
Securely deploying Android devices
Angel Alonso-Parrizas, Security Engineer, MSc, BSc

GCIH, GCIA, GCFW, GCFA, GSNA, GSEC, CISSP, CISA, CISM
Master In Security and Forensic

School of Computing,
Dublin City University

Dublin, Ireland
Email: parrizas@gmail.com

Abstract—Android has become a very popular operating
systems for smartphones and tablets but at the same
time threats associated to this platform, like malware or
exploits, are also growing. During this paper the author
will describe how it is possible to improve the security of
Android in order so it can be safely used in business where
security is a high priority.

I. INTRODUCTION

Nowadays it is necessary for most companies to
provide e-mail/Internet access to employees outside of
the office, hence many companies provide their staff with
BlackBerrys, iPhones, Android or other smartphones
with Internet connectivity. But, how can these comply
with the company’s security policies? How is it possible
to provide such functionality without putting the security
of the company at risk?. Some vendors such as Apple
have released tools [1] which permit a security baseline
to be defined for the smartphone, security policies to be
managed remotely and the iPhone to be wiped remotely
or located through GPS.

Google has released a tool, through Google Apps for
business [2], that can implement some security policies
in the handset, however, in my opinion, the security base-
line that can be set through Google Apps is insufficient
as some of the most important risks are not mitigated.

It is very important to take into consideration that a
smartphone must implement security controls (such as
password protection or auto wipe) in case it is stolen.
However, this is not enough. What happens if the mobile
is compromised by malware while connecting to the
Internet? How can we reduce the risk of this happening?
How can we detect it? How safe is it to plug in an
external SD card if our company does not allow the plug-
in of any external USBs? Is it safe to allow the user
to have bluetooth running? These are some examples
of the kind of questions we should ask ourselves when
permitting the use of smartphones in a company.

A. Security Threats in Android

Android is an Operating System based on Linux so
we can say that it has the same functionalities as any
desktop running a modern OS with Internet access, but
with some additional hardware such as camera, GPS, etc.
This means that the same threats that apply to modern OS
can be extrapolated to Android, like malware or exploits.
However, in the case of smartphones, there is an impor-
tant difference which can have a high impact: mobility.
Mobility means that a static network is not assigned to
the device, as in the case of desktops or servers, hence
connecting to any networks through 3G/UMTS or WiFi
exposes the device to any kind of network attack (sniff-
ing, spoofing, etc). Because the device is not assigned to
any fixed network this gives the user some flexibility
to move/travel, but it also results in a lack of some
security layers of protection such as external firewalls,
perimetrical antivirus or IDS/IPS which are found in any
business. The article by Bastian Knings, Jens Nickels,
and Florian Schaub [3], describes a good example of
how it is possible to exploit a vulnerability in Android
through a WiFi connection. They explain how an attacker
can eavesdrop and access the Google Calendar content
and even impersonate the user. Another good example
of a tool which takes advantage of LAN/WiFi attacks is
Firesheep [4], which can also be run in Android.

Applications in Android can be installed in different
ways. The most popular one is the official Google
repository, Market. It is also possible to install packages
from the shell connected to the USB. Any developer
can deploy an application, even malware and distribute
it via the repository, as has happened in the past [5].
Some Spanish security researchers introduced malware
in Android as PoC in order to demonstrate the lack of
security in the Market [6]. In my opinion, this is the
most critical part in the security chain. The end user



must never be able to install any application and only
authorized software should run in the device. Symantec’s
report ’The Current State of Mobile Device Security’ [7]
highlights the same issue.

Camera and GPS are not insecure by default, unless
the software running or drivers are vulnerable. The
biggest issue with them is the lack of privacy, since GPS
can be used to track the device and the photos taken
with the camera can be stolen. Bluetooth is a different
story because it allows the user to send and receive
traffic, hence it can be used to control the device, steal
confidential data, etc. Bluetooth is also useful to connect
external devices like headphones or to connect to the car
handsfree, however the author will not consider those
scenarios in this project and bluetooth will be disabled.

Another point to address is the physical security of the
device. The same controls applied to laptops should be
applied to smartphones: encryption, passwords policies
to login, etc, and if possible remote wiping and remote
GPS localization. The main problem is that versions of
Android below 3.0 do not support encryption by default
so it is not possible to encrypt the device itself. We
should take into consideration if the SD card attached
to the device is secure or not and the risk associated
with it.

