Experimental Tests and Alternative Theories of Gravity

Gonzalo J. Olmo Alba

gonzalo.olmo@uv.es

University of Valencia (Spain) & UW-Milwaukee

Experimental Tests and Alternative Theories of Gravity - p. 1/2

Motivation

High-precision cosmological tests have improved our view of the Universe.

- The Universe is homogeneous, isotropic, spatially flat and is undergoing a period of accelerated expansion.
- The description given only *ten years ago* by General Relativity is not compatible with the observed accelerated expansion.

Motivation

 High-precision cosmological tests have improved our view of the Universe.

- The Universe is homogeneous, isotropic, spatially flat and is undergoing a period of accelerated expansion.
- The description given only *ten years ago* by General Relativity is not compatible with the observed accelerated expansion.
- **Something has to be done to justify the acceleration.**

New Ingredients in the cosmic pie?

To justify the current acceleration we could ... Introduce a new source of energy in $T_{\mu\nu}$

New Ingredients in the cosmic pie?

To justify the current acceleration we could ... Introduce a new source of energy in $T_{\mu\nu}$

- Cosmological constant, long-range fields, ...
- It has been done before and tends to work (dark matter in galaxies, neutrino in β decay,...).

New Ingredients or New Physics?

To justify the current acceleration we could ...
Introduce a new source of energy in T_{μν}
Modify Einstein's equations.

New Ingredients or New Physics?

To justify the current acceleration we could ...
Introduce a new source of energy in T_{μν}
Modify Einstein's equations.

- Because of quantum effects in curved space, string theory, higher dimensional theories,...
- GR could be the leading order of some effective gravity theory: $R \to f(R) \approx R$ +corrections.

New Ingredients or New Physics?

To justify the current acceleration we could ...
Introduce a new source of energy in T_{μν}
Modify Einstein's equations.

Today's choice ...

New Physics $\rightarrow f(R)$ gravities

f(R) gravities can be seen as a generalization of **GR**

$$S_{GR} = \frac{1}{2\kappa^2} \int d^4x \sqrt{-g}R + S_m[g_{\mu\nu}, \psi_m]$$

f(R) gravities can be seen as a generalization of **GR**

$$S_{GR} = \frac{1}{2\kappa^2} \int \underbrace{d^4x \sqrt{-g}R}_{\bullet} + S_m[g_{\mu\nu}, \psi_m]$$
4D-Volume element
4D-Volume element
Gravity Lagrangian
Matter fields

f(R) gravities can be seen as a generalization of **GR**

$$S_{GR} = \frac{1}{2\kappa^2} \int d^4x \sqrt{-gR} + S_m[g_{\mu\nu}, \psi_m]$$
$$S_f = \frac{1}{2\kappa^2} \int d^4x \sqrt{-gf(R)} + S_m[g_{\mu\nu}, \psi_m]$$

 \blacksquare f(R) gravities can be seen as a generalization of **GR**

$$S_f = \frac{1}{2\kappa^2} \int d^4x \sqrt{-g} f(R) + S_m[g_{\mu\nu}, \psi_m]$$

Two examples : $f(R) = R - \frac{\mu^4}{R}$, $f(R) = R + \frac{R^2}{M^2}$

• f(R) gravities can be seen as a generalization of **GR**

$$S_f = \frac{1}{2\kappa^2} \int d^4x \sqrt{-g} f(R) + S_m[g_{\mu\nu}, \psi_m]$$

Two examples : $f(R) = R - \frac{\mu^4}{R}$, $f(R) = R + \frac{R^2}{M^2}$

f(R) can be classified as Metric Theories of Gravity.

• f(R) gravities can be seen as a generalization of **GR**

$$S_f = \frac{1}{2\kappa^2} \int d^4x \sqrt{-g} f(R) + S_m[g_{\mu\nu}, \psi_m]$$

Two examples : f(R) = R - \frac{\mu^4}{R}, f(R) = R + \frac{R^2}{M^2}
f(R) can be classified as Metric Theories of Gravity.
MTG are the only theories of gravity that can embody the Einstein Equivalence Principle.

We have seen that

The accelerated expansion of the Universe is currently an unsolved problem.

New theories have been proposed to justify the acceleration.

We have seen that

- The accelerated expansion of the Universe is currently an unsolved problem.
- New theories have been proposed to justify the acceleration.

How do these theories work?

How do they change the gravitational physics?

