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Centro Mixto Universidad de Valencia — CSIC, Spain

Facultad de F́ısica, Universidad de Valencia,
Burjassot-46100, Valencia, Spain

gonzalo.olmo@uv.es

Received 29 November 2010
Revised 8 February 2011

We review the recent literature on modified theories of gravity in the Palatini approach.
After discussing the motivations that lead to consider alternatives to Einstein’s theory
and to treat the metric and the connection as independent objects, we review several
topics that have been recently studied within this framework. In particular, we provide
an in-depth analysis of the cosmic speed-up problem, laboratory and solar system tests,
the structure of stellar objects, the Cauchy problem, and bouncing cosmologies. We also
discuss the importance of going beyond the f(R) models to capture other phenomeno-
logical aspects related with dark matter/energy and quantum gravity.
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1. Introduction

Einstein’s theory of general relativity (GR) represents one of the most impressive
exercises of human intellect. It implies a huge conceptual jump with respect to
Newtonian gravity. The idea of gravitation as a force acting in an absolute space
is replaced by a geometrical theory of space and time in which the spacetime itself
is a dynamical entity in interaction with the particles and fields living in it. This
interaction is prescribed by a minimal coupling of those fields to the spacetime
metric according to what is today known as the Einstein equivalence principle
(EEP). The dynamical equations for the gravitational field itself were deduced
on grounds of mathematical simplicity and demanding that certain conservation
laws were satisfied. Unlike the currently established Standard Model of elementary
particles, no experiments were carried out to probe the structure of the theory. In
spite of that, to-date the theory has successfully passed all precision experimental
tests. Its predictions are in agreement with experiments in scales that range from
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millimeters to astronomical units, scales in which weak and strong field phenomena
can be observed.1 The theory is so successful in those regimes and scales that it
is generally accepted that it should also work at larger and shorter scales, and at
weaker and stronger regimes.

This extrapolation is, however, forcing us today to draw a picture of the uni-
verse that is not yet supported by other independent observations. For instance, to
explain the rotation curves of spiral galaxies, we must accept the existence of vast
amounts of unseen matter surrounding those galaxies. Additionally, to explain the
luminosity–distance relation of distant Type Ia supernovae and some properties of
the distribution of matter and radiation at large scales, we must accept the existence
of yet another source of energy with repulsive gravitational properties.2–7 Together
those unseen (or dark) sources of matter and energy are found to make up to 96%
of the total energy of the observable universe! This huge discrepancy between the
gravitationally estimated amounts of matter and energy and the direct measure-
ments via electromagnetic radiation motivates the search for alternative theories of
gravity which can account for the large-scale dynamics and structure without the
need for dark matter and/or dark energy. In this sense, we note that the Newtonian
accelerations felt by stars and gas clouds in the disk of spiral galaxies are orders
of magnitude smaller than the accelerations measurable in laboratory. Thus there
is no experimental evidence supporting the validity of Newton’s law down to such
tiny scales. For this reason, it seems legitimate and well justified to explore modifi-
cations of Newton’s law and Einstein’s theory to see if they can provide a consistent
alternative picture of the observed Universe. In this directions we find Milgrom’s
proposal of Modified Newtonian Dynamics8,9 (MOND), which fits surprisingly well
many observational data in its natural regime of applicability and may be related
with the Palatini approach,10 and a variety of fully relativistic theories which can
be used to do cosmology, such as f(R) theories,11–14 scalar-tensor theories, scalar-
tensor-vector theories,15 higher-dimensional and braneworld scenarios,16,17 among
others.

The extrapolation of the dynamics of GR to the very strong field regime indi-
cates that the Universe began at a singularity and that the death of a sufficiently
massive star unavoidably leads to the formation of a black hole or a naked sin-
gularity. Spacetime singularities signal the breakdown of the theory, because the
absence of a well-defined geometry implies the absence of physical laws and lack
of predictability.18,19 For this reason, it is generally accepted that the dynamics of
GR must be changed at some point to avoid these problems. A widespread belief
is that at sufficiently high energies the gravitational field must exhibit quantum
properties that alter the dynamics and prevent the formation of singularities. In
this sense, a perturbative approach to quantum gravity indicates that the Einstein–
Hilbert Lagrangian must be supplemented by quadratic curvature terms to render
the theory renormalizable.20–22 More recent approaches to quantum gravity, such
as string theory, also regard GR as the low energy limit of a theory that should
pick up increasing corrective terms at higher and higher energies.23 The canonical
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quantization of GR using the so-called Ashtekar–Barbero variables24–26 predicts
that the continuum spacetime of GR is replaced by a quantum geometry in which
areas and volumes are quantized in bits of an elementary unit of order the Planck
scale. The low energy limit of this theory should also recover the classical dynamics
of GR with corrections signaling the discreteness of the spacetime.

The above discussion shows that there are theoretical and phenomenological
reasons to explore the dynamics of alternative theories of gravity. Though dark
matter and dark energy could play in cosmology a role similar to that played by
the neutrino in the process of radioactive beta decay,a we must try to figure out
if our theory of gravity can be suitably corrected to explain the dynamics at large
scales. Since we have well-grounded reasons to believe that gravity must be modified
in the ultraviolet regime, we should not be surprised by having to add corrections
also at some infrared scale.

1.1. The palatini approach to modified gravity

Because there are no limits to imagination, one should use experiments as a guide to
constrain the range of possibilities to build an alternative theory of gravity. In this
sense, the experimental efforts carried out in the 1960’s to understand the nature
of gravitation,27 and the kind and properties of the fields associated to gravity, left
it clear that gravitation is a geometric phenomenon. This led to the conclusion that
the matter and the other nongravitational fields must couple only to the metric,
which implies that the total action must be of the form

S = SG[gαβ , φ, Aµ, . . .] + Sm[gαβ , ψ], (1)

where gαβ , φ, Aµ, . . . , represent the gravitational fields (which can be scalars, vec-
tors, and tensors of different ranks) and ψ represents collectively the matter fields.
This defines a class of theories known as “metric theories of gravity”28 which, by
construction, should satisfy the EEP.

Perhaps motivated by the restrictions imposed by the EEP, alternative theo-
ries of gravity have traditionally focused mainly on pseudo-Riemannian geometry,
thus forcing the affine connection to be metric compatible. However, metricity and
affinity are a priori logically independent concepts29 and, therefore, there is no
fundamental theoretical reason to constrain the connection to be metric compati-
ble. In fact, since affinities are very simple and fundamental geometrical entities,30

in applying Ockham’s razor to the construction of alternative theories of gravity
we should give them higher priority than to other types of tensorial fields. For
this reason, in this work we will mainly focus on modified theories of gravity in

aSince conservation of energy and momentum was a pillar of special relativity, rather than propos-
ing a modification of this principle, Pauli postulated the existence of a massless particle, the neu-
trino, to explain the spectrum of energies in the process of beta decay. Though in that case a
“dark matter” particle solved the problem, to explain the anomalous perihelion shift of Mercury
Einstein had to modify Newton’s theory of gravity.
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which metric and connection are regarded as independent fields. Note that the
existence of a metric in the theory naturally endows spacetime with a Riemannian
connection, the Levi-Civita connection Lαβγ. Thus, accepting the existence of an
additional connection Γαβγ is equivalent to having an independent rank-three tensor
field Bαβγ = Γαβγ − Lαβγ in the action.

Though gravitational redshift experiments do not impose very tight constraints
on the possible coupling of a non-metric connection to matter,1 for simplicity we will
follow the guide provided by experiments and will assume that freely falling bodies
do follow geodesics of the metric. Thus, rather than working in a purely metric-affine
framework in which matter is allowed to couple to the independent connection, we
will consider only this restricted version, which is known as Palatinib formalism.
This way we stick ourselves to the class of metric theories of gravity introduced
above, in which the matter action is only coupled to the metric (and perhaps to
its derivatives via the Levi-Civita connection) and the gravitational sector is of the
form SG[gαβ ,Γαβγ , φ, Aµ, . . .].

The Palatini method to obtain the field equations of GR was introduced by Ein-
stein himself in 1925.31 Despite considering independent variations of the metric
and the connection, the resulting equations in GR turn out to be equivalent to those
obtained doing variations of the metric only (metric variational formalism). This is
so because the equation for the connection simply establishes its compatibility with
the metric. However, this is just an accident. For other Lagrangians, in general,
the field equations in metric and Palatini formalisms are different, as we will see
in detail later (see Refs. 32–44 for some studies on the relation between Palatini
and metric formalisms). But the differences between metric and Palatini formalisms
go beyond the field equations, and this can already be seen in the context of GR.
In fact, since the Einstein–Hilbert action contains second-order derivatives of the
metric, to have a well defined variational principle one must add a surface term pro-
portional to the extrinsic curvature, which explicitly refers to an embedding of the
spacetime into some background metric. In the Einstein–Palatini action, however,
there are no derivatives of the metric and we only find first-order derivatives of the
connection. As a result, it is usually claimed that no surface terms are necessary.
However, to have a consistent formulation for conserved Hamiltonians at infinity
in asymptotically flat spacetimes, and to correctly reproduce the thermodynamical
properties of black holes, it has been recently found that a certain surface term
must be added to the action. This surface term does not refer to any background,
but when there is a background available, the metric and Palatini descriptions
match.45,46 This implies that the corresponding path integral formulations of these
two theories may be quite different. It is also worth noting that the consideration
of the Einstein–Palatini action instead of the Einstein–Hilbert one was crucial for
the implementation of the nonperturbative canonical quantization of the theory
using Ashtekar variables.47,48 Therefore, the Palatini approach must be seriously

bFor a discussion of this terminology see Ref. 31.



April 20, 2011 13:30 WSPC/S0218-2718 142-IJMPD
S0218271811018925

Palatini Approach to Modified Gravity 417

considered not only to explore new phenomenological extensions of GR aimed at
explaining the large-scale structure of the universe, but also as a potential way to
make contact with quantum gravity phenomenology.

1.2. Goal and structure

In this article we review the recent literature on modified theories of gravity framed
within the Palatini formalism. Most of it deals with theories of the f(R) type, in
which the gravity Lagrangian is given by a function of the scalar curvature R, but
we also comment on scalar-tensor theories and extensions of the f(R) family that
include other curvature invariants such as RµνRµν . Though the Palatini approach
had been considered in the past in different contexts, the interest in Palatini f(R)
theories was boosted by the observation49 that some of the known problems of the
model f(R) = R−µ4/R, first proposed in metric formalism50 to explain the cosmic
speed-up, could be avoided by considering its Palatini version. Since then numerous
works have addressed different aspects of Palatini theories including the late-time
and early-time cosmologies, solar system and laboratory tests, stellar structure,
the Cauchy problem, black hole thermodynamics, nonsingular universes, etc. We
provide a comprehensive and careful review of the literature on all those topics
organizing the content as follows. In Sec. 2, we provide a detailed derivation of the
field equations of Palatini f(R) theories and discuss their scalar-tensor represen-
tation. Since space is limited, for the field equations of other Palatini theories we
refer to the corresponding literature. Then we split the chronological evolution of
the literature in subjects: the cosmic speed-up problem is reviewed in Sec. 3, labo-
ratory and solar system tests are discussed in Sec. 4, some questions related with
stellar structure and new results regarding the Cauchy problem are analyzed in
Sec. 5, and the relation of Palatini theories with quantum gravity phenomenology
is discussed in Sec. 6. We end with a summary and future perspectives.

2. Field Equations for Palatini Theories

Since most of the recent literature on Palatini theories has focused on f(R) theo-
ries, we present here a detailed derivation of the field equations for this case. For
extensions to actions containing other curvature invariants and couplings to scalar
fields, we will refer to the corresponding literature. In this section we also comment
on the scalar-tensor representation of f(R) theories, the conservation of energy, of
momentum and of matter, and some literature on other Palatini theories.

2.1. f(R) theories

The action of Palatini f(R) theories is as follows

S =
1

2κ2

∫
d4x

√−gf(R) + Sm[gµν , ψ], (2)
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where Sm is the matter action, ψ represents collectively the matter fields, κ2 is a
constant with suitable dimensions (if f(R) = R, then κ2 = 8πG), R ≡ gµνRµν ,
Rµν ≡ Rρµρν , and Rαβµν = ∂µΓανβ − ∂νΓαµβ + ΓαµλΓ

λ
νβ − ΓανλΓ

λ
µβ represents the

components of the Riemann tensor, the field strength of the connection Γαµβ . Note
that since the connection is determined dynamically, we cannot assume any a priori
symmetry in its lower indices. This means that in the variation of the action to
obtain the field equations we must bear in mind that Γαβγ �= Γαγβ . We will assume
a symmetric metric tensor gµν = gνµ (for theories with non-symmetric gµν see, for
instance, Refs. 51–53). The variation of the action (2) with respect to the metric
and the connection can be expressed as

δS =
1

2κ2

∫
d4x

√−g
[(
fRR(µν) − f

2
gµν

)
δgµν + fRg

µνδRµν

]
+ δSm, (3)

where fR ≡ ∂f/∂R, and R(µν) represents the symmetric part of Rµν . Straightfor-
ward manipulations show that δRµν can be written as

δRµν = ∇λ(δΓλνµ) −∇ν(δΓλλµ) + 2SλρνδΓ
ρ
λµ, (4)

where 2Sλρν ≡ Γλρν−Γλνρ represents the torsion tensor, the antisymmetric part of the
connection (for a detailed discussion of physical aspects of torsion see, for instance,
Ref. 54). The contribution of the δRµν term, I =

∫
d4x

√−gfRgµνδRµν , leads to
the following expression

I =
∫
d4x[∇λ(

√−gJλ) + δΓλνµ{−∇λ(
√−gfRgµν) + ∇ρ(

√−gfRgµρ)

+ 2
√−gfRgµσSνλσ}], (5)

where Jλ ≡ fR(gµνδΓλµν − gµλδΓσσµ). Having in mind that59 ∇µ
√−g = ∂µ

√−g −
Γσµσ

√−g, we find that

∇λ(
√−gJλ) = ∂λ(

√−gJλ) +
√−gfR[gµνSσσλ − δνλg

µρSσσρ]δΓ
λ
νµ. (6)

