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Als meus pares i a Desirée





Déu meu, com és de bell el riu en aquest llit,
Més delitós per beure que els llavis de donzella.

Sembla una polsera, amb flors a les vores
Talment la Via Làctia. És cristal·ĺı

Com un fil d’argent sobre una túnica verda.
Pestanyes en un ull blau, el brancatge

que el voreja entre caŕıcies de brisa.
L’or del crepuscle rellisca damunt l’aigua platejada.

Quantes vegades, Déu meu, a la vora d’aquest riu
he convidat a un vi clar els meus estimats companys.

Ibn Kafaja (sobre el Xúquer al seu pas per Alzira, any 1100)

Jo em meravell com no es veu qui ulls ha
e cell qui ou per què no vol entendre
e qui no sap per què no vol aprendre

e cell qui pot e sap com bé no fa.
Pere March

I no obstant, es mou.
Galileu Galilei

Ha d’ésser possible
viure en dignitat.

Han d’ésser possibles
vents de llibertat.

Vicent Andrés Estellés

El Cosmos és tot el que és, el que va ser i el que serà en algún moment.
Les nostres contemplacions més tèbies de l’Univers ens commouen,

un calfred recorre la nostra espina dorsal, la veu se’ns quebra,
hi ha una sensació dèbil, com la d’un record llunyà o la de caure des de l’alt.

Sabem que ens estem apropant al major dels misteris.
Carl Sagan
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Agräıments
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RESUM

Introducció

Aquest treball de tesi doctoral es centra en un fenomen particular (dolls
relativistes) dins d’un més general conegut com AGN (acrònim de l’anglès
Active Galactic Nuclei). Aquest darrer és un dels processos més energètics
de l’Univers, en el que es posen en joc energies de fins a 1047erg/s al llarg
d’escales de temps cosmològiques, i amb emissió en tot l’espectre electro-
magnètic. Al llarg dels anys 40 i 50 del passat segle van ser trobades diverses
fonts d’aparença estel·lar amb forta emissió en freqüències de ràdio, cosa poc
t́ıpica dels estels. Descoberta la seua naturalesa extragalàctica quan Maarten
Schmidt va mesurar el corriment al roig de les ĺınies d’hidrogen al quàsar 3C
273, es va obrir el debat sobre quin tipus de procés f́ısic podria generar sem-
blant quantitat d’energia. A més, estudiant la variabilitat en l’emissió, hom
podia saber que la regió on es prodüıra aquesta devia ser molt menuda (menys
de 100 pc). Eddington va proposar el model més acceptat hui dia respecte a
l’origen d’aquesta radiació, explicant-la com emesa per la matèria que cau per
atracció gravitatòria en un objecte central. Fent uns senzills càlculs per tro-
bar la massa de l’objecte capaç d’acretar la quantitat de matèria suficient per
explicar la radiació emesa, es troba que deu ser d’al voltant de 108M¯.

La teoria estàndard ens presenta el fenomen AGN com el procés d’emissió
de radiació per part de les part́ıcules que cauen en un forat negre supermassiu
(Supermassive Black Hole, SMBH) al centre de la galàxia activa. La matèria
forma un disc, conegut com disc d’acreció, al voltant del forat i, al seu temps,
el disc es troba rodejat per un torus de matèria que l’alimenta. L’existència de
diferents famı́lies de galàxies actives s’associa al punt de vista de l’observador
respecte a aquest torus, depenent de si ens amaga les regions centrals o no, a
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més de la potència intŕınseca de la font.

En un subgrup dels AGN, s’observen ejeccions de matèria sorgint de la regió
activa. Aquestes ejeccions (dolls) emeten radiació sincrotró principalment en
freqüències de ràdio, i són observats amb tècniques interferomètriques (per
exemple, Very Long Baseline Interferometry, VLBI, en les escales del pàrsec,
o Very Large Array, VLA, en les escales del kilopàrsec). No obstant l’emissió
es produeix també en l’òptic, i, per radiació Compton inversa, en raigs X
i raigs gamma, els més energètics de l’espectre electromagnètic. Gràcies a
diferents evidències observacionals i a l’elevada precissió de les mesures inter-
feromètriques sabem que les estructures en aquests dolls es mouen a velocitats
properes a la de la llum (o relativistes).

El fenomen doll no només està associat als AGN, sinó que és molt gen-
eral a l’Univers, i ocorre allà on es puga trobar un disc d’acreció al voltant
d’un objecte massiu central. Aquest escenari és el que trobem en situacions
tan diferents com un estel en formació, una binària de raigs X, o també en
un estel en col·lapse. Evidentment les propietats dels dolls canvien radical-
ment d’uns a altres, en velocitats (de centenars de quilòmetres per segon als
primers a velocitats properes a la de la llum als darrers o als AGN) i com-
posició (de mol·lècules i àtoms als estels en formació a electrons, positrons i
protons als dolls dels AGN). La formació està motivada per processos mag-
netohidrodinàmics encara no del tot ben entesos. La seua generalitat junt
amb el desconeixement que encara existeix respecte a la f́ısica fonamental que
impliquen fa d’aquest camp un dels més interessants de l’Astrof́ısica actual.

Els dolls en AGNs viatgen al llarg de centenars de milers de parsecs, por-
tant grans quantitats de matèria i energia cap al medi intergalàctic durant
escales de temps cosmològiques. Presenten estructures semblants en escales
de pàrsec i kilopàrsec, amb components d’emissió en moviment, o components
estacionàries. Les primeres són generalment superlumı́niques en escales del
pàrsec degut a les velocitats ultrarelativistes amb que es mouen, combinades
amb un angle menut amb la direcció d’observació. Les components s’associen
a ones de xoc o a pertorbacions propagant-se al llarg dels dolls. Pel que fa a
les escales del kilopàrsec, els dolls es classifiquen, segons la seua morfologia, en
fonts FRI (més difuses a gran escala) i FRII (més col·limades i amb emissió
més intensa en les regions externes).
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Les estructures i inhomogeneitats observades i les propietats d’estabilitat
a llarg terme han estat associades des d’els anys 70 (Turland i Scheuer 1976,
Blandford i Pringle 1976) a les inestabilitats Kelvin-Helmholtz, que es desen-
volupen en la superf́ıcie de contacte entre dos fluids amb velocitat relativa.
Des d’aleshores la teoria lineal d’inestabilitats Kelvin-Helmoltz (KH) per a
fluids relativistes ha estat desenvolupada i estudiada en diferents situacions
(e.g., Ferrari et al. 1978, Payne and Cohn 1985, Birkinshaw 1991a,b, Hardee
1987, Hardee et al. 1998, Hardee 2000). En el domini dels fluids relativistes,
les conclusions principals d’aquests treballs ens diuen que els dolls amb tem-
peratures més altes i velocitats menors desenvolupen les inestabilitats més
ràpidament, amb el que es dedüıa que són més inestables, contràriament als
més ràpids i freds, amb ritmes de creixement més baixos. També es conclou
que si la transició entre el doll i el medi ambient és continua, els ritmes de
creixement dels modes tendeixen a ser més menuts que en el cas on la tran-
sició siga discontinua. Les inestabilitats KH, segons la seua geometria, generen
estructures simètriques (successives expansions i contraccions del doll), heli-
coidals, el·ĺıptiques, triangulars, etc. Cadascuna d’aquestes geometries inclou
un nombre infinit de modes, depenent de la longitud d’ona transversal, el mode
fonamental sense cap zero en l’ona entre l’eix i la superf́ıcie, i els modes de
reflexió, que presenten estructura transversal amb zeros, el nombre dels quals
ens dona l’ordre del mode. Respecte al règim no lineal, els treballs d’estudi
sobre l’efecte de les inestabilitats KH en els dolls han estat bàsicament real-
itzats en el règim subrelativista (e.g., Norman i Hardee 1988, Hardee i Nor-
man 1988, Bodo et al. 1994, 1995) fins 1998, quan van aparéixer les primeres
publicacions aplicant els coneixements en teoria lineal a simulacions de dolls
relativistes (Hardee et al. 1998, Rosen et al. 1999). Les conclusions derivades
d’aquests treballs van concloure que els dolls més ràpids i amb majors energies
internes són més estables, contràriament al que prediu la teoria lineal.

L’estabilitat dels fluids relativistes pot donar llum a alguns dels problemes
que la f́ısica dels dolls extragalàctics ens planteja, com la dicotomia FRI/FRII
o les estructures dels dolls en escales del pàrsec. Per altra banda, encara que
s’entenen parcialment una sèrie de fenòmens associats a aquests objectes, en-
cara no ha aparegut una imatge conjunta dels processos que hi tenen lloc.
El nostre objectiu últim és entendre què ocorre en un doll relativista, què hi
ha darrere de la seua emissió i quines són les seues propietats i paràmetres.
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Aquesta tesi doctoral es centra en l’estabilitat dels dolls, un dels aspectes fona-
mentals en aquest camp, com hem dit abans. Altres aspectes com l’acceleració
de part́ıcules, l’emissió en altes energies o la composició seran afegits en el fu-
tur.

Aix́ı doncs, en aquest treball s’ha aprofondit en l’estudi de l’efecte de les
inestabilitats KH en dolls relativistes. Mitjançant l’ús d’un codi numèric que
descriurem al llarg de la memòria, hem estat capaços de seguir el creixement
de pertorbacions des de la fase lineal (çò és, quan les pertorbacions són pe-
tites), comprovant que els nostres càlculs estan d’acord amb les prediccions
teòriques, fins el règim no lineal (on les pertorbacions són grans comparades
amb els valors d’equilibri inicial). El règim no lineal inclou la f́ısica que escapa
a un tractament anaĺıtic, amb processos turbulents i caòtics que fan necessària
la utilització de codis numèrics per a realitzar els càlculs amb ordinadors.

El treball consta de dues parts, una primera dedicada a un estudi general
de les inestabilitats KH en fluids relativistes, i una segona en la que hem
començat a plantejar-nos situacions astrof́ısiques reals, fent ús de l’experiència
acumulada en l’evolució lineal i no lineal de les inestabilitats.

Estabilitat (transició discontinua)

Amb la fi d’estudiar la influència dels paràmetres dels dolls relativistes en la
seua estabilitat a llarg terme, hem realitzat simulacions per a diferents factors
de Lorentz i energies internes (temperatures) dels mateixos, considerant-los
separats del medi per una discontinuitat, la situació teòrica més estudiada en
el règim lineal.

En el caṕıtol corresponent, i en primer lloc, presentem el desevolupament
de la teoria lineal en el cas conegut com vortex sheet, és a dir, quan el doll i el
medi ambient es troben separats per una discontinuitat en velocitat i densi-
tat. Es considera que el sistema doll/medi es troba en equilibri de pressions i
s’estudia l’efecte d’una petita pertorbació en el sistema. La pertorbació de les
equacions ens porta a equacions d’ones (de propagació de la pertorbació) en
el doll i el medi, que, adequadament empalmades en la superf́ıcie de contacte,
resulten en una relació de dispersió que relaciona la freqüència amb el nom-
bre d’ona de les inestabilitats. La relació de dispersió es resol amb l’ajut del
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mètode numèric de Newton-Rapson, explicat als Apèndix del treball. Resolent
aquesta equació trobem l’estructura de les pertorbacions (longitud o nombre
d’ona i freqüència) que són inestables, és a dir, que creixen en el sistema.

Aquestes pertorbacions inestables es poden estudiar des de dos punts de
vista: aquell en que creixen en l’espai (estudi espacial), on la freqüència és real
i el nombre d’ona complexe, sent la part imaginària la que ens dóna el creixe-
ment de la pertorbació; i aquell en que creixen en el temps (estudi temporal),
on la freqüència és complexa i el nombre d’ona és real, sent la part imaginària
de la freqüència la que ens dona el ritme de creixement de la pertorbació. En
el nostre cas, ens centrem en l’estudi temporal, ja que, a l’hora de la realització
de les simulacions numèriques permet l’ús de major resolució, com expliquem
més avant.

Els resultats de la relació de dispersió són compatibles amb els estudis
d’estabilitat lineal esmentats a la introducció d’aquest resum, que apunten
cap als dolls més calents i/o lents com aquells en què les inestabilitats es
desenvolupen més ràpidament respecte als dolls més freds i/o ràpids. El do-
mini de paràmetres estudiat comprén des de factor de Lorentz 5 fins factor de
Lorentz 20 i des d’energia interna espećıfica 0.08 c2 (doll tebi) fins 60 c2 (doll
calent, on c és la velocitat de la llum), fixant la raó de densitats de massa a
0.1 (amb el doll deu vegades menys dens que el medi). És dir, des de dolls
mitjanament relativistes tant cinemàtica com termodinàmicament fins dolls
altament relativistes en els dos aspectes.

Després d’estudiar els resultats de l’anàlisi lineal, passem a descriure les
simulacions numèriques realitzades. Aquestes simulacions es fan prenent una
porció d’un doll teòricament infinit (amb condicions de contorn periòdiques
a l’eix de propagació), al que es pertorba. La pertorbació creix en el temps
(estudi temporal) en aquestes simulacions. Açò ens permet centrar-nos en
una part menuda del doll (del tamany de la longitud d’ona de la pertorbació),
augmentant la resolució numèrica respecte als estudis espacials, als quals cal
simular el doll en tota la seua extensió o seguir la seua evolució.

Com s’ha esmentat abans, es presenta un estudi de la resposta del codi
front a pertorbacions petites, comparant el resultat amb els resultats teòrics
de l’apartat anterior. Amb aquest objectiu, escollim una pertorbació de les
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solucions i l’apliquem al doll. El resultat d’aquest estudi ens indica que el codi
és capaç de seguir el desenvolupament de les inestabilitats tal i com prediu
la teoria, sempre que la resolució numèrica siga suficientment alta. En cas
contrari, la viscositat generada pel mètode numèric esmorteix el creixement,
donant una estabilitat artificial al doll.

Un altre problema associat a aquest és el de l’estabilitat inicial del doll.
Per pertorbar el doll, aquest deu estar en perfecte equilibri amb el medi.
Numèricament açò és impossible si tractem la superf́ıcie com una discontinui-
tat, de manera que, a l’hora de fer les simulacions, hem d’incloure una transició
continua, però al mateix temps, el suficientment estreta per a que la teoria de
transició discontinua siga aplicable.

Una vegada trobat l’equilibri entre resolució numèrica i amplària de la
transició, presentem una sèrie de simulacions numèriques per a dolls amb el
rang de paràmetres expressat més amunt, pertorbant el primer mode corporal
simètric en tots ells, en tal d’estudiar la seua resposta no lineal a les pertor-
bacions. Els resultats més interessants d’aquesta part del treball són:

• En el règim lineal i post-lineal: hem confirmat el resultat de Hanasz
(1995, 1997), qui va predir teòricament la saturació del creixement quan
l’amplitud de la pertorbació en velocitat s’acosta a la velocitat de la
llum. La fase lineal acaba quan la pertorbació en velocitat axial, en el
sistema de referència del doll, arriba a una amplitud propera a aquesta
velocitat ĺımit. Després d’aquest moment, les pertorbacions en velocitat
transversal i pressió segueixen creixent, encara que no indefinidament.
Entre la fase lineal i la no lineal, trobem una fase de transició, marcada
per la saturació de la velocitat transversal, i la generació d’una ona de
xoc.

• Règim no lineal: Les condicions f́ısiques del doll en el moment de la
saturació condicionen l’estabilitat en el règim no lineal. L’ona de xoc
generada en la transició de la fase lineal a la no lineal és més forta i
destructiva per als dolls més lents i freds. Després de la formació de
l’ona de xoc, comença un procés turbulent de transferència de moment
del doll al medi extern i de mescla dels dos medis. Depenent de la
intensitat de l’ona de xoc, el procés acaba per frenar i refredar el doll
degut a la càrrega de material més dens i fred del medi extern.
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El fet que l’ona de xoc siga més intensa per als dolls més freds és en part
conseqüència de l’equilibri de pressions imposat al començament de la simu-
lació. Açò ocorre perque si el doll és més fred, el medi també ho és (degut a
que hem fixat la raó de densitats), i per tant la velocitat del so és més baixa.
Quan la pertorbació en velocitat supera la velocitat del so, es propaga de
forma supersònica, generant una ona de xoc. Evidentment, quant menor siga
la velocitat del so en el medi, més fàcil és que la pertorbació siga supersònica.
Aquest fet ens va portar a fer un sèrie de noves simulacions, fixant les propi-
etats f́ısiques del medi extern, i modificant l’energia interna i la densitat de
massa del doll de manera que es respectara l’equilibri de pressions. Aques-
tes simulacions no han fet més que afermar les conclusions exposades en els
punts anteriors. No obstant, es remarca la importància del factor de Lorentz
en l’estabilitat dels dolls, per damunt de les seues propietats termodinàmiques.

A més, exposem un anàlisi complet de les estructures transversals gene-
rades per les inestabilitats en el règim no lineal, i agrupem els dolls segons
aquestes propietats i les magnituds promitjades com la quantitat de moment
longitudinal conservat pel doll o l’amplària de la regió de mescla. Aix́ı, trobem
quatre regions d’estabilitat que depenen bàsicament del factor de Lorentz i
la raó d’entalpia espećıfica entre el doll i el medi extern. Una primera regió
comprén els dolls més freds i amb menors factors de Lorentz, els quals pateixen
un procés de trencament i mescla ràpid després del xoc. Un altra regió inclou
els dolls més calents i amb factors de Lorentz baixos, per als quals es dona
un procés similar al del grup anterior, mantenint però una part central, prop
de l’eix, sense mesclar i amb temperatures i velocitats elevades; aquest fet es
mostra, no obstant, com possiblement degut a la baixa resolució axial util-
itzada en les simulacions. El tercer grup inclou els dolls més ràpids i calents,
els quals mostren una pèrdua gradual de moment longitudinal i un procés de
mescla també lent, associat amb una eficient conversió d’energia cinètica en
energia interna, que produeix una transferència continua d’energia i moment
al medi extern. I el quart grup, en el que hi ha aquells dolls amb majors factors
de Lorentz, però més freds que els anteriors, els quals són els més estables, en
mantindre’s col·limats i amb una porció elevada de la seua velocitat inicial.

Al final del caṕıtol resumit aćı es presenten simulacions realitzades per
a quatre models representatius de l’exposat anteriorment, amb pertorbacions
antisimètriques per provar la simetria del codi (en la qual es va treballar de
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forma especial a nivell numèric) i estudiar l’efecte d’aquestes inestabilitats
comparades amb les simètriques. Dues de les simulacions confirmen l’esperat
partint dels resultats obtinguts amb pertorbacions simètriques. No obstant,
en les altres dues apareixen, potser degut a un canvi de les condicions ini-
cials (ampliació del tamany de la transició i canvi de resolució numèrica), uns
creixements lineals anòmals de les pertorbacions. Aquest fet ens planteja la
pregunta de l’origen de les anomalies (descartat un problema numèric), el qual
s’explica en la secció següent.

En definitiva, hem fet un treball d’estudi i classificació de les inestabilitats
Kelvin-Helmholtz en fluids relativistes, que ens permetrà abordar escenaris
més generals i realistes amb una base de gran valor a l’hora d’analitzar els re-
sultats obtinguts. A més hem pogut comprovar que les conclusions derivades
dels treballs en el règim lineal, des de la suposició que les inestabilitats amb
creixements més ràpids són les més disruptives, no es corresponen amb les
conclusions derivades del règim no lineal, on veiem que, independentment del
valor dels ritmes de creixement, l’estabilitat final del doll depén de la transició
entre un règim i l’altre, i, en particular, de la intensitat de l’ona de xoc gener-
ada en aquest moment. També demostrem que els dolls més calents no tenen
per què ser els més estables com anteriors estudis numèrics havien conclòs
(Hardee et al. 1998, Rosen et al. 1999). Els resultats han estat publicats als
articles Perucho et al. 2004a i 2004b.

Estabilitat (transició continua)

El primer pas cap a escenaris més propers als sistemes reals passa per
suavitzar l’exigència de transicions discont́ınues entre els medis, situació sen-
zilla, i per tant interessant, baix un punt de vista teòric, però allunyada de
l’interés pràctic. En el nostre cas, un altra motivació a l’hora d’enfrontar-nos
a aquest problema es troba als resultats obtinguts en el cas de modes anti-
simètrics.

En aquest cas de transició continua, la pertorbació de les equacions de la
hidrodinàmica relativista ens porta a una equació diferencial per a la pertor-
bació en pressió que hem de resoldre numèricament. El mètode utilitzat per
resoldre-la és conegut com shooting method o mètode del tir. El mètode del
tir consisteix a donar condicions de contorn a l’equació diferencial, i, amb una
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solució prova, integrar-la (amb el mètode Runge-Kutta de pas variable) des
de una condició de contorn fins l’altra, comprovant si la solució prova acom-
pleix la segona. Si ho fa, hem trobat una solució de l’equació, i si no és aix́ı,
s’utilitza el mètode de Muller per buscar una solució prova més propera a la
solució vertadera.

Al començament del caṕıtol corresponent, es presenten els resultats de l’a-
nàlisi lineal d’una sèrie de models en els que es combinen diferents paràmetres
com factor de Lorentz, energia interna espećıfica i amplària de la transició. El
primer resultat destacable, que confirma el mètode utilitzat, és la convergència
entre els resultats obtinguts amb la relació de dispersió del problema de tran-
sició discontinua i la solució de l’equació diferencial de transició continua si
aquesta és suficientment estreta.

La inclusió de transicions cont́ınues entre un doll relativista i el medi ambi-
ent dona com resultat una disminució dels ritmes de creixement dels modes de
reflexió d’ordre més baix. La disminució és més important quant més ampla
és la transició. Pel que fa als modes de reflexió d’ordre més alt, presenten unes
resonàncies molt pronunciades a les longituds d’ona més llargues per a les que
comencen a ser inestables, és a dir, quan tenen ritmes de creixement majors
que zero. Aquestes resonàncies, depenent dels paràmetres f́ısics del model, són
més o menys importants respecte als ritmes de creixement dels modes de re-
flexió d’ordre més baix: són particularment importants en els dolls més ràpids
(amb factors de Lorentz ∼ 20). Les resonàncies desapareixen a mesura que
l’amplària de la transició es fa gran. El mode fonamental presenta dos com-
portaments diferenciats a longituds d’ona curtes i a longituds d’ona llargues.
Per a les primeres els ritmes de creixement augmenten quan la transició creix,
mentre que per a les segones la influència de la transició no es deixa sentir
mentre l’amplària d’aquesta siga menuda comparable amb el tamany de la
ona.

Es plantegen una sèrie de simulacions numèriques en el mateix domini
de paràmetres termodinàmics i cinemàtics que les esmentades anteriorment,
però incloent també models amb un factor de Lorentz 2.5. L’amplària de la
transició en les simulacions és d’un 20% del radi del doll, i les pertorbacions
s’inclouen com un conjunt d’ones simètriques i antisimètriques.
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L’anàlisi de la fase lineal de les simulacions ens mostra la competició entre
els diferents modes, la qual es mostra clarament mitjançant els efectes en la
morfologia del doll en la fase immediatament posterior a la fi del règim li-
neal (fase de saturació). En els models amb factor de Lorentz inicial major,
s’aprecia l’evolució de modes de reflexió d’alt ordre i longitud d’ona menuda
que creixen més ràpidament que els demés modes, i que són excitats com
armònics de les ones pertorbades expĺıcitament per nosaltres. Hem comprovat
que aquestos modes es corresponen amb les resonàncies trobades a la solució
del problema lineal mitjançant una comparació de l’estructura generada per
una de les resonàncies (teòricament) i l’estructura trobada a les pertorbacions
de les simulacions, amb resultats positius. No obstant açò, els ritmes de crei-
xement trobats a les simulacions són majors que els donats teòricament, sense
que encara haguem trobat una explicació definitiva per a aquest fet. Potser
estiga provocat per efectes no lineals d’interacció entre modes o per un creix-
ement no homogeni d’aquestos modes al través del doll.

La importància de les resonàncies es fa palesa en la transició al règim no
lineal. La presència d’ones de longitud d’ona curta que suposa l’aparició dels
modes resonants, i que a més dominen el creixement de les pertorbacions,
fa que qualsevol estructura de tamanys majors siga trencada per aquestes
ones més petites, evitant la formació de les ones de xoc que podrien provocar
la disrupció del fluxe. Per tant, la saturació de les pertorbacions de velocitat
transversal i pressió es produeix de forma suau. L’estructura de les resonàncies
és tal que les amplituds de les ones són majors cap a la transició amb el medi.
El creixement d’aquestes ones en la transició genera una conversió eficient
d’energia cinètica en energia interna, formant-se una regió d’energia interna
molt elevada (per damunt de la del doll mateix), que envolta el doll, äıllant-lo
del medi. Aix́ı, els dolls que presenten aquest tipus d’evolució es mantenen
col·limats i amb velocitats elevades.

Pel que fa als dolls més lents, per als que les resonàncies no apareixen a
les simulacions d’acord amb els seu ritmes de creixement relatius (respecte als
modes de longituds d’ona majors) més baixos, els processos són molt semblants
al que s’ha dit respecte a les simulacions de dolls amb transició discontinua.
En la major part dels cassos, després de la formació de l’ona de xoc, el mate-
rial dels dolls es mescla amb el medi extern, com a conseqüència del qual els
dolls són frenats i refredats. No obstant, hi ha un grup de dolls que pateixen
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un procés de mescla més lent, en forma gradual. Els darrers preserven una
quantitat important del seu moment longitudinal i no són mesclats amb el
medi immediatament després de generar-se l’ona de xoc, però s’enceta en eixe
moment un procés que, convertint energia cinètica en interna, desfa l’equilibri
entre el doll i el medi i genera una vorticitat que dóna com a resultat la mescla
i la transferència de moment longitudinal cap al medi extern, frenant-se aix́ı
el doll. Aquesta famı́lia de dolls formen una regió de transició entre els dos
grups esmentats abans, amb comportaments molt estables o molt inestables.

Al final del caṕıtol, donem un gràfic en el que situem tots els dolls simulats
en un pla factor de Lorentz - nombre de Mach relativista. En ell es demostra
clarament la dependència de l’estabilitat dels dolls en aquestos paràmetres.
Per demostrar el caràcter general del resultat, hem inclòs també els dolls de
les simulacions del caṕıtol anterior.

Finalment, es presenta una discussió en la que comparem els resultats
d’aquestes simulacions amb els dolls extragalàctics reals, on es comparen els
dolls que són frenats i mesclats amb els FRI, i els col·limats amb els FRII.
Aquesta comparació és una simplificació molt gran, doncs no tenim en consid-
eració efectes importants com la propagació dels dolls per un medi de densitat
decreixent, o d’altres. No obstant, l’estudi no lineal d’aquestos fluids ens diu
clarament quins són els més estables front a pertorbacions. Els resultats es
troben en procés de publicació en aquestos moments (Perucho et al. 2005a,b).

Aplicacions astrof́ısiques

La darrera part del treball es centra en les possibles aplicacions de l’estudi
realitzat a dolls extragalàctics, tant de l’escala del pàrsec com del kilopàrsec.

En primer lloc, hem provat de fer simulacions aplicades a dolls d’escala
del pàrsec. Lobanov i Zensus (2001) van interpretar les estructures observades
al doll d’escala del pàrsec del quàsar 3C 273 com prodüıdes per inestabili-
tats Kelvin-Helmholtz, i aplicant la teoria lineal, van obtindre un conjunt de
paràmetres que el describien. Nosaltres hem realitzat dues simulacions en tres
dimensions fent ús d’eixos paràmetres. Les simulacions comencen amb dolls
estacionaris que són pertorbats amb l’objectiu d’estudiar les estructures que es
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generen i comparar-les amb les trobades en el treball esmentat. A la primera
simulació, les pertorbacions s’inclouen en la injecció del doll, amb estructures
el·ĺıptiques i helicoidals, com les identificades per Lobanov i Zensus, i es deixen
evolucionar al llarg del doll (estudi espacial). Les estructures generades deuen
ser comparades amb les observacions mitjançant transformacions que donen
compte dels efectes de projecció relativistes i d’observació. És important per
tant, conéixer la velocitat amb que es mouen les estructures per tal de fer
les transformacions de forma adequada. La incertesa en aquest valor fa que la
comparació siga complicada, encara que, estimant la velocitat de les ones, hem
arribat a valors de longitud d’ona de les estructures generades comparables als
observats. No obstant això, la simulació presenta un problema, com és que les
inestabilitats acaben trencant el fluid, contràriament a les observacions que
ens diuen que el doll del quàsar 3C 273 arriba col·limat fins ben fora de la
galàxia progenitora. Al text es donen diverses hipòtesis per explicar el fet que
el doll de la simulació es trenque, com la possibilitat de que hi haja errors acu-
mulats en l’anàlisi lineal o la no inclusió de camps magnètics en la teoria i en
les simulacions. No obstant això la resposta haurà d’esperar noves simulacions.

La segona simulació està basada en pertorbar el doll incloent fets obser-
vacionals com l’ejecció de components superlumı́niques amb una freqüència
anual, i la precessió del forat negre central amb un periode d’uns 15 anys.
En aquest cas el tamany f́ısic simulat és menor que en la primera simulació,
ja que la nostra prioritat en aquesta simulació era buscar estructures lineals
comparables a les observades. D’aquesta manera hem observat que calen com-
ponents amb factors de Lorentz majors (que els que nosaltres considerem) per
explicar les estructures que Lobanov i Zensus expliquen com conseqüència de
la precessió, i, a més, que aquestes components podrien explicar també algun
dels modes de menor longitud d’ona observats pels mateixos autors. Degut
a l’objectiu esmentat abans per a aquesta segona simulació, el doll no és el
suficientment llarg com per deixar créixer les pertorbacions fins el règim no
lineal, i, per tant, no podem per saber si aquestes trencarien o no el doll.
L’estabilitat a llarg terme del doll de 3C 273 serà estudiada amb més detall
en futures simulacions.

En ambdós simulacions, es tracta de primeres aproximacions al problema
de l’estabilitat en dolls reals, amb mancances tant teòriques com computa-
cionals, però aquest tipus d’estudi és d’utilitat a l’hora de fer una cŕıtica
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constructiva del mètode utilitzat per obtindre els paràmetres del doll, potser
comprovant la seua validesa o donant punts febles que millorar. Hem vist que,
efectivament, hi ha mancances, però és a partir d’aquestes simulacions que
ho podem saber i que podem tractar de superar-les amb noves ferramentes
teòriques i amb millores en el codi.

Pel que fa als dolls d’escala del kilopàrsec, basant-nos en una sèrie de tre-
balls de Laing i Bridle (2002a,b), estem fent una simulació per a l’evolució dels
dolls de la radiofont FRI 3C 31. Aquestos autors obtenen un model cinemàtic
axisimètric per als dolls de 3C 31, tenint en compte també informació del
medi extern obtinguda observacionalment (Hardcastle et al. 2002). En la
nostra simulació hem incorporat aquesta informació per a un medi amb perfil
radial de densitat. A més, hem treballat sobre el codi per tal de poder in-
cloure tota la complexitat termodinàmica que el problema requereix, ja que
els autors diferencien un medi extern, fred i bariònic, del doll, composat per
part́ıcules relativistes termodinàmicament (electrons i positrons). D’aquesta
manera, hem usat l’equació d’estat de Synge per a gasos relativistes, que
permet tractar amb electrons/positrons i protons, i per tant treballar amb
diferents combinacions d’aquestes part́ıcules.

Aquesta simulació està sent una de les més llargues de la tesi, amb una
durada, fins l’escriptura d’aquestes ĺınies, de quaranta-set dies, treballant amb
vuit processadors de la màquina SGI Altix 3000 CERCA.

Els resultats parcials d’aquesta simulació ens mostren la propagació del doll
al llarg dels primers milers de parsecs de la seua evolució, i ens han permés
reproduir de forma qualitativa el model evolutiu de Laing i Bridle. L’evolució
del doll ve marcada per una primer fase d’expansió adiabàtica i acceleració
en el medi extern, fins que es troba amb una pressió menor que la del medi
i pateix un procés de focalització (o compressió), que genera una forta dis-
minució de la velocitat del doll i un increment de la densitat i la pressió,
que afavoreixen l’augment de l’emissió. En acabant, s’enceta un segon procés
d’expansió i refocalització, que es pot entendre com una oscil·lació al voltant de
l’equilibri de pressions, del qual ja es troba prop després d’aquesta segona fase.

La comparació completa entre la simulació i els models teòrics no es podrà
realitzar fins que el doll haja evolucionat durant més temps i l’evolució del
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seu cap deixe d’influenciar les regions que volem estudiar. Aquesta influència
ve donada per l’efecte de la resistència del medi extern a l’evolució del doll,
per exemple, mitjançant un rebot de les part́ıcules en forma de contrafluxe o
matèria que es mou cap a darrere pels costats del doll, pertorbant-lo. Fins que
aquestos efectes deixen de ser importants el doll no és estacionari i no podem
comparar els resultats amb els models teòrics. De moment, com hem esmentat
abans, açò només ho hem pogut fer per a les regions més internes. En l’anàlisi
final de la simulació deurem tindre en compte la càrrega de matèria del medi
ambient en el doll, ja que les teories més acceptades per a l’evolució dels dolls
de FRI postulen aquesta càrrega com la causa de la pèrdua de velocitat i de
col·limació dels dolls.

Conclusions

Aquest treball de tesi doctoral tenia com objecte aprofondir en el coneix-
ement del règim lineal i obrir el camı́ del coneixement en el camp no lineal
de l’estabilitat de fluids relativistes, sempre amb l’objectiu d’adreçar-nos als
dolls extragalàctics en últim terme. La part principal de la tesi s’ocupa del
primer i segon aspectes. Al llarg d’aquest treball s’han desenvolupat les eines
tant teòriques com numèriques per dur-lo a terme, a més de fer les millores
pertinents en el codi amb que treballem per tal d’optimitzar-lo i fer simula-
cions amb major resolució i en menys temps. El resultat d’aquest esforç ha
estat clarament positiu com s’aprecia a les publicacions en revistes cient́ıfiques
especialitzades que ha motivat el treball.

Les conclusions i resultats més importants del treball són les següents:

• El codi numèric és capaç de reproduir el creixement lineal de les inesta-
bilitats Kelvin-Helmholtz, sempre que utilitzem la resolució adequada
(que minimitze els efectes de la viscositat numèrica) al problema.

• Hem confirmat la hipòtesi de Hanasz (1995, 1997) segons la qual les
inestabilitats en fluids relativistes saturen quan l’amplitud de la per-
torbació en velocitat s’acosta a la velocitat de la llum en el sistema de
referència del doll.

• Hem separat l’evolució de les inestabilitats Kelvin-Helmholtz en dolls rel-
ativistes en tres fases: fase lineal, fase de saturació, i fase no lineal. Hem



xxv

estudiat la influència de la resolució numèrica en les fases lineal/saturació
i no lineal.

• Hem estudiat i classificat l’evolució no lineal de les inestabilitats Kelvin-
Helmholtz de forma quantitativa, mitjançant variables com la quantitat
de moment total en el doll o l’amplària de la regió on es mescla amb el
medi extern.

• Hem descobert l’existència de modes resonants en fluids relativistes amb
transicions cont́ınues que tenen una gran importància en l’estabilitat a
llarg terme dels dolls.

• Hem donat un mapa de l’estabilitat dels dolls relativistes, depenent del
seu nombre de Mach relativista i del seu factor de Lorentz inicial, de-
mostrant que els dolls amb valors grans d’aquestos paràmetres tendeixen
a ser més estables que la resta.

• Hem realitzat dues simulacions numèriques del doll d’escala del pàrsec
de 3C 273 amb l’objectiu de confirmar o corregir els resultats de Lobanov
i Zensus (2001), qui, usant la teoria lineal (e.g., Hardee 2000), expliquen
les estructures observades al doll com conseqüència del desenvolupament
d’inestabilitats.

• Hem començat una simulació d’evolució de llarg terme per estudiar l’evo-
lució dels dolls de la radiogalàxia 3C 31, en particular de la seua evolució
per dins de la galàxia progenitora i l’eixida al medi intergalàctic, seguint
els paràmetres donats als models de Laing i Bridle (2002 a,b). Pretenem
posar a prova aquest model i fer un estudi de l’estabilitat dels dolls que
es propaguen per medis amb perfils de densitat, que ens obriga el camı́
cap a un seguit de simulacions d’aquest tipus orientades a la recerca
de la dicotomia FRI/FRII. Els resultats parcials són encoratjadors i ens
han permés identificar les diferents fases incloses pels models esmen-
tats, encara que deurem esperar fins el final de la simulació per obtindre
comparacions definitives entre aquesta i les diferents teories que proven
d’explicar la morfologia de les fonts FRI, entre les que trobem els models
de Laing i Bridle.

Pel que fa als punts menys positius del treball, no entenem encara perquè
els ritmes de creixement d’aquestes en les simulacions són majors que els
teòrics, aix́ı com tampoc hem trobat una solució per a l’estabilitat a llarg
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termini del doll en el quàsar 3C 273. Aquestos aspectes seran, no obstant,
motiu d’estudi en el futur immediat.

El futur d’aquesta recerca està preparat amb les millores introdüıdes en el
codi (equació d’estat o versió del codi en tres dimensions) i amb el desenvolu-
pament de teoria lineal d’inestabilitats Kelvin-Helmholtz per a casos encara
no estudiats, com el de dolls amb rotació diferencial. La inclusió de camps
magnètics (element fonamental en certes simulacions) en el treball serà també
possible en un futur proper.
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Chapter 1

INTRODUCTION

1.1 Jets in the Universe

Outflows and jets represent a common feature in the Universe. They ap-
pear associated to accreting objects, ranging, in the case of galactic jets, from
stars in the process of formation (Herbig-Haro objects, see e.g., Pudritz 2002,
Calvet 2002, Hartmann 2002) to compact objects, like neutron stars and black
holes in binary stars (e.g., X-ray binaries or microquasars, see e.g., Mirabel
and Rodriguez 1994, 1998, 1999, Mirabel et al. 1998), or in the case of extra-
galactic jets, emerging from supermassive black holes (SMBH) in the nuclei
of active galaxies (AGN, see e.g., Begelman, Blandford and Rees 1984, Zen-
sus 1997, Ferrari 1998). Some models and observations point towards jets
appearing also in stellar explosions and gamma-ray bursts (GRBs, see e.g.,
Piran 1999), when the central core accretes matter from its environments.
The variety of scenarios in which they are present makes them an interesting
topic through which we can try to understand the physics of their sources and
surroundings.

The properties of jets depend critically on the scenario we consider. Par-
ticles in jets from young stellar objects (YSOs) have velocities of the order of
hundreds of km s−1, whereas those in AGN’s present Lorentz factors close to
γ ' 10 (γ is the Lorentz factor), i.e. relativistic speeds, and those in GRBs
may have γ > 100. Jet composition is also very different from YSOs to AGNs,
as the former consist on molecules and atoms, whereas in the latter, electrons,
positrons and protons are the most likely ingredients. Therefore, relativistic
jets in AGNs represent an excellent laboratory for relativistic plasma physics.

5
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Figure 1.1: From the smallest to the largest. Jets in a forming star system
(left, Hubble Space Telescope, HST) and in radiogalaxy Cygnus A (right, Very
Large Array, NRAO).

