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Abstract. In loop quantum cosmology, non-perturbative quantum gravity effects lead to
the resolution of the big bang singularity by a quantum bounce without introducing any
new degrees of freedom. Though fundamentally discrete, the theory admits a continuum
description in terms of an effective Hamiltonian. Here we provide an algorithm to obtain
the corresponding effective action, establishing in this way the covariance of the theory for
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structure of quantum geometry and opens new avenues to extract physical predictions such
as those related to gauge invariant cosmological perturbations.
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1 Introduction

Understanding the nature of gravity and spacetime at high energies is one of the most in-
teresting open issues in theoretical physics. In it lie the answers to various questions which
Einstein’s theory of general relativity (GR) fails to address, such as the origin of our Uni-
verse and the resolution of the big bang singularity. This is also deeply connected with our
understanding of the way various dynamical and structural properties of the spacetime and
the field equations, such as covariance, emerge from a more fundamental description.

It is generally believed that limitations of GR would be overcome in a quantum theory
of gravity, which is expected to cure the big bang singularity and provide modifications to the
Friedman dynamics in the early universe. An approach in this direction is to find a renormal-
izable perturbative theory of quantum gravity which agrees with GR at low energies. This
inspired modifications of the Einstein-Hilbert action via addition of terms involving higher
curvature invariants and higher derivatives of the metric, motivating ansatzes to potentially
tame the initial singularity (see for example [1]). They inevitably have more degrees of free-
dom than GR and often face limitations such as lack of unitarity, ghosts, and instabilities.
These effective theories are based on a classical continuum spacetime and are covariant by
construction.

To faithfully capture the dynamical nature of spacetime, however, we need to go beyond
the perturbative methods. One such approach is loop quantum gravity, which is background
independent and non-perturbative [2]. It is a canonical quantization of gravity with classical
phase space given by the Ashtekar variables: the connection Ai

a and the triad Ea
i . A key

prediction of the theory is the discreteness of the eigenvalues of geometrical operators such as
volume and area. Thus, the classical notion of a smooth differentiable geometry is replaced by
a discrete quantum geometry. Techniques of LQG have been successfully applied to formulate
loop quantum cosmology (LQC) which is a non-perturbative quantization of cosmological
spacetimes [3]. In recent years, extensive analytical work and numerical simulations have
shown that the big bang singularity can be resolved in LQC. The non-perturbative quantum
geometric effects result in a quantum bounce to a pre-big bang branch when the energy
density of the universe reaches close to the Planck scale [4]. Further, analysis from exactly
solvable models show that the bounce is generic [5].

Though the fundamental description in LQC is discrete, it is interesting to note that it
admits an effective continuum spacetime description which successfully captures the quan-
tum gravity effects at high energies and becomes classical at low energies. It is derived from
an effective Hamiltonian obtained using coherent state techniques. The resulting equations
of motion yield trajectories which are in excellent agreement with the quantum expectation
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values for the states corresponding to realistic universes [6]. As expected, these non-singular
trajectories do not exactly follow classical GR but correspond to a modified Friedman dy-
namics leading to a bounce at the value of the energy density predicted by the quantum
theory and recovering classical GR at late times.

These features and success of LQC allow us to pose questions about aspects which were
previously poorly understood or unknown. One of such questions is: How do the classical
properties of spacetime change when quantum gravitational effects become important? A re-
lated question often posed for any canonical quantization is the fate of spacetime covariance.
If the fundamental picture is discrete, this issue becomes trickier. Since in LQC an effective
continuum description is available, this question can be posed and it is pertinent to ask:
Does the effective dynamics of LQC which results in a non-singular evolution correspond to
a covariant description? Note that even though, LQC is a quantization only of cosmological
spacetimes, it is one of the few settings in 3+1 dimensions where a non-perturbative quantiza-
tion has been completely performed and physics beyond classical gravity is well understood.
Thus, this query holds promise in providing us with a better understanding of at least some
of the quantum features of spacetime.

One of the ways to verify if the theory is covariant is to show that it can be derived
from a (covariant) action. Before we find this action for LQC, let us first note one of its
interesting features. That is, the effective dynamics of LQC resolves the big bang singularity
without the introduction of any new degrees of freedom. It means that the corresponding
modified Friedman dynamical equations are second order in time, as in GR. This is in contrast
with the conventional action based perturbative treatments. Here it is important to recall
that requiring second-order equations and covariance one is uniquely led to the Einstein-
Hilbert lagrangian density (modulo a cosmological constant) and hence to the Einstein field
equations. With these apparent tensions, proving the covariance of the effective dynamics of
LQC comes as a challenging task requiring key new insights.