Inserting this result in (5) and assuming that the surface term
∫
d4x∂λ(

√−gJλ)
vanishes at the boundaries, the field equations can finally be written as follows

fRR(µν) − f

2
gµν = κ2Tµν , (7)

−∇λ(
√−gfRgµν) + δνλ∇ρ(

√−gfRgµρ) + 2
√−gfR(gµνSσσλ

−δνλgµρSσσρ + gµσSνλσ) = Hνµ
λ , (8)

where Tµν ≡ −(2/
√−g)(δSm/δgµν), and Hνµ

λ ≡ −(δSm/δΓλνµ) = 0 because we
assume that the matter is not coupled to the connection. To proceed further, it
is common in the literature to impose the torsionless condition Sνλσ = 0, which
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eventually turns (8) into the simpler form

∇λ(
√−gfRgµν) = 0. (9)

However, with a bit of extra effort, we will gain deeper insight into the role and
properties of the torsion and will see that an expression analogous to (9) can be
reached without imposing any restriction on the torsion tensor. The first step is to
trace over ν and λ in (8) to get 3∇ρ(

√−gfRgµρ) = 4
√−gfRgµρSσσρ. We then insert

this result in (8) to obtain

−∇λ(
√−gfRgµν) + 2

√−gfR
(
gµνSσσλ −

δνλ
3
gµρSσσρ + gµσSνλσ

)
= 0. (10)

We now split the connection into its symmetric and antisymmetric parts, which we
denote Cλµν and Sλµν respectively, and reexpress ∇λ(

√−gfRgµν) in the form

∇λ(
√−gfRgµν) = ∇C

λ (
√−gfRgµν) +

√−gfR[gµσSνλσ + gνσSµλσ + gµνSσσλ], (11)

where ∇C
λ (

√−gfRgµν) only depends on the symmetric part of the connection, which
means that ∇C

λAµ = ∂λAµ − CρλµAρ. Inserting this result in (10), we get

∇C
λ (

√−gfRgµν) =
√−gfR

(
gµσSνλσ − gνσSµλσ + gµνSσσλ − 2

3
δνλg

µρSσσρ

)
. (12)

Adding and subtracting to this equation the same expression but changing the order
of µ and ν we find the following relations

∇C
λ (

√−gfRgµν) =
√−gfR

(
gµνSσσλ −

1
3
(δνλg

µρ + δµλg
νρ)Sσσρ

)
, (13)

gµσSνλσ − gνσSµλσ =
1
3
(δνλg

µρ − δµλg
νρ)Sσσρ. (14)

Written in this way,c it is clear that the symmetric part of the connection is coupled
to the antisymmetric part (the torsion) via the contraction Sσσρ. This term is also
sourcing the right-hand side of the torsion equation (14). This fact suggests a new
step aimed at simplifying the structure of (13) and (14). Consider the new variables

Γ̃λµν = Γλµν + αδλνS
σ
σµ, (15)

and take the parameter α = 2/3, which implies that S̃λµν ≡ Γ̃λ[µν] is such that
S̃σσν = 0. The symmetric and antisymmetric parts of the connection Γ̃λµν are related
to those of Γλµν by

C̃λµν = Cλµν +
1
3
(δλνS

σ
σµ + δλµS

σ
σν), (16)

S̃λµν = Sλµν +
1
3
(δλνS

σ
σµ − δλµS

σ
σν). (17)

cNote that Eqs. (8) and (9) represent sets of 64 independent relations which are equivalent to the
40 relations of (13) plus the 24 relations of (14).
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Rewriting (13) and (14) using these new variables, we find

∇C̃
λ (

√−gfRgµν) = 0, (18)

gµσS̃νλσ − gνσS̃µλσ = 0. (19)

Written in this form (19) implies that S̃βλα = S̃αλβ , where gβν S̃νλα ≡ S̃βλα. Since
the torsion is antisymmetric in the last two indices, the symmetry of the first and
third indices automatically implies that S̃βλα = 0 ⇔ S̃νλα = 0. Using this result in
(17) we find that

Sλµν =
1
3
(δλµS

σ
σν − δλνS

σ
σµ). (20)

This result indicates that the torsion is generated by a vector Aµ ≡ Sσσµ, which has
important consequences and will be useful to solve (18). The fact that

Γαµν = C̃αµν −
2
3
Aµδ

α
ν (21)

implies that Rαβµν(Γ) = Rαβµν(C̃) − (4/3)∂[µAν]δ
α
β , from which we get Rµν(Γ) ≡

Rαµαν(Γ) = Rµν(C̃) − (4/3)∂[µAν]. From this it follows that the symmetric part of
the Ricci tensor that appears in (7) is insensitive to the torsion because R(µν)(Γ) =
R(µν)(C̃). Obviously, R is also insensitive to the existence of this type of torsion,
i.e. R(Γ) = R(C̃). This property is known as the projective invariance of the scalar
curvature.55–58 We are now ready to solve for (18) [and (9)]. Though (18) seems
to involve up to second-order derivatives of the connection, it can be reinterpreted
using the trace of (7),

RfR − 2f = κ2T. (22)

This equation implies that R = R(Γ) = R(C̃) can be solved algebraically in terms
of T , thus leading to R = R(T ) and fR = fR(T ), which are functions of the matter
and possibly of the metric but not of the independent connection. The solution of
(18) can thus be easily found by defining a new metric hµν ≡ fR(T )gµν in terms
of which that equation becomes simply ∇C̃

λ (
√−hhµν) = 0, which is an algebraic

equation linear in the connection that leads to59

C̃αµν =
hαρ

2
(∂µhρν + ∂νhρµ − ∂ρhµν). (23)

This completes our analysis of the equations that determine the connection Γαµν .
We have found that, in general, Γλµν is made out of a symmetric part, C̃λµν , plus a
vector-like contribution −(2/3)δλνAµ. This vector is responsible for the existence of
torsion, Sλµν = (1/3)(δλµAν−δλνAµ), but it does not affect the metric field equations
(7) [see also Eq. (25) below], justifying the usual approach in the literature of
setting it to zero from the beginning. From this analysis it follows that the four
conditions Aµ ≡ Sσσµ = 0 are enough to force the total vanishing of the torsion.
When matter is coupled to the connection, the constraint Sσσρ = 0 has also been
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suggested as a way to avoid potential inconsistencies of the field equations due to
the projective invariance of the scalar curvature in GR55,56 and in f(R) theories58

(see also Refs. 60 and 61).
A nontrivial choice for the torsion vector can be motivated by introducing the

expression (23) for C̃λµν in (21). Using the relation hµν ≡ fRgµν one finds

Γαµν = Lαµν +
1

2fR
[δαµ∂νfR − gµν∂

αfR] − 2
3
δαν

(
Aµ − 3

4fR
∂µfR

)
, (24)

where we have denoted Lαµν ≡ (gαρ/2)(∂µgρν + ∂νgρµ− ∂ρgµν). Since the dynamics
is insensitive to the presence of the vector Ãµ ≡ Aµ − (3/4fR)∂µfR, one may
wish to set Ãµ = 0 to simplify the form of (24). By doing this, one finds that
Sαµν = (∂λfR/4fR)(δαµδ

λ
ν−δαν δλµ) and Γαµν = Lαµν+K

α
µν , whereKα

µν = Sαµν+S
αν
µ +Sαµ

ν

is the so-called contorsion tensor. One can easily check [using for instance Eq. (10)]
that this connection turns out to be compatible with the metric gµν , i.e. it verifies
∇µ(

√−ggµν) = 0. This result shows that a torsionless f(R) Palatini theory is
dynamically equivalent to a metric-compatible f(R) theory with torsion.62–64 At
the same time, those two particular cases are dynamically equivalent to a Palatini
f(R) theory that is not metric-compatible, but with arbitrary torsion generated by
a vector field, which is the general case discussed here.

Now that we have an expression, Eq. (21), for the connection in terms of the
metric, the matter, and the vector Aµ, we can insert this solution for Γαµν in (7) to
obtain an equation that only involves the metric gµν and the matter:

Rµν(g) − 1
2
gµνR(g) =

κ2

fR
Tµν − RfR − f

2fR
gµν − 3

2(fR)2

[
∂µfR∂νfR − 1

2
gµν(∂fR)2

]

+
1
fR

[∇µ∇νfR − gµν�fR] (25)

where Rµν(g), R(g), and ∇µ∇νfR are computed in terms of the Levi-Civita con-
nection of the metric gµν , whereas R and fR must be seen as functions of T . To
make our notation clearer, since hµν and gµν are conformally related, it follows that
R = R(T ) ≡ gµνRµν(Γ) and R(g) ≡ gµνRµν(g) are related by

R = R(g) +
3

2fR
∂λfR∂

λfR − 3
fR

�fR (26)

where, recall, fR = fR(T ) is a function of T . It is important to note that in vacuum,
Tµν = 0, the solution of (22) is just a constantd Rvac ≡ R(0), which implies that
fR(0) is also a constant. As a consequence, the derivative terms on the right-hand

dEquation (22) could have more than one solution, which could be interpreted as corresponding
to different realizations of the Universe.65–69 For simplicity, we assume that there exists only
one physical solution, though one should bear in mind that particular models could have various
solutions that were in agreement with observations in a certain regime.
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side of (25) vanish and that equation boils down to Gµν = −Λeff gµν , where Λeff ≡
((RfR − f)/2fR)

∣∣
R=Rvac

plays the role of an effective cosmological constant. This
means that the dynamics of Palatini f(R) theories departs from that of GR with a
cosmological constant only in regions that contain sources, where ((RfR − f)/2fR)
is no longer constant and the ∂fR terms are not zero. Therefore, it naturally follows
that outside of the sources the solutions take the same form as those of GR with a
cosmological constant, Birkhoff’s theorem holds,70 there are only two propagating
degrees of freedom,71 which can make more challenging the characterization of these
theories via gravitational waves,72 and there are no instabilities73 of the kind found
in the metric version of these theories.74 Note, however, that the conditions that
such solutions must satisfy at the boundary separating the sources from the vacuum
region will not, in general, be the same as in GR because the interior dynamics is
different.

For some purposes, it may be useful to express the Palatini field equations
(25) using the auxiliary metric hµν instead of gµν . Taking into account that R =
gµνRµν(Γ) is related with R(h) ≡ hµνRµν(Γ) by R(h) = R/fR, (7) can be put as

Gµν(h) =
κ2

fR(T )
Tµν − Λ(T )hµν , (27)

where Λ(T ) ≡ (RfR−f)/2f2
R = (f+κ2T )/2f2

R. It is worth noting that the conformal
transformation needed to go from the representation (25) (the so-called Jordan
frame) to the representation (27) (Einstein frame) has absorbed all the terms with
derivatives that appeared on the right-hand side of (25), which makes simpler the
manipulations of the field equations (27). If one decides to forget about the original
physical motivations that led to construct the f(R) theory in the Jordan frame, and
chooses to interpret the Einstein frame metric hµν as the physical metric that defines
free particle geodesics (which implies a redefinition of physical observables) then
(27) can be seen as a theory with a density-dependent effective Newton’s constant
and a varying cosmological constant Λ(T ). This possibility has also received some
attention in the literature.75–85

A final comment regarding the vacuum equations is in order. It is easy to see that
the connection (23) is invariant under a constant rescaling of the metric hαβ → λhαβ
and that Gµν(hαβ) = Gµν(λhαβ). If we now compare equations (25) and (27) in
vacuum, we find that Gµν(g) = −Λeff gµν = −Λ̃eff hµν , with Λeff = fR(0)Λ̃eff .
For the discussion of local experiments and stellar structure, it turns out to be
convenient to rescale the metric in such a way that gµν = hµν in vacuum. This
is simply achieved by taking gµν = (fR(0)/fR(T ))hµν . This leads to Λeff = Λ̃eff ,
which simply states that both constants are measured in the same units. This
simple observation makes it clear that the difference in the dynamics of Palatini
f(R) theories in Einstein and Jordan frames amounts to a matter-induced local
rescaling of units, i.e. the units used in Einstein and Jordan frames differ by a
factor that depends on the local energy–momentum density. With the constant
rescaling, gµν = (fR(0)/fR(T ))hµν = (1/φ(T ))hµν , the field equation (27) can be
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put as follows

Gµν(h) =
κ̃2

φ(T )
Tµν − Λ̃(T )hµν , (28)

where κ̃2 ≡ κ2/fR(0), and Λ̃(T ) ≡ (f/fR(0) + κ̃2T )/2φ2.

2.2. Scalar-tensor representation of f(R) theories

The equations of motion (25) derived above can be rewritten as those of a usual
(metric-compatible and torsionless) Brans–Dicke scalar-tensor theory,

S[gµν , φ, ψm] =
1

2κ2

∫
d4x

√−g
[
φR(g) − ω

φ
(∂µφ∂µφ) − V (φ)

]
+ Sm[gµν , ψm],

(29)

by just introducing the following notational change

φ ≡ fR, V (φ) ≡ RfR − f (30)

where in order to express V = V (φ) we assumed invertiblee the relation φ = fR to
obtain R = R(φ). The equations of motion (25) for the metric then become

Gµν(g) =
κ2

φ
Tµν − 1

2φ
gµνV (φ) +

ω

φ2

[
∂µφ∂νφ− 1

2
gµν(∂φ)2

]

+
1
φ

[∇µ∇νφ− gµν�φ] (31)

where in our case the constant parameter w takes the value ω = −3/2. In the
Brans–Dicke theory, the scalar field φ is governed by the following equation

(3 + 2ω)�φ+ 2V (φ) − φ
dV

dφ
= κ2T, (32)

which using w = −3/2 boils down to

2V (φ) − φ
dV

dφ
= κ2T. (33)

This equation is the same as (22) but written using the notational change introduced
in (30). Two important comments are now in order:

• Though we have only focused on the Palatini formulation, f(R) theories in metric
formalism also admit a Brans–Dicke-like representation87 in which w turns out
to be w = 0. To our knowledge, the identification of Palatini f(R) theories
with the case w = −3/2 was first carried out in Ref. 88, though a scalar-tensor
representation was already known.89,90 The extension of this result to the metric-
compatible f(R) case with torsion was first given in Ref. 62, and to the more

eNote that, unlike other derivations of the scalar-tensor representation, our manipulations do not
impose any constraint on fRR. See, for instance, Ref. 86 for further details on this.
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general case discussed here in Ref. 63 (see also Refs. 64, 91–93 for related works).
Though this scalar-tensor representation can be useful for some considerations
like the computation94,95 and discussion96 of the Newtonian and post-Newtonian
limits and black hole thermodynamics97–99 it should not be taken beyond its
natural context. In fact, though one may be tempted to interpret Palatini f(R)
as the limiting case w → −3/2 of the Brans–Dicke theory, the fact is that the
theory corresponds exactly to the precise value w = −3/2.

