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Abstract
In this paper, we analyze a team trust game with coordinated

Q1

punishment of the allocator by investors and where there is
also a final stage of peer punishment. We study the effect
of punishment on the reward and the investment decisions,
when the effectiveness and cost of coordinated punishment
depend on the number of investors adhering to this activity.
The interaction takes place in an overlapping-generations
model with heterogeneous preferences and incomplete in-
formation. The only long-run outcomes of the dynamics are
either a fully cooperative culture (FCC) with high levels of
trust and cooperation and fair returns or a non-cooperative
culture with no cooperation at all. The basin of attraction
of the FCC is larger, the higher the institutional capacity
of coordinated punishment, the higher the level of peer
pressure and the smaller the individual cost of coordinated
punishment.
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2 Journal of Public Economic Theory

1. Introduction

A well-known salient feature of modern market economies is the huge quan-
tity of mutually beneficial transactions that take place regularly in one-shot
and anonymous interactions. Field and laboratory experiments show signifi-
cant levels of trust and cooperative behavior in this class of games even when
cooperative behavior is costly.

Both experimental evidence1 and recent theoretical work2 from anthro-
pology and evolutionary theory show that individually costly cooperative be-
havior can be sustained by costly punishment. However, from our point of
view there are two important weaknesses in most of the existing models on
punishment and in the experimental work performed on this issue. On the
one hand, current models and experiments usually assume that punishment
is carried out on an individual basis, that is, it is uncoordinated. Neverthe-
less, this way of modelling punishment is quite unrealistic because most of
the punishment exerted in real-life situations is coordinated. For instance, a
minimum number of punishers is needed in order to obtain effective pun-
ishment in a strike or in a boycott.

On the other hand, the other weakness in most of the experimental lit-
erature on the role of punishment is that it has focused on symmetric team
or group situations such as public goods games. But there have been very
few studies on the impact of punishment on asymmetric economic games
based on specialization and on the division of labor such as, for instance, the
principal-agent relationship, the hold-up game, or in general any sequential
transaction between a seller and a buyer.

A well-known social dilemma that captures these asymmetric economic
games in a bilateral situation is the trust or investment game. One player (the
investor) has the option of investing or not investing in a project which is
administered by the other player (the allocator). Investing results in a higher
joint surplus, but the allocator controls the proceeds of investment.

Many real-life economic situations are trust games with a team of in-
vestors. Moreover, punishment itself is also a team decision problem. The in-
vestors’ capacity for punishment in this situation is endogenous, depending
on the number of investors adhering to this activity. A prominent example
of what we will denote as a team trust game appears in the labor market. In
many employment relations, a group of employees is hired by a single em-
ployer (the firm). The labor contract in these cases is highly incomplete and
it usually assigns significant authority to the employer. This asymmetric dis-
tribution of decision rights puts the other side, the employees, in danger of
being exploited, leading to inefficiency if they refuse to cooperate.

1 See for example, Fehr and Gächter (2000, 2002), Gächter, Renner, and Sefton (2009),
Yamagishi (1986), Hauert et al. (2007).
2 See for example Henrich et al. (2006) and Boyd et al. (2003).
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Coordinated Punishment 3

In this paper, we analyze a team trust game with coordinated punish-
ment of the allocator by the investors and where we also add a final stage
of peer punishment. In addition to institutions and the law, the ability of
different groups to overcome the collective action problem is at the core of
almost any form of coordinated punishment and seems crucial for the ef-
fectiveness of punishment. In the previous labor market example punishing
the firm is very costly and highly ineffective for an individual or a small group
of workers. However, if the workers succeed in reaching a threshold in the
number of punishers, the damage inflicted to the firm can be very large and
the individual cost of coordinated punishment can be relatively low.

The empirical literature on collective action3 agrees on two important
factors that affect the likelihood of successful collective action: the possibility
of peer punishment and the heterogeneity of preferences in the population.

Regarding the first factor, notice that punishment itself is a public good
among investors and it is also subject to free-riding behavior. Peer punish-
ment or peer pressure is targeted at those individuals who free-ride in the
phase of coordinated punishment of the allocator. Concerning the hetero-
geneity of preferences, we assume that there are two types of investors: selfish
individuals and conditional punishers or reciprocators. The former are only
motivated by their absolute material payoff. The latter are willing to punish
an unfair return offered by the allocator provided the cost of punishing is low
enough and/or to punish the free-riding behavior of their teammate. There
are also two types of allocators: selfish (profit-maximizers) and fair-minded
allocators who always set a fair return.

To assume a heterogeneity of preferences is quite standard nowadays,
but our main assumption is that preferences are endogenous, that is the
distribution of preferences in both populations evolves over time. Different
forces govern the evolution of preferences in both populations. The dynam-
ics of the allocator population is driven by market forces: profits. But the
dynamics in the investor population is governed by a cultural transmission
process that combines intentional and costly parental (direct) transmission
with influence from society at large. If we keep in mind the example of firms
and workers, our assumptions on the dynamics that governs each population
seems a good approximation to actual societies.

We are especially interested in the influence of punishment institutions
on the long-run distribution of preferences and behavior, particularly in the
punishment coordination problem. In our model, these institutions are on
the one hand the capacity to collectively punish the allocator and the cost of
coordinated punishment and on the other hand the level of peer pressure.
However, it is important to notice that for the punishment to be effective,
not only laws and institutions (exogenous to the individual) are needed but

3 See for example, Ostrom (1990, 2000)



jpet12090 W3G-jpet.cls February 20, 2014 13:8

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

4 Journal of Public Economic Theory

also the willingness of these individuals to incur the costs of implementing
the punishment.

We present an overlapping-generations dynamic model to analyze this
team trust game with coordinated punishment. We denote as culture any
stable steady state of the dynamics where the same equilibrium of the team
trust game is played.

Our main results are the following. Although some other different equi-
libria can appear in the short-run where punishment is observed and/or un-
fair returns are offered and are not punished, the only long-run outcomes
of our dynamics are either a fully cooperative culture (FCC) with high lev-
els of trust and cooperation and fair returns or a non-cooperative culture
(NCC) with no cooperation at all. In the FCC, cooperation is achieved under
the credible threat of effective coordinated punishment. Precisely because of
that there is no punishment observed in equilibrium. The credibility of pun-
ishment is supported by a relatively high proportion of reciprocators in the
investor population. By contrast, in the NCC the threat of coordinated pun-
ishment is not credible at all because there is a low proportion of punishers
in the investor population. As a result there are low levels of cooperation and
efficiency.

The FCC is only feasible for high values of the institutional capacity of
coordinated punishment, and therefore cooperation evolves only if the law
allows for a sufficiently high punishment capacity in society.

But the law and institutions to punish opportunistic allocators are not
enough. The main determinant of the basin of attraction of the FCC is a
sufficiently high level of peer pressure relative to the individual cost of co-
ordinated punishment targeted at the allocator. High peer pressure and,
therefore, institutions that favor it have a strong impact on the feasibility
of effective coordinated punishment and consequently on the levels of coop-
eration and efficiency. This result can explain the importance of belonging
to organizations or clubs where peer pressure is more easily exerted, like a
union for example. But this is not the only example. For instance, belonging
to a community or a gang increases the damage inflicted by the group on
the free-rider.

The intuition behind our main results is the following. Strong punish-
ment institutions, related to coordinated punishment and to peer punish-
ment, increase the effectiveness of punishment in the short run. But they
also increase the incentives to socialize on preferences that display nega-
tive reciprocity. This in turn will increase the effectiveness of punishment
of future generations because of the presence of a larger proportion of pun-
ishers in the population. This might happen both because it increases the
probability of having a punisher as a teammate and also because the individ-
ual expected cost of coordinated punishment diminishes. For a sufficiently
high proportion of punishers, and provided the level of peer pressure is high
enough, even selfish investors are willing to punish unfair return offers by the
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Coordinated Punishment 5

allocator. Hence, the credibility of the threat of punishment is the highest,
and provided the capacity of punishment of the team is high enough, both
types of allocator prefer to set fair returns. If society reaches this situation,
both types of investor lose their incentives to actively socialize their children.
Society has reached a FCC.

