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Abstract. We study static quantum corrections of the Schwarzschild metric in the Boulware
vacuum state. Due to the absence of a complete analytic expression for the full semiclassical
Einstein equations we approach the problem by considering the s-wave approximation and solve
numerically the associated backreaction equations. The solution, including quantum effects due
to pure vacuum polarization, is similar to the classical Schwarzschild solution up to the vicinity
of the classical horizon. However, the radial function has a minimum at a time-like surface close
to the location of the classical event horizon. There the g00 component of the metric reaches
a very small but non-zero value. The analysis unravels how a curvature singularity emerges
beyond this bouncing point. We briefly discuss the physical consequences of these results by
extrapolating them to a dynamical collapsing scenario.

1. Introduction
The most important results on quantum properties of black holes [1, 2, 3] (see also [4, 5, 6])
are obtained in the so-called fixed background approximation. This means that the spacetime
background is assumed to be fixed and not modified by the quantum behavior of matter. There
are two reasons for doing this. First, one expects that the inclusion of backreaction effects will
not modify essentially the physical results obtained in the fixed background approximation, at
least until reaching the Planck scale. Second, to go beyond this approximation requires to solve
the semiclassical Einstein equations

Gµν =
8πG

c4
〈Ψ|Tµν(gαβ)|Ψ〉 (1)

and this is a very difficult task. Solving these equations requires to know an explicit expression
for the expectation values of the quantum stress-energy tensor for a large family of metrics,
necessarily including those that could potentially be the solution of the semiclassical equations.
Moreover, the quantities 〈Ψ|Tµν(gαβ)|Ψ〉 depend also on the quantum state of the matter |Ψ〉,
and the way one fixes this dependence is a non-trivial issue.

Due to the static character of the classical Schwarzschild spacetime, a natural state to consider
in the fixed background approximation is the one defined with respect to the Schwarzschild
time “t”. This is the so-called Boulware vacuum state |B〉 [7] and is the state that most
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closely reproduces the familiar notion of Minkowski vacuum at infinity. The evaluation of
the expectation values 〈B|Tµν |B〉 shows that they vanish at infinity but are, for a free-falling
observer, highly divergent when r → rS ≡ 2GM/c2 [8]. This “drawback” of the state |B〉 has
a natural interpretation. It describes the (vacuum polarization) exterior to a static star but
it cannot describe the exterior of a collapsing body producing a black hole. To eliminate this
divergence we need to replace |B〉 with another state. However, the consequence of cancelling
the divergence at the horizon is the emergence of a non-vanishing thermal flux (with a particular
temperature) in the late-time asymptotic future. This flux is associated to the Hawking emission
(see [9] for a discussion based on the equivalence principle).

However, the fact that 〈B|Tµν |B〉 gets divergent at the horizon means that the semiclassical
corrections to the Schwarzschild metric would be very large when approaching the surface
r = rS . This opens the question about the geometry of the spacetime in the vicinity of rS

once backreaction effects are properly included. One usually disregards this question arguing,
as we have already stressed, that the Boulware state is not the appropriate one to describe
a collapsing star. However, one could expect that the type of divergence of 〈B|Tµν |B〉 is, in
some way, related to the late-time radiation properties of the black hole. This is indeed what
happens in the fixed background approximation. Moreover, in addition to this there is another
motivation to study this problem. It appears in an apparently different scenario, namely in
braneworld models in Anti-de Sitter space. There is an intriguing holographic relation between
the quest of static black hole solutions in AdS branworlds and the problem of finding consistent
solutions to the Einstein semiclassical equations in the Boulware state. This is so according to
an extension, applied to the Randall-Sundrum model [10], of the Maldacena AdS/CFT duality
[11]. One expects that “4D black holes localized on the brane found by solving the classical bulk
equations in AdS(5) are quantum corrected black holes (in the Boulware state) and not classical
ones” [12, 13]. Significative evidence for this conjecture has recently been given in [14] through
a numerical computation of 〈B|Tµν |B〉 at large r. More details can be found in the contribution
[15] in this Conference.

To solve the backreaction equations requires an exact analytical expression of 〈B|Tµν |B〉 for a
generic geometry. Since no such expression exists in the literature (for analytic approximations
see [16, 5]) we resort to the so-called s-wave approximation. This means to assume spherical
symmetry for the background and keep only the s-wave contribution of the matter prior to
quantization. In this situation a generic expression for 〈B|Tµν |B〉 can be worked out [17, 6]
generalizing the well-known results in two-dimensional spacetimes [18, 4]. In section 2 we briefly
present this approximation scheme and, in section 3, we focus on the Boulware vacuum. Our
results are exposed in section 4. We pay attention to describe how the non-perturbative solution
to the backreaction equations prevents the formation of an event horizon and how a singularity
emerges after a bouncing point for the radial function. Finally, in section 5 we discuss on these
results.