Despite those differences, it is thought that all these scenarios have some-
thing fundamental in common. A magnetohydrodynamic process is supposed
to generate all these different jets and outflows, the degree of collimation, ve-
locities and composition depending on the properties of the central object, the
accretion disk and its surroundings (Pudritz 2002, Camenzind 2002).

1.2 AGN’s and jets

AGN phenomena (see, e.g., Krolik 1999, Peterson 1995) were discovered in
1943 by Carl Seyfert, when he realized that some galaxies (Seyfert galaxies)
presented very high surface brightness at their nuclei and very strong line
emission. Few years later, Woltjer (1959) deduced that all the emitted energy
appeared to be originated at a very small region of about 100 pc across, where
about 10% of the mass of the whole galaxy was concentrated.

Another piece of the puzzle appeared soon after, in the form of radio-stars,
i.e., star-like objects with strong emission in radio frequencies, also known as
quasars. These objects also showed emission lines at frequencies where they
had never been observed in stars. Maarten Schmidt (1963) found that these
were redshifted lines due to their cosmological distances, showing that quasars
were not stars, but powerful, distant galaxies. It was then deduced that one
of the first quasars discovered, 3C 273, was intrinsically 100 brighter than a
typical spiral galaxy.

The origin of this energy coming from a very central region in some galaxies
was thought to be due to the energy outcome from an accretion process by a
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central object. The typical mass of such an object was deduced by Sir Arthur
Eddington. The argument used was to consider that the gravitational field
generated by it has to be equal or larger than the radiation pressure of the
observed luminosity, in order that the accretion process is not stopped. The
result showed that this mass has to be of the order of 108 M¯. This was
one of the first direct evidences of the existence of black holes, due to the
enormous mass of the body and the small size of the region where it has to
be embedded. If the energy outcome is due to the loss of gravitational energy
by the accreted particles, we can easily estimate that the efficiency of the
process could be about 16%, compared to 0.7% in the case of nuclear fusion.
These arguments show that we deal with one of the most violent and energetic
processes in the Universe.

Figure 1.2: Cygnus A, observed at different wavelengths. Extragalactic jets
show strong self similarity in very different scales (Krichbaum et al. 1998).

It is widely thought that SMBHs are present in the cores of AGNs, and
observational evidences of this fact have been found (e.g., Biretta et al. 2002).



8 CHAPTER 1. INTRODUCTION

Due to their large mass and presence in the nuclei of galaxies, their origin
could be in a very early epoch after the Big Bang (primordial black holes).
Therefore, SMBHs are a key point in the formation of galaxies and clusters
of galaxies. SMBHs not only appear in AGNs, but observations suggest that
they are also in the nuclei of all galaxies, the mass of the object being smaller
in the case of non active galaxies, e.g., the SMBH found in the center of our
Galaxy has a mass of the order of 105 M¯ (e.g., Ghez et al. 2000).

AGNs emit radiation in the whole electromagnetic spectrum and appear
in a different set of luminosities, line emissions, spectral distributions and
morphologies. A first division can be given between those AGNs with intense
radio emission (which have also larger bolometric luminosities) and those with
weak or no radio emission. Among these, two more divisions can be done, one
related with the presence or not of broad lines in the spectrum and another
with the bolometric luminosity. A very important step in the understanding
of AGNs was done when all these apparently different objects were unified
under a single physical process (Blandford and Rees 1978, see section 1.3).

Among the weak radio emitters we find Seyfert 1 and 2 galaxies, with
Seyfert 1 galaxies showing broad lines, and radio quiet quasars, among others.
Regarding strong radio emitters, we find radio galaxies (Narrow Line and
Broad Line), quasars and blazars, from less to more luminous.

A fraction of AGNs, mainly those with intense radio emission, show ex-
tended emission in jet-like features arising from the nuclei. Radio emission
seems to be originated in these jets, so they are the main difference between
strong radio emitter AGNs and weak radio emitter AGNs. Jets are elon-
gated emission regions with linear sizes up to 1 Mpc, and are channels through
which large quantities of particles and energy is transported to the intergalac-
tic medium. In the large scale, two types of source are identified, depending
on their morphological features (Fanaroff and Riley 1974):

• FRI radio galaxies: low power radiogalaxies (P178MHz < 1025W/Hz).
Their most luminous regions are towards the center (limb-darkened) and
they end up in a diffuse external zone.

• FRII radio galaxies: large power radiogalaxies (P178MHz > 1025W/Hz).
They are limb-brightened, terminating in bright hot-spots in the collision
region with the ambient medium, and jets have a clearly collimated
structure.

The other two main types of AGN where jets are present are:
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Figure 1.3: Radiogalaxies 3C219 (FRII, left) and 3C31 (FRI, right) (NRAO).

• Quasars are more intense than radiogalaxies in the optical and narrow
and broad lines are observed. These sources are very variable in radio
frequencies, and the jets appear unidirectional, although some times a
second or counter hot-spot is observed.

• Blazars are the most variable (even intra-day) emitting sources in the
whole spectrum. Jets in blazars are very compact and one-sided. These
objects emit even in the most energetic part of the spectrum, at ener-
gies that can reach TeV (gamma rays). Blazars include OVV (optically
variable violent) quasars, very powerful sources, and BL Lacs, with no
emission lines and less powerful than Blazars.

1.3 The Standard Model

1.3.1 AGN unification

As stated above, AGN emission is due to the accretion process onto a
SMBH in the center of the galaxies. Then, what is the reason for such a variety



10 CHAPTER 1. INTRODUCTION

of objects inside the same phenomenon? The unification schemes (Blandford
and Rees 1978, Blandford and Payne 1982, Ghisellini et al. 1993, Urry and
Padovani 1995) claim that the presence of broad lines in the spectra and the
observed power is a consequence of the angle to the line of sight of the observer.
The unified scheme includes two basic ingredients in order to explain this fact:
i) relativistic beaming and ii) tori of gas and dust surrounding the central
black hole and accretion disk.

Figure 1.4: The torus in the core of radiogalaxy NGC4261 (HST).

A torus of dust and gas is supposed to surround the SMBH-disk system
and obscure broad line emission, which would be located towards the center of
the source (Broad Line Region). This fact is confirmed by the velocities of the
emitting gas implied by the widths of broad lines (larger than ∼ 1000 km s−1),
as corresponds to material moving closer to the gravitational source, compared
to that of narrow lines (∼ 100 km s−1, Narrow Line Region).

Regarding relativistic beaming (Blandford and Rees 1974, Rybicki and
Lightman 1979, see also Appendix C), it is due to the anisotropic emission
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Figure 1.5: Schematic view of an AGN (Urry and Padovani 1995).

by relativistic particles, which favors the direction of motion in such a way
that if the particle comes in the direction of observation (inside a cone of semi
angle 1/γ), the measured intensity will be larger than if it travels along further
directions to the line of sight. The factor expressing this relativistic effect is
the Doppler factor: δ = γ(1 − β cosθ), with β the velocity of the emitting
material in units of the speed of light, and θ the angle to the line of sight.
The measured intensity from a particle radiating at a direction close to the
line of sight is increased by a factor proportional to δ3 the radiated intensity.
This would explain the apparent larger intensity from those sources which
are observed in the direction of the relativistic jet and one-sidedness of these
jets (e.g., blazars compared with radiogalaxies). They appear to have large
variability in short timescales, implying that we observe emission from very
compact regions, close to the active nucleus.

Possible intrinsic effects would explain power or morphological differences
between sources seen under similar angles, like those appearing between indi-
vidual sources belonging to the same kind, or between FRIs and FRIIs.
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Figure 1.6: Caption from a simulation of jet formation in the surroundings of
a SMBH; lines stand for magnetic field (Meier et al. 2001).

1.3.2 Jet formation and collimation

The process of jet formation and collimation is not still well understood,
as it occurs in a very compact region and observations have not still resolved
it. Junor et al. (1999) showed that the innermost collimation region in M87
is located at about 30 rS (rS is the Schwarzschild radius). Nevertheless, it is
widely accepted that a magnetohydrodynamic process is behind the origin of
jets. The original idea is due to Blandford and Payne (1982) and Shibata and
Uchida (1985). The problem of the bed in a rotating wire has been suggested
as an example of how particles are extracted from the disk: there is an angle
for which, at a given rotation velocity, the bed starts to move outwards. In
our case, we know that plasma particles are frozen to magnetic fields, so the
parallelism is evident: the magnetic field acts as a wire allowing for particle
transport. Thus, a magnetic field crossing the accretion disk with a given
angle would provide a physical mechanism to extract particles and angular
momentum from it. The extraction of angular momentum is crucial from
the point of view of accretion, as there has to be loss of momentum in order
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to have accretion due to momentum conservation law. Differential rotation
velocity from the surface of the disk to further regions over the disk causes
twisting of the field lines. In the model, collimation of the jet occurs due to
this twisting creating an inwards Lorentz force transversal to the jet direction,
which brings the frozen particles to the axis. Recently, Koide et al. (1998) have
performed simulations including General Relativistic Magnetohydrodynamics,
and found generation of some mildly relativistic outflow. However, they report
numerical problems after some rotational periods of the disk. Their results
suggest pressure along with magnetic driven outflows, depending on the region
of extraction, and that a rotating SMBH (Kerr) is more likely to generate a
faster jet than a static Schwarzschild SMBH if the black hole counter-rotates
with respect to its accretion disk (see also Meier et al. 2001).

Other models have been proposed, like jets being formed in a magnetic Pen-
rose process, where energy is directly extracted from a spinning (Kerr) black
hole (Penrose 1969, Blandford and Znajek 1977), for which recent numerical
simulations exist (Komissarov 2005, Koide et al. 2002); purely hydrodynamic
processes, in which the flow would be accelerated down a pressure gradient,
or models suggesting that plasmas are accelerated by a Poynting flux, i.e.,
through interaction with radiation (see Celotti and Blandford 2001 for further
references on this topic).

1.3.3 Jet models

First models of jet kinematics idealized them as a funnel in which particles
travel freely outwards (Blandford and Rees 1974, Scheuer 1974). However,
interferometric techniques used in VLA (Very Large Array), MERLIN and
VLBI (Very Long Baseline Interferometry), showed that jets have a knotty
structure of stationary and moving features. Some moving components were
also found to have superluminal motion (∼ 2− 5h−1c, with h the normalized
Hubble constant), what was explained by Rees (1966) as a relativistic effect
of radiating particles moving close to the line of sight (Rybicki and Lightman
1979, see also Appendix C). Stationary components were considered to be
associated with beaming due to helical motions approaching to the line of
sight (Walker et al. 2001). It is believed that helical motions may arise due to
precession of the SMBH or due to the jet being generated in a binary SMBH.
Moving components were linked to shocks travelling through the jets by the
so called shock-in-jet models (Blandford and Königl 1979, Marscher and Gear
1985, Gómez et al. 1993). This has been proven by numerical simulations
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Figure 1.7: M87, from kiloparsec scales to the active nucleus (NRAO/AUI).

which combined relativistic hydrodynamics and emission mechanisms (see,
e.g., Gómez et al. 1995, 1997, Agudo et al. 2001). Recent papers by Hardee
(2003) and Hardee et al. (2005) also suggest that moving features could be
associated to the downstream propagation of instabilities.

Progressively better resolution observations show a less idealized picture
of strong coupling of jet evolution with its source and the ambient medium
through which it moves, including accelerations and decelerations or interac-
tion between components. Recent observations by Marscher et al. (2002) have
shown that superluminal component ejections are associated to dips in X-ray
emission, which imply a more intense accretion activity, thus showing that
these travelling perturbations have their origin in the SMBH environment.
Also, Gómez et al. (2000) interpreted bends in the jet of 3C 120 as caused by
the interaction with a cloud in the ambient medium. Numerical codes have
turned into a very valid approach to parsec scale jets (Agudo et al. 2001), as
they permit dealing with these complex, non-linear systems.
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Figure 1.8: Observations of radio sources (quasar 3C279 at 22 GHz, left, and
M87, right), showing superluminal motion. The outer component in 3C279
moved 25 projected light years during a six year interval and components in
M87 move at about 6 c (Wehrle et al. 1998, left, Biretta 1999, right).

On top of the difficulties for understanding such physical systems, we have
to keep in mind that relativistic effects may show up as strong bends and
deformations of the jet (see Appendix C). A small bend in the jet reference
frame can appear as a 90◦ change of direction if the jet is observed at a
sufficiently small angle.

Emission from jets is mainly due to two processes (see subsection 1.3.4),
giving rise to the two peaks in the typical spectrum of an extragalactic jet:

• synchrotron radiation due to relativistic particles being accelerated by
magnetic fields, responsible for emission from radio to optical wave-
lengths,

• synchrotron self, or external, inverse Compton radiation (depending on
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Figure 1.9: Disk-jet connection. Emission at X-ray energies and radio wave-
lengths from an AGN., where correlation between X-ray dips and radio bursts
was shown for 3C 120 (Marscher et al. 2002).

the origin of the photons, from local synchrotron or from external sources
-which may be cosmological microwave background radiation, CMB,
emission from the SMBH corona, from the accretion disk...-, respec-
tively), responsible for high energy emission in the X-ray and gamma-ray
bands, mostly in blazars.

Parsec scale jets present usually a flat spectrum in the radio band, due to
the superposition of spectra from different components, which will be explained
in next subsection. Jets present a two peak spectral distribution, the first
shows up from the millimeter to the X-ray region, and the second in the MeV-
TeV gamma-ray band.

Observations of kiloparsec scale jets allowed for studies in the radio (VLA)
and up to optical (HST) bands. However, since the last decade, X-ray satellite
Chandra has allowed for observations in this range in near kiloparsec scale jet
(3C 273, see Section 4.1 and references therein, or M 87). These observations
show very energetic emission far from the core, posing the problem of parti-
cle acceleration along the jet (Kirk and Duffy 1999). Several hypothesis have
been proposed for the origin of this radiation, as explained in detail for 3C
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Figure 1.10: Jet in quasar 3C273 observed at different wavelenghts.

273 in section 4.1, suggesting inverse Compton scattering of CMB photons,
synchrotron self Compton or synchrotron radiation from ultrarelativistic elec-
trons. Whatever the origin is, particles involved have to be relativistic, so the
need for a model explaining particle acceleration and evolution of high energy
particles in the jet (e.g., Jones et al. 2002, Agudo 2002, Mimica et al. 2004)
is evident.

Another problem concerning kiloparsec scale jets is the stability problem,
i.e., how to keep particles in jets collimated along hundreds of kiloparsecs. In
the case of FRIs (e.g., 3C 31), jets are disrupted and have turbulent motion,
being transonic or subsonic in kiloparsec scales. On the other hand, jets in
FRIIs (e.g., Cygnus A) appear collimated up to the hot-spot, where they col-
lide with the intergalactic medium. Despite this difference, they seem to have
similar Lorentz factors in the parsec scales. We know that some (magneto-)-
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hydrodynamic instabilities, mostly Kelvin-Helmholtz instabilities, develop in
systems like jets, so there must be a stabilizing effect which avoids their dis-
ruption in FRIIs.

1.3.4 Radiation mechanisms

Synchrotron

Synchrotron radiation is produced by charged particles accelerated around
a magnetic field (Rybicki and Lightman 1979, Longair 1994). The power
emitted by a single particle, taking mean angle of motion with respect to the
magnetic field lines, is:

P =
4
3
σTc β2γ2UB, (1.1)

where σT = 8πr2
0/3 is the Thomson cross-section (for the collision of an elec-

tron and a photon at low energies), with r0 = e2/mec
2 the classic electron

radius, e the electron charge, me the mass of the electron and c is the speed
of light, γ is the Lorentz factor of the electron, β the speed in units of c and
UB = B2/8π is the magnetic field energy density. It can be shown that this
power is proportional to m−4, so the synchrotron emission is mainly by lower
mass particles, i.e., electrons and positrons, being negligible that from protons.

The power emitted by a single particle, Eq. (1.1), can be shown to be
basically emitted at the critical frequency:

νc =
3
4π

γ3ωB sinα, (1.2)

with ωB being the gyration frequency of the electron around the magnetic
field:

ωB =
eB

γmec
, (1.3)

and α the angle between the magnetic field line and the velocity vector of the
particle.

This emission has a dipolar pattern in the reference frame of the relativistic
particle, but if we make a transformation to the observer’s frame, we find that
this pattern is stretched towards the front lobe to a small cone of semiangle
1/γ, with the axis in the direction of motion.

If we have a group of electrons with energies between E and E + dE (γ
and γ + dγ) with a power law distribution, where the number density is given
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by:
N(E)dE = CE−pdE, or N(γ)dγ = Cγ−pdγ, (1.4)

where C is a constant, the total power depends on the frequency of emission
as follows:

Ptot(ν) ∝ ν−(p−1)/2. (1.5)

Making s = (p− 1)/2, we finally have:

Ptot(ν) ∝ ν−s , (1.6)

with s the spectral index.
Emitted synchrotron photons may be absorbed by particles in the system

(synchrotron self-absorption). An opacity coefficient, which depends on the
physical conditions of the emitting region and on the photon frequency, can be
calculated (Rybicki and Lightman 1979). When this coefficient is larger than
one, the source becomes optically thick and it can be shown that the spectrum
is ∝ ν5/2 in that range of frequencies. Typical spectra of isolated compact
sources has a peaked spectrum, with an absorbed low frequency part, and a
typical synchrotron higher frequency region, the peak being at the frequency
where the opacity is equal to unity, i.e., where the spectra invert. If we observe
a compact source composed by different components, they may have their
individual spectral peaks at different frequencies, e.g., the denser and more
intense the component (the closer to the formation), the higher the frequency
at which the peak occurs. The resulting spectrum shows up as a flat one
due to the combination of all the component spectra, effect known as cosmic
conspiracy (Cotton et al. 1980, Marscher 1987).

Inverse Compton

Inverse Compton radiation is produced when a photon collides with a high
energy electron and gains energy in the process. This collision can convert
a radio frequency photon in an X-ray or even gamma-ray photon, and is the
origin of the high energy radiation from extragalactic jets, and responsible
for electron energy losses. In the observer’s frame, the photon gains energy
proportionally to the square of the Lorentz factor of the electron E′ ∼ γ2E,
with E = hν the original energy of the photon. The total power radiated by
inverse Compton scattering can be shown to be (Rybicki and Lightman 1979):

PCompton =
4
3
σT c(γβ)2Uph, (1.7)
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Figure 1.11: Development of Kelvin-Helmholtz instability.

with Uph the source photon energy density.
Depending on the origin of the up-scattered photons, the emission gen-

erated is called synchrotron self Compton (SSC), if photons were originated
as synchrotron photons in the source, or external Compton (EC), if photons
arrive to the radio-source from an external radiation field like CMB.

1.4 The role of Kelvin-Helmholtz instabilities in jets

Kelvin-Helmholtz instabilities (Gill 1965, Chandrasekhar 1961) grow in
the contact discontinuity or transition (shear instability) between two flows
with relative speed. Figure 1.11 sketches how a perturbation grows in the
interface between both fluids and the typical ”ocean wave” morphology it
develops. Many natural scenarios meet the conditions to be subject to KH
instability (sea-air, cloud-air...), but also some more extreme physical scenarios
like astrophysical jets.

These instabilities grow under any small perturbation, what can easily
happen in the case of extragalactic jets, as these propagate embedded in an
ambient medium where winds, clouds or any other obstacle can give rise to
that perturbation. The dynamical interaction of the jet matter with the am-
bient medium leads to the formation of shocks, turbulence, acceleration of
charged particles and subsequent emission of a broad-range electromagnetic
radiation, which makes jets observable. The complex nature of flow instabili-
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ties arising in these systems, especially the Kelvin-Helmholtz (KH) instability,
makes difficult to distinguish effects which are directly related to the central
object from those which are due to the interaction of jets with the ambient
medium. As an example one can invoke the wavelike patterns in jets, which
may result from the precession of the rotation axis of the accretion disk at the
jet base, or from KH instability, which finds favorable conditions at the inter-
face of jet and external medium (Trussoni, Ferrari and Zaninetti, 1983). Very
recently, the KH instability theory has been successfully used to interpret the
structure of the pc-scale jet in the radio source 3C273 (Lobanov and Zensus
2001). Also, it has been shown that any destabilization of the accretion disk
creating a shock wave in the base of the jet excites KH instabilities (trailing
components, Agudo et al. 2001).

At kiloparsec scales, the surprisingly stable propagation of relativistic jets
in some sources (e.g., Cyg A) contrasts with the deceleration and decollimation
observed in other sources (e.g. 3C31). These two sources are representative
examples of Fanaroff-Riley type I (FRI, the latter) and Fanaroff-Riley type II
(FRII, the former) radio sources (Fanaroff and Riley 1974). The morphological
dichotomy of FRI and FRII sources may be related to the stability properties
of relativistic jets with different kinetic powers (Rawlings and Saunders 1991).

This complex situation motivated us to study the interaction of relativistic
jets with their ambient medium and more specifically the KH instability in
detail, by applying linear stability analysis along with numerical simulations.

The linear analysis of KH instability in relativistic jets started with the
work of Turland and Scheuer (1976) and Blandford and Pringle (1976) who
derived and solved a dispersion relation for a single plane boundary between
the relativistic flow and the ambient medium. Next, Ferrari, Trussoni and
Zaninetti (1978) and Hardee (1979) examined properties of KH instability in
relativistic cylindrical jets by following the derivation of the dispersion relation
in the nonrelativistic case, in the vortex sheet approximation, done by Gill
(1965). They numerically solved the dispersion relation, found unstable KH
modes and classified them into the fundamental (surface) and reflection (body)
family of modes. The classification is related to the number of nodes, across
the jet, of sound waves reflecting in between jet boundaries. An internal wave
pattern is formed by the composition of oblique waves, for which the jet interior
is a resonant cavity. The physical meaning of KH instability in supersonic jets
has been discussed by Payne and Cohn (1985), who have shown that the
presence of instability is associated with the overreflection of soundwaves (the
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modulus of reflection coefficient is larger than 1) on the sheared jet boundaries.
Subsequent studies include effects of magnetic field (Ferrari, Trussoni and

Zaninetti 1981), the effects of the shear layer, replacing the vortex sheet in the
nonrelativistic planar case (Ferrari, Massaglia and Trussoni 1981; Ray 1982;
Roy Choudhury and Lovelace 1984), and conical and cylindrical jet geometry
(Birkinshaw 1984; Hardee 1984, 1986, 1987). The effects of a cylindrical shear
layer have been examined by Birkinshaw (1991a) in the nonrelativistic case,
attempted by Urpin (2002) in the relativistic case and the presence of multiple
components (jet + sheath + ambient medium) was investigated by Hanasz
and Sol (1996, 1998). Other authors have investigated current-driven modes
in magnetized jets (Appl and Camenzind 1992; Appl 1996) in addition to KH
modes.

An extension of the linear stability analysis in the relativistic case to the
weakly non-linear regime has been performed by Hanasz (1995) and led to the
conclusion that Kelvin-Helmholtz instability saturates at finite amplitudes due
to various non-linear effects. An explanation of the nature of the mentioned
non-linearities has been proposed by Hanasz (1997). The most significant
effect results from the relativistic character of the jet flow, namely from the
fact that the velocity perturbation cannot exceed the speed of light.

A more recent approach is to perform a linear stability analysis in parallel
with numerical simulations and to compare the results of both methods in the
linear regime and then to follow the non-linear evolution of the KH instability
resulting from numerical simulations. Hardee and Norman (1988) and Norman
and Hardee (1988) have made such a study for nonrelativistic jets in the spatial
approach and Bodo et al. (1994) in the temporal approach. In the relativistic
case this kind of approach was applied for the first time by Hardee et al. (1998)
in the case of axisymmetric, cylindrical jets and then extended to the 3D case
by Hardee et al. (2001).

Similarly to the linear stability analysis, the numerical simulations of jet
evolution can be performed following both the spatial and the temporal ap-
proach, depending on the particular choice of initial and boundary conditions.
In the temporal approach one considers a short slice of jet limited by peri-
odic boundaries along the jet axis, and adds some specific perturbation, eg.
an eigenmode resulting from the linear stability analysis. Due to the peri-
odic boundary conditions the growing perturbations can only be composed
of modes having a wavelength equal to the length of the computational box
and/or its integer fractions (Bodo et al. 1994, 1995, 1998). Whereas the spa-
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tial approach appears more appropriate to analyze the global dynamics and
morphology of the whole jet, the temporal approach is suitable for the com-
parison between the numerical results and analytical studies of the jet stability
because, due to the fact that only part of the jet is simulated, a high effective
numerical resolution is achievable with limited computer resources.

Numerical simulations (Mart́ı et al. 1997; Hardee et al. 1998, Rosen et al.
1999) demonstrate that jets with high Lorentz factors and high internal energy
are influenced very weakly by the Kelvin-Helmholtz instability. Moreover,
Hardee et al. (1998), Rosen et al. (1999) note that contrary to the cases with
lower Lorentz factors and lower internal energies, the relativistically hot and
high Lorentz factor jets do not develop modes of KH instability predicted by
the linear theory. They interpret this fact as the result of a lack of appropriate
perturbations generating the instability in the system. In the limit of high
internal energies of the jet matter the Kelvin-Helmholtz instability is expected
to develop with the highest growth rate.

Recently, KH linear theory has been successfully applied to the interpre-
tation of observed features in extragalactic jets (Lobanov and Zensus 2001,
Lobanov et al. 2003, Hardee 2003, Hardee et al. 2005), where, under some
assumptions regarding the validity of the linear regime in jets, the authors
have interpreted the structures in the jets in 3C 273, M 87 and 3C 120, and
have derived the physical parameters governing the flow.

1.5 Motivation of the work

Jet research is immediately related to several fundamental astrophysical
phenomena: the jets are composed of particles moving at relativistic speeds,
and they can serve as a laboratory for high energy plasma physics (e.g., Kirk
and Duffy 1999); the jets are formed in the vicinity of accretion disks and
SMBHs in AGNs, and studies of the jet physics on sub-parsec to parsec scales
can bring some light to the formation of powerful relativistic outflows in AGN
(e.g., Meier et al. 2001); the formation and evolution of galaxies is also in-
fluenced by the presence of jets (e.g., Rawlings and Jarvis 2004), for they
represent a funnel through which matter and energy are transported outwards
from the source galaxies; the jets interact with the interstellar medium and
intergalactic medium as they evolve, and therefore they can be used as a probe
of the physical conditions of these media (e.g., Gómez et al. 2000). Research-
ing the extragalactic jets is therefore not only important by itself, but also has
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a much wider impact on a number of astrophysical fields.
This thesis is an approach to one of the pieces of the puzzle of jet physics, an

academic exercise in order to fill a gap in the understanding of the non-linear
evolution of instabilities in relativistic jets, a crucial and still not understood
problem in extragalactic jet physics. This may help us not only to learn
more on this topic, but also, through the coupling we mentioned above, to
investigate on the properties of the ambient media in which these objects
evolve.

1.6 Methodology

In previous sections we have summarized the state-of-the-art in extragalac-
tic jets. One of the conclusions that can be derived from them is that the better
observations we are able to perform, the more complex the problem seems to
be. Simple analytical models are very useful for a first approach to the un-
derstanding of jet physics, but they are far not sufficient for the next steps,
as jet formation, propagation and interactions between components in the jet
or with the external medium, particle acceleration and energy losses involve
non-linear effects, turbulent dynamics and microphysics. Numerical simula-
tions allow us to try to solve problems which are impossible to solve under
analytical assumptions.

Numerical codes only give an approximation to real systems, they idealize
systems by dividing them in computational cells, what creates an artificial
viscosity which hides many microscopic processes, and, even, in the case of this
PhD thesis, our code only solves relativistic hydrodynamic systems, without
taking into account magnetic fields, relativistic particle transport... However,
we have seen that jet emission requires the presence of magnetic fields or
high energy particle population, and that jets move through complex ambient
media, composed by clouds, stars, black holes... among other realistic features
that we have not included in this work. Nevertheless, the only way to complete
the puzzle we have at hand is to study each of the pieces, very carefully,
understand it, and then place it along with the rest.

1.7 Organization of the work

This work is divided in three main parts. In Chapter 2 we review our results
in the linear and non-linear regime for the stability of relativistic flows in the
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vortex sheet approximation for slab jets, where we also include discussion on
the nature of Kelvin-Helmholtz modes and their structures; in Chapter 3 we
present results for the case of sheared relativistic jets with slab and cylindrical
geometry in more general setups, and Chapter 4 we review results on two
possible astrophysical applications of the work, to parsec and kiloparsec scale
jets.
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Chapter 2

STABILITY IN THE
VORTEX SHEET LIMIT

In this Chapter we present the results obtained from the study of the
stability of slab, relativistic jets, in the vortex sheet limit, in both the linear
and non-linear regimes. These results were published in Perucho et al. (2004a)
and Perucho et al. (2004b).

2.1 Linear analysis

Following the standard procedure (see eg. Gill 1965; Ferrari, Trussoni
and Zaninetti 1978; Hardee 1979) we derive the dispersion relation for the
Kelvin-Helmholtz modes. We focus on the simplest geometrical configuration
of two-dimensional (X,Z) planar relativistic jets (moving in the Z direction)
and apply the temporal stability analysis.

The full set of equations describing the current problem consists of the set
of relativistic equations of hydrodynamics for a perfect fluid, (e.g. Ferrari,
Trussoni and Zaninetti 1978)

γ2
(
ρ+

p

c2

)[∂v
∂t

+(v·∇)v
]
+∇p +

v
c2

∂p

∂t
=0, (2.1)

γ

(
∂ρ

∂t
+v·∇ρ

)
+

(
ρ +

p

c2

)[∂γ

∂t
+∇· (γv)

]
=0, (2.2)

27
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Figure 2.1: The geometry of the flow considered in the linear stability analysis
and the numerical simulations (see Sect. 2.3), including a description of the
boundary conditions.

and an (adiabatic) equation of state

pρ−Γ
0 = const. (2.3)

In the preceding equations, c is the speed of light, ρ0 is the particle rest mass
density (i.e., ρ0 ≡ mn, where m is the particle rest mass and n the number
density in the fluid rest frame). ρ stands for the relativistic density which is
related to the particle rest mass density and the specific internal energy, ε, by
ρ = ρ0(1 + ε/c2). The enthalpy is defined as w = ρ + p/c2, the sound speed
is given by c2

s = Γp/w, where Γ is the adiabatic index. The relation between
pressure and the specific internal energy is p = (Γ−1)ερ0. The velocity of the
fluid is represented by v and γ is the corresponding Lorentz factor.

The assumed geometry of the jet considered in the forthcoming linear
stability analysis and the numerical simulations is sketched in Fig. 2.1. First
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of all the considered jet is 2D-planar and symmetric with respect to the x = 0
plane. The flow in the jet moves in the positive z direction and its matter
forms a contact discontinuity (a vortex sheet) with the matter of external
medium at x = −Rj and x = Rj . From now on all quantities representing the
jet will be assigned with the ’j’ subscript and the quantities representing the
ambient medium will be assigned with ’a’.

The following matching conditions are imposed on the interface between
the jet and the ambient medium

pa = pj for |x| = Rj (2.4)
ha = hj for |x| = Rj . (2.5)

The matching conditions express the assumption of equality of the jet and
ambient pressures and the equality of transversal displacements of jet (hj)
and ambient (ha) fluid elements adjacent to the jet boundary (at |x| = Rj).

In addition, the Sommerfeld radiation condition (expressing the disappear-
ance of perturbations at the infinity) will be applied for linear perturbations.

2.1.1 Equilibrium state for the linear stability analysis

We assume that the initial state is an equilibrium configuration. The initial
equilibrium can be described by the following set of independent parameters:
the Lorentz factor corresponding to the unperturbed longitudinal jet velocity,
vj , γ = (1−v2

j /c2)−1/2, the particle rest mass density of the jet ρ0j (the particle
rest mass density of the ambient medium is normalized to unity: ρ0a = 1) and
the specific internal energy of the jet εj . The ambient medium is assumed to
be at rest (va = 0).

The other dependent parameters describing the equilibrium state are: the
internal jet Mach number Mj = vj/csj corresponding to the initial jet longi-
tudinal velocity, the relativistic rest mass density contrast:

ν =
ρ0j(1 + εj)
ρ0a(1 + εa)

, (2.6)

or, equivalently, the enthalpy contrast:

η =
wj

wa
=

ρ0j (1 + (Γj − 1)εj/(1 + εj))
ρ0a (1 + (Γa − 1)εa/(1 + εa))

, (2.7)
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and the specific internal energy of the ambient medium

εa =
(Γj − 1)ρ0j

(Γa − 1)ρ0a
εj , (2.8)

which is related to the specific internal energy of the jet through the pressure
balance condition.

2.1.2 Dispersion relation

The first step towards the dispersion relation (see Hanasz and Sol 1996)
is to reduce the equations (2.1) - (2.5) to the dimensionless form through
the normalization of spatial coordinates to the jet radius Rj , velocities to the
sound speed of the jet material csj , time to the dynamical time Rj/csj and
pressure to the equilibrium pressure.

The next step is to decompose each dependent quantity into the equilib-
rium value and the linear perturbation. After the reduction of equations to the
dimensionless form and substitution of the perturbed quantities in equations
(2.1)-(2.5), we obtain the following set of dimensionless linearized equations.
In the following the dimensionless quantities will be assigned the same sym-
bols as the previous dimensional ones. The subscript ’1’ stands for the linear
perturbation of the corresponding variable. For the jet medium we get

Γj γ2

(
∂vj1

∂t
+ (vj ·∇)vj1

)
+∇pj1 +

vj

c2

∂pj1

∂t
= 0, (2.9)

∂pj1

∂t
+ vj ·∇pj1 + Γj∇·vj1 (2.10)

+γ2 Γj
vj

c2

(
∂vj1

∂t
+ (vj · ∇vj1)

)
= 0 ,

where vj is the initial (unperturbed) jet velocity in units of jet internal sound
speed, c is the speed of light in units of the sound speed and the normalized
pressure p0 = 1 is omitted in the equations. For the ambient medium we get

Γj

η

∂va1

∂t
+∇pa1 = 0, (2.11)

∂pa1

∂t
+ Γa∇·va1 = 0. (2.12)
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The linearized matching conditions (2.4) and (2.5) at the jet interface read

pa1 = pj1 for |x| = 1 (2.13)
ha1 = hj1 for |x| = 1, (2.14)

where the displacements of fluid elements adjacent to the contact interface in
the linear regime are related to transversal velocities by the following formulae

vjx1 =
(

∂

∂t
+ vj

∂

∂z

)
hj1, (2.15)

vax1 =
∂

∂t
ha1. (2.16)

The following wave equations can be derived from the equations (2.9) - (2.12),
respectively for the jet

γ2

(
∂

∂t
+ vj

∂

∂z

)2

pj1 − ∂2pj1

∂x2
(2.17)

−γ2

(
∂

∂z
+

vj

c2

∂

∂t

)2

pj1 = 0,

and for the ambient medium

∂2pa1

∂t2
− ηΓa

Γj

(
∂2pa1

∂x2
+

∂2pa1

∂z2

)
= 0. (2.18)

It is apparent that Eq. (2.17) and (2.18) describe propagation of oblique sound
waves in the jet and ambient medium respectively.
The next step is to substitute perturbations of the form

δj1 = [δ+
j F+

j (x) + δ−j F−
j (x)] exp i(k‖z − ωt) + c.c. (2.19)

with F±
j (x) = exp(±i kj⊥x) to describe waves propagating in positive and

negative x-directions in the beam. Here we use k‖ and ka,j⊥ for longitudinal
and transverse wavenumbers. Perturbations in the external medium are of the
form

δa1 = δ+
a F+

a (x) exp i(k‖z − ωt) + c.c. (2.20)
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where F+
a (x) = exp(i ka⊥x) for |x| > 1. Assuming that Re(ka⊥) > 0, only

outgoing waves are present in the ambient medium. After the substitution of
the explicit forms of pressure perturbations to equations (2.17) and (2.18) we
obtain the following expressions for the perpendicular components of wavevec-
tors

ka⊥ =
(

Γj

ηΓa
ω2 − k2

‖

)1/2

(2.21)

kj⊥ = (ω′2 − k′‖
2)1/2 (2.22)

which are standard relations for linear sound waves in both media (note that
ηΓa/Γj is the squared sound speed of ambient medium in units of the sound
speed of jet), ω′ = γ(ω − vjk‖) and k′‖ = γ(k‖ − vj

c2
ω) are frequency and

wavenumber of the internal sound wave in the reference frame comoving with
the jet. The wavevectors kj = (kj⊥, kj‖) and ka = (ka⊥, ka‖) determine the
direction of propagation of sound waves in the jet and ambient medium re-
spectively. Vanishing of kj⊥, for instance, would mean that the jet internal
sound waves move in the axial direction. In cases kj⊥ 6= 0 and/or ka⊥ 6= 0 the
propagation of the sound waves is oblique with respect to the jet axis.

The corresponding perturbation of the jet surface can be written as

ha1 = hj1 = h exp i(k‖z − ωt) + c.c., (2.23)

which after the substitution to equations (2.15) and (2.16) reads

vjx1 = −i
(
ω − vjk‖

)
hj1, (2.24)

vax1 = −iωhj1. (2.25)

With the aid of the above perturbations the whole system of partial differ-
ential equations is reduced to a set of homogeneous linear algebraic equations.
The dispersion relation appears as solvability condition of the mentioned set
of equations, namely it arises from equating the determinant of the linear
problem to zero. Within the present setup, the dispersion relation for the
Kelvin-Helmholtz instability in supersonic, relativistic, two-dimensional slab
jets can be written as (Hanasz and Sol 1996, Turland and Scheuer 1976, Bland-
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ford and Pringle 1976)

1
νΓj

ω

ω′
(ω′2 − k′2‖)1/2

(
ω2

νΓa
− k2

‖
)1/2

= (2.26)

=





coth i(ω′2 − k′2‖)1/2 for s = 1

th i(ω′2 − k′2‖)1/2 for s = −1

where s = ±1 is the symmetry of perturbation. We will focus on symmetric
perturbations (s = 1).

Dispersion relation in cylindrical coordinates is derived in the same way.
However differential equations corresponding to eqs. (2.17) and (2.18) are:

γ2

(
∂

∂t
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∂

∂z

)2

pj1 − ∂2pj1
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(2.27)
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∂z
+

vj

c2

∂

∂t

)2

pj1 = 0,

∂2pa1

∂t2
− ηΓa

Γj

(
∂2pa1

∂r2
+

1
r

∂pa1

∂r
+

∂2pa1

∂z2

)
= 0. (2.28)

These can be written in the form of Bessel equations. Therefore, and due to
the imposed boundary conditions, the solution to the first is a Bessel function
and that of the second is a Hankel function (which tends to zero at infinity,
accomplishing the Sommerfeld condition). Using the match of pressure and
displacement values at the jet boundaries as before, we obtain (Ferrari et al.
1978, Hardee 1979, 1987):

ω2 βj

η ω′2 βa

J ′n(βjRj)
Jn(βjRj)

=
H
′(1)
n (βaRj)

H
(1)
n (βaRj)

, (2.29)

where
βj =

(
ω′2 − k′2‖

)1/2
, (2.30)

with ω′ and k′‖ equivalent to previous ω′ and k′‖ respectively,

βa =
(
ω2 − k2

‖
)1/2

, (2.31)

Jn and Hn are Bessel and Hankel functions, and primes denote derivatives
with respect to their arguments.
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2.1.3 Solution

In order to solve equation (2.26) we can consider one of these two possi-
bilities:

• The spatial approach. Real frequency and complex wave-number are
assumed, where the real part of the wavenumber gives the wavelength
of the perturbation and the imaginary part is the growth length. The
latter represents the inverse of the distance needed for the perturbation
amplitude to e-fold (see Equation 2.19). These are therefore spatially
growing wave-form perturbations, so in order to study their effects on
the flow one must follow their evolution downstream.