• The absence of dynamics for the w = −3/2 scalar field (absence of the �φ term)
is not an issue of fine-tuning, and the relation between it and the matter need
not necessarily be interpreted as a strong coupling regime in which matter is
forced to satisfy certain constraints to avoid exciting the �φ term.44 If the scalar
field equation is read in its original f(R) form, its meaning and implications are
much more transparent. Equation (22) means that geometrical objects such as the
scalar R are algebraically related with the matter sources in a way that depends
on the form of the Lagrangian f(R). In GR this relation is linear, R = −κ2T , but
in other theories it may be nonlinear, R = R(T ). As we will see, that relation may
end up imposing constraints on the geometry, which obviously may back-react
conditioning the dynamics of the matter fields. This interpretation is naturally
extended to more general Palatini theories which do not admit a scalar-tensor
representation.100,101

Therefore, in the Palatini version of f(R) theories, unlike in the metric for-
malism, the independent connection does not introduce new dynamical degrees of
freedom. Rather, it modifies the way matter generates the spacetime curvature
associated with the metric by generating new matter terms on the right-hand side
of the field equations.

2.3. Conservation of energy and momentum

In Palatini f(R) theories, like in all metric theories of gravity of the form (1), the
conservation of the energy–momentum tensor is naturally satisfied and follows from
the invariance under diffeomorphisms of the matter action.102–104 This can be seen
as follows. Consider the variation of the action under an infinitesimal change of
coordinates δxµ = εµ(x)

δSm =
1
2

∫
d4x

δ(
√−gLm)
δgµν

δgµν . (34)

Since the (canonical) energy–momentum tensor is defined as T µν =
(2/

√−g)(δ(√−gLm)/δgµν), and a diffeomorphism induces a change in the met-
ric of the form δgµν = 2∇(µεν), where ∇µ is the usual derivative operator involving
the Christoffel symbols of the metric gµν , it follows that

δSm =
1
2

∫
d4x

√−gT µν∇µεν . (35)
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If the matter action is invariant under diffeomorphisms, δSm = 0, then an integra-
tion by parts leads to

δSm = −1
2

∫
d4x∇µ(

√−gT µν)εν = 0. (36)

Since ∇µ(
√−gT µν) =

√−g∇µT
µν and δSm vanishes for arbitrary εν , (36) implies

that ∇µT
µν = 0. Note that despite this elementary result, it has sometimes been

claimed that Palatini f(R) theories do not satisfy the conservation of energy–
momentum.105 The covariant conservation of energy–momentum in very general
modified theories of gravity was studied in detail in Ref. 106, in which theories
with nonminimal couplings107,108 between the matter Lagrangian and the curva-
ture were also considered.

2.4. Other Palatini theories

In the introduction we emphasized the fundamental role that the connection should
play in the construction of alternative theories of gravity. In this sense, it is remark-
able that the consideration in the recent literature of f(R) theories in metric for-
malism was naturally followed by their Palatini counterpart. However, even though
they are equally justified, scalar-tensor and higher-dimensional theories (to name a
few) in the Palatini approach have not received the same attention, and the litera-
ture in these subjects is scarce. We just find some studies of the conditions in which
metric and Palatini scalar-tensor theories lead to the same field equations,42,43 on
how dimensional reduction in five-dimensional Kaluza–Klein theory compares with
the metric approach,109 an attempt to unify gravitation and electromagnetism in a
five-dimensional quadratic curvature model,110 and some applications to inflation-
ary cosmology111,112 and its perturbations113 in f(R) and scalar-tensor models.

The Palatini approach has been recently used by Milgrom10 in the context
of Modified Newtonian Dynamics (MOND), which could open new avenues for
the phenomenology of Palatini theories in the context of dark matter. Milgrom’s
recent approach consists on expressing the Lagrangian formulation of Newtonian
gravity using a Palatini approach and then introducing the necessary modifications
to implement the MOND equations. This is done considering in the Lagrangian
density

LN =
1
κ2

(�g2 − 2φ�∇�g) + ρ

(
1
2
�v2 − φ

)
(37)

where ρ =
∑

imiδ(�x − �xi), independent variations with respect to the variables �g
and φ. Variation over �g yields �g = −�∇φ, and over φ gives �∇�g = −κ2ρ/2, which
yields Newtonian dynamics. A MOND-like theory is obtained by introducing the
acceleration scale a0 ∼ 10−10 m/s2 and replacing �g by a2

0Q(�g 2/a2
0) in (37), where

the function Q(z) must be such that Q(z) → z+constant for large z, to recover the
standard Newtonian laws at high accelerations, and Q(z) ≈ (4/3)z3/4 for z 	 1, to
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produce MOND at low accelerations. The resulting equations are

�̈xi = −�∇φ(�xi), (38)

�∇�g = −κ
2

2
ρ, (39)

�∇φ = −ν
(∣∣∣∣∣

�∇�g
a0

∣∣∣∣∣
)
�g, (40)

where ν(z) ≡ dQ(z)/dz. The above equations indicate that particles move according
to the standard Newtonian law of inertia in the potential φ. However, as it follows
from (40), the MOND acceleration fieldf �gMOND ≡ −�∇φ turns out to be an algebraic
function of the Newtonian acceleration field �g. It is worth noting, as pointed out
in Ref. 10, that one can get the gravitational part of the Lagrangian (37) from
the nonrelativistic limit of the Palatini formulation of GR. In this sense, we want
to remark that since connections play the role of gravitational accelerations, as is
clearly seen from the geodesic equation duµ/dτ +Γµαβu

αuβ = 0, whereas the metric
is related to the potential field via g00 ≈ −1+2φ, the failure to satisfy the standard
Newtonian acceleration law could be seen as a manifestation of connection-related
effects. For generalizations and relativistic extensions of the theory presented here,
see Ref. 10 (see also Sec. 6.2 for some related results).

3. Cosmic Speed-Up in Palatini f(R) Theories

Observations of the cosmic microwave background (CMB) radiation,114,115 high-
redshift supernovae surveys,116–120 large scale structure,121,122 and baryon acoustic
oscillations123 suggest that the expansion history of the universe has passed through
a number of phases, which consist of an earlier stage of rapidly accelerated expansion
(known as inflation) followed by two periods of decelerated expansion dominated
by the presence of radiation and dust (matter without pressure), respectively, and
a current phase of accelerated expansion that started some five billion years ago
following the era of matter domination. The field equations of GR in a Friedmann–
Robertson–Walker (FRW) spacetime with line element ds2 = −dt2 + a2d�x2 filled
with noninteracting perfect fluids of density ρi and pressure Pi,(

ȧ

a

)2

+
K

a2
=
κ2

3
ρ,

ä

a
= −κ

2

6
(ρ+ 3P ), (41)

where K is the spatial curvature, ρ =
∑
i ρi, and P =

∑
i Pi, indicate that a

phase of positive accelerated expansion can only happen if there exists some mat-
ter/energy source that dominates over the others and whose equation of state satis-
fies PX/ρX < −1/3, where PX and ρX represent the pressure and energy density of
that source. A natural candidate to explain the current phase of cosmic acceleration

fStrictly speaking, to recover MOND one should impose the further constraint �g = −�∇φN .
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is a cosmological constant Λ, for which PΛ/ρΛ = −1. However, this simple proposal
is hard to accept from a theoretical point of view. If Λ represents a new fundamental
constant of Nature, one could expect new physical phenomena at cosmic scales in
analogy with what happened when the Planck constant was discovered. If it is seen
as vacuum quantum energy, then it is generally claimed that its observed value is
too small to be in agreement with a naive estimation from quantum field theory,
though if we apply more rigorous techniques of quantum field renormalization in
curved spacetimes the predicted value turns out to be much smaller124 than the
observed one. For these and other reasons, there seems to be a widespread desire
to explain the current cosmic speed-up by means of some dynamical entity rather
than by a pure constant of cosmic nature.

The fact that the field equations of Palatini f(R) theories in vacuum exactly boil
down to those of GR with an effective cosmological constant turned these theories
into a very natural candidateg to explain the cosmic speed-up. For suitable choices
of the function f(R), it could happen that the new gravitationally-induced matter
terms that appear on the right-hand side of (25) were negligible during earlier
phases of the expansion history but became dominant at later times, thus allowing
an expansion that closely resembles GR in the past but produces cosmic speed-up
today. One could thus explain the transition from a matter-dominated universe to
an asymptotically de Sitter accelerated one with standard sources of matter and
radiation but without the theoretical problems posed by a strictly constant Λ. The
most famous f(R) model of this kind investigated in the Palatini approach was
borrowed from a proposal of Carroll et al.50 in metric formalism, namely, f(R) =
R − µ4/R, where ρµ ≡ µ2/κ2 represents the energy-density scale at which the
effects of the modified dynamics are relevant. Vollick49 considered this model and
showed that after the standard matter-dominated era, the expansion approaches
a de Sitter phase exponentially fast. To see this, consider the modified Friedmann
equation corresponding to a given f(R) Lagrangian in a universe filled with matter
and radiation

H2 =
(
ȧ

a

)2

=
1

6fR

[
f + κ2(ρm + 2ρr) − 6KfR

a2

]
[
1 +

3
2

κ2ρmfRR

fR(RfRR − fR)

]2 , (42)

where ρm represents the energy density of the (pressureless) matter, ρr is the energy
density of radiation, and R is a function of ρm only because T = −ρm. In the 1/R

gIt should be noted that the Palatini dynamics is radically different from that corresponding to
f(R) theories in metric formalism. In that case, the modified dynamics is due to the existence
of an additional effective scalar degree of freedom which is non-minimally coupled to the scalar
curvature. This coupling turns the metric version of f(R) theories into a particular type of extended
quintessence model125 and, therefore, the metric f(R) predictions are indistinguishable from that
type of dark energy models.
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Fig. 1. Comparison of the time-evolution of the curvature (left) and the expansion factor (right)
in GR and the 1/R model with the initial condition a(t)|t=1 = 1. We took ρµ/ρm0 = 0.7/0.3. In
the 1/R theory the curvature tends to a constant at late-times, thus implying a de Sitter phase.

model, one finds

R =
κ2ρm

2


1 +

√
1 + 12

(
ρµ
ρm

)2

, (43)

which recovers R ≈ κ2ρm when ρµ/ρm 	 1 and tends to the constant value
Rvac =

√
3µ2 when ρµ/ρm 
 1 (see Fig. 1). We thus see that when ρµ/ρm 	 1

then (42) behaves as H2 ≈ H2
GR − κ2(ρm + 4ρr/3)(ρµ/ρm)2 + · · · , which is

virtually indistinguishable from GR. However, when the matter energy density,
ρm ∼ a−3, drops below the constant value ρµ, ρµ/ρm 
 1, then (42) goes like H2 ≈
(µ2/4

√
3) + (19/96)κ2ρm+· · · , which tends to a constant and implies an asymptoti-

cally de Sitter expansion, thus confirming the late-time cosmic speed-up (see Fig. 1).

3.1. Cosmological constraints

The 1/R model was soon compared with observations of Type Ia supernovae,126–128

though such first studies, as we will see, were excessively optimistic about its viabil-
ity. This optimism may have its origin in earlier studies of Palatini f(R) cosmolo-
gies which concluded that these theories were very poorly constrained,129 being
|fRR(0)| < 10113 one of the constraints coming from cosmological data. Besides
the R − µ4/R theory, which represented a small departure from GR at low mat-
ter densities, some authors also explored whether radical departures from the GR
dynamics at cosmic scales such as f(R) = βRn or f(R) = α lnR could be com-
patible with observations. These models were confronted with the Hubble diagram
of Type Ia supernovae, the data on the gas mass fraction in relaxed galaxy clus-
ters,130 and baryon acoustic oscillations.131 Though the fits to the data were good,
the statistical analysis did not suggest any improvement with respect to the stan-
dard ΛCDM model. On the other hand, tight constraints on the family of models
R − αRβ were obtained by studying the cosmic microwave background (CMB)
shift parameter and the linear evolution of inhomogeneities132 plus the Hubble
diagram of Type Ia supernovae and baryon oscillations.133 Besides finding that
the f(R) = R − µ4/R model was strongly disfavored by the data, it was found
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that the combined observational data were capable of reducing the allowed param-
eter space of the exponent β to an interval of order ∼3 × 10−5 around β = 0,
with α having a value similar to the cosmological constant. This meant that
R−αRβ ≈ R−α−αβ lnR could be restricted to a tiny region around the ΛCDM
model. More stringent constraints on this model were found comparing its pre-
dictions with the CMB and matter power spectra,134 pushing the β parameter to
the range ∼ 10−6, thus making this model virtually indistinguishable from ΛCDM.
These conclusions have been reconfirmed by considering updated data135–138 (Union
and Union2 supernovae compilations plus other determinations139 of the expansion
rate H(z)) and strong lensing statistics.140,141 Causality related questions have also
been discussed142,143 in relation with this model. A different class of models,144–148

with f(R) = (Rn−Rn0 )1/n, has recently been confronted with various data samples.
The constraints on the parameters, n = 0.98 ± 0.08, also place this model in the
vicinity of the ΛCDM model.