However, if society starts in a distribution with a low proportion of pun-
ishers, the above logic works exactly in the opposite direction and society will
get stuck in a very inefficient outcome.

Our paper is related to two important strands of literature. First, the ex-
perimental analysis of so called altruistic punishment that starts with Fehr
and Gachter (2000, 2002) and produces an impressive amount of evidence
(see for example, Falk, Fehr, and Fischbacher 2005). All this evidence poses
an important question for theoretical literature: how altruistic punishment
can evolve in a large society where repeated game effects are negligible. This
issue has been addressed from an evolutionary dynamics approach (see for
instance, Sigmund et al. 2010). It would take us too long to review the vast
experimental and evolutionary literature on punishment. To the best of our
knowledge, the only work on coordinated punishment is by Boyd, Gintis,
and Bowles (2010), who analyze a public goods game. Punishment is coor-
dinated in the sense that it is contingent on the number of others predis-
posed to participate, and it shows increasing returns of scale (the individ-
ual cost of punishment decreases at an increasing rate with the number of
punishers). The main difference with our work, apart from the fact that we
analyze a team trust game, is that those authors assume that punishment
is equally effective whatever the number of participants is. Instead, we as-
sume that punishment is effective only if a minimum number of individuals
participate.

Finally, our paper is closely related to the literature on cultural transmis-
sion and socialization (Bisin and Verdier 2000, 2001), and more particularly,
to the work on the endogenous determination of preferences and its inter-
action with institutions. For instance, Huck and Kosfeld (2007) in an evo-
lutionary model analyze how what they call weak institutions interact with
preferences for punishment. As in our approach, institutions and the law
are only effective if individuals are willing to engage in an individually costly
implementation of these tools. Our paper differs from theirs in three main
aspects: they analyze a public goods game, punishment is not coordinated,
and they use a replicator-like dynamics.

The paper is organized as follows: In the next section we present the
model. In Section 3, we introduce social preferences. In Section 4, we show
the punishment and rewarding policy of the players. In Section 5, we com-
pute the equilibria of the team trust game played by each generation. In
Section 6, we present the dynamics of the model. In Section 7, we obtain the
cultures in the long run. And finally Section 8 concludes.
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6 Journal of Public Economic Theory

2. The Team Trust Game with Coordinated Punishment

We consider a strategic situation in which a team of investors, composed
of two players randomly drawn from a continuum of investors of mass 2, is
matched with an allocator, randomly drawn from a continuum of allocators
of mass 1, to play the following sequential game.

In the first stage, called the investment phase, both investors have to de-
cide simultaneously and independently whether to invest in a project (action
I ) or not (action N I ). If both investors choose to participate in the project,
a joint surplus of size 2 is produced. Otherwise, if just one or both investors
decide not to invest, no surplus is produced. In this latter case, we assume
that the game ends and all players obtain a payoff of zero. We suppose that
the gross gain per investor is 1 and that investment has a cost c ∈ (0, 1/2)
and that not investing is costless.

In the second stage, the rewarding phase, the allocator (she), after ob-
serving a surplus of size 2, has to set a payoff b to each investor (he), where
0 ≤ b ≤ 1. As we are interested in symmetric outcomes, we will assume that
the allocator will pay the same reward b to both investors.

In the third stage, the coordinated punishment phase, the investors have
to decide simultaneously whether to punish the allocator (action p ) or not
to punish (action np ). Only if both investors choose to punish, a proportion
λ of the payoff obtained by the allocator is destroyed, where 0 < λ ≤ 1. But
if just one or neither of them decides to punish, then there is no surplus
destruction. Therefore, punishment is only effective if both investors choose
to punish.

We assume that choosing to punish is costly, but its cost depends on the
number of investors that adhere to this activity. In particular, we suppose
that if only one member decides to punish, he has to bear all the cost z > 0
of the (ineffective) punishment. But if both members choose to punish, the
individual cost of (effective) punishment reduces to z/2. This simple model
with only two actions captures a crucial feature of coordinated punishment:
the existence of a threshold on the number of participants in the punish-
ment activity that affects in a discontinuous way both its effectiveness and
its individual cost. Only if the team succeeds in reaching this threshold, the
damage caused to the allocator can be large enough and the individual cost
of punishing can be lower than the cost of ineffective punishment.

Finally, the fourth stage is the peer punishment phase. If the coordinated
punishment of the allocator has not succeeded because of the defection of
a teammate, then the nondefecting investor now has the option of punish-
ing the defecting mate at some cost. We assume that this peer punishment
creates a loss in the utility of the punished mate of size γ .

Some comments on the institutional parameters that characterize the co-
ordinated punishment of the allocator and peer punishment are in order. In
a labor market context, λ would be the punishment that the team of workers
could inflict on the firm. This depends on the workers’ capacity for money
burning (sabotage, strikes, . . . ), which in turn might depend on the workers’
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Coordinated Punishment 7

degree of unionization, their ability to organize collectively, their legal rights
in society, etc . . . It might also differ across different types of jobs depending
on the strategic position of the worker in the production process. Parameter
λ can also be interpreted as the maximum punitive sanction that the legal
system provides an agent with in order to punish the opportunistic behavior
of the other party when the punisher is not able to recover the full cost of
his investment (see Dufwenberg, Smith, and Van Essen 2011).

Concerning the peer punishment phase, parameter γ is our measure
of the level of peer pressure. We think that it captures a realistic feature of
labor markets in which some workers punish the strike-breaking behavior of
other coworkers and this is an important constraint of the behavior of many
organizations (unions, communities, clubs, churches).

Suppose now that all players have self-regarding preferences and there is
complete information. We can obtain the subgame perfect equilibrium solv-
ing the game by backward induction. In the last subgame, selfish investors
will never punish either individually or collectively because it is costly and
does not increase their payoff. Given that the allocator will not be punished,
she will offer the investors a reward b = 0 and therefore the optimal action
for them will be to choose not to invest. This is a very inefficient outcome in
which all players obtain a payoff of zero.

In this paper, we will assume that there is a heterogeneity of preferences
and that in addition to self-regarding people, there is also a significant frac-
tion of the population that exhibits social preferences. In the next section,
we introduce this type of preference.

3. Social Preferences: Reciprocal Altruism

Overwhelming evidence generated by laboratory experiments and also ev-
eryday experience, suggests that motives of fairness and reciprocity affect the
behavior of many people. By reciprocity we mean the willingness to reward
friendly behavior and the willingness to punish hostile behavior.

In each period t , there is a certain proportion qt of investors with recip-
rocal preferences in the population of investors and a remaining proportion
(1 − qt ) of individuals with selfish preferences. We suppose that reciprocal
investors (reciprocators) are willing to punish “unfair” offers provided that
the cost z is low enough. This kind of player will also punish a teammate who
has failed to punish the allocator for an unfair reward.

Reciprocal investors are punishers because they are concerned not only
with their monetary payoff but they also aspire to get a fair return compared
to the allocator’s payoff, and hence any return smaller than what is con-
sidered a fair reward will generate disutility for them. We assume that the
fair return4 is b = 1/2 and that the disutility derived from getting a reward

4 Here, we assume that a fair reward is b = 1/2, but the results do not change qualitatively
if we allow for another “fair” or aspiration reward smaller or greater than 1/2.
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8 Journal of Public Economic Theory

smaller than 1/2 is proportional (captured by the parameter α ≥ 1) to the
distance between this fair reward and a smaller actual reward offered by the
allocator. This is similar to the inequity aversion preferences of Fehr and
Schmidt (1999), when players face a disadvantageous inequality. For exam-
ple, if both investors decide to invest in the project, and they also decide to
coordinate in punishing the allocator, the utility of a reciprocal investor is
given by: (b − z/2 − c) − α[(1 − b)(1 − λ) − b] for any b < 1/2.

On the other hand, in each period t there is a proportion of “fair-
minded” agents (p t ) in the population of allocators and a remaining pro-
portion (1 − p t ) of profit maximizers. The fair-minded allocators are very
generous in compensating the team of investors. Namely, setting a reward of
b = 1/2 to each investor is a dominant action for them.

