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High-precision cosmological tests have improved
our view of the Universe.

The Universe Is homogeneous, isotropic, spatially
flat and is undergoing a period atcelerated

expansion

The description given onlien years ago by
IS not compatible with the observed

accelerated expansion.
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New Ingredients in the cosmic pie?

To justify the current acceleration we could . ..
= Introduce a new source of energyip,
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New Ingredients in the cosmic pie?

To justify the current acceleration we could . ..
= Introduce a new source of energyip,

= Cosmological constant, long-range fields, ...

w It has been done before and tends to work (dark matter |
galaxies, neutrino W decay,...).

Experimental Tests and Alternative Theories of Gravity —



New Ingredients or New Physics?

To justify the current acceleration we could . ..
= Introduce a new source of energyip,

= Modify Einstein’s equations.
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New Ingredients or New Physics?

To justify the current acceleration we could . ..
= Introduce a new source of energyip,

= Modify Einstein’s equations.

Because of quantum effects in curved space, string theo
higher dimensional theories,. ..

could be the leading order of some effective gravity
theory: R — f(R) ~ R+corrections .
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New Ingredients or New Physics?

To justify the current acceleration we could . ..
= Introduce a new source of energyip,

= Modify Einstein’s equations.

Today'’s choice ...

New Physics
— f(R) gravities
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What are f(R) gravities?

= f(R) gravities can be seen as a generalizatior: of

1
SGR — 5 o d4$\/ _gR =+ Sm[g,uw wm]

K2
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What are f(R) gravities?

= f(R) gravities can be seen as a generalizatior: of

1
loy = —
GR 9 12

d451;\/ —qgR + 5, [g,uyj @Dm]

m Matter actio

= Matter field

® 4D-Volume elemen

m Gravity Lagrangian
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What are f(R) gravities?

= f(R) gravities can be seen as a generalizatior: of

1
SGR — 5 o d4$\/ —gIv + Sm[g,uw 77Dm]

K2

Sf i d4x\/jgf(R) =+ Sm[g,uw ¢m]

T K2
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What are f(R) gravities?

= f(R) gravities can be seen as a generalizatior: of

1
Sf 9 5.9 d4513\/ f( ) =+ Sm[g,uw ¢m]
» Two examples : , f(R) =R+ ﬁ—“;
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What are f(R) gravities?

= f(R) gravities can be seen as a generalizatior: of

1
Sf 9 5.9 d4513\/ f( ) =+ Sm[g,uw ¢m]
» Two examples : , f(R) =R+ ﬁ—“;

® f(R) can be classified egetric Theories of Gravity
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What are f(R) gravities?

= f(R) gravities can be seen as a generalizatior: of

|

S =5

d4ZII\/7f( ) - Sm[g,uya ¢m]

= Two examples : , f(R) =R+ 45
® f(R) can be classified egetric Theories of Gravity

m MTG are the only theories of gravity that can embody the
Einstein Equivalence Principle
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Sofar...

We have seen that

= Theaccelerated expansiaf the Universe Is
currently anunsolved problem

= New theoriehave been proposed to justify the
acceleration.
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We have seen that

Theaccelerated expansiaf the Universe Is
currently anunsolved problem

New theoriedhave been proposed to justify the
acceleration.

How do they change the gravitational physics?
Do they modify elementary-particle physics?
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The EEP states that

Inertial and gravitational masses coincide, I.e., all
bodies fall with the same acceleratien

The outcome of any localon-gravitational
experiment is independent of the velocity of the
freely-falling reference frame in which it is
performed—

The outcome of any localon-gravitational
experiment Is independent of where and when it is
performed—
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Gravity as a curved-space effect

If EEP Is valid

= Thenon-gravitationalaws of physics can be
formulated by writing the laws of special relativity
using the language of differential geometry:

Nuv — Gy (T)
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Gravity as a curved-space effect

If EEP Is valid

= Thenon-gravitationalaws of physics can be
formulated by writing the laws of special relativity
using the language of differential geometry:

Nuv — Gy (T)

= Gravitation would be described by an

S — SG[g,uyy ¢7 A,LL) B,uw F/C;V7 . ] + Sm[g/U/7 wm]
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If EEP is valid

Thenon-gravitationalaws of physics can be
formulated by writing the laws of special relativity
using the language of differential geometry:

Nuv — Gy (T)
Gravitation would be described by an
S — SG[g,uw ¢7 A,ua B,Lu/a ng, .. ] =+ Sm[g,uw 1%]

However ...

Is theEEP really valid ?
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Can be tested comparing the acceleration of two
bodies in an external fieldn;a = m,g

m; andm, are made up of rest energy, e.m. energ;
weak-interaction energy,. . .

