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Part I:Quantum correlations and black holes
■ Subject: New approach for radiation problems in curved space.
■ Structure:

◆ Black hole evaporation following the standard formalism.
◆ Difficult application of the standard approach when

backreaction effects are considered.
◆ New approach to solve the problems: correlation functions.
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Part I:Quantum correlations and black holes
■ Subject: New approach for radiation problems in curved space.
■ Structure:

◆ Black hole evaporation following the standard formalism.
◆ Difficult application of the standard approach when

backreaction effects are considered.
◆ New approach to solve the problems: correlation functions.

Part II:Cosmology
■ Subject: Cosmic speed-up due to new gravitational dynamics?
■ Structure:

◆ Observational evidence for the cosmic accelerated expansion.
◆ Possible explanations: dark energy, modified dynamics, . . .
◆ Modified dynamics:f (R) gravities.
◆ Analyze the solar system constraints on these theories.
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Gravitational collapse and quantization

■ Consider a scalar field

φ(x) = ∑[aiui(x)+a†
i u
∗
i (x)]
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Vacuum state:aout
i |0〉out = 0

■ In general|0〉in 6= |0〉out
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■ Number of particles:

in〈0|Nout
i |0〉in = ∑k |βik|2
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Black Holes evaporate

■ Number of particles detected atI+ (Hawking 1974):

in〈0|Nout
i |0〉in = ∑k |βik|2 = 1

e8πMωi−1

⇒ Planckian spectrum atT = ~

8πκBM
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Black Holes evaporate

■ Number of particles detected atI+ (Hawking 1974):

in〈0|Nout
i |0〉in = ∑k |βik|2 = 1

e8πMωi−1

⇒ Planckian spectrum atT = ~

8πκBM

■ Uncorrelated outgoing radiation→ THERMAL state

(Parker 1975),(Wald 1975)

■ BIG PROBLEM : quantum information not radiated (Hawking 1976)

Apparent conflict betweenQM andGR:

Non-unitary evolution of quantum states

(Information Loss Problem)
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Evaporation with backreaction

■ The outgoing radiation modifies the geometry. This
effect (backreaction) could restore the correlations.
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Evaporation with backreaction

■ The outgoing radiation modifies the geometry. This
effect (backreaction) could restore the correlations.

■ Charged black holes represent good toy models.
A.Fabbri, D.Navarro, J.Navarro-Salas and G.J.O. , Phys.Rev.D (2003)

Strong correlations appear in the outgoing radiation:

Crel =
Cwbr(x1,x2)
Cnbr(x1,x2)

∼ e2κ|x1−x2|

|x1−x2|4 whereC(x1,x2)≡ in〈0|φ(x1)φ(x2)|0〉in
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Evaporation with backreaction

■ The outgoing radiation modifies the geometry. This
effect (backreaction) could restore the correlations.

■ Charged black holes represent good toy models.
A.Fabbri, D.Navarro, J.Navarro-Salas and G.J.O. , Phys.Rev.D (2003)

Strong correlations appear in the outgoing radiation:

Crel =
Cwbr(x1,x2)
Cnbr(x1,x2)

∼ e2κ|x1−x2|

|x1−x2|4 whereC(x1,x2)≡ in〈0|φ(x1)φ(x2)|0〉in

■ Involved computation ofα andβ:

◆ Unknownin〈0|Nout
i |0〉in = ?

◆ Unknown density matrix,|0〉in→ ?

■ Moving-mirror model physically equivalent but . . .
◆ Unclear computation ofα andβ.
◆ Unclear relation between particles and energy fluxes.
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Bogolubov -Vs- Correlator

■ The Bogolubov coefficientsα andβ allow to
construct magnitudes such asin〈0|Nout

i |0〉in .
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■ The two-point correlator allows to "see" the
correlations among the outgoing particles.
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Bogolubov -Vs- Correlator

■ The Bogolubov coefficientsα andβ allow to
construct magnitudes such asin〈0|Nout

i |0〉in .

■ The two-point correlator allows to "see" the
correlations among the outgoing particles.

■ Can we determinein〈0|Nout
i |0〉in directly from

in〈0|φ(x1)φ(x2)|0〉in ?

■ YES!