A way out of these problems starts by noting that in formulations with actions involv-
ing higher order derivatives of the metric one assumes the compatibility of the spacetime
connection with the metric. In LQG, the Ashtekar-Barbero connection is not a spacetime
connection [7]. Further, there exists no corresponding connection operator in the quantum
theory. It is thus conceivable that the process of loop quantization takes us beyond the
compatibility condition between the connection and the metric, changing the description of
spacetime in a fundamental way. Hence, when looking for an effective covariant action for
LQC, there is no reason to assume any a priori relationship between the spacetime connection
and the metric.

If in the gravitational action metric and connection are treated as independent fields
one deals with a metric-affine theory. If the connection is torsionless and uncoupled to matter
then one arrives at the Palatini formulation of gravity. In this latter approach particles follow
geodesics of the Levi-Civita connection of the metric rather than those of the independent
connection. Only for the Einstein-Hilbert lagrangian do metric and Palatini formalisms lead
to the same dynamics. In general, they are completely different theories. Unlike the metric
formulation, where higher order terms motivated from perturbative techniques in quantum
gravity have been well studied, so far there is little “inspiration” from a fundamental theory to
consider higher curvature actions in the Palatini framework. Phenomenological investigations
of Palatini theories have recently gained some attention in relation with the late time cosmic
acceleration [8]. Though catastrophic matter instabilities have been found regarding Palatini
models with infrared modifications of gravity [9–11], it is also true that models with ultraviolet
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modifications are as robust as GR within the experimental limits for suitable choices of model
parameters [12, 13].

The most general Palatini action can be represented as a function of the form
f(R,RµνRµν ,RαβγδRαβγδ , . . .), where one may include covariant derivatives of functions
of the metric and derivatives of curvature invariants. Here R denotes the Riemann curvature
of the independent connection. In general, the field equations of these theories have the same
number of degrees of freedom as GR. This is due to the fact that the independent connection
satisfies a constraint equation, rather than a dynamical evolution equation, whose solution
can be expressed as the Levi-Civita connection of an auxiliary metric related to the spacetime
metric and the energy-momentum tensor of matter. In the simplest case in which the action
is of the form f(R), the auxiliary and spacetime metrics are conformally related, with the
conformal factor being a function of the trace of the energy-momentum tensor of matter. The
connection can then be readily solved in terms of the spacetime metric and the matter and
eliminated from the field equations. Though the resulting theory has the same configuration
space as GR, its dynamics is different. The role of the Palatini lagrangian f(R) is just to
change the way matter generates the spacetime curvature, i.e., it modifies the GR relation
R = −κ2T to arbitrary f(R) lagrangians [see (2.5) below]. This is to be contrasted with the
metric formulation, where the lagrangian f(R) turns the scalar curvature R into a dynamical
entity which satisfies a second-order differential equation [14] and, therefore, the theory has
higher degrees of freedom.

The kinematical similitudes between LQC and Palatini theories raise a compelling ques-
tion: Can the effective dynamics of LQC be expressed in the form of an effective Palatini
theory? If the answer is positive then apart from establishing covariance of the modified
Friedman dynamics in LQC and gaining insights on effects of quantum gravity on the prop-
erties of continuum spacetime, a multitude of benefits result. We will be able to understand
the way non-perturbative canonical quantum gravity effects can be captured in the effective
action treatments. Further, many interesting questions which are beyond the scope or are
difficult to address in conventional Hamiltonian treatments could be posed and answered.

2 LQC and Palatini

Let us consider a flat isotropic and homogeneous FRW spacetime sourced with a massless
scalar field φ with canonical momentum pφ (satisfying {φ, pφ} = 1). This model has been
successfully quantized in LQC and its physics has been well understood [4]. The underlying
quantum constraint is non-local and uniformly discrete in volume. An effective description of
the quantum dynamics can be obtained using geometric methods where one treats the Hilbert
space as an infinite dimensional quantum phase space with a fiber bundle structure. Using
coherent states, an approximately horizontal section which is preserved under the quantum
Hamiltonian flow to a desired accuracy can be obtained [6]. The resulting effective Hamil-
tonian (or the modified Friedman dynamics) describes the underlying quantum evolution
extremely well at all scales for universes which grow to a macroscopic size and leads to a rich
phenomenology (see for eg. [15]).