2. S-wave approximation and semiclassical equations
The Hilbert-Einstein action coupled to a massless scalar field

S(4) =
c3

16πG

∫
d4x

√
−g(4)R(4) − 1

8π

∫
d4x

√
−g(4)(∇f)2 (2)

can be reduced, under the assumption of spherical symmetry ds2
(4) = ds2

(2) + r2dΩ2 and keeping
only the s-wave component of the expansion for the matter field

f = f(xa) ≡ fl=0

r
Y00, (3)

458



to the following effective two-dimensional theory

S =
c3

4G

∫
d2x

√−g

[
r2R + 2

(
1 + |∇r|2

)
− 1

2
r2(∇f)2

]
. (4)

The equations of motion obtained by varying directly the action S are

c4

4G

[
−2r∇a∇br + gab

(
2r∇2r − 1 + |∇r|2

)]
= Tab ,

c3

G

[
rR − 2∇2r

]
= − 2√−g

δSm

δr
, (5)

where Tab is the two-dimensional stress-energy tensor and Sm the matter sector of the action

Tab ≡ − 2c√−g

δSm

δgab
. (6)

The quantities in the right hand side of Eqs. (5) are related to the four-dimensional stress-energy
tensor as follows: T

(4)
ab = Tab

4πr2 , T
(4)
θθ = T

(4)
ϕϕ sin−2 θ = − r

8π
√

−g(2)

δSm
δr .

To construct the semiclassical theory we need an expression for the expectation values 〈Tab〉
and 〈 δSm

δr 〉. Remarkably this can be done in a very simple way by working in the conformal
gauge (ds2 = −e2ρdx+dx−) for the two-dimensional part of the metric. The following natural
conditions:

(i) the four-dimensional covariant conservation law, which in our two-dimensional language
reads

∇a〈Tab〉 = ∇br
1√−g

〈δSm

δr
〉 , (7)

(ii) at an arbitrary point X of the spacetime manifold the expectation values of the quantum
stress-energy tensor 〈T±±(x±(X))〉 reduce to the normal ordering ones 〈: T±±(x±(X)) :〉
when using a locally inertial frame ξα

X based on that point

〈T±±(ξα
X(X))〉 = 〈: T±±(ξα

X(X)) :〉, (8)

related to basic ingredients of general relativity: i) covariance and ii) equivalence principle,
are enough to provide an expression for 〈Ψ|T±±|Ψ〉, 〈Ψ|T+−|Ψ〉 and 〈Ψ| δSm

δr |Ψ〉 (here we write
explicitly the quantum state |Ψ〉)

〈Ψ|T±±(x±)|Ψ〉 = − h̄

12π
(∂±ρ∂±ρ − ∂2

±ρ) +
h̄

2π
(∂±ρ∂±φ + ρ(∂±φ)2)

+ 〈Ψ| : T±±(x±) : |Ψ〉 , (9)

〈Ψ|T+−(x±)|Ψ〉 = − h̄

12π
(∂+∂−ρ + 3∂+φ∂−φ − 3∂+∂−φ) , (10)

〈Ψ|δSm

δφ
|Ψ〉 = − h̄

2π
(∂+∂−ρ + ∂+ρ∂−φ + ∂−ρ∂+φ + 2ρ∂+∂−φ)

+ 〈Ψ|δSm

δφ
|Ψ〉ρ=0 , (11)

where we have introduced, not to break with tradition in this area, the dilaton field φ defined
as r = r0e

−φ (r0 is an arbitrary length scale). The dependence on the quantum state is all
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contained in the three functions 〈Ψ| : T±± : |Ψ〉 ≡ 〈Ψ|T±±|Ψ〉ρ=0 and 〈Ψ| δSm
δφ |Ψ〉ρ=0. These

functions are not independent and verify the following relations

∂∓〈Ψ| : T±± : |Ψ〉 + ∂±φ〈Ψ|δSm

δφ
|Ψ〉ρ=0 − h̄

4π
∂±(∂+φ∂−φ − ∂+∂−φ) = 0 . (12)

We note that the non-vanishing of 〈T+−〉 implies the existence of a trace anomaly, absent in the
classical theory. The specific value of 〈T+−〉 is related to the anomalous transformation law of
〈Ψ| : T±± : |Ψ〉 under a conformal rescaling of coordinates. Moreover, the expressions (9) reduce,
when the value of φ is fixed, to the well-known expressions of a conformal scalar field in two-
dimensions [18, 4, 19, 20, 21]: 〈Ψ|T±±|Ψ〉 = 〈Ψ|T±±|Ψ〉ρ=0− h̄

12π (∂±ρ∂±ρ−∂2±ρ), or equivalently,
〈Ψ|T±±|Ψ〉 = − h̄

12π (∂±ρ∂±ρ − ∂2±ρ + t±), with the identification − h̄
12π t± = 〈Ψ| : T±± : |Ψ〉.