The latest point to address is how to manage and
administer the smartphone from a centralized location.
For instance, this will permit the security administrator
of the business to install authorized software on the smart
phone. By default, Android can be accessed from the
shell with the SDK toolkit [8], but this gives the user
the possibility of also accessing the device through USB,
and this is a security breach of the policies.

B. Android architecture: the security model

’Mobile Security Application’ [9] is a good reference
book which explains Android architecture (pages 16-47)
and other mobile technologies like iPhone.
Android is composed of four layers (see figure 1):

• Application: all applications running (ie: phone,
mail, etc).

• Application Framework: provide different packages
of service applications.

• Android Runtime and Libraries: contains a core
component called the Dalvik virtual machine and
each process is executed in a separated instance in
the VM. In this layer, there are some libraries like
SSL, SQLite or libc.

• Linux Kernel: it abstracts the hardware from the
software.

Fig. 1. Android-architecture

Android follows the same idea of user/permissions like
a normal Linux system. This is very well explained in
Android Developers guide [10], However there are some
key differences:

• Android is not a multiuser system unlike traditional
Unix/Linux system where multiple external users
are connected to the system. However, it uses the
concept of UID and GID to assign permissions
to each application and process, hence there is
isolation between processes/applications.

• Whenever a new application is installed some spe-
cific permissions should be allowed. For instance,
if the application needs to access the GPS, it will
request access to the GPS. However it is the user
who installs the application who takes the decision.

• Whenever a new application is installed, specific
UID and GID will be assigned to it as if it were
a normal user in Linux. Applications have a UID
higher than 10000 and system accounts have a UID
lower than 10000.

• The concept of permission is similar to the per-
missions on the Linux file system, however this is
extended to be able to perform actions.

• The developer of the application decides which
permissions the applications needs and has to define
those permissions in a file that will be read at
installation time (AndroidManifest.xml). For each
application all the permissions are enforced through
that file.

• Android runs a Mandatory Access Control Model
and there is a reference monitor to check and
implement the policies.

• The Android security architecture, by default, im-



plements a DENY policy so there is no permission
to perform any operations that would adversely
impact other applications, the operating system or
the user.

Some key points that must be taken in consideration
from a security point of view:

• The model is quite secure by default as there are
different permissions for each process and appli-
cation. From an OS point of view the isolation is
performed efficiently and effectively.

• The main problem is when the user installs a new
application that asks for more permissions than the
necessary. This is the high risk part of the model
where the security of Android can be broken.

• Another problem is when a developer creates an
application that uses more permissions than neces-
sary. It might be possible to create an application
(malware) that ask for privileges to everything but
the user has to agree with to those permissions.

• The model might be improved allowing the user
to decide what privileges to permit for each ap-
plication. A higher granularity might improve the
security. With the current model all the permissions
are granted or denied.

To summarise: the model is quite robust and it is well
constructed. However, as in many case, the human factor
is the problem. If a user allows applications to access
everything or if a developer deploys and application
with permissions to access everything the security is
broken. The solution for this problem is to control which
applications can be installed and not allow the user to
install other applications.

C. Tools for Android to enforce security

There are some tools that can improve the security
of the Android. Google Labs can define and enforce a
password policy including complexity of the password,
expiration time, historical, screen lock time out and a
limit on the number of invalid password before wiping
the device. It also permits the smartphone to be located
through GPS, the device to be locked remotely, the alarm
turned on or the mobile to be wipe remotely. Other kind
of applications can be found on the Market like Norton
Mobile Security [12], AVG Antivirus [13], Lookout [14]
or Autowipe [15]. These application have the following
features:

• Antivirus/antimalware: these scan the application
installed and protect the smartphone while brows-
ing.

• Remotely lock and wipe of the phone and SD card
through SMS or via web.

• Backups of the information.
• Wipe the of mobile if the SIM is changed. Wipe of

the mobile after a set number of failed logins.

II. OBJECTIVES OF THE PROJECT

The main targets of the project are:

• Implement a security channel of communication
with VPN (OpenVPN [16]) and enforce all the
traffic through the tunnel. Implement filters on the
incoming and outgoing traffic.