We have seen that

- The accelerated expansion of the Universe is currently an unsolved problem.
- New theories have been proposed to justify the acceleration.

How do these theories work?

- How do they change the gravitational physics?
- **Do they modify elementary-particle physics**?

The Einstein Equivalence Principle

The **EEP** states that

- Inertial and gravitational masses coincide, i.e., all bodies fall with the same acceleration \rightarrow WEP.
- The outcome of any local non-gravitational experiment is independent of the velocity of the freely-falling reference frame in which it is performed → Local Lorentz Invariance.
- The outcome of any local non-gravitational experiment is independent of where and when it is performed \rightarrow Local Position Invariance.

Gravity as a curved-space effect

If **EEP** is valid

The non-gravitational laws of physics can be formulated by writing the laws of special relativity using the language of differential geometry:

$$\eta_{\mu\nu} \to g_{\mu\nu}(x)$$

Gravity as a curved-space effect

If **EEP** is valid

The non-gravitational laws of physics can be formulated by writing the laws of special relativity using the language of differential geometry:

$$\eta_{\mu\nu} \to g_{\mu\nu}(x)$$

Gravitation would be described by an MTG

 $S_{MTG} = S_G[g_{\mu\nu}, \phi, A_{\mu}, B_{\mu\nu}, \Gamma^{\alpha}_{\mu\nu}, \ldots] + S_m[g_{\mu\nu}, \psi_m]$

Gravity as a curved-space effect

If **EEP** is valid

The non-gravitational laws of physics can be formulated by writing the laws of special relativity using the language of differential geometry:

$$\eta_{\mu\nu} \to g_{\mu\nu}(x)$$

Gravitation would be described by an MTG

 $S_{MTG} = S_G[g_{\mu\nu}, \phi, A_{\mu}, B_{\mu\nu}, \Gamma^{\alpha}_{\mu\nu}, \ldots] + S_m[g_{\mu\nu}, \psi_m]$

However ... Is the EEP really valid?

Weak Equivalence Principle

- Can be tested comparing the acceleration of two bodies in an external field: $m_I a = m_p g$
- m_I and m_p are made up of rest energy, e.m. energy, weak-interaction energy, . . .
- If m_I and m_p have different contributions

$$m_p = m_I + \sum_i \eta^i \frac{E^i}{c^2}$$

 $E^i \equiv$ Internal Energy generated by the i-th interaction $\eta^i \equiv$ strength of the violation

Weak Equivalence Principle

- Can be tested comparing the acceleration of two bodies in an external field: $m_I a = m_p g$
- **m**_I and m_p are made up of rest energy, e.m. energy, weak-interaction energy, . . .
- If m_I and m_p have different contributions

$$\eta \equiv \frac{2|a_1 - a_2|}{|a_1 + a_2|} = \sum_i \eta^i \left[\frac{E_1^i}{m_1 c^2} - \frac{E_2^i}{m_2 c^2} \right]$$

 $E^i \equiv$ Internal Energy generated by the i-th interaction $\eta^i \equiv$ strength of the violation

Weak Equivalence Principle

- Can be tested comparing the acceleration of two bodies in an external field: $m_I a = m_p g$
- **m_I** and m_p are made up of rest energy, e.m. energy, weak-interaction energy,...
- If m_I and m_p have different contributions

$$\eta \equiv \frac{2|a_1 - a_2|}{|a_1 + a_2|} = \sum_i \eta^i \left[\frac{E_1^i}{m_1 c^2} - \frac{E_2^i}{m_2 c^2} \right]$$

Eⁱ ≡ Internal Energy generated by the i-th interaction
 ηⁱ ≡ strength of the violation
 The current bound is η = 4·10⁻¹³

Are elementary-particle experiments tests of LLI?

Are elementary-particle experiments tests of LLI? They are consistent, though not "clean" tests

- Are elementary-particle experiments tests of LLI? They are consistent, though not "clean" tests
- LLI would be violated if c would vary from one inertial reference frame to another.
- This violation would lead to shifts in the energy levels of atoms and nuclei depending on the direction of the quantization axis.