If m; andm,, have different contributions

E* = Internal Energy generated by the i-th interaction

n* = strength of the violation

Experimental Tests and Alternative Theories of Gravity — y



Can be tested comparing the acceleration of two
bodies in an external fieldn;a = m,g

m; andm, are made up of rest energy, e.m. energ;
weak-interaction energy,. . .

If m; andm,, have different contributions

_ 2]a1 —as| [ Ei Es
{ —22:77 {mlcQ Mo C?

ag + a9

E* = Internal Energy generated by the i-th interaction

n* = strength of the violation
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Can be tested comparing the acceleration of two
bodies in an external fieldn;a = m,g

m; andm, are made up of rest energy, e.m. energ;
weak-interaction energy,. . .

If m; andm,, have different contributions

_ 2]a1 —as| [ Ei Es
{ —22:77 {mlcQ Mo C?

ag + a9

E* = Internal Energy generated by the i-th interaction

n* = strength of the violation

The current bound I8
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| orentz Invariance

e elementary-particle experiments tests bf ?
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e elementary-particle experiments tests bf ?
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Local Lorentz Invariance

= Are elementary-particle experiments tests bf ?

m would beviolated if ¢ would vary from one
Inertial reference frame to another.

= This violation would lead t@hifts in the energy
levelsof atoms and nuclei depending on the
direction of the gquantization axis.
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Local Lorentz Invariance

= Are elementary-particle experiments tests bf ?

m would beviolated if ¢ would vary from one
Inertial reference frame to another.

= This violation would lead t@hifts in the energy
levelsof atoms and nuclei depending on the
direction of the gquantization axis.

= The current bound 15
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Can be tested by measuring the gravitational reds
of light.

The comparison of the frequencies of two clocks a

C

Ifferent locations boils down to the comparison of

the velocities of two local Lorentz frames at rest at

those positions.

AN, AU
= _ 1 —
» (1+ ) -
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Can be tested by measuring the gravitational reds
of light.

The comparison of the frequencies of two clocks a
different locations boils down to the comparison of
the velocities of two local Lorentz frames at rest at
those positions.

AN, AU
= _ 1 —
» (1+ ) -

The current bound Is

It can also be tested by measuring the constancy ¢
the non-gravitationatonstants.
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Sofar...

We have seen that

= f(R) gravities, likeGR and any otheiITG, respect
locally the physics of special relativity

They do not modify elementary-particle physics
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Sofar...

We have seen that
= f(R) gravities, likeGR and any otheiITG, respect
locally the physics of special relativity
They do not modify elementary-particle physics
= The new interactions and phenomena predicted b

string theory, higher dimensional theories, ... are
likely to violate theEEP

Testing theEEP we could place bounds on the
strength of those interactions
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We have seen that
f(R) gravities, likeGR and any othek , respect
locally the physics of special relativity
They do not modify elementary-particle physics
The new Iinteractions and phenomena predicted b

string theory, higher dimensional theories, ... are
likely to violate theEEP

Testing theEEP we could place bounds on the
strength of those interactions
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Gravitational Tests

= Post-Newtonian gravity
» Stellar systems

= Cosmology

= Gravitational waves
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Gravitational Tests

» Post-Newtonian gravity = Deflection of light
= Time delay of light

m Perihelion Shift of
Mercury

m Tests ofSEP
m Conservation laws

m Geodesic precession
(gyroscope)
= Gravitomagnetism
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Gravitational Tests

= Post-Newtonian gravity

m Stellar systems = Gravitational wave
damping of orbital
period

® Internal structure
dependence

m Strong gravity effects
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Gravitational Tests

= Post-Newtonian gravity
» Stellar systems

» Cosmology = Distribution of
anisotropies

= Hubble diagram of
SNla

= Age of the Universe
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Gravitational Tests

= Post-Newtonian gravity

» Stellar systems

= Cosmology

= Gravitational waves m= Polarization

m Speed of grav.waves
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Gravitational Tests

= Post-Newtonian gravity
» Stellar systems

= Cosmology

= Gravitational waves
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Parametrized P-N Formalism

» In the weak-field, slow-motion limit, the metric of
nearly every\VITG has the same structure
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Parametrized P-N Formalism

» In the weak-field, slow-motion limit, the metric of
nearly every\VITG has the same structure

goo = —1+4+2U—-28U%—-26®w + (27+2+ a3+ (1 — 2
12(37 — 20+ 1+ Go + €)®a + 2(1 + C3)s + 2(3y + 3¢4 — 26) 0y
—(¢1 — 26 A — (a1 — ag — a3)w?U — asw'w! Uyj + (2a3 — a1)w'V;
+0(e?)
1 1
goi = —5(4’7—1—3—#041 —ag + (1 —25)V; — 5(1—|—Oé2 — (1 + 25 W;

1 : :
—5(041 — 2a2)w'U — aw’ Uy + O(e%/2)

gi; = (Q+29U+ 0(62))52'3'

PPN parameter$7 /Ba g) &1, a2, 3, ClaCQa C3a C4-

Experimental Tests and Alternative Theories of Gravity — p.