• Lock out access to the device and centralize the
access management. Access to the device will only
be granted to security administrators through SSH
with keys.

• Disable the installation of software. Only authorized
software must be run and the user will not be able
to install any software.

• Implement a policy password within the company
standards. The smartphone will be wiped after a set
number of trials.

• Implement remote control. It must be possible to
wipe, locate and lock the smartphone remotely from
the Internet and SMS.

• Implement Antivirus and Antimalware. It must be
possible to scan the applications installed and pro-
tect the smartphone while browsing.

• Disable unnecessary services/devices. Services like
bluetooth must be disabled as they are not neces-
sary. SD card, if not necessary, might be disabled
as well

III. HARDENING THE DEVICE

In this section I will explain the lab setup and the set
of tools and steps taken to harden the system.

A. The lab

• HTC desire with a 3G card and WiFi connection.
• CyanogendMod 7.0.3 [17] as the main

firmware/ROM. It is build based on Android
2.3.3.

• Android SDK toolkit [8] running on Ubuntu 11.04,
Snow Leopard and Windows 7.

• Virtual Private Server (VPS) hosted in The Nether-
lands as the endpoint and management server.

• Different security tools like OpenVPN, iptables [19]
and Dropbear (ssh server for Android) [18]



B. Encrypting the network channel and Implementing
firewall policies

As I mentioned previously, the basic idea is to
send all the traffic from the Android device, either
the 3G (rmnet0) interface or the Wireless interface
(eth0) through a VPN tunnel built with OpenVPN.
In order to do this, there will be a VPN end-point,
controlled by the company, running OpenVPN. The
user of the smartphone will have to established the VPN
with the endpoint or he/she will not have access. The
way to enforce the network policy is through iptables
in Android and at the endpoint. An example of the
architecture is in the figure 2.

1) Configuring OpenVPN at endpoint with certifi-
cates: The encryption in a VPN connection can be
established in 2 ways, with digital certificates (public
key) or with a shared key. The main reason for using
digital certificates instead of a shared key is because it
is more flexible and more secure, and if any user loses
the smartphone the certificate can be revoked. PKI also
escalates better whit a higher number of users. Another
interesting point is that if the company has its own CA
this could be used to create the certificates for the server
and for all the users instead of using a new ones. An
interesting project about SmartCard API for Android is
found in [20]. In the OpenVPN page it is possible to find
the manual [21] to build the CA, the server certificate
and the client certificate, but the main steps are:

• Configure the ’vars’ that will contain the parameters
of the certificate (ie. country, email, etc).

• Initialize the PKI and build the CA.
• Build the server keys and certificate.
• Build the client certificate/keys (one per each

client).
• For each client, package its key/cert and the server

cert in a ’.p12’ file. This is the standard used in
Android to import the certificates

The OpenVPN manual [21] explains in detail how
to configure the server through the ’server.conf’ file,
however some important decisions must be made:

• Which port and protocol to use: I decided to chose
80/tcp instead of using the default 1194/udp, since
this port usually is not filtered in firewalls.

• Cipher Algorithms: I decided to use AES-256-CBC
• Compression: I decided to enable compression.
• Routes: as all the traffic will be routed through

the VPN, it is necessary to propagate a route
’0.0.0.0/0.0.0.0’.

VPS

tun0: VPN

eth0: WiFi
rmnet0: 3G

eth0

ACCEPT only TO/FROM tun0
DROP the REST

FORWARD from tun0 to eth0
ACCEPT 80/443/53 tun0

DROP the REST

tun0: VPN

Fig. 2. Network connectivity through VPN

• Static IP assigned per user. It is necessary to create
a file with the virtual IP assigned for each user.
This will help when creating specific firewalls rules
based on the user/role.