The models considered so far modify the gravitational dynamics at late-times,
which turns out to be strongly constrained by observations. Modifications at early-
times should be very weak because of the strong constraints imposed by big bang
nucleosynthesis and CMB primary anisotropies. One could thus consider whether
modifications at intermediate times could be in agreement with observations. A
model proposed in this direction149 takes the formh f(R) = R+λ1H

2
0e

−|R|/(λ2H0)
2
,

where H0 represents the current value of the Hubble parameter, λ1 measures the
magnitude of the departure from GR, and λ2 controls the time at which the correc-
tion becomes relevant. Note that at late-times this f(R) recovers the ΛCDM model
(which corresponds to the limits R → 0 or λ2 → ∞). Though the background evolu-
tion of this model is not significantly different from the standard ΛCDM model for
λ2 = 500, 1000, which means that it can hardly be constrained by Type Ia super-
novae data, its effects on the CMB and matter power spectra are dramatic, being
λ2 = 1000 safely excluded. The strongest constraints are imposed by the matter
power spectrum. This can be understood by looking at the growth equation for the
comoving energy density fluctuations132,151,152 δm for large momentum k

d2δm
dx2

≈ − k2c2s
a2H2

δm, (44)

where x = log a(t), and c2s = ḟR/(3fR(2fRH + ḟR)) represents the effective sound
speed squared. If c2s > 0, the perturbations oscillate instead of growing, whereas
for c2s < 0 they become unstable and blow up (this happens for f(R) = R − αRβ

if β > 0). In the ΛCDM model c2s = 0. The form of the matter power spec-
trum in the exponential and power-law models, therefore, changes significantly with
time, developing an intricate oscillatory structure for larger k that clearly conflicts
observations, allowing to strongly constrain the parameter space of the models. The
most optimistic constraints restrict the parameter λ2 to the region149 λ2 ≥ 5×104.

hA similar model with a e−|R|/(λ2H0)2/R correction was considered in Ref. 150.
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In parallel to the considerations of above, a theoretical consistency check using
phase–space analysis153,154 was also carried out to determine whether some families
of f(R) models could allow for the different phases in the expansion history of the
universe suggested by observations. It was shown that radiation, matter, and de
Sitter points exist irrespective of the form of the function f(R) provided that the
function

C(R) = −3
(RfR − 2f)RfRR

(RfR − f)(RfRR − fR)
(45)

does not show discontinuous or divergent behaviors. Thus models satisfying the
condition C(R) > −3 lead to a background evolution comprising the sequence of
radiation, matter and de Sitter epochs. From this it follows that, unlike in metric
formalism, theories of the type f(R) = R − β/Rn do allow for the sequence of
radiation-dominated, matter-dominated, and de Sitter eras if n > −1. For theories
of the type f(R) = R + αRm − β/Rn, one finds that an early inflationary epoch
is not followed by a standard radiation-dominated era, which conflicts with the
idea that early- and late-time cosmic acceleration could be unified with this type of
models.155,156 In particular, for m > 2, the inflationary era is stable and prohibits
the end of inflation; if 3/2 < m < 3, then inflation ends with a transition to
a matter-dominated phase, which is then followed by late-time acceleration; for
4/3 < m < 3/2, inflation is not possible; and for 0 < m < 4/3 one can have
the sequence of radiation-dominated, matter-dominated, and late-time de Sitter
without early-time inflation.

4. Solar System and Laboratory Tests

Most of the f(R) models found in the literature have been proposed to address
phenomenological issues related with the largest scales. It is generally argued that
at such scales the theory of gravity could depart from GR, implying that GR should
be seen as an approximation valid only at certain scales. This, in a sense, justifies the
study of f(R) theories that are very far away from GR, i.e. that are not of the form
f(R) = R+ small corrections. However, this viewpoint should be supported by an
explicit mechanism able to explain why/how the gravity Lagrangian should/could
change its form depending on the scales involved. Since such a mechanism has not
been seriously discussed in the literature on Palatini theories, we assume that the
proposed f(R) models should be treated in the same way as GR and, therefore, to
be viable they should agree with observations and experiments on all scales. For
this reason, the same f(R) models that have been proposed to explain the cosmic
speed-up should be in accord with the dynamics of the solar system and laboratory
systems. In this section we address these points in detail.

4.1. Solar system

In Sec. 2, we remarked that the field equations of Palatini f(R) theories in vacuum
boil down exactly to those of GR with a cosmological constant. For this reason,
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if one considers a nonrotating, spherically symmetric star like the sun, the metric
outside the star can be written as a Schwarzschild–de Sitter solution

ds2SdS = gµνdx
µdxν = −A(r)dt2 +

dr2

A(r)
+ r2dΩ2 (46)

with A(r) = 1−2GM�/r−Λeff r
2/3, where Λeff represents a cosmological constant,

G is Newton’s constant, and M� is identified with the mass of the star. The well-
known model f(R) = R− µ4/R, like any other f(R) model, admits such solutions.
In this particular case, it is easy to see that Λeff =

√
3µ2/4. One is then tempted to

conclude that this model is compatible with solar system observations49 because for
sufficiently small Λeff its predictions are virtually indistinguishable from those of
the Schwarzschild157 and Kerr158,159 solutions of GR, which pass all observational
tests. However, the situation is more subtle because, due to the modified dynamics
within the sources, the transition from the interior solution to the exterior solution
is not, in general, as simple as in GR. To illustrate this point, let us consider a
presureless body such as a rocky planet or a gold sphere, for example. For such
objects a formal analytical solution for an arbitrary Lagrangian f(R) can be easily
obtained160 by writing the field equations in the form (28) and taking the ansatz
ds2 = gµνdx

µdxν = φ−1hµνdx
µdxν with

ds2 =
1

φ(T )

[
−B(r)e2Φ(r)dt2 +

1
B(r)

dr2 + r2dΩ2

]
, (47)

where we have defined φ(T ) ≡ (fR(0)/fR(T )) to guarantee that outside the sources
gµν = hµν (see the discussion above Eq. (28)). We then find

2
r

dΦ
dr

=
κ̃2

φ2

(
T rr − T tt

B

)
(48)

− 1
r2
d(r[1 −B])

dr
=
κ̃2T tt
φ2

− Λ̃(T ) (49)

Defining now B(r) = 1 − 2G̃M(r)/r in (49), we can rewrite M(r) and Φ(r) as

M(r) = − κ̃2

2G̃

∫ r

0

dx x2

[
T tt
φ2

− Λ̃(T )/κ̃2

]
, (50)

Φ(r) =
κ̃2

2

∫ r

0

dx x

[
T rr − T tt
φ2B

]
. (51)

If we consider a point outside of the sources at radius r, the above equations can
be readily integrated leading to

M(r) = M� +
Λ̃(0)
6G̃

r3, (52)

Φ(r) = Φ0, (53)

where Λ̃(0) = f(0)/2fR(0), M�, and Φ0 are constants. Since we are assuming a
presureless fluid, T tt = −ρ, taking units such that κ̃2 = 8πG̃ we find that M� and
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Φ0 are given by

M� =
∫ R�

0

dr
4πr2ρ
φ2(T )

+
1

2G̃

∫ R�

0

r2drΛ̃(−ρ), (54)

Φ0 = G̃

∫ R�

0

dr
4πr2ρ

φ2(r − 2G̃M(r))
, (55)

where R� is the radius of the object (where ρ vanishes). With these results, outside
of the sources (where φ(0) = 1) the line element (47) coincides with (46) if we
absorb the constant factor e2Φ0 in a redefinition of the time-coordinate, identify
A(r) with B(r), and take Λeff = Λ̃(0).

Once an f(R) Lagrangian is specified, Eqs. (47), (50) and (51) provide a com-
plete exact solution for a presureless, nonrotating, spherical object. The usual GR
expressions are recovered by just taking φ = 1 and Λ̃ = 0. In particular, one finds
the Newtonian expression for the mass M� =

∫ R�
0

dr4πr2ρ. We can thus use this
general solution to study the Newtonian limit corresponding to such objects. We
start by writing down the general expression for the gtt component of the metric

gtt = − 1
φ(T )

(
1 − 2G̃M(r)

r

)
e2(Φ(r)−Φ0). (56)

If we consider, for instance, the f(R) = R− µ4/R theory, using (43) we can write

φ(T ) = 1 − 1

2


1 +

√
1 + 12

(
ρµ
ρ

)2


. (57)

From this expression we see that φ(T ) varies continuously from φ∞ = 3/4 inside
matter (ρ 
 ρµ) to φ0 = 1 in vacuum. This should have disastrous consequences

φ =
3

4

φ[T]

f(R) = R− µ4

R

−4 −2 0 2 4
Log10[

ρ
ρµ

]

0.2

0.4

0.6

0.8

1.0

φ[T]

Fig. 2. Dependence of φ(T ) ≡ fR(T )/fR(0) on ρ/ρµ in the 1/R model. The function smoothly
interpolates between the two asymptotic constants φ∞ = 3/4 and φ0 = 1.
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for the theory because in the solar system the gtt component of the metric is only
slightly different from unity, with the largest corrections being of order G̃M�/R� ∼
10−5 near the sun. The amplitude of the change in φ(T ) for the 1/R model implies
a change in the metric of order ∼1/3, which is comparable to the change in the
metric when going from infinity to near the event horizon of a black hole. The
difference is that this variation in the metric occurs in a much shorter scale, which
must produce even larger accelerations. Something similar happens to the models
f(R) = R−µ2(n+1)/Rn, for which the change in φ is of order ∼ n/(n+ 2). To save
those models, one could argue154,161 that the density in the solar system is always
much larger than ρµ, which could prevent φ(T ) from reaching its vacuum value
φ0. However, this seems a very weak argument because the structure of matter
is discrete (localized wave packets) and, therefore, one can always find regions in
which φ(T ) takes all possible values, which should have observable consequences
at microscopic scales. We will see later a detailed example of this in Sec. 4.2. For
the moment, we just conclude that to have a chance of being viable according to
local experiments, any Palatini f(R) theory must be characterized by a function
f(R) such that fR(T ) is not very sensitive to density variations over the range of
densities accessible to those experiments. From a technical point of view, this simply
means that φ(T ) must be almost constant because then with a simple constant
rescaling of the metric one can bring φ(T ) from φ(T ) ≈ φ0 + corrections to φ̃(T ) ≈
1 + corrections, which turns the metric into its standard almost-Minkowskian form
gµν = ηµν + corrections. In particular, if one accepts that local experiments are
carried out in an environment with density ρlocal 
 ρµ, for the 1/R model φ̃ would
bei φ̃ ≡ fR(T )/fR(∞) = fR(T ) = 4φ(T )/3.

Since for viable models we must have φ̃(T ) ≈ 1 + Ω(T ), with |Ω(T )| 	 1, we
can express the metric outside spherical bodies as

gtt ≈ −1 + 2U + Ω(T ), (58)

where U = G̃M�/r + Λeff r
2/6, and Ω(T ) is sensitive to the sources present at

radius r. This unusual local dependence must also be very weak, which can be used
to impose constraints on the family of allowed Lagrangians. A detailed discussion
of such constraints can be found in Refs. 94 and 95, where the Newtonian and post-
Newtonian limits of f(R) theories in metric and Palatini formalism was worked out.
The results obtained in Refs. 94 and 95 using perturbative methods coincide with
the Newtonian expansion from the exact solutions given here,j which provide an
independent confirmation of their validity (up to Newtonian order at least) without
the complexities involved by the post-Newtonian analysis. Other approaches to the

iThis new constant rescaling of the metric is equivalent to using the same system of units in
Einstein and Jordan frames in regions where ρ � ρµ.
jIn Refs. 94 and 95 there seems to be a wrong sign in front of Λeff . That error seems to be
a transcription error because the perturbation equations of the Appendix have the right sign
(compare them with the metric case). In any case, that sign is irrelevant for the conclusions of
that work.
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Newtonian limit of Palatini f(R) theories162–164 have reported the existence of
Yukawa-type corrections to the usual Newtonian potential with a length-scale of
order l ∼ 1/

√
Λeff . However, such terms are generically associated with propagating

scalar degrees of freedom, which do not exist in the Palatini version of f(R) theories.
Moreover, those Yukawa-type corrections should also appear in the post-Newtonian
parameter γ, as it happens in the metric version of f(R) theories and scalar-tensor
theories, which would be in conflict with experiments due to the long interaction
range l ∼ 1/

√
Λeff . Additionally, in the nonperturbative exact solution derived

here and in the perturbative approach of Refs. 94 and 95 there is no trace of
such Yukawa-type correction. A correcting term of the form Aρ similar to the one
denoted herek by Ω(T ) accompanying the Newtonian potential in (58) was also
found in Refs. 163 and 164 but not in Ref. 162. An interesting interpretation of
that term in the particular model f(R) = R + λ2R2 can be found in Ref. 165,
where that Palatini model was compared with its metric version. The metric version
has a Yukawa-type correction of the form ∆V ∝ λ−2

∫
d3�xρ(�x)e−|�x−�x0|/λ/|�x− �x0|,

which for very short interaction range, λ → 0, leads to ∆V ∝ ρ(�x0). This allows
to see the density-dependent term as the limiting case of a Yukawa interaction
when the interaction range is ultra-short. A similar interpretation is possible for
the behavior of the scalar curvature in the metric version of general f(R) theories.86

We also mention that similar expressions for the nonperturbative Eqs. (47), (50)
and (51) have also been found in Refs. 166 and 167. Though from the definitions
in those works, B(r) ≡ e−α(r) and B(r)e2Φ(r) ≡ eγ(r), one finds exact agreement
with our results, an erroneous identification in Eq. (36) of Ref. 166 (or equivalently
Eq. (19) of Ref. 167) leads to different conclusions. To be precise, they claimed
that eγ = e−α + e2Φ, whereas from their field equations (and ours) one finds
eγ = e−α+2Φ. The discussion of the Newtonian limit given in Ref. 167 also assumes
that f(R(T )) can be expanded around T = 0 as f(T ) ≈ f(0) − ρ∂T f |0 . . . , which
for models such as the 1/R (see Eq. (57)) is not justified.