• The temporal approach. Real wave-number and complex frequency are
assumed, where the real part of the frequency is the frequency of the
wave and the imaginary part is the growth rate. This is the inverse of
the time needed for the perturbation to e-fold. These are temporally
growing wave-form perturbations, and in order to study them one must
follow the temporal evolution of the perturbed portion of the flow.

Equation 2.26 was solved numerically with the aid of the Newton-Raphson
method (Press et al. 1992, see also Appendix B) using the temporal approach,
for a series of flow parameters which were going to be used in numerical sim-
ulations (see Table 2.1). We obtained the complex frequency (ωr, ωi) as a
function of the parallel component of the wavenumber k‖. Solutions are plot-
ted in Figs. 2.2-2.6. Newton-Raphson method is used in the following way: we
start with a grid of initial guess points in the complex (ωr, ωi) plane and look
for solutions around them. Solutions are called eigenmodes of the system, and
any small perturbation in the flow can excite those having the same frequency
or wavelength. Normally, out of the eigenmodes excited at a given frequency
or wavelength, that with the largest growth rate or smaller growth length will
dominate the development of the instability. As a consequence of this devel-
opment, portions of fluid are displaced from their stationary flow line, and,
globally, this leads to distortions of the whole flow. The form in which the
flow is distorted depends on the properties of the excited mode.

Results show that growth rates for surface and body modes are higher for
hotter (and therefore higher relativistic density ratio in our approach) and/or
slower jets, and that, for colder and/or faster jets, instabilities appear at longer
wavelengths.
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Figure 2.2: Symmetric solutions of the dispersion relation for slab jets with
γ = 5, ε = 0.07 c2 and ν = 0.11 (left panel) and γ = 5, ε = 0.4 c2 and ν = 0.14
(right panel). Top lines represent the real part of frequency, and lower lines
stand for the corresponding imaginary part of the modes. In left panel colors
identify real and imaginary parts of single modes as an example for the reader.

2.1.4 Modes

Solutions to the dispersion relation depend on the characteristics of the
perturbation. In the previous section, we have shown the derivation of disper-
sion relations for slab (planar symmetry) and cylindrical flows. In the former,
we have two different main kinds of solutions, symmetric and antisymmetric,
whereas in the latter we find an infinite number of modes, depending on the
number of wave nulls caused by the perturbation in the jet surface (see Fig.
2.7). If no nulls are found in the surface (n = 0 in equation (2.29)), the mode
is called ’pinching’ mode, as it pinches the flow, which is also the name given
to symmetric perturbations in slab jets (s = 1 in equation (2.26)). If there is
one null the mode is called ’helical’, as it generates helical patterns, and this
is also the name given to antisymmetric modes in slab jets. If the number of
nulls is larger than one, the modes are called ’fluting’ modes, and depending
on the number of nulls they may be elliptical (n = 2), triangular (n = 3)
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Figure 2.3: Same as Fig. 2.2 for jets with γ = 5, ε = 6.1 c2 and ν = 0.44 (left
panel) and γ = 5, ε = 60 c2 and ν = 0.87 (right panel).

and so on (see Birkinshaw 1991b). Also, the angle of propagation of a mode
wave along the jet depends on this azimuthal wave-number θ = tan−1(n/kR)
(Hardee 2000), being k here wave-number along flow direction. This means
that the lower the order of the mode, the more longitudinal its propagation is.

The disruptive character of a mode relies on its capability to extract kinetic
energy from the jet. Generation of transversal displacements in the fluid cause
the transfer of longitudinal momentum to the external medium in contact
regions. The generation of transversal momentum results from the conversion
of kinetic energy of the flow into internal energy, which overpressures the parts
of the jet where it occurs with respect to others, thus generating transversal
waves. These waves bounce once and again in the jet axis and the boundary
layer, and instabilities arise when the transmission and reflection coefficients of
the waves in that layer become larger than one (Payne and Cohn 1985). This
fact makes that outgoing and incoming waves get larger and larger amplitudes,
thus generating the instability.

Payne and Cohn (1985) define reflection and transmission coefficients in
terms of the acoustic impedances (Zj and Za, the ratio between pressure and
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Figure 2.4: Same as Fig. 2.2 for jets with γ = 10, ε = 0.4 c2 and ν = 0.14 (left
panel) and γ = 20, ε = 0.4 c2 and ν = 0.14 (right panel).

transversal speed) in both media:

R =
Za − Zj

Zj + Za

T =
2Za

Zj + Za
(2.32)

If we write the impedances in terms of perturbations and these in terms of
mode propagation angle, we find that maximum reflection and transversal
coefficients arise for perturbations colliding with the contact surface with the
Mach angle, producing resonances or peaks in the mode profile.

2.1.5 Surface and body modes

We have seen in Figs. 2.2-2.6 that for each of the symmetric solutions,
many different solutions in the form of continuous lines appear. These are the
sub-modes of each different kind of perturbation, which includes one surface
(or fundamental) mode and an infinite number of body (or reflection) modes.
The type of sub-mode is determined by the number of nulls the wave has
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Figure 2.5: Same as Fig. 2.2 for jets with γ = 10, ε = 6.1 c2 and ν = 0.44 (left
panel) and γ = 20, ε = 6.1 c2 and ν = 0.44 (right panel).

in the transverse direction to the flow. In order to understand this, we can
compare the jet to a waveguide in the electromagnetic theory. In Kelvin-
Helmholtz instabilities, the surface mode is defined as that presenting no nulls
perpendicular to the flow, like the fundamental mode in waveguides, and body
modes are those which do present nulls, like reflection modes in waveguides.
The main difference between them is that in the case of jets, the number
of wavelengths in the transverse section is not necessarily an integer, i.e., the
mode is called fundamental for all combinations of wavelengths and frequencies
which do not present a single null inside the cavity k⊥ < π/Rj , first body
mode for all those combinations which give only one null (π/Rj < k⊥ <
2π/Rj), second body mode for those giving two nulls (2π/Rj < k⊥ < 3π/Rj),
etc. We have seen in equation (2.22) that k⊥ is a function of k‖ and ω.
This makes that body modes show up as continuous lines starting at a given
wavenumber (longest unstable wavelength of that mode), and that the surface
mode is the only one which has non-zero solutions when k‖ → 0 for it may
appear with arbitrarily large transversal wavelengths. These lines represent
the combinations of k‖ and ω for which k⊥ is within two multiples of π/Rj .

Summarizing, from k‖ = 0 to larger values, the first mode to appear with
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Figure 2.6: Same as Fig. 2.2 for jets with γ = 10, ε = 60 c2 and ν = 0.87 (left
panel) and γ = 20, ε = 60 c2 and ν = 0.87 (right panel).

non-vanishing solutions is the fundamental mode. Then, when a suitable com-
bination of wave-numbers and frequencies allows the presence of a mode with a
transversal zero inside the jet, first body mode appears in the solution, followed
by second, third, etc. body modes. Body modes have all the same structure
determined by the maximum unstable wavelength (minimum wavenumber for
which a solution exists) and by a resonant wavenumber (the wavenumber for
which we find the highest growth-rate of the mode). We also observe that
in symmetric instabilities, the fundamental mode is damped with respect to
body modes, due to its lack of transversal structure which makes difficult the
interaction of waves with the boundaries and therefore makes it a more stable
mode.

2.2 Note on temporal versus spatial approach

The main differences between the use of both approaches arises when the
design of the numerical simulations has to be undertaken. On one hand,
the spatial approach consists on perturbing a jet at the inlet and let the
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Figure 2.7: Deformations of jets by Kelvin-Helmholtz instability modes (from
Birkinshaw 1991b).

perturbations grow downstream; this can be applied to a steady (if we are
interested in the growth of specific perturbations; e.g. Agudo et al. 2001) or
injected jet in a physically long grid (if we are interested in the stability of
the jet against perturbations generated by the interaction with the external
medium or the backflow; Hardee et al. 1998). On the other hand, the temporal
approach consists on considering a portion of an infinite jet in a grid box with
periodic boundary conditions, far from the inlet or the interaction with the
ambient medium, and let the perturbation grow with time (Bodo et al. 1994
for the classical case).

Certainly, the spatial approach allows for a more realistic approximation
to real jets. However, larger grids are needed, and therefore less numerical
resolution is used. In this work, we have used the temporal approach, which,
though less realistic, it is maybe more efficient in the process of understanding
the evolution and effects of Kelvin-Helmholtz instabilities in relativistic flows,
from a theoretical point of view. The latter approach allows for the use of
smaller grids (the size of the wavelength of the mode) with higher resolution,
what has proven to be crucial in order to follow the linear regime and be
confident about our results on the non-linear phases.
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The necessity of performing the simulations which we present here is ev-
ident from a theoretical point of view, in order to learn as much as possible
on the stability properties of jets. This information will allow us to undertake
more realistic computations and be able to interpret them in depth.

2.3 Numerical simulations

Once the solutions of the dispersion relation ω(k) are found, the derivation
of eigenstates (each one of the solutions) of the system is straightforward. By
utilizing the set of relativistic equations (2.9) - (2.12) one can relate pertur-
bations of gas density and velocity to the perturbation of pressure.

First, we choose the amplitude of the pressure wave in the jet, p+
j , as a

free constant and then relate the other constants to its value. The correspond-
ing ’−’ amplitudes are computed by multiplying these values by s in case of
pressure and longitudinal velocity and by −s in the case of transversal velocity.

The amplitude of pressure wave in the ambient medium, p+
a , is found from

the pressure matching condition at x = 1:

p+
a exp(i ka⊥) = p+

j exp(i kj⊥) + s p−j exp(−i kj⊥). (2.33)

The remaining amplitudes of velocity perturbations are

v+
ax =

η

Γj

ka⊥
ω

p+
a , (2.34)

v+
jx =

kj⊥
Γjγω′

p+
j , (2.35)

v+
az =

η

Γj

k‖
ω

p+
a , (2.36)

v+
jz =

k′‖
Γjγ2ω′

p+
j , (2.37)

where η is the ratio of enthalpies as defined earlier.
Regarding specific internal energy and rest-mass density, perturbations are

calculated as follows:

εa,j1

εa,j
=

Γa,j − 1
Γa,j

pa,j1 (2.38)
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ρa,j1

ρa,j + 1/c2
=

1
Γa,j

pa,j1, (2.39)

where ρa,j refer to the relativistic density in ambient and jet media in dimen-
sionless units, respectively, and ρa,j1 is the corresponding perturbation.

In the forthcoming discussion of results of numerical simulations we shall
analyze the velocity components in the reference frame comoving with the jet.
The standard Lorentz transformation formulae for the velocity components
are

v′z =
vz − vj

1− vzvj/c2
, v′x =

vx

√
1− v2

j /c2

1− vzvj/c2
. (2.40)

Assuming that the Lorentz transformation is applied for linear perturbations of
sufficiently small amplitude, these transformation rules can be approximated
by the following formulae

v′z1 = γ2vz1, v′x1 = γvx1, (2.41)

where vx1, vz1 are the velocity perturbations in the reference frame of the
ambient medium and v′x1, v′z1 are the velocity perturbations in the jet reference
frame. These transformation rules tell us that the longitudinal and transversal
velocity perturbations in the jet reference frame are larger by factors of γ2

and γ respectively than the corresponding components in the rest (ambient
medium) frame.

We proceed by performing numerical simulations of jet models to study
the growth of unstable modes through the linear and non-linear phases. To
this aim, we adopt as an equilibrium initial state the one described in the
former section. In order to avoid the growth of random perturbations with
wavelengths of the order of the cell size, we replace the transverse discontinuous
profiles of equilibrium quantities by smooth profiles of the form

vz(x) =
vj

cosh(xm)
(2.42)

ρ0(x) = ρ0a − ρ0a − ρ0j

cosh(xm)
(2.43)

(see Bodo et al. 1994), where m is the steepness parameter for the shear layer.
Typically we used m = 40, for which the shear layer has a width ∼ 0.1Rj .
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Figure 2.8: Linear growth of the amplitude of the pressure perturbation (in
logarithmic scale) versus time (in units of Rj/c) for different resolutions. rx

stands for transversal resolution, rz for longitudinal resolution, and m is the
value which gives the shear layer steepness.

Growth of the instability depends critically on the numerical viscosity of
the algorithm. Hence our first aim was to look for suitable numerical resolu-
tions by comparing numerical and analytical results for the linear regime. We
performed a number of simulations based on model A05 (see Table 2.1) chang-
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ing longitudinal and radial resolution, and also the exponent m for the shear
layer steepness (see eqs. 2.42 and 2.43). Figure 2.8 shows results for several of
those simulations. If, for given transversal resolution, we introduced a shear
layer which was too thin, we found the typical non-steady behavior appearing
when a numerical tangential discontinuity is applied. However, in order to
reproduce the linear regime, we needed a steep enough shear layer, due to the
fact that theory was developed for a discontinuous separation between both
media. We can see in figure 2.8 that m = 10 models are considerably damped
with respect to the theoretical growth, independent of the transversal reso-
lution. Hence resolution perpendicular to the flow appeared to be essential,
requiring very high resolutions (400 zones/Rj) and thin shear layers (m = 40)
with 40 to 45 zones, i.e., an equilibrium between steepness and number of
cells. Lower transversal resolutions and/or thicker shear layers led to non-
satisfactory results, with a slow or damped growth. A very low longitudinal
resolution results in damping of growth rate, too, as can be seen from com-
parison of m = 20 models, but rz = 16 seems to give a reasonable growth rate
compared to theory. This (small) resolution of 16 zones/Rj along the jet was
taken as a compromise between accuracy and computational efficiency.

The linear solutions derived correspond to an idealized case with a contact
discontinuity at the jet interface. We decided to implement corresponding
smoothed eigenstates obtained for the vortex sheet limit as approximate so-
lutions for the case of sheared boundary. The validity of this procedure is
proven a posteriori by the convergence of theoretical growth rates and the
ones determined for simulated KH modes. Since, in case of the vortex sheet
approximation, all first order dynamical variables (except pressure and the
transversal displacement of fluid element adjacent to the jet boundary) are
discontinuous, we apply the following smoothing of the equilibrium quantities
and linear perturbations at the thin layer surrounding the jet boundary

δ1 = δa1 − δa1 − δj1

cosh(xm)
, (2.44)

where δ stands for any perturbed variable. Such smoothed eigenstates are sub-
sequently implemented as small-amplitude perturbations in the initial equilib-
rium model of the simulations.

As we said before, our first aim is to reproduce the linear evolution of
unstable modes by means of hydrodynamical simulations. For this reason and
in order to make the picture of evolution of the KH instability as clear and
simple as possible, we perturb the equilibrium with the most unstable first
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reflection mode, which is smoothed at the jet interface according to formula
(2.44). The length of the computational grid is, in each simulation, equal to
the wavelength of the aforementioned mode. Defining the initial state in such a
way, we know precisely which growth rate to expect in numerical simulations.
The difference between the expected and computed growth rates is a measure
of the performance of the code in describing the linear regime and gives us
confidence on the numerical results from the non-linear evolution.

The simulations have been performed using a high–resolution shock cap-
turing code described in Section A to solve the equations of relativistic hydro-
dynamics in Cartesian planar coordinates.

The parameters of the simulations presented in this Section are listed in
Table 2.1. Values of the parameters were chosen to be close to those used in
some simulations by Hardee et al. (1998) and Rosen et al. (1999) and are
chosen to span a wide range in thermodynamical properties as well as beam
flow Lorentz factors. In all simulations, the density in the jet and ambient gases
are ρ0j = 0.1, ρ0a = 1 respectively and the adiabatic exponent Γj,a = 4/3.

Since the internal rest mass density is fixed, there are two free parameters
characterizing the jet equilibrium: the Lorentz factor and the jet specific in-
ternal energy displayed in columns 2 and 3 of Table 2.1. Models whose names
start with the same letter have the same thermodynamical properties. Beam
(and ambient) specific internal energies grow from models A to D. Three dif-
ferent values of the beam flow Lorentz factor have been considered for models
B, C and D. The other dependent parameters mentioned in Section 2.1 are
displayed in columns 4-10 of Table 2.1. Note that given our choice of ρ0j ,
the ambient media associated to hotter models are also hotter due to pressure
equilibrium condition. The first three columns in Table 2.2 show the longi-
tudinal wavenumber together with oscillation frequency and the growth rate
of the most unstable reflection mode. The following three columns display
the same quantities in the jet reference frame. Next two columns show the
perpendicular wavenumbers of linear sound waves in jet and ambient medium
respectively. The last column in Table 2.2 shows the linear growth rate of KH
instability in the jet reference frame expressed in dynamical time units, i.e. in
which time is scaled to Rj/csj . All other quantities in the table, are expressed
in units of the ambient density, ρ0a, the speed of light, c, and the jet radius,
Rj .

In order to extend our conclusions to a wider region in the initial parameter
space, we performed a new set of simulations (F-L), which will be discussed
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Model γ ρ0j εj εa csj csa p ν η Mj

A05 5 0.1 0.08 0.008 0.18 0.059 0.0027 0.11 0.11 5.47
B05 5 0.1 0.42 0.042 0.35 0.133 0.014 0.14 0.15 2.83
C05 5 0.1 6.14 0.614 0.55 0.387 0.205 0.44 0.51 1.80
D05 5 0.1 60.0 6.000 0.57 0.544 2.000 0.87 0.90 1.71
B10 10 0.1 0.42 0.042 0.35 0.133 0.014 0.14 0.15 2.88
C10 10 0.1 6.14 0.614 0.55 0.387 0.205 0.44 0.51 1.83
D10 10 0.1 60.0 6.000 0.57 0.544 2.000 0.87 0.90 1.73
B20 20 0.1 0.42 0.042 0.35 0.133 0.014 0.14 0.15 2.89
C20 20 0.1 6.14 0.614 0.55 0.387 0.205 0.44 0.51 1.83
D20 20 0.1 60.0 6.000 0.57 0.544 2.000 0.87 0.90 1.74
F 5 0.01 0.77 0.008 0.41 0.058 0.0026 0.018 0.02 2.38
G 5 0.001 7.65 0.008 0.55 0.058 0.0026 0.009 0.01 1.78
H 5 0.0001 76.5 0.008 0.57 0.058 0.0026 0.008 0.01 1.71
I 11.7 0.01 0.77 0.008 0.41 0.058 0.0026 0.018 0.02 2.42
J 15.7 0.001 7.65 0.008 0.55 0.058 0.0026 0.009 0.01 1.81
K 15.7 0.01 0.77 0.008 0.41 0.058 0.0026 0.018 0.02 2.43
L 11.7 0.001 7.65 0.008 0.55 0.058 0.0026 0.009 0.01 1.81

Table 2.1: Equilibrium parameters of different simulated jet models. The
listed parameters are: γ - jet Lorentz factor, ρ0j - rest mass density, εj and
εa - specific internal energies of jet and ambient medium, csj , csa - the sound
speeds in jet and ambient medium, p - pressure, ν, η - relativistic density and
enthalpy contrasts and Mj - the jet Mach number. All the quantities in the
table, except the last column, are expressed in units of the ambient density,ρ0a,
the speed of light, c, and the jet radius, Rj . Parameters for the new set of
simulations are shown in the lower part of the table.

only in some selected aspects. The initial data for these new simulations
are compiled and shown in the lower part of Tables 2.1 and 2.2. The external
medium in all cases is that of model A05. From models F to H, internal energy
in the jet is increased and rest-mass density decreased in order to keep pressure
equilibrium, whereas the jet Lorentz factor is kept equal to its value in model
A05. The initial momentum density in the jet decreases along the sequence
A05, F, G, H. Simulations I and J have the same thermodynamical values as
models F and G, respectively, but have increasing jet Lorentz factors to keep
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Model k‖ ωr ωi k′‖ ω′r ω′i kj⊥ ka⊥ ω′dyn
i

A05 0.30 0.20 0.026 1.32 7.20 0.13 7.08 0.53 0.73
B05 0.69 0.49 0.055 2.62 7.32 0.28 6.84 1.08 0.79
C05 2.00 1.60 0.114 5.73 9.98 0.57 8.17 1.07 1.05
D05 2.63 2.18 0.132 7.02 11.56 0.66 9.18 0.24 1.15
B10 0.50 0.41 0.031 3.59 10.28 0.31 9.64 0.94 0.90
C10 1.91 1.72 0.055 9.77 17.67 0.55 14.72 1.49 1.01
D10 2.00 1.81 0.063 9.67 16.58 0.63 13.47 0.20 1.10
B20 0.46 0.39 0.014 6.51 18.76 0.28 17.60 0.90 0.81
C20 1.44 1.37 0.027 13.89 25.38 0.54 21.24 1.28 0.99
D20 2.00 1.91 0.029 18.11 31.43 0.58 25.68 0.31 1.01
F 0.46 0.53 0.14 1.23 2.83 0.70 2.55 3.72 1.70
G 0.66 0.53 0.15 1.87 3.22 0.75 2.62 4.99 1.36
H 0.66 0.48 0.15 1.95 3.23 0.75 2.57 4.71 1.31
I 0.30 0.50 0.07 1.11 2.66 0.82 2.42 3.52 1.99
J 0.35 0.44 0.058 1.70 3.05 0.91 2.53 4.16 1.65
K 0.30 0.55 0.054 1.17 2.80 0.85 2.55 3.87 2.06
L 0.30 0.31 0.069 1.52 2.72 0.81 2.26 2.93 1.47

Table 2.2: Solutions of the dispersion relation (Eq. 2.26), corresponding to
fastest growing first reflection mode, taken as input parameters for numer-
ical simulations. The primes are used to assign wavenumber and complex
frequency in the reference frame comoving with jet. All the quantities in the
table, except the last column, are expressed in units of the ambient density,ρ0a,
the speed of light, c, and the jet radius, Rj . Parameters for the new set of
simulations are shown in the lower part of the table.

the same initial momentum density as model A05. Finally, in simulations K
and L we exchange the values of the Lorentz factor with respect to those in
runs I and J.

As it is apparent in Table 2.2 growth rates tend to increase with the specific
internal energy of the beam and to decrease with the beam flow Lorentz factor.
Note that, in the jet reference frame, models with the same thermodynamical
properties tend to have (within ≈ 10 %) the same growth rates. Note also
that in the jet reference frame and in dynamical time units, all the models
have comparable (within a factor 1.5) linear growth rates.
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The initial numerical setup consists of a steady two-dimensional slab jet
model (see Fig. 2.1). As stated above, a thin shear layer between the ambient
medium and the jet is used instead of the vortex sheet. Due to symmetry prop-
erties, only half of the jet (x > 0) has to be computed. Reflecting boundary
conditions are imposed on the symmetry plane of the flow, whereas periodical
conditions are settled on both upstream and downstream boundaries. The
numerical grid covers a physical domain of one wavelength along the jet (3
to 20 Rj ; see Table 2.2) and 100 Rj across (200 Rj in the case of models D).
The size of the transversal grid is chosen to prevent loses of mass, momentum
and energy through the boundaries. As explained before, due to linear regime
convergence, 400 numerical zones per beam radii are used in the transverse
direction across the first 3 Rj . From this point up to the end of the grid, 100
(200, in case of models D) extra numerical zones growing geometrically have
been added. The width growth factor between contiguous zones is approxi-
mately 1.08 for models A, B and C and 1.04, for models D. Along the jet, a
resolution of 16 zones per beam radius has been used.

The steady model is then perturbed according to the selected mode, with
an absolute value of the pressure perturbation amplitude inside the beam of
p±j = 10−5. This means that those models with the smallest pressure, like
model A, have relative perturbations in pressure three orders of magnitude
larger than those with the highest pressures, D. This was chosen in order to
compensate smaller growth rates in colder models. In any case, this differ-
ence seems not to affect the linear and postlinear evolution, as we tested by
repeating simulation D05 with an initial relative amplitude equivalent to that
of model A05 (see subsection on non-linear results in section 2.4.1, Fig. 2.18).

2.4 Results

2.4.1 Linear phase

Following the behaviour of simulated models we find that the evolution of
the perturbations can be divided into a linear phase, a saturation phase and
mixing phase. This section is devoted to describing the properties of these
phases in our models, focusing on the influence of the basic parameters. Our
description shares many points with that of Bodo et al. (1994) for the case of
classical jets.

In order to illustrate the growth of perturbations and determine the dura-
tion of the linear and saturation phases in our simulations, we plot in Fig. 2.9
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the amplitudes of the perturbations of the longitudinal and transversal ve-
locities, inside the jet and in the jet reference frame, together with the pres-
sure oscillation amplitude. We plot also the growth of the imposed eigen-
modes resulting from the linear stability analysis. Both the velocity perturba-
tions are transformed from the ambient rest frame to the unperturbed jet rest
frame using the Lorentz transformation rules for velocity components, given
by Eq. (2.40).

We define the characteristic times in the following way. During the linear
phase the ratios of the exponentially growing amplitudes of pressure, longi-
tudinal velocity and transversal velocity remain constant by definition. We
define the end of the linear phase (tlin) as the moment at which one of quan-
tities starts to depart from the initial exponential growth. Within the set of
our models the first quantity to break the linear behaviour is the longitudinal
velocity perturbation.

Later on the transversal velocity saturates, i.e. stops growing at the sat-
uration time (tsat). We call the period between tlin and tsat the saturation
phase. We find also that the pressure perturbation amplitude reaches a maxi-
mum. This moment is denoted by tpeak. We will see that this peak announces
the entering of the fully non-linear regime. The choice of tlin, tsat, tpeak has
been illustrated in Fig. 2.9 (top panel).

Table 2.3 collects times of the linear and saturation phases in the different
models (columns 2 and 5). Column 7 shows the saturation time in dynamical
units and in the jet reference frame. The change of reference frame eliminates
the effects coming from the jet flow Lorentz factor that stretches out the
rhythm of evolution in the ambient rest frame. Dynamical time units are
adapted to the characteristic time of evolution of each model. Hence this
change of units and reference frame allows us to compare the relevant scales
of evolution of all the models directly.

In the linear phase the ratios of oscillation amplitudes of different dynam-
ical variables (density, pressure and velocity components) are constant. We
have used this property to identify the end of the linear phase with the time
tlin at which one of the variables deviates from linear growth in a systematic
way. Note that our definition is different from that of Bodo et al. (1994) who
associate the end of the linear phase with the formation of the first shocks
inside the jet.

We note that in our simulations, during the linear phase, the growth of
perturbations of each dynamical variable follows the predictions of the linear
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Model tlin tmex tmix tsat tpeak t′dyn
sat ∆peak tfmix tmeq

A05 180 335 335 380 380 13.69 100 380 −
B05 125 175 185 200 205 13.99 70 210 215
C05 100 115 120 125 130 13.74 5 > 595 195
D05 105 115 115 120 130 13.71 5 > 595 185
B10 235 375 335 380 385 13.29 100 445 −
C10 210 245 240 245 250 13.46 10 > 595 −
D10 180 220 215 225 225 12.86 10 350 345
B20 450 775 625 760 780 13.29 100 > 1000 −
C20 270 675 595 645 775 17.72 5 > 1000 > 1000
D20 350 465 450 480 500 13.71 10 > 1000 > 1000

Table 2.3: Times for the different phases in the evolution of the perturbed jet
models. tlin: end of linear phase (the amplitudes of the different quantities
are not constant any longer). tsat: end of saturation phase (the amplitude
of the transverse speed perturbation reaches its maximum). tmix: the tracer
starts to spread. tpeak: the peak in the amplitude of the pressure perturbation
is reached. tfmix: external material reaches the jet axis. tmex: the jet has
transferred to the ambient a 1% of its initial momentum. tmeq: longitudinal
momentum in the jet and the ambient reach equipartition. t′dyn

sat : saturation
time in dynamical time units and in the jet reference frame. ∆peak: relative
value of pressure oscillation amplitude at the peak (see Fig. 2.9). Note that,
as a general trend, tlin < tmex ≈ tmix < tsat < tpeak < tfmix < tmeq.

stability analysis with relatively good accuracy. On average the growth rates
measured for all our numerical experiments are about 20 % smaller than cor-
responding growth rate resulting from the linear stability analysis. This small
discrepancy may be partially a result of the application of the shearing layer in
simulations and the vortex sheet approximation in the linear stability analysis,
and also to a lack of transversal resolution in the numerical simulations.

In all cases the amplitude of the longitudinal velocity oscillation is the
first quantity to stop growing. The reason for the limitation of the velocity
oscillations is obvious: the oscillations of velocity components (corresponding
to sound waves propagating in the jet interior) cannot exceed the speed of
light. This limitation (specific to relativistic dynamics) is easily noticeable in
the jet reference frame, but it is obscured by the Lorentz factor (in the first
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and second power) in the reference frame of the ambient medium, as it follows
from the formulae (2.41).

As seen in Fig. 2.9, model C20 evolves distinctly from the other models: at
t = 270, the linear phase ends before the saturation of longitudinal speed. See
the middle panels of Fig. 2.14 (especially the pressure panel) where small scale
transversal structure is apparent, which could be responsible for the peculiar
evolution of model C20. Note also that model C20 is the only one that has a
theoretical perturbation growth rate smaller than the numerical one (probably
associated with the excited short wavelength mode).

At the end of the linear phase, the values of quantities like density, pressure
and flow Lorentz factor are still very close to the corresponding background
values (the perturbation in pressure is between 10 % and 50% of the back-
ground pressure in all the models). Figure 2.10 shows the distribution of
pressure at the end of the linear phase for two representative models B05 and
D05.

2.4.2 Saturation phase

As it has been mentioned, the end of the linear phase coincides with the
limitation of the longitudinal oscillation velocity. At time tlin the transversal
velocity component is smaller than the speed of light, by an order of magnitude
approximately, so the transversal velocity perturbation has still room to grow.
We defined tsat as the time corresponding to the saturation of the transversal
velocity and saturation phase as the period between tlin and tsat.

We find that the longitudinal velocity perturbation amplitude reaches al-
most the speed of light (more than 0.9c) while the transversal perturbation
amplitude stops its growth at the level of approximately 0.5c for all presented
simulations. This can be explained in the following way. We remind that the
eigenmodes are built of oblique sound waves overreflected at the jet/ambient
medium interface. This means that the amplitude of the reflected wave is
larger than the amplitude of the incident one. Sound waves are longitudinal
waves, so the gas oscillation velocity can be split into the longitudinal and
transversal components separately for the incident and reflected waves. Let
us consider locally the incident wave and the reflected wave in the jet medium,
in a fixed point close to the jet boundary. Then the longitudinal velocity com-
ponents of the incident and reflected waves sum in phase, while the transversal
ones sum in counterphase. This means that while the amplitude of the total
longitudinal velocity oscillation component grows and approaches the speed
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Figure 2.9: Evolution of the relative amplitudes of perturbations. Dotted line:
pressure perturbation ((pmax − p0)/p0). Dashed line: longitudinal velocity
perturbation in the jet reference frame (0.5 (v′z,max−v′z,min)). Dash-dotted line:
perpendicular velocity perturbation in the jet reference frame (0.5 (v′x,max −
v′x,min)). The search for maximum ((pmax, (v′x,max, (v′z,max) and minimum
(v′x,min, (v′z,min) values have been restricted to those numerical zones with jet
mass fraction larger than 0.5. Solid line: linear analysis prediction for the
growth of perturbation. Note that abscissae in the last column plots extend
up to t = 1000Rj/c and that ordinate values adapt to fit the scale of each plot.
Arrows in the plot of Model A05 point to specific stages of evolution used to
define tlin, tsat and tpeak (see text).
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Figure 2.10: Pressure distribution at the end of linear phase for models B05
(left panel) and D05 (right panel). The continuous line corresponds to jet
mass fraction equal to 0.5 and serves to distinguish jet and ambient media.

of light, the oscillation amplitude of the total transversal component is a dif-
ference of the two velocities, each smaller than the speed of light. Therefore
the oscillation amplitude of the total transversal component has to take values
significantly smaller than the longitudinal one.

The duration of the saturation phase depends on the Lorentz factor and
the specific internal energy with a tendency to increase with the former and
to decrease with the latter (exception made of models C10 or D10 and C20).
It ranges between a few tens of (absolute) time units to a few hundreds.

We note that the saturation times expressed in dynamical time units and
in the jet reference frame (see Table 2.3) are almost equal for all models. This
similarity can be explained by the following argument. First, the amplitude
of pressure perturbations p±1 = 10−5 is the same for all simulations. Second,
the amplitudes of pressure and transversal velocity perturbations are related
by formula (2.35). The perturbation of perpendicular velocity is then trans-
formed to the jet reference frame following (2.41). Following the results of
numerical experiments, the transversal velocity grows with the linear growth
rate until the transversal velocity perturbation reaches the upper limit, i.e.
|v+

j⊥| exp(ωitsat) ' 0.5c. If we express tsat in dynamical time units then in the
jet reference frame

t′dyn
sat '

γ

csjωi
log

(
cΓj

2p+
1

∣∣∣∣
ω′

kj⊥

∣∣∣∣
)

. (2.45)

Since the term ω′/kj⊥ under the logarithm is close to the jet sound speed
and is varying only slightly in between models, while the other factors under
the logarithm are constants, the saturation time is proportional to the inverse
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Figure 2.11: Snapshot around saturation of logarithmic maps of pressure, rest-
mass density and specific internal energy and non-logarithmic Lorentz factor
for model A05.

growth rate. From the linear stability analysis, the latter one measured in the
jet reference frame and expressed in dynamical time units is almost equal for
all the models (see last column in Table 2.2). Substitution of numbers into
the formula (2.45) provides t′sat in the range 10÷ 15, which is consistent with
the value 13.5 in Table 2.3. However, the remarkable convergence of satura-
tion times for all the models is difficult to explain in view of the additional
randomness in the evolution of perturbations, which is apparent in Fig. 2.9.

During the saturation phase, the jet inflates (Bodo et al. 1994 called this
phase the expansion phase) and deforms due to transversal oscillations. On the
other hand, the saturation time tsat coincides (within a few time units) with
the appearance of an absolute maximum in the pressure distribution (at tpeak)
at the jet boundary, and with the start of the mixing phase. Figures 2.11-2.14
display snapshots of several quantities close to the end of the saturation phase
before the distortion of the jet boundary.

The structure of perturbations at the end of the saturation phase is quite
similar in all models. The longitudinal wavelength of perturbations is given
by the linear stability analysis and it is constant because of the fixed length
of the computational domain. Along with the longitudinal wavelength, the
opening angle of oblique waves, far from the jet symmetry plane, is given
by the linear analysis. The opening angle of oblique waves is enlarged in the
vicinity of the jet interface. Closer to the jet symmetry plane the perturbations
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Figure 2.12: Same as Fig. (2.11) for models B05 (upper), C05 (middle) and
D05 (lower).
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Figure 2.13: Same as Fig. (2.11) for models B10 (upper), C10 (middle) and
D10 (lower).
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Figure 2.14: Same as Fig. (2.11) for models B20 (upper), C20 (middle) and
D20 (lower).
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are already in the non-linear phase, which can be recognized by the apparent
presence of oblique shock fronts in the jet itself and the ambient medium.
These shocks form as a natural consequence of the non-linear steepening of
oblique sound waves as their amplitude becomes large. Practically all the
four quantities displayed for a given model (i.e. pressure, rest-mass density,
Lorentz factor and internal energy) show the same structure, so there is no
need to discuss them separately. Therefore we treat the pressure distribution
as a representative quantity. The following properties of the flow patterns can
be noticed in Figs. 2.11-2.14:

1. The interface between jet and ambient medium forms a regular sinusoidal
pattern. The amplitudes are all comparable and have values of the order
of 0.5−1.0Rj . In all cases the departure from a regular sinusoidal shape
is rather small.

2. The structure of oblique shocks crosses the jet interface in such a way
that the deformed interface is almost parallel to the shock front. One
should notice however that the oblique shock moves in the flow direc-
tion in the external medium and in the counter-flow direction in the jet
medium, as can be deduced from the distribution of hot post-shock and
cold pre-shock material. These two oppositely moving shock waves fit
together because of the jet background flow.

3. The highest gas pressure is always located on the jet symmetry plane
(the brightest spots on pressure plots), where the crossing shocks form
the familiar x-pattern, but the pressure enhancement on the jet interface
is almost as strong as on the jet symmetry plane.

4. The shocks are much stronger (i.e., the jumps between pre- and post-
shock pressure larger) in the cold cases. In the case of hot models the
jumps are smoother. This is a straightforward consequence of the larger
ratios of the perturbed velocity to the sound speed in the cold cases.

5. There is no significant variation of the structure of non-linear perturba-
tions for different values of the Lorentz factor.

6. Model C20 displays a structure of internal waves, which is absent in other
cases. This fine structure is probably connected to the distinct evolution
of this model in the postlinear phase (see Sect. 2.4.1 and Fig. 2.9). See
also Chapter 3.



2.4. RESULTS 59

Figure 2.15: Evolution of the mean width of the jet/ambient mixing layer with
time for all the simulations. Different types of lines are used for models with
different internal energies: Continuous line: model A; dotted line: model B;
dashed line: model C; dashed-dotted line: model D. Line thickness increases
with Lorentz factor (from 5, thinnest line, to 20 thickest one). A value of 5
Rj for the width of the mixing layer (horizontal dashed line) serves to classify
the evolution of the different models.

Therefore the differences between models just before the end of the satu-
ration phase can be considered as minor.

2.4.3 Non-linear phase

The beginning of the mixing phase can be detected by the spreading of
the tracer contours in the jet/ambient interface. This can be seen in Fig. 2.15,
where the evolution with time of the mean width of the layer with tracer values
between 0.05 and 0.95 is shown. The times at which the mixing phase starts
(tmix) are shown in Table 2.3. Consistently with the width of the initial shear
layer in our simulations (around 0.1 Rj), we have defined tmix as the time at
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which the mixing layer exceeds a width of 0.1 Rj .
For models with the same thermodynamical properties, those with smaller

Lorentz factors start to mix earlier (see Table 2.3). Moreover, according to
Fig. 2.15, the models can be sampled in two (or perhaps three) categories.
Models A05, B05, B10 and D10 have wide (> 5Rj) shear layers which are still
in a process of widening at the end of the simulation. The rest of the models
have thinner shear layers (< 5Rj wide) which are inflating at smaller speeds
(0.5 − 2 10−3c, in the case of models C05, D05 and C10; 0.5 − 1.2 10−2c, in
the case of models B20, C20, and D20). A deeper analysis of the process of
widening of the shear layers as a function of time shows that all the models
undergo a phase of exponential growth extending from tmix to soon after tpeak.

We note that those models developing wider mixing layers are those in
which the peak in the maxima of the pressure perturbation as a function
of time, ∆peak, reach values of the order of 70 − 100, with the exception of
model B20 that has a thin mixing layer at the end of the simulation but has
∆peak ≈ 100, and model D10, which does develop a wide shear layer but for
which ∆peak remains small. We also note that (with the exception of model
D10) the models developing wide mixing layers are those with smaller internal
energies and also relatively smaller Lorentz factors.

