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The analysis of quantum radiation problems in curved space using

the standard formalism of Bogolubov coefficients is technically
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Motivation and Outline

■ Motivation:

The analysis of quantum radiation problems in curved space using

the standard formalism of Bogolubov coefficients is technically

difficult and non-intuitive.

■ Aim: to introduce analternative approach technically more

accessible and intuitive.

■ Outline:
◆ Part I . Hawking radiation: standard derivation.

■ Basics of quantization in curved spacetime.
■ Gravitational collapse in Vaidya spacetime.
■ Hawking radiation and the information loss problem.

◆ Part II . New approach: correlation functions.
■ Number operator in the new approach.
■ Conformal symmetry and thermal radiation.
■ Particles, energy fluxes and thunderbolts.
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Part I:

Hawking radiation: standard derivation
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Canonical Quantization in curved space

■ Consider a free, massless, scalar field,�φ = 0, and its expansion

φ(x) = ∑i aiui(x)+a†
i u∗i (x) , where(ui ,u j ) = δi j , (ui ,u∗j ) = 0.
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The splitting into positive and negative frequency solutions

depends on the symmetries of the spacetime:

■ In Minkowski ∂
∂t u j (t,~x) =−iω ju j (t,~x), ω j > 0 , t ≡ global inertial time.

■ In a generalcurved spaceno natural classification of frequencies exists.

■ In stationary spacetimesa definition is possible

ξµ∇µu j (x) =−iω ju j (x) , whereξµ∇µ≡ ∂t ≡ Killing time.
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Bogolubov transformations

In a non-stationary spacetime withtwo asymptotic stationary regions:

In the past (IN region):

φ(x) = ∑i a
in
i uin

i (x)+ain
i

†
uin

i
∗
(x)

ain
i |0〉in = 0

with ξµ
in∇µuin

j (x) =−iω juin
j (x).
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■ |0〉in is seen by anOUT observer as a multiparticle state :

Nout
j ≡ aout†

j aout
j → in〈0|Nout

j |0〉in = ∑k |βik|2

■ Changes in the geometry lead to particle production.
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■ We will assume:
◆ Perfect spherical symmetry.
◆ Unimportant details of the collapse.
◆ Other simplifications.
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■ We will assume:
◆ Perfect spherical symmetry.
◆ Unimportant details of the collapse.
◆ Other simplifications.

■ Vaidya spacetime line element:

ds2 =−
(

1− 2M(v)
r

)

dv2 +2dvdr+ r2dΩ2

solution corresponding toTvv = dM(v)/dv
4πr2 .
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Gravitational collapse in Vaidya spacetime

■ We will assume:
◆ Perfect spherical symmetry.
◆ Unimportant details of the collapse.
◆ Other simplifications.

■ Vaidya spacetime line element:

ds2 =−
(

1− 2M(v)
r

)

dv2 +2dvdr+ r2dΩ2

solution corresponding toTvv = dM(v)/dv
4πr2 .

■ Only the asymptotic regions are relevant

for particle production→ Tvv =
M0δ(v−v0)

4πr2

■ We need to solve� f = 0 in this

background.
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Quantization in Vaidya spacetime I

■ The line element can be written as:

ds2 =







−dv2 +2dvdr+ r2dΩ2 v≤ v0 Minkowski

−
(

1− 2M
r

)

dv2 +2dvdr+ r2dΩ2 v≥ v0 Schwarzschild

or in conformal gaugeas

ds2 =







−dvduin + r2
indΩ2 v≤ v0

−
(

1− 2M
r

)

dvduout + r2
outdΩ2 v≥ v0

where v−uin
2 = r in(v,uin) and v−uout

2 = rout(v,uout)+2M ln
[

rout−2M
2M

]

.
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■ Expandingf (xµ) = ∑l ,m
fl (t,r)

r Ylm(θ,ϕ) we find
(

− ∂2

∂t2 + ∂2

∂r2 − l(l+1)
r2

)

fl (t, r) = 0 v≤ v0
(

− ∂2

∂t2 + ∂2

∂r2
∗
−Vl (r)