2) Configuring OpenVPN in the smartphone with cer-
tificates: When the certificates for the clients are pack-
aged, it is necessary to protect them with a passphrase.
The certificates will be copied to the SD card and
imported to the smartphone. Then, it is necessary to setup
the VPN creating a new connection. The parameters to
configure are:

• IP of the VPN server.
• Port and protocol: 80/tcp
• Redirect gateway: to route all the traffic through the

VPN
• LZO compression: To compress the data
• Cipher Algorithm: AES-256-CBC
• Size of the cipher: 256 bit
3) Implementing firewall policies in Android: The

objective is to apply a DENY default policy. The rules
are set as follow:

• Interface lo: ACCEPT any IN/OUT
• Interface eth0/rmnet0: DENY IN/OUT. Exception:

Traffic to the VPN IP (necessary to establish the
tunnel and forward the traffic)

• Interface tun0: ACCEPT incoming SSH. ACCEPT
OUT traffic to ANY to route the traffic through the
VPN.

With these rules we will guarantee that when connect-
ing through a public WiFi or 3G will not go on clear,
avoid sniffing, and any traffic from the local network or
Internet will be denied.



4) Implementing firewall policies at the endpoint:
The security admin will enforce access control to the
Internet through the endpoint. It is possible to create
rules to allow traffic only to specific ports (like HTTP/S)
and deny the rest of the traffic. It is also possible to
create granular specific rules per user, through the static
IP assigned to each user in the OpenVPN server (ie:
allow sysadmin traffic to SSH).
It might be possible to configure a proxy (ie: squid) as
HTTP/s content filtering. However, this is outside of the
scope of this project. In the case of this project, the
author will set the following rules:

• FORWARD the traffic from tun0 to eth0 to route
the traffic to the Internet.

• NAT the traffic from tun0 to eth0 to have access to
the Internet with the public IP of the endpoint.

• ACCEPT all incoming traffic to HTTP, HTTPS and
DNS in tun0 interface.

• DENY the rest of the traffic.
With this set of policies we avoid any connection from

the device that isn’t HTTP/s (ie: Messenger, Skype, etc).

C. Granting access through SSH authenticated with keys

The version of the ROM used, Cyaongenmod [17],
contains the ssh server binary, Dropbear [18], so further
compiling it is not necessary. The manual that explains
how to build configure and run the server is at [22]. In
the case of this project the author will not use passwords
but keys to access SSH. This is a more robust and secure
way. The steps necessary to create this set up are:

• Create the pair of SSH key for each machine from
which we want to connect from. In the case of
the project, the author will create keys for the
management server (VPN tunnel).

• Export the public key to the SD card of Android.
• Generate the SSH server keys with ’dropbearkey’.
• Configure the permissions of the files/directories for

Dropbear.
• Import the management server keys from the SD

card to the ’authorized keys’ file.
• Enforce dropbear to authenticate with keys and

disable passwords when launching the process.
With this setup, it will only be possible to access the

smartphone from SSH with the correct key. Besides, as
we have enforced iptables rules, SSH port (22/tcp) is
only opened on the tun0 interface, the VPN interface, as
an additional security control.

If we want to start Dropbear once the system is
booting, we have to include the command in an init script
(like in any UNIX/Linux system).

D. Disabling bluetooth

The easiest way to disable bluetooth is just remove
the permission in the bluetooth device. Bluetooth is
managed by the kernel through the devices /dev/ttyHS0
and /dev/ttyMSM0. These devices have set read and
write permissions (660) for the user and group bluetooth.
If those permissions are removed the device will not be
reachable.
This must be done when booting the system since the
/dev directory is reset during reboot.

E. Avoiding the installation of software. Removing the
access to the device through USB

As it has been explained before the greatest security
issue in Android is the installation of software. Applica-
tions in android are packaged in ’apk’ files and this can
be installed in several ways: from the Internet through a
repository like Market (or Appbrain) or through a USB
connection. In order to prevent users from installing any
software outside of the standard build, it is necessary to:

• Remove and disable Android Market, the applica-
tion that permits to install from the Google reposi-
tory

• Disable the binary file that manages packages in
android from the shell, this is ’pm’ (/system/bin/pm)

• Disable the access to the shell through the USB.
This is done with the binary/daemon /sbin/adbd

To remove the Market application from the Android
it is necessary to set the permissions of the container to
000. This will stop the possibility of running the Market.
If the execution permission is removed from the ’pm’ (
/system/bin/pm) binary, it will not be possible to run it.
If this same idea is applied to the binary /system/adbd it
will not be possible to install packages from the shell or
to access the android by USB. This has to be done when
the system is booting, as the /sbin directory is mounted
with read only permissions and it is reset every time the
system is booted This has to be done at the end of the
hardening process and after the SSH is configured, since
once this step is applied there will no be access to the
shell except through SSH.