There are two basic mechanisms that contribute to the process of mixing
between ambient and jet materials. The first one is the deformation of the jet
surface by large amplitude waves during the saturation phase. This deforma-
tion favors the transfer of momentum from the jet to the ambient medium and,
at the same time, the entrainment of ambient material in the jet. From Ta-
ble 2.3, it is seen that the process of mixing and momentum exchange overlap
during the saturation phase.

The second mechanism of mixing starts during the transition to the full
non-linear regime and seems to act mainly in those models with large ∆peak.
As we shall see below, this large value of ∆peak is associated with the genera-
tion of a shock at the jet/ambient interface at tpeak, which appears to be the
responsible of the generation of wide mixing layers in those models. Figure 2.16
shows a sequence of models with the evolution of mixing in two characteristic
cases, B05 and D05, during the late lapse of the saturation phase. The evolu-
tion of model B05 is representative of models A05, B05 and B10. Models B20,
C05, C10, C20 and D10 have evolutions closer to model D05. As it is seen in
Fig. 2.16, in the case of model B05 (left column panels), the ambient material
carves its way through the jet making difficult the advance of the jet material
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Figure 2.16: Evolution of the jet particle fraction showing the development of
mixing in two representative models. Left column (model B05): the ambient
material carves its way through the jet making difficult the advance of the jet
material which is suddenly stopped. Right column (model D05): the amount
of ambient matter hampering the jet material is smaller and matter from the
jet at the top of the jet crests is ablated by the ambient wind.
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Figure 2.17: Pressure distribution at the onset of the jet/ambient surface
distortion at the end of the saturation phase for models A05, B05, B10 and
B20. The corresponding times are 355, 190, 370 and 765 Rj/c. In the case of
models A05, B05 and B10 this distortion leads to the formation of a shock.

which is suddenly stopped. The result is the break-up of the jet. In model
D05, (right column panels), matter from the jet at the top of the jet crests
is ablated by the ambient wind forming vortices of mixed material filling the
valleys.

The large amplitude of ∆peak reached in models A05, B05 and B10 is
clearly associated with a local effect occurring in the jet/ambient interface
(see second panel in the left column of Fig. 2.16 and Fig. 2.17) that leads to
the jet disruption. The sequence of events preceding the jet disruption includes
the formation of oblique shocks at the end of the linear/saturation phase, the
local effect in the jet/ambient interface just mentioned and then a supersonic
transversal expansion of the jet that leads to i) a planar contact discontinuity
(see last panels in the left column of Fig. 2.16), and ii) the formation of a
shock (see below) that propagates transversally. It appears that contrary to
the velocity perturbations in the jet reference frame (see Fig.2.9), the maxi-



2.4. RESULTS 63

Figure 2.18: Left panel: pressure perturbation amplitude in simulation D05
(dashed line) and D05 with the same initial relative amplitude as model A05
(dotted line); the similarity between pressure peak values can be observed.
Right panel: normalized axial momentum in the jet versus time (the lines
correspond to the same simulations as in left panel); the final axial momentum
is around 40% in both cases.

mum relative amplitudes of pressure perturbation are strongly dependent on
physical parameters of simulations.

In order to see how much this peak in relative pressure amplitude was
influenced by initial relative amplitude to background values, we repeated the
simulation corresponding to model D05 with the same initial relative ampli-
tude as model A05 (i.e., three orders of magnitude larger). Results show that
there is not a significant difference in the peak values of the pressure and that
the evolution is basically the same as the one of the original model. We can
observe this in Figs. 2.18 and 2.19. Comparing the latter with Fig. 2.27, we
observe the same structures in the long term mixing phase.

The origin of the shock in models with ∆peak ≈ 100, that enhances the
turbulent mixing of the jet and ambient fluids, can be found in the non-linear
evolution of Kelvin-Helmholtz instability that leads to significant changes of
local flow parameters at the end of saturation phase. For instance, the oblique
shock front resulting from the steepening of sound waves, during the linear
and saturation phases (see Figs. 2.10-2.14), crosses the initial shear layer at
the interface of jet and ambient medium. The formation of such oblique shock
implies a sudden and local growth of gradients of all the dynamical quantities
at the jet boundary. The local conditions changed by these oblique shocks may
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Figure 2.19: Snapshot in the mixing phase of logarithmic maps of pressure,
jet mass fraction and specific internal energy and non-logarithmic Lorentz
factor for model D05, started with an initial relative amplitude of the pressure
perturbation equal to that of model A05. Compare this figure with lower panel
in Fig. 2.27.

become favorable for the development of other instabilities like those discussed
by Urpin (2002).

The generation of the shock wave at the jet/ambient interface is reflected in
the evolution of the maxima of Mj,⊥ = γj,⊥vj,⊥/(γcsacsa) (γj,⊥ and γcsa being
the Lorentz factors associated with vj,⊥ and csa, respectively) representing the
transversal Mach number of the jet with respect to the unperturbed ambient
medium. This quantity becomes larger than 1 around tpeak in those models
with ∆peak ≈ 100 (see Fig. 2.20) pointing toward a supersonic expansion
of these jets at the end of the saturation phase. The fact that in all our
simulations the ambient medium surrounding colder models (i.e., A, B) are
also colder (see subsection on numerical setup) favors the generation of shocks
in the jet/ambient interface in these models. On the other hand, in the case
of models with the highest Lorentz factors (B20, C20, D20) the transversal
velocity can not grow far enough to generate the strong shock which breaks
the slower jets.

As mentioned above, in order to extend our conclusions to a wider region
in the initial parameter space, we have performed supplementary simulations
(namely F, G, H, I, J, K, L) with the aim of clarifying the effect of the ambient
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Figure 2.20: Time evolution of the maxima of the transversal Mach number
of the jet with respect to the unperturbed ambient medium, Mj,⊥. See text
for further explanations. Lines are as in Figure 2.15.

medium in the development of the disruptive shock appearing after saturation.
In all the cases, the external medium is that of model A05.

From models F to H, internal energy in the jet is increased and rest-
mass density decreased in order to keep pressure equilibrium, whereas the jet
Lorentz factor is kept constant to its value in model A05. The transversal
Mach numbers at the peak in these models reach values very similar to that
of model A05 (À 1, see Fig. 2.21). In fact, the formation of a shock at the
end of the saturation phase is observed in these models as it is in model A05.

The initial momentum density in the jet has decreased along the sequence
A05, F, G, H. Simulations I and J have the same thermodynamical values as
models F and G, respectively, but have increasing jet Lorentz factors to keep
the same initial momentum density as model A05. In the case of model I we
find the same behavior as in previous ones: large transversal Mach number,
shock and disruption. On the contrary, model J behaves much more like model
B20, with a value of transversal Mach number slightly larger than one, strong
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Figure 2.21: Same as Fig. 2.20 for models F, G, H, I, J, K and L. Lines are
as in Figure 2.22.

expansion and almost no mixing (Fig. 2.22). Finally, in order to know to
which extent this change in behavior was caused by the increase in Lorentz
factor or in specific internal energy, in simulations K and L we cross these
values with respect to those in I and J. The results from these last simulations
show that the evolution of model L is very close to that of model I: the large
value of the transversal Mach number at the peak, shock and strong mixing;
and that the evolution of model K is close to that of model J: a weaker shock,
expansion and no mixing (Fig. 2.21 and Fig. 2.22).

In the models developing a shock, mixing is associated with vorticity gen-
erated after the shock formation and, in the case of models A05, B05, B10 as
well as F, G, H, I and L matter from the ambient penetrates deep into the
jet as to reach the jet axis (jet break-up). The times at which this happens
for the different models are displayed in Table 2.3. Note that in models A05
and B05 the entrainment of ambient matter up to the axis occurs just after
tpeak, whereas in model B10 occurs later, probably because the shock in this
model is weaker. The process of mixing can be affected by resolution, as small
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Figure 2.22: Same as Fig. 2.15, for models F, G, H, I, J, K and L. Different
types of lines are used for models with different internal energies: Continuous
line: model F; dotted line: model G; dashed line: model H; thick dotted line:
model I; thick dashed line: model J; thick dashed-dotted line: model K; thick
dash-dot-dot line: model L. A value of 5 Rj for the width of the mixing layer
(horizontal dashed line) serves to classify the evolution of the different models.

resolutions may suppress the development of turbulence. We will analyze this
further on (see section 2.4.4), focusing on the influence of longitudinal resolu-
tion.

Regarding the evolution of the longitudinal momentum with time, Fig-
ure 2.23 shows the evolution of the total longitudinal momentum in the jet
for the different models. Jets in models B05, C05, D05 and D10 (also D20)
transfer more than 50% of their initial longitudinal momentum to the ambient,
whereas models A05, B10 and C10 (also B20) seem to have stopped the pro-
cess of momentum transfer retaining higher fractions of their respective initial
momenta. Models C20 and D20 continue the process of momentum exchange
at the end of the simulations but at a remarkable slower rate (specially C20).
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Figure 2.23: Evolution of the total longitudinal momentum in the jet as a
function of time for all the simulations. Lines represent the same models than
in Fig. 2.15. The long-dashed horizontal line serves us to identify those models
transferring more than 50% of the initial jet momentum to the ambient.

In the case of models F, G, H, I and L (Fig. 2.24), the transfer of longitu-
dinal momentum is also very efficient. The reason why these models, as well
as A05, B05 and B10, develop wide shear layers and transfer more than 50%
of their initial momentum to the ambient could be turbulent mixing triggered
by the shock. In the case of models D10 and D20, the processes of mixing and
transfer of longitudinal momentum proceed at a slower rate pointing to another
mechanism. The plots of the time evolution of the jet’s transversal momentum
(Fig. 2.25) for the different models give us the answer. Jets disrupted by the
shock (as A05, B05, B10) have large relative values of transversal momentum
at saturation (> 0.04) that decay very fast afterward (A05 is an exception).
The peak in transversal momentum coincides with the shock formation and
the fast lateral expansion of the jet at tpeak. Contrarily, models D10 and D20
have a sustained value of transversal momentum after saturation which could
drive the process of mixing and the transport of longitudinal momentum. In
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Figure 2.24: Same as Fig. 2.23 for models F, G, H, I, J, K and L. Lines
represent the same models than in Fig. 2.22. The long-dashed horizontal line
serves us to identify those models transferring more than 50% of the initial jet
momentum to the ambient.

these models, the originally high internal energy in the jet and the high jet
Lorentz factor (that allows for a steady conversion of jet kinetic energy into
internal) make possible the sustained values of transversal momentum. Be-
tween these two kinds of behavior are hot, slow models C05, D05 that do not
develop a shock having, then, thin mixing layers, but transferring more than
50% of their longitudinal momentum.

Our previous analysis based in the width of the mixing layers and the
fraction of longitudinal momentum transferred to the ambient can be used to
classify our models:

• Class I (A05, B05, B10, F, G, H, I, L): develop wide shear layers and
break up as the result of turbulent mixing driven by a shock.

• Class II (D10, D20): develop wide shear layers and transfer more than
50% of the longitudinal momentum to the ambient, as a result of the
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Figure 2.25: Evolution of the total transversal momentum in the jet as a
function of time for all the simulations. Lines represent the same models than
in Fig. 2.15. Left panel: models A05, B05, B10, C05, D05. Right panel: B20,
C10, C20, D10, D20. Note the change in both horizontal and vertical scales
between the two panels.

sustained transversal momentum in the jet after saturation.

• Class III (C05, D05): have properties intermediate to models in classes
I and II.

• Class IV (B20, C10, C20, J, K): are the most stable.

Figures 2.26-2.32 show the flow structure of the different models at the end
of the simulations. The following morphological properties of the members of
each class are remarkable:

• Class I: irregular turbulent pattern of the flow, the structure of KH
modes still visible on the background of the highly evolved mean flow
pattern.

• Class II: a regular pattern of young vortices (visible in the tracer and
specific internal energy distributions), the structure of KH modes visible.
The enhanced transfer of momentum found in the models of this class is
probably connected to the presence of these young vortices.

• Class III: the flow is well mixed, i.e. tracer, internal energy and Lorentz
factor are smoothed along lines parallel to the jet symmetry plane.
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Highly evolved vortices visible. A fossil of KH modes visible only as
pressure waves.

• Class IV: no vortices, no chaotic turbulence, very weak mixing, very
regular structure of KH modes.

Figure 2.26: Snapshot in the mixing phase of logarithmic maps of pressure, jet
mass fraction and specific internal energy and non-logarithmic Lorentz factor
for model A05. Only the top half of the jet is shown.

At the end of our simulations, the models continue with the processes of
mixing, transfer of momentum and conversion of kinetic to internal energy,
however they seem to experience a kind of averaged quasi-steady evolution
which can be still associated with the evolution of a jet, i.e., a collimated flux
of momentum. This jet is always wider, slower and colder than the original
one and is surrounded by a broad shear layer. In the following paragraphs
we examine the transition layers in distributions of gas density, jet mass frac-
tion and internal energy as well as shearing layers in velocity, longitudinal
momentum and Lorentz factor.

Let us start by analyzing the overall structure of the pressure field for
the different models at the end of our simulations. Figure 2.33 shows the
transversal, averaged profiles of pressure across the computational grid. Sev-
eral comments are in order. In the case of models A and B, the shock formed
at the end of the saturation phase is seen propagating (at r ≈ 30Rj in the
case of model A, and at r ≈ 40− 60Rj in the case of models B) pushed by the
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Figure 2.27: Same as Fig. (2.26) for models B05 (upper; only top half of the
model shown), C05 (middle) and D05 (lower).
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Figure 2.28: Same as Fig. (2.26) for models B10 (upper; only top half), C10
(middle) and D10 (lower; only top half).
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Figure 2.29: Same as Fig. (2.26) for models B20 (upper), C20 (middle) and
D20 (lower; only top half of the model shown).
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Figure 2.30: Same as Fig. (2.26) for models F (upper), G (middle) and H
(lower). Only top half of the model shown.
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Figure 2.31: Same as Fig. (2.26) for models I (upper), and J (middle) and K
(lower); only top half of the model shown for I).



2.4. RESULTS 77

Figure 2.32: Same as Fig. (2.26) for model and L; only top half of the model
shown.

overpressure of the post shock state. In the case of models C and D, the wave
associated with the peak in the pressure oscillation amplitude seem to have left
the grid (remember that in our jet models, hotter jets have also hotter ambient
media). The most remarkable feature in the pressure profile is the depression
centered at r ≈ 2Rj in the case of models C10 and C20 and at r ≈ 3Rj in the
case of models D10, D20. These pressure minima coincides with the presence
of vortices (clearly seen in models C20 and D20 in the corresponding panels
of Fig. 2.28 and Fig. 2.29). Also remarkable in these plots is the almost total
pressure equilibrium reached by models C05 and D05 and the overpressure of
the jet in model D20. As we noted in previous paragraphs the models evolve
following four schemes. Jets belonging to the classes I and II disrupt leading
to the dispersion of tracer contours for more than five initial jet radii. Model
D20 of class II is specific. It has not reached the tracer contour dispersion
equal to five jet radii, but it clearly follows from Fig. 2.15 that this should
happen around t = 1100. The models belonging to the classes III and IV do
not exhibit the dispersion of tracer contours for more than 5 jet radii and look
different at the end of simulations.

Fig. 2.34 displays, for models B05 and D05 representing classes I/II and
III/IV respectively, the profiles of relevant physical quantities averaged along
the jet at the end of the simulations. Let us note that different shear (in case of
velocity related quantities) or transition layers (in case of material quantities)
can be defined depending on the physical variable used.
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Figure 2.33: Longitudinal averaged profiles of gas pressure for all models.
Different types of lines are used for models with different internal energies:
Continuous line: model A; dotted line: model B; dashed line: model C; dashed-
dotted line: model D. Line thickness increases with Lorentz factor (from 5,
thinnest line, to 20 thickest one).
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Figure 2.34: Transversal averaged profiles of relevant physical quantities at
the end of simulations B05 and D05. Left column: tracer, f (full line), rest
mass density, ρ0 (dotted line), specific internal energy ε (dashed line) and jet
internal energy density , e (= ρ0εf ; dash-dot line). Right column: longitudinal
velocity, vz (full line), Lorentz factor normalized to its initial value, γ/γ0 (doted
line) and longitudinal momentum normalized to its initial value, S/S0. The
upper plots represent the model B05 and the lower plots represent D05. Note
that the values of e are multiple by 10 for model B05 and divided by 10 for
model D05. The values of ε for the model D05 are divided by 100.

In case of model B05 all the material quantities (tracer, density and internal
energy) exhibit a wide broadening in the radial direction. The distribution of
tracer extends up to r = 15Rj , which means that jet material has been spread
up to this radius, with a simultaneous entrainment of the ambient material into
the jet interior. The latter effect is indicated by the lowering of the maximum
tracer value from 1 down to 0.4. The fine structure of the tracer distribution
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displays random variations, which apparently correspond to the turbulent flow
pattern well seen in Fig. 2.27 (upper set of panels). The curve of internal
energy is very similar to the one corresponding to tracer, however variations
are seen up to r = 20Rj . The profile of density is wider than the profile of
the tracer (the density is growing up to r ∼ 40Rj , which can be explained by
the heating of external medium, in the jet neighborhood, by shocks associated
with outgoing large amplitude sound waves and by transversal momentum
transmitted to the ambient medium via sound waves. Finally, the profile of
the specific internal energy is consistent with the density profile and the fact
of the jet being in almost pressure equilibrium.

The dash-dot curve in Fig. 2.34 (top left panel) represents the (internal)
energy per unit volume held in jet matter. Such a quantity, like the mean
Lorentz factors in both inner jet and shear layer are of special importance
as they are directly related to the emission properties of the model. Internal
energy density in jet particles is related to the fluid rest frame synchrotron
emissivity, whereas the fluid Lorentz factor governs the Doppler boosting of the
emitted radiation. As seen in the top right panel of Fig. 2.34, the final mean
profile of velocity is similar in shape to the profile of internal energy, despite
the fact that it is smoother. Similarly to internal energy, the longitudinal
velocity variations extend up to r = 20Rj . This can be understood in terms
of large amplitude, non-linear sound waves, which contribute to the transport
of internal and kinetic energies in the direction perpendicular to the jet axis.
The profiles of Lorentz factor and longitudinal momentum are significantly
narrower. Therefore in case of models similar to B05 only the the most internal
part, up to r ≤ 8Rj of the wide sheared jet, will be Doppler boosted, even
though the jet material quantities extend behind r ' 15Rj .

A similar discussion can be performed for the model D05 representing the
other group of jets, which form a shear layer without experiencing the phase
of rapid disruption. As seen in the bottom panels of Fig. 2.34, the jet of
model D05 preserves sharp boundaries between their interior and the ambient
medium, although both media are modified by the dynamical evolution at
earlier phases. The sharp boundary (transition layer) at r ' 3.2Rj is apparent
in the plots of all material quantities, i.e. tracer, density, internal energy. The
thickness of the transition layer for all the quantities is comparable to one
initial jet radius, 10 times narrower than in case of B05. We note, however a
smooth change of ambient gas density in the range of r ∼ 3.2Rj ÷ 12Rj .

It is apparent also that a narrow core of almost unmixed (f = 1) jet
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material remains at the center in the currently discussed case. The radius of
the core is about one half of the original jet radius. The core sticks out from a
partially mixed, relatively uniform sheath and is well seen in the plots of tracer
and internal energy for that model, however it disappears when increasing the
resolution in the longitudinal direction, as we will see in the next subsection.

Concerning the dynamical quantities, we note that there is no sharp jump
in the profiles of longitudinal velocity, Lorentz factor and longitudinal mo-
mentum and the central core does not appear in profiles of these quantities.
Significant longitudinal velocities extend up to r ' 12Rj as in case of density,
in contrast to tracer and internal energy. As noted previously, the averaged
pressure distribution for model D05 is practically uniform in the whole pre-
sented range of the transversal coordinate. Therefore as in case B05 we can
conclude that the variations of density in the ambient medium are due to the
heat deposited by non-linear sound waves. On the other hand the widths of
the profiles of the Lorentz factor and longitudinal momentum are comparable
to those of jet mass fraction and specific internal energy. Then the emission
of the whole jet volume will be Doppler boosted.

Models B05 and D05 were considered as representative cases of models
developing shear layers wider (group 1; classes I and II) and narrower (group
2; classes III and IV), respectively, than 5Rj . Now the question is up to
which extent the characteristics of the shearing flow of these two models are
common to the models in the corresponding groups. We note that given the
large differences between the initial parameters of models in classes I and II,
on one hand, and III and IV, on the other, we do not expect a perfect match
among the properties of the transversal structure in models within the same
group. For example, whereas models in class I develop wide shear layers due to
the action of a strong shock formed at the end of the saturation phase, models
in class II develop shear layers through a continuous injection of transversal
momentum and the generation of large vortices at the jet ambient interface.

We now investigate relations among the following averaged quantities in
the whole set of models at the final state: the dispersion of tracer contours,
the typical widths of profiles of density, internal energy density in jet matter
(re), velocity, Lorentz factor (rγ) and longitudinal momentum (rS) and the
peak values of Lorentz factor and the longitudinal momentum (Smax). In all
cases the peak values were measured directly, whereas the typical width of the
profiles were taken as their width at the mean value between the maximum and
minimum ones. We find that for all models of group 1, rγ > 4Rj , rS > 3.5Rj ,
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re > 7Rj and S/S0 < 0.2. In case of all models of group 2, rγ < 4Rj ,
rS < 3.5Rj , re < 7Rj and Smax/S0 > 0.2.

2.4.4 Influence of numerical resolution in the non-linear evo-
lution

In order to be aware of the limitations of the resolution used in the results
for the non-linear regime, we repeated model C05 (C16 here) with the same
transversal resolution (400 cells/Rj) and changing the longitudinal resolution.
First we double it (32 cells/Rj , C32) and then multiply it by four (64 cells/Rj ,
C64), and finally, in order to have similar resolutions in both transversal and
longitudinal directions, we performed this simulation using 256×128 cells/Rj

(C128). Models C16, C32 and C64 were evolved up to a time larger than 600
Rj/c, whereas model C128 was stopped at t = 375Rj/c.

Table 2.4 displays the data corresponding to Table 2.3 for models C16,
C32, C64, C128. Differences in the duration of the phases are apparent but not
significant. Regarding the linear regime, perturbations in models C32 and C64
grow closer to linear predictions (growth rate 0.093 c/Rj) in both cases; to be
compared with the analytical value 0.114 c/Rj) rather than C16 (0.085 c/Rj).
C128 has a slower growth rate (0.073 c/Rj) due to its smaller transversal
resolution (see subsection on numerical setup). Values of pressure perturbation
at the peak range from 3 to 8, increasing generally from smaller to larger
longitudinal resolution. Moreover, transversal relativistic Mach numbers are
also increasing with resolution (from a value of about unity to two), so that
we observe a stronger, although still weak, shock in C64 and C128 than in
C16 or C32. This is maybe due either to the instability giving rise to the
shock (see previous subsection on non-linear regime) being better captured
with increasing resolution or as the result of a smaller numerical viscosity.

Model tlin tmix tsat tpeak ∆peak tfmix tmeq

C16 100 120 125 130 5.0 > 595 195
C32 85 100 105 105 3.5 500 150
C64 80 100 110 115 6.5 125 150
C128 100 125 110 125 8.0 135 160

Table 2.4: Times for different phases in the evolution of simulations C16, C32,
C64 and C128. See Table 2.3 for the meaning of the times at the table entries.
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Figure 2.35: Same plots as 2.15 (left) and 2.23 (right) for models C16 (solid
line), C32 (dotted line), C64 (dashed line) and C128 (dash-dotted line).

Figure 2.35 shows the time evolution of the mean width of the jet/ambient
mixing layer and the total longitudinal momentum in the jet for model C05
as a function of resolution. No noticeable differences are found in the evo-
lution of the different numerical simulations within the linear phase (up to
t ≈ 100Rj/c). However, there is a clear tendency to develop wider mixing lay-
ers and enhance momentum transfer in those simulations with higher numer-
ical resolutions as a result of the reduction of numerical viscosity. In the case
of model C128 the processes of jet/ambient mixing and momentum exchange
are further enhanced by the ratio of longitudinal to transversal resolution close
to unity which favors the generation of vortices in the jet/ambient boundary.
The enhancement of mixing with numerical resolution and the generation of
vortices in model C128 is seen in the sequence of Figs. 2.36-2.37 displaying
several jet properties (pressure, specific internal energy, flow Lorentz factor
and tracer) at t = 375Rj/c, the last computed time for model C128. Models
C16 and C32 are very similar, whereas models C64 and C128 are totally mixed
(see the maxima of the tracer values in the scales) and colder (as a result of
the enhanced mixing with the cold ambient medium).

Finally, Fig. 2.38 shows mean transversal profiles of relevant physical quan-
tities at t = 375Rj/c for models C16 and C128. The thin, hot core in model
C16 disappears in model C128 due to the enhanced mixing. In model C32
mixing down to the axis occurs after a long process. Models C64 and C128
develop weak shocks after saturation and suffer sudden mixing, which goes on
in time, cooling down the remaining relativistic flow. Transition layers in rest
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Figure 2.36: Snapshots at t = 375Rj/c of logarithmic maps of pressure, jet
mass fraction and specific internal energy and non-logarithmic Lorentz factor
for models for for models C16 (upper) and C32 (lower).

mass density, jet mass fraction and specific internal energy are wider in model
C128 due to the enhanced mixing. Longitudinal velocity and momentum and
Lorentz factor profiles are more similar in all the cases although the relativis-
tic core is thinner in model C128. Main conclusion from this study tells us
that we need higher resolution in order to be sure that turbulent mixing is
not stopped by numerical viscosity. Nevertheless, global dynamical quantities
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Figure 2.37: Same as Fig. 2.36 for models C64 (upper) and C128 (lower).

are well described with the resolution used in the simulations presented in this
Chapter, with respect to the largest resolutions used in the tests. Therefore,
main conclusions from our work remain unchanged.
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Figure 2.38: Longitudinal averaged profiles of relevant physical quantities for
models C16 (thin lines) and C128 (thick lines) in the last snapshot of simu-
lation C128 (t = 375Rj/c). Left panel: tracer (full line), rest mass density
(dotted line) and internal energy divided by 10 (dashed line). Mixing produces
a denser and colder jet in model C128. Right panel: longitudinal velocity (full
line), Lorentz factor normalized to its initial value (dotted line) and longitu-
dinal momentum normalized to its initial value (dashed line).

2.5 Conclusions

We have performed a linear stability analysis and high-resolution numer-
ical simulations for the most unstable first reflection modes in the temporal
approach, for three different values of the jet Lorentz factor γ (5, 10 and 20)
and a few different values of specific internal energy of the jet matter (from
0.08 to 60.0c2).

Our simulations describe the linear regime of evolution of the excited eigen-
modes of the different models with high accuracy. The growth rates of the
perturbed modes in the vortex sheet approximation were determined with an
average relative error of 20%.

In all the examined cases the longitudinal velocity perturbation is the first
quantity that departs from linear growth when it reaches a value close to the
speed of light in the jet reference frame. The reason for this saturation, specific
to relativistic dynamics, is not so obvious in the reference frame of the external
medium where it saturates at a smaller value (≈ c/γ, where γ is the bulk flow
Lorentz factor in the jet).

The saturation phase extends from the end of the linear phase up to the



2.5. CONCLUSIONS 87

Figure 2.39: Square root of the jet-to-ambient enthalpy ratio versus jet Lorentz
factor. Symbols represent different non-linear behaviors: crosses stand for
shock disrupted jets (cold, slow jets, along with tenuous, hot, moderately fast
or slow ones); diamonds for unstable, hot, fast jets; triangles for relatively
stable hot, slow, and squares for stable, warm, fast, along with hot, tenuous,
faster jets.

saturation of the transversal velocity perturbation (at approximately 0.5c in
the jet reference frame). The saturation times for the different numerical mod-
els have been explained from elementary considerations, i.e. from properties of
linear modes provided by the linear stability analysis and from the limitation
of the transversal perturbation velocity.

The limitation of the components of the velocity perturbation at the end
of the linear and saturation phases allows us to conclude that the relativistic
nature of the flow appears to be responsible for the departure of the system
from linear evolution. This behaviour is consistent with the one deduced by
Hanasz (1995, 1997) with the aid of analytical methods.

At the saturation time the perturbation structure is close to the structure
of the initial perturbation (the one corresponding to the most unstable first re-
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flection mode), except that the oblique sound waves forming the perturbation
became steep due to their large amplitude. It is interesting to note that the
oblique shocks are stronger (i.e., the pressure jumps are larger) in the colder
cases.

Our simulations, performed for the most unstable first reflection modes,
confirm the general trends resulting from the linear stability analysis: the
faster (larger Lorentz factor) and colder jets have smaller growth rates. As we
mentioned in the Introduction, Hardee et al. (1998) and Rosen et al. (1999)
note an exception which occurs for the hottest jets. These jets appear to be
the most stable in their simulations (see also the simulations in Mart́ı et al.
1997). They suggest that this behaviour is caused by the lack of appropriate
perturbations to couple to the unstable modes. This could be partially true as
fast, hot jets do not generate overpressured cocoons that let the jet run directly
into the non-linear regime. However, from the point of view of our results, the
high stability of hot jets may have been caused by the lack of radial resolution
that leads to a damping in the perturbation growth rates. We note that the
agreement between the linear stability analysis and numerical simulations of
KH instability in the linear range has been achieved for a very high radial
resolution of 400 zones/Rj , which appears to be especially relevant for hot
jets. Finally, one should keep in mind that the simulations performed in the
aforementioned papers only covered about one hundred time units, well inside
the linear regime of the corresponding models for small perturbations.

The high accuracy of our simulations in describing the early stages of
evolution of the KH instability (as derived from the agreement between the
computed and expected linear growth rates and the consistency of the satura-
tion times) establishes a solid basis to study the fully non-linear regime. We
show that the similarities found in the evolution of all the models across the
linear and saturation phases is lost and very different non-linear evolution is
found depending on the initial jet parameters.

We have also studied the non-linear evolution of the relativistic planar
jet models. The models have been classified into four classes (I to IV) with
regard to their evolution in the non-linear phase, characterized by the process
of mixing and momentum transfer. Cold, slow jets (Class I) develop a strong
shock in the jet/ambient interface at the end of the saturation phase leading
to the development of wide, mixed, shear layers. Hot fast models (Class II)
develop wide shear layers formed by distinct vortices and transfer more than
50% of the longitudinal momentum to the ambient medium. In models within
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this class, the high Lorentz factor in the original jet and its high internal energy
act as a source of transversal momentum that drives the process of mixing and
momentum transfer. Between these classes we find hot, slow models (Class
III) that have intermediate properties. Finally we have found cold/warm and
fast models (Class IV) as the most stable. Whether a jet is going to develop
a strong shock and be suddenly disrupted seems to be encoded in the peak of
the pressure oscillation amplitude at the end of the saturation phase and the
related transversal Mach number.

The above picture is clarifying but is subject to the limitations of our
choice of initial parameters that was restricted to values with ρ0j = 0.1. This
restriction together with the initial pressure equilibrium lead to a constant
jet-to-ambient ratio of specific internal energies for all the models, i.e., hotter
jets are surrounded by hotter ambient media. In order to extend our conclu-
sions to a wider region in the initial parameter space, we have performed a
supplementary set of simulations (F-L) with the aim of disentangling the effect
of the ambient medium in the development of the disruptive shock appearing
after saturation. Thus, hot, tenuous, slow/moderately fast jets (F, G, H, I, L)
behave like cold, dense ones in a cold environment (A05, B05, B10). However,
if these hot, tenuous jets are faster (J, K), they behave as warm, fast models
(e.g., C10, C20, B20). The fact that the initial Lorentz factor is high seems to
prevent the transversal velocity from growing enough to generate the strong
shock which breaks the slower jets.

Models undergoing qualitatively different non-linear evolution are clearly
grouped in well-separated regions in a jet Lorentz factor/jet-to-ambient en-
thalpy diagram (see Fig. 2.39). Models in the lower, left corner (low Lorentz
factor and small enthalpy ratio) are those disrupted by a strong shock after
saturation. Those models in the upper, left corner (small Lorentz factor and
hot) represent a relatively stable region. Those in the upper right corner (large
Lorentz factor and enthalpy ratio) are unstable although the process of mix-
ing and momentum exchange proceeds on a longer time scale due to a steady
conversion of kinetic to internal energy in the jet. Finally, those in the lower,
right region (cold/warm, tenuous, fast) are stable in the non-linear regime.

Our results differ from those of Mart́ı et al. (1997), Hardee et al. (1998)
and Rosen et al. (1999) who found fast, hot jets as the more stable. The
explanation given by Hardee et al. (1998) invoking the lack of appropriate
perturbations to couple to the unstable modes could be partially true as fast,
hot jets do not generate overpressured cocoons that let the jet run directly into
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the non-linear regime. However, as pointed out before, the high stability of
hot jets may have been caused by the lack of radial resolution, that leads to a
damping in the perturbation growth rates. Finally, the simulations performed
in the aforementioned papers only covered about one hundred time units, well
inside the linear regime of the corresponding models for small perturbations.
Here, the problem of the stability of relativistic jets is analyzed on the basis
of long-term simulations that extend over the fully non-linear evolution of KH
instabilities.

At the end of our simulations, the models continue with the processes of
mixing, transfer of momentum and conversion of kinetic to internal energy,
however they seem to experience a kind of averaged quasisteady evolution
which can be still associated with the evolution of a jet, i.e., a collimated flux
of momentum. This jet is always wider, slower and colder than the original one
and is surrounded by a distinct shear layer. Hence transversal jet structure
naturally appears as a consequence of KH perturbation growth. The widths of
these shear (in case of velocity related quantities) or transition layers (in case
of material quantities) depend on the specific parameters of the original jet
model as well as the physical variable considered. However, models in classes
III and IV develop thin shear layers, whereas the shear layers of models in
classes I and II are wider.

2.6 Single antisymmetric mode simulations

We performed simulations, following the same perturbation setup as in the
symmetric case, but using the first antisymmetric reflection mode of slab jets,
instead, for models B05, B20, D05 and D20, representing the four stability
regions found (see Fig. 2.39). First aim was to check symmetry properties of
the numerical code (see Section A) in order to perform more general models,
including both symmetric and antisymmetric modes.

Numerical setup in these simulations is in general, very similar to that
in the symmetric case. Main differences are the following: we simulate the
whole jet, so we have outflow boundary conditions far from the axis in both
directions; the resolution was changed, using 256 cells/Rj in the transversal
direction and 32 cells /Rj in the axial direction, following results from the
study on the influence of axial resolution in the non-linear regime; due to the
decrease in transversal resolution, we also decreased the value of m, giving the
steepness of the shear layer, and m = 25 in these simulations, so the thickness
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Figure 2.40: Antisymmetric solutions of Equation 2.26 for slab jets B05 (left
panel) and B20 (right panel). In left panel colors identify real and imaginary
parts of single modes as an example for the reader.

of the shear layer is 0.18 Rj , i.e., thicker than used in the symmetric case. The
box size was also adapted to the wavelength of the first reflection eigenmode
(∼ 7Rj for model B05, ∼ 1.8Rj for D05, ∼ 9Rj for B20 and ∼ 3Rj for D20)
at its maximum growth rate (see Figs. 2.40 and 2.41).

The first noticeable fact in the linear regime is the breaking of the slope
of perturbations in models B20 and D20 (see Figs. 2.42 and 2.43). Fourier
analysis showed that this fast growing modes which dominate the growth of the
instabilities are generated as harmonics of the excited mode. They represent
very short longitudinal (∼ 1Rj) and transversal (high order reflection modes)
wavelength modes which do not appear in the dispersion relation solution for
the antisymmetric case. In right panels of Figs. 2.40 and 2.41 we see that
at the corresponding wavenumbers, only low order reflection modes have the
largest growth rates (up to 10th reflection mode in B20), whereas found fast
growing modes in the simulations are around the 30th body mode, what can be
simply seen by counting zeros in transversal cuts of pressure perturbation (see
the section on the linear regime at the beginning of this chapter). Therefore,
there is a clear inconsistency in this result. The origin of these new modes
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Figure 2.41: Same as Fig. 2.40 for models D05 (left panel) and D20 (right
panel)

Figure 2.42: Evolution of the relative amplitudes of perturbations for mod-
els B05 (left panel) and B20 (right panel). Dotted line: pressure pertur-
bation. Dashed line: longitudinal velocity perturbation in the jet reference
frame. Dash-dotted line: perpendicular velocity perturbation in the jet refer-
ence frame. Definitions are like those in Fig 2.9.

represented a problem which was only solved when we took into account the
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Figure 2.43: Same as Fig 2.42 for models D05 (left panel) and D20 (right
panel).

Figure 2.44: Upper left panel shows mixing layer width, upper right panel is
for relative axial momentum. Dotted thin line stands for model B05, dotted
thick for B20, dash-dot thin for D05 and dash-dot thick for D20.

effects of the presence of the shear layer (used in the numerical simulations)
in the linear evolution of perturbations (see Chapter 3).

Regarding the non linear regime, model B05 presents a similar evolution
to that in the symmetric case, whereas model D05 presents a slow disruption,
contrary to the symmetric one, what may be due to the longest wavelength
of the first body antisymmetric mode, to the more disruptive character of
antisymmetric modes or to the numerical resolution in the axial direction,
as shown before. Models B20 and D20 are conditioned by the appearance
of short wavelength, fast growing modes, no shock appear after saturation
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and the transition to the non-linear, mixing phase is smooth, with almost no
transfer of longitudinal momentum to the ambient and no mixing (see Fig.
2.44).

In Figs. 2.45-2.46 we show panels at the last frame of the simulations,
for pressure, jet mass fraction, internal energy density and Lorentz factor.
First remarkable fact is that the symmetry properties of the flow are kept
by the code. Regarding physical properties, in Lorentz factor 20 models we
can see the long term stability generated due to the appearance of the fast
modes, mostly in model D20 with respect to the symmetric case, along with
the presence of a wide and hot shear layer, protecting a faster and colder core.
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Figure 2.45: Same as Fig. (2.26) for models B05 (upper) and D05 (lower)
perturbed with first body antisymmetric mode, at the end of simulations.
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Figure 2.46: Same as Fig. 2.45 for models B20 (upper) and D20(lower).