)

fl (t, r) = 0 v≥ v0

with Vl (r) =
(

1− 2M
r

)

(

l(l+1)
r2 + 2M

r3

)
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Quantization in Vaidya spacetime II

■ NeglectingVl (r) and usingconformal coordinates:

∂v∂uin f = 0 v≤ v0

∂v∂uout f = 0 v≥ v0

since ⇒
uout = uout(uin)

∂v∂uin f = 0 all v

∂v∂uout f = 0 all v
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Particle production in Vaidya spacetime

■ To determine the number of particles we need to computeβωω′ :
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■ The main contribution comes from the near-horizon region

v≈ vH ⇔ uout→ ∞.
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■ The main contribution comes from the near-horizon region

v≈ vH ⇔ uout→ ∞.

■ Since in〈0|Nout
ω |0〉in diverges,we use wave packets instead of

plane waves:

uout
jn = 1√

ε
( j+1)ε
jε dωe2πinω/εuout
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Sensitive withinε of ω j = jε

Picked aboutuout = 2πn/ε

We need the limitn→ ∞
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ω |0〉in diverges,we use wave packets instead of

plane waves:
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jn = 1√

ε
( j+1)ε
jε dωe2πinω/εuout

ω ⇒















Sensitive withinε of ω j = jε

Picked aboutuout = 2πn/ε

We need the limitn→ ∞

■ The distribution of particles follows aPlanckian spectrum:

in〈0|Nout
jn |0〉in = 1

e8πMω j−1

THERMAL RADIATION!

atT = ~

8πkBM ≈ 10−7 M⊙
M K
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Particle production in Vaidya spacetime

■ To determine the number of particles we need to computeβωω′ :

βωω′ =−( f out
ω , f in∗

ω′ ) =− 1
2π

√

ω′
ω

vH
−∞ dve

−iω
(

v−4M ln
[

vH−v
4M

])

−iω′v

■ The main contribution comes from the near-horizon region

v≈ vH ⇔ uout→ ∞.

■ Since in〈0|Nout
ω |0〉in diverges,we use wave packets instead of

plane waves:

uout
jn = 1√

ε
( j+1)ε
jε dωe2πinω/εuout

ω ⇒















Sensitive withinε of ω j = jε

Picked aboutuout = 2πn/ε

We need the limitn→ ∞

■ The distribution of particles follows aPlanckian spectrum:

in〈0|Nout
jn |0〉in = 1

e8πMω j−1

THERMAL RADIATION!

atT = ~

8πkBM ≈ 10−7 M⊙
M K

■ The thermal nature of the radiation is a very robust result.
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■ L.Parker(1975) and R.Wald(1975)

computedρI+ → completely thermal state:

ρth = Πω(1−e−2πω/κ)∑∞
0 e−2πnω/κ|nω〉〈n|
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with another crossing the horizon and
carrying negative energy.
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Backreaction effects

■ Thermal radiationis intimately related to the relation

uin ≈ vH − e−κuout

κ , which assumes a fixed background.
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Backreaction effects

■ Thermal radiationis intimately related to the relation

uin ≈ vH − e−κuout

κ , which assumes a fixed background.

■ Backreaction effects strongly modify the evaporation process:

uin ≈ A− B
vH−uout

→ Non-thermal radiation!

A.Fabbri, D.Navarro, J.Navarro-Salas and G.J.O. , Phys.Rev.D (2003)

Extremal+matter→ Near-extremal→ Extremal+Hawking rad.
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Backreaction effects

■ Thermal radiationis intimately related to the relation

uin ≈ vH − e−κuout

κ , which assumes a fixed background.

■ Backreaction effects strongly modify the evaporation process:

uin ≈ A− B
vH−uout

→ Non-thermal radiation!

A.Fabbri, D.Navarro, J.Navarro-Salas and G.J.O. , Phys.Rev.D (2003)

Extremal+matter→ Near-extremal→ Extremal+Hawking rad.