- Are elementary-particle experiments tests of LLI? They are consistent, though not "clean" tests
- LLI would be violated if c would vary from one inertial reference frame to another.
- This violation would lead to shifts in the energy levels of atoms and nuclei depending on the direction of the quantization axis.
- The current bound is $\delta = |c^{-2} 1| < 10^{-22}$

Local Position Invariance

- Can be tested by measuring the gravitational redshift of light.
- The comparison of the frequencies of two clocks at different locations boils down to the comparison of the velocities of two local Lorentz frames at rest at those positions.

$$\frac{\Delta\nu}{\nu} = (1+\alpha)\frac{\Delta U}{c^2}$$

Local Position Invariance

- Can be tested by measuring the gravitational redshift of light.
- The comparison of the frequencies of two clocks at different locations boils down to the comparison of the velocities of two local Lorentz frames at rest at those positions.

$$\frac{\Delta\nu}{\nu} = (1+\alpha)\frac{\Delta U}{c^2}$$

• The current bound is $|\alpha| < 10^{-5}$.

Local Position Invariance

- Can be tested by measuring the gravitational redshift of light.
- The comparison of the frequencies of two clocks at different locations boils down to the comparison of the velocities of two local Lorentz frames at rest at those positions.

$$\frac{\Delta\nu}{\nu} = (1+\alpha)\frac{\Delta U}{c^2}$$

- The current bound is $|\alpha| < 10^{-5}$.
- It can also be tested by measuring the constancy of the non-gravitational constants.

We have seen that

f(R) gravities, like GR and any other MTG, respect locally the physics of special relativity
They do not modify elementary-particle physics

We have seen that

- f(R) gravities, like **GR** and any other **MTG**, respect locally the physics of special relativity
 - They do not modify elementary-particle physics
- The new interactions and phenomena predicted by string theory, higher dimensional theories, ... are likely to violate the EEP
 - Testing the **EEP** we could place bounds on the strength of those interactions

We have seen that

- f(R) gravities, like **GR** and any other **MTG**, respect locally the physics of special relativity
 - They do not modify elementary-particle physics
- The new interactions and phenomena predicted by string theory, higher dimensional theories, ... are likely to violate the EEP
 - Testing the **EEP** we could place bounds on the strength of those interactions

We will study now the gravitational tests of MTG

Gravitational Tests

Post-Newtonian gravity
Stellar systems
Cosmology
Gravitational waves

Gravitational Tests

Post-Newtonian gravity

- Deflection of light
- Time delay of light
- Perihelion Shift of
 - Mercury
- Tests of SEP
- Conservation laws
- Geodesic precession (gyroscope)
- Gravitomagnetism
- Post-Newtonian gravity
 Stellar systems
 Gravitational wave damping of orbital period
 Internal structure dependence
 - Strong gravity effects

- Post-Newtonian gravity
- Stellar systems
- Cosmology
 Distribution of
 - anisotropies
 - Hubble diagram of SNIa
 - Age of the Universe

Post-Newtonian gravity

- Stellar systems
- Cosmology
- **Gravitational waves**

Polarization

Speed of grav.waves

Post-Newtonian gravity
Stellar systems
Cosmology
Gravitational waves

In the weak-field, slow-motion limit, the metric of nearly every MTG has the same structure

In the weak-field, slow-motion limit, the metric of nearly every MTG has the same structure

$$g_{00} = -1 + 2U - 2\beta U^{2} - 2\xi \Phi_{W} + (2\gamma + 2 + \alpha_{3} + \zeta_{1} - 2\xi)\Phi_{1} + 2(3\gamma - 2\beta + 1 + \zeta_{2} + \xi)\Phi_{2} + 2(1 + \zeta_{3})\Phi_{3} + 2(3\gamma + 3\zeta_{4} - 2\xi)\Phi_{4} - (\zeta_{1} - 2\xi)\mathcal{A} - (\alpha_{1} - \alpha_{2} - \alpha_{3})w^{2}U - \alpha_{2}w^{i}w^{j}U_{ij} + (2\alpha_{3} - \alpha_{1})w^{i}V_{i} + O(\epsilon^{3}) g_{0i} = -\frac{1}{2}(4\gamma + 3 + \alpha_{1} - \alpha_{2} + \zeta_{1} - 2\xi)V_{i} - \frac{1}{2}(1 + \alpha_{2} - \zeta_{1} + 2\xi)W_{i} - \frac{1}{2}(\alpha_{1} - 2\alpha_{2})w^{i}U - \alpha_{2}w^{j}U_{ij} + O(\epsilon^{5/2}) g_{ij} = (1 + 2\gamma U + O(\epsilon^{2}))\delta_{ij}$$

PPN parameters γ , β , ξ , α_1 , α_2 , α_3 , ζ_1 , ζ_2 , ζ_3 , ζ_4 .