Chapter 3

STABILITY OF SHEARED
FLOWS

Transversal structure in extragalactic jets could be the natural consequence
of current formation mechanisms (see, e.g., Sol et al. 1989; Celotti and Bland-
ford 2001), in which an ultrarelativistic presumably electron/positron outflow
from the high latitude region close to the spinning black hole (and powered
by, e.g., the extraction of energy from the hole) is surrounded by a mildly
relativistic, electron/proton, hydromagnetic outflow launched from the outer
parts of the accretion disk. Recent numerical simulations of jet formation
from black hole magnetospheres (Koide et al. 1998) also lead to outflows with
two-layered shell structure consisting of inner, fast gas pressure driven jets
surrounded by slower, magnetically dominated winds. At larger scales, shear
layers (with distinct kinematical properties and magnetic field configurations)
have been invoked in the past by several authors (Komissarov 1990a,b, Laing
1996, Laing and Bridle 2002a,b) in order to account for a number of observa-
tional characteristics of FR I radio sources. The model of De Young (1993)
to explain the FRI/FRII morphological dichotomy is based on the decelera-
tion of the jet flow at the inner galactic core and the subsequent formation
of turbulent shear layers in FRIs. Recently, Swain et al. (1998) have found
evidence of shear layers in FR II radio galaxies (3C353), and Attridge et al.
(1999) have inferred a two-component structure in the parsec-scale jet of the
source 1055+018. On the other hand, first simulations of radio emission from
three-dimensional relativistic jets with shear layers (Aloy et al. 2000) allowed
to interpret several observational trends in parsec and kiloparsec jets: inho-

97
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mogeneous distributions of apparent speeds within radio knots (Biretta et al.
1995); rails of low polarization along jets (as in 3C353; Swain et al. 1998);
top/down jet emission asymmetries in the blazar 1055+018 (Attridge et al.
1999). Stawarz and Ostrowski (2002) have studied the contribution to the
radiative jet output from turbulent shear layers in large-scale jets.

In this chapter we present the results obtained from the study of the sta-
bility of relativistic, sheared slab and cylindrical jets. These results, in the
linear and non-linear regimes, have been submitted (Perucho et al. 2005a and
Perucho et al. 2005b).

3.1 Linear analysis

A general treatment of compressible shear layers in the case of infinite
plane boundary (non-relativistic) problems was first proposed in Blumen et
al. (1975) and Drazin and Davey (1977). In Ferrari et al. (1982) the study
on the effects of shear layers was extended to the case of infinite slab jets,
concentrating on the wave number range 0.1/Rj ≤ k ≤ 10/Rj for ordinary
(nx = 0) and the first reflection (nx = 1, 2, 3) symmetric and antisymmetric
modes (nx represents the number of nodes between the axis and the surface
across the planar jet).

An attempt to investigate the growth of the KH instability in some par-
ticular class of sheared, cylindrical relativistic jets was pursued in Birkinshaw
(1991a). However, the study is limited to the ordinary (nr = 0) and first
two reflection modes (nr = 1, 2), and the domain of jet parameters considered
involves only marginally relativistic flows (beam flow velocities ≤ 0.1c; c is the
speed of light) and non-relativistic (jet, ambient) sound speeds (≤ 0.01c). The
main conclusion extracted from Ferrari et al. (1982) and Birkinshaw (1991)
was that shear layers reduce the growth rates of body modes and prohibit the
growth of modes with wavelengths smaller than the width of the layer. Other
approaches to the linear analysis of the stability of relativistic stratified jets
(Hanasz and Sol 1996, Hardee and Hughes 2003) and sheared, ultrarelativistic
jets (Urpin 2002) have also been performed. Several recent works have com-
bined linear analysis and hydrodynamical simulations in the context of both
relativistic jets (Rosen et al. 1999, Hardee 2000, 2001) and GRBs (Aloy et al.
2002).

In this Chapter, we show new results on the linear analysis of sheared
relativistic flows, along with numerical simulations which support them and
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allow us to obtain information on the non-linear regime.
In Appendix D we present the development of the differential equation for

the evolution of pressure perturbations. We give here a summary of this work.
In Appendix D we also present the development of the differential equations
for the linear problem of relativistic rotating and expanding jets.

Like in Chapter 2, the initial equilibrium configuration is that of a steady
slab jet in Cartesian coordinates flowing along the z-coordinate, surrounded by
a denser and colder ambient medium. A single-component ideal gas equation
of state with adiabatic exponent Γ = 4/3 has been used to describe both jet
and ambient media. Both media are in pressure equilibrium and are separated
by a smooth shear layer of the form described in Eqs. (2.42) and (2.43) (Ferrari
et al. 1982). Again, the integer m controls the shear layer steepness. In the
limit m →∞ the configuration tends to the vortex-sheet case.

We introduce an adiabatic perturbation of the form∝ A(x) exp(i(kzz−ωt))
in the flow equations, ω and kz being the frequency and wavenumber of the
perturbation along the jet flow, and A(x) giving the transversal structure of the
perturbation. We shall follow the temporal approach, in which perturbations
grow in time having real wavenumbers and complex frequencies (the imaginary
part being the growth rate). By linearizing the equations and eliminating the
perturbations of rest mass density and flow velocity, a second order ordinary
differential equation for the pressure perturbation, P1, is obtained (Birkinshaw
1984)

P ′′
1 +

(
2γ2v′z(kz − ωvz)

ω − vzkz
− ρ′

ρ + P

)
P ′

1+ (3.1)

γ2

(
(ω − vzkz)2

c2
s

− (kz − ωvz)2
)

P1 = 0

where ρ is the energy-density of the unperturbed model, P the pressure, vz the
unperturbed three-velocity component, γ = 1/

√
1− v2

z is the Lorentz factor
and cs is the relativistic sound speed. The prime denotes the x-derivative.
Unlike the vortex sheet case, in the case of a continuous velocity profile, a dis-
persion relation can not be written explicitly. The equation (3.1) is integrated
from the jet axis, where boundary conditions on the amplitude of pressure
perturbation and its first derivative are imposed

P1(x = 0) = 1, P ′
1(x = 0) = 0 (sym. modes), (3.2)

P1(x = 0) = 0, P ′
1(x = 0) = 1 (antisym. modes).
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Solutions satisfying the Sommerfeld radiation conditions (no incoming waves
from infinity and wave amplitudes decaying towards infinity) are found with
the aid of the method, based on the shooting method (Press et al. 1992),
proposed in Roy Choudhury and Lovelace (1984).

We have solved the linear problem for more than 20 models with different
specific internal energies of the jet, Lorentz factors and shear layer widths,
fixing jet/ambient rest-mass density contrast (= 0.1). We used m = 8, 25, 2000
(shear layer width, d ≈ 0.6, 0.18, 5 10−3Rj) and vortex sheet for jets having
specific internal energies εj = 0.4c2 (models B) and 60c2 (models D) and
Lorentz factors γj = 5 (B05, D05) and 20 (B20, D20). Solutions with m =
2000 were considered in order to test convergence to vortex sheet in the case of
narrow shear layers, with positive results. Also, fixing the width of the shear
layer m = 25 we solved for εj = 0.08c2 (models A), along with models B and
D, using γj = 2.5 and 10, in order to span a wide range of parameters.

The basic effect of the shear layer in the stability is seen in Figs. 3.3-3.18
where we show the solutions of the equation (3.1) together with the boundary
conditions (3.2) for considered models. The corresponding solution for the
vortex sheet case is also shown in the case of B05 and D20 for comparison
and as a test of convergence of our solutions to vortex sheet, when m → ∞.
We note that the reflection mode solutions of the shear problem are more sta-
ble for most wavenumbers, especially in the large wavenumber limit, than the
corresponding solutions in the vortex sheet case. This behaviour was reported
for the first time in Ferrari et al. (1982), for the first and second reflection
modes in the non-relativistic limit. The growth rate curves corresponding to a
single nx-th reflection mode consists on a broad maximum at larger wavenum-
bers and a local peak which is placed in the small wavenumber limit, near the
marginal stability point of the mode. While in the vortex-sheet, relativistic
case the small wavenumber peaks are relatively unimportant (since the max-
imum growth rates at these peaks are lower than the growth rates of other
unstable modes), in the presence of the shear layer they significantly domi-
nate over other modes. Therefore we shall call these peaks the shear layer
resonances (these resonances have been discovered during the development of
the work, and this fact is reported in the paper Perucho et al. 2005a). The
dependence of the properties of the growth rates associated to the shear layer
resonances on the jet specific internal energy, jet Lorentz factor and shear
layer parameter m are summarized in Fig. 3.1 for 0.1 < k < 100. In that plot,
we find that (see also Figs. 3.3-3.18): i) A decrease of the jet Lorentz factor
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Figure 3.1: Dependence of mode growth rates with jet specific internal energy,
jet Lorentz factor and shear-layer parameter m. Top panels correspond to
Model D20 with m = 25 (panel a) and m = 8 (panel b). Panel c: Model B20
with m = 25. Panel d: Model D05 with m = 25.

reduces the dominance of resonant modes with respect to ordinary and low
order reflection modes; ii) a decrease in the specific internal energy of the jet
causes resonances to appear at longer wavelengths; iii) a further widening of
the shear layer reduces the growth rates1 and the dominance of the shear-layer

1Models D05 and D20 were computed using a wide shear layer (m = 1) and results
showed the disappearance of all body modes, and a slight increase in the growth rates of the
fundamental mode.
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Figure 3.2: Two-dimensional panels of different pressure perturbation struc-
tures for a detail of Model D20. Left panel: vortex sheet dominant mode (low
order reflection mode) at a given wavelength (from linear solution). Central
panel: Dominant mode (high order reflection mode) at the same wavelength
when m = 25 shear layer is included (also from linear solution). Right panel:
Pressure perturbation map from numerical simulation.

resonances, suggesting that there is an optimal width of the shear layer that
maximizes the effect, for a given set of jet parameters; the largest growth rate
of resonant modes moves to smaller wavenumbers and lower order reflection
modes; iv) modes with wavenumber larger than some limiting value that de-
creases with the shear layer width are damped significantly (short-wavelength
cut-off), consistently with previous non-relativistic results (Ferrari et al. 1982).

The shear layer resonances correspond to very distinct spatial structures
of eigenmodes, as it is seen in Fig. 3.2 for Model D20. The structure of max-
imally unstable eigenmodes in the vortex sheet case (left panel) represents a
superposition of oblique sound waves in both the jet interior and the ambi-
ent medium. Contrarily, in the shear layer case, the most unstable resonant
modes (central panel) have a very large transversal wavenumber in the jet inte-
rior and display a monotonic dependence on the radial coordinate (no oblique
waves) in the ambient medium. This property is related to the fact that the
resonant modes posses a very small phase speed in the ambient medium. In
order to demonstrate the relevance of the resonant modes we display in the
right panel of Fig. 3.2 an analogous pressure map resulting from a numer-
ical hydrodynamical simulation. In this simulation an equilibrium jet with
shear layer corresponding to m = 25 has been perturbed with a superposi-
tion of many sinusoidal perturbations which are not eigenmodes. Therefore
such a perturbation can be considered as general, containing a contribution of
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virtually all eigenmodes. As we can see the resonant mode appears in numer-
ical simulations and its spatial structure is very similar to the most unstable
resonant eigenmode obtained from the linearized equations. Fourier analysis
of the results of numerical simulation shows that the fastest growing mode
corresponds to the one expected from the linear analysis.

The importance of the shear-layer resonant modes relies not only on their
dominance among solutions of the linearized problem, but also on their effects
on the non-linear evolution of jets. In the next sections we analyze their effects
on the non-linear regime in those models where they appear.

Figure 3.3: Solution for the shear layer stability problem of a slab jet with
the parameters of B05 and m = 8. Left panel: antisymmetric; right panel:
symmetric.
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Figure 3.4: Same as Fig. 3.3 for B05 and m = 25. Left panel: antisymmetric;
right panel: symmetric.

Figure 3.5: Same as Fig. 3.3 for the symmetric case of B05 and m = 2000
(left panel) compared to the vortex sheet solution (right panel)
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Figure 3.6: Same as Fig. 3.3 for B20 and m = 8. Left panel: antisymmetric;
right panel: symmetric.

Figure 3.7: Same as Fig. 3.3 for B20 and m = 25. Left panel: antisymmetric;
right panel: symmetric.
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Figure 3.8: Same as Fig. 3.3 for D05 and m = 8. Left panel: antisymmetric;
right panel: symmetric.

Figure 3.9: Same as Fig. 3.3 for D05 and m = 25. Left panel: antisymmetric;
right panel: symmetric.
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Figure 3.10: Same as Fig. 3.3 for D20 and m = 8. Left panel: antisymmetric;
right panel: symmetric.

Figure 3.11: Same as Fig. 3.3 for D20 and m = 25. Left panel: antisymmetric;
right panel: symmetric.
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Figure 3.12: Same as Fig. 3.3 for the symmetric case of D20 and m = 200
(left panel) compared to the vortex sheet solution (right panel).

Figure 3.13: Same as Fig. 3.3 for A2.5 (see Table 3.1) and m = 25. Left panel:
antisymmetric; right panel: symmetric.
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Figure 3.14: Same as Fig. 3.3 for A10 (see Table 3.1) and m = 25. Left panel:
antisymmetric; right panel: symmetric.

Figure 3.15: Same as Fig. 3.3 for B2.5 (see Table 3.1) and m = 25. Left panel:
antisymmetric; right panel: symmetric.
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Figure 3.16: Same as Fig. 3.3 for B10 (see Table 3.1) and m = 25. Left panel:
antisymmetric; right panel: symmetric.

Figure 3.17: Same as Fig. 3.3 for D2.5 (see Table 3.1) and m = 25. Left panel:
antisymmetric; right panel: symmetric.
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Figure 3.18: Same as Fig. 3.3 for D10 (see Table 3.1) and m = 25. Left panel:
antisymmetric; right panel: symmetric.

3.2 Numerical simulations

Previous to performing the simulations, several improvements were done
in the numerical code (see Appendix A and Section 2.6). Simulations were
performed in 4 processors in SGI 2000 and SGI Altix 3000 machines.

Our simulations are performed following the temporal view, as in Chapter
2, i.e., a periodical box representing an infinite jet in which perturbations grow
in time. We have tried to use a scenario as general as possible, from the point
of view of what we know from previous results, by including a thicker shear
layer (0.17 Rj):

vz(x) =
vz,j

coshxm
, (3.3)

ρ(x) = ρa − ρa − ρj

coshxm
, (3.4)

where x is the transversal coordinate to the direction of the flow (z) and m is
a measure of the shear layer steepness (in the limit m →∞ the configuration
tends to the vortex-sheet case, here m = 25), and by perturbing the jet with
several symmetric and antisymmetric modes in boxes of a given size, which
is not determined by any specific mode wavelength as in simulations from
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Model γ εj εa csj csa p ν η Mj

A2.5 2.5 0.08 0.008 0.18 0.059 0.0027 0.11 0.11 12.5
B2.5 2.5 0.42 0.042 0.35 0.133 0.014 0.14 0.15 6.12
D2.5 2.5 60.0 6.000 0.57 0.544 2.000 0.87 0.90 3.29
B05 5 0.42 0.042 0.35 0.133 0.014 0.14 0.15 13.2
D05 5 60.0 6.000 0.57 0.544 2.000 0.87 0.90 7.01
A10 10 0.08 0.008 0.18 0.059 0.0027 0.11 0.11 54.2
B10 10 0.42 0.042 0.35 0.133 0.014 0.14 0.15 26.9
D10 10 60.0 6.000 0.57 0.544 2.000 0.87 0.90 14.2
B20 20 0.42 0.042 0.35 0.133 0.014 0.14 0.15 54.0
D20 20 60.0 6.000 0.57 0.544 2.000 0.87 0.90 28.5

Table 3.1: Equilibrium parameters of different simulated jet models. The
meaning of the symbols is as follows: γ: jet flow Lorentz factor; ε: specific
internal energy; cs: sound speed; p: pressure; ν: jet-to-ambient relativistic rest
mass density contrast; η: jet-to-ambient enthalpy contrast; Mj : jet relativistic
Mach number. Labels a and j refer to ambient medium and jet, respectively.
All the quantities in the table are expressed in units of the ambient density,
ρ0a, the speed of light, c, and the jet radius, Rj .

Chapter 2. Following conclusions regarding effects of resolution in linear and
non-linear regimes studied before, the resolution used in this work was 256
cells/Rj in the transversal direction to the flow, times 32 cells/Rj in the axial
direction. We reduced the transverse resolution due to mainly two reasons:
we are not trying to mimic vortex sheet evolution, so we do not need such
a steep shear layer, and therefore, we do not need such a large resolution,
and our grids are now twice as large in the transversal direction as in the axis-
symmetric case, as we are combining symmetric and antisymmetric structures,
so we need to reduce resolution for computational time reasons.

This allowed us to double axial resolution, which affects non-linear results.
Physical size of grids is 8Rj axially times 6Rj transversally for hot jets (D
models, see Tables 3.1 and 3.2) and 16Rj axially times 6Rj transversally for
cold jets (A and B in Tables 3.1 and 3.2). The jet is a steady flow in the
z direction, in the interval −Rj ≤ x ≤ Rj . The different size is due to hot
models having shorter unstable modes (in Figs. 3.3-3.18).

Tests were performed in order to assess the difference in the evolution
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Model k0 k1 k2 k3

A2.5 0.39 0.78 1.18 1.57
B2.5 0.39 0.78 1.18 1.57
D2.5 0.78 1.57 2.36 3.14
B05 0.39 0.78 1.18 1.57
D05 0.78 1.57 2.36 3.14
A10 0.39 0.78 1.18 1.57
B10 0.39 0.78 1.18 1.57
D10 0.78 1.57 2.36 3.14
B20 0.39 0.78 1.18 1.57
D20 0.78 1.57 2.36 3.14

Table 3.2: k0,1,2,3: excited longitudinal wavenumbers for each model (R−1
j ).

of linear and non-linear regimes using a general sinusoidal perturbation and
the specific wavelengths and structure of several eigenmodes; results showed
that structures and qualitative properties of the resulting flow were basically
the same. See Figs. 3.19, 3.20, 3.21 and 3.22 for direct comparison of both
simulations. This fact confirms that general perturbation excite eigenmodes
of the system.

The parameters used in the simulations are shown in Table 3.1. We sweep
a wide range in Lorentz factors (from 2.5 to 20) and internal energies (from
0.08c2 to 60c2) in order to obtain a global view of the response of different
initial data sets to perturbations. These parameters were chosen in order to
study the stability regions found in Chapter 2. We have performed simula-
tions for models B052, B10, B20, D05, D10 and D20 from Chapter 2, and
have added A2.5 (same thermodynamical properties as A05), A10, B2.5 and
D2.5. Models A2.5, B2.5, and B05 correspond to region of class I jets,
which include cold and slow flows. Models D10 and D20 correspond to class
II (including hot and fast flows), D2.5 and D05 to class III (including hot and
slow flows), and A10, B10 and B20 belong to class IV (including cold-warm
and fast flows).

Perturbations are applied adding the following sinusoidal form to transver-

2Boldface will be used for new simulations in order to differentiate them from those in
Chapter 2 with the same name.
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Figure 3.19: Snapshot in the mixing phase of logarithmic maps of pressure, jet
mass fraction and specific internal energy and non-logarithmic Lorentz factor
for model C05 (see Chapter 2) with four symmetric eigenmodes excited.

Figure 3.20: Same as Fig. 3.19 but for the case four sinusoidal perturbations
with the same wavelengths as eigenmodes excited there.

sal velocity, vx(x, z):

vx =
Vx1

N

(
N−1∑

n=0

sin((n + 1) kn z + ϕn) sin2((n + 1)π x)
x

|x|

)
+

Vx1

M

(
M−1∑

m=0

sin((m + 1) km z + ϕm) sin2((m + 1)π x)

)
, (3.5)
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Figure 3.21: Evolution of the relative amplitudes of perturbations. Dotted line:
pressure perturbation. Dashed line: longitudinal velocity perturbation in the
jet reference frame. Dash-dotted line: perpendicular velocity perturbation in
the jet reference frame. Definitions are like those in Fig 2.9. Left panel is for
perturbed eigenmodes simulation and right panel is for that with sinusoidal
perturbations.

Figure 3.22: Left panel: evolution of total longitudinal momentum in the jet
versus time. Right panel: evolution of the mean width of the jet/ambient
mixing layer with time. Dotted line: eigenmodes. Dashed line: sinusoidal
perturbation.

where Vx1(∼ 10−4) is the amplitude given to the perturbation, km,n are the
wave numbers of the grid box (so that nkn and mkm stand for the harmonics
of the symmetric (pinching) and antisymmetric (helical) modes, respectively),
and ϕn and ϕm are random phases given to each mode. In our simulations,
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Model wi,k0 wi,k1 wi,k2 wi,k3

Symm. Antis. Symm. Antis. Symm. Antis. Symm. Antis.

A2.5 0.036 0.032 0.038 0.037 0.034 0.036 0.031 0.034
B2.5 0.042 0.056 0.070 0.052 0.066 0.084 0.073 0.080
D2.5 0.046 0.160 0.131 0.182 0.210 0.194 0.142 0.256
B05 0.037 0.035 0.037 0.044 0.036 0.038 0.034 0.035
D05 0.068 0.063 0.085 0.063 0.100 0.068 0.068 0.110
A10 0.009 0.009 0.006 0.006 0.005 0.006 0.006 0.006
B10 0.022 0.018 0.019 0.021 0.018 0.017 0.013 0.013
D10 0.034 0.038 0.041 0.037 0.044 0.034 0.051 0.035
B20 0.011 0.010 0.009 0.010 0.007 0.007 0.009 0.010
D20 0.018 0.018 0.020 0.017 0.022 0.017 0.027 0.028

Table 3.3: Dominant modes in the linear phase of the numerical simulations.
wi,kj : maximum growth rate for the j-th wavenumber exited in the simulation
(see Table 3.1). Left columns: symmetric mode; right columns: antisymmetric
one. Growth rate values are in c/Rj units.

four symmetric (M = 4) plus four antisymmetric modes (N = 4) were excited,
i.e., the fundamental mode of the box and the first three harmonics.

3.3 Results

3.3.1 Linear phase

Tables 3.3, 3.4, 3.5 and 3.6 summarize the properties of linear regime in our
simulations. Table 3.4 gives the values of the growth rates corresponding to
the dominant wavelength as deduced from Fourier analysis of the transversal
profiles of the rest mass density distribution in the jet. We use Table 3.3
along with that Fourier analysis of simulations in order to identify dominant
wavelengths and modes. Note however that Fourier analysis can only give us
information about wavelengths, but can not distinguish between symmetric
and antisymmetric modes. The growths of pressure, axial and transversal
velocity perturbations along the simulations are shown in Figs. 3.23-3.27.

• A2.5: modes with longer wavelengths are faster growing, and their
Fourier amplitudes are consistently larger than those for modes with
shorter wavelengths in the simulation. Growth rate found in the simu-
lation is close to that found using linear stability analysis.



3.3. RESULTS 117

Model Dominant wi

A2.5 k0 0.030
B2.5 k1,k2 0.070
D2.5 k2,k1 0.200
B05 k0,k1 0.035
D05 k1,k2,k1 0.080
A10 k0* 0.004 (0.005)
B10 k0 0.020
D10 k1,k2 0.040
B20 k0* 0.006 (0.008)
D20 k1,k0 0.016

Table 3.4: The dominant mode refers to the mode with the largest amplitude
in rest mass density as derived from Fourier analysis of the box; they are
written from larger to smaller amplitude when more than one is present. wi:
fitted pressure perturbation growth rate for the linear regime in the simulation.
Growth rate values are in c/Rj units. *: Models where non regular growth
affects the evolution (see text).

• B2.5: first (k1) and second (k2) harmonics of the box have larger ampli-
tudes in the Fourier analysis, and therefore, dominate the linear regime.
Linear stability analysis gives k1, k2 and k3 as the fastest growing modes,
with same growth rate as found in the simulation. However, k3 modes
have smaller amplitudes.

• D2.5: found growth rate for the simulation is close to that of k1 and k2

modes, which is confirmed by Fourier analysis. Antisymmetric k3 mode
might grow with slower rates than theory predicts due to numerical
viscosity affecting shorter modes more than longer ones.

• B05: Fourier analysis shows competition between fundamental and first
harmonics of the box (k0 and k1, respectively). This, as well as the
mean growth rate, is confirmed by the linear stability analysis. Second
harmonic of the box (k2) is damped.

• D05: from Fourier analysis we see that k1 and k2 modes dominate evo-
lution in the linear regime. The growth rate is close to that of the sym-
metric k1 mode, despite the fact that symmetric k2 and antisymmetric
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Figure 3.23: Evolution of the relative amplitudes of perturbations (models
A2.5 and B2.5). Dotted line: pressure perturbation ((pmax−p0)/p0). Dashed
line: longitudinal velocity perturbation in the jet reference frame (0.5 (v′z,max−
v′z,min)). Dash-dotted line: perpendicular velocity perturbation in the jet
reference frame (0.5 (v′x,max−v′x,min)). The search for maximum (pmax, v′x,max,
v′z,max) and minimum (v′x,min, v′z,min) values have been restricted to those
numerical zones with jet mass fraction larger than 0.5.

Figure 3.24: Same as Fig. 3.23 for models D2.5 and B05.

k3 present faster growth rates, so they must be damped.

• A10: Fourier analysis shows that longer modes dominate, in agreement
with linear stability analysis. However, growth rate is not coincident,
being two times smaller in the numerical simulation than predicted. We
also observe in Fourier analysis that resonant modes, excited as harmon-
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Figure 3.25: Same as Fig. 3.23 for models D05 and A10.

Figure 3.26: Same as Fig. 3.23 for models B10 and D10.

ics of perturbed wavelengths, become important by the end of the linear
regime.

• B10: in this case, the fundamental mode (k0) dominates, as predicted
by linear stability analysis.

• D10: as in models D2.5 and D05, k1 and k2 have larger amplitudes
in Fourier analysis, but the smaller wavelength modes (k3) are damped
with respect to the predictions of linear stability analysis.

• B20: longer modes dominate linear evolution, in agreement with linear
analysis but growth rate in the numerical simulation is 1.5 times smaller
than predicted. After some time, resonant modes, as those in model
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Figure 3.27: Same as Fig. 3.23 for models B20 and D20.

A10, become dominant and lead to a smooth transition to the non-
linear regime.

• D20: long modes present larger amplitudes with predicted growth rates
up to the moment when resonant modes reach larger amplitudes, the
same effect found in models A10 and B20.

It is observed in several simulations (e.g., B2.5, B05, D2.5, D05, D10)
that modes with similar or even slightly larger growth rates to those dominat-
ing in simulations present lower amplitudes in the linear regime. It happens
usually for shorter modes (tipically k2, k3), so it may be caused by numerical
viscosity, for less cells are involved in one wavelength. However, the way in
which we perturb the jet may also favor the dominating growth of certain
modes starting with a larger amplitude. We add a general sinusoidal pertur-
bation, so the input amplitude of the perturbation at a given wavelength is
shared in a random way among all the modes present at that wavelength. This
makes some modes start their growths with smaller amplitudes, as we could
see in the Fourier analysis of different models. Initial low amplitudes are more
probable for short wavelength modes, as more eigenmodes are present at a
given wavenumber in this range (see Figs. 3.3-3.18). From an initial lower am-
plitude, and taking into account that they have similar growth rates to other
modes, they grow with smaller amplitudes for the rest of the linear phase.

Models A10 and B20, marked with an asterisk in Table 3.4, have fitted
growth rates in the first part of the linear regime below the predicted values.
Note that these models have the smaller growth rates. After this initial phase,
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Model wi,max wi,p,v⊥ wi,v‖
B05 0.052 - -
D05 0.11 - -
A10 0.013 0.017 0.009
B10 0.035 - -
D10 0.057 - -
B20 0.026 0.036 0.036
D20 0.035 0.070 0.047

Table 3.5: Growth of resonant modes. Models with maximum growth rate (ac-
cording to the linear analysis) for all resonant modes (i.e., at any wavelength)
above the growth rates of the perturbed modes are listed. wi,max: maximum
growth rate for all resonant modes from linear analysis; wi,p,v⊥ : fitted growth
rates of pressure and perpendicular velocity perturbations for the fast growth
linear regime in the simulation, only for those simulations where it occurs;
wi,‖: same as wi,p,v⊥ for axial velocity. All values are in c/Rj units.

short harmonics start dominating the linear growth.
We have observed the appearance of fast growing, very short modes in mod-

els A10, B20 and D20 which are clearly associated to the resonant modes
presented above in the previous section and that could have been excited as
harmonics of the initially perturbed wavelengths. The same kind of resonant
mode might have developed in model C20 of Chapter 2 and caused the irregular
linear growth found with respect to the rest of models. These modes generate
a rich internal structure in the jet due to their large perpendicular wavenum-
ber (characteristic of high order modes). A direct comparison between the
structure generated by these resonant modes in the numerical simulations and
that coming from linear stability analysis can be seen in Fig. 3.28. In this fig-
ure, we display one snapshot from model D20 and the theoretical counterpart
using one of those modes. According to the linear stability analysis, resonant
modes dominate over long wavelength modes in high Lorentz factor jets and,
among them, in colder jets. This could be the reason why they only appear
in models A10, B20 and D20. Table 3.5 collects the models with maximum
growth rate (according to the linear analysis) for all resonant modes (i.e., at
any wavelength) above the growth rates of the perturbed modes. Maximum
growth rates for resonant modes in those models where they have been found,
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Figure 3.28: Upper panels: pressure and perpendicular velocity perturbation
at late stages of linear phase (model D20). Lower panels: Generic perturba-
tion distribution extracted from one resonant mode from linear stability anal-
ysis (pressure perturbation and perpendicular velocity perturbation). Oblique
waves in upper panels are the result of longer wavelength modes, whereas in
bottom panel, only the resonant mode has been plotted, so no oblique waves
appear. See also 3.2.

along with the fitted growth rates in the simulation, are listed. Typically, the
growth rates from the numerical simulations are about 1.4− 2.0 times larger.
This difference remains unexplained, but it could be caused by second order
effects, like interaction between modes.

Summarizing, two kinds of linear growth are found in these simulations,
one dominated by longer modes, typical of slower jets, and another one where
resonant modes appear (Fig. 3.29). This difference is important, for the tran-
sition to the non-linear evolution depends critically on the dominant modes
at the end of the linear regime.
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Figure 3.29: Schlieren plots showing waves in the linear regime in models B05
(left) and B20 (right). Long wavelength structures in B05 are apparent, con-
trary to small structures in B20. These plots represent a negative exponential
of the density gradient times an arbitrary factor chosen for the sake of clarity
(exp(−k|∇ρ|), with k = 30). Thus 1.0 means no density gradient and the
lowest value stands for maximum density gradient.

Table 3.6 shows the times at which linear phase ends. We see that colder
jets have longer linear phases than hot ones, due to smaller typical growth
rates in the former. tlin times are larger than those in Chapter 2, as growth
rates are reduced by the presence of the shear layer. Model A10 presents
the longest linear phase. In general, we observe that conclusions derived in
Chapter 2 regarding different phases of evolution are fulfilled here.

3.3.2 Saturation and transition to non-linear phase

Saturation of perturbations is reached when perpendicular velocity cannot
grow further in the jet reference frame due to the speed of light limit (see
Chapter 2). Transition to non-linear regime depends mainly on the way linear
regime has developed. Saturation times, tsat, for the different models are listed
in Table 3.6. In this phase structures generated by dominating modes become
visible in the deformations of the jet. In Fig. 3.30 we show snapshots of three
models (B2.5, D05 and D10) at saturation time where mode competition
derived from Fourier analysis is clearly observed. Asymmetric structures ap-
pear as a result of several symmetric and antisymmetric modes having large
amplitudes.

Saturation is followed in some models by a peak in pressure due to the de-
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Model tlin tmex tmix tsat tpeak ∆peak

A25 225 250 300 340 340 100
B25 110 125 140 150 165 20
D25 40 45 50 50 50 2
B05 220 275 300 280 330 70
D05 105 125 110 130 140 2
A10 725 − − − − 3
B10 400 520 500 500 540 100
D10 205 260 220 290 300 4
B20 475 − 520 550 590 4
D20 275 510 300 275 320 2

Table 3.6: Times for the different phases in the evolution of the perturbed jet
models. tlin: end of linear phase (the amplitudes of the different quantities
are not constant any longer). tsat: end of saturation phase (the amplitude
of the transverse speed perturbation reaches its maximum). tmix: the tracer
starts to spread. tpeak: the peak in the amplitude of the pressure perturbation
is reached. tmex: the jet has transferred to the ambient a 1% of its initial
momentum. ∆peak: relative value of pressure oscillation amplitude at the
peak (see Figs. 3.23-3.27).

veloping of a shock in the shear layer, and jet disruption. The relative values
of pressure oscillation amplitude at the peak, ∆peak, and the corresponding
times, tpeak, appear listed in Table 3.6. The values of ∆peak are connected
with the non-linear evolution of the flow. Those cases in which ∆peak > 70
develop a shock in the jet/ambient interface followed by the sudden disruption
of the jet. From Table 3.6, we see that peak values in the present simulations
are in general qualitatively the same as the corresponding ones in Chapter 2.
Colder and slower jets have larger peaks and hence suffer stronger shocks after
saturation. The main difference between the values given here and those pre-
sented in Chapter 2 appears for models B20 and D20, where shock strength
is much smaller due to the appearance of resonant, stabilizing modes, as we
shall discuss next.

The parallel and perpendicular wavelengths of the shear-layer resonant
modes, λz and λx, respectively, are both small (λz ≤ Rj) with λx ¿ λz.
Therefore their wavevectors are almost perpendicular to the jet axis and thus
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Figure 3.30: Snapshots of logarithm of pressure (left) and Lorentz factor
(right) for B25 (upper panels), D05 (center panels) and D10 (bottom panels)
at tsat, where irregular structures caused by mode competition are observed.
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Figure 3.31: Schlieren plots showing waves in the saturation phase and transi-
tion to non-linear regime for models B05 (left panels) and B20 (right panels).

the waves propagate from the shear layer towards the jet axis. On the other
hand the resonant modes have large growth rates, exceeding the growth rate of
other modes, so they start to dominate in numerical simulations. Subsequently
the resonant modes saturate as soon as the flow velocity oscillation amplitude
approaches the speed of light. As the maximum amplitude is reached the
sound waves steepen while travelling towards the jet axis and form shock
fronts on the leading edges of wave profiles. The dissipation of oscillation
energy in shocks leads to a sudden drop of the resonant wave amplitude that
tends to reduce the value of ∆peak. In Fig. 3.28 we show a comparison between
simulation results and the linear mode structure.

In Fig. 3.31, we show schlieren plots, where the different morphology and
structures observed in a jet where resonant modes are not present (B05), and
one where these modes dominate the saturation phase (B20), is clear.

Finally, as it was found in Chapter 2, the generation of the shock wave at
the jet/ambient interface is imprinted in the evolution of the maxima of the
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Figure 3.32: Transversal Mach number in simulations (see text for definition).
Solid line γ = 2.5; dotted line γ = 5.0; dashed line γ = 10.0; dash-dot line
γ = 20.0. Thinner line is for models A and thickest is for models D, with B
in between. Left panel shows models A2.5, B2.5, B05 and B10, and right
panel shows models A10, B20, D2.5, D05, D10 and D20.

transversal Mach number of the jet with respect to the unperturbed ambient
medium. This quantity is defined as Mj,⊥ = γj,⊥vj,⊥/(γcsacsa), being γj,⊥
and γcsa the Lorentz factors associated to vj,⊥ and csa, respectively. A value
significatively larger than 1 around tpeak points towards a supersonic expansion
of the jet at the end of the saturation phase. This magnitude is shown in Fig.
3.32. We observe a clear inverse tendency of the peak value of this magnitude
from colder to hotter and from slower to faster jets, with the exception of A10
with respect to B10 and D10, due to the presence of the resonant stabilizing
modes preventing the formation of a shock. It is important to note that models
with ∆peak > 10 (A2.5, B2.5, B05 and B10) coincide with those developing
larger transversal Mach numbers.

3.3.3 Non-linear regime

In Chapter 2, the non-linear evolution of the instability in the different
models has been characterized through the processes of jet/ambient mixing
and momentum transfer. The models were then classified into four classes
(I to IV) according to the particular nature of these processes in each of the
models. In Fig. 3.33 we show the mixing layer width as a function of time
for all the models. Wider mixing layers imply more mixing as material from
the jet is moving out at the same time that the jet is entrained by ambient
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material. We observe that those models with larger values of ∆peak (lower
Lorentz factor and colder jets) develop, rapidly after saturation, wider layers
(> 5Rj) due to the turbulent mixing induced by the shock, while those models
where resonant modes appear do not show strong mixing with the ambient.
Models B10 and D10 undergo a mixing process, however slower than the
former (dashed lines in Fig. 3.33).

Figure 3.33: Evolution of the mean width of the jet/ambient medium layer
(for tracer values between 0.05 and 0.95) with time for all simulations. Lines
represent the same models as in Fig. 3.32. A value of 5Rj for the width of
the mixing layer (horizontal dashed line) serves to classify the evolution of the
different models.

Fig. 3.34 shows the fraction of initial axial momentum which is kept by the
jet versus time. Axial momentum is lost first through sound waves generated
by linear perturbations, which result from conversion of kinetic energy in the
flow into thermal energy, and second, but more important, through shocks
themselves and by subsequent mixing, which implies sharing of momentum
with the ambient medium. Correlation with Fig. 3.33 is remarkable. Models
developing wide mixing layers coincide with those loosing more than 50% of
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Figure 3.34: Evolution of the normalized total longitudinal momentum in the
jet as a function of time. Lines represent the same models as in Fig. 3.32.
The long-dashed horizontal line serves us to identify those models transferring
more than 50 % of the initial jet momentum to the ambient.

their initial axial momentum just after saturation, models B10 and D10 share
their momentum with the ambient medium continuously in the non-linear
regime, and models where resonant modes dominate saturation keep almost
all their initial momentum by the end of the simulations. Results derived from
Fig. 3.34 are completed by Fig. 3.35. In the latter we plot the total transversal
momentum in the jets normalized to the corresponding initial longitudinal
momentum. Transversal momentum in the jet (initially zero) is generated
through turbulent motions and continuous conversion of kinetic into internal
energy. The value of the normalized transversal momentum at a given time is
an indication about how far from equilibrium the jet is. We observe that colder
and lower Lorentz factor models present strong peaks at tsat, coincident with
the triggering of the shock and the sudden transfer of longitudinal momentum
seen in the previous plot; those models where resonant modes appear, barely
generate any transversal momentum, and models B10 and D10 do not present
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strong peaks at saturation but show sustained transversal momentum through
the non-linear regime.

Figure 3.35: Evolution of the total transversal momentum in the jet as a
function of time for all the simulations. Lines represent the same models than
in Fig. 3.32.

In Fig. 3.36, we show mean pressure profiles for all models at the end of
the simulations. All jets are close to pressure equilibrium with the ambient
medium, excepting B10, D2.5, D05 and D10 which are slightly underpres-
sured. At this time, shocks have moved out from the plotted region in cases
where they occur.