■ The analysisof the radiation with backreaction and in

moving-mirror modelsusing the standard approach
(Bog. coefficients) is highly non-trivial and non-intuitive :

◆ Creation of particles without emission of energy?
◆ Is |0〉 invariant under conformal transformations?
◆ Is information loss related to violations of energy conservation?
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New approach: correlation functions
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Bogolubov -Vs- Correlator

■ Within the standard formalism, the Bogolubov coefficientsα andβ
are the only way to construct magnitudes such asin〈0|Nout

i |0〉in .
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outgoing particles: long-range, short-range, crossed correlations. . .



● Motivation and Outline

Hawking radiation

Correlation functions

● Bogolubov -Vs- Correlator

● Number and 2P correlator

● Example: Conformal Invariance

● Application: thermal radiation

● Moving-mirrors and fluxes

● BH and thunderbolts

● Beyond N

● Summary and conclusions

The End

Gonzalo J. Olmo UCM, September 15th, 2005 - p. 13/21

Bogolubov -Vs- Correlator

■ Within the standard formalism, the Bogolubov coefficientsα andβ
are the only way to construct magnitudes such asin〈0|Nout

i |0〉in .

■ The two-point correlators allow to "see" the correlations among the

outgoing particles: long-range, short-range, crossed correlations. . .

■ Can we determinein〈0|Nout
i |0〉in directly from the correlation

functions in〈0|φ(x1)φ(x2)|0〉in ?
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Bogolubov -Vs- Correlator

■ Within the standard formalism, the Bogolubov coefficientsα andβ
are the only way to construct magnitudes such asin〈0|Nout

i |0〉in .

■ The two-point correlators allow to "see" the correlations among the

outgoing particles: long-range, short-range, crossed correlations. . .

■ Can we determinein〈0|Nout
i |0〉in directly from the correlation

functions in〈0|φ(x1)φ(x2)|0〉in ?

■ YES!

⇒We can thus bypass the computation ofα andβ !!!
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Number of particles and two-point correlator

■ With the decomposition

φI+ = ∑[aout
j uout

j (x)+aout
j

†uout
j
∗(x)]

We construct the normal-ordered operator

: φ(x1)φ(x2) : ≡ φ(x1)φ(x2)− out〈0|φ(x1)φ(x2)|0〉out
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■ Using the scalar product( f1| f2) =−i dΣµ f1
←→
∂ µ f ∗2
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Number of particles and two-point correlator

■ With the decomposition

φI+ = ∑[aout
j uout

j (x)+aout
j

†uout
j
∗(x)]

We construct the normal-ordered operator

: φ(x1)φ(x2) : ≡ φ(x1)φ(x2)− out〈0|φ(x1)φ(x2)|0〉out

■ Using the scalar product( f1| f2) =−i dΣµ f1
←→
∂ µ f ∗2

■ Product of operators:

aout†
i aout

j = (uout
i (x1)|(uout∗

j (x2)|: φ(x1)φ(x2) :))

■ Number of particles:

in〈0|Nout
i |0〉in = 1

~
dΣµ

1dΣν
2[u

out
i (x1)

←→
∂ µ][uout∗

i (x2)
←→
∂ ν] in〈0|: φ(x1)φ(x2) :|0〉in
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Example: Conformal Invariance

■ In d-dimensional Minkowski space, aconformally invariant field

theorysatisfies:

in〈0|φ(y1)φ(y2)|0〉in =
C

|y1−y2|2∆

in〈0|φ(y1)φ(y2)|0〉in =

∣

∣

∣

∣
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∣

∣
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∣

∣

∣
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∣
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in〈0|φ(x1)φ(x2)|0〉in
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Example: Conformal Invariance

■ In d-dimensional Minkowski space, aconformally invariant field

theorysatisfies:

in〈0|φ(y1)φ(y2)|0〉in =
C
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in〈0|φ(x1)φ(x2)|0〉in

■ Normal-ordered two-point function

: φ(x1)φ(x2) : ≡ φ(x1)φ(x2)− out〈0|φ(x1)φ(x2)|0〉out

in〈0|: φ(x1)φ(x2) :|0〉in ≡
∣

∣

∣

∂y
∂x

∣

∣

∣

∆/d

x1

∣

∣

∣

∂y
∂x

∣

∣

∣

∆/d

2

C
|y(x1)−y(x2)|2∆ − C

|x1−x2|2∆

It vanishes for Conformal Transf.⇒ in〈0|Nout
i |0〉in = 0.
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It vanishes for Conformal Transf.⇒ in〈0|Nout
i |0〉in = 0.