- In the weak-field, slow-motion limit, the metric of nearly every MTG has the same structure
- With the potentials given by

$$\begin{split} U &= \int \frac{\rho'}{|\mathbf{x} - \mathbf{x}'|} d^3 x', \qquad U_{ij} = \int \frac{\rho'(x - x')_i (x - x')_j}{|\mathbf{x} - \mathbf{x}'|^3} d^3 x' \\ \Phi_W &= \int \frac{\rho' \rho''(\mathbf{x} - \mathbf{x}')}{|\mathbf{x} - \mathbf{x}'|^3} \cdot \left(\frac{\mathbf{x}' - \mathbf{x}''}{|\mathbf{x} - \mathbf{x}''|} - \frac{\mathbf{x} - \mathbf{x}''}{|\mathbf{x}' - \mathbf{x}''|}\right) d^3 x' d^3 x'' \\ \mathcal{A} &= \int \frac{\rho' [\mathbf{v}' \cdot (\mathbf{x} - \mathbf{x}')]^2}{|\mathbf{x} - \mathbf{x}'|^3} d^3 x', \qquad \Phi_1 = \int \frac{\rho' v'^2}{|\mathbf{x} - \mathbf{x}'|} d^3 x' \\ \Phi_2 &= \int \frac{\rho' U'}{|\mathbf{x} - \mathbf{x}'|} d^3 x', \qquad \Phi_3 = \int \frac{\rho' \Pi'}{|\mathbf{x} - \mathbf{x}'|} d^3 x', \qquad \Phi_4 = \int \frac{p'}{|\mathbf{x} - \mathbf{x}'|} d^3 x' \\ V_i &= \int \frac{\rho' v'_i}{|\mathbf{x} - \mathbf{x}'|} d^3 x', \qquad W_i = \int \frac{\rho' [\mathbf{v}' \cdot (\mathbf{x} - \mathbf{x}')] (x - x')_i}{|\mathbf{x} - \mathbf{x}'|^3} d^3 x' \end{split}$$

- In the weak-fiel, slow-motion limit, the metric of nearly every MTG has the same structure
- It is characterized by a set of parameters:
 - $\gamma, \beta, \xi, \alpha_1, \alpha_2, \alpha_3, \zeta_1, \zeta_2, \zeta_3, \zeta_4.$
- The predictions of a particular theory depend on these parameters

- In the weak-fiel, slow-motion limit, the metric of nearly every MTG has the same structure
- It is characterized by a set of parameters:
 - $\gamma, \beta, \xi, \alpha_1, \alpha_2, \alpha_3, \zeta_1, \zeta_2, \zeta_3, \zeta_4.$
- The predictions of a particular theory depend on these parameters
- We will need to obtain the PPN parameters of f(R) gravities.

The Newtonian limit of these theories was recently discussed in *R.Dick*, **Gen.Rel.Grav.**36 (2004)

The correct limit could be obtained if $|f(R_0)f''(R_0)| \ll 1.$

- The Newtonian limit of these theories was recently discussed in *R.Dick*, **Gen.Rel.Grav.**36 (2004)
- The correct limit could be obtained if $|f(R_0)f''(R_0)| \ll 1.$
- However, these theories are much more involved due to the cosmological evolution of the boundary conditions

- The Newtonian limit of these theories was recently discussed in *R.Dick*, **Gen.Rel.Grav.**36 (2004)
- The correct limit could be obtained if $|f(R_0)f''(R_0)| \ll 1.$
- However, these theories are much more involved due to the cosmological evolution of the boundary conditions
- I have the Newtonian limit and the parameter γ

- The Newtonian limit of these theories was recently discussed in *R.Dick*, **Gen.Rel.Grav.**36 (2004)
- The correct limit could be obtained if $|f(R_0)f''(R_0)| \ll 1.$
- However, these theories are much more involved due to the cosmological evolution of the boundary conditions
- I have the Newtonian limit and the parameter γ
- I hope to have the remaining parameters next week or so