Panels showing several physical magnitudes for all models at the end of
simulations are presented in Figs. 3.37-3.41. In these former panels we can see
that colder and slower models (A2.5, B2.5 and B05) show turbulent mixing
in a wide region, and that they are barely relativistic by the end of the simula-
tions. Models D2.5 and D05, have mixed completely but keep larger Lorentz
factors. Moreover, these models seem to have stopped the process of widening
of the mixing layer as it is deduced from the flattening of the mixing layer
width as a function of time in Fig. 3.33. Models B10 and D10 are also un-
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Figure 3.36: Longitudinal averaged profiles of gas pressure for all models.
Different types of lines are used for models with different internal energies:
Continuous line is used for Lorentz factor 2.5; dotted line for Lorenz factor
5; dashed line for Lorentz factor 10; dashed-dotted line for Lorentz factor 20.
Line thickness increases with internal energy (from model A, thinnest line, to
D thickest one).
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dergoing turbulent mixing and show smaller Lorentz factors. From Figs. 3.33
and 3.34 it is deduced that B10 and D10 are still mixing and transferring mo-
mentum by the end of simulations. These models will eventually loose a large
amount of their initial longitudinal momentum becoming colder and denser
due to mass entrainment from the ambient medium. Finally, models A10,
B20 and D20 present a fast core ∼ 1 Rj wide with rich internal structure
as a consequence of the resonant modes (see subsection on the linear regime)
which is surrounded by a hot and slow shear layer which extends up to ∼ 2Rj

in models A10 and B20 or ∼ 4Rj in model D20.
In Fig. 3.42 we show schlieren plots which remark all the aspects dis-

cussed here, in terms of the structures generated in models with very different
non-linear behaviours (B05 and B20). Turbulent mixing is observed in B05,
whereas small scale, very rich structure is seen outside the shear layer sur-
rounding the unmixed core in B20, with both transitions (core/shear layer
and shear layer/ambient) very well resolved in the plots.
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Figure 3.37: Snapshot at the last frame of the simulation of logarithmic maps
of pressure, jet mass fraction and specific internal energy and non-logarithmic
Lorentz factor for model A2.5 (upper) and B2.5 (lower).
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Figure 3.38: Snapshot at the last frame of the simulation of logarithmic maps
of pressure, jet mass fraction and specific internal energy and non-logarithmic
Lorentz factor for models D2.5 (upper) and B05 (lower).
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Figure 3.39: Snapshot at the last frame of the simulation of logarithmic maps
of pressure, jet mass fraction and specific internal energy and non-logarithmic
Lorentz factor for models D05 (upper) and A10 (lower).
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Figure 3.40: Snapshot at the last frame of the simulation of logarithmic maps
of pressure, jet mass fraction and specific internal energy and non-logarithmic
Lorentz factor for models B10 (upper) and D10 (lower).
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Figure 3.41: Snapshot at the last frame of the simulation of logarithmic maps
of pressure, jet mass fraction and specific internal energy and non-logarithmic
Lorentz factor for models B20 (upper) and D20 (lower).
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Figure 3.42: Schlieren plots showing waves in the non-linear regime for models
B05 (left panels) and B20 (right panels).
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3.4 Cylindrical jet simulations

Solving the differential equation for linear perturbations in cylindrical co-
ordinates as shown in Appendix D we find solutions plotted in Figs. 3.43 and
3.44. We chose models B05, D05, B20 and D20 as representative of differ-
ent non linear evolutions in order to perform linear analysis and numerical
simulations and check similarities and differences with the slab jet case, thus
generalizing our results. First simulations in cylindrical coordinates were per-
formed perturbing only one mode. The numerical set up consisted on a grid
with transversal size of 3Rj , with resolution of 256 cells/Rj , and an extended
region up to 100Rj with a 2.5% of relative growth, 32 cells/Rj were used in
the axial direction, with a size of 15.71Rj for model B05, 10.47Rj for B20,
2.5Rj for D05 and 3Rj for D20. Periodical boundary conditions were used
longitudinally, reflection in the axis and outflow far from the jet.

In Figs. 3.45, 3.46 and 3.47, we see the same typical behaviours found in
Chapter 2. Models B05 and D05 disrupt after saturation, D20 undergoes a
slightly slower non-linear mixing and B20 seems to be the most stable, however
mixing slowly with the ambient.

Figure 3.43: Solutions for the temporal stability problem of the pinching mode
in cylindrical coordinates. Left panel: model B05. Right panel: model D05.
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Figure 3.44: Same as Fig. 3.43. Left panel: model B20. Right panel: model
D20.

Figure 3.45: Left panel shows transversal relativistic Mach number as defined
in Chapter 2 and right panel shows evolution of axial momentum in the jet
and right panel stands for transversal momentum for one mode simulations.
Dotted thin line stands for model B05, dotted thick for B20, dash-dot thin for
D05 and dash-dot thick for D20.
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Figure 3.46: Snapshot at the last frame of the simulation of logarithmic maps
of pressure, jet mass fraction and specific internal energy and non-logarithmic
Lorentz factor for one mode cylindrical models B05 (upper) and D05 (lower).
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Figure 3.47: Snapshot at the last frame of the simulation of logarithmic maps
of pressure, jet mass fraction and specific internal energy and non-logarithmic
Lorentz factor for one mode cylindrical models B20 (upper) and D20 (lower).
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Figure 3.48: Pressure and axial and radial velocity perturbation evolution for
several modes simulations. Left panel: model B05. Right panel: model D05.

Figure 3.49: Same as Fig. 3.48. Left panel: model B20. Right panel: model
D20.

These simulations were also performed applying several symmetric (pinch-
ing) sinusoidal perturbations. In this case, resolution is 128 cells/Rj axially
and 256 cells/Rj radially, shear layer width is the same as in planar coordi-
nates. Reflection boundary conditions were applied in the jet axis. In Figs.
3.48 and 3.49 we show the evolution of perturbation with time for all four
models. Fitted growth rates for models B05 and D05, 0.04 c/Rj and 0.08 c/Rj

respectively, fall well within the values plotted in Fig. 3.43. In models B20
and D20, resonant modes appear as in their slab counterparts, giving rise to
larger numerical growth rates than those found in Fig. 3.44 (0.04 and 0.05
respectively). The same non linear evolutionary patterns as those observed for
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Figure 3.50: Left panel shows transversal relativistic Mach number as defined
in Chapter 2 and right panel is for relative axial momentum (several mode
simulations). Dotted thin line stands for model B05, dotted thick for B20,
dash-dot thin for D05 and dash-dot thick for D20.

sheared slab jets counterparts are found: models B05 and D05 are disrupted af-
ter saturation, whereas models B20 and D20 are stabilized by resonant modes.
The latter fact represents also a difference with one mode simulations, where
resonant modes did not appear. Most remarkable features in the cylindrical
simulations are the very low axial momentum kept by the jet in models B05
and D05, and their stronger mixing and mass loading (see Fig. 3.50). This
may be due to geometric effects, as the surface of the interface grows radially in
cylindrical coordinates, resulting in a more efficient transference of momentum
to the ambient medium. In any case, results show the generalized character
of conclusions presented here. In Figs. 3.51-3.52 we show panels at the last
frame of the simulations, for jets mass fraction and Lorentz factor. These
results show the generalized character of those presented in this Chapter and
discussed in next Section.
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Figure 3.51: Snapshot at the last frame of the simulation of logarithmic maps
of pressure, jet mass fraction and specific internal energy and non-logarithmic
Lorentz factor for cylindrical models B05 (upper) and D05 (lower).
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Figure 3.52: Snapshot at the last frame of the simulation of logarithmic maps
of pressure, jet mass fraction and specific internal energy and non-logarithmic
Lorentz factor for cylindrical models B20 (upper) and D20 (lower).
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3.5 Discussion

3.5.1 Non-linear stability

Simulations presented in Chapter 2, performed for the most unstable first
reflection mode of the corresponding models, confirmed the general trends re-
sulting from the linear stability analysis: the faster (larger Lorentz factor)
and colder jets have smaller growth rates in the linear regime. In Chapter 2,
the non-linear evolution of the instability in the different models was charac-
terized through the processes of jet/ambient mixing and momentum transfer.
The models were then classified into four classes (I to IV) according to the
particular nature of these processes in each of the models. Class I models
(corresponding to cold and slow jets) were deeply mixed and mass loaded by
the end of the simulation. Models in Class II (hot and fast jets) were slowly
mixed in the non-linear regime, loosing progressively their longitudinal mo-
mentum. Models in Class III (hot and slow jets) have properties between
Classes I and II. Finally, Class IV (containing cold/warm and fast models) ap-
peared as the most stable in the non-linear regime. Shear layers formed in all
the models as a result of the non-linear evolution. Models in Classes I/II have
broad shear layers, appear totally mixed, cooled and slowed down. Oppositely,
models in Classes III/IV have an inner core surrounded by thinner layers and
keep a larger amount of their initial longitudinal momentum. We performed a
number of additional simulations keeping fixed the properties of the ambient
medium and changing the rest-mass density of the jet and the Lorentz factor.
Results confirmed that these models behave like previous simulations, and are
naturally placed in the classification already defined.

The stability classes considered in Chapter 2 were defined according to
the jet response to single modes. In this Chapter we revisit this classification
scheme on the light of the present results based on more general perturbations.
Following results in this Chapter (see Figs. 3.33, 3.34 and 3.35), we have
classified jets depending on their non-linear behaviour in three different groups

• Unstable 1 (UST1) models: Jets which are disrupted after a strong shock
is formed after the linear regime, enhancing turbulent mixing with am-
bient medium. It includes models A2.5, B2.5, D2.5, B05, and D05,
i.e., lower Lorentz factor jets. The mixing layer width becomes larger
than 5Rj (Fig. 3.33) and they share more than 50% of their initial
momentum with the ambient medium (Fig. 3.34).
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• Unstable 2 (UST2) models: Jets which are disrupted in the non-linear
phase by a continuous process of momentum transfer to the external
medium, like B10 and D10. This is observed in Fig. 3.35 as a non-
decreasing transversal momentum in the non-linear regime. These mod-
els end up, eventually, sharing a large fraction of initial momentum and
developing a wide mixing layer.

• Stable (ST): Jets which develop resonant modes, and remain collimated
for long time, A10, B20, and D20. These models have a thin mixing
layer and share a very small fraction of their axial momentum with the
ambient medium. They expand, but remain collimated.

In the course of the evolution, the jets develop a rich transversal structure
in all the physical variables. This structure is different depending on the
non-linear evolution of the jets. Figure 3.53 displays the transversal profiles of
relevant physical quantities averaged along the jet at the end of the simulations
for models A2.5, representative of models in UST1, D10, of UST2, and B20,
of ST.

Model A2.5 shows a totally mixed, mass-loaded flow with averaged max-
imum speed 0.4c, i.e., barely relativistic, as these jets are efficiently slowed
down by mass entrainment after the disruption. The mass loading is inferred
from the low values in the tracer profile (f < 0.3), which imply large fraction
of ambient medium material inside the jet. The efficient conversion of ki-
netic energy into internal energy enhanced by the shock triggered in the early
post-linear phase causes the jet to increase its specific internal energy.

UST2 jets undergo a slower process of mixing so they still keep a larger
fraction of axial velocity and Lorentz factor by the end of the simulation, even
though they appear to be totally mixed (f < 0.7 everywhere). However, as
we have mentioned in previous section, the mixing and slowing process is still
going on in B10 and D10 so it is clear that if the simulation had continued,
the longitudinal velocity and Lorentz factor values would be smaller than those
found. We also observe that the more mass-loaded parts of the jet (i.e., the
region with −10 Rj < x < 0) are consistently colder.

Finally, the jet in model B20 remains very thin. The velocity profile
of model has widened by 2 − 3Rj by the end of the simulation, coinciding
with the generation of a hot shear layer. This layer is seen in the Figure as
an overheated and underdense (ρ < 0.1) region shielding the unmixed core
(f = 1), which keeps almost all its initial axial momentum and Lorentz factor.
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Figure 3.53: Averaged transversal structure in the final state of the jets corre-
sponding to models A2.5 (upper panels), D10 (middle) and B20 (bottom).
Left panels (thermodynamical quantities): solid line, tracer; dotted line, rest
mass density; dashed line, specific internal energy. Right panels (dynamical
quantities): solid line, longitudinal velocity; dotted line, lorentz factor nor-
malized to the initial value in the jet; dashed line, longitudinal momentum
normalized to the initial value in the jet. Specific internal energy for model
D10 has been divided by 100 to fit in the scale.
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The core has a rich internal structure (see the pressure panels in Fig. 3.41)
that also manifests in the spiky structure of the shows longitudinal momentum
profile.

A comparison of the present non-linear evolution classification scheme and
that of Chapter 2 (classes I-IV) allows to conclude that, in general, models
in classes I and III fall into UST1, whereas models in Class II corresponds to
UST2 and those in Class IV to ST. The reason why models D2.5 and D05
(belonging formerly to Class III) move to UST1 may be the inclusion of longer
wavelength perturbations, along with antisymmetric modes, which are more
disruptive than the symmetric first reflection mode used in the previous work.
This can be seen by comparing structures and evolution of model D05 here
and in Chapter 2, in particular the evolution of the mixing and the momentum
transfer.

Regarding UST2 here compared to former class II, B10 and D10 undergo
a very similar slow process of momentum transfer to the external medium as
that observed for D10 and D20 in Chapter 2, although their temperatures are
very different and the shock in B10 is much stronger than that in D10 (see
Table 2.3). The reason for this process of slow momentum exchange may be
the same as that proposed in Chapter 2 for D10 and D20, i.e., a continuous
conversion of kinetic into internal energy due to the large initial Lorentz factor,
that acts as a source of transversal momentum favoring the process of mixing
and mass-loading (see Fig. 3.35), and contrary to the rest of models. B10
changes from class I to UST2, meaning that disruption occurs by slow mixing
in the new simulation, compared to sudden disruption in previous one.

Models in Class IV were characterized by a rich internal structure jet
preserving a large fraction of initial momentum and Lorentz factor. ST models
share those features, but now we are able to clearly associate them to the
growth of resonant modes, which could be the reason of the breaking of the
linear slope in model C20 (see Fig. 2.9 in Chapter 2). Steepening of short
wavelength modes at the shear layer generates small shocks which favor local
mixing and an efficient conversion of kinetic into thermal energy. As a result
of this process, the shear layer heats up and the jet expands, forming a hot
and underdense layer around the jet core (see Fig 3.53). It is remarkable that
A10 is largely asymmetric by the end of the simulation (see bottom panels
Fig. 3.39). This is a consequence of the resonant modes only growing on one
side of the jet during the linear regime, and it is understood from the basis
of asymmetry resulting from mixture of symmetric and antisymmetric modes.
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Figure 3.54: Relativistic Mach number (Mj) versus Lorentz factor (γ) of the
simulated models here and in Chapter 2. Symbols represent different non-
linear behaviors: crosses stand for UST1 disrupted jets (low relativistic Mach
number and low Lorentz factor); triangles for UST2 jets (moderately fast and
supersonic), and squares for ST jets (highly supersonic and fast jets). Models
where two different points have been used are those with a different evolution
in simulations presented here and those from Chapter 2 (see text).

This effect, though much less evident, is also observed in model B20 (see Fig
3.53). Finally, model D20 has moved from class II to ST, clearly due to the
appearance of resonant modes. This fact allows us to conclude that the fate
of ST models would be exactly the same as those in UST2 if it was not for the
growth of resonant modes. Hence, their importance in the long term stability
of these jets.

We have classified jets depending on their non-linear behaviour in three
different groups, which are clearly separated in a relativistic internal jet Mach
number-jet Lorentz factor plot (Fig. 3.54). In this plot, we also include models
from Chapter 2. We do this in order to show the general character of our
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results, and remark that this division of the stability properties of jets is more
accurate than that used in Chapter 2 (with the jet-to-ambient enthalpy ratio
instead of the relativistic Mach number). A clear correlation between the
two plotted parameters and the non-linear stability properties of the jets is
observed. Models B10 and D20 show two different types of point in order to
remark the change of non-linear behaviour from Chapter 2. These are placed in
transition regions of the plot, either in Lorentz factor (B10) or in relativistic
Mach number (D20). This fact could explain differences in the non-linear
behaviour as caused by changes in the initial conditions, what is quite evident
in the case of D20 (for resonant modes appear due to the presence of the shear
layer). Consistently with previous discussion, we have given to models in Class
III the same symbols (crosses) as for UST1 jets, as we do not consider that they
have different non-linear behaviour in both simulations. Figure 3.54 can be
considered as the relativistic counterpart of the M − ν (Mach number-density
ratio) diagram presented in Bodo et al. (1994) (note that their density ratio
(ν = ρa/ρj) is inverted with respect to ours). In our case the Mach number is
relativistic, and the density ratio, which stands for the inertia of the flow, is
substituted by the Lorentz factor here, as relativistic momentum is ∝ γ2, so it
dominates the inertia of relativistic jets. Our conclusions are similar to theirs,
for denser (higher Lorentz factor) and highly supersonic jets (high relativistic
Mach number) are the most stable. However, in our case, we have found a
higher degree of stability due to the growth of resonant, stabilizing modes.

3.5.2 Astrophysical implications

One of the current open problems in extragalactic jet research is to un-
derstand the morphological dichotomy between FRI and FRII jets. Several
possible explanations have been proposed which mainly fall in one of these two
general possibilities: either FRI and FRII sources are intrinsically the same,
and morphology and jet evolution depend mainly on the ISM in which they
are embedded in the first kiloparsecs, or they depend on intrinsic differences
stemming on the jet formation process (black hole rotation, Blandford 1994;
accretion rate, Baum et al. 1995; black hole mass, Ghisellini and Celotti 2001;
the so called magnetic switch, Meier et al. 1998), or a combination of both
(e.g., Snellen and Best 2003). Of course, all these mechanisms could be at
action with different importance depending on the source.

Leaving aside the basis of the morphological dichotomy, current models
(Laing and Bridle 2002a,b and references therein) interpret FRI morphologies
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as the result of a smooth deceleration from relativistic (γ ≤ 3, Pearson 1996) to
non-relativistic, transonic speeds (∼ 0.1 c) on kpc scales. On the contrary, flux
asymmetries between jets and counter-jets in the most powerful radio galaxies
and quasars indicate that relativistic motion (γ ∼ 2 − 10) extends up to kpc
scales in these sources, although with smaller values of the overall bulk speeds
(γ ∼ 2− 4, Bridle et al. 1994). Current models for high energy emission from
powerful jets at kpc scales (e.g., Celotti et al. 2001) bears additional support
to the hypothesis of relativistic bulk speeds on these scales.

The results concerning the long term evolution of relativistic jets presented
in this chapter, and summarized in Fig. 3.54, confirm that slower and smaller
Mach number jets (UST1) are entrained by ambient material and slowed down
to v < 0.5 c after becoming overpressured (due to conversion of kinetic into
internal energy) and being disrupted by non-linear instabilities effects which
cause flaring and rapid expansion of the mixing flow. UST2 jets undergo a
smooth slowing down, and though by the end of the simulation jet velocity
is ∼ 0.9 c, this process is continuous and eventual loss of velocity to mildly
relativistic values is to be expected. Finally, ST jets keep their initial highly
relativistic velocities, and their steadiness by the end of simulations makes
them firm candidates to remain collimated through long distances. Hence our
results would point to high Lorentz factor, highly supersonic jets as forming
FRII Class, whereas FRI jets would be found in the opposite corner of the
diagram (slow, small Mach number jets). The validity of our results extends
to models with different jet-to-ambient density ratios and specific internal
energies as it was seen in Chapter 2 (models F-L).

Our conclusions point to an important contribution of intrinsic properties
of the source in the morphological dichotomy. Nevertheless, the importance
of the ambient medium cannot be ruled out on the basis of our simulations
since we consider an infinite jet in pressure equilibrium flowing in an already
open funnel and surrounded by an homogeneous ambient medium. Thus our
approach does not take into account the consequences of the interaction of the
jet with the ambient in order to penetrate it or the effects of a spatially varying
atmosphere. Simulations following the spatial approach (in which perturba-
tions grow with distance) for jets propagating in different ISM profiles and
using a more realistic microphysics (allowing for a local mixture of electron,
positron and proton Boltzmann gases) will be performed in order to clarify
these points (see Section 4.2 for first results in this direction).

As discussed in the introduction of this chapter, there are plenty of ar-
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guments indicating the existence of transversal structure in extragalactic jets
at all scales. In the simulations presented here, the initial states were de-
fined with a continuous transition layer of thickness ≈ 0.2Rj . As discussed in
the previous paragraphs, this shear layer has played an important role in the
long-term stability of the jet flow. Besides this, thicker shear layers have been
generated in the course of the non-linear evolution. Relatively thin (≈ 2Rj),
hot shear layers are found in present ST models (the physically meaningful
counterparts of the layers found in the three-dimensional, low resolution sim-
ulations of Aloy et al. 1999a, 2000) which could explain several observational
trends in powerful jets at both parsec and kiloparsec scales (see Aloy et al.
2000 and references therein). Conversely and according to our simulations,
these transition layers could be the responsible of the stability of fast, highly
supersonic jets, preventing the mass-loading and subsequent disruption. Fi-
nally, the type of shear layers developed by models UST1/2 could mimic the
transition layers invoked in models of FRIs (Laing and Bridle 2002a,b).

3.6 Conclusions

We have performed a number of simulations spanning a wide range of pa-
rameters such as Lorentz factor and specific internal energy, for a general setup
where a slab sheared jet is perturbed with a set of symmetric and antisymmet-
ric sinusoidal perturbations, in order to characterize the stability properties of
relativistic jets.

The most remarkable feature regarding the linear evolution of instabilities
is the finding of resonant modes in our simulations, which were later confirmed
on the basis of linear stability theory applied to sheared flows. This modes
are important for the long term stability properties of some jets (ST), for
they remain collimated and unmixed, keeping a large amount of initial axial
momentum. Jets in which these modes do not grow fast enough with respect
to longer modes, are disrupted, either after a shock, or by slow momentum
transfer and mixing.

We have classified jets depending on their non-linear behaviour in three
different classes which are clearly separated in a relativistic Mach number-
Lorentz factor plot (Fig. 3.54). UST1 models are disrupted after a shock
forms after saturation, and ambient gas penetrates deep into the jet stream,
decelerating and cooling down the initial flow. UST2 models are slowly decel-
erated by an efficient conversion of kinetic energy into internal energy which
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causes momentum transfer and mixing. Finally, ST models present small ex-
pansion, but remain collimated and isolated from the ambient by a hot shear
layer. ST models would fall into UST2 if resonant modes would not be present,
as it occurs for model D20 in Chapter 2.

Our simulations admit a clear interpretation in the context of the mor-
phological dichotomy of radio jets. Our results would point to high Lorentz
factor, highly supersonic jets as forming FRII Class, whereas FRI jets would
be related to slow, small Mach number jets. In the former, the generation of
a hot shear layer surrounding a stable core could be related to the transversal
structure observed in several powerful jets.
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Chapter 4

ASTROPHYSICAL
APPLICATIONS

4.1 Pc scale jets. Numerical simulations on 3C 273

4.1.1 Introduction

3C 273 is the brightest quasar known; it was the second to be discovered
by Hazard, MacKey and Shimmins (1963), and the first for which the emission
lines were identified with red-shifted hydrogen lines by Schmidt (1963). Due
to its closeness (its red-shift is z = 0.158), it has become a paradigmatic object
to be studied in all the spectral range in order to try to understand the AGN
phenomena.

Schmidt (1963) pointed out the presence of a jet-like structure in 3C 273, so
it has also become an excellent laboratory for AGN astrophysicists to study jet-
physics. This jet is observed on parsec scales using VLBI (Pearson et al. 1981,
Krichbaum et al. 2000, Abraham et al. 1996) and VSOP (Lobanov and Zensus
2001, Asada et al. 2002), and in kiloparsec scales up to a deprojected distance
of about 60 kpc (Stawarz 2004), depending on the cosmological parameters.

Main observational features tell us that is a highly collimated and beamed
one-sided relativistic jet, presenting superluminal motion 5− 8h−1 c (h being
the normalized Hubble constant), with a periodicity of ' 15 yrs (Abraham et
al. 1996), on the VLBI scales. Beaming angle is constrained between θ = 10◦

and 15◦ and Lorentz factor has been computed to be between γ = 5 and γ = 10
in order to explain those measured superluminal velocities. No counter-jet has
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been detected on dynamic ranges up to 16000:1. Observed helical structures
are explained by means of Kelvin-Helmholtz instabilities (Lobanov and Zensus
2001) or a helical magnetic field (Asada et al. 2002). Variability in emission
from submillimetre to radio wavelengths is explained by Türler et al. (2000)
in terms of a Marscher and Gear (1985) like shock model, using observations
taken along 20 years. Correlation between UV and radio light curves was found
by Courvoisier et al. (1990), where the former leads the latter by a few months,
suggesting that UV radiation could be a signature of the energy release from
accretion processes, which after manifests in the synchrotron radiation from
the jet. Also a large optical/infrared outburst was observed to be followed by
a superluminal component (Krichbaum et al. 1990).

Abraham et al. (1996) and Abraham and Romero (1999) argued that pre-
cession of the inner jet, due to precession of a binary black hole in the central
engine with a period of 16 yrs, may account for the periodicity in superlumi-
nal velocities. They assume constant speed injection, and derive bulk Lorentz
factor γ = 10.8, precession cone opening angle ' 4◦ and Doppler factor be-
tween 2.8 and 9.4. Qian et al. (2001a) also model the source ejection, taking
into account that from VLBI observations it is found a decrease in the appar-
ent speeds of superluminal components from 7.5c to 2.5c from 1963 to 1997
(Krichbaum et al. 2000), in contradiction with constant ejection suggested by
Abraham and Romero (1999), a short-term oscillation of the ejection Lorentz
factor with a ' 4 yrs period, and a quasi periodical rate of ejection of super-
luminal components with a period of ' 0.8 − 1.7 yrs. Qian et al. (2001a)
confirm the precession period and find a very similar precession cone half-
opening angle to that of Abraham and Romero (1999), by using the position
angles of components ejected during these years, which vary from 225◦ to 265◦.
Babadzhanyants and Belokon (1993) found variability in the optical with pe-
riods of 1 yr and 13.4 yrs, coincident with superluminal component ejection
and precession, respectively. Qian et al. (2001a) also suggest a periodicity of
50−70yrs for ejection Lorentz factor, which has decreased from γ ' 8 in 1963
to γ ' 3, and for which we would be now observing the minimum value. Also,
Krichbaum et al. (2001) found that apparent velocity increases outwards for
several superluminal components.

VSOP observations at 5 GHz (Lobanov et al. 2000) allowed for larger reso-
lution and resolving rich transversal structure of the parsec-scale jet in 3C 273,
which presented three different components. The central, dominating compo-
nent is interpreted as shocked plasma embedded in an underlying flow with
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Kelvin-Helmholtz instabilities revealed in the weaker components surrounding
the central one, and in the curvature of the jet. They observe that the central
components are not following the curved path, but drift closer to the northern
edge of the jet with increasing distance, and suggest that this may reflect the
ballistic trajectories reported for fast components by Abraham et al. (1996).
Qian et al. (2001b) point out stationary spectral reversals along the VLBI
jet, from 22 to 86 GHz, a phenomenon also observed in Cygnus A parsec-scale
jet associated to acceleration, suggesting that a pinch in an overpressured,
stratified jet (a fast spine surrounded by a slower component), could cause
this flattening of the spectrum in the widening region. They claim that emis-
sion at 22 and 86 GHz are produced in different regions, as Krichbaum et al.
(2001) noticed that maps at larger frequencies show that emission is more con-
centrated to the jet axis than at lower frequencies, result which is confirmed
when comparing optical and radio emission in the jet of M87 (Biretta 1996),
suggesting that higher energy electrons and/or stronger magnetic fields may
be closer to the axis.

On the large scale, a 10◦ misalignment with the VLBI jet is observed.
The jet is observed from 13” (' 35 kpc), where the first knot appears, to 23”
(' 60 kpc) from the core. The bridge between parsec and kiloparsec scales is
very faint, but there is little doubt about the connection between both scales.
The kiloparsec scale jet is very bright in a large range of wavelengths (from
radio to X rays). Bahcall et al. (1995) identified the optical and radio jet,
suggesting also transversal structure on these scales, and helical movement to
explain the coincidence of the optical and radio knots. Absence of counter-jet
is difficult to explain on the basis of Doppler beaming alone, requiring some
degree of asymmetry in the system. There is debate about the origin of the
lack of cooling and X-ray emission: re-acceleration either by magnetic recon-
nection (Lesch and Birk 1998), or due to turbulence (Manolakou et al. 1999),
intermittent activity (Stawarz 2004), a second high-energy electron population
(Röser et al. 2000, Marshall et al. 2001), inverse Compton scattering of the
cosmic microwave background, requiring the jet material to be relativistic and
moving at a small angle to the line of sight (Marshall et al. 2001, Sambruna
et al. 2001). The latter mechanism has been considered not to be sufficient
in order to explain the lack of cooling by Jester et al. (2001), who also claim
that particle acceleration at a few localized sites is also not sufficient for this
purpose. Other mechanisms as Synchrotron Self Compton (SSC) and thermal
bremsstrahlung (Röser et al. 2000, Marshall et al. 2001, Sambruna et al.



160 CHAPTER 4. ASTROPHYSICAL APPLICATIONS

2001) have also been discarded. Moreover, Kataoka et al. (2002) claim that
the visible kinetic energy of the jet is ' 100 times smaller at the bottom of the
VLBI jet than in the first knot of the kpc-scale jet, suggesting that a process
of acceleration of non relativistic electrons to relativistic regime, taking the
energy from that carried by protons (thermal component), should be taking
place in order to explain this difference.

As we see, many questions remain open about the nature of 3C 273 jet:
helical and transversal structure of the VLBI jet, different periods in ejection,
X-ray emission and lack of cooling of the kiloparsec scale jet along with the
absence of counter-jet and jet composition.

Figure 4.1: Optical image of quasar 3C273 (left), where the jet is also seen,
and composition of optical and radio images (right).

Here, we are going to focus on the parsec scale jet physics. VSOP obser-
vations allowed Lobanov and Zensus (2001) (LZ01 from now on) to interpret
structures in the parsec scale jet of 3C 273 as a double helix. Using approx-
imate equations derived by Hardee (see, eg., Hardee 2000), they could infer,
very accurately, the bulk parameters of the flow. This result, if confirmed,
would make out of linear stability theory in combination with observations a
really powerful tool in order to probe the physical conditions in jets and also
to understand their physics. A different interpretation (Asada et al. 2002)
suggests that a helical magnetic field could generate such a structure. We will
study the first possibility. LZ01 obtain a bulk Lorentz factor γ = 2.1, well
below those measured for superluminal components (γ = 5− 10, Abraham et
al. 1996), but suggest that instabilities develop in the slower underlying flow,
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interpreting those fast components as shock waves inside the jet.
The question which arises from LZ01 is: Is really linear theory able to

explain observable structures? Are there fingerprints of linear modes even
when the flow has gone into the non-linear regime? A possibility for trying to
answer to this question is by performing numerical simulations, which allow
us to follow evolution from linearity to non-linearity (Chapter 2 and Perucho
et al. 2004a). We will also keep in mind that numerical codes, although they
have proven able to reproduce observed VLBI structures (Agudo et al. 2001),
have limitations and will point out those which could affect the interpretation
of our results.

Our aim is to compare structures generated in a numerical simulation of
a steady jet, with the initial conditions of the underlying flow given in LZ01
and perturbed with several helical and elliptical modes, with those observed
by LZ01. In Chapter 2 (see also Perucho et al. 2004a and 2004b) we have
shown that numerical simulations allow for studies of the transition from the
linear to the non-linear regime.

4.1.2 Linear Analysis

LZ01 obtained 240 profiles of the brightness distribution across the jet.
Profiles were centered on a previously fixed ridge line, and orthogonal to it at
each point. They fitted a double gaussian to each profile and identified two
components which were interpreted as a double helix. Then, they fitted the po-
sitions of those gaussians to a number of sinusoidal modes, giving wavelengths,
phases and amplitudes. In Table 4.1 we give the values found for wavelengths
of fitted waves, their amplitudes, relative phases and identification.

Approximations by Hardee (1987, 1998, 2000) to the characteristic wave-
lengths of a perturbed system, relate those wavelengths to the speed of the
jet (βj), its Mach number (Mj) and the density ratio (η = ρj/ρa). Starting
from the dispersion relation of a cylindrical, relativistic and supersonic jet,
derived approximations for the perturbations in the long (low frequency) and
the short wavelength (high frequency) limit.

λl
nm =

4γjRj(M2
j − 1)1/2

n + 2m− 1/2
, (4.1)

λ∗nm =
2π

βs,a/βj (n + m + 1/2)
γj(M2

j − β2
j )1/2

(M2
a − β2

j )1/2 + γj(M2
j − β2

j )1/2
, (4.2)
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Figure 4.2: VSOP image of parsec scale jet in 3C 273 (from LZ01). In the left
corner, we can see some transversal cuts to which the double gaussians are
fitted.

where βs,a is the sound speed of the external medium in units of the speed of
light, γj is the Lorentz factor of the jet, Ma = βj/βs,a, Rj is the jet radius,
and n,m are the azimuthal numbers which give the number of nodes around
the jet surface and the number of nodes between the axis and the surface,
respectively. The first equation gives the longest unstable wavelength for a
body mode (m > 0) and the zero frequency limit for a surface mode (m = 0),
and the second stands for the most unstable wavelength of a given mode.
Relating these equations to fitted sinusoidal waves, the physical parameters of
the jet were obtained. Identification of modes is in the last column of Table
4.1, and derived parameters are displayed in Table 4.2.

We observe that the derived Lorentz factor is below those given by other
authors in order to explain superluminal motion. However, this could possibly
be caused by the fact that Kelvin-Helmholtz instability acts on the underlying,
slower flow, and not on the ballistic, superluminal components (LZ01).

This represents a very powerful tool for deriving physical parameters in
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λ (mas) Amplitude (mas) ϕ (deg) Mode
P1 P2 P1 P2 P1 P2

18 1.5 180 Hs

12 1.4 260 Es

3.9 4.1 2.2 1.5 315 135 Hb1

3.8 1.2 135 315 Eb1

1.9 0.25 175 355 Hb2

Table 4.1: Identified wavelengths, modes and their amplitudes and relative
phases from observations (LZ01). ϕ stands for the relative phase, and P1 P2
stand for both found helices (see text). H stands for helical, E for elliptical
modes, and subscripts refer to surface (s, fundamental) or body modes (b,
reflection). The latter are followed by the index identifying the exact body
mode.

γj Mj η Rj(pc) φj θj cs,j (c) cs,a (c) pc/mas

2.1 3.5 0.023 0.8 1.5 15 0.53 0.08 2.43

Table 4.2: Jet parameters from the fit. γj is Lorentz factor, Mj is Mach
number, η is rest mass density ratio, φj is jet half opening angle, θj is jet
viewing angle, cs,j,a are sound speeds, and pc/mas is the projected linear
scale.

relativistic jets, as they become directly related to observable features of jets as
their structure and observed wavelengths, as shown by LZ01. Of course, these
observable features may be caused by other physical processes than Kelvin-
Helmholtz instabilities, but the general nature of this kind of instabilities
appearing in sheared flows, makes them firm candidates to be responsible for
those structures.

4.1.3 Simulation 3C273-A

Initial setup

We start with a steady jet with Lorentz factor γ = 2.1, density contrast
with the external medium η = 0.023, sound speed cs,j = 0.53 c in the jet
and cs,a = 0.08 c in the external medium and perfect gas equation of state



164 CHAPTER 4. ASTROPHYSICAL APPLICATIONS

(with adiabatic exponent Γ = 4/3). Assuming an angle to the line of sight of
15◦ and redshift z = 0.158 (1 mas = 2.43 pc), the observed jet is 169 pc long.
Considering the jet radius given in LZ01 (0.8 pc), the numerical grid is 211Rj

(axial) times 8Rj (transversal), i.e., 169 pc× 6.4 pc.
Resolution is 16 cells/Rj in the transversal direction and 4 cells/Rj in the

direction of the flow. A shear layer of 2Rj width (m = 2 in equations (2.42)
and (2.43))is included in the initial rest mass density and axial velocity profiles
to keep numerical stability of the initial jet. An extended grid with 24 cells
and extending up to 30Rj on each side of the jet, with 20% increasing size,
and also in the axial direction, with 105.5Rj size and 168 cells. Boundary
conditions are injection at the inlet, and outflow far from the axis and in the
axial direction. Elliptical and helical modes are induced at the inlet using the
following expression:

P ′ =
A0

cosh2 |r| cos(ωt + n arctan θ + φ) sin2(πr), (4.3)

where A0 is the initial amplitude, r is the radius, ω is the frequency of the
mode, n = 1 for helical modes and n = 2 for elliptical ones, θ is the polar
angle in cylindrical coordinates, φ is the phase given to the perturbations, and
sin2(πr) is used in order to give an initial transversal structure to the modes.
In Fig. 4.3 we show the typical structures induced by equation (4.3). The
addition of all the input modes gives the total perturbation.

Frequencies of the excited modes are computed from the observed wave-
lengths of modes, λobs, corrected for projection effects and relativistic motion
and wave speed, vw according to ω = 2 π vw/λtheor, where

λtheor =
λobs(1− vw/c cos θ)

sin θ
, (4.4)

θ being the angle to the line of sight. We have used vw = 0.23 c excepting for
the 12 mas mode, which, being a surface mode, it moves with a speed close to
that of the jet (e.g., Hardee 2000). The 18 mas mode in LZ01, which is not
identified with any Kelvin-Helmholtz mode, was not included in this simula-
tion. We list excited modes in Table 1. Simulation lasted for a time 1097Rj/c
(i.e., ' 2852 yrs), and it used ' 11 Gb RAM Memory and 8 processors during
around 30 days in a SGI Altix 3000 computer.
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Figure 4.3: Structure of perturbations (axial and transversal cuts) in a generic
3D jet, induced by eq (4.3). Top left: pinching mode (n = 0). Top right:
helical mode (n = 1). Bottom left: elliptic mode (n = 2). Bottom right:
triangular mode (n = 3).

Discussion

The simulation can be divided in two parts, a first one, where modes grow
linearly up to disruption of the jet, and a second part where disruption domi-
nates evolution. In Figs. 4.4 and 4.6 we display several transversal cuts of the
jet that show mode competition, and axial cuts at two different times of the
simulation, respectively. In the former, we can see how excited modes domi-
nate at different positions and times in the jet. Plots of transversal structure of
the jet and Fourier transforms tell us that short helical modes (' 4Rj) mod-
ulated by longer helical (antisymmetric, ' 20 Rj) and elliptical (symmetric,
' 50Rj) wavelengths as can be seen in Fig. 4.5, dominate during the linear
phase of the simulation. Linear regime ends up with the disruption of the jet,
due to one of the longest helical modes (' 20Rj), at time t = 350 Rj/c. After
disruption, evolution of the jet is totally influenced by it, and induced per-
turbations propagate slowly backwards as a backflow in the ambient medium.
Also, the disruption point moves outwards due to the constant injection of
momentum at the inlet and the change of conditions around the jet, which
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Figure 4.4: Map of pressure perturbation transversal cuts in arbitrary units,
values increasing from dark to lighter colors (to be compared with Fig. 4.3).
Solid line indicates vz = 0.8 c contour. Three left panels: Cuts at 35Rj ,
t = 70, 140, 200Rj/c where elliptical mode rotation is apparent. Three right
panels: Cuts at 105Rj , t = 210, 220, 240Rj/c where helical mode rotation is
apparent.

Figure 4.5: Longitudinal cut of pressure perturbation at Rj/2 in symmetric
positions with respect to the jet axis at t = 250 Rj/c. Helical (antisymmetric)
structures of 4 and 25Rj and an elliptic (symmetric) one of 50Rj are apparent.

seem to make it more stable. This point moves from 160Rj to 180Rj by the
end of the simulation (see Fig. 4.6).