■ Sincein〈0|Nout
i |0〉in = ∑k |βi j |2 thenβi j should vanish for all

Conformal Transformations.For Special C.T. this is not trivial.
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Application: thermal radiation

■ In 2D the number of particles can be expressed as:

in〈0|Nout
k |0〉in =− 1

π
∞
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■ In 2D the number of particles can be expressed as:

in〈0|Nout
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∞
−∞ dx1dx2uk(x1)u∗k(x2)

[

y′(x1)y′(x2)
[y(x1)−y(x2)]2

− 1
(x1−x2)2

]

■ Inserting y(x)≈ xH − e−κx

κ and usinguω(x) = 1√
4πω

e−iωx :

Nω1ω2 =− +∞
−∞ dx1dx2

e−iω1x1+iω2x2

4π2√ω1ω2

[

κ2e−κ(x1−x2)

(e−κ(x1−x2)−1)2 − 1
(x1−x2)2

]
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[
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■ A change of variablez± = x1±x2 allows to make one integral:

Nω1ω2 =− δ(ω1−ω2)
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κ2e−κz−

(e−κz−−1)2 − 1
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1

[
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]

■ Inserting wave packets we find:Ni j ≈ δi j
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■ Other magnitudes require the use of all the correlators:
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~

∑i e
− πωi

κ c†
i b†
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Ce−Cx ⇒ THERMAL
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◆ Birrell-Davies,[Cambridge Univ.Press(1982)]

⇒ steady flux of particles alongx > 0
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■ The discontinuity of the liner = 0, due to

H+ and the singularity, causes:
◆ Information loss.
◆ Violation of energy conservation.
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Thunderbolt

■ The evaporation yields

Minkowski space as the

end-point geometry.

■ By propagating backwardsy1 andy2 we

getx1 andx2.

■ The normal-ordered two-point correlator:
x′(y1)x′(y2)

[x(y1)−x(y2)]2
− 1

(y1−y2)2

diverges asy1→ y2 leading to a

thunderbolt.

■ The discontinuity of the liner = 0, due to

H+ and the singularity, causes:
◆ Information loss.
◆ Violation of energy conservation.

■ Though the black hole contains a finite

amount of energy,the emission of a

thunderbolt, which is a purely topological

effect,breaks the consistency of the

semiclassical approach.
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Beyond the number of particles
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■ In expectation values only the "OUT" indices are free. The "IN"

indices are always summed over.
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Summary and conclusions

■ We have studied quantum radiation problems from two different

approaches:
◆ Standard formalism ofBogolubov coefficients.
◆ New approach usingcorrelation functions.
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Summary and conclusions

■ We have studied quantum radiation problems from two different

approaches:
◆ Standard formalism ofBogolubov coefficients.
◆ New approach usingcorrelation functions.

■ The standard formalism
◆ Difficult application and interpretation.
◆ Obscure manifestation of the symmetries.
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Summary and conclusions

■ We have studied quantum radiation problems from two different

approaches:
◆ Standard formalism ofBogolubov coefficients.
◆ New approach usingcorrelation functions.

■ The standard formalism
◆ Difficult application and interpretation.
◆ Obscure manifestation of the symmetries.

■ The use ofcorrelators
◆ Simplifies some technicalities and allows for anintuitive

interpretation of the process of particle creation and emission

of energy fluxes.
◆ Clear implementation of the symmetries.
◆ Allows to detectlocalized fluxes of particles and energy.
◆ Indicates thatinformation loss and violation of energy

conservation are intimately related.
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Thanks !!!

¡Gracias!!!
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