F. Disabling the SD card

Connecting and external device (USB stick, SD card,
etc) to a ’secure’ system can be a big security risk
whether it is a smartphone, a desktop or a server, etc.
In the case of Android, the situation is the same, or
even worse. By default android mounts the SD card
as a FAT file system, with ’noexec’, ’nodev’. The first
question is why use FAT instead of ext3 or ext4, but



besides that, is the ’noexec’ enough to prevent running
the applications? Mario Ballano, a security researcher
from Symantec, published a very interesting article [23]
about how it is possible to use the SD card to hijack
in order to steal information or execute malicious code.
Besides the problem described by Mario, there is an
additional issue: the lack of encryption on the SD card.

In order to disable the SD card, it is necessary to
unmount it during the boot process:

• umount /mnt/sdcard/.android secure
• umount -l /mnt/sdcard/

G. Disable unnecessary binaries

As part of any hardening process, it is good practice to
remove compilers and unnecessary packages, set proper
permissions to binaries (specially setuid/setgid), etc. In
the case of Android, we will take into consideration the
binaries with network access, editors and sniffers. The
binaries affected are: irsii, nano, nc, netserver, netperf,
opcontrol, scp, rsync, sdptest, ssh, strace, tcpdump, vim,
bluetoothd, iptables, and ping.
Some of these will be just removed and for some others
(ie: ping) the permissions will be setup only for root.

H. Remove unnecessary software. Remote installation of
software

By default, Cyanogenmod doesn’t contain many ap-
plications installed. For instance, the Market application
is not installed.
It depends on the company policies and standards to
decide which software can be installed and which soft-
ware must be removed. Many companies have a software
registry with the applications than are approved and
this is applied to the standard Workstation or desk-
top build. The idea here is the same: define a set of
standards applications and remove the rest. The main
application that will be allowed that aren’t part of the
core system (like the settings application or clock/alarm)
are: browser, mail client, calculator, calendar, camera,
contacts, gallery, messaging, phone and voice dialer).
If there is any need to install an additional application
(ie: twitter for the Marketing department or SSH for
sysadmins), the security administrator will install it.
To do it, the security admin will: upload the ’app’
file with SCP through the VPN connection, change the
permissions of the ’pm’ binary to executable, install the
application, rollback the permissions of ’pm’ and remove
the ’apk’ file from the device. This model is very flexible
and robust, because it is secure and any software can be

installed remotely without any interaction from the user.
In order to remove the unnecessary software, it is nec-
essary to remove the ’apk’ and the directory where the
application is stored. The system application packages
are in /system/app and the data is in /data/data. A good
approach, to enable roollback if in future we want the
application to be run, is to change the permissions of
the directory to 000 instead of removing it, for exam-
ple, for the bluetooth application might be chmod 000
/data/data/com.android.bluetooth.

IV. ADDITIONAL SECURITY CONTROLS

As was mentioned at the beginning of the paper there
are some existing tools that can add security to Android.
The author will include some of these.

A. GoogleApps for Business: enforcing a password pol-
icy

The author was not able to find an external applica-
tion to enforce password policies in Android, however
GoogleApps for business can be used to do this (it cost
40$/year). The policies are defined and applied remotely
and these will be synchronized automatically through the
Internet. The application necessary to install in Android
is ’device policy’ and the functionalities are:

• Require the users to set passwords on the devices.
• Password complexity / strength. (At least one num-

ber, one letter, and one punctuation).
• Number of days before password expires (90 days).
• Number of historical password that are blocked (3

passwords).
• Automatically lock the device after a timeout (10

minute).
• Number of invalid passwords before the device is

wiped (10 times).
• Allow camera (yes).
• Enable encryption on the device. (This is only

available for version 3.0 of Android).

B. GoogleApps for Business: remote control of the de-
vice

Another set of features of the ’device policy’ is the
possibility to control the device remotely in case the
device it is stolen or lost. The set of functions are:

• Locate the device through GPS and Google Maps.
• Lock the device.
• Reset the password.
• Turn on a noisy alarm.
• Wipe the mobile remotely.