Following Refs. 94 and 95 and our previous discussion, one finds that the weak
dependence of φ(T ) on the density implies that a change ∆φ relative to the value
of φ induced by a change ∆ρ relative to the density ρ must be very small, which
can be expressed as∣∣∣∣ ρfR

∂fR
∂ρ

∣∣∣∣	 1 ↔
∣∣∣∣ κ2ρ

RfR

∣∣∣∣
∣∣∣∣ 1
1 − fR/RfRR

∣∣∣∣	 1. (59)

This result together with the fact that R ≈ κ2ρ and fR(T ) ≈ 1 in local experiments,
can be reduced154 to the condition

|RfRR| 	 1. (60)

kNote that if φ̃(T ) admits a perturbative expansion, then φ̃(T ) ≈ 1 + T∂T φ̃, which in the Newto-
nian limit implies that Ω(T ) = −ρ∂T φ̃.
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When applied to models of the form f(R) = R− µ2(n+1)/Rn, one finds that

|RfRR| =

∣∣∣∣∣n(n+ 1)
(
µ2

R

)n+1
∣∣∣∣∣ ≈

∣∣∣∣∣n(n+ 1)
(

ρµ
ρlocal

)n+1
∣∣∣∣∣ , (61)

which is much smaller than unity if n > −1 as long as ρlocal 
 ρµ ∼ 10−26 g/cm3.
This argument and similar ones have been used in the literature to claim that this
family of models are not very constrained by local experiments, which justified
their cosmological analysis.154,161 However, as we pointed out above, it relies on
the assumption that the density scale ρµ is not reachable under regular experi-
mental conditions. By considering microscopic experiments, we will show next that
this assumption is not correct. Local experiments, therefore, will be able to test
the Palatini f(R) dynamics and impose tight constraints on the family of allowed
models.

4.2. Microscopic experiments

Shortly after Vollick’s proposal for explaining the cosmic speed-up using the Palatini
version of the 1/R model, it was claimed89 that the model was in conflict with
electron–electron scattering experiments. The argument goes as follows. Since the
affine connection can be expressed in terms of the metric and the matter sources
according to (23), by inserting back this solution into the action, one ends up with
a theory that has new interactions among matter fields and between the matter
fields and the curvature. The original discussion of this problem was carried out
in the Einstein frame representation of the theory, which apparently allows for a
simpler interpretation of the action

S =
1

2κ2

∫
d4x

√−h
(
R(h) − V (φ)

φ2(T )

)
+ Sm[φ−1(T )hµν , ψm], (62)

where φ = φ(T ) is, in general, given by solving (33), and in our particular case
takes the form (57) with ρ replaced by T . The explicit coupling to the matter
of the factor φ(T ) in Sm together with the new matter term (V (φ)/φ2(T )) were
inmediately interpreted as a clear indication that the theory should be in conflict
with particle physics experiments. This view was seriously criticized168 (see also
Ref. 169) because if the theory is analyzed in the original Jordan frame, the direct
coupling of φ(T ) with the matter action disappears and, on grounds of the Einstein
equivalence principle, no new effects should be observed in a freely falling frame.
This observation raised (again) a debate on the mathematical and physical conse-
quences of working with different field redefinitions and/or frames. A reanalysis of
the problem170 then puts forward the existence of nonperturbative couplings that
prevented a consistent perturbative treatment of some of the new interaction terms.
The theory thus seemed intractable and a definitive conclusion about its viability
could not be explicitly worked out.
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The problem of the influence of the f(R) dynamics in microscopic systems
was reconsidered171 with the focus on the possible effects that the gravitationally-
induced matter interactions could have on the stability of hydrogen. Starting with
the equation for a Dirac field in curved space,l the corresponding nonrelativis-
tic Schrödinger equation for an electron in an external electromagnetic field was
derived. The goal was to study if the density-dependent function φ(T ) present in
the metric (47) could have an effect on atoms. This question is pertinent because
atoms are systems in which the matter density is localized around the nucleus and
drops to zero as we move away from it. Since the density scale ρµ will be reached
at some point, the stability and structure of atoms provides a natural laboratory
to test the Palatini dynamics of theories sensitive to very low density scales. The
fact that the average distance between atoms in a diluted perfect fluid is much
larger than their typical sizes guarantees that they can be seen as isolated systems
immersed in a perfect vacuum, which provides a way out of the problem posed
by the belief that local experiments are carried out within an environment whose
density hides the presence of the modified dynamics.

Neglecting the Newtonian potential corrections, the metric (47) boils down to
gµν = φ−1ηµν . For a metric of this type, one finds the following Schrödinger–Pauli
equation

Eη =
{

1
m̃+m0

[(�p− e �A)2 − e�σ · �B] + eA0

}
η

+
{

1
m̃+m0

[i�σ(�∇Ω × �∇) − 2ie( �A · �∇Ω) + �∇2Ω − |�∇Ω|2

+ 2(�∇Ω · �∇)] + (m̃−m0)
}
η (63)

where E is the nonrelativistic energy of the electron, η is a two-component spinor,
m̃ ≡ mφ−1/2, m0 is a constant of order the mass of the electron m, �σ are the
Pauli matrices, A0 and �A are the components of the electromagnetic potential
four-vector, �B is the external magnetic field, Ω = (3/4) lnφ(T ), and T = −mη†η. If
one considers GR, φ = 1, the usual Schrödinger–Pauli equation is recovered by just
identifying m0 with m. For concreteness, let us consider the 1/R model.49 In this
case, the function φ(T ) is given in (57), and expressing length units in terms of the
Bohr radius a0 = 0.53×10−10 m, we find that ρ/ρµ = 1024Pe(x), where Pe(x) = η†η
is the probability density of finding an electron. This expression for ρ/ρµ indicates
that the electron reaches the characteristic cosmic density, ρ/ρµ ≈ 1, in regions
where the probability density is near Pe(x) = 10−24. In ordinary applications, one
would say that the chance of finding an electron in such regions is negligible. In our
case, however, that scale defines the transition between the high density ρ 
 ρµ

lThis analysis was carried out in the original Jordan frame to avoid the discussion generated by
the use of the Einstein frame variables.
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and the low density ρ 	 ρµ regions. In regions of high density, one finds that φ
rapidly tends to a constant, φ∞ = 3/4, which leads to m̃ = 2m/

√
3 and �∇Ω = 0.

Identifyingm→ √
3m0/2, Eq. (63) reduces to the usual Schrodinger–Pauli equation

Eη =
{

1
2m0

[(�p− e �A)2 − e�σ · �B] + eA0

}
η. (64)

In regions of low density, φ tends to unity, �∇Ω = 0, and m̃→ m as ρ/ρµ → 0. As a
result, the mass factor dividing the kinetic term is now a bit smaller (m0 > m) than
in the high density region, but the mass difference m̃−m0 is no longer zero. This
is the crucial point, because m̃−m0 ≈ −0.13m0 represents a deep potential well in
the outermost parts of the atom (from r ≈ 26a0 to infinity), which has important
consequences for its stability. In fact, if one assumes that the electron is initially
in the ground state, the deep potential well that appears in the outer regions of
the atom makes this state unstable and triggers a flux of probability density (via
quantum tunneling) to those regions. Using time-dependent perturbation theory,
the half-life of hydrogen subject to this potential turns out to be

τH ≡ �

Γ
≈ 6 · 103 s, (65)

which is in clear conflict with observations. From this analysis we extract several
lessons. First, we have shown that the ultra-low density scales that characterize
models aimed at explaining the cosmic speed-up can be reached in microscopic
scenarios. Second, we have seen that the modified gravitational dynamics of those
models can have nontrivial effects on systems such as the hydrogen atom. Third,
we can use standard perturbative techniques to estimate those effects and constrain
the models. The results obtained here for the 1/R model also provide a simple test
to determine whether a given model is compatible with observations or not. Since
the instability of the ground state is to a large extent due to the potential well that
is induced by the mismatch between the values of m̃ and m0 in the low density
regions, any f(R) model that yields a non-negligible difference

∆m = m0

(√
fR(∞)
fR(0)

− 1

)
(66)

can be automatically ruled out. In particular, for the family f(R) = R−µ2(n+1)/Rn

we find that fR(∞) = 1 and fR(0) = 1 + n/(n + 2), which leads to ∆m =
m0(

√
(1/(1 + (n/n+ 2))) − 1). This quantity is small only if |n| 	 1, which yields

∆m ≈ −m0n/4. For not too small n > 0, the results of Ref. 171 could be directly
used to estimate the half-life of the atom. However, for very small n, the estimation
of the half-life should be reconsidered taking into account the contributions coming
from the ∇Ω terms, which were negligible transient potentials in the 1/R case. For
negative values of n one should note that rather than a potential well, one finds a
potential barrier, which would lower the energy of the ground state. In any case, all
these possibilities have observable effects and could be strongly constrained with
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current data. In this sense, the variation in the energy levels of hydrogen has been
estimated172,173 for models in which the condition ∆m is satisfied, i.e. for models
of the form f(R) = R(1 + ε(R)) such that |ε(R)| 	 1. Since that analysis was
carried out in the Einstein frame and with a nonlinear redefinition of the Dirac
field, we will refrain ourselves from giving a detailed correspondence between our
formulas and those. The strategy followed there to constrain the models consisted
on determining how the energy of a photon released due to one transition changes
relative to that emitted in another transition, which yields a quantity that is inde-
pendent of the electron mass and also seems to be independent of the choice of
frame. Using data for the transitions from the initial state (n, l) = (2, 0) to the
final state (n, l) = (1, 0), and from (n, l) = (8, 3) to (n, l) = (2, 0), the following
constraint was found ∣∣∣∣fRRH

2
0

fR

∣∣∣∣ ≤ 4 × 10−40. (67)

For the family of models f(R) = R−µ2(n+1)/Rn, this constraint impliesm that |n| ≤
10−38. This is the tightest constraint put so-far on this family of models (recall that
from CMB anisotropies and baryon oscillations the bound was around |n| ≤ 10−6);
it puts forward the relevance of microscopic experiments for the understanding of
the dynamics of Palatini theories.

The analysis of Ref. 89 also raised doubts about the applicability of the Palatini
field equations to describe macroscopic systems. A careful analysis of such prob-
lem has been explicitly carried out in Refs. 172 and 173 (see also Ref. 174 for a
related discussion). It was concluded there that at the classical level the physical
masses and geodesics of particles, cosmology, and astrophysics in Palatini-modified
gravity theories are all indistinguishable from the results of general relativity plus
a cosmological constant. Part of this argument was supported by the assumption
that isolated particles are stable and should not exhibit violations of energy and
momentum conservation. Though this could be true for certain Palatini models, the
stability of microscopic systems cannot be guaranteed in general. In particular, it is
in clear conflict with the results presented here for the hydrogen atom and the fam-
ily of models f(R) = R−µ2(n+1)/Rn. Since there is a flux of probability density to
infinity, the energy and momentum of the system are not locally conserved. Thus,
though GR is holographic in the sense that the equations of motions for a localized
distribution of energy and momentum surrounded by vacuum can be derived by
considering surface, rather than volume, integrals over curvature components, the
instability of certain isolated systems in some Palatini f(R) models may prevent
the interpretation of the exterior spacetime as completely vacuum and, therefore,
as not exactly equivalent to that of GR plus a cosmological constant. To the light

mTo obtain this result we consider as valid the assumptions made in Refs. 172 and 173, evaluate
fR and fRR in the vacuum value Rvac = (n + 2)1/(n+1)µ2, and approximate H2

0 by H2
0 =

µ2(n + 2)1/(n+1)/12.
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of this, we believe that part of the conclusions of Refs. 172 and 173 should be
reconsidered.

5. Other Tests

The previous sections have provided us with a good deal of information about the
properties of Palatini f(R) theories. We have contrasted the dynamics of these the-
ories against cosmological, solar system, and laboratory data, and this has allowed
us to impose severe constraints on the form of some families of f(R) Lagrangians.
This exercise has been particularly useful for constraining models characterized by
ultra-low density scales. We now review other approaches followed in the litera-
ture to understand the viability and robustness of f(R) theories and which have
raised interesting debates. We will begin by considering the structure of spherically
symmetric, static stars and then will focus on the initial value formulation of these
theories.

5.1. Stellar structure

In this section we consider a problem that initially seemed to affect seriously the
theoretical viability of all f(R) models in Palatini formalism. Using the Tolman–
Oppenheimer–Volkov (TOV) equations for the interior of stars in equilibrium,175 it
was found176 that certain terms in those equations could blow up and form curva-
ture singularities near the surface of spherically symmetric, static matter configura-
tions with polytropic equation of state, ρ(P ) = (P/K)1/γ , with index 3/2 < γ < 2.
Since the physically interesting case γ = 5/3 (degenerate, nonrelativistic fermion
gas) lies within this interval, this result was regarded as a serious theoretical concern
about the viability of Palatini f(R) theories. The problem was soon reconsidered177

and interpreted differently, claiming that it had more to do with the peculiarities
of the equation of state used than with the own structure of Palatini f(R) theories.
This was based on the observation that for neutron stars the tidal acceleration due
to the surface singularity becomes equal to the Schwarzschild value of GR only at
a distance ∼ 0.3 fermi from the surface of the star, which makes unrealistic the use
of a polytropic equation of state. However, this conclusion was also challenged178

claiming that the fluid approximation is still valid on the scales at which the tidal
forces diverge just below the surface of a polytropic sphere in the case of the generic
functions f(R) considered. This debate was independently reexamined179 reaching
an intermediate answer, which is the one that we present here.