⇒We can bypass the computation ofα andβ !!!
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Example: Conformal Invariance

■ In d-dimensional Minkowski space, a conformally
invariant field theory satisfies:

in〈0|φ(y1)φ(y2)|0〉in =
C

|y1−y2|2∆

in〈0|φ(y1)φ(y2)|0〉in =

∣

∣

∣

∣

∂x
∂y

∣

∣

∣

∣

∆/d

x1

∣

∣

∣

∣

∂x
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∣

∣

∣

∣

∆/d

x2

in〈0|φ(x1)φ(x2)|0〉in
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Example: Conformal Invariance

■ In d-dimensional Minkowski space, a conformally
invariant field theory satisfies:
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■ Number of particles:
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Beyond the number of particles

■ The coefficientsαik,β jk never appear alone:

in〈0|aout
i aout

j |0〉in =−~(β∗α†)i j in 〈0|aout
i

†aout
j |0〉in = +~(ββ†)i j

in〈0|aout
i aout

j
†|0〉in = +~(αα†) ji in 〈0|aout

i
†aout

j
†|0〉in =−~(αβT)i j
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Summary and Conclusions

■ Alternative approach to study radiation problems:

{α,β} - Vs - {N,C}
in terms of correlation functions:in〈0|: φ(x1)φ(x2) :|0〉in
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■ Clear visualization of particle production:
particles are produced when the correlator deviates from its

vacuum value.
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Summary and Conclusions

■ Alternative approach to study radiation problems:

{α,β} - Vs - {N,C}
in terms of correlation functions:in〈0|: φ(x1)φ(x2) :|0〉in

■ Clear visualization of particle production:
particles are produced when the correlator deviates from its

vacuum value.
■ Technically more accessible and intuitive.

■ Clarifies an apparent tension between particle
creation and energy fluxes in curved space.

■ Allows to detect localized thunderbolts.
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Standard cosmologies

■ Two basic assumptions:

◆ Cosmological principle:isotropy and homogeneity.

◆ Large scale dynamics governed by gravity.
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◆ Large scale dynamics governed by gravity.

■ First assumption⇒ kinematics:

ds2 =−dt2 +a2(t)
[

dr2

1−kr2 + r2dΩ2
]
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Standard cosmologies

■ Two basic assumptions:

◆ Cosmological principle:isotropy and homogeneity.

◆ Large scale dynamics governed by gravity.

■ First assumption⇒ kinematics:

ds2 =−dt2 +a2(t)
[

dr2

1−kr2 + r2dΩ2
]

■ Second assumption⇒ dynamics ofa(t) .



● Outline

Quantum Correlations and BH

Cosmology

● Standard cosmologies

● Accelerating Universe

● Mechanism for the acceleration

● f(R) gravities

● Metric and Palatini formalisms

● Constraining the lagrangian

● PN limit I: Scalar-Tensor

● PN limit II: Metric

● PN limit III: Palatini

● Summary and Conclusions

The end

Gonzalo J. Olmo July 5th, 2005 - p. 15/26

Standard cosmologies

■ Two basic assumptions:

◆ Cosmological principle:isotropy and homogeneity.

◆ Large scale dynamics governed by gravity.

■ First assumption⇒ kinematics:
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]

■ Second assumption⇒ dynamics ofa(t) .

■ Observations tell us about the geometry of the
universe:k≈ 0, ä(t0) > 0.
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Standard cosmologies

■ Two basic assumptions:

◆ Cosmological principle:isotropy and homogeneity.

◆ Large scale dynamics governed by gravity.

■ First assumption⇒ kinematics:

ds2 =−dt2 +a2(t)
[

dr2

1−kr2 + r2dΩ2
]

■ Second assumption⇒ dynamics ofa(t) .

■ Observations tell us about the geometry of the
universe:k≈ 0, ä(t0) > 0.

■ ä(t0) > 0 was unexpected only 10 years ago.
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Accelerating Universe

Empty Model
Flat Dark Energy Model
Closed Dark Energy Model
Decelerating Model
Dusty Decelerating Model

Binned Data

Closed Matter Only Model
de Sitter Model
Evolving Supernovae
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Ned Wright - 8 Jul 2003

■ Big dots represent type-Ia supernovae.

■ The expansion began to accelerate some 5000 million years ago.
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Mechanism for the acceleration

■ Dark energy: some stuff with negative pressure.

In GR⇒ ä
a =−4πG

3 (ρtot +3Ptot)

Matter ρm∼ 1/a3 , Pm = 0

Radiation ρr ∼ 1/a4 , Pr = ρr/3

Cosmological constantρΛ = constant=−PΛ
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Mechanism for the acceleration

■ Dark energy: some stuff with negative pressure.

In GR⇒ ä
a =−4πG

3 (ρtot +3Ptot)

Matter ρm∼ 1/a3 , Pm = 0

Radiation ρr ∼ 1/a4 , Pr = ρr/3

Cosmological constantρΛ = constant=−PΛ

■ Modified dynamics:äa =??