Parametrized P-N Formalism

» In the weak-field, slow-motion limit, the metric of
nearly every\VITG has the same structure

= With the potentials given by

U — / d3/ U:/p(w_$/>(x_x)]d3/
] "

|x — x/|3
@W _ / / //( ) . x/ _ X// 5 X — X// dgaj/dga;//
|X—X’|3 |X—X”| |X’ //‘
A - /P’[V"(X—X’)]stx/ / B
Ix — x/[3 ’ |x — x/|
/U/ H/
by = P p d3:13’, b3 = p p d3:13’, by :/ - A3’
\x—x\ \x—x| |x—x|
c \x—x’\ \x—x’\3
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Parametrized P-N Formalism

» In the weak-fiel, slow-motion limit, the metric of
nearly every\VITG has the same structure

» |t Is characterized by a set of parameters:
v 67 57 a1, Gy, 3, Cl? C27 CS) C4-

= The predictions of a particular theory depend on
theseparameters

Experimental Tests and Alternative Theories of Gravity — p.



Parametrized P-N Formalism

» In the weak-fiel, slow-motion limit, the metric of
nearly every\VITG has the same structure

» |t Is characterized by a set of parameters:
v 67 57 a1, Gy, 3, C17 C27 C37 C4'

= The predictions of a particular theory depend on
theseparameters

m \We will need to obtain the PPN parametersfoR)
gravities.
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P-N hmit of f(R) gravities

= The Newtonian limit of these theories was recently
discussed ifR.Dick, Gen.Rel.Grav36 (2004 )

m The correct limit could be obtained If
| f(Ro)f"(Ro)| < 1.
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The Newtonian limit of these theories was recently
discussed ifR.Dick, Gen.Rel.Grav36 (2004)

The correct limit could be obtained if
f(Ro)f"(Ro)| < 1.

However, these theories are much more involved c
to the cosmological evolution of the boundary
conditions
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f(Ro)f"(Ro)| < 1.

However, these theories are much more involved c
to the cosmological evolution of the boundary
conditions

| have the Newtonian limit and the parameter
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The Newtonian limit of these theories was recently
discussed ifR.Dick, Gen.Rel.Grav36 (2004)

The correct limit could be obtained if
f(Ro)f"(Ro)| < 1.

However, these theories are much more involved c
to the cosmological evolution of the boundary
conditions

| have the Newtonian limit and the parameter

... | hope to have the remaining parameters next
week or so
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Detalls of f(R) gravities

= Defining a scalar field = <&
= And a potential/ (¢) = Rf'(R) — f(R)
= The first corrections of the P-N limit are

. Kk M . e e’ Vo o
N | | | r
B Ao T 3 6%

/432 M e~ MeT Vb
K { 47T<bo”"‘< 3 ) 6%7“} /
Where

2 doV"(p0)—V'(¢o)
My = 3
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Detalls of f(R) gravities

= Defining a scalar field = <&
= And a potential/ (¢) = Rf'(R) — f(R)
= The relevant parameters are

1 €—m¢r
= — |14
N Cbo( 3 >

3 —e M

3+ e e’

Where

¢oV" (¢0)—V'(90)
3

2 __
m¢—
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Examples

® The Carroll et al. modef(R) = R — £
W IS characterized by

= Not valid in its original form
wIf u*t — —pd, itis valid at early times only.
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Examples

® The Carroll et al. modef(R) = R — £
W IS characterized by

Ry 1
Mg = 674(33 —3u"), Ro o 2
= f(R) = R+ 5
w The Starobinsky model(R) = R + ]\]}—22
w Itis characterized by
M2
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Examples

® The Carroll et al. modef(R) = R — £

R
W IS characterized by
Ry 1
Mg = G—M(Rg —3u"), Ro o 2
& f(R) =R+

m The Starobinsky model(R) = R + ]@—22
= In general,f(R) = R + -~ are always viable models

M2
6

2 __
m¢—
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Sumimary and Conclusions

= f(R) gravities have been proposed to justify the
cosmic speed-up

Experimental Tests and Alternative Theories of Gravity — p.