Consider a static, spherical object described by a perfect fluid, with Tµν =
(ρ + P )uµuν + Pgµν . Take Schwarzschild-like coordinates, and parametrize the
spacetime line-element as

ds2 = −A(r)e2ψ(r)dt2 +
1

A(r)
dr2 + r2dΩ2, (68)
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where A(r) = 1 − 2M(r)/r. Inserting these inputs in the field equations (25), one
obtains the following TOV coupled equationsn(

fR,r
fR

+
2
r

)
ψr =

κ2(ρ+ P )
fRA

− 3
2

(
fR,r
fR

)2

+
fR,rr
fR

, (69)

(
fR,r
fR

+
2
r

)
Mr

r
=
f + κ2(ρ+ 3P )

2fR
+A

[
fR,rr
fR

+
fR,r
fR

(
2r − 3M
r(r − 2M)

− 3
4
fR,r
fR

)]
,

(70)

Pr = − P
(0)
r

[1 − α(r)]
2

[1 +
√

1 − β(r)P (0)
r ]

, (71)

where fR,r ≡ ∂rfR, and we have defined

P (0)
r =

(ρ+ P )
r(r − 2M)

[
M −

(
f + κ2(P − ρ)

fR

)
r3

4

]
, (72)

α(r) = (ρ+ P )
fR,P
fR

, (73)

β(r) = (2r)
fR,P
fR

[
1 − 3(ρ+ P )

4
fR,P
fR

]
, (74)

with fR,P ≡ ∂P fR. One can check that these expressions recover the GR formulas
in the limit fR = 1 and f = R − 2Λ. Given an equation of state, P = P (ρ)
or ρ = ρ(P ), one can use the above formulas to compute the structure of static,
spherically symmetric objects. To do it, one must first express the functions f and
fR in terms of T = −ρ + 3P and rewrite the radial derivatives of fR in the form
fR,r = fR,PPr and fR,rr = fR,PPrr + fR,PPP

2
r . One then finds

fR,P ≡ κ2fRR

RfRR − fR
(3 − ρP ), (75)

fR,PP = − κ4fRfRRR

(RfRR − fR)3
(3 − ρP )2 − κ2fRR

(RfRR − fR)
ρPP , (76)

where ρP ≡ (dρ/dP ) and ρPP ≡ (d2ρ/d2P ). The terms ρP and ρPP are the reason
for the existence of divergences near the surface of polytropes with index 3/2 <

γ < 2. This can be easily seen as follows. Since polytropes are characterized by
ρ(P ) = (P/K)1/γ , one finds that ρP = ρ/(γP ), and ρPP = (1 − γ)ρ/(γP )2, which
implies that ρP and ρPP diverge as P → 0 if γ > 1 in the first case and if γ >
1/2 in the second case. Therefore, if those terms do not appear in the equations
multiplied by appropriate powers of the pressure, divergences will be unavoidable
for some values of γ. Let us now determine the dependence on P of the various terms
involved in the equations. From their definitions, it is easy to see that P (0)

r ∼ P 1/γ ,
α(r) ∼ P−1+2/γ , and β(r)P (0)

r ∼ P 2(−1+2/γ). If γ < 2, those terms decay as

nThese equations correct some transcription errors present in Ref. 179.
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P → 0 yielding Pr ∼ P 1/γ , but if γ > 2 then they grow. The combined result
for γ > 2 gives Pr ∼ P 2−3/γ , which also falls to zero near the surface. By direct
computation one also finds that Prr, fR,PPrr, and fR,PPr are well behaved as
P → 0 for γ < 2. However, the term fR,PPP

2
r contained in fR,rr generates a term

of the form ρPPP
2
r ∼ P−2+3/γ , which diverges as P → 0 for γ > 3/2 and produces

the singularities reported in Refs. 176 and 178.
Contrary to the opinions provided in Refs. 176, 178 and 180, we believe that

the divergences that we have found here are not due to the differential structure
of Palatini f(R) theories. The fact that, unlike in GR, the field equations contain
derivatives of the matter fields (via the trace T ) up to second order is not the reason
for the existence of these divergences. To see this, one should note that, as pointed
out in Ref. 177, the divergent behavior of the term ρPPP

2
r could be cured by sim-

ply smoothing the behavior of ρP and ρPP in the outer regions of the star using
a different equation of state. Should the divergences exist even for regular equa-
tions of state, then one could blame the Palatini f(R) framework for this problem
but, in our case, the field equations are simply collaborating with the polytropic
equation of state to the development of those infinities and, therefore, they are
not directly responsible for the existence of those divergences. One should have
in mind that the equations of state usually respond to statistical descriptions and
involve a number of simplifying assumptions. In fact, an accurate equation of state
at laboratory densities is very complicated to derive, because electrostatic interac-
tions and other subtle effects mask the simpler statistical properties of the idealized
Fermi gas approximation.181 The polytropic equation of state should therefore not
be used beyond its expected regime of validity. This regime, however, may depend
on the parameters that characterize the particular Lagrangian f(R) considered.
For instance, if one takes the model f(R) = R ± λR2 with λ of order the Planck
length squared λ ∼ l2P , which defines a density scale ρλ ≡ (κ2λ)−1 ∼ 2 ·1092 g/cm3,
for a neutron star the divergent term begins to be non-negligible at a density of
order179 ρs = (K2ρλ/c

4)
1

3−2γ ∼ 10−210 g/cm3, which is well below any physical
density one can imagine.o But if one uses a length scale much larger than lP ,
the terms responsible for the divergences could begin to grow in regions where
the polytropic equation of state may still be valid.178,180 In this sense, polytropes
could still be used as a theoretical laboratory to constrain the parameters of f(R)
models.182

5.2. The Cauchy problem

A very natural requirement of any theory of classical physics is that a sufficient set
of initial data should be enough to determine the subsequent evolution. One then

oFor a free electron whose wave function is spread over the entire universe, the ratio me/R3
Univ is of

order ∼10−118 g/cm3. Therefore, a simple electron would be enough to remove all the singularities
of this type in the universe.
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says that a theory possesses an initial value formulation if appropriate initial data
(perhaps subject to constraints) can be specified such that the dynamical evolution
is uniquely determined. If small changes in the initial data induce small changes in
the solution over a compact region of spacetime and if such changes do not produce
any changes in the solution outside the causal future of this region, then the initial
value formulation is said to be well-posed.183 GR has a well-posed initial value prob-
lem, which results in a stable theory with a robust causal structure. Do Palatini
f(R) theories have a well-posed initial value formulation? Recent works184,185 have
concluded that, unlike their metric version, Palatini f(R) theories are in general
neither well-formulated nor well-posed, which seems a very serious reason for con-
cern. We will see next, however, that Palatini f(R) theories do admit in general a
well-formulated initial value problem. We will also use those results to argue that
the initial value problem is likely to be well-posed.

5.2.1. Hamiltonian formulation

To show that the initial value problem of Palatini f(R) theories is well-formulated,
we consider the Brans–Dicke representation of Palatini theories and work out its
3 + 1 Hamiltonian description186 in the usual way59,187 (from now on we use lower
case latin letters to represent spacetime indices). Consider a foliation of the space-
time manifold M into hypersurfaces ΣT of simultaneity characterized by a function
T (x) = constant, a normalized timelike covector na ∝ ∂aT normal to this hyper-
surface, and a shift vector Na orthogonal to na = gabnb. This allows us to construct
a time-flow vector ta = Nna +Na, where N is known as lapse, and decompose the
metric in the form gab = hab − nanb. Elementary, though lengthy, manipulations
allow us to express the Lagrangian density of (29) as follows

L =

√
h

2κ2
{Nφ(R(3) + (KabK

ab −K2)) + 2habDaNDbφ

− ω

Nφ
(N2habDaφDbφ− (φ̇−NaDaφ)2)

− 2K(φ̇−NaDaφ) −NV (φ)} (77)

where Kab = hcah
d
b∇dnc is the extrinsic curvature, Daφ = hba∇bφ, φ̇ = ta∂aφ, (3)R

is the Ricci scalar of the three-metric hab, and we have used the following relations

R(4) = R(3) + [KabK
ab − (Ka

a)2 + 2∇cJ
c], (78)

Jc = nc∇an
a − na∇an

c, (79)

NJc∇cφ = −hcdDcφDdN +K(φ̇−NaDaφ), (80)√
|g| = N

√
h. (81)
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The canonical variables of the theory are (gab, φ) ≡ (N,Na, hab, φ). The canonical
momenta are defined by the following expressions

ΠN =
δL
δṄ

= 0, Πa =
δL
δṄa

= 0, (82)

Πab =
δL
δḣab

= +

√
h

2κ2

[
φ(Kab −Khab) − hab

N
(φ̇−N cDcφ)

]
, (83)

πφ =
δL
δφ̇

=

√
h

2κ2

(
2K +

2ω
Nφ

(φ̇ −N cDcφ)
)
, (84)

Like in GR, we immediately see that the momenta conjugated to N and Na are
constrained to vanish. On the other hand, from the combination of Πh ≡ habΠab

and πφ, we find that

Πh − φπφ = −
(

3 + 2w
N

) √
h

2κ2
(φ̇−N cDcφ) (85)

is also constrained to vanish when ω = −3/2, which is the case that interests us.
It is now useful to rewrite the Lagrangian density L using the definition for Πab to
eliminate the explicit dependence of Kab from it. The result is

L =

√
h

2κ2

[
N

{
φR(3) +

1
φ

(2κ2)2

h

(
ΠabΠab − Π2

h

2

)}

− Nω

φ
DcφD

cφ+ 2DcφD
cN −NV (φ) + (3 + 2w)

(φ̇ −N cDcφ)2

2Nφ

]
(86)

Note that when w = −3/2, the last term in the above equation vanishes whereas it
persists for w �= −3/2 and can be expressed in terms of the momenta using (85). A
detailed discussion of both cases can be found in Ref. 186. Here we will just focus on
the Palatini case, w = −3/2. To proceed with the construction of the Hamiltonian
one must have in mind the above constraints and apply Dirac’s algorithm188 for
constrained Hamiltonian systems.

Like in GR, we have the primary constraints CN ≡ ΠN (t, x) = 0 and
Ca ≡ Πa(t, x) = 0. Additionally, we have the constraint (85). The Hamiltonian
is constructed by introducing Lagrange multiplier fields λN (t, x), λa(t, x), and λφ
for the primary constraints and performing the Legendre transform as usual with
respect to the remaining velocities. The result is

H̄ =
∫
d3x[λNCN + λaCa + λφCφ +NaHa +NH̄N ] (87)
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where

CN = ΠN , Ca = Πa, (88)

Cφ = Πh − φπφ, (89)

H̄N =

(√
h

2κ2

)[
−φR(3) +

(2κ2)2

hφ

(
ΠabΠab − Π2

h

2

)
+
ω

φ
DcφD

cφ+ V (φ)
]
, (90)

Ha = −2habDcΠbc + πφDaφ. (91)

For the dynamics to be consistent, the constraints must be preserved under evolu-
tion, which requires that ĊN ≡ {H̄, CN} = 0 and Ċa ≡ {H̄, Ca} = 0, where the
poisson bracket at time t is defined as

{A(x), B(x′)} =
∫
d3σ

[
δA(x)
δΠi(σ)

δB(x′)
δQi(σ)

− δB(x′)
δΠi(σ)

δA(x)
δQi(σ)

]
, (92)

where Πi and Qi generically represent the canonical variables. By direct evaluation,
one finds that ĊN = −δH̄/δN = −HN and Ċa = −δH̄/δNa = −Ha. We thus see
that on consistency grounds we must impose the secondary constraints HN = 0 and
Ha = 0, which together with Cφ = 0 implies that the Hamiltonian H̄ is constrained
to vanish, like in GR. If matter is present, one must add the corresponding pieces
δHmatt/δN and δHmatt/δN

a to these constraints, which leads to

−φR(3) +
1
φ

(
Π̃
ab

Π̃ab − Π̃
2

h

2

)
+
ω

φ
DcφD

cφ

+ 2hcdDcDdφ+ V (φ) +
1
α

δHmatt

δN
= 0, (93)

− 2DcΠ̃
c

a + π̃φDaφ+
1
α

δHmatt

δNa
= 0, (94)

where we have defined α ≡ h1/2/(2κ2) and used the tilde to denote the tensorial
quantities π̃φ = πφ/α and Π̃ab = Πab/α. After some lengthy algebra, one finds the
following evolution equations

φ̇ = NaDaφ− λφφ, (95)

˙̃πφ = N

[
R(3) +

Π̃
ab

Π̃ab

φ2
+
w

φ2
DcφD

cφ− dV

dφ

]
(96)

− 2∆N + 2wDc

(
N

φ
Dcφ

)
+NaDaπ̃φ − λφπ̃φ

2
,

ḣab = 2D(aNb) +
2N
φ

(
Π̃ab − hab

2
Π̃h

)
+ λφhab, (97)
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˙̃Π
ab

= −N
[
φ (3)Gab − w

φ

(
DaφDbφ− 1

2
habDcφD

cφ

)

+
2
φ

(
Π̃
ac

Π̃
b

c −
hab

4
Π̃
mn

Π̃mn

)
− Π̃h

2φ

(
3Π̃

ab − Π̃h

2
hab
)]

+N cDcΠ̃
ab − Π̃

ca
DcN

b − Π̃
cb
DcN

a

+DaDb(Nφ) − hab∆(Nφ) − 2DaNDbφ+ habDcNDcφ

− NV

2
hab − 1

α

δHmatt

δhab
− 5

2
λφΠ̃

ab
. (98)

Using these evolution equations and the constraint (93), one can verify that the
evolution of Cφ leads to

Ċφ = {H̄, Cφ} = −2αNV (φ) + αNφ
dV

dφ
− N

2
δHmatt

δN
− hab

δHmatt

δhab
. (99)

Since Ċφ must vanish, we must impose the secondary constraint

φ
dV

dφ
− 2V (φ) − 1

2α
δHmatt

δN
− 1
Nα

hab
δHmatt

δhab
= 0. (100)

Using the definitions Tab = −(2/
√−g)(δLmatt/δg

ab), gab = hab − (1/N2)(ta −Na)
(tb − N b), and the fact that (δLmatt/δN) = −(δHmatt/δN) and (δLmatt/δh

ab) =
−(δHmatt/δh

ab), one can verify186 that (100) yields

φ
dV

dφ
− 2V (φ) = κ2T. (101)

This equation reproduces the relation (32) when w = −3/2 and establishes an
algebraic relation between the trace of the energy–momentum tensor of matter and
the scalar field φ = φ(T ).