Details of f(R) gravities

Defining a scalar field \$\phi = \frac{df}{dR}\$
And a potential \$V(\phi) = Rf'(R) - f(R)\$
The first corrections of the P-N limit are

$$g_{00} \approx -1 + \frac{\kappa^2}{4\pi\phi_0} \frac{M}{r} \left(1 + \frac{e^{-m_{\phi}r}}{3} \right) + \frac{V_0}{6\phi_0} r^2$$

$$g_{ij} \approx \left[1 + \frac{\kappa^2}{4\pi\phi_0} \frac{M}{r} \left(1 - \frac{e^{-m_{\phi}r}}{3} \right) - \frac{V_0}{6\phi_0} r^2 \right] \delta_{ij}$$

Where

$$m_{\phi}^2 = \frac{\phi_0 V''(\phi_0) - V'(\phi_0)}{3}$$

Compare

Details of f(R) gravities

Defining a scalar field \$\phi = \frac{df}{dR}\$
And a potential \$V(\phi) = Rf'(R) - f(R)\$
The relevant parameters are

$$G_N = \frac{1}{\phi_0} \left(1 + \frac{e^{-m_\phi r}}{3} \right)$$
$$\gamma = \frac{3 - e^{-m_\phi r}}{3 + e^{-m_\phi r}}$$

Where

$$m_{\phi}^2 = \frac{\phi_0 V''(\phi_0) - V'(\phi_0)}{3}$$

The Carroll et al. model $f(R) = R - \frac{\mu^4}{R}$

The Carroll et al. model f(R) = R - \frac{\mu^4}{R}
 is characterized by

$$m_{\phi}^2 = -\frac{R_0}{6\mu^4} (R_0^2 + 3\mu^4)$$

The Carroll et al. model f(R) = R - \frac{\mu^4}{R}
 is characterized by

$$m_{\phi}^2 = \frac{R_0}{6\mu^4} (R_0^2 - 3\mu^4), \ R_0 \propto \frac{1}{t^2}$$

Not valid in its original form If $\mu^4 \rightarrow -\mu^4$, it is valid at early times only.

The Carroll et al. model f(R) = R - \frac{\mu^4}{R}
 is characterized by

$$m_{\phi}^2 = \frac{R_0}{6\mu^4} (R_0^2 - 3\mu^4), \ R_0 \propto \frac{1}{t^2}$$

In general, $f(R) = R + \frac{\mu^{2n+2}}{R^n}$ are not viable models

The Carroll et al. model f(R) = R - \frac{\mu^4}{R}
 is characterized by

$$m_{\phi}^2 = \frac{R_0}{6\mu^4} (R_0^2 - 3\mu^4), \ R_0 \propto \frac{1}{t^2}$$

In general, f(R) = R + \frac{\mu^{2n+2}}{R^n}\$ are not viable models
 The Starobinsky model f(R) = R + \frac{R^2}{M^2}
 It is characterized by

$$m_{\phi}^2 = \frac{M^2}{6}$$

The Carroll et al. model f(R) = R - \frac{\mu^4}{R}
 is characterized by

$$m_{\phi}^2 = \frac{R_0}{6\mu^4} (R_0^2 - 3\mu^4), \ R_0 \propto \frac{1}{t^2}$$

In general, $f(R) = \overline{R + \frac{\mu^{2n+2}}{R^n}}$ are not viable models The Starobinsky model $f(R) = R + \frac{R^2}{M^2}$ In general, $f(R) = R + \frac{R^n}{M^{2n+2}}$ are always viable models

$$m_{\phi}^2 = \frac{M^2}{6}$$

• f(R) gravities have been proposed to justify the cosmic speed-up

• f(R) gravities have been proposed to justify the cosmic speed-up

They are MTG and, therefore, do not modify the physics of special relativity

- f(R) gravities have been proposed to justify the cosmic speed-up
- They are MTG and, therefore, do not modify the physics of special relativity
- Every experimental test of the EEP is potentially a deadly test for gravity as a curved spacetime phenomenon

- f(R) gravities have been proposed to justify the cosmic speed-up
- They are MTG and, therefore, do not modify the physics of special relativity
- Every experimental test of the EEP is potentially a deadly test for gravity as a curved spacetime phenomenon
- The post-Newtonian regime is a good arena to test gravity theories

- f(R) gravities have been proposed to justify the cosmic speed-up
- They are MTG and, therefore, do not modify the physics of special relativity
- Every experimental test of the EEP is potentially a deadly test for gravity as a curved spacetime phenomenon
- The post-Newtonian regime is a good arena to test gravity theories
- The post-Newtonian limit of f(R) gravities is constrained by the cosmic evolution

There is nothing in this slide that can be of any interest to you

?