In order to check the consistency of the results obtained for the linear
regime of the simulation with observed structures, we need to measure the
propagation speeds of the perturbations. Our data frames are too separate to
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λobs Mode λtheor λsim λsim
vw=0.23 c λsim

vw=0.38 c λsim
vw=0.88 c

(mas) (Rj) (Rj) (mas) (mas) (mas)
2 Hb2 18.7 4 0.44 0.54 2.27
4 Eb1,Hb1 37.4 25 2.7 3.37 14.3
12 Es 21.2a 50 5.5 6.7 28.5

Table 4.3: First two columns give identified wavelengths and modes in LZ01 (H
stands for helical, E for elliptical, s for surface mode and b1 and b2 for first and
second body modes, respectively), third column gives the intrinsic wavelengths
(see text), in the fourth column we have written observed wavelengths in the
simulation, and the last three columns give the fourth column wavelengths as
observed depending on the wave speed. a Computed assuming it propagates
with the flow speed.

allow for the measurement of those speeds directly from the simulation, so we
use other means to estimate them. From pressure perturbation plots (like Fig.
4.5), we estimate the velocity of propagation of the fastest modes by measuring
the position of the perturbation front in each frame. In this way, we find
perturbations which travel with a velocity close to that of the flow (vw ' 0.88 c
as an upper limit). We can also derive the wave speed of the disruptive
mode following the motion of the large amplitude wave (see Fig. 4.6) from
frame to frame, and we find vw ' 0.38 c. We can associate the former, faster
perturbation, with the longer wavelength and longer exponential growth length
elliptical surface mode (see Fig. 4.5), and the latter with a shorter wavelength
and shorter exponential growth length body mode (see Hardee 2000). Both
measured speeds are different to that given by LZ01 (0.23 c). It is difficult to
assess the reason for that difference, which may be caused by an accumulation
of errors in different assumptions, or just by a different wavelength (implying
different velocity) having been excited. Expected observed wavelengths for
the different speeds are given in Table 4.3.

Results differ morphologically from the observed source mainly due to the
disruption of the jet. These differences may be a consequence of one or several
factors. We point as possible reasons the difficulty of simulating these objects,
the errors introduced by numerical methods, lack of resolution due to mem-
ory limitations in 3D simulations, arbitrary selection of initial amplitudes of
perturbation and the point where the jet is perturbed. Regarding the linear
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Figure 4.6: Map of Lorentz factor distribution of a portion of the jet at a time
before disruption, where a large amplitude wave is apparent (top panel, t =
320Rj/c) and at the last frame (bottom panel, t = 1097Rj/c). Coordinates
are in jet radii. Note that the vertical scale size is increased by a factor of 4
for the sake of clarity.

analysis, uncertainties in the calculation of the physical parameters from the
characteristic wavelengths (see below) are also to be considered as a source of
error.

In the following paragraph we study possible sources of inaccuracy in the
approximations of linear analysis. Hardee et al. (1998) and Hardee (2000)
present a stability analysis using parameters from simulations by Duncan and
Hughes (1994). They solve the dispersion relation for the models and com-
pare results with found wavelengths in the simulations. Using the parameters
they give, and in order to check the validity of the method, we compared
wavelengths obtained from equations (4.1) and (4.2) with those given by the
solved dispersion relation. We give those values in Tables 4.5 and 4.6. Rel-
evant parameters from those simulations are given in Table 4.4. Simulations
A, B and C present different parameters from Hardee et al. (1998) to Hardee
(2000), which was pointed out in Rosen et al. (1999) as an error. In the case
of simulation A, the change was very small (from γ = 2.55 to γ = 2.5), but in
cases B and C we used the changed values in order to compare with Hardee
(2000) for figures in Table 4.6. In the case of Hardee et al. (1998) we use the
wrong values due to the fact that their analysis was done for those param-
eters. There are differences between values predicted by the approximations
and those computed by solving the dispersion relation. They are larger for
longest unstable wavelength and also tend to grow for larger Lorentz factors.
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Simulation βj γj Mj Ma

A 0.3 1.05 5.77 3.
E 0.92 2.55 3.34 3.
B 0.9835 5.52 1.88 1.8
C 0.9976 14.35 1.3 1.3
D 0.9950 10.00 1.8 1.8

B (H00) 0.9798 5.00 1.88 1.5
C (H00) 0.9950 10.0 1.3 1.3

Table 4.4: Relevant parameters (to be used in equations (4.1) and (4.2)) from
Hardee et al. (1998) and Harde (2000). (H00) stands for the parameters of
simulations B and C in Hardee (2000).

Simulation λl
0,1 λ∗0,1 λl

0,2 λ∗0,2 λl
0,3 λ∗0,3

A 15.9/11.5 5.0/3.3 6.8/4.8 2.8/1.7 4.3/3.0 1.9/1.2
E 21.7/15.5 5.7/3.9 9.3/6.6 3.2/2.0 5.9/4.1 2.2/1.3
B 23.4/11.2 3.8/2.3 10.0/4.6 2.1/1.2 6.4/2.9 1.5/0.8
C 31.8/7.7 3.0/1.2 13.6/3.2 1.7/0.6 8.7/- 1.2/-
D 39.9/18.7 4.1/2.4 17.1/8.0 2.3/1.3 10.9/- 1.6/-

Table 4.5: Comparison of characteristic wavelengths of pinching surface and
first three body modes, computed from equations (4.1) and (4.2) (first num-
ber), and those taken from the dispersion relation solution (second number)
in Hardee et al. (1998). All wavelengths are in Rj units.

We observe that in the case of larger Mach number jet (A), the error is smaller,
and this points towards the large Mach number approximation used in order
to derive equations (4.1) and (4.2) as a source of error in the case of jets with
smaller values of Mj .

Another limitation of this method is the fact that magnetic fields may
influence the dynamics of the parsec scale jet (Asada et al. 2002), and they
have not been considered neither in the linear analysis, nor in the simulations.

Disruption of the jet in the simulation is in contradiction with the fact
that we can observe it in much larger scales, which we could not if it was
mass-loaded as we observe in the simulation. Therefore, a stabilizing factor
is needed in order to explain the jet in 3C273. A thicker shear layer, the
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Simulation λ∗1,0 λl
1,1 λ∗1,1 λ∗2,0 λl

2,1 λ∗2,1

A 8.4/7.2 9.6/6.7 3.6/2.3 5.0/5.9 6.8/4.9 2.8/1.9
B 5.7/3.9 12.7/4.9 2.4/1.6 3.4/2.7 9.1/3.5 1.9/1.4
C 5.0/1.9 12.7/3.4 2.2/0.6 3.0/1.7 9.1/2.3 1.7/0.5

Table 4.6: Comparison of characteristic wavelengths of helical and elliptic
surface and first body modes, computed from equations (4.1) and (4.2) (first
number), and those taken from the dispersion relation solution (second num-
ber) in Hardee et al. (2000). All wavelengths are in Rj units.

inclusion of the superluminal components in the simulations, as faster jets are
much more stable against Kelvin-Helmholtz instabilities (see Perucho et al.
2004b), a decreasing density atmosphere, which must be the case as can be
derived from the outward dimming of the jet in the parsec scale, or a stabilizing
configuration of magnetic field should be taken into account if the observations
of the jet in 3C273 are to be understood.

4.1.4 Simulation 3C273-B

Initial setup

Basing on results of Simulation 3C273-A, we have set up a new simulation,
which includes fast (superluminal) components and a precession at the inlet.
Again, we start with a steady jet with the Lorentz factor γ = 2.1, the density
contrast η = 0.023, the perfect gas equation of state (with the adiabatic expo-
nent Γ = 4/3), and the sound speeds cs,j = 0.53 c in the jet and cs,a = 0.08 c
in the external medium. We have demonstrated before that we do not need
a large grid, if patterns move fast and relativistic effects elongate structures.
Therefore, the numerical grid for this simulation covers 30Rj (axial, see below
for explanation) times 6Rj (transversal).

The resolution of the grid is 16 cells/Rj in the transversal direction and
32 cells/Rj in the direction of the flow. A shear with m = 8 (∼ 0.6Rj thick)
in equations (2.42) and (2.43) is included in the initial rest mass density and
axial velocity profiles to keep the numerical stability of the initial jet. An
extended grid is introduced in the transverse direction, with 36 cells reaching
out to 15Rj on each side of the jet (increasing the cell size by 7.7% from one
cell to the next), and also in the axial direction, 15Rj long, and using 192
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cells. Boundary conditions are formulated for the injection at the inlet, and
for the outflow far (transversally) from the axis and in the (axial) end of the
grid. The precession of the jet is included in transversal velocities as follows:

v⊥ = A0vz sin(ωt) (4.5)

where v⊥ is the transversal speed, vz the injection axial velocity, t is time, A0 =
6.83 10−3 c is the initial amplitude, calculated from the opening angle given
by LZ01 (1.5◦, which has to be deprojected from the viewing angle sin(15◦),
giving the true opening angle of 0.4◦), and ω ∼ 1.01 c/Rj is the frequency
calculated from the precession period of ∼ 15 yrs estimated by Abraham et al.
(1996).

We have also included a periodic injection of faster components with
Lorentz factor γc = 5 and a periodicity of 1 yr = 0.4 c/Rj as measured by
Babadzhanyants and Belokon (1993), and associated with ballistic compo-
nents reported by Abraham et al. (1996) and Lobanov et al. (2000). These
components are treated as shells of diameter 0.5Rj ejected, in a centered
position with respect to the axis, during the estimated duration of the disk
activity 0.066 c/Rj ∼ 2months. The axial size of the grid is also related with
these components. We take into account that the wavelength induced by the
precession of the faster components is λc ∼ P vc, being P the period and vc is
the injection velocity of the components. This gives λc ∼ 6Rj , and we have
chosen the grid of 5λc to allow the wave to become apparent. The simulation
has lasted for a time of 70Rj/c (i.e., more than two light crossing times of the
grid).

Discussion

In Figures 4.7 and 4.8, we show longitudinal cuts of pressure perturbation,
where we can see the effect of precession and injected components. Close to the
injection point, we observe that, at r ∼ 0.0625Rj (Fig. 4.7), the symmetric
structure of fast components dominates the structures. It has a wavelength
∼ 0.4Rj , similar to the period of ejection of ballistic components (0.4Rj/c)
moving at a speed vc. In the jet boundary (Fig. 4.8) the most pronounced
structure is the typical antisymmetric pattern of helical motion induced by
the precession (λ ∼ 4 Rj). After 3 − 4Rj , the effect of the presence of the
fast components is also visible in the jet boundaries. Further downstream,
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λsim (Rj) λsim
vw=0.88 c(mas) λsim

vw=0.94 c(mas) λsim
vw=0.98 c(mas)

0.4 (symmetric) 0.23 0.37 0.62
4 (antisymmetric) 2.27 3.7 6.2

Table 4.7: First column gives the observed wavelengths in the simulation, and
the last three columns give this wavelengths as observed depending on the wave
speed. We have used, for the wave speed, the underlying flow speed (second
column), the maximum speed from the components (third column), and the
corresponding speed to injection Lorentz factor (γ = 5., fourth column).

longer structures are apparent which can be associated with the precession1.
This effect is modulated by short wavelengths close to the axis. Amplitudes
of the short waves induced by fast components decrease outwards (Fig. 4.7),
as the components slow down gradually (see also Fig. 4.10). This slowing
down of the components may be caused either by the interaction with the
background flow, or by a sideways and longitudinal expansion. It can also be
a result of numerical diffusion due to the limited resolution of the simulation
run. Contrary to the behavior of the shorter wavelength modes, the helical
waves increase their amplitude as they move outwards.

The downstream evolution of the jet structure is also visible in Fig. 4.9
showing a surface plot for the Lorentz factor 2.5. At smaller distances (up
to z ∼ 10 − 15Rj), the periodicity induced by the symmetric components
dominates the jet structure, but further downstream the components begin
to interact with each other, generating a semi-continuous structure that is
dominated by the helical motion induced by the precession. The consequence
of the deceleration of the fast components is illustrated in Fig. 4.10, where the
components slowing down from the initial Lorentz factor of 3 are observed to
disappear downstream.

In Table 4.7 we show the observed wavelengths depending on the pattern
speed. We note that the simulated wavelength obtained from the precession
is smaller than the one calculated theoretically from the advance speed of
components (4Rj versus 6Rj). One of the reasons for this could be that
the advance speed is overestimated, as indicated by the fact that injected

1We know that the structure of antisymmetric waves is such that the values of the per-
turbations on both sides, but close to the axis, are very similar. This is the reason for dotted
and dashed lines in Figure 4.7 being close despite it is the helical mode which dominates the
pressure perturbations.
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Figure 4.7: Longitudinal cuts of pressure perturbation at r ∼ 0.0625Rj in
symmetric positions (dashed and dotted lines) with respect to the jet axis at
t = 40 Rj/c.

components do not propagate at γ = 5, but at γ ≤ 3. However, this difference
in velocity does not cover completely the difference found in the wavelengths.
We may also have overestimated the wavelength by considering the ballistic
motion of components and ignoring, to some extent, the observed dissipation
of the faster components in the flow that suggests that the components are
likely to move non-ballistically. This fact favors the conclusion from LZ01 that
the observed structure is generated in the slower, underlying flow. This is
evident, if we take into account that slower flows generate longer wavelengths.
An alternative to this explanation requires the components to remain ballistic
throughout the entire observed region.

The latter explanation can be tested against the observed wavelengths
calculated in Table 4.7. It is clear that the observed wavelength of preces-
sion (18 mas ∼ 54Rj) cannot be recovered even by extremely fast components
(vw = c gives 10 mas at this viewing angle). The key here is the relativis-
tic/projection factor sin θ/(1−vw cos θ) (= βapp/β, the apparent speed divided
by the intrinsic speed) in the transformation from λsim to λobs, see Eq. (4.4).



174 CHAPTER 4. ASTROPHYSICAL APPLICATIONS

Figure 4.8: Longitudinal cuts of pressure perturbation at r ∼ Rj in symmetric
positions (dashed and dotted lines) with respect to the jet axis at t = 40 Rj/c.

This term is always smaller than the Lorentz factor of the flow (≤ γ, see e.g.
Körding and Falcke 2001 and Fig. C.1 in Appendix C). If we consider the
mean angular velocity of 0.93h−1mas/yr (Abraham et al. 1996), with h = 0.7,
the apparent speed is βapp ∼ 10. This apparent speed cannot be reconciled
with a viewing angle of 15◦, and it requires the Lorentz factor of γ = 10 if
the viewing angle is 10◦. With the relativistic and geometric effects implied
by these angle and velocity, we could convert our measured 4Rj wavelength
in the simulation into the observed 18 mas one.

On the other hand, considering that the helical pattern is generated by γ =
5 flow observed at 15◦, we would need to measure λ ∼ 11Rj in the simulation
in order to recover the observed wavelength. This wavelength contradicts the
wavelength computed for the ballistic motion (6Rj). Thus, either the period
is longer (almost twice than that given in previous works), or components are
faster and the angle to the line of sight is slightly smaller than the commonly
assumed ones.

Another question addressed by this simulation is whether the periodic in-
jection of fast components could generate smaller structures observed by LZ01
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Figure 4.9: Surface plot of Lorentz factor γ = 2.5 at t = 40 Rj/c.

Figure 4.10: Surface plot of Lorentz factor γ = 3.0 at t = 40Rj/c.

(2 and 4mas modes), where these wavelengths are identified with the elliptical
modes of Kelvin-Helmholtz instability. In our simulation, the fast components
generate pinching modes, although this is simply due to their symmetric na-
ture. Again, we find that the structures generated in the simulation are smaller
compared to those observed. However, in this case, the simulated components
move slower (γ ≤ 3, see Fig. 4.10) than the observed ones (γ ∼ 5− 10). More-
over, the simulated components here have the same density as the background
flow (what could be a cause for slowing down), whereas if we understand them
as the result of a strong accretion activity, they should be mass loaded, and
thus be denser than the underlying flow. Fine tuning of these ingredients,
together with varying the injection period, could give the correct wavelengths.
We find that, in order to produce a 4mas mode, we need the Lorentz fac-
tor γ ∼ 30, whereas γ ∼ 15 is required to explain the 2mas structure, if we
keep the 1 yr period. Adopting the longest measured period of the ejections of
1.7 yrs (Abraham and Romero 1999), these values would be reduced to γ ∼ 17
and γ ∼ 8.5, respectively. The same authors gave a periodicity in the injec-
tion Lorentz factor of about 4 yrs; if we consider this period as the generator
of short modes, γ ∼ 7.5 and γ ∼ 4.0 could explain those structures. The
latter values agree well with the Lorentz factors inferred from the observed
kinematics of the jet. This means that the wavelengths should be associated
only with the ejections of the strongest, and fastest, components occurring
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roughly once every 4 years.

4.1.5 Conclusions

We have performed two simulations with different initial setups in order to
study the physical processes generating the observed structures in the parsec-
scale radio jet in the quasar 3C 273. In the Simulation 3C273-A, we have
included a general set of helical and elliptic perturbations in a long jet with
the basic physical parameters adopted from LZ01. In the Simulation 3C273-
B, we have used a shorter jet with the same physical parameters and have
included a precession and an injection of fast components. 3C273-A was aimed
to generate structures with wavelengths similar to those measured by LZ01
from the growth of Kelvin-Helmholtz perturbations. 3C273-B was thought
to generate the same structures by combining the ejection of superluminal
components and the inclusion of a precession with relativistic effects, with the
periodicities reported in Babadzhanyants and Belokon (1993).

We have proven that the structures found in a jet with the physical prop-
erties of the underlying flow given in LZ01, and perturbed with elliptical and
helical modes (3C273-A), are of the same order in size as those observed, if
the relativistic propagation effects of the waves are taken into account. We
find that the wave speeds found in this work differ from those derived from the
linear analysis, and we do not find a unique combination of parameters which
explain observed structures. We show however that wavelengths similar to the
observed ones are found for given combinations of the simulated wavelengths
and the wave speeds (see Table 4.3). Regarding the long-term stability of the
flow, the jet in simulation 3C273-A is disrupted, contrary to the observations
tracing the jet in 3C273 up to 60 kpc away from the source (compared with
170 pc in this simulation). The reasons for this difference may be found in
the conjunction of several factors. 1) Magnetic fields have not been taken into
account either in the linear analysis, or in the numerical simulation - and it
should be noted that the magnetic fields may be dynamically important at
parsec scales. 2) We only simulate the underlying flow, without considering
the superluminal components. 3) inaccuracies in the linear analysis approxi-
mations can lead to differences in physical parameters derived. 4) Differential
rotation of the jet, shear layer thickness, and a decreasing density external
medium (along with jet expansion; see Hardee 1982, 1987, and Hardee et al.
2005) could also play a central role. 5) Arbitrary initial amplitudes of pertur-
bations were chosen for the simulation, so we could have included too large
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perturbations. The combination of these factors could well change the picture
of the evolution of the jet in terms of its stability properties. The effects of
the rotation and magnetic fields on the stability of jets remain unclear, since
no systematic study has been performed up to now.

In the simulation 3C273-B, we have shown that, in order to explain the
18mas wavelength in terms of precession, either different periodicities would
be needed (unless this mode is induced by very fast components observed at
an angle θ < 15◦), or the modes observed are acting on the slower, underlying
flow, as concluded in LZ01. In the latter picture, the superluminal components
would just move ballistically through the helical pattern drawn by the under-
lying flow. We have also seen that fast components could generate the shorter
wavelengths observed in LZ01 (2 mas and 4 mas) if a proper combination of
the velocities and injection periodicities is used. In this sense, numerical sim-
ulations of this kind may be used to constrain the basic parameters of the flow
such as the viewing angle and the component speed. The inclusion of magnetic
fields, differential rotation and an atmosphere with a decreasing density could
help reconciling the simulations with the observed structures. In this way,
for example, an increase of the jet radius due to decreasing external pressure
could cause a downstream enlargement of wavelengths.

4.2 Kpc scale jets. Numerical simulations on 3C 31

4.2.1 Introduction

Laing and Bridle (2002a,b; LB02a,b from now on) presented a model which
accurately described kinematic and dynamically the jets in the FRI radio-
galaxy 3C 31, mapping the emission and magnetic fields of the jets. In this
section, we present the results from a simulation in which input is taken from
those models. Our aim is to compare the results from the simulation with
those from observations and modelling.

In LB02a, the authors fit observed brightness and polarization distribu-
tions by modelling the velocity, synchrotron emissivity and ordering of the
magnetic field. They assume that jet and counter-jet are identical, antiparal-
lel, axisymmetric and stationary, and that the differences between them result
from relativistic aberration. Thus, they use Doppler boosting as a constraint
for their model, along with the rotation of the line of sight relative to the
magnetic field structure between emitted and observed frames. They focus
on the inner part of jets and split it in three parts (see Fig. 4.11): the inner
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(from 0 to 1.1 kpc, or from 0 to 2.5 arcsec), the flaring (from 1.1 to 3.5 kpc,
or from 2.5 to 8.3 arcsec) and the outer (from 3.5 to 12 kpc, or from 8.3 to
28.3 arcsec) regions. The linear distances are calculated considering Hubble
constant H0 = 70 km s−1 Mpc−1 and taking the redshift of the parent galaxy
of 3C 31 (NGC 383, z = 0.0169).

In LB02b, they present a dynamical model based on the results of LB02a
and estimates from external pressure and density profiles from Chandra (Hard-
castle et al. 2002), applying conservation laws and assuming that the jets are
in pressure equilibrium with the external medium at large distances from the
nucleus, and that the momentum flux is Π = Φ/c, where Φ is the momentum
flux and a velocity profile. The model is quasi-one-dimensional, as, although
they consider the widening of the jet, they only take the axial velocities for
their analysis.

They conclude that the jets are overpressured at the beginning of the
flaring region; in this part of the jet they find local minima in the pressure
and density and maxima in the Mach number and entrainment rate. At the
end of the flaring region the jets are slightly underpressured with respect to
the ambient medium and recollimate. Changes in the outer region are smooth,
with almost constant density and monotonically increasing entrainment rate,
and Mach numbers are always ∼ 1 − 2 in the outer region. They derive
a pair plasma (e− − e+) composition, and require barionic mass load from
the galactic medium in order to explain the deceleration of the flow, though
in this point they suggest that stellar mass is the most important source of
loaded material at the flaring region. In order to perform the simulation,

Figure 4.11: Schematic plot of the jet 3C31 as shown in Laing and Bridle
(2002a), compared with an image of the inner part of the source.
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we have implemented Synge’s equation of state for relativistic gases, with the
routines used in the simulations of Scheck et al. (2002) and have introduced the
appropriate changes in the code in order to include the new variables needed
by this approach (e.g., leptonic and barionic density, which have to be evolved
along with total density) and a stationary decreasing density atmosphere. The
latter is accomplished by introducing source terms in the momentum equations
which compensate initial pressure gradients in the radial and axial directions.

The equation of state

The equation of state of a relativistic perfect gas can be written in the
form (Synge 1957, see also Falle and Komissarov 1996):

w =
N∑

I=1

nImIG(ξI), (4.6)

p =
N∑

I=1

nImIξ
−1
I , (4.7)

where, w = ρh, nI is the number density of a given family of particles with
mass mI ,

ξI =
mI

kBT
, (4.8)

G(ξ) =
K2(ξ)
K3(ξ)

=
K1(ξ)
K2(ξ)

+
4
ξ
. (4.9)

In the latter equations kB is the Boltzmann constant, T the temperature and
Kν(ξ) are the modified Bessel functions:

Kν(ξ) =
∫ ∞

0
exp(−ξ cosh θ) cosh νθ dθ. (4.10)

The adiabatic exponent is derived from the definition of sound speed:

a2 =
(

∂p

∂ε

)

s

, (4.11)

and turns out to be:

Γ =
∑N

I=1 nIG
′(ξI)ξ2

I∑N
I=1 nI(G′(ξI)ξ2

I + 1)
. (4.12)
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In our case, we deal with two species of particles: leptons (electrons and
positrons) and barions (protons). We define the leptonic number as:

Xl =
ρe− + ρe+

ρ
, (4.13)

so the number of protons will be Xp = 1−Xl, e.g., in a neutral gas composed
by hydrogen Xl = me/(me + mp) ∼ 1/1837. The pressure of a mixture of
these species is

P =
ρ

meff
kBT, (4.14)

where

meff =
[

Xl

me
+

Xp

mp

]−1

. (4.15)

In order to obtain the adiabatic exponent, we have to take

ξl =
me

kBT
, ξp =

mp

kBT
, ξeff =

meff

kBT
, (4.16)

and then, from Eq. (4.12):

Γ = 1− 1
(XlG′(ξl)ξ2

l /me + XpG′(ξp)ξ2
p/mp)meff + 1

, (4.17)

The temperature of the gas is a function of internal energy, density and leptonic
number (Xl): T = T (ε, ρ, Xl). The Newton-Raphson method is used in each
cell in order to look for the physical roots of a function f(T ) = ε(ρ,Xl, T )−ε0,
where ε0 is the internal energy, derived directly from the conserved variables
as explained in Appendix A, in particular in equations A.21 and A.22. Also,
from Eq. 4.6, we know that ε = XlG(ξl) + XpG(ξp)− P/ρ− 1. Thus:

f(T ) = XlG(ξl) + XpG(ξp)− P/ρ− 1− ε0, (4.18)

and its derivative:

f ′(T ) = kB

[
XlG

′(ξl)ξ2
l /me + XpG

′(ξp)ξ2
p/mp + 1/meff

]
. (4.19)

Once we have the temperature in the cell, we can compute the adiabatic
exponent, from Eq. 4.17, and the sound speed. Scheck et al. (2002) estimated
that the iterative process takes 50 % more computational time than if the one
component, ideal gas equation of state was used, due to the presence of Bessel
functions in the equation of state.
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Component Central density Form factor Core radius Temperature
Galaxy nc = 1.8 105m−3 βatm,c = 0.73 rc = 1.2 kpc Tc = 4.9 106K
Group ng = 1.9 103m−3 βatm,g = 0.38 rg = 52 kpc Tg = 1.7 107K

Table 4.8: Table 1 in LB02b, where the ambient parameters are given (see
text).

4.2.2 Setup for the numerical simulation

The medium in which the jet is injected consists on a decreasing density
atmosphere composed by hydrogen; LB02b suggest a composition with 74%
hydrogen, but this treatment would require the inclusion of new populations
of particles (in order to account for the remaining 26%) in the code, involving
longer computational time, so that we discarded this option. The profile for
the number density of such a medium is (Hardcastle et al. 2002):

next(r) = nc

(
1 +

r2

r2
c

)−3βatm,c/2

+ ng

(
1 +

r2

r2
g

)−3βatm,g/2

, (4.20)

where r is the spherical radial coordinate, nc and ng are the core densities of
the galaxy and the surrounding group, with rc and rg the radii of those cores,
and βatm,c and βatm,g are the exponents giving the profile for each media.
Temperature profile is:

T = Tc + (Tg − Tc)
r

rm
(r < rm)

T = Tg (r ≥ rm), (4.21)

with rm = 7.8 kpc. Pressure is derived from the following equation of state:

Pext =
kBT

µX
next(r), (4.22)

where µ is the mass per particle in a.m.u. (µ = 0.5 in our case, versus 0.6 in
LB02b), and X is the abundance of hydrogen by mass (X = 1 here, versus 0.74
in LB02b). In Table 4.8 we reproduce Table 1 in LB02b, where the parameters
for the equations above are listed. The atmosphere is kept in equilibrium with
the inclusion of source terms which compensate pressure gradients among cells.
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Figure 4.12: Initial profiles of atmospheric rest mass density (left) and pressure
(right).

In the simulation, the appropriate unit transformations are performed, as
the parameters are given in cgs units, but the code works with the same units
as in the rest of simulations presented in this thesis: Rj , c and ρa,c.

The simulation was performed in two dimensions and cylindrical coordi-
nates. The grid is 2880× 1800 cells, with an axial resolution of 8 cells/Rj in
the axial direction up to 300Rj and an extended grid (up to 450Rj) with out-
flow boundary conditions in the same direction, and 16 cells/Rj in the radial
direction up to 100Rj , with an extended grid with increasing cell size (with
factor ∼ 1.017) and outflow conditions far from the jet (200Rj). We consider
a symmetric jet in cylindrical coordinates, so reflection boundary conditions
are taken at the jet axis.

Injection of the jet in the atmosphere is done at r = 500 pc, the point where
LB02b start their analysis. The radius of the jet at that point is calculated
from the opening angle 6.7◦ given for the jet in LB02a (Rj = 60pc). The
uniform grid is then 17.5 kpc × 6 kpc, and, with the extended grid, 26.25 kpc ×
12 kpc.

The jet is injected with a speed vj = 0.87 c (γj ∼ 2), internal relativistic
Mach number Mj = 2.5, temperature Tj = 4.1 109K, density ratio with the
external medium η = 1. 10−5, purely leptonic composition (Xl = 1.0), and
overpressured by a factor ∼ 8 with respect to the ambient medium. In Table
4.9 we give the complete list of parameters. The parameters given for the
ambient medium in the injection are calculated for r = 500 pc (this is the
reason for differences between Tables 4.8 and 4.9). The numbers in this table
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give an energy flux of Φ ∼ 1037 W, calculated as given in LB02b, which is very
close to the value given in that paper (Φ = 1.1 1037 W), the difference being
due to slight changes in variables considered.

Our purpose is to inject the jet and analyze its evolution through the
atmosphere, but, most importantly, to compare the last frames, when the
head of the jet has crossed the whole grid and is thus far from the modelled
region in LB02b, with results in that paper and observations of 3C 31 (e.g.,
those in LB02a).

Velocity (vj) 0.87 c
Mach number (Mj) 2.5
Temperature (Tj , jet) 4.1 109K
Temperature (Tc, ambient1) 5.7 106K
Temperature (Tg, ambient2) 1.7 107K
Density (ρj , jet) 3 10−30g/cm3

Density (ρa,c, ambient1) 3 10−25g/cm3

Density ratio (η) 10−5

Leptonic number (Xl, jet) 1.0
Specific int. energy (εj , jet) 1.54 c2

Specific int. energy (εa,c, ambient1) 1.57 10−6 c2

Specific int. energy (εa,g, ambient2) 4.69 10−6 c2

Pressure (Pj , jet) 6.91 10−6 ρa,c c2

Pressure (Pa,c, ambient1) 8.84 10−7 ρa,c c2

Pressure (Pa,g, ambient2) 3.07 10−8 ρa,c c2

Pressure ratio (Pj/Pa,c) 7.8
Adiabatic exponent (Γj , jet) 1.38
Adiabatic exponent (Γa, ambient) 1.66
1D velocity estimation (v1d

h ) 9.9 10−3 c
Time unit (1Rj/c) 60 pc/c ∼ 195 yrs

Table 4.9: Parameters in the simulation. Different units are used in order
to make comparisons with other works easier (see text). 1 and 2 stand for
values at the injection and most external points in the grid, respectively, for
the ambient medium.

In relation with the long term stability properties of the jet, its Mach num-
ber and Lorentz factor place it in the UST1 (see Chapter 3) region, coinciding
with our prediction of FRI morphology for this kind of jet.
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Regarding the parameters taken in simulations presented in Scheck et al.
(2002), with which ours shares many similarities, their definition of Lkin (ki-
netic luminosity), coincides with that given for energy flux in LB02b, so we
can compare both values. In our case, Lkin ∼ 1044 erg/s, typical of a FRI
source, with Lkin ∼ 1046 erg/s fixed by them as that of an FRII.

The one-dimensional velocity estimation given in Table 4.9 stands for the
theoretical advance velocity of the jet, computed using the equation derived in
Mart́ı et al. (1997) for a pressure-matched jet propagating in one dimension,
i.e., without sideways expansion:

v1d
h =

√
ηR√

ηR + 1
vj , (4.23)

where ηR = ρjhjγ
2
j /(ρaha).

4.2.3 Results

At the time of writing this section, the simulation has still not finished.
We expect that reaching the final results would take an extra time of about
one month. However, we think that interesting partial conclusions can be
extracted and we present them here. At this point, the simulation has been
running for a time ∼ 1130 hours ∼ 47 days on eight processors in the SGI Altix
computer CERCA, at the Universitat de València.

Evolution

In Figures 4.13-4.15 we present the evolution with time of several magni-
tudes up to time ∼ 19900Rj/c ∼ 3.9 106yrs.

A jet propagating supersonically in an external medium generates a super-
sonic bow shock, which propagates through the ambient and encloses a cavity
of shocked material. The jet propagates inside this cavity, its head forming
a shock called Mach disk, and surrounded by a mixture of shocked ambient
medium and backflow of jet material deflected at the Mach disk, which form
the cocoon.

Bow shock position is selected at the point where the speed is larger than
10−4 c and jet radius is calculated using different tracers (see the caption of
Fig. 4.15) as indicators. The pressure of the head of the bow-shock is taken as
the first maximum in pressure, and the hot-spot pressure is computed with the
mean of pressure in 10 cells behind the jet position. The velocity of the bow
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Figure 4.13: Left panel stands for bow shock position, and right panel for bow
shock head pressure. See text.

shock is computed with the discretized derivative of position with respect to
time at each instant, and Mach number is computed with that advance speed
and the mean value of the sound speed in 16 cells ahead of the bow shock
position. Bow shock pressure, velocity and Mach number have been smoothed
using an IDL routine in order to avoid the peaked shape of rapid variations in
those parameters.

In Figs. 4.13 and 4.14 we can see that the advance speed of the bow-
shock is basically constant (∼ 0.007 c), excepting for the initial acceleration
and slight slowing down in the last part of the simulation. Advance velocity is
close to the one-dimensional prediction in the origin, but it is smaller further
downstream, as the jet starts spreading its momentum in a wider region and
the one-dimensional approximation gets worse. The pressure behind the bow-
shock presents a fast drop and then oscillates until the last frame presented
here. Calculations performed for the jet head give very similar results to these
found for the bow-shock, so we do not present them here. The Mach number
of the shock decreases as it moves outwards due to the increase in the sound
speed of the atmosphere and slight slowing down.

From bottom left panel in Figure 4.14 we can derive that the growth of the
cavity is basically self-similar. This is confirmed in the bottom panels of Figure
4.15, where almost constant factor for the Lc,j/Rc,j ratio (for cavity and jet)
is observed in the last part of the simulation. Before reaching this plateau, the
latter ratio is growing, which means that the cavity and the jet grow faster
longitudinally than radially. This is due to propagation in a decreasing density
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Figure 4.14: Top left panel stands for bow shock velocity, and top right panel
for bow shock Mach number. Bottom panels stand for mean cavity pressure
(left) and cavity radius versus its length (right). See text.

atmosphere, along with the fact that the jet is injected 500 pc from the origin
along its axis (we remind the reader that the decrease in density is spherical
and that we work in cylindrical coordinates).

In the case of the jet shape factor, we have plotted only values for two
different tracers (f = 0.5 and f = 0.9), as smaller values have oscillatory
behaviors. The plot of jet radius for different tracers (top right panel in
Figure 4.15) illustrates the spreading of the jet and the formation of a thick
shear layer. This shear layer is similar to that developed by UST1 models of
Chapter 3, which were associated to FRI jets.

At the point in which we analyze the simulations, structures in the first
part of the jet, which will be discussed in next paragraphs, have become quasi-
stationary, so we can expect that they undergo only little changes until the
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Figure 4.15: Top left panel stands for the mean cavity radius, and top right
panel for the mean jet radius (different lines stand for the different criteria
used to fix the jet head position: solid line is for tracer f = 0.01, dotted line
for f = 0.1, dashed line for f = 0.5 and dash-dotted line for f = 0.9). Bottom
panels stand for cavity shape (left) and jet shape (right). See text.

proper end of the simulation. We consider that the most important effects
in the evolution of the jet will appear when the bow-shock becomes transonic
(M ∼ 1), as this will favor entrainment and slowing down of the flow.

Latest results

In Figures 4.16 and 4.17 we present panels for the logarithm of rest mass
density, jet mass fraction (tracer), Lorentz factor and a variable we call emis-
sion, from the expression used in Hardee et al. (2005):

εν ∝ n1−2α
j p2α

j (B sin θ)1+αD2+α, (4.24)
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Figure 4.16: Logarithm of rest mass density (upper panel) and jet mass frac-
tion (tracer, lower panel) at the last frame of the simulation in this work. Co-
ordinates are in parsecs (from injection in the grid), rest mass density ranges
from ρ = 3.1 10−8 to ρ = 0.38 in the units specified in the text, and jet mass
fraction ranges between f = 0 and f = 1.

where nj is the particle number density of the jet, pj is the pressure, B is
the magnetic field, θ is the viewing angle (52◦, following LB02a), D is the
Doppler factor and α is the spectral index (0.55, following LB02a). Hardee
et al. (2005) assume that the magnetic field depends on the particle number
density as B ∝ n

2/3
j , considering a disordered field. From these assumptions,



4.2. KPC SCALE JETS. NUMERICAL SIMULATIONS ON 3C 31 189

our emission is:

εν ∝ f ρ5/3−2.2/3P 1.1(sin θ)1.55/(γ(1− vz cos θ))2.55, (4.25)

where we include the tracer f in order to account only for the jet material.
The morphological features observed in the panels are those of a typical

jet (see, e.g., Mart́ı et al. 1997): a bow-shock surrounding a cavity of shocked
ambient gas, a cocoon composed by mixed jet and ambient matter, and the
jet itself propagating inside.

In the upper panel of Figure 4.16 we can see the bow-shock which sur-
rounds a cavity of shocked ambient material and the cocoon. In the lower
panel we observe the cocoon, formed by mixed jet and ambient material, sur-
rounding the jet. It is remarkable that tracer values different from one are
not observed to reach the axis until distances close to the head of the jet.
However, from previous snapshots at different times we have detected strong
mass entrainment at about z ∼ 3.5− 4.0 kpc2), i.e., at z′ ∼ 4.0− 4.5 kpc from
the source. This suggests that the jet is pulsating due to the close presence
of the head and is influenced by its accelerations and decelerations, clearly
observed in the plot of bow-shock velocity versus time (Figure 4.14). We have
thus to wait until the head has moved further away to extract some definite
conclusions about the mass loading of the jet in this region.

In Figure 4.17 we can check that the jet keeps being relativistic up to
z ∼ 3.5−4.0 kpc, where it undergoes a sudden slowing down, and only filaments
of relativistic flow are present further downstream. Regarding the lower panel
in Figure 4.17, we want to stress the high value of the variable emission at
the injection, followed by dimming, sudden increase at z′ ∼ 1.5 kpc, and a
second dimming. Still, the morphology of the simulated jet is not close to the
observed one, but, as pointed out before, the head of our computation is still
not sufficiently far so as to extract any final conclusions in this aspect.