The modified Friedman equation resulting from the effective Hamiltonian methods in
LQC (for a massless scalar) is [6]:

3H2 = κ2ρ

(

1 − ρ

ρc

)

, ρc :=

√
3

16π2γ3G2~
(2.1)
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where κ2 = 8πG. Since, the loop quantization does not affect the matter Hamiltonian, the
Klein-Gordon equation and the conservation law are unmodified, i.e. ρ̇ = −3H(ρ+P ) (where
ρ and P are energy density and pressure of the scalar field respectively). It is straightforward
to see that when ρ ≪ ρc, the modified Friedman dynamics reduces to the classical equations.
At ρ = ρc, the Hubble rate vanishes and also ä > 0, implying the bounce of the universe. The
occurrence of the bounce is purely a quantum gravitational effect which disappears when G~

vanishes (implying divergence of ρc).
To obtain the modified Friedman dynamics of LQC from a covariant Palatini action

framework, our approach will be to solve the inverse problem — find the Lagrangian, given
the equations of motion. Such an action will be effective in the sense that it provides a
covariant description of LQC dynamics as obtained from the effective Hamiltonian [6]. A
generalized Palatini action is given by

S(g,Γ, φ) =
1

2κ2

∫

d4x
√−gf(R,RµνRµν , . . .) + Smatt(gµν , φ) (2.2)

with R := gµνRµν(Γ). For simplicity we consider the gravitational part only as a function
f(R). Its variation with respect to the metric and connection results in

f ′(R)Rµν(Γ) − 1

2
f(R)gµν = κ2Tµν (2.3)

∇Γ
µ

[√−gf ′(R)gαβ
]

= 0 (2.4)

where the prime denotes derivative with respect to R. The covariant derivative ∇Γ
µ is not

compatible with the metric: ∇Γ
µgαβ 6= 0. However, it satisfies ∇Γ

µtαβ = 0 where tµν = f ′gµν .
Thus, Γ is the Levi-Civita connection of the auxiliary metric tµν . The trace of eq. (2.3) leads
to a generalization of the algebraic relation R = −κ2T for non-linear f(R) in Palatini:

Rf ′(R) − 2f(R) = κ2T . (2.5)

This algebraic equation can be solved to obtain R = R(T ). Inserting the solution for the
connection, in terms of f ′(R(T )) and gµν , in (2.3) one finds

Gµν(g) =
κ2

f ′
Tµν − Rf ′ − f

2f ′
gµν +

1

f ′

(

∇µ∇νf
′ − gµν�f ′

)

− 3

2f ′2

(

∂µf ′∂νf
′ − 1

2
gµν(∂f ′)2

)

(2.6)

where Gµν(g) := Rµν(g) − 1
2
gµνR(g). Note that eqs. (2.3) and (2.6) are conformally related

and the latter implies the former. Further, the conservation law is unmodified, i.e. ∇µT µν = 0.

Note also that in vacuum we find Gµν = −Λgµν , with Λ = Rf ′−f
2f ′ evaluated at T = 0,

which recovers the dynamics of GR plus a cosmological constant. This guarantees that the
Cauchy problem in vacuum is well-posed (the opposite, however, has been claimed in [16]).
From (2.6), the modified Friedman equation becomes

3H2 =
f ′[2κ2ρ + Rf ′ − f ]

2
(

f ′ + f ′′

2
Ṙ
H

)2
(2.7)

where Ṙ/H = −12κ2ρ/(Rf ′′−f ′). It is to be emphasized that since f(R) is a function of T ,
the right hand side of (2.7) does not involve any higher derivatives of geometrical quantities
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and is just a function of the matter sources. The problem of finding the effective action for
the LQC dynamics thus reduces to finding an f(R) satisfying

f ′[2κ2ρ + Rf ′ − f ]

2
(

f ′ + f ′′

2
Ṙ
H

)2
= κ2ρ

(

1 − ρ

ρc

)

(2.8)

where ρ = ρ(R) is a solution to (2.5). This is just a second-order differential equation for f(R)

f ′′ = −f ′

(

f ′A − B

2 (Rf ′ − 3f)A + RB

)

(2.9)

where A = [2(Rf ′−2f)(2Rc−(Rf ′−2f))]1/2 and B = 2[Rcf
′(2Rf ′−3f)]1/2 and Rc ≡ κ2ρc.

Physically acceptable solutions should be free of singularities and have the property that
the function ρ(R) maps the full range of values ρ ∈ (0, ρc). These conditions are equivalent
to demanding that the acceleration ä at the bounce, ȧ = 0, be the same for both LQC and
Palatini f(R), which implies that the bounce must occur at R = −12Rc, where f ′ → 0 and
ρ → ρc. Numerically we find a family of solutions which converge to a unique function satis-
fying the above constraints. This shows that a physically consistent f(R) solution to (2.9)
corresponding to the effective dynamics of LQC exists. Furthermore, the inverse problem has
a unique solution. It is important to note that at curvatures |R| ≪ Rc, f ′(R) approximates
unity, i.e., f(R) ≈ R, and the solution leads to the classical Friedman dynamics.