■ Others
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f(R) gravities: motivation and examples

■ " f (R) gravities" stands for:

S= 1
2k2 d4x

√−g f(R)+Sm(gµν,ψ)

◆ GR is the casef (R) = R
◆ GR + cosmological constant isf (R) = R−2Λ
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■ Starobinsky model(1980): f (R) = R+ R2

M
⇒ Leads to early-time inflation
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◆ GR is the casef (R) = R
◆ GR + cosmological constant isf (R) = R−2Λ

■ Starobinsky model(1980): f (R) = R+ R2

M
⇒ Leads to early-time inflation

■ Carroll et al. model(2004): f (R) = R− µ4

R
⇒ Leads to late-time acceleration
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f(R) gravities: motivation and examples

■ " f (R) gravities" stands for:

S= 1
2k2 d4x

√−g f(R)+Sm(gµν,ψ)

◆ GR is the casef (R) = R
◆ GR + cosmological constant isf (R) = R−2Λ

■ Starobinsky model(1980): f (R) = R+ R2

M
⇒ Leads to early-time inflation

■ Carroll et al. model(2004): f (R) = R− µ4

R
⇒ Leads to late-time acceleration

■ GR could just be a good approximation at
intermediate curvatures.
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Metric and Palatini formalisms

■ Scalar curvature and Ricci tensor:

R = gµνRµν

Rµν = −∂µΓλ
λν +∂λΓλ

µν +Γλ
µνΓρ

ρλ−Γλ
νρΓρ

µλ
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Metric and Palatini formalisms

■ Scalar curvature and Ricci tensor:

R = gµνRµν

Rµν = −∂µΓλ
λν +∂λΓλ

µν +Γλ
µνΓρ

ρλ−Γλ
νρΓρ

µλ

■ In Metric formalism:Γα
βγ = gαλ

2

(

∂gλγ
∂xα +

∂gλβ
∂xγ − ∂gβγ

∂xλ

)
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βγ = gαλ

2

(

∂gλγ
∂xα +
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∂xγ − ∂gβγ

∂xλ

)

■ In Palatiniformalism:Γα
βγ is independent ofgµν.
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■ In Metric formalism:Γα
βγ = gαλ

2

(

∂gλγ
∂xα +

∂gλβ
∂xγ − ∂gβγ

∂xλ

)

■ In Palatiniformalism:Γα
βγ is independent ofgµν.

■ Only for f (R) = a+bR the two formalism lead to
the same equations of motion.
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Metric and Palatini formalisms

■ Scalar curvature and Ricci tensor:

R = gµνRµν

Rµν = −∂µΓλ
λν +∂λΓλ

µν +Γλ
µνΓρ

ρλ−Γλ
νρΓρ

µλ

■ In Metric formalism:Γα
βγ = gαλ

2

(

∂gλγ
∂xα +

∂gλβ
∂xγ − ∂gβγ

∂xλ

)

■ In Palatiniformalism:Γα
βγ is independent ofgµν.

■ Only for f (R) = a+bR the two formalism lead to
the same equations of motion.

■ Observations should help to determine bothf (R)
and the right formalism.
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Search for a suitable f (R)

■ By trial and error:(very common method)

R− µ4

R R− µ4

R +bR2 R−alogR cRn R− 6a
sinhR
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Search for a suitable f (R)

■ By trial and error:(very common method)

R− µ4

R R− µ4

R +bR2 R−alogR cRn R− 6a
sinhR

■ As part of effective actions:(more involved method)

◆ From quantum effects in curved space
◆ From low-energy limits of string/M theory
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Search for a suitable f (R)

■ By trial and error:(very common method)

R− µ4

R R− µ4

R +bR2 R−alogR cRn R− 6a
sinhR

■ As part of effective actions:(more involved method)

◆ From quantum effects in curved space
◆ From low-energy limits of string/M theory

■ Ask Nature about the admissiblef (R) functions.
(Method of this Thesis)
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Constraining the gravity lagrangian

■ Take a clean scenario to test gravity.

◆ Cosmology is not a clean laboratory.
◆ The solar system is more appropriate.
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Constraining the gravity lagrangian

■ Take a clean scenario to test gravity.

◆ Cosmology is not a clean laboratory.
◆ The solar system is more appropriate.

■ Compute the predictions of the theory in that
regime: post-Newtonian limit .
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Constraining the gravity lagrangian

■ Take a clean scenario to test gravity.

◆ Cosmology is not a clean laboratory.
◆ The solar system is more appropriate.

■ Compute the predictions of the theory in that
regime: post-Newtonian limit .