5.2.2. Discussion

From the derivations of above, we see that the dynamical variables in the Brans–
Dicke case w = −3/2 are just (hab,Πab) (plus the (qi, pi) of the matter), because
the evolution equations for (φ, πφ), as we saw above, can be combined to establish
the secondary constraint (101). The lapse, N , and shift, Na, manifest the diffeo-
morphism invariance of the theory and are not dynamical variables either. It is
worth noting that the constraint (93) involves up to second-order spatial deriva-
tives of hab (see the term (3)R), but only first-order time-derivatives of it (contained
in the momenta Πab). However, though that constraint contains spatial derivatives
of φ = φ(T ) up to second-order (see the term DaDbφ), it does not contain any
time-derivative of φ(T ) because the corresponding momentum πφ is absent in that
equation. Something analogous occurs in the vector constraint (94), where we can
use the replacement πφ = Πh/φ to show that no extra time-derivatives of the matter
appear in the constraints. This is a very important aspect, because it means that
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the highest-order time-derivative of the matter fields appearing in (93) and (94)
is the same as in GR and coincides with the highest-order present in the energy–
momentum tensor of the matter. The evolution equations also have this property.
A glance at (95)–(98) puts forward that the evolution equations for φ̇, ḣab, and Π̇ab

do not contain the momentum πφ, while in the equation for π̇φ, one can reexpress
the term λφπ̃φ using πφ = Πh/φ. Therefore, though one can find up to second-order
spatial derivatives of φ(T ), and hence of T , there is no trace of extra time-derivatives
acting on the matter fields. The existence of second-order spatial derivatives of φ(T )
requires an extra degree of smoothness in the matter profiles, an aspect that is not
necessary in GR. This extra degree of differentiability is a natural requirement if we
attend to the f(R) formulation of the w = −3/2 theory. Since the affine connection
is compatible with a metric tab which is conformally related with the spacetime
metric gab, the smoothness and differentiability of the conformal geometry is guar-
anteed if the conformal factor is differentiable up to second order (to yield a smooth
field strength, Riemann tensor, of the affine connection).

Let us now focus on the initial value problem. It is well-known that if in GR
one specifies initial values for N,Na, hab and Πab which are consistent with the
constraint equations, the evolution equations uniquely determine hab and Πab, while
N and Na remain undetermined, expressing the existing gauge freedom of the
theory. This guarantees that the intrinsic (coordinate-independent) geometry of
spacetime is determined uniquely59,187 by an initial choice of hab and Πab. The same
is true for the scalar-tensor theories considered here, thus implying that the initial
value problem is well-formulated186 for all w. For the w = −3/2 case, the only
difference with respect to GR is that one must specify an initial value for λφ taking
into account its corresponding constraint equation to consistently establish the
initial data.

Though the evolution equations presented here are not suitable to determine
whether the initial value formulation is also well-posed, it is well-known that using
different variables and representations of the evolution and constraint equations
one can proof the well-posedness of GR and of generic Brans–Dicke theories with
w �= −3/2 in both Einstein and Jordan frames.189 One can also make special
choices for the lapse-shift pair and manipulate the corresponding 3 + 1 equations
of GR to show that the conjugate variables hab and Πab do satisfy a hyperbolic
evolution system.190 One can thus exploit the resemblance between the constraint
and evolution equations respectively of (93), (94) and (101) and of (97) and (98)
with those of GR to argue that the Cauchy problem is likely to be well-posed also for
the Brans–Dicke case w = −3/2. Note first that in vacuum, Tµν = 0 or Hmatt = 0,
the constraint (101) implies that φ is a constant, φ0, which turns the constraints
(93) and (94) into

−φ0R
(3) +

1
φ0

(
Π̃
ab

Π̃ab − Π̃2

2

)
+ V (φ0) = 0, (102)

− 2DcΠ̃c
a = 0. (103)
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With a simple constant rescaling of the metric, these constraints are the same as
those of GR with a cosmological constant. Setting for consistency the Lagrange
multiplier λφ = 0, the evolution equations for hab and Π̃ab also recover the same
form as those of GR with a cosmological constant. We can thus conclude that the
Cauchy problem in vacuum is well-posed.

When matter is present, one should add to the above equations those cor-
responding to the matter fields. The strategy now would be to interpret the φ-
dependent terms, which are functions of the trace T , as part of a new (or modified)
matter Hamiltonian. This way, the constraint and evolution equations maintain a
structure that closely resembles that of GR except by some nonconstant factors
φ(T ) that multiply or divide objects like (3)R and Π̃abΠ̃ab. If the matter fields sat-
isfy the spatial differentiability requirements imposed by the constraint equations,
the absence of higher-order time-derivatives of the matter fields in the constraint
and evolution equations suggests that the time-evolution will be as well-posed as in
GR. This, in fact, has been explicitly shown for a perfect fluid using the Einstein
frame representation of the evolution equations.191,192 Obviously, since in general
the well-posedness of the GR equations depends on the particular matter sources
considered, the modification of the source terms induced by the existence of φ(T )-
dependent terms requires a model by model analysis. Therefore, though one cannot
conclude that the Cauchy problem is well-posed for an arbitrary f(R) Palatini
Lagrangian, an aspect already noticed in Ref. 185, we find no reasons to suspect
that it is ill-posed in general.

To close this section, we comment on recent literature that criticizes the viabil-
ity of all Palatini f(R) theories based on a seemingly ill-formulation of the Cauchy
problem. In Ref. 184 it was claimed that the disappearance of the d’Alembertian
�φ from (32) for the value w = −3/2 implies that the nondynamical field φ can
be arbitrarily assigned on a region or on the entire spacetime, provided its gradient
satisfies a degenerate equation [Eq. (4.5) in that paper], which reduces to a con-
straint. This fact, it was stated, would make it impossible to eliminate the term �φ
from the evolution equations unless �φ = 0. This was interpreted as a no-go theo-
rem for Palatini f(R) gravity, which would have an ill-formulated Cauchy problem
even in vacuum. This interpretation is conceptually wrong (see also Ref. 193 in this
respect) because the scalar field in the w = −3/2 is just a given algebraic func-
tion of the trace T and, therefore, is clearly specified by the local matter content.p

Moreover, one should note that Eq. (4.5) of Ref. 184 is not correct. That equation
should recover the well-known relation 2V − φV ′ = κ2T that establishes the alge-
braic relation between φ and T [the secondary constraint (101)]. Using Eqs. (3.4)

pThe fact that the amplitude of the scalar field when w = −3/2 is determined algebraically by the
local matter sources also implies that the effective Newton’s constant Geff = G/φ is only subject
to local variations of the energy–momentum densities. In this sense, though Geff does change over
cosmic time-scales due to the expansion of the universe, it is not subject to the same type of
time evolution that affects the w �= −3/2 Brans–Dicke theories and other dynamical scalar-tensor
theories, which contrast with the interpretation of Ref. 194.
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and (3.5) of Ref. 184, it is easy to check that the associated Eq. (3.10) does recover
our equation (101) in the Brans–Dicke case w = −3/2 (even though this is not
the result obtained in Ref. 184). This indicates that the first claims against the
well-posedness of the Cauchy problem for Palatini f(R) theories stemmed from a
misleading analysis of erroneous equations.

The strong conclusions of Ref. 184 were reanalyzed in Ref. 185 (see Refs. 195 and
196 for related discussions), where it was found that the Cauchy problem should be
well-posed in vacuum and with radiation fields (for which T = 0 and φ =constant).
In fact, in Ref. 185 the interpretation of the field equations was notably improved,
pointing out that in the w = −3/2 case the field φ could be algebraically solved
in terms of T (though their Eq. (219) is the same as Eq. (4.5) of Ref. 184). It
was then suggested that due to the existence of terms of the form ∇µφ(T ) and
�φ(T ), which imply contributions of the form ∇µT and �T , the Cauchy problem
in Palatini f(R) theories was likely to be neither well-formulated nor well-posed
unless the trace T was constant. Though such terms and the possible existence
of higher-order derivatives of the matter fields are certainly a reason for concern,
the findings of Ref. 186 presented here show that the evolution equations do not
introduce higher-order time derivatives of the matter fields, which guarantees that
the initial value problem is as well-formulated59,187 as in GR.

6. Nonsingular Bouncing Cosmologies

We have seen that cosmological observations and local experiments strongly con-
strain the form of the f(R) gravity Lagrangian at low curvatures (see Refs. 132–
138, 144–149, 151–154 for cosmological constraints and Refs. 89, 94, 95, 171–173
for local experiments). Though many f(R) models have the ability to produce
late-time cosmic acceleration and fit well the background expansion history, they
are not in quantitative agreement with the structure and evolution of cosmic inho-
mogeneities. Additionally, we have seen that the fact that matter, concentrated
in discrete structures like atoms, causes the modified dynamics to manifest also
in laboratory experiments, which confirm earlier suspicions on the viability of such
models according to their corresponding Newtonian and post-Newtonian properties.
This is a very disturbing aspect of the models with infrared corrections, because it
demands the consideration of a microscopic description of the sources and prevents
the use of macroscopic, averaged representations of the matter. A careful analy-
sis of this point puts forward the existence of nonperturbative effects induced by
the Palatini dynamics in a number of contexts.44,89,160,171,176,178 In this sense, it is
worth noting that even though the ground state of hydrogen can be studied using
standard perturbative methods, the first and higher excited states do manifest non-
perturbative properties.171 Despite the fact that the modified dynamics is strongly
suppressed in regions of high density, nonperturbative effects arise near the zeros of
the atomic wave functions, where the matter density crosses the characteristic low-
density scale of the theory and the gradients of the matter distribution become very
important for the dynamics [see Eq. (25)]. Though this certainly is an undesired
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property of infrared-corrected models, it could become a very useful tool for models
with corrections at high curvatures. Can we construct singularity-free cosmological
models that recover GR at low curvatures using the nonperturbative properties of
Palatini theories? As we will see, ultraviolet-corrected Palatini models turn out to
be very efficient at removing the big bang cosmic singularity in various situations
of interest. In this section we will thus review recent efforts carried out to better
understand the properties of Palatini theories in the early universe.

6.1. Nonsingular f(R) cosmologies

Growing interest in the dynamics of the early universe in Palatini theories has
arisen, in part, from the observation that the effective equations of loop quantum
cosmology197–205 (LQC), a Hamiltonian approach to quantum gravity based on the
quantization techniques of loop quantum gravity, could be exactly reproduced by
a Palatini f(R) Lagrangian.206 In LQC, nonperturbative quantum gravity effects
lead to the resolution of the big bang singularity by a quantum bounce without
introducing any new degrees of freedom. Though fundamentally discrete, the theory
admits a continuum description in terms of an effective Hamiltonian that in the case
of a homogeneous and isotropic universe filled with a massless scalar field leads to
the following modified Friedmann equation

3H2 = 8πGρ
(

1 − ρ

ρcrit

)
, (104)

where ρcrit ≈ 0.41ρPlanck. At low densities, ρ/ρcrit 	 1, the background dynamics
is the same as in GR, whereas at densities of order ρcrit the nonlinear new matter
contribution forces the vanishing ofH2 and hence a cosmic bounce. This singularity
avoidance seems to be a generic feature of loop-quantized universes.207

Palatini f(R) theories share with LQC an interesting property: the modified
dynamics that they generate is not the result of the existence of new dynamical
degrees of freedom but rather it manifests itself by means of nonlinear contributions
produced by the matter sources, which contrasts with other approaches to quantum
gravity and to modified gravity. This similarity makes it tempting to put into
correspondence Eq. (104) with the corresponding f(R) equation

3H2 =
fR(κ2ρ+ (RfR − f)/2)(
fR − 12κ2ρfRR

2(RfRR − fR)

)2 . (105)

Taking into account the trace equation (22), which for a massless scalar becomes
RfR − 2f = 2κ2ρ and implies that ρ = ρ(R), one finds that a Palatini f(R) theory
able to reproduce the LQC dynamics (104) must satisfy the differential equation

fRR = −fR
(

AfR −B

2(RfR − 3f)A+RB

)
(106)

where A =
√

2(RfR − 2f)(2Rc − [RfR − 2f ]), B = 2
√
RcfR(2RfR − 3f), and

Rc ≡ κ2ρc. If one imposes the boundary condition limR→0 fR → 1 at low curvatures,
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and äLQC = äPal (where ä represents the acceleration of the expansion factor) at
ρ = ρc, the solution to this equation is unique. The solution was found numeri-
cally,206 though the following function can be regarded as a very accurate approxi-
mation to the LQC dynamics from the GR regime to the nonperturbative bouncing
region (see Fig. 3)

df

dR
= − tanh

(
5

103
ln

[(
R

12Rc

)2
])

. (107)

It should be noted that other attempts to build an effective action for the LQC
equations have been considered in the literature, though they suffer from serious
limitations208 or are only reliable in the low-energy, perturbative regime.209

Though the function (107) implies that the LQC Lagrangian is an infinite series,
which is a manifestation of the nonlocal properties of the quantum geometry, the
fact is that one can find nonsingular cosmologies of the f(R) type with a finite
number of terms. In fact, a simple quadratic Lagrangian of the form f(R) = R +
R2/RP does exhibit nonsingular solutions210 for certain equations of state211–213

depending on the sign of RP . To be precise, if RP > 0 the bounce occurs for sources
with w = P/ρ > 1/3. If RP < 0, then the bouncing condition is satisfied by w < 1/3
(see Fig. 4). This can be easily understood by having a look at the expression for
the Hubble function in a universe filled with radiation plus a fluid with generic
equation of state w and density ρ

H2 =
1

6fR

[
f + (1 + 3w)κ2ρ+ 2κ2ρrad − 6KfR

a2

]
[
1 +

3
2
∆1

]2 (108)
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Fig. 3. Vertical axis: df/dR; Horizontal axis: R/Rc. Comparison of the numerical solution with
the interpolating function (107). The dashed line represents the numerical curve.
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Fig. 4. Time-evolution of the expansion factor for the model f(R) = R − R2/2RP and w = 0
for K > 0, K = 0, and K < 0 (solid curves from left to right). From left to right, we see that the
universe is initially contracting, reaches a minimum, and then bounces into an expanding phase.
The dashed lines, which are only discernible near the bounces, represent the expanding solutions
of GR, which begin with a big bang singularity (a(t) = 0) and quickly tend to the nonsingular
solutions.

where ∆1 = −(1 + w)ρ∂ρfR/fR = (1 + w)(1 − 3w)κ2ρfRR/(fR(RfRR − fR)). Due
to the structure of ∆1, one can check that H2 vanishes when fR → 0. A more
careful analysis101 shows that fR → 0 is the only possible way to obtain a bounce
with a Palatini f(R) theory that recovers GR at low curvatures if w is constant.
In the case of f(R) = R + R2/RP , it is easy to see that fR = 0 has a solution if
1+2RBounce/RP = 0 is satisfied for ρBounce > 0, where RBounce = (1−3w)κ2ρBounce,
which leads to the cases mentioned above. It is worth noting, see Fig. 4, that
the expanding branch of the nonsingular solution rapidly evolves into the solution
corresponding to GR. The departure from the GR solution is only apparent very
near the bounce, which is a manifestation of the nonperturbative nature of the
solution. Note also that in GR there is a solution that represents a contracting
branch that ends at the singularity where the expanding branch begins (this solution
is just the time reflection of the expanding branch). The Palatini model f(R) =
R − R2/2RP represented here allows for a smooth transition from the initially
contracting branch to the expanding one.