Note that players do not know the true type of player with whom they are
matched in period t . In particular, the allocator does not know the true com-
position of the team and the members of the team do not know either the
type of his teammate or the type of allocator. However, we will assume that
the preferences distribution qt or p t in both groups are common knowledge.

4. The Punishment and Rewarding Policy

In this section, we will begin to solve the sequential game by backward in-
duction. First of all, we will make three assumptions about the relationship
among the parameters that characterize the punishing institutions. These as-
sumptions guarantee that both types of punishment—coordinated and peer
punishment—are chosen at least under some circumstances.

ASSUMPTION 1: z ≤ αλ.

This is a very straightforward assumption which simply states that recip-
rocators are conditional punishers. The reason is that by successfully punish-
ing the allocator, a reciprocator reduces inequality with respect to the latter
and this positive effect on her utility, αλ, more than compensates for the
reduction in his material payoff z. If this assumption does not hold, then
there will be no difference between the behavior of a selfish and a reciprocal
investor and the analysis will be of no interest.

ASSUMPTION 2: z/2 < γ.

Assumption 2 states that peer pressure is effective, at least under some
conditions. The individual cost of a successful coordinated punishment of
the allocator is strictly smaller than the damage inflicted by peer punish-
ment. Otherwise, a selfish investor will never participate in the coordinated
punishment of the allocator, even if he knows for sure that his teammate is a
reciprocal investor who is going to punish him.
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Coordinated Punishment 9

ASSUMPTION 3: λ ≥ 0.5.

Assumption 3 states that coordinated punishment has a sufficient impact
on the behavior of the selfish allocator. If λ < 0.5, the allocator would prefer
to offer a reward of zero rather than a “fair” reward (b = 1/2), even if she
knew for sure that the team was going to punish her. In Section 8 we will
comment on how the results change when some of these assumptions do not
hold.

4.1. Peer Punishment in the Team

In the last stage of the game, each team member has to decide whether to
use peer punishment against the other teammate, at a positive cost. A selfish
investor will never exert costly peer punishment because it does not increase
his payoff, and there is no additional stage to punish non-peer-punishers.

On the other hand, a reciprocal investor dislikes disadvantageous in-
equality with his teammate and will punish a teammate who has free-ridden
in the previous coordinated punishment stage. This will hold whenever the
damage inflicted on the defector γ is sufficiently high compared with the
cost of doing so, because the action of peer punishment reduces inequality
with the defecting teammate.5

Moreover, a reciprocal investor that has not exerted coordinated pun-
ishment will not use peer punishment either. The reason is that if the team-
mate has not punished the allocator, then there is no inequality between the
members of the team. And if his teammate has chosen the action of punish-
ing the allocator, as the coordinated punishment has not been effective, then
the defecting investor would get advantageous inequality compared with his
teammate.

In order to reduce the complexity of the analysis we do not incorporate
the term concerning inequality with the teammate into the utility function
of the reciprocal investor and we normalize the cost of peer punishment to
zero.6 Instead, in the rest of the paper we assume the result derived from the
previous discussion: only a reciprocal investor who has chosen the action of
punishing the allocator and finds out that his teammate has been a defector
will choose peer punishment.

4.2. The Coordinated Punishment Subgame

In this section, we derive the Bayesian equilibria of the coordinated punish-
ment phase of the sequential game played in each period. We will charac-
terize team behavior in this subgame, anticipating the behavior of players in
the peer punishment phase described in Section 4.1.

5 Let θ be the cost of peer punishment then, the condition is θ ≤ (α/(1 + α))γ.
6 This normalization does not affect qualitatively any of the results.
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10 Journal of Public Economic Theory

We denote μ as the updated probability of facing a reciprocal type of
investor after a history in which both investors have chosen to invest, that is,
μ = Prob(r/(I, I )), where r stands for reciprocal type.

Any coordinated punishment subgame is characterized by a belief μ and
a reward b set by the allocator. Therefore, we will denote this subgame by
CP(μ, b). We represent the (symmetric) Bayesian Nash equilibria (BNE) of
this subgame by profiles (x, y), where the first term represents the action of
the reciprocator type and the second the action of the selfish type.

Notice that if b ≥ 1/2, the unique BNE of CP(μ, b) for any μ is (np , np ),
since no type of investor uses any sort of punishment.

The following proposition shows the solution of the CP(μ, b) for “un-
fair” rewards.

PROPOSITION 1: If assumptions 1 and 2 hold and b < 1/2, the solution of any
subgame CP(μ, b) is:

(i) (np,np) for any μ < μ∗(b) = z
z/2+αλ(1−b)+γ

,

(ii) (p,np) for any μ ∈ [μ∗(b), μ = z
2γ

),

(iii) (p,p) for any μ ∈ [μ = z
2γ

, 1].

Proof: See Appendix. �

Notice that, for μ < μ∗(b), no type of investor is willing to punish. In
fact the profile (np , np ) is the unique BNE.

If μ ∈ [μ∗(b), μ), that is, if the proportion of reciprocators is high
enough but not very high, only the reciprocators punish while the selfish
members of the team will not punish. This bound μ∗(b ; α, λ, z, γ ) is increas-
ing in z and b and decreasing in λ, α, and γ.

A selfish investor will participate in the punishment of the allocator
when ( b − z/2) ≥ b − μγ , that is, if μ ≥ z

2γ
. Hence, the selfish investor will

also punish the allocator as the probability of having a reciprocal mate is
high enough. Therefore, for μ ≥ μ, both types of investors will punish the
allocator.

Notice that there is a multiplicity of equilibria in this subgame and we
have made an equilibrium selection, choosing for each μ the equilibrium
with the highest probability of punishment. In particular, the profile (np ,np )
is a BNE for all μ. If we select this equilibrium for all μ, we will obtain the
inefficient outcome of no cooperation as if the game were played without
punishment. Clearly, the analysis would be uninteresting. Note also that the
profile (p , np ) is a BNE for μ ∈ [μ∗(b), μ̃ = z

z/2+γ
) and the profile (p , p ) is a

BNE for μ ∈ [μ, 1]. Therefore, as μ < μ̃, for μ ∈ [μ, μ̃], there are two BNE,
but we assume that the BNE (p,p) is selected. We will discuss the effects of
selecting the equilibrium (p , np ) in the next section.

We now turn to the optimal rewarding policy of selfish allocators.
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Coordinated Punishment 11

4.3. The Rewarding Policy of a Selfish Allocator

Notice first that the return policy of a fair-minded allocator does not change
when there is incomplete information. However, the rewarding policy of a
selfish allocator is indeed affected by the proportion of reciprocators in the
investor population. From now on we will denote the offer of the selfish
allocator by bs and the offer of the fair-minded allocator by b f .

It is obvious that when the allocator sets b = 1/2, she will not be pun-
ished by any type of investor and her payoff will be 1.

The optimal return policy of the selfish allocator will depend, basically,
on the comparison between the expected cost of being punished and the
cost of avoiding punishment, that is, the minimum reward at which no type
of investor will punish. The expected cost of punishment will depend on
the proportion of reciprocators in the investor population μ and the equi-
librium played in the coordinated punishment game. In other words, the
selfish allocator has two options: (i) to offer a low return bs such that there
is punishment, and it is easily proven that in that case, the best return is to
offer bs = 0, or (ii) to offer a sufficiently generous reward bs > 0 to avoid the
coordinated punishment of the team.

We describe the optimal reward policy of the selfish allocator with the
following lemmata:

LEMMA 1: For any μ < μ∗(0) = z
αλ+γ+z/2 , the selfish allocator will set bs = 0.

Proof: Note that for any given μ̂ < μ∗(0), then μ̂ < μ∗(b), ∀b < 1/2, which
implies that the BNE of CP(μ, b) is (np , np ). Thus, if the selfish allocator
offers bs = 0, she will not be punished and her payoff will be 2. �

Note that μ∗(0) is the maximum proportion of reciprocators in the in-
vestor population such that both types of investors do not punish at bs = 0.

When the proportion of reciprocators is so low that no type of investor pun-
ishes, the expected cost of being punished is zero and thus the selfish alloca-
tor prefers to offer the lowest return bs = 0.