In the weak-fiel, slow-motion limit, the metric of nearly every MTG has the same structure

$$g_{00} = -1 + 2U - 2\beta U^{2} - 2\xi \Phi_{W} + (2\gamma + 2 + \alpha_{3} + \zeta_{1} - 2\xi)\Phi_{1} + 2(3\gamma - 2\beta + 1 + \zeta_{2} + \xi)\Phi_{2} + 2(1 + \zeta_{3})\Phi_{3} + 2(3\gamma + 3\zeta_{4} - 2\xi)\Phi_{4} - (\zeta_{1} - 2\xi)\mathcal{A} - (\alpha_{1} - \alpha_{2} - \alpha_{3})w^{2}U - \alpha_{2}w^{i}w^{j}U_{ij} + (2\alpha_{3} - \alpha_{1})w^{i}V_{i} + O(\epsilon^{3}) g_{0i} = -\frac{1}{2}(4\gamma + 3 + \alpha_{1} - \alpha_{2} + \zeta_{1} - 2\xi)V_{i} - \frac{1}{2}(1 + \alpha_{2} - \zeta_{1} + 2\xi)W_{i} - \frac{1}{2}(\alpha_{1} - 2\alpha_{2})w^{i}U - \alpha_{2}w^{j}U_{ij} + O(\epsilon^{5/2}) g_{ij} = (1 + 2\gamma U + O(\epsilon^{2}))\delta_{ij}$$

PPN parameters γ , β , ξ , α_1 , α_2 , α_3 , ζ_1 , ζ_2 , ζ_3 , ζ_4 .

Significance of the PPN parameters

	What it measures	Value
Parameter	relative to GR	in GR
γ	How much space-curvature	1
	produced by unit rest mass?	
β	How much "nonlinearity"	1
	in the superposition	
	law for gravity?	
ξ	Preferred-location effects?	0
$lpha_i$	Preferred-frame effects?	0
α_3	Violation of conservation	0
$\overline{\zeta_j}$	of total momentum?	0

Tests of the parameter γ

The deflection of light

$$\delta\theta = \frac{1}{2}(1+\gamma) \left[-\frac{4m_{\odot}}{d} \cos \chi + \frac{4m_{\odot}}{d_r} \left(\frac{1+\cos \Phi_r}{2} \right) \right] ,$$

where d and d_r are the distances of closest approach of the source and reference rays respectively, Φ_r is the angular separation between the Sun and the reference source, and χ is the angle between the Sun-source and the Sun-reference directions, projected on the plane of the sky.

Tests of the parameter γ

The Time Delay of Light

A radar signal sent across the solar system past the Sun to a planet or satellite and returned to the Earth suffers an additional non-Newtonian delay in its round-trip travel time, given by

$$\delta t = 2(1+\boldsymbol{\gamma})m_{\odot}\ln[(r_{\oplus} + \mathbf{x}_{\oplus} \cdot \mathbf{n})(r_{e} - \mathbf{x}_{e} \cdot \mathbf{n})/d^{2}]$$

Tests of the parameter γ

The perihelion shift of Mercury

$$\dot{\omega} \approx 42.''98 \left[\frac{1}{3} (2 + 2\gamma - \beta) + 3 \cdot 10^{-4} (J_2/10^{-7}) \right]$$

Gravitational waves polarization

Six polarization modes permited in any MTG \odot (a) (c) (d) (e) (f)

Shown displacement of each mode induced on a ring of test particles

- Propagation in +z
 direction
- No displacement out of the plane indicated
- In **GR** only (a) and (b)
- In scalar-tensor gravity,(c) is also possible

The binary pulsar PSR1913+16

• Orbital period $7^h 45^{min}$

The binary pulsar PSR1913+16

• Orbital period $7^{h}45^{min}$

 Perihelion advance in 1 day the same as Mercury in 1 century

The binary pulsar PSR1913+16

• Orbital period $7^{h}45^{min}$

 Perihelion advance in 1 day the same as Mercury in 1 century

The orbit is shrinking due to grav.wave radiation.
Ten years ago...

Ten years ago, the standard cosmology was described by

$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = \kappa^2 T_{\mu\nu}$$

Einstein equations Visible Matter Dark Matter Radiation

Back

Cosmic Microwave Brackground