Besides avoiding the development of curvature singularities, bouncing cosmolo-
gies can solve the horizon problem,18 which makes them interesting as a substitute
for inflation. To be regarded as a serious candidate to explain the phenomenology
of the early universe, these theories should provide a consistent evolution of per-
turbations across the bounce, which should also be compatible with the observed
nearly scale-invariant spectrum of primordial perturbations. Investigations in this
direction have found214 that f(R) models that develop a bounce when the condition
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fR = 0 is met turn out to exhibit singular behavior of inhomogeneous perturba-
tions in a flat, dust-filled universe. However, since some terms in the perturbation
equations blow up as fR → 0, their back-reaction renders the perturbative system
invalid and, therefore, one cannot say if there is a true singularity or not.

Further insight on the robustness of the bounce under perturbations was
obtained101 studying the properties of f(R) theories in anisotropic spacetimes of
Bianchi-I type

ds2 = −dt2 +
3∑
i=1

a2
i (t)(dx

i)2. (109)

If one considers these spacetimes under the dynamics of Palatini theories with a
generic perfect fluid, one can derive a number of useful analytical expressions. In
particular, one finds that the expansion θ =

∑
iHi and the shear σ2 =

∑
i(Hi −

(θ/3))2 (a measure of the degree of anisotropy) are given by

θ2

3

(
1 +

3
2
∆1

)2

=
f + κ2(ρ+ 3P )

2fR
+
σ2

2
, (110)

σ2 =
ρ

2
1+w

f2
R

(C2
12 + C2

23 + C2
31)

3
, (111)

where the constants Cij = −Cji set the amount and distribution of anisotropy and
satisfy the constraint C12 + C23 + C31 = 0. In the isotropic case, Cij = 0, one has
σ2 = 0 and θ2 = 9H2, with H2 given by Eq. (108). Now, since homogeneous and
isotropic bouncing universes require the condition fR = 0 at the bounce, a glance
at (111) indicates that the shear diverges as ∼1/f2

R. This shows that, regardless
of how small the anisotropies are initially, isotropic f(R) bouncing models with a
single fluid characterized by a constant equation of state will develop divergences
when anisotropies are present. It is worth noting that even though σ2 diverges at
fR = 0, the expansion and its time-derivative101 are smooth and finite functions
at that point if the density and curvature are finite. However, one can check by
direct calculation that the Kretschman scalar RµνσρRµνσρ = 4(

∑
i(Ḣi + H2

i )
2 +

H2
1H

2
2 + H2

1H
2
3 + H2

2H
2
3 ) diverges at least as ∼1/f4

R, which is a clear geometrical
pathology and signals the presence of a physical singularity. The problems when fR
vanishes seem to be generic in anisotropic models of modified theories of gravity.215

It should be noted, however, that the consideration of several fluids, fluids with
varying equation of state, or fluids with anisotropic stresses,216 could affect the
dynamics providing new bouncing mechanisms and prevent the extension of this
conclusion to such more realistic cases.

6.2. Nonsingular cosmologies beyond f(R)

The previous section provides reasons to believe that Palatini f(R) models are
not able to produce a fully satisfactory and singularity-free alternative to GR
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in idealized universes filled with a single perfect fluid with constant equation of
state. Though the homogeneous and isotropic case greatly improves the situation
with respect to GR, the existence of divergences when anisotropies and inhomo-
geneities are present spoil the hopes deposited on this kind of Lagrangians. To
the light of these results, new Palatini theories were explored101 to determine
if the introduction of new elements in the gravitational action could avoid the
problems that appear in the f(R) models. This led to the study of isotropic and
anisotropic cosmologies of some simple generalization of the f(R) family in which
the Lagrangian takes the form f(R,Q), with Q = RµνR

µν . Using the particular
Lagrangian

f(R,RµνRµν) = R+ a
R2

RP
+
RµνR

µν

RP
, (112)

where RP ∼ l−2
P is the Planck curvature, it was found that completely regular

bouncing solutions exist for both isotropic and anisotropic homogeneous cosmolo-
gies filled with a perfect fluid. In particular, one finds that for a < 0 the interval
0 ≤ w ≤ 1/3 is always included in the family of bouncing solutions, which contains
the dust and radiation cases. For a ≥ 0, the fluids yielding a nonsingular evolution
are restricted to w > (a/(2 + 3a)), which implies that the radiation case w = 1/3 is
always nonsingular. For a detailed discussion and classification of the nonsingular
solutions depending on the value of the parameter a and the equation of state w,
see Ref. 101.

The field equations that follow from the Lagrangian (112) when Rµν is assumed
symmetricq were derived in Ref. 100 (see also Refs. 172 and 219) and take the form

fRRµν − f

2
gµν + 2fQRµαRαν = κ2Tµν , (113)

∇β [
√−g(fRgµν + 2fQRµν)] = 0, (114)

where fR ≡ ∂Rf and fQ ≡ ∂Qf . The connection equation (114) can be solved in
general by introducing an auxiliary metric hαβ such that (114) takes the form
∇β [

√−hhµν ] = 0, which implies that Γρµλ can be written as the Levi-Civita
connection of hµν . When the matter sources are represented by a perfect fluid,
Tµν = (ρ+ P )uµuν + Pgµν , one can show that hµν and hµν are given by100

hµν = Ω
(
gµν − Λ2

Λ1 − Λ2
uµuν

)
, (115)

hµν =
1
Ω

(
gµν +

Λ2

Λ1
uµuν

)
, (116)

qSee Refs. 217 and 218 for the case when this condition is relaxed.
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where

Ω = [Λ1(Λ1 − Λ2)]1/2, λ =

√
κ2P +

f

2
+

f2
R

8fQ
, (117)

Λ1 =
√

2fQλ+
fR
2
, Λ2 =

√
2fQ[λ±

√
λ2 − κ2(ρ+ P )]. (118)

It is worth noting that (115) implies a disformal relation between the metrics gµν
and hµν . A relation of this form between two metrics naturally arises in Bekenstein’s
relativistic theory220 of MOND and in its previous versions. In the MOND theory,
the vector uµ is an independent dynamical vector field and the functions in front
of it and in front of gµν depend on another dynamical scalar field. In the theory
described here, on the contrary, the metric tensor is the only dynamical field of
the gravitational sector. Note also that a Palatini-like version of MOND has been
recently proposed by Milgrom.10

In terms of hµν and the above definitions, the metric field equation (113) takes
the following form

Rµν(h) =
1
Λ1

[
(f + 2κ2P )

2Ω
hµν +

Λ1κ
2(ρ+ P )

Λ1 − Λ2
uµuν

]
. (119)

In this expression, the functions f,Λ1, and Λ2 are functions of the density ρ and
pressure P . In particular, for our quadratic model one finds that R = κ2(ρ − 3P ),
like in GR, and Q = Q(ρ, P ) is given by

Q

2RP
= −

(
κ2P +

f̃

2
+
RP
8
f̃2
R

)

+
RP
32


3
(
R

RP
+ f̃R

)
−
√(

R

RP
+ f̃R

)2

− 4κ2(ρ+ P )
RP



2

, (120)

where f̃ = R + aR2/RP , and the minus sign in front of the square root has been
chosen to recover the correct limit at low curvatures. In a universe filled with
radiation, for which R = 0, the function Q boils down to101

Q =
3R2

P

8


1 − 8κ2ρ

3RP
−
√

1 − 16κ2ρ

3RP


. (121)

This expression recovers the GR value at low curvatures, Q ≈ 4(κ2ρ)2/3 +
32(κ2ρ)3/9RP + · · · but reaches a maximum Qmax = 3R2

P/16 at κ2ρmax = 3RP /16,
where the squared root of (120) vanishes. At ρmax the shear also takes its maximum
allowed value, namely, σ2

max =
√

3/16R3/2
P (C2

12 +C2
23 +C2

31), which is always finite,
and the expansion vanishes producing a cosmic bounce regardless of the amount
of anisotropy (see Fig. 5). Note that in anisotropic models of LQC the shear is
always bounded.221 The model (112), therefore, avoids the well-known problems of
anisotropic universes in GR,222–226 where anisotropies grow faster than the energy
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density during the contraction phase leading to a singularity that can only be
avoided by sources with w > 1.

The evolution of inhomogeneities in the quadratic model discussed here was
considered in Ref. 227, though the approximations used there to solve for the con-
nection equation did not allow to see the existence of bouncing solutions. For this
reason, in this case one cannot make any statement regarding the evolution of inho-
mogeneities across the bounce. The cosmology of f(R) and f(RµνRµν) theories was
also considered in some detail in Ref. 228. The possibility of having a standard cos-
mological evolution in f(R,Q) models with a large cosmological constant has been
considered recently.229

It should be noted that the choice of a symmetric Ricci tensor in the analy-
sis of f(R,Q) bouncing cosmologies presented above is not arbitrary. As shown
in Refs. 217 and 218, the antisymmetric part of the Ricci tensor introduces new
dynamical degrees of freedom in the form of a massive vector field (see also Refs. 230
and 231 for related results). If one looks for a framework suitable for the descrip-
tion of the effective dynamics of LQC (including anisotropies) and, more generally,
of other theories of quantum geometry not involving new degrees of freedom, it
seems natural to impose constraints on the spectrum of possible Lagrangians to
avoid new propagating fields. In this sense, we note that the f(R,Q) theories dis-
cussed here are able to reproduce232 other aspects of the expected phenomenol-
ogy of quantum gravity at the Planck scale. In particular, without imposing any
a priori phenomenological structure, the quadratic Palatini model (112) predicts
an energy-density dependence of the metric components that closely matches the
structure conjectured in models of Doubly (or Deformed) Special Relativity233–236

0.05 0.10 0.15
κ2ρRP

0.1

0.2

0.3

0.4

0.5

2

f(R,Q) = R+

θ

a
R2

RP
+

Q

RP

C2=8

C2=4

C2=0

Fig. 5. Evolution of the expansion as a function of κ2ρ/RP in radiation universes with low
anisotropy, which is controlled by the combination C2 = C2

12 + C2
23 + C2

31. The case with C2 = 0
corresponds to the isotropic flat case, θ2 = 9H2.
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and Rainbow Gravity.237 This confirms that Palatini theories represent a new and
powerful framework to address different aspects of quantum gravity phenomenology.

7. Summary and Conclusions

From the number of works that have been discussed in this review, it seems fair to
say that the Palatini approach to modified gravity has experienced a recent period
of accelerated expansion motivated by theoretical and observational advances in
cosmology. The possibility of explaining the cosmic speed-up problem in geometri-
cal terms boosted the interest in all sorts of modified theories of gravity with special
emphasis in the f(R) family. Palatini f(R) theories appeared at first as an exotic
alternative to the more familiar metric formulation of those theories. They had the
advantage of naturally producing an effective cosmological constant,49 of avoiding
certain dynamical instabilities present in their metric formulation,11,73 and of yield-
ing second-order evolution equations. However, the first models chosen to attack
the cosmic acceleration problem (see Sec. 3) had the undesired feature of requiring
a microscopic description of the matter sources (see Sec. 4.2). The analysis of the
dynamics of those models in the microscopic world puts forward the existence of
nonperturbative effects which seemed to be in clear conflict with our understanding
of the physics at small scales. To overcome the technical difficulties posed by this
situation, different directions were followed to test the viability of various families
of f(R) models. This motivated the analysis of the weak field limit,94,95,162–164 the
subtleties in the description of averaged distributions of matter,89,171–173 the stabil-
ity and structure of stellar objects,175–180,182 the Cauchy problem,184,186,191,192 and
other issues that complemented the continuous investigation of the cosmological
dynamics of these theories. All these different approaches have raised interesting
and healthy debates that have shed light on the many scenarios in which the grav-
itational dynamics of Palatini theories may have an influence. From those debates
it follows that the background expansion history of viable f(R) models is currently
(statistically) indistinguishable from that of the standard ΛCDM model (GR with
cold dark matter and a cosmological constant), that laboratory and solar system
tests can efficiently put constraints on model parameters, that stellar structure can
also be used to set some constraints on f(R) models, that the Cauchy problem
is well-formulated and well-posed in many situations of interest, and that Palatini
theories are a powerful new tool to address different aspects of quantum gravity
phenomenology.

The observation that Palatini theories can be used to describe the effective
geometry of spacetimes with a discrete quantum structure206 provides solid reasons
to explore the properties of f(R) and more general theories in the early universe
and in scenarios involving strong gravitational fields and very high energy densities.
In this sense, we note that simple extensions of the f(R) family that include Ricci-
squared terms100,101,217–219,227 provide a much richer phenomenology than f(R)
models. On the other hand, the fact that the dark matter problem in galaxies can
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be addressed from a new class10 of Palatini theories suggests that new approaches
to the dark matter and dark energy problems beyond the f(R) family are possible.
The exploration of the field equations, cosmology, black hole formation, stellar
structure, galactic dynamics, etc. and of new and more general Palatini theories will
surely yield interesting new results with potential applications to quantum gravity,
the late-time cosmology, and astrophysics. We hope that this review helps active
researchers in this field and encourages newcomers to continue the exploration of the
Palatini approach to modified gravity to address and solve some of the important
problems that cosmology faces nowadays.
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