LEMMA 2: For any μ such that μ∗(0) < μ < μ∗(0.5) = z
(α/2)λ+γ+z/2 , there is a

reward b̂(μ), such that μ∗(̂b) = μ, where 0 < b̂(μ) = q (αλ+γ+z/2)−z
qαλ

< 1/2. The
optimal reward policy of the selfish allocator is unique and it will be one of the follow-
ing: bs = 0 or bs = b̂(μ).

Proof: See Appendix. �

Notice that bs = b̂(μ) is the minimal reward for a given μ such that re-
ciprocators do not punish. In this case, the allocator has to choose between
setting bs = b̂(μ) and avoiding punishment or setting bs = 0 and being pun-
ished only by the reciprocators with an expected cost of μ2λ. Recall that for
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12 Journal of Public Economic Theory

this range of values of μ7 only the reciprocators choose to punish any offer
b < 1/2.

LEMMA 3: For any μ such that μ = z
2γ

> μ > μ∗(0.5), the selfish allocator sets

bs = 0 if μ < μ′ = 1√
2λ

and sets bs = 1/2 if μ ≥ μ′.

For this range of values of μ the reciprocators choose to punish any
offer b < 1/2 and the only way to avoid punishment is to offer b = 1/2. Then
for the selfish allocator the cost of avoiding punishment is 1 (offering bs =
1/2) and the cost of being punished is 2μ2λ (offering bs = 0). Therefore,
the optimal reward policy depends on a critical value μ′, which comes from
comparing both of the previous expressions. Notice that μ′ > 1 only when
λ < 0.5. Therefore, in this case, the optimal reward policy is to set bs = 0 for
all μ.

LEMMA 4: For all μ ≥ μ = z
2γ

and λ ≥ 0.5, the optimal return for the selfish
allocator is to set bs = 1/2.

This result is due to the fact that in this range of values of μ, the BNE
of the coordinated punishment phase is (p , p ), by which both types of in-
vestors do punish if the allocator offers bs < 1/2. Therefore, the allocator
has a cost of λ of being punished if she offers bs < 1/2, while the cost of
avoiding punishment is 1/2 by setting bs = 1/2.

Recall that under Assumption 3, λ ≥ 0.5. However, if λ < 0.5, the opti-
mal reward policy would be bs = 0.8

5. Equilibria within a Generation

We are now ready to obtain the equilibria of the whole team trust game.
To begin with, we characterize the efficient or cooperative equilibria. All
types of investors choose to invest in the project, there is no punishment in
equilibrium and, therefore, there is no surplus destruction. In these pooling
equilibria, q = μ = Prob(r/(I, I )). The difference among the various equilib-
ria that might exist is the reward chosen by the selfish allocator.

PROPOSITION 2: The fully cooperative equilibrium (FCE) with bs = 1/2.
If λ ≥ 0.5 and for qt ≥ min{q = z

2γ
, q ′ = 1√

2λ
} and any p t , there is a pooling

equilibrium in which both types of investors choose to invest, both types of allocators set
b = 1/2 and no punishment is observed in equilibrium.

7 The particular values of μ for which the first policy or the second one is optimal, depends
on the particular location of the roots of the cubic equation z = μ(αλ + γ + z/2) − αλ2μ3,

as it is explained in the Appendix.
8 If we select in the interval [μ, μ̃] the BNE (p , np ) instead of the BNE (p , p ), lemmata 3
and 4 still hold simply replacing μ with μ̃.
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Coordinated Punishment 13

Proof: Suppose λ ≥ 0.5, by Lemma 4 the selfish allocator will set bs = 1/2 if
qt ≥ q and by Lemma 3, if qt ≥ q ′. Therefore, this pooling equilibrium exists
whenever qt ≥ min(q = z

2γ
, q ′ = 1√

2λ
). The payoff for any team member is

1/2 − c and any type of allocator gets a payoff of 1. By Proposition 1, there is
no punishment in equilibrium. �

This equilibrium is supported by the credible threat of coordinated pun-
ishment if the allocator sets a return of b < 1/2. This can only happen with
a relatively high fraction of reciprocal investors. Given this high proportion,
even the selfish investor will punish unfair offers, fearing peer punishment.
As a consequence, the selfish allocator will also set bs = 1/2, there is no pun-
ishment and both types of investors invest. This result is driven by the fact
that the high number of reciprocators in this equilibrium increases the prob-
ability of having a reciprocal teammate. Therefore, the cost of coordinated
punishment is reduced to z/2, and the possibility of suffering peer punish-
ment in the case of a defection increases.

Notice that the FCE does not exist for λ < 1/2. This is because selfish
allocators would choose bs = 0 and there would be punishment.

PROPOSITION 3: The cooperative equilibrium with bs = b̂ > 0. If q ∗(0.5) ≥
qt ≥ q ∗(0) and p t ≥ p ′(q , λ, α, c , z), there is a pooling equilibrium in which both
types of investors choose to invest, where q ∗(0.5) = z

(α/2)λ+γ+z/2 , q ∗(0) = z
αλ+γ+z/2 ,

p ′ = c−(̂b−α(1−2̂b))
0.5−(̂b−α(1−2̂b))

, and b̂ = q (αλ+γ+z/2)−z
qαλ

. Profit maximizing allocators set bs =
b̂ < 1/2 and fair-minded allocators set b f = 1/2. No punishment is observed in equi-
librium.

Proof: If qt ∈ [q ∗(0), q ∗(0.5)] the selfish allocators set bs = b̂ < 1/2, by
Lemma 2. A selfish investor will invest when the following condition holds:
p t (0.5) + (1 − p t )̂b − c ≥ 0. That is, if p t ≥ c−b̂

0.5−b̂
.

The condition for a reciprocal investor is: p t (0.5) + (1 − p t )[̂b − α(1 −
2̂b) − c ≥ 0. That is, if p t ≥ c−(̂b−α(1−2̂b))

0.5−(̂b−α(1−2̂b))
. This latter is the binding condi-

tion. The payoff of the fair-minded allocator is 1 and the expected payoff of
the selfish allocator is 2(1 − b̂). By Proposition 1, there is no punishment in
equilibrium. �

In this equilibrium, the selfish allocator offers bs = b̂ < 1/2, the mini-
mal reward such that reciprocators do not punish. This reward depends on
the proportion of reciprocal investors in the population. It is worth choos-
ing investment for both types of investors if the proportion of fair-minded
allocators is high enough, in particular, if it is greater than a critical value
p ′(q , λ, α, c , z).
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14 Journal of Public Economic Theory

PROPOSITION 4: The cooperative equilibrium with bs = 0. If qt ≤ q ∗(0) and
p t ≥ p ′′(c , α) = α+c

α+0.5 , there is a pooling equilibrium in which both types of investors
choose to invest. Profit maximizing allocators set bs = 0 and fair-minded allocators set
b f = 1/2. No punishment is observed in equilibrium.

Proof: If qt < q ∗(0) the selfish allocators set bs = 0, by Lemma 1. A self-
ish investor will invest when the following condition holds: p t (0.5) − c ≥ 0.

That is, if p t ≥ 2c . The condition for a reciprocal investor is: p t (0.5) + (1 −
p t )(−α) − c ≥ 0. That is, if p t ≥ α+c

α+0.5 . The latter is the binding condition.
The payoff of the fair-minded allocator is 1 and the payoff of the selfish

allocator is 2. �

In this equilibrium, the proportion of reciprocators is so low that it is
not worthwhile for them to punish for any reward and the selfish allocator
anticipating this behavior sets the lowest possible return, bs = 0. However,
both types of investors decide to invest due to the very high proportion of
fair-minded allocators.

Next, we switch to the inefficient or non-cooperative equilibria of the
team trust game. In these equilibria either one or both types of investors do
not invest or, even if both choose to invest, there is punishment and thus
surplus destruction, with positive probability.

PROPOSITION 5: The non-cooperative equilibrium (NCE). For every qt and p t ,
there is an inefficient pooling equilibrium in which both types of investors choose not to
invest.