Sumimary and Conclusions

= f(R) gravities have been proposed to justify the
cosmic speed-up

= They areVITG and, therefore, do not modify the
physics of special relativity

Experimental Tests and Alternative Theories of Gravity — p.



Sumimary and Conclusions

= f(R) gravities have been proposed to justify the
cosmic speed-up

= They areVITG and, therefore, do not modify the
physics of special relativity

= Every experimental test of tHeEP Is potentially a
deadly test for gravity as a curved spacetime
phenomenon

Experimental Tests and Alternative Theories of Gravity — p.



Sumimary and Conclusions

= f(R) gravities have been proposed to justify the
cosmic speed-up

= They are and, therefore, do not modify the
physics of special relativity

= Every experimental test of tHeEP is potentially a
deadly test for gravity as a curved spacetime
phenomenon

= The post-Newtonian regime Is a good arena to tes
gravity theories
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Sumimary and Conclusions

= f(R) gravities have been proposed to justify the
cosmic speed-up

= They areVITG and, therefore, do not modify the
physics of special relativity

= Every experimental test of tHeEP is potentially a
deadly test for gravity as a curved spacetime
phenomenon

= The post-Newtonian regime Is a good arena to tes
gravity theories

= The post-Newtonian limit of (R) gravities is
constrained by the cosmic evolution
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There Is nothing in this
slide that can be of any



Parametrized P-N Formalism

» In the weak-fiel, slow-motion limit, the metric of
nearly every\VITG has the same structure

goo = —1+2U-26U°-26Qw + (2y+2+as+ ¢ —26)P
12(37 — 20+ 1+ Go + €)®s + 2(1 + C3)®s + 2(3y + 3¢4 — 26) 0y
—(¢1 — 26 A — (a1 — ag — a3)w?U — asw'w! U;j + (2a3 — a1)w'V;
+0(e?)
1 1
goi = —5(4’Y+3+a1 — a2+ (1 —28)V; — 5(14-012 — (1 + 25 W;
1 , :
—5(041 — 2a2)w'U — agw’ U;; + O(e%/2)

o = (1—|—2’)/U—|—O(62))5ij

PPNparametemaﬁafaa17a27a37C17C27C37C4-
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Significance of the PPN parameters

What it measures Value
Parameter relative to GR in GR
~ How much space-curvature 1

produced by unit rest mass?

I6; How much “nonlinearity” 1
in the superposition

law for gravity?

g Preferred-location effects? 0
Qi Preferred-frame effects? 0
Qs Violation of conservation 0
Cj of total momentum?
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The deflection of light

1 dme dme (1 + cos P,
:—1 —
o0 2( + ) T Cos X + 7 ( > )]

whered andd, are the distances of closest approa
of the source and reference rays respectivelyis
the angular separation between the Sun and the
reference source, andis the angle between the
Sun-source and the Sun-reference directions,
projected on the plane of the sky.

Experimental Tests and Alternative Theories of Gravity — p.



Tests of the parametery

= The Time Delay of Light
A radar signal sent across the solar system past the Sun to ¢
planet or satellite and returned to the Earth suffers artiacdi
non-Newtonian delay in its round-trip travel time, given by

6t = 2(1 +v)me In[(rg + Xe -n)(r. — X, -n)/d?]
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Tests of the parametery

= The perihelion shift of Mercury

1
W~ 42."98 §(2 + 2y — ) +31074Jp/1077)

Experimental Tests and Alternative Theories of Gravity — p.



Gravitational waves polarization

® Six polarization modes m Shown displacement of

permited in anyMTG

each mode induced on a
ring of test particles

® Propagation intz
direction

= No displacement out of
the plane indicated

= In only (a) and (b)

® In scalar-tensor gravity,
(c) is also possible
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Magnetized NS rotat-
Ing with 7" = 59 ms

Orbit of a Binary Pulsar

e

a C enter ‘ Periastron

Orbital period7?45™"
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Magnetized NS rotat- = Orbital period7"45™"
ing with 7" = 59 ms

Perihelion advance in 1
day the same as
Mercury in 1 century
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Magnetized NS rotat- m Orbital period7"45™"

Ing with 7" = 59 ms Perihelion advance in 1
S — day the same as
h ! Mercury in 1 century

The orbit i1s shrinking
due to grav.wave radia-
tion.

. e
D“"'T_-_I.|II.I|I.II|.III.III.|II.

L=l

3 | S S S S | 1111 | 1
1975 1980 1985 1990 1995 2000
"T" E‘ D v

Experimental Tests and Alternative Theories of Gravity — p.



Ten years ago, the standard cosmology was describec

1
R, — 5gWR = r°T),
N———

Visible Matter
Dark Matter
Radiation

Einstein
equations
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