3. Semiclassical equations in the Boulware state
Since we are interested in the state which more naturally mimics the Minkowski vacuum in flat
space (i.e., the Boulware state) we shall define it by using, in quantizing the matter, the time
coordinate “t” respect to which the metric takes the static form. Therefore it is natural to
impose that

〈B| : T±±(t, x) : |B〉 = 〈B|T±±(t, x)|B〉ρ=0 = 0 . (13)

This definition assumes that the semiclassical background metric is static: ρ = ρ(x) and
φ = φ(x), where x = (x+ − x−)/2. A straightforward consequence of the above equation is
that the expectation value 〈Ψ| δSm

δφ |Ψ〉ρ=0 can be determined immediately

〈B|δSm

δφ
|B〉ρ=0 = − h̄

16π

(φ2
x − φxx)x

φx
, (14)

where the subindex x means derivative with respect to the coordinate x. Therefore we have
all ingredients to write down the semiclassical Einstein equations in the s-wave approximation
in the Boulware vacuum. Fixing, for simplicity, the value of the parameter r0 as r0 ≡ √

λ =√
h̄G

12πc3
≡

√
l2
Planck
12π , the final result is

φxx − φ2
x − 2ρxφx = e2φ

[
ρxx − ρ2

x + 6ρxφx + 6ρφ2
x

]
, (15)

φxx − 2φ2
x +

e2(φ+ρ)

λ
= e2φ

[
ρxx − 3(φxx − φ2

x)
]

, (16)

φxx − φ2
x − ρxx = e2φ

[
3ρxx + 6ρxφx + 6ρφxx +

3
2

(φxx − φ2
x)x

φx

]
. (17)

When the right hand side is zero, the solution describes the Schwarzschild geometry

ρ =
1
2

ln(1 − 2GM

c2r
) (18)

r∗ ≡ x = r +
2GM

c2
ln(1 − 2GM

c2r
) , (19)

with mass M . In the quantum theory the solution deviates from the above expressions but we
shall impose that, for large r, the semiclassical solution approaches the classical one.
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4. Exact Semiclassical solutions
Our task is to investigate how the classical relations (18–19) for ρ = ρ(r) and r = r(x) are
modified by pure vacuum polarization effects. The main properties of the classical solutions are

• The function r = r(ρ) is monotonic, with

dr

dρ
> 0 , (20)

reaching ρ = −∞ at the finite value r = rS .
• The function r(x) is monotonic, with

dr

dx
> 0 , (21)

reaching x = −∞ at r = rS .

The numerical solution for the semiclassical equations violates the above properties and
unravels the following features (the details of the integration can be found in [22]):

• Existence of a bouncing point for the radial function. The function r = r(ρ) is very
similar to the classical solution till very close to rS . Just before rS the function r = r(ρ)
has a minimum. This bouncing point r = rB > rS for the radial function

dr

dρ
(rB) = 0 , (22)

takes place at a very small but non-zero value of g00. In the vicinity of this point the metric
can be approximated by

ds2 ≈ −e2ρ(rB)c2dt2 + α
dr2

(1 − rB
r )

+ r2dΩ2 , (23)

where α is a numerical constant.
• Existence of a branching point for the radial function. The function r = r(x) is very

similar to the classical solution till very close to rS . Just before rS the function r = r(x)
has a minimum, corresponding to the bouncing point r = rB described above.

dr

dx
(rB) = 0 . (24)

Moreover, just after it we encounter a minimum for the “tortoise” coordinate x

dx

dr
(xM ) = 0 , (25)

at a finite value x = xM . The dependence of the radial function around this point is

r ≈ rM − β(x − xM )2/3 (26)

where β is a positive numerical constant. The radial function has a branching point at
x = xM , which turns out to be the minimal possible value for the coordinate x. Although
all components of the metric are finite at x = xM the branching (26) generates a curvature
singularity for the metric.
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5. Final comments
The most important result of the investigation presented in this contribution is the emergence of
a bouncing point for the radial function in the static quantum corrected Schwarzschild geometry.
It would be interesting to see if this feature is also reproduced in the static solutions in braneworld
models in 5-dimensional Anti-de Sitter space.

More explicitly, the classical solution for the tortoise coordinate

r∗ ≡ x = r + rS ln
|r − rS |

rS
(27)

is modified, in the vicinity of rB ≈ rS , by

x ≈ xB + e−ρ(rB)

√
rB

α
(r − rB) . (28)

Naive use of the standard formulaes to derive the emitted radiation would convert the thermal
Hawking luminosity L ∝ T 2

H , where TH is the Hawking temperature, into

L ∝ 1
(x− − x−

B)2
, (29)

which is unbounded when the retarded time x−
B corresponding to the bounce point is reached.

This seems to indicate that backreaction effects can produce significative changes to the standard
view of the evaporation process.
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