itself to generate
repulsive gravity when a certain high energy scale is
reached. And this occurs in a nonperturbative way. In
fact, in the case of a radiation universe, for instance, the
perturbative expansion ofQ [see below Eq. (5.12)] does not
suggest the presence of any significant new effect as the
scale RP is approached. However, a glance at the exact
expression (5.9) shows that there exists a maximum value
for �, which is set by the positivity of the argument of the
square root. Such limiting value is only apparent when the
infinite series expansion of Q is explicitly considered. It is
interesting to note that this type of nonperturbative effect
arises in our theory without the need for introducing new
dynamical degrees of freedom. In other approaches to non-
singular cosmologies, the nonperturbative effects are intro-
duced at the cost of adding an infinite number of derivative
terms in the action (see [28,29], and references therein for
recent examples). Additionally, since in radiation domi-
nated universes (w ¼ 1=3) the scalar curvature vanishes,
R ¼ 0, the mechanism responsible for the bounce in these
models is directly connected with theQ ¼ R��R

�� term of

the Lagrangian. In fact, all Lagrangians of the form

fðR;QÞ ¼ ~fðRÞ þQ=RP, will lead to the same cosmic
dynamics,8 ifw ¼ 1=3 as is easy to see from the definitions
(2.6), (2.7), (2.8), (2.9), and (2.11). This is a clear indication

of the robustness of the models fðR;QÞ ¼ ~fðRÞ þQ=RP

against cosmic singularities. Note, in addition, that the
anisotropic bounce always occurs when the maximum
value of Q is reached, which emphasizes the crucial role
of this term in the dynamics. On the other hand, the fact that
this class of Palatini fðR;QÞ actions can keep anisotropies
under control for a very wide range of equations of state
(including radiation and dust) without the need for intro-
ducing exotic sources (as in ekpyrotic models, which re-
quire w> 1), turns these theories into a particularly
interesting alternative to nonsingular inflationary models.
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FIG. 7 (color online). Logarithmic representation of the ex-
pansion as a function of �2�=RP in radiation universes with high
anisotropy, which is controlled by the combination C2 ¼ C2

12 þ
C2
23 þ C2

31.

8In radiation scenarios, all ~fðRÞ functions which satisfy
@R ~fð0Þ ¼ 1 will lead to the same dynamics up to an effective
cosmological constant, which we assume to be very small and
negligible during the very early universe.
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Natural extensions of our work on fðR;QÞ theories
should include other anisotropic Bianchi and Kantowski-
Sachs models, and also inhomogeneous configurations.
Stellar interiors represent a simple example of the latter
case because in Palatini fðRÞ and fðR;QÞ theories the
matter distribution must be continuous and differentiable
everywhere, which implies that idealized abrupt configu-
rations such as a constant density star with an empty
exterior are not consistent with the field equations.9 One
is thus forced to consider inhomogenous matter distribu-
tions that smoothly connect the interior solution with the
empty exterior, which corresponds to the Schwarzschild
metric. Fortunately, isotropy can be imposed if the star is
nonrotating. The effects of the Palatini fðRÞ dynamics on
the structure of nonrotating stars were first studied in [31].
For compact polytropic objects, [32] reported the existence
of certain divergences near the surface of such stars. The
situation was clarified in [33] (see also [34,35]) consider-
ing the quadratic model Rþ R2=RP, where it was found
that such divergences are intimately related with the par-
ticular equation of state used and the scale RP. If RP � l�2

P

is of order of the Planck curvature, the divergences can
never be realized physically and are the result of using the
polytropic equation of state well beyond its natural regime
of validity. The equations for the stellar structure in fðR;QÞ
Palatini theories have been derived in [36] and numerical
solutions will be presented soon [37].

To conclude, our investigation of anisotropies in Palatini
fðRÞ and fðR;QÞmodels has given a number of interesting
results. On the one hand we have been able to identify
serious limitations of the fðRÞ models in anisotropic sce-
narios, namely, the existence of generic shear divergences,
which makes these models unsuitable for the construction
of fully viable alternatives to GR. On the other hand, we
have shown that the model (1.1) is a good candidate to
reach the goal of building a singularity free theory of
gravity without adding new dynamical degrees of freedom.
Whether this particular model can successfully remove
singularities in more general spacetimes is a matter that
will be studied in future works.
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