An analytical form for f(R) can be obtained by means of interpolation techniques. At
low curvatures the numerical solution can be approximated via

f(R) = −
∫

dR tanh

(

5

103
ln

[

( R
12Rc

)2
])

. (2.10)

An interesting function which captures the loop quantum dynamics from sufficiently low to
the maximum value of the curvature is

f(R) =
R
12

(

1 − 1

2
ln

[

( R
12Rc

)2
])

+
R(R + 12Rc)

2

6500R2
c

. (2.11)

The first term dominates at higher curvatures and incorporates the non-perturbative quan-
tum gravity effects that lead to the cosmic bounce in LQC when ρ = ρc (see figure 1). Note
that in contrast with the conventional metric formulation, which generally incorporates per-
turbative quantum gravity effects via a finite number of terms, the above analytical forms are
infinite series. This distinction primarily arises because in non-perturbative LQC quantum
geometry effects are non-local. If the fundamental theory were local, a finite number of terms
would have sufficed.

3 Discussion

Our investigation to find a covariant action for the effective dynamics of LQC provides a much
needed motivation from a fundamental description to study f(R) modifications of gravity and
its possible extensions in the Palatini formalism. The covariant action we find here leads to
non-singular isotropic cosmological dynamics mimicking that of LQC. Based on this action,
generalizations to other cosmologies and black hole spacetimes can be considered, which
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opens a rich avenue to study non-singular spacetimes in the Palatini approach. Further, the
availability of an action framework opens a straightforward way to perform a gauge invariant
investigation of cosmological perturbations in loop cosmology which is very important to
extract physical predictions from the theory.

Let us now revisit the primary question we posed in this letter, namely, the way proper-
ties of classical spacetime are affected in a quantum theory of gravity. We considered here as
an example non-perturbative loop quantization of cosmological spacetimes. The underlying
geometry at the fundamental level is discrete, however the theory admits an effective contin-
uum spacetime. The resulting dynamics, though non-singular, was never established to be
covariant until now. Demanding its covariance, we find that the connection must be regarded
as independent of the metric in the derivation of the field equations. Though this procedure
might not be the only solution to the problem considered here, it provides new insights on the
kind of fields that an action should contain to capture non-perturbative quantum gravity ef-
fects. This suggests that, unlike in the classical spacetime of GR, the metric might not be the
sole fundamental geometric entity. The role of the independent connection is, however, uncon-
ventional in the sense that it satisfies a constraint equation rather than a dynamical second-
order, differential equation. This, in turn, is what guarantees the kinematical similitudes
between LQC and Palatini theories. The solution to the constraint shows that matter and
geometry get entangled in a non-trivial way with important consequences. In fact, it turns out
that the spacetime metric depends on the local energy-momentum densities, which leads to
strong (and unacceptable) backreaction effects in infrared-corrected models [12] but removes
the big bang singularity in models with appropriate ultraviolet corrections, as shown here.

Though surprising at first, departures from a purely metric-based framework have been
often considered as a necessary requirement if we wish to overcome the limitations of GR,
such as non-renormalizability [17]. It has also been argued that if the fundamental description
is discrete, like in the crystalline structure of solids, then the metric alone is insufficient to
capture all the geometric properties and the effective continuum spacetime may be non-
Riemannian [18]. As in a Bravais lattice, the underlying structure in LQC is discrete and our
results show that its effective continuum spacetime indeed takes us beyond metric properties.
This holds similarity with investigations on studies of continuum properties of crystals [19].

To summarize, we have shown for the first time that despite apparent tensions with the
conventional wisdom based on perturbative ideas (in metric formalism), a covariant effective
action which reproduces the dynamics of LQC exists in a framework in which metric and
connection are regarded as independent.

Loop quantization, at least for the simplest cosmological models, seems to take us away
from metric-connection compatibility, thus allowing reconciliation between the lack of new
degrees of freedom in the modified Friedman dynamics and covariance. It remains to be seen
whether these novel features survive a more general quantization. Further improvements in
the approximations used in obtaining the effective Hamiltonian of LQC [6] and its gener-
alization to include corrections such as those originating from quantum properties of state
and to the anisotropic and inhomogeneous spacetime would result in further insights on the
continuum properties of the discrete structure of quantum geometry. Our analysis should be
seen as a first step towards such explorations, which provide a glimpse of new ways in which
matter and geometry might get entangled, via an independent connection, and the nature of
the effective spacetime emergent from a quantum geometry.
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Figure 1: The energy density in units of ρc is plotted for the numerical solution (dashed line) and
the f(R) in (2.11) (solid line). At R = −12Rc, both of them yield ρ = ρc leading to a non-singular
bounce.
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