C. Autowipe

Autowipe [15] is a tool that can wipe the phone and
SD card. The SD card is not within the scope of this
project because it is disabled. The author is interested
in two functionalities: remote wipe through SMS with
a passphrase and autowipe if the SIM card is changed.
With this setup, if the phone is lost or stolen and someone
change the SIM card, the phone will be wiped. In
addition to this if we lose the phone and we do not have
Internet at that moment, we can send a text message
from someone elses phone to wipe it.

D. AntiVirus: AVG Mobile [13]

A very important layer of security in a defense-in-
depth architecture is the Antivirus. The popular Antivirus
company AVG has created a version for Android with
Android which can perform the following functions:

• Scan applications, files and media in real time.
• Browse the web securely.
• Find/locate your lost or stolen phone via Google

maps.
• Backup and restore all your valuable apps and data.
• Lock and wipe your device to protect your privacy.
• Kill tasks that slow your phone down.

For the purpose of this project we are only interested in
the AV engine and secure browsing. The other function-
alities have been covered with other tools.

V. STEPS TO HARDEN THE SYSTEM FROM THE

SCRATCH

Once the tools and ideas about how the system will be
hardened, it is necessary to describe the steps to follow
in order to do that.

A. The boot process in Android

Android boot system is well explained in ’The An-
droid boot process’ at [24]. The main issue with Android
is that the init script (init.rc) is part of the Ramdisk and
can’t be modified. In order to modify it, it is neces-
sary to rebuild the ramdisk. However, in Cyaongenmod
firmware, it is possible to create a ’userinit.sh’ script (in
/data/local) that will execute when booting. The author
will create the script to run the commands necessary to
harden the system, like for example, iptables or dropbear
(ssh).

B. userinit.sh

A copy of the script can be found in
http://www.angelalonso.es/mssf/userinit.sh. Basically,
the script contains the following commands:

• Run SSH (dropbear) at booting time.
• Disable the permissions of bluetooth device.
• Kill the market process if running.
• Harden the TCP/IP stack.
• Remove unnecessary binaries.
• Run the iptables script (iptables.sh) stored in

/data/local.
• Run the software to remove unnecessary application

(removesoftware.sh).
• Disable the ’pm’ (package management) binary to

avoid the installation of any software.
• Disable the ’adbd’ daemon to avoid the installation

of any software through USB and access to the shell
through USB.

• Disable the SD card.
A copy of the iptables.sh and removesoftware.sh can

be found in http://www.angelalonso.es/mssf/iptables.sh
and http://www.angelalonso.es/mssf/removesoftware.sh

C. Putting it all together

The set of steps to have the system configure and run
the system are as follow:

1) Install Cyanogenmod [17].
2) Install Google Apps.
3) Install the Google App Device Policy application.
4) Install the Antivirus application.
5) Install the Autowipe application.
6) Setup Google App Device Policy withe the en-

terprise account. A secure password to access the
device will be introduced at this stage.

7) Setup the Antivirus: configure the update/auto-scan
frequency, setup the real-time scanner and safe
surfing.

8) Setup de Autowipe: enable SMS text wipe, choose
a passphrase, enable the subscriber ID change and
enable password protect to access the application.

9) Configure the VPN: import the certificate, setup
the VPN parameters (IP, port, protocol, cipher
algorithm, key size, LZO enable).

10) Configure SSH: generate the ssh keys, import the
public key to authorized keys.

11) Copy the iptables.sh, removesoftware.sh and
userinit.sh script to /data/local. Change permis-
sions to 700.

12) Reboot the system and the system and it will be
hardened.

VI. CONCLUSIONS

The author has been able to improve the security of
Android in different areas making the platform usable



in business where a high level of security is required.
Implementing a security channel, reducing the risk of
installing software, removing the unnecessary services
and configuring a central point to manage all the devices
are some of the key points achieved during this project.
In addition the use of some existing applications like
Google Apps or Antivirus increased the layers of secu-
rity. Some scripts have also been created to lockout the
operating system and enhance the security. These scripts
can be adapted to each specific situation or business in
order to align the configuration to the company polices,
such as the kind of traffic allowed.
The possibility of applying different firewall rules with
granularity (ie: per user) from a centralized system gives
the platform a high grade of flexibility. The security
admins can also upload software through SCP, and it
is possible to install additional software if necessary
without having physical access to the device.