In Figures 4.18 and 4.19, we plot the profiles of variables on the jet axis.
In Fig. 4.18 we see how, after a short distance where the variables remain con-
stant, a strong adiabatic expansion motivates a fast decrease in all of them,
up to z′ = 1.5 kpc from the source. At the same time, in the plots for Lorentz
factor and axial velocity of Fig. 4.19 (panels b and c), we observe a strong
acceleration. When the jet becomes underpressured (see panel b in Fig. 4.18),

2Along this section and discussion of results we will use z as the coordinate referring to
distances to the injection point in the grid and z′ will stand for distances to the galactic
source (z′ = z + 500 pc).
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Figure 4.17: Lorentz factor (upper panel), and emission in arbitrary units (see
text, lower panel) at the last frame of the simulation in this work. Coordinates
are in parsecs (from injection in the grid), maximum Lorentz factor is γ = 5.31.

it recollimates, causing a sudden increase in the thermodynamical variables
and emission and a strong slowing down of the jet. Again, the jet becomes
overpressured and a slower expansion phase starts, with the consequent ac-
celeration and decrease in pressure, density and emission. This process is not
as fast and violent as the first, and it results in a second recollimation at
z′ ∼ 4.0 − 4.5 kpc. This point coincides with the observed slowing of the jet
in top panel of Figure 4.17, and with the place where we detect pulsation of
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the jet, as strong mass entrainment, indicated by tracers significantly smaller
than one, are observed at different times (not shown). Mass loading starting
at that distance is also confirmed by panel a in Fig. 4.18, where a progressive
increase in the rest mass density is apparent (see that the scale is logarithmic
in that panel). We can understand the second expansion and recollimation of
the jet as an oscillation around pressure equilibrium.

In Figure 4.20, we plot radially averaged variables, which have been weighted
with the tracer, for those cells where matter is moving forwards, i.e., with axial
velocity larger than zero, in order to have mean values for direct comparison
with LB02b. From those plots we can extract the same conclusions as from ax-
ial profiles: adiabatic expansion causes acceleration and the jet becomes finally
underpressured, what is followed by recollimation, slowing down and increase
of rest mass density and pressure; the jet becomes again overpressured, so
pressure oscillates around equilibrium. It seems that this equilibrium has al-
most been reached behind the head of the jet. Close to the bow-shock, the jet
is overpressured due to the presence of the shock.

Successive expansions and recollimations discussed in the previous para-
graphs produce the pinching of the jet, which is visible in Fig. 4.16. This
pinching causes mass entrainment, as occurred in simulations of Chapter 2,
although here the perturbation is already non-linear (e.g., the jet is highly
overpressured with respect to the ambient in the injection). Linear analysis
is, in this case, difficult, as the jet expands in a decreasing pressure/density
atmosphere, so that the differential equation for the development of perturba-
tions becomes very complex. We have derived this equation, which should be
solved in order to obtain the growing perturbations (see Appendix D).

4.2.4 Discussion and Conclusions

In this section, we have presented the status on a simulation of the jets in
the radiogalaxy 3C 31, based on the models in LB02a,b. Several implemen-
tations have been performed in the code in order to perform this simulation.
Our aim is to compare the final result of this simulation with those models.

The head of the bow-shock has reached a distance close to 9 kpc from
the injection position, so still no definite conclusions can be extracted. The
evolution of the jet in the grid occurs at quasi-constant speed (∼ 0.007 c), with
a slight slowing down with time, and in a self-similar way. We have also shown
that the jet spreads, forming a wide shear layer as it evolves. Compared to
simulations in Scheck et al (2002), this jet is 100 times less powerful, however
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Figure 4.18: Different profiles of variables on the jet axis at the last frame. (a)
Rest mass density (ρa,c), (b) pressure (ρa,c c2, dotted line is the original atmo-
spheric pressure on the axis) , (c) specific internal energy (c2), (d) temperature
(K). z′ stands for the distance to the source (z + 500 pc).

it propagates at a mean velocity which is slightly larger. This is due to the
fact that the jet in our simulation is overpressured and propagates through
a decreasing density atmosphere. The morphology of our jet is close to that
of the LH model in Scheck et al. (2002), but in our case, the jet is much
more pinched and presents entrainment behind the head (see last panel in
Fig. 4.19).
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Figure 4.19: Different profiles of variables on the jet axis at the last frame.
(a) Emission (code units, see text), (b) Lorentz factor, (c) axial velocity (c),
(d) tracer. z′ stands for the distance to the source (z + 500 pc).

The structures in the inner part of the jet have become quasi-stationary
by the time when we analyze these results. We observe a fast adiabatic ex-
pansion in the exit from the galactic core, as the jet propagates through the
steep density gradient of the galaxy. This expansion ends at z′ ∼ 1.5 kpc with
a sudden recollimation and slowing down of the flow. This recollimation gen-
erates a new overpressuring of the jet, which starts to expand again, though
slower than before, as it is embedded now in a much smoother density gra-
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Figure 4.20: Profiles of radially averaged variables, weighted with the tracer
and counting only those cells where the axial velocity is greater than zero. (a)
rest mass density (ρa,c, in this plot, due to the logarithmic scale, material ahead
of the shock -ambient material only- is not weighted with the tracer in order
to avoid zeros), (b) pressure (ρa,c c2, dotted line is the original atmospheric
pressure on the axis), (c) emission (the inner part is omitted in order to stress
the emission downstream), (d) Lorentz factor. z′ stands for the distance to
the source (z + 500 pc).

dient atmosphere. This process ends, as before in recollimation, this time at
z′ ∼ 4.0−4.5 kpc, the place where we have detected the stronger slowing down
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in the Lorentz factor map (see Fig. 4.17).
As we have mentioned in the previous section, connection of this simulation

with linear analysis is difficult, due to the complexity of the linear problem,
and to the fact that perturbations are already non-linear in the simulation.
In any case, we observe pinching of the mode, associated to expansion and
recollimation of the jet, which causes mass entrainment, and we also observe
the formation of a thick shear/mixing layer, which make this simulation com-
parable to UST1 models in Chapter 3.

LB02b suggest that the boundary between the inner and flaring regions (at
1.1 kpc from the source) consists on a discontinuity in velocity, density and
pressure which is behind the sudden increase of radio emission. Their results
say that, in the flaring region the jet undergoes a rapid expansion followed by
collimation, and ends at 3.5 kpc from the source, where the outer region starts.
The outer region is characterized by slow decrease in velocity, and continuous
mass-load. We identify the first discontinuity, boundary between inner and
flaring regions, with the recollimation at z′ ∼ 1.5kpc. Then, the flaring region
would be reproduced by the sudden increase in emission from that point,
followed by expansion of the jet and recollimation before going into the outer
region, the boundary between which is identified with the second recollimation
at z′ ∼ 4kpc. However, the head of the jet is still too close to have a proper
final morphology analysis of the outer region.

In Fig. 4.21, we plot the jet radius versus distance. The three regions are
clearly observed. Fitted opening angles (from fits shown by dotted lines in the
plot) are 9◦ in the inner region, 5◦ in the flaring region and 11.8◦ in the outer
one. We want to stress the similarities of the opening angles given here for
the flaring and outer regions with those given in LB02a,b (6.7◦ for the flaring
and 13.1◦ for the outer).

The main discrepancy between our results and those modelled by Laing
and Bridle is that emission in the inner region appears to be strong in our
simulation and that the Lorentz factor at the boundary between the inner
and the flaring regions is ∼ 5 in the simulation versus ∼ 2 in their analysis.
Both facts could be due to the large pressure ratio given at the injection,
which makes the jet to be very bright at that point. Also, we inject the jet
with the velocity given by LB02b at 1.1 kpc (boundary between inner and
flaring), and assumed by them to be constant form the origin. We observe
in the simulation that this velocity at the beginning of the strong density
gradient results in larger velocities at the boundary between inner and flaring
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Figure 4.21: Jet radius versus distance in the last frame. Jet radius is com-
puted taking the outermost position where the axial velocity is larger than
0.3 c. The boundaries between regions are marked with dashed vertical lines;
dotted lines indicate fitted parts in order to obtain opening angles.

regions. Slightly smaller injection velocities and pressure ratios could result
in values in the simulation closer to those fitted in LB02a for velocity at the
aforementioned first boundary. The shift in the position of boundaries between
regions could also be due to the large value of initial pressure ratio: a smaller
value of this ratio could bring the boundaries closer to the observed values, as
less time/space would be needed to reach jet underpressure and recollimation.

Regarding mass entrainment, we have detected strong, but intermittent,
loading of external material at z′ ∼ 4kpc. Intermittence in this process is due
to jet pulsation because of the close presence of the head of the jet. This place
coincides with the boundary between the flaring and the outer regions, which is
exactly the place where LB02b compute strong entrainment rate (at 3.5 kpc in
their case). Again, since the head is too close, no definitive conclusions can be
derived, though it seems that the strong pinching caused by the recollimation
occurring at this point could be responsible of the entrainment, as we have
seen in Chapter 2.
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The lack of appropriate resolution in the simulation causes that entrain-
ment is damped by numerical viscosity. Although, as we have mentioned,
entrainment occurs in the simulation during jet pulsation, we will have to
wait until the proper end of the simulation to compare it with computations
in LB02b and check if the mass loading will be enough to explain the jet de-
celeration pointed out in LB02a,b and the observed morphology of the radio-
galaxy 3C 31. Comparison with other FRI models like those from Komissarov
(1990a,b, 1994), Falle (1991) or Bicknell (1984, 1994) will be undertaken.
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Chapter 5

CONCLUSIONS

This work represents an important step in the understanding of linear and
non-linear stability of relativistic flows. We present linear analysis and nu-
merical simulations for jets spanning a wide range of specific internal energies,
Lorentz factors and relativistic Mach numbers in the vortex sheet and shear
layer cases. We present our first attempt to apply stability theory to numerical
simulations of parsec and kiloparsec scale extragalactic jets.

Many different ingredients have been worked out with that aim. From
a theoretical point of view, we have implemented a robust numerical solver
for the stability problem which can be applied in many general conditions,
and we have developed the stability problem for sheared rotating relativistic
jets; both achievements set the basis for further steps in the solving of more
realistic situations as will be, for example, the inclusion of magnetic fields.
From a numerical point of view, several major improvements in the original
hydrodynamical code have been implemented, as the perfect symmetrization
of the code, implementation of left eigenvectors and analytic expressions for
numerical viscosity, full parallelization and optimization, implementation of a
fully 3D relativistic hydrodynamics code, implementation of a general equation
of state for relativistic gases and the necessary set up for galactic atmospheres
in equilibrium.

Our main results and conclusions are:

• Our numerical code is able to reproduce accurately the linear growth
of Kelvin-Helmholtz instabilities in both vortex sheet and shear layer
cases, if we use the appropriate numerical resolution (which minimizes
the effects of numerical viscosity) for the problem.
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• We have confirmed Hanasz’s hypothesis (1995, 1997), who predicted
that instabilities in relativistic fluids saturate when the amplitude of the
velocity perturbation reaches the speed of light in the jet reference frame.

• We have separated the evolution of Kelvin-Helmholtz instabilities in rel-
ativistic jets in three phases: linear phase, saturation phase and non-
linear phase. We have studied the influence of numerical resolution in
the linear/saturation and non-linear phases.

• We have studied and classified the non linear evolution of Kelvin-Helmholtz
instabilities in a quantitative way, by means of mean variables like lon-
gitudinal momentum in the jet and the width of the mixing region.

• We have discovered the existence of resonant modes in sheared jets,
which have a great importance in the stability properties of jets. Their
fast growth in high Lorentz factor/relativistic Mach number models re-
sults in a smooth transition to the non linear regime, avoiding the gen-
eration of shocks, and favor the generation of a hot shear layer which
surrounds the jet core. Those models in which these modes do not appear
are disrupted, with important loss of momentum and internal energy, ei-
ther suddenly after the shock generation at the end of the saturation
phase, or in a slow non-linear mixing process.

• We have derived a stability map for relativistic flows, depending on their
relativistic Mach number and on their Lorentz factor, and we show that
jets with high values of both variables tend to be more stable than the
rest.

• We have started a series of numerical simulations of the parsec scale
jet in 3C 273 with the aim of testing results by Lobanov and Zensus
(2001), who, using linear theory (e.g., Hardee 2000), explained observed
structures in the jet as a consequence of the development of instabilities,
and trying to find an accurate method which allows for derivation of jet
parameters. We have concluded that observed structures are identifi-
able with perturbations induced, either by precession and superluminal
components (simulation B) or by any other mechanism which induces
the development of Kelvin-Helmholtz instabilities (simulation A). Fine
tuning of the velocity of propagation of perturbations and viewing angle
must be done in order to clearly identify observed structures. In this
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sense, numerical simulations of this kind may be used in order to con-
strain those parameters. We have found that the jet is disrupted close
to injection (simulation A), contrary to observations and suggest mech-
anisms which could avoid this breaking of the flow which will be tested
in the future.

• We are performing a long term evolution simulation of the jets in 3C31,
focusing on its evolution through the galaxy and entrance in the in-
tergalactic medium. We have used the parameters given in Laing and
Bridle (2002 a,b), with the purpose of testing the model and performing
a stability study of jets evolving in a profiled medium. We reproduce in
a qualitative way their modelling of the inner part of the jets, with dis-
crepancies regarding the velocities and emission in the innermost region,
which are partially understood. We have to wait until the end of the
simulation in order to give a deeper analysis of the simulation in com-
parison with the models in the aforementioned papers and other FRI
evolution models. This kind of simulations will open the way towards
the understanding of the FRI/FRII dichotomy.

Several aspects like the physical origin of the resonant modes and the
reason for their faster growth in simulations than that predicted by theory, or
the disruption of the jet in simulation A of 3C 273, which are not understood
will be addressed in the continuation of this research.

Future prospects of the work include the continuation of this line of re-
search, by studying effects like jet differential rotation or expansion on the
instabilities, and trying to understand the mechanisms which make some jets
to keep their collimation and stability through many decades in distance. The
development of the stability problem in the case of relativistic magnetohy-
drodynamics (RMHD), along with the use of the RMHD code developed in a
collaboration between the Relativistic Astrophysics group in the Universitat
de València and the Hydro group in the Max Planck Institut für Astrophysik
in Garching (Germany) (Leismann et al. 2005), and the possible inclusion of
radiation transport in our computations, will generate results which could be
directly comparable with observations. In this direction, continuation of direct
collaborations with radio astronomers will allow to work out a robust method
for the derivation of the parameters and physical conditions in relativistic jets
and their environments.
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Appendix A

Numerical code

Our aim is to solve the equations for the relativistic fluid dynamics of a
perfect gas. These are non-linear equations that cannot be solved analyti-
cally. For a review on this topic, see Taub (1978). Using Einstein’s summing
convention, we can write them as follows:

(ρ uµ);µ = 0 , (A.1)

(Tµν);ν = 0 , (A.2)

where µ, ν = 0, 1, 2, 3 and ;µ denotes the covariant derivative with respect to
coordinate xµ. ρ is the proper rest mass density of the fluid, uµ are the four-
velocity components, and Tµν is the stress-energy tensor, which, for a perfect
fluid (that assumed in our code) can be written as:

Tµν = ρ h uµ uν + p gµν , (A.3)

where p is pressure of the fluid, gµν is the metric tensor and h is the specific
enthalpy defined as

h = 1 + ε/c2 + p/(ρ c2) , (A.4)

with ε the specific internal energy and c the speed of light, which we will take
as one (c = 1).

In Minkowski space-time and Cartesian coordinates (t, x1, x2, x3), the con-
servation equations (A.1) and (A.2) can be written in conservation, vectorial
form:

∂u
∂t

+
∂Fi(u)

∂xi
= 0 , (A.5)
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with i = 1, 2, 3. The state vector u is defined as

u = (D,S1, S2, S3, τ)T , (A.6)

and the flux vectors Fi(u) are given by

Fi(u) = (D vi , S1 vi + pδ1 i , S2 vi + pδ2 i , S3 vi + pδ3 i , Si − D vi)T . (A.7)

The five conserved quantities D, S1, S2, S3 and τ are rest mass density, the
three components of the momentum density, and energy density (excluding
rest mass density). They are all measured in the laboratory frame, and re-
lations with the corresponding quantities in the local rest frame of the fluid
(primitive variables) are

D = ρW , (A.8)

Si = ρ h W 2 vi , i = 1, 2, 3 , (A.9)

τ = ρ h W 2 − p − D , (A.10)

with vi the components of the three-velocity of the fluid

vi = ui/u0 , (A.11)

and W the Lorentz factor

W = u0 =
1√

1− vivi

. (A.12)

In order to recover the equivalent conserved magnitudes in the newtonian
regime, we consider v ¿ c and h → 1 (see Eq. A.4). We obtain D → ρ,
Si → ρ vi, and τ → ρE = ρε + ρv2/2, and equations A.5 become the non-
relativistic conservation equations.

System (A.5) is closed by an equation of state (EOS), which we assume of
the form:

p = p(ρ, ε) (A.13)

As mentioned above, this system (A.5) cannot be solved by analytic means,
so that numerical codes are required. Our code was developed by Dr. J.M.
Mart́ı and first results where presented in Mart́ı et al. (1995).

In order to solve system (A.5), we discretize the state vector U within com-
putational cells. Temporal evolution of quantities in this vector is determined
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by the flux balance across the boundaries between separating cells. Using a
method of lines (see, LeVeque 1992), discretization leads to:

dUi,j,k

dt
= − 1

∆x

(
F̃x

i+ 1
2
,j,k

− F̃x
i− 1

2
,j,k

)
− 1

∆y

(
F̃y

i,j+ 1
2
,k
− F̃y

i,j− 1
2
,k

)
−

1
∆z

(
F̃z

i,j,k+ 1
2

− F̃z
i,j,k− 1

2

)
+ Si,j,k ≡ L(U),(A.14)

where the Latin indices i, j, and k refer to the x, y and z coordinate directions,
respectively. Ui,j,k and Si,j,k are the mean values of the state and source
(any forces acting on the system or geometrical terms, if any) vectors in the
corresponding cell, while F̃x

i± 1
2
,j,k

, F̃y

i,j± 1
2
,k

, and F̃z
i,j,k± 1

2

are the numerical

fluxes at the respective cell interface. Finally, L(U) is a short hand notation
of the spatial operator in our method.

Next, we need to compute numerical fluxes. Fluxes are calculated with an
approximate Riemann solver that uses the complete characteristic informa-
tion contained in the Riemann problems between adjacent cells (Donat and
Marquina 1996). It is based on the spectral decomposition of the Jacobian
matrices of the relativistic system of equations derived in Font et al. (1994)
and uses analytical expressions for the left eigenvectors (Donat et al. 1998).
The spatial accuracy of the algorithm is improved up to third order by means
of a conservative monotonic parabolic reconstruction of the pressure, proper
rest-mass density and the spatial components of the fluid four-velocity (PPM,
see Colella and Woodward 1984, and Mart́ı and Müller 1996).

Besides relativistic density, momentum and energy, the code also evolves
a passive scalar representing the jet mass fraction. This allows us to distin-
guish between ambient and jet matter helping us to characterize processes like
jet/ambient mixing or momentum exchange.

Integration in time is done simultaneously in both spatial directions using
a multi-step total-variation-diminishing (TVD) Runge-Kutta (RK) method
developed by Shu and Osher (1988), which can provide second (RK2) and
third (RK3) order in time. The explicit form of the algorithm is (subindexes
(i,j,k) are omitted):
1. Prediction step

U(1) = Un + ∆tL(U) , (A.15)

with n the time step.
2. Depending on the order:
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• RK2:
Un+1 =

1
α

(
βUn + U(1) + ∆tL(U(1))

)
, (A.16)

with α = 2 and β = 1.

• RK3:
U(2) =

1
α

(
βUn + U(1) + ∆tL(U(1))

)
(A.17)

Un+1 =
1
β

(
βUn + 2U(2) + 2∆tL(U(2))

)
, (A.18)

with α = 4 and β = 3.

Recovery of velocity vector components is more difficult in the relativistic
case than in the classical one. In the latter case conserved variables are ρ and
ρ vi, so that deriving vi is straightforward. On the other hand, in the former
case, conserved quantities are coupled through Lorentz factor, which makes re-
covery of velocity components a difficult task solved by numerical techniques.
As our code works using conservative schemes which evolve conserved quanti-
ties, we need to compute primitive variables from those conserved quantities
several times per numerical cell and time step, making this problem a crucial
part of the algorithm. This is done by using a Newton-Raphson algorithm
(see Appendix B). The function for which we have to find roots is (see Aloy
1999):

f(p) = (γ − 1)ρ∗ε∗ − p, (A.19)

where ρ∗ and ε∗ are given by:

ρ∗ =
D

W∗
(A.20)

and

ε∗ =
τ + D(1−W∗) + p(1−W 2∗ )

DW∗
, (A.21)

with W∗ the corresponding Lorentz factor for

v∗ =
S

τ + D + p
. (A.22)
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If we take into account that |v| ≤ 1, we obtain, from last equation, a minimum
value for the pressure:

pmin = |S| − τ −D, (A.23)

so the root must be found in the domain p ∈]pmin,∞[. Newton-Raphson
iteration is done approximating the derivative of function f , f ′ as:

f ′ = |v∗|2c2
s∗ − 1, (A.24)

where cs∗ is the sound speed

cs∗ =

√
(γ − 1)γε∗

1 + γε∗
. (A.25)

Summarizing, steps followed by the code are: first, the code builds the
grid and gives initial conditions to the problem. After that, evolution starts.
Every time step is divided into two or three Runge-Kutta steps. During a
Runge-Kutta step the code performs:

• for each spatial direction:

– vectorization of physical variables,

– computation of geometrical variables for the cells in the vector and
geometric effects as source terms appearing in cylindrical coordi-
nates,

– computation of source terms, if any,

– computation of boundary conditions,

– interpolation of physical variables to find the values in cell inter-
faces,

– computation of numerical fluxes in cell boundaries,

• conserved variables advance in time using previous time step values and
numerical fluxes,

• and recovery of physical variables using Newton-Raphson.

After the Runge-Kutta steps, next time step value is computed using CFL
condition, and output is done if requested.

Several main improvements were applied to the code during the develop-
ment of this PhD. work:
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• In order to solve the system of equations (A.5) we need to derive the left
and right eigenvectors from the spectral decomposition of the Jacobian
matrix ∂F(U)/∂U. The expression for both was given in Donat et al.
(1998). Previous to this work, the code computed the left eigenvectors
from the inversion of the right eigenvector matrix. Now, left eigenvectors
have been explicitly implemented.

High-resolution shock-capturing methods generate numerical viscosity
terms which were formulated in Aloy et al. (1999b) (see also Aloy
1999), what allows for reduction of computational time and damping of
rounding-off errors. These expressions for the numerical viscosity terms
were also added to the code.

• Symmetrization of the code was done by locating the source of asymme-
try in the rounding-off errors of PPM reconstruction. PPM method was
therefore symmetrized around the axis: each side of the grid around the
axis is reconstructed from opposite sides. In the case of antisymmetric
flows, we had to take into account that diagonal symmetry forces the
axis (it coincides with a cell interface) to be reconstructed from a differ-
ent side on each longitudinal half of the grid; if this is not considered,
the differences are not apparent in the linear regime, but the rounding-
off difference in the axis interface in both halves of the grid ends up by
generating non symmetric structures in the non-linear regime. This has
been tested in a series of simulations for single antisymmetric perturba-
tions.

• The code was parallelized using OMP directives. In particular, the out-
ermost loop of each sweep in all Runge-Kutta steps, the recovery of
physical variables, and the computation of the Courant condition for
the time step were parallelized. This represented a major achievement,
as the saving of computational time has allowed for the use of larger
grids and for the performing of more numerical simulations which have
been crucial in the final conclusions reached in this work.

• The implementation of a 3D RHD code was achieved, as an extension
of the 2D one used in the first part of the work and based on the code
GENESIS (Aloy 1999). This code was optimized in order to reduce the
number of variables used in the computation, thus decreasing the amount
of RAM memory required. This new code was used in simulations on
the jet in 3C 273 (see Section 4.1).
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• Implementation of a realistic equation of state (Synge, 1957), from rou-
tines programmed by L. Scheck (see Scheck et al. 2002). This equation
of state allows for the use of different particles in simulations, differen-
tiating electrons (and positrons) from protons. This equation of state
was used in simulations on the evolution of the jets in 3C 31 (see Section
4.2).
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Appendix B

Numerical methods

B.1 Newton-Raphson method

We use Newton-Raphson method for non-linear systems of equations (Press
et al. 1992) to solve equations like (2.26) or inside the numerical code, in the
recovery of physical variables and in the Synge equation of state computation.
Our system of two equations is formed by the real and imaginary parts of
equation (2.26). Unknowns are real and imaginary part of frequency (w) for a
given wave-number (k). Let us express a general system in the following form:

fi(x1, x2, ..., xN ) = 0 i = 1, 2, ..., N (B.1)

If we write the vector of values (x1, x2, ..., xN ) as X, we can expand each fi

close to X in Taylor series:

fi(X+δ X) = fi(X) +
N∑

j=1

∂fi

∂xj
δxj + O(δX2) (B.2)

Neglecting terms of order δX2, we obtain a set of linear equations for δX,
which approach the functions to zero simultaneously. These equations have
the following form:

N∑

j=1

αijδxj = βi , (B.3)

where
αij =

∂fi

∂xj
βi = −fi (B.4)
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Equation (B.3) can be solved by LU decomposition (see below). New vector
of values X will be:

xn+1
i = xn

i + δxi i = 1, ..., N , (B.5)

where n is the number of iterations. This process has to be repeated until
convergence is reached.

LU decomposition consists on writing a matrix A as the product of two
matrices, one of which presents only elements on the diagonal and below (L)
and the other presents them on the diagonal and above (U). In this way, L ·
U = A. We can use this to re-write a linear set of equations:

A· x = b =⇒ (L·U)· x = b =⇒ L·(U·x) = b (B.6)

Now, we can easily solve for a vector y=L·x,

L·y = b , (B.7)

and then,
U·x = y (B.8)

B.2 Muller’s method

Muller’s method (Amat et al. 2002) is used in order to solve for zeros of
the dispersion relation for cylindrical coordinates or in the numerical solver of
the sheared jet problem. It consists in an extension of secant method, and the
fact that it does not use derivatives makes it very stable in discontinuities.

The idea is to use three initial approximations (xi, f(xi), i = k−2, k−1, k,
where k is the step), to build a parabola, q(x), and then to find the closest root
for this parabola to the first guess. This root will be next guess, and so on,
until we find convergence. The initial x−2 and x−1 are produced automatically
by the routine. Parabola q(x) is defined as:

q(x) = b0 + b1(x− xk) + b2(x− xk)(x− xk−1) , (B.9)

if we impose that q(xi) = f(xi) for i = k − 2, k − 1, k, we have:

b0 = f(xk) (B.10)

b1 =
b0 − f(xk−1)
xk − xk−1

(B.11)
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b2 =
b1 − f(xk−1)−f(xk−2)

xk−1−xk−2

xk − xk−2
(B.12)

We see that q(x) is nothing but Newton’s polynomial interpolation formula.
This way of building the parabola makes the method useful for any function
with numerical values for all x. Now we change variable in order to work with
differences and look for the closest solution to xk for the parabola. We define:

hk = xk − xk−1 λhk = x− xk , (B.13)

and therefore x− xk−1 = (1 + λ)hk−1, so we can write:

q(λ) = b0 + b1hkλ + b2hkhk−1λ(1 + λ) (B.14)

Next step is to write this polynomial as q(λ) = A0 + A1λ + A2λ
2, so the

solution with the minor modulus for λ is,

λ∗ =
2A0

A1 ±
√

A2
1 − 4A0A2

, (B.15)

where we have to choose sign ± for the denominator to have maximum mod-
ulus. Finally, next guess will be xk+1 = xk + λ∗hk.

B.3 Shooting method

The shooting method (Press et al. 1992) is used in order to solve differential
equations. It consists on giving boundary conditions to the problem on two
points (one dimensional), integrating the equation from the first to the second,
and look for solutions which accomplish the conditions at this last point. It
requires the use of two numerical methods, a variable stepsize Runge-Kutta
method (see section A for an example of Runge-Kutta integration and Press et
al. 1992 for variable stepsize integration) and Muller method for root finding.

We use this method in order to solve equation (3.1). This equation stands
for the dynamics of a pressure perturbation, P1, wave in a sheared slab jet. As
in the vortex sheet case, we can solve it for the symmetric or the antisymmetric
case. The former requires that the value of the pressure perturbation in the
axis is a maximum (the value of the amplitude), and the first derivative is thus
zero, opposite to the antisymmetric problem:

P1(x = 0) = 1, P ′
1(x = 0) = 0 (sym. modes), (B.16)

P1(x = 0) = 0, P ′
1(x = 0) = 1 (antisym. modes).
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Given amplitudes in the jet axis have been proved not to influence the result
(excepting if too small amplitudes are considered, where the trivial solution is
found). From the axis, for a given k and ω, we use the adaptive step Runge-
Kutta method in order to integrate the equation to the outer boundary, which
should be as far as possible to the transition (convergence tests have to be
undertaken for this), what depends on the value of m (steepness of the layer).
Solutions satisfying the Sommerfeld radiation conditions (no incoming waves
from infinity and wave amplitudes decaying towards infinity) are selected:

P1(x = xf ) +
i P ′

1(x = xf )
kx

= 0 (B.17)

where xf is the x-coordinate of a point far enough from the jet. A convergence
value of 10−8 is required. If our selected values of k and ω do not fulfill equation
(B.17), Muller method looks for another value of ω and the integrating process
starts again. A large loop sweeping wavenumbers is given to the program, and,
as there may be many modes present at a given wavenumber, also a grid of
starting points in ω is given for each k, in such a way that solutions around
that initial pair of numbers (k,w) are found.



Appendix C

Special relativity in
extragalactic jets

Special relativity theory is 100 years (1905-2005), and this thesis deals on
relativistic flows, words which appear on the title followed by application to
extragalactic jets. How have we reached the knowledge that relativity is to
be applied in this case? After one century of theoretical and observational
research, special relativity has been confirmed both experimentally (in par-
ticle accelerators) and observationally (in the atmosphere -cosmic rays- and
in the Universe). Several astrophysical scenarios (gamma-ray bursts, galactic
superluminal sources and jets in AGN’s) have been explained on the basis of
this theory. Not only due to the anniversary, but also to its central role in this
work, we will review the evidences of relativity acting in extragalactic jets.
For a review on this topic see Ghisellini (2000).

Observational features of extragalactic jets which are not understood on
the basis of non-relativistic motion:

• One-sidedness. If we consider the scenario of jet formation in the way
that most accepted theories explain it, it consists of an accretion disk
around a compact object, out of which matter is taken by magneto-
rotational processes. The disk-compact object is an up-down symmetric
system, and therefore we should expect that one jet is formed on each
side; however, most of extragalactic jets appear to be only one-sided in
the parsec scales.

• Inverse Compton. Inverse Compton scattering is a process by which
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a photon colliding with a relativistic particle gains an amount of energy
which is proportional to the square of the particle’s Lorentz factor. This
scattering makes that synchrotron photons typically emitted from radio
to optical, are turned into X-ray photons. Observed radio emission from
many jets implies larger X-ray emission than observed.

• Brightness temperature. This magnitude (Tb) is defined as Iν ≡
2kBTbν

2/c2, where Iν is the specific intensity of the source at frequency
ν, kB is the Boltzmann constant, and c is the speed of light. High val-
ues of Tb imply high values of specific intensity, i.e., a large number
of photons (and emitting particles) at that frequency, and this makes
the probability of inverse Compton scattering larger. It is known that
for Tb > 1012K, the amount of radiation produced by inverse Compton
should be larger than that due to synchrotron radiation, and as a con-
sequence, to a dramatic particle cooling known as Compton catastrophe.
Despite this theoretical limit, many jets present brightness temperatures
larger that 1012K.

• Superluminal motion. VLBI observations allowed to measure the
velocity of individual blobs in parsec scale jets, which were derived to be
larger than the speed of light.

C.1 Beaming and its effects

We know that radiation from jets in AGN’s is synchrotron radiation from
accelerated electrons by a magnetic field (Rybicki and Lightman 1979). Charged,
accelerated, non-relativistic particles emit radiation following the equation:

P =
2q2

3c3
a2, (C.1)

where P is the total power emitted, q is the charge, c is the speed of light
and a is the acceleration. This radiation is emitted in dipole form (∝ sin2Θ,
being Θ the angle to the direction of acceleration). However, if the radiating
particle is moving relativistically, and the acceleration vector is perpendicular
to the velocity vector (which is the case for synchrotron radiation, see section
1.3.4), emission suffers an aberration that makes a large part of the radiation
to be emitted in a cone of semi-angle 1/γ (γ the Lorentz factor) with respect
to the direction of velocity.
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Another effect that occurs due to the relativistic motion of radiating par-
ticles is the contraction of arrival time of photons emitted by particles moving
towards the observer (Doppler effect). The relation between both intervals is:

∆ta = γ(1− βcosθ)∆te ≡
∆te
δ

(C.2)

where ∆ta is the interval between the arrival of the two photons in the reference
frame of the observer, β is the velocity of the flow in units of the speed of light,
θ is the angle between velocity of the particle and the line of sight, and ∆te is
the interval between the emission of both photons, in the reference frame of
the particle. We have also introduced δ, defined as 1/γ(1 − βcosθ), which is
known as the beaming or Doppler factor.

If we take these effects into account, the fact that only one-sided jets are
observed in many sources can be naturally explained by the jets moving rela-
tivistically and one of them closely to our line of sight; brightness temperature
values have to be thus corrected, if emission is not isotropic, and they must
therefore be much lower than estimated if we are observing the approaching
jet. The same applies to inverse Compton scattering estimations, which have
to be revised in terms of anisotropy of radiation by relativistic particles. When
putting all these observations in the light of special relativity, they are easily
explained. Moreover, these observations allow us to put limits on the Lorentz
factor and viewing angle of jets.

C.2 Superluminal motion

One fact remains to be explained: superluminal motion of blobs in the
jets. It can also be understood as a relativistic effect. Consider Figure C.1:
a blob of matter is moving along the line A-B forming an angle θ with the
line of sight, and it emits a photon at A, and later, another from B. Consider
also that the observer is at an infinite distance. The time elapsed between
two emissions is, in the reference frame of the observer ∆te. The distance
from A to B is βc∆te, and the distance from A to (B cos θ) is thus βc∆tecosθ.
Meanwhile, the photon emitted at A has reached position C, at a distance c∆te.
Therefore, the distance between the photon emitted at A and that emitted at
B is AC−A(B cos θ) = c∆te(1−βcosθ). As they at a constant speed (of light),
the difference in arrival times is ∆te(1−βcosθ), i.e., shorter than ∆te. Taking
into account that the projected distance (the distance observed) between A
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and B is (B cos θ)B = βc∆tesinθ, we can measure the apparent velocity :

βapp =
βsinθ

1− βcosθ
. (C.3)

We can see that βapp > 1 if β is close to 1, and θ is sufficiently small. This

Figure C.1: Schematic view of superluminal motion and apparent veloc-
ity versus viewing angle for different flow speeds. Taken from web page
http://parsnip.wooster.edu/thesis/html/node14.html

effect is, as we have seen, due to the contraction of arrival times of photons.
With this demonstration, we have shown that those previously unexplained

observational features of extragalactic jets are easily fitted under the light of
special relativity. This is nothing but the proof that these jets move at speeds
close to the speed of light, and that special relativity is at action. Other
observational features are not direct evidence of relativistic motion, but they
confirm this point. The most characteristic are:

• Laing-Garrington effect: the lobe associated with the observed one-sided
jet is less polarized, meaning that the light coming from it is travelling a
shorter path, as light is depolarized by matter, i.e., it should be associ-
ated to the approaching jet, in agreement with beaming considerations.

• Jet bending: Many jets are observed to be curved, what generates prob-
lems of stability. However, this could be explained as apparent dis-
tortions caused by small viewing angles, also consistent with beaming.
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Two nice examples of these distortions are shown in Ghisellini (2000)
as a moving bar (which is apparently lengthened) or a square (which is
apparently rotated).
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Appendix D

Linear stability problem for
sheared jets

In this Appendix, we present the development of the linear stability prob-
lem for sheared jets in several situations. In Section D.1, we develop the dif-
ferential equation for a sheared slab, relativistic jet. This equation has been
used in Chapter 3 in order to analyze the evolution of perturbations in this
frame. Sections D.2 and D.3 are devoted to sheared cylindrical and conical
jets, where the flow has an initial rotating velocity. None of both equations
has been directly applied along this work (only that for cylindrical jets, and
with no rotation was solved in several cases to be applied in Chapter 3). How-
ever, they have been derived for their theoretical interest and their potential
application in astrophysical scenarios.

The first case will be of interest in order to study the influence of rotation
in the stability of parsec and kiloparsec scale jets. The fact that jets present
differential rotation is deduced from formation models which involve magne-
tocentrifugal processes (see the list of references in Hanasz et al. 2000). We
plan to solve this equation in order to apply it to simulations like those shown
in Section 4.1.

The second case is of direct application in cases like that in the simula-
tion of 3C 31 presented in this work. In the simulation, the jet is initially
overpressured with respect to the ambient. However, we need to make some
assumptions to simplify the equations and in order to be able to solve them
numerically. Due to this fact, we assume pressure equilibrium and constant
opening angle of the jet. This is a simplifying approach to the real problem,
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but it can give us some interesting conclusions of the effects of jet expansion
through an external density gradient on its stability. This equation could also
be applied in the case of Gamma Ray Bursts (GRBs), in which strong vari-
ability in the emission is thought to be associated with perturbations in the
jet (see, e.g., Aloy et al. 2002).

D.1 Slab jet

This equation was first derived, for the case of cylindric geometry, by
Birkinshaw (1984), but we include here the derivation as it has not been
published elsewhere. We start with the energy momentum tensor:

Tµν = (ρ + P )uµ uν + P gµν , (D.1)

where P is pressure of the fluid, ρ is the energy density, gµν is the metric
tensor and uµ is the four-velocity. We will use uµ = γ(1,v) (γ is the Lorentz
factor) and ρ h = ρ + P , with h the specific enthalpy. Doing Tµν

;ν = 0, we
find, for µ = i:

γ
∂

∂t
(ρhγv) + γ(v· ∇)(ρhγv) + ρhv

(
∂γ

∂t
+ (v·∇)γ + γ2∇·v

)
+ ∇P = 0,

(D.2)
and for µ = 0:

γ
∂

∂t
(ρhγ) + γ(v· ∇)(ρhγ) + ρh

(
∂γ

∂t
+ (v·∇)γ + γ2∇·v

)
− ∂P

∂t
= 0. (D.3)

Using both equations we can derive the momentum equation:

ρhγ2

(
∂γ

∂t
+ (v·∇)v

)
= −∇P − v

∂P

∂t
. (D.4)

If we do the following contraction uµTµν
;ν = 0, we obtain the equation for

energy:

γ

(
∂ρ

∂t
+ v·∇ρ

)
= −ρh

(
∂γ

∂t
+ v·∇γ + γ∇·v

)
. (D.5)

From the expression (nuµ);µ = 0, with n the number density, we obtain
the continuity equation:

γ

(
∂n

∂t
+ v·∇n

)
+ n

(
∂γ

∂t
+ v·∇γ + γ∇·v

)
= 0. (D.6)
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Combining eqs. (D.5) and (D.6) we find the following relation between
energy and number density:

1
n

(
∂n

∂t
+ v· ∇n

)
=

1
ρh

(
∂ρ

∂t
+ v·∇ρ

)
. (D.7)

We can write las expression in terms of entropy (s), by using the first law
of thermodynamics (dρ = Tds + ρh/n dn),

∂s

∂t
+ v·∇s = 0, (D.8)

and, taking s = s(ρ, P ), we