The proof is straightforward and is left to the reader. Just notice that
the equilibrium payoff for all types of players is 0 and there is no profitable
deviation of investors.

Next, we characterize separating equilibria in which just one type of in-
vestor chooses the efficient action of investing.

PROPOSITION 6: The inefficient separating equilibrium (ISE). For any (qt ,

p t ) such that c+α(1−qt )
(1−qt )(α+0,5) ≥ p t ≥ 2c

1−qt
, there is an ISE in which the selfish investor

chooses to invest in the project whereas the reciprocator chooses not to invest. Profit
maximizing allocators set bs = 0 and fair-minded allocators set b f = 1/2.

Proof: The incentive compatibility constraint for the selfish investor is (1 −
qt )p t (0.5) − c ≥ 0. That is, p t ≥ 2c

1−qt
. The constraint for a reciprocal investor

is 0 ≥ (1 − qt )[p t (0.5) + (1 − p t )(−α)] − c . That is, p t ≤ c+α(1−qt )
(1−qt )(α+0,5) . The

set of pairs (qt , p t ) that satisfies both incentive compatibility constraints is
not empty. The expected payoff of the selfish allocator is 2(1 − qt )2, while
the expected payoff of the fair-minded allocator is (1 − qt )2. �
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Coordinated Punishment 15

In this equilibrium, surplus is generated with probability (1 − q )2, which
is the probability of the team being composed of two selfish investors. Note
that, paradoxically, selfish team members choose the efficient action while
reciprocators do not. Selfish investors invest because of the presence in so-
ciety of a significant fraction of fair-minded allocators who pay high returns,
and reciprocal investors choose not to participate in the project because of
the presence of a significant fraction of selfish allocators who pay low returns.
This explains why this equilibrium only exists for an intermediate range of
values of p .

There is another separating equilibrium in which, in contrast to the pre-
vious case, the reciprocators invest and the selfish types do not. However, this
equilibrium only exists for a degenerate distribution of preferences, q = 2c .
We will not take into account this equilibrium in the main text because it is
easily shown in the Appendix that it never constitutes a stable steady state of
the dynamics, which we will introduce in Section 6.

Finally, there is another inefficient equilibrium in which although both
types of investors choose to invest, there is punishment with positive proba-
bility.

PROPOSITION 7: The quasi-cooperative equilibrium with punishment. If qt ∈
[q1, min{q , q ′}], and p t ≥ p ′′′(q , λ, α, c , z), there is a pooling equilibrium in which
both types of investors choose to invest, where p ′′′ = z+α+c−q (z/2+αλ)

z+α+0.5−q (z/2+αλ) and q1 is the

smallest positive real root of the cubic equation z = q (αλ + γ + z/2) − αλ2q 3. Profit
maximizing allocators set bs = 0 and fair-minded allocators set bf = 1/2. Only recip-
rocators punish the selfish allocators in equilibrium.

Proof: See Appendix. �

This equilibrium exists for a relatively high proportion of reciprocal in-
vestors who punish low rewards. However, there has to be a high proportion
of fair-minded allocators that makes it profitable for both types of investors
to choose to invest, despite the fact that the reciprocal investors will have to
punish unfair rewards.

Notice that for some regions of (p , q ) there is a multiplicity of equilibria.
We will assume that the NCE is only played in the region where it constitutes
the unique equilibrium. The reason is that it is at least (weakly) Pareto dom-
inated by any other equilibrium. As we will prove with the dynamic analysis
which we introduce in the next section, in all the remaining cases our results
do not depend on the particular equilibrium which is played in each period.

6. Dynamics of the Model

Our setting is a two-speed dynamic model. Changes in preferences are grad-
ual over time, while changes in behavior are instantaneous to maintain
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16 Journal of Public Economic Theory

equilibrium play. Therefore, in each period individuals coordinate in a per-
fect Bayesian equilibrium (PBE) of the team trust game and, assuming adap-
tive expectations, they believe that this equilibrium will be played by the next
generation.

The dynamics in each population is governed by different forces. The
evolution of the proportion of the different types of allocators is driven by
market forces: the level of profits. However, the dynamic evolution of the dis-
tribution of preferences in the investor population is influenced by cultural
motives, more precisely by an intergenerational transmission of preferences
that, in turn, is affected by an intentional process of socialization, not exclu-
sively driven by material payoffs.

6.1. The Dynamics of the Allocator Population

We assume that at the end of each period, allocators who follow the less
profitable reward policy have a positive probability of being replaced by
allocators with a reward policy that provides more profits. The probabil-
ity of change is assumed to be an increasing function of the profit differ-
ences. Then the dynamic behavior of p t is given by the following difference
equation: �p t = p t (1 − p t )ϕ[� f

t (p t , qt ) − �s
t (p t , qt )], where �

f
t (p t , qt ) and

�s
t (p t , qt ) are the profits, in period t, for the fair-minded and the profit max-

imizing type of allocator, respectively. Notice that ϕ is a positive constant
which is low enough to have p t ∈ [0, 1]. This is analogous to the replicator-
dynamics and hence it is payoff-monotonic. This dynamics is not influenced
by any kind of intergenerational transmission of preferences in the allocator
population. The reason is that because of the usual motive of competition
among firms, independently of the cultural traits of the managers, firms with
lower rates of profits would be more likely to leave the market.

6.2. The Cultural Dynamics of the Investor Population

Preferences in the investor population are culturally transmitted according
to an intergenerational transmission process. Children acquire preferences
through the observation, imitation, and learning of cultural models prevail-
ing in their social and cultural environment, that is, in their family and in
their social group. The transmission of preferences which is the result of so-
cial interaction between generations is called cultural transmission. We will
draw from the model of cultural transmission by Bisin and Verdier (2001),
which is the economic version of the anthropological model by Cavalli-Sforza
and Feldman (1981).

We consider overlapping-generations of investors who only live for two
periods (as a young person and as an adult). In the first period, the investor
is a child and is socialized to certain preferences. In the second period, the
investor (as an adult with well-defined preferences) is randomly matched
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Coordinated Punishment 17

with an adult investor to form a team and play the team trust game with a
randomly matched allocator. Also in this second period, the adult investor
has one offspring9 and has to make a (costly) decision regarding his child’s
education, trying to transmit his own preferences.

Therefore, the investor population will evolve according to a purposeful
and costly socialization process that we describe next. Let τ i ∈ [0, 1] be the
educational effort made by an investor parent of type i where i ∈ {s, r } and s
denotes selfish and r denotes reciprocator.

The socialization mechanism works as follows: Consider a parent with
i preferences. His child is first directly exposed to the parent’s preferences
and is socialized to these preferences with probability τ i chosen by the par-
ent (vertical transmission); if this direct socialization is not successful, with
probability 1 − τ i , he is socialized to the preferences of a role model picked
at random from the investor population (oblique transmission).

The transition probabilities10P
i j
, determined by this socialization mech-

anism, can be easily computed and then the dynamic evolution of the dis-
tribution of preferences can be obtained, which is given by the following
equation on differences:11 �qt = qt (1 − qt )[τ r

t − τ s
t ].

Direct transmission is also costly. Let C(τ i ) denote the cost of the educa-
tional effort τ i . While it is possible to obtain similar results with any increas-
ing and convex cost function, we will assume, for simplicity, the following
quadratic form C(τ i ) = (τ i )2/2k, with k > 0. Therefore, a parent of type i
chooses the educational effort τ i ∈ [0, 1] at time t , which maximizes

Pii
t (τ i , qt )V ii (q E

t+1) + Pi j
t (τ i , qt )V i j (q E

t+1) − (τ i )2/2k,
where V i j is the utility to a parent with preferences i if his child is of

type j . Notice that utility V i j depends on q E
t+1, which denotes the expecta-

tion about the proportion of reciprocal investors in the population in period
t + 1. In this paper, we will assume that parents have adaptive or backward-
looking expectations, believing that the proportion of reciprocal investors
will be the same in the next period as in the current period, that is, q E

t+1 = qt .
Direct transmission is justified because parents are altruistic toward their

children. However, their socialization decisions are not based on the purely
material payoff expected for their children, but on the payoff as perceived
by the parents according to their own preferences. This is the notion of im-
perfect empathy. According to this notion, parents obtain a higher utility if
their children share their preferences. Let us define �V r = V r r − V r s and
�V s = V ss − V sr . That is, �V i is the net gain from socializing your child to
your own preferences, or the cultural intolerance of parents with respect to
cultural deviation from their own preferences.