VII. FUTURE WORK

In future versions of Android (3.0 or above) encryp-
tion of the filesystem will be supported by default. This
is a must in this kind of technology as mobility is key
point. It will be necessary to integrate it in this hardened
version. In this version of Android it might be possible
to enable the SD card if it can be encrypted.
It might be good idea to deploy some kind of GUI to
enforce the security policies, instead of doing it through
scripts or configuration files. This GUI might also set
up all the parameters for the external application such
as Antivirus or autowipe in an automatic manner, so no
intervention of the security admin will be necessary.
Other area that could be improved are the possibility of
creating a password when booting the system, similar
to that in a standard bios, so the system will not boot
unless the password is correct. However, this will require
to modification to the source code of Android.

REFERENCES

[1] iPhone OS Enterprise Deployment Guide, [30/05/2011]
http://www.apple.com/iphone/business/integration/

[2] Google Apps for Android [30/05/2011]
http://www.google.com/apps/intl/en/business/mobile.html

[3] Catching AuthTokens in the Wild The Insecurity of Google’s
ClientLogin Protocol [30/05/2011]
http://www.uni-ulm.de/en/in/mi/staff/koenings/catching-
authtokens.html

[4] Firesheep [01/06/2011]
http://codebutler.com/firesheep

[5] DroidDreamLight, New Malware from the Developers of
DroidDream [30/05/2011]
http://blog.mylookout.com/2011/05/security-alert-
droiddreamlight-new-malware-from-the-developers-of-
droiddream/

[6] The harsh reality of Android Market [16/06/2011]
http://bit.ly/o3PYme

[7] The Current State of Mobile Device Security, Carey Nachenberg,
[28/06/2011]
http://bit.ly/iZceu4

[8] The Android SDK [20/05/2011]
http://developer.android.com/sdk/index.html

[9] Mobile Security Application (book) [2010]
Himanshu Dwivedi, Chris Clark, David Thiel. McGraw-Hill

[10] Android user ID and permissions [14/06/2011]
http://developer.android.com/guide/topics/security/security.html

[11] Proposal of a model to improve the Security Model,
[14/06/2011] Mir.Nauman. Security Engineering Research
Group, Institute of management sciences, Peshawar
http://imsciences.edu.pk/serg/2010/07/androidsecurityasurveyso-
farsogood/

[12] Norton Mobile Applications [1/07/2011]
http://community.norton.com/t5/Norton-Mobile-Apps-Public-
Beta/bd-p/norton mobile pb

[13] Antivirus Free [1/07/2011]
http://www.appbrain.com/app/anti-virus-free/com.antivirus

[14] Lookout application [1/07/2011]
http://www.androidtapp.com/lookout-mobile-security/

[15] Autowipe: delete remotely the device [1/07/2011]
http://bit.ly/mSy1Qq

[16] OpenVPN [22/6/2011] http://openvpn.net/
[17] CyanogenMod ROM [28/6/2011]

http://www.cyanogenmod.com/
[18] Dropbear: SSH for Android [30/6/2011]

http://matt.ucc.asn.au/dropbear/
[19] Iptables: firewall for Linux [26/6/2011]

http://www.netfilter.org/
[20] Secure Element Evaluation Kit for the Android platform - the

’SmartCard API’ [15/06/2011]
http://code.google.com/p/seek-for-android/

[21] OpenVPN manual [22/6/2011]
http://openvpn.net/index.php/open-
source/documentation/howto.html

[22] Installation of SSH in Cyanogenmod [30/6/2011]
http://bit.ly/nJheuA

[23] Android Class Loading Hijacking. Mario Ballano. Symantec
[30/6/2011]
http://www.symantec.com/connect/blogs/android-class-loading-
hijacking

[24] The Android boot process from power on [28/5/2011]
http://www.androidenea.com/2009/06/android-boot-process-
from-power-on.html

ACKNOWLEDGEMENTS

I would like to thank to my supervisor Renaat Ver-
bruggen for his assistance. I would like to show my
gratitude to Mss. Marie Celeste Woods who helped me
reviewing the paper. Special thanks should be given to
my parents and family for their love and support since
always.