■ Confront predictions with experimental data.
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Constraining the gravity lagrangian

■ Take a clean scenario to test gravity.

◆ Cosmology is not a clean laboratory.
◆ The solar system is more appropriate.

■ Compute the predictions of the theory in that
regime: post-Newtonian limit .

■ Confront predictions with experimental data.

■ Determine the observational constraints onf (R).
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PN limit I: Scalar-Tensor representation

■ The original actionS= 1
2k2 d4x

√−g f(R)+Sm(gµν,ψ)

can be rewritten as follows:

S= 1
2κ2 d4x

√−g
[

φR(g)− ω
φ (∂µφ∂µφ)−V(φ)

]

+Sm

◆ where φ≡ d f
dR and V(φ) = R f′(R)− f (R)

◆ E.O.M. (3+2ω)�φ+2V−φ dV
dφ = k2T

◆ Metric ⇒ ω = 0 ⇒ dynamical.
◆ Palatini⇒ ω =−3/2 ⇒ non-dynamical.
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PN limit I: Scalar-Tensor representation

■ The original actionS= 1
2k2 d4x

√−g f(R)+Sm(gµν,ψ)

can be rewritten as follows:

S= 1
2κ2 d4x

√−g
[

φR(g)− ω
φ (∂µφ∂µφ)−V(φ)

]

+Sm

◆ where φ≡ d f
dR and V(φ) = R f′(R)− f (R)

◆ E.O.M. (3+2ω)�φ+2V−φ dV
dφ = k2T

◆ Metric ⇒ ω = 0 ⇒ dynamical.
◆ Palatini⇒ ω =−3/2 ⇒ non-dynamical.

■ This is more than aBrans-Dicketheory.
◆ In B-D V(φ) = 0 (or near an extremum) and

ω is determined by observations(ωobs> 40.000).

◆ Now ω is fixed andV(φ) is to be determined.
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PN limit I: Scalar-Tensor representation

■ The original actionS= 1
2k2 d4x

√−g f(R)+Sm(gµν,ψ)

can be rewritten as follows:

S= 1
2κ2 d4x

√−g
[

φR(g)− ω
φ (∂µφ∂µφ)−V(φ)

]

+Sm

◆ where φ≡ d f
dR and V(φ) = R f′(R)− f (R)

◆ E.O.M. (3+2ω)�φ+2V−φ dV
dφ = k2T

◆ Metric ⇒ ω = 0 ⇒ dynamical.
◆ Palatini⇒ ω =−3/2 ⇒ non-dynamical.

■ This is more than aBrans-Dicketheory.
◆ In B-D V(φ) = 0 (or near an extremum) and

ω is determined by observations(ωobs> 40.000).

◆ Now ω is fixed andV(φ) is to be determined.
■ We want to constraint the form ofV(φ)⇔ f (R).



● Outline

Quantum Correlations and BH

Cosmology

● Standard cosmologies

● Accelerating Universe

● Mechanism for the acceleration

● f(R) gravities

● Metric and Palatini formalisms

● Constraining the lagrangian

● PN limit I: Scalar-Tensor

● PN limit II: Metric

● PN limit III: Palatini

● Summary and Conclusions

The end

Gonzalo J. Olmo July 5th, 2005 - p. 23/26

PN limit II: Metric formalism or ω = 0

■ The metricgµν ≈ ηµν +hµν:

h(2)
00 ≈ 2GM⊙

r + V0
6φ0

r2 G = k2

8πφ0

[

1+ e−mϕr

3

]

Gexp= const.

h(2)
i j ≈

[

2γGM⊙
r −

V0
6φ0

r2
]

δi j γ = 3−e−mϕr

3+e−mϕr γexp≈ 1

with mϕ
2≡ φ0V ′′0 −V ′0

3 = R0

[

f ′(R0)
R0 f ′′(R0) −1

]

.
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PN limit II: Metric formalism or ω = 0

■ The metricgµν ≈ ηµν +hµν:

h(2)
00 ≈ 2GM⊙

r + V0
6φ0

r2 G = k2

8πφ0

[

1+ e−mϕr

3

]

Gexp= const.

h(2)
i j ≈

[

2γGM⊙
r −

V0
6φ0

r2
]

δi j γ = 3−e−mϕr

3+e−mϕr γexp≈ 1

with mϕ
2≡ φ0V ′′0 −V ′0

3 = R0

[

f ′(R0)
R0 f ′′(R0) −1

]

.