9 As is customary in this class of models, we will assume that reproduction is asexual, with
one% per child, and thus the population remains constant.
10 P i j denotes the probability of a child of a parent with preferences i being socialized to
preferences j.
11 We relegate the particular details of this process to the Appendix.
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Maximizing the above expression with respect to τ i , we get the following
optimal education effort functions:

τ r ∗(qt ) = k�V r (qt )(1 − qt ).

τ s∗(qt ) = k�V s (qt )qt.

Note that the optimal education effort functions of both types of parent
depend (positively) on their level of cultural intolerance (�V i ) and (neg-
atively) on the proportion of their own type in the current preferences dis-
tribution in the population.

Substituting the optimal educational efforts into the differences equa-
tion that characterizes the dynamic behavior of qt , we obtain:

�qt = qt (1 − qt )k[�V r (1 − qt ) − �V s qt ].
This is the Bisin-Verdier cultural dynamics. Instead of material payoffs,

levels of cultural intolerance are the main determinants that govern the dy-
namic evolution of the preferences distribution in the investor population.

Summing up, the joint dynamics of the preference distribution in both
populations (allocators and investors) is determined by the dynamical system
defined by the following two nonlinear differences equation system:

�p t = p t (1 − p t )ϕ
[
�

f
t (qt , p t ) − �s

t (qt , p t )
]
, (1)

�qt = qt (1 − qt )k[�V r (1 − qt ) − �V s qt ].

7. Cultures in the Long Run

We adhere to the notion of culture, used by Rob and Zemsky (2002), as a
stable or self-reproducing pattern of behavior and beliefs in a group or a
society. Therefore, we identify it as a stable steady state of the preference
dynamics.

DEFINITION 1: A culture is any stable steady state of the dynamical system (1)
where the same perfect Bayesian equilibrium of the team trust game is played.

We will denote, for example, as a FCC any stable steady state of the
dynamics where a FCE is played. A similar definition applies for the other
equilibria of the game. Our model yields different long-run outcomes, cul-
tures; some of them are efficient, that is, both types of investors invest and
there is no punishment, and other cultures are inefficient because some of
the previous conditions do not hold.

Our strategy will consist of analyzing whether the different PBE of the
team trust game are “robust” under our dynamical system. By robust, we
mean that the dynamics does not take the distribution of preferences out
of the region of the space (q , p ) where the PBE exists.
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Coordinated Punishment 19

Let us start by analysing the efficient (cooperative) PBE.

PROPOSITION 8: If λ ≥ 0.5, the only efficient culture is the FCC and it exists for
any pair of distributions (qt , p t ) such that qt ≥ min{q = z

2γ
, q ′ = 1√

2λ
}.

Proof: See Appendix. �

We give here a sketch of the proof and leave the rest of the details in
the Appendix. First, we show that the FCE constitutes a culture, and second
that the other two cooperative equilibria cannot be stable steady states of the
dynamics, and hence they never become cultures.

The FCC is based on the FCE in which both types of investors invest and
both types of allocators set b = 1/2. Therefore, V ik = 1/2 − c for both types
of parents of investors. Hence, their levels of cultural intolerance, and conse-
quently their optimal educational efforts, are zero. There are no incentives
at all for socialization. Thus, the distribution of preferences in the investor
population will remain unchanged, that is, qt+1 = qt .

Concerning the dynamic evolution in the allocator population, note that
the levels of profits of both types of allocators are the same �

f
t = �s

t = 1,

and thus the preference distribution in the population of allocators will also
remain constant. Concluding, any pair of preference distributions (q , p ) of
a FCE is a rest point of the dynamical system and a local attractor of the
dynamics and thus a culture.

There are two other cooperative equilibria of the team trust game for
high values of p and low values of q . In both equilibria the investors invest
and there is no punishment. Hence, the levels of cultural intolerance are
zero and therefore there is no movement in q . However, these equilibria
differ in the rewarding policy of the selfish allocator, as was stated in proposi-
tions 3 and 4. Notice that the levels of profits of a selfish allocator are strictly
greater than the levels of profits of the fair-minded allocator. Therefore, the
proportion of fair-minded allocators p diminishes over time, until eventually
the dynamics leaves the region for which any of these two equilibria exist.

In other words, although for an initial high p and a low q , the first gener-
ations coordinate in cooperative equilibria where selfish allocators set unfair
rewards, these cannot constitute long-run cultures because the proportion
of selfish allocators will increase over time until society ends up playing the
ISE. The reason is that for this lower proportion of fair-minded allocators,
the reciprocal investors prefer not to invest.

Next, we check the robustness of the inefficient equilibria of the game.

PROPOSITION 9: The only inefficient culture is the NCC and it exists for any pair
of distributions (qt , p t ) such that qt < min{q = z

2γ
, q ′ = 1√

2λ
} and p t < 2c

1−qt
.

Proof: See Appendix. �
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We also give here a sketch of the proof. Recall that in the NCE the pay-
off of each player is zero. Thus, the optimal education effort levels are zero
and there are no incentives to socialize. Hence, if society coordinates in this
equilibrium, the investor population will remain locked into this distribu-
tion of preferences. Also, as the profits of both types of allocators are zero,
there is no movement in p . For the regions in the space (q , p ) where this
equilibrium is unique, it will constitute a local attractor of the dynamics. A
society with a very high proportion of selfish individuals (both investors and
allocators) will get stuck in this inefficient trap.

There are two other inefficient equilibria of the team trust game. We
show that these equilibria cannot result in a culture.

First, regarding the dynamics of the investor population in the ISE re-
gion, we observe that the levels of cultural intolerance of both types are non-
negative. This happens because a reciprocal investor parent dislikes the be-
havior of his selfish child of not punishing an unfair reward, while a selfish
investor parent dislikes the behavior of his reciprocal child of not investing.

We equate the socialization effort functions of both types of parents to
obtain the demarcation curve q (p ), that is, the locus of pairs (q , p ) such that
the distribution of preferences in the investor population remains constant
over time. Note that for a given p , if q > q (p ), q decreases, and if q < q (p ),
q rises.

In this equilibrium, the profits of a selfish allocator are strictly higher
than the profits of a fair-minded allocator. It can be easily calculated that
the dynamics of the allocator population in this region is given by �p t =
p t (1 − p t )ϕ[−(1 − q )2], which is negative for all q . Thus, throughout this
region, the proportion of fair-minded allocators (p ) falls.

Summing up, in the ISE region p always decreases and q changes de-
pending on its location, above or below the demarcation curve. But in both
cases the dynamics will eventually leave this region and, depending on the
initial condition, it will reach the FCC region for high values of q or the
NCC region for low values of q and p . Once the dynamics has reached one
of these two regions, society will remain there because both of them con-
stitute a culture. A formal analysis showing this result is contained in the
Appendix.

The other inefficient equilibrium is the quasi-cooperative equilibrium
with punishment. Concerning the dynamics in the investor population, the
levels of cultural intolerance of both types are positive. This happens because
a reciprocal investor parent dislikes the behavior of his selfish child of not
punishing an unfair reward, while a selfish investor parent dislikes the behav-
ior of his reciprocal child of punishing an unfair reward and losing material
payoffs.

Using the same procedure as in the previous case, we obtain the demar-
cation curve. This curve turns out to be independent of p . In particular, it is
given by the solution (q ′′) of a quadratic function. If q > q ′′, q increases, and
if q < q ′′, then q decreases.
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Fully Cooperative Equilibrium (Culture) 

Non-Cooperative Equilibrium (Culture) 

Cooperative   Equilibria               Quasi Cooperative Equilibria  

Separating equilibrium 

p

q

Figure 1:

On the other hand, the profits of the selfish allocators are higher than
those of the fair-minded allocators, and the dynamics in this region leads to
a fall in p .