■ Fundamental constraint:R0

[

f ′(R0)
R0 f ′′(R0)

−1
]

L2
S≫ 1

LS is a relatively short lengthscale.
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PN limit II: Metric formalism or ω = 0

■ The metricgµν ≈ ηµν +hµν:

h(2)
00 ≈ 2GM⊙

r + V0
6φ0

r2 G = k2

8πφ0

[

1+ e−mϕr

3

]

Gexp= const.

h(2)
i j ≈

[

2γGM⊙
r −

V0
6φ0

r2
]

δi j γ = 3−e−mϕr

3+e−mϕr γexp≈ 1

with mϕ
2≡ φ0V ′′0 −V ′0

3 = R0

[

f ′(R0)
R0 f ′′(R0) −1

]

.

■ Fundamental constraint:R0

[

f ′(R0)
R0 f ′′(R0)

−1
]

L2
S≫ 1

LS is a relatively short lengthscale.

■ Conclusion:

−2Λ≤ f (R)≤ R−2Λ+ l2R2

2

l2≪ L2
S is a bound to the current range of the scalar interaction
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PN limit III: Palatini formalism or ω =−3/2

■ The metricgµν ≈ ηµν +hµν:

h(2)
00 ≈ 2GM⊙

r + V0
6φ0

r2 + log
(

φ(ρ)
φ0

)

G = κ2

8πφ0

(

1+ MV
M⊙

)

h(2)
i j ≈

[

2γGM⊙
r −

V0
6φ0

r2− log
(

φ(ρ)
φ0

)]

δi j γ = M⊙−MV
M⊙+MV

with M⊙ ≡ d3x′ρ(t,x′)/φ̃ , MV ≡ k−2 d3x′[V0−V(φ)/φ̃].



● Outline

Quantum Correlations and BH

Cosmology

● Standard cosmologies

● Accelerating Universe

● Mechanism for the acceleration

● f(R) gravities

● Metric and Palatini formalisms

● Constraining the lagrangian

● PN limit I: Scalar-Tensor

● PN limit II: Metric

● PN limit III: Palatini

● Summary and Conclusions

The end

Gonzalo J. Olmo July 5th, 2005 - p. 24/26

PN limit III: Palatini formalism or ω =−3/2

■ The metricgµν ≈ ηµν +hµν:

h(2)
00 ≈ 2GM⊙

r + V0
6φ0

r2 + log
(

φ(ρ)
φ0

)

G = κ2

8πφ0

(

1+ MV
M⊙

)

h(2)
i j ≈

[

2γGM⊙
r −

V0
6φ0

r2− log
(

φ(ρ)
φ0

)]

δi j γ = M⊙−MV
M⊙+MV

with M⊙ ≡ d3x′ρ(t,x′)/φ̃ , MV ≡ k−2 d3x′[V0−V(φ)/φ̃].

■ Fundamental constraint:R f′(R)
∣

∣

∣

f ′(R)
R f′′(R) −1

∣

∣

∣
L2(ρ)≫ 1

whereL2(ρ)≡ (k2ρc/φ0)
−1
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PN limit III: Palatini formalism or ω =−3/2

■ The metricgµν ≈ ηµν +hµν:

h(2)
00 ≈ 2GM⊙

r + V0
6φ0

r2 + log
(

φ(ρ)
φ0

)

G = κ2

8πφ0

(

1+ MV
M⊙

)

h(2)
i j ≈

[

2γGM⊙
r −

V0
6φ0

r2− log
(

φ(ρ)
φ0

)]

δi j γ = M⊙−MV
M⊙+MV

with M⊙ ≡ d3x′ρ(t,x′)/φ̃ , MV ≡ k−2 d3x′[V0−V(φ)/φ̃].

■ Fundamental constraint:R f′(R)
∣

∣

∣

f ′(R)
R f′′(R) −1

∣

∣

∣
L2(ρ)≫ 1

whereL2(ρ)≡ (k2ρc/φ0)
−1

■ Conclusion:

f (R)≤ α+ l2R2

2 + R
2

√

1+(l2R)2 + 1
2l2

log[l2R+
√

1+(l2R)2]

f (R)≥ α− l2R2

2 + R
2

√

1+(l2R)2 + 1
2l2

log[l2R+
√

1+(l2R)2]

Expanding inl2Rwe get:

α+R− l2R2

2 ≤ f (R)≤ α+R+ l2R2

2
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Summary and Conclusions

■ Is the cosmic speed-up driven byf (R) gravities?

■ Solar system experiments impose severe
constraints on the lagrangianf (R).

■ Non-linear contributions dominant at low
curvatures(1/R, logR, . . . ) are ruled out by
observations.

■ Viable models are almost equivalent toR−2Λ in
their late-time cosmological predictions.
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Thanks!
¡Gracias!
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