Eventually, depending on the initial conditions, the dynamics will leave
this region either for the FCC region with a very high q , or for the ISE region
with a smaller q . But we already know that the process will go on and it will
end up in the FCC region or in the NCC region, depending on the initial
conditions.

We sum up the results obtained in this section in the following corollary.

COROLLARY 1: The only long-run outcomes of dynamical system 1 are the FCC or
the NCC.

Figure 1 depicts graphically the results we have obtained, for some par-
ticular values of the parameters.

7.1. Discussion

In the previous section, we have seen that the only cooperative equilibrium

Q2

that survives as a long-run culture is the FCE. This efficient culture provides
a fair retribution to all players and is characterized by a high proportion of
reciprocal investors and by any preference distribution of allocators. On the
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other hand, the inefficient NCE, which exists for a low proportion of recip-
rocal investors and fair-minded allocators, is the only equilibrium that can
survive as a long-run culture among the inefficient equilibria. Surprisingly,
there is no observed punishment in either culture. The ultimate reason for
this result relies on the credibility of punishment. In the FCC, the threat of
punishment is so high and credible that it modifies the behavior of selfish al-
locators, leading them to set fair rewards in order to avoid punishment. This
is the only situation in which selfish allocators do not have any competitive
advantage over fair-minded allocators in terms of profits.

However, in the NCC the small number of reciprocators in the investor
population generates a situation in which punishment is not credible at all
and therefore selfish allocators will set low returns. And as their proportion
is so high, the incentives of the team to invest are destroyed. In this sense,
the presence of a credible threat of punishment is crucial for obtaining a
cooperative culture with fair returns in the long run.

Some of the assumptions concerning the punishment institutions play
an important role in obtaining the previous results. Let us discuss the influ-
ence of relaxing some of these assumptions in turn. First, note that for FCC
to exist, it is crucial that λ ≥ 0.5, that is the damage caused by the coordi-
nated punishment is big enough to make the threat of punishment effective.
Otherwise, the punishment cannot lead to an increase in cooperation. The
reason is that as λ < 0.5, that is, the inflicted damage is low, the selfish allo-
cator will prefer to set bs = 0 and to be punished with probability one rather
than to offer bs = 1/2 and avoid punishment. Therefore, the FCE does not
exist for λ < 0.5. Nevertheless, for a sufficiently high value of p there will
be a quasi-cooperative equilibrium with punishment. But this will never con-
stitute a culture because p decreases over time, since the profits of selfish
allocators are greater than those of fair-minded allocators. Summarizing, if
λ < 0.5, the NCC is the unique global attractor of the dynamics.

Second, we want to know the results if z/2 > γ , that is, if the level of peer
pressure is not enough to compel selfish investors to punish the allocator for
high values of q . The first consequence is that only reciprocators punish
in equilibrium. Therefore, the basin of attraction of the FCC decreases. In
particular, if z/2 > γ, then q is greater than 1 and then, if λ > 0.5, the FCC
only exists for the interval [q ′, 1]. Notice also that the cooperative behavior
of all types of players in the new interval is the same as before, but now only
reciprocal investors can credibly threaten punishment.

Third, some comments on the influence of the degree of aversion to
disadvantageous inequality α and the cost of the investment c are necessary.
The basin of attraction of the FCC will be greater the larger α is, and the
smaller c is.

Finally, it is interesting to understand the role of cultural transmission in
enhancing cooperation. If the evolution of the preference distribution in the
investor population is also governed by material payoffs or profits as in the
allocator population, then the basin of attraction of the NCC increases and
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that of the FCC diminishes. Namely, the basin of attraction of the FCC coin-
cides exactly with the region where the FCE exists. Only if society starts in this
region there will be a FCC. This happens because for the rest of equilibria
the material payoffs of the selfish investors are greater or equal than those
of the reciprocators. Summarizing, cultural transmission in the investor pop-
ulation enhances cooperation and efficiency in the sense that enlarges the
basin of attraction of the FCC.

8. Concluding Remarks

The main result of this model is that cooperation only evolves and is main-
tained if there is enough punishment capacity in society and if there are
enough individuals willing to implement both coordinated and peer punish-
ment. The FCC is achieved under the threat of effective coordinated pun-
ishment, but this threat is, in turn, supported by the presence of a high pro-
portion of reciprocators in the investor population. This fact illustrates the
main difficulty of obtaining cooperation: uniqueness is not achieved. Our
model shows that initial conditions matter because they can lead society to a
different state in the long run. If society is able to build strong punishment
institutions and can accomplish, through socialization mechanisms, a prefer-
ence distribution in the population willing to implement these institutions,
then society can settle into a cooperative and efficient culture. However, if
it is not able to reach a “sufficient” proportion of reciprocators in society, a
non-cooperative and inefficient culture will be established.

Changes in the punishment institutions as, for instance, in the damage
caused by coordinated punishment or the level of peer pressure, might cause
large changes in the long-run distribution of preferences and behavior (the
culture). The new punishment institutions produce these changes not only
in the short run but also in the long run through the dynamics of both
populations, in particular, by means of incentives to socialize future genera-
tions of investors into a kind of preference more prone to using any sort of
punishment.

Appendix

Proof of Proposition 1: Suppose that the allocator offers b < 1/2. Note that
punishment is a best response for reciprocal investors to (p , np ) if:

μ(b − z/2 − α[(1 − b)(1 − λ) − b)] +(1 − μ)[b − z − α((1 − b) − b))
≥μ(b − γ − α[(1 − b)(1 − λ) − b)] +(1 − μ)[b − α((1 − b) − b)).

That is, if μ ≥ μ∗(b) = z
z/2+αλ(1−b)+γ

.

Not punishing the allocator is a best response against (p , np ) for selfish
investors, since μ(b − γ ) +(1 − μ)b > μ(b − z/2) +(1 − μ)(b − z) because
μ < μ̃ = z

z/2+γ
.
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The profile (p , p ) is a BNE, if punishment is a best response for selfish
investors to (p , p ). That is, if (b − z/2) ≥ μ(b − γ ) +(1 − μ)b . Therefore,
if μ ≥ μ = z

2γ
.

Hence, for μ ∈ [μ∗(b), μ̃], (p , np ) is a BNE and for μ ∈ [μ, 1], (p , p ) is
a BNE. It is easy to check that (np , np ) is a BNE for each value of μ. �

Proof of Lemma 2: For any given μ̂ ∈ [μ∗(0), μ∗(0.5)], there is a b̂ =
μ̂(αλ+γ+z/2)−z

μ̂αλ
, such that μ∗(̂b) = μ̂ because of the continuity and monotonic-

ity of μ∗(b). Then for b ∈ [0, b̂], μ̂ > μ∗(b) which implies that the BNE of
CP(μ, b) is (p , np ). However, for b ∈ [̂b , 0.5], μ̂ ≤ μ∗(b) which implies that
the BNE is (np , np ). Therefore, the options for the allocator are either to
offer bs = 0 and the reciprocators will punish or to offer bs = b̂ and nobody
punishes. The expected payoff in the first option is �s (0) = 2(1 − μ2λ) and
the payoff in the second option is �s (̂b) = 2(1 − b̂).

Therefore, bs = 0 is preferred to bs = b̂ , when 2(1 − μ̂2λ) ≥
2( z−μ̂(γ+z/2)

μ̂αλ
). This defines the following cubic equation: z =

μ̂(αλ + γ + z/2) − αλ2μ̂3. If the discriminant of this equation is posi-
tive, then there is a real root, which is negative and two complex roots,
therefore setting b = b̂ is better. If the discriminant of this equation is
negative, then there are three real and unequal roots, one of them negative.
We will denote the positive roots: μ1 and μ2. Both μ1 and μ2 are greater than
μ∗(0).Then, the optimal reward policy of the allocator is: for μ̂ ∈ [μ∗(0),μ1]
and μ̂ ∈ [μ2, μ

∗(0.5)] to set bs = b̂ and for μ̂ ∈ [ μ1, μ2] to set bs = 0. �

ISE Where Reciprocal Investors Invest.
In this equilibrium, both types of allocators offer b = 0.5 and the be-

liefs are μ(r/(I, I ) = 1. The incentive compatibility constraint for a selfish
investor is: 0 ≥ qt (0.5) − c . That is, 2c ≤ qt .The incentive compatibility con-
straint for a reciprocal investor is: qt (0.5) − c ≥ 0. That is, qt ≥ 2c .Therefore,
for qt = 2c both constraints are satisfied. Notice that this equilibrium exists
for any λ > 0.5.

For λ ≤ 0.5, even when the beliefs are μ(r/(I, I ) = 1, the selfish allo-
cator prefers to offer bs = 0 and suffering punishment rather than offering
b = 0.5 and avoiding punishment. The fair-minded allocator sets b f = 0.5.

However, note that both incentive compatibility constraints do not hold
simultaneously. �

Proof of Proposition 7: In this pooling equilibrium μ = q . By Lemma 2, bs = 0
is preferred to bs = b̂ , when the following cubic in equation condition holds:
z ≤ q (αλ + γ + z/2) − αλ2q 3.

The simulations we have run show that, in the range of parameters im-
plied by our assumptions, the discriminant of this equation is negative. Then,
there are at most two positive unequal roots. We call the positive roots: q1 and
q2, where q1 < q2. Thus, if q̂ ∈ [q1, q2] the best reward policy of the selfish
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allocator is to set bs = 0. We can show by numerical simulations that q1 is
always greater than q ∗(0) and that q2 is always greater than 1. On the other
hand, by Lemma 3 if qt ∈(q ∗(0.5), min(q̄ , q ′)) the best reward for the selfish
allocator is to set bs = 0, even though she will be punished by the reciprocal
investors according to Proposition 1. Therefore, for qt ∈ [ q1, min(q̄ , q ′)] the
selfish allocator sets bs = 0.

A selfish investor will invest when the following condition holds:
p t (0.5) + (1 − p t )[−qtγ ] − c ≥ 0.That is, if p t ≥ qt γ+c

qt γ+0.5 .

The condition for a reciprocal investor is: p t (0.5) + (1 −
p t )[(1 − qt )(−z − α) + qt (−z/2 − α(1 − λ)] − c ≥ 0. That is, if
p t ≥ z+α+c−qt (z/2+αλ)

z+α+0.5−qt (z/2+αλ) . This last expression is the binding incentive compat-
ibility constraint. The payoff for the fair-minded allocator is 1 and for the
selfish allocator is 2(1 − λq 2

t ). �

Transition Probabilities of the Socialization Process.
Let Pi j denote the probability that a child of a parent with preferences

i is socialized to preferences j . The socialization mechanism is character-
ized by the following transition probabilities where qt is the proportion
of reciprocal investors: Pss

t = τ s
t + (1 − τ s

t )(1 − qt ), Psr
t = (1 − τ s

t )qt , Pr r
t =

τ r
t + (1 − τ r

t )qt ,and Pr s
t = (1 − τ r

t )(1 − qt ).
Given these transition probabilities it is easy to characterize the dynamic

behavior of qt : qt+1 = [qt Pr r
t + (1 − qt )Psr

t ].

Proof of Proposition 8: In the cooperative equilibria with bs = b̂ , the payoff
of the fair-minded allocator is � f = 1 and the payoff of the selfish alloca-
tor is �s = 2(1 − b̂) = 2( z−q (γ+z/2)

qαλ
), where b̂ < 1/2. The dynamics of the

allocator population is given by �p t = p t (1 − p t )ϕ(1 − 2( z−q (γ+z/2)
qαλ

)). This
expression is negative if b̂ < 1/2, so p decreases, ∀q .

The payoff of the reciprocal investor is Ur = p (0.5) + (1 − p )[̂b − α(1 −
2̂b) − c ≥ 0 and the payoff of the selfish investor is Us = p (0.5) + (1 − p )̂b −
c ≥ 0.

In this equilibrium the levels of cultural intolerance and the correspond-
ing optimal education efforts are zero because V r r = V r s and V ss = V sr .

Therefore, q does not change.
A similar argument applies for cooperative equilibria with bs = 0.

It can be checked that the two critical values on p that define the bound-
aries of these two cooperative equilibria, p ′ and p ′′, are always smaller than
c+α(1−qt )

1−qt
for all q . Hence, the dynamics will always reach the ISE region. �

Proof of Proposition 9: The payoff of the fair-minded allocator in the ISE is
�

f
t (q , p ) = (1 − q )2, while the payoff of the selfish allocator is �s (q , p ) =

2(1 − q )2, then the dynamics of the allocators population is given by: �p =
p (1 − p )ϕ(−(1 − q )2) < 0, where we have dropped the subindex t for clarity
of exposition. Thus, p decreases.
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The payoff of the reciprocal investor is Ur = 0 and the payoff of the
selfish investor is Us = (1 − q ) · p · (0.5) − c . Thus, the levels of cultural in-
tolerance are nonnegative: �V r = V r r − V r s = 0 − ((1 − q )(p (0.5) + (1 −
p )(−α)) − c ≥ 0 and �V s = V ss − V sr = (1 − q )p (0.5) − c ≥ 0.

Therefore, the optimal educational efforts are given by: τ r ∗(q , p ) =
k�V r (q )(1 − q ) = k(1 − q )(c − (1 − q )(p (0.5) + (1 − p )(−α)) and τ s∗

(q , p ) = k�V s (q )q = kq ((1 − q )p (0.5) − c) ≥ 0.

We obtain the demarcation curve q (p ) that makes �qt = 0, equating
τ r ∗((q , p )) = τ s∗((q , p )). Then, the demarcation curve is given by: q (p ) =
(αp − α)q 2 + q (2α − p (2α + 0.5) + (p (α + 0.5) − α) − c = 0. Note that for
a given p , if q > q (p ),τ r ∗((q , p )) < τ s∗((q , p )) and q decreases and if q <

q (p ), τ r ∗((q , p )) > τ s∗((q , p )), and q increases. This demarcation curve be-
longs to the region in which the equilibrium exists.

The payoff of the fair-minded allocator in the quasi-cooperative equi-
librium is � f = 1 while the payoff of the selfish allocator is �s ((q , p )) =
2(1 − λq 2). Then, the dynamics of the allocator population is given by
�p = p (1 − p )ϕ(2q 2λ − 1). This expression is negative when q ≤ q ′, so p
decreases, ∀q .

The payoff of the reciprocal investor is Ur = p (0.5) + (1 − p )[(1 −
q )(−z − α) + q (−z/2 − α(1 − λ)] − c ≥ 0 and the payoff of the selfish in-
vestor is Us = p (0.5) + (1 − p )[−qγ ] − c ≥ 0.

Thus, the levels of cultural intolerance are:
�V r = V r r − V r s = p (0.5) + (1 − p )[(1 − q )(−z − α) + q (−z/2 − α(1

− λ)] − c − [p (0.5) + (1 − p )(−α − qγ ) − c] = (1 − p )[q (z/2 + γ + αλ)
− z] > 0. This expression is positive if q > z/(z/2 + γ + αλ) as it is the
case. And �V s = V ss − V sr = p (0.5) + (1 − p )[−qγ ] − c − ((0.5)p +
(1 − p )((1 − q )(−z) + q (−z/2) − c) = (z − q (γ + z/2)(1 − p ) > 0. This
expression is positive because q < z/(γ + z/2).

The optimal educational efforts are given by:
τ r ∗(q , p ) = k�V r (q )(1 − qt ) = k(1 − q )(1 − p )[q (z/2 + γ + αλ) − z]

> 0.

τ s∗(q , p ) = k�V s (q )q = kq (z − q (γ + z/2)(1 − p ) > 0.

We obtain the demarcation curve by equating τ r ∗(q , p ) = τ s∗(q , p ). This
curve is given by the expression −q 2αλ + q (z/2 + γ + αλ) − z = 0 and it
turns out to be independent of p . In particular, it is given by the solution
(q ′′) to the previous quadratic function. Hence, if q > q ′′, τ r ∗((q , p )) >

τ s∗((q , p )) and q increases and if q < q ′′, τ r ∗((q , p )) < τ s∗((q , p )), and q
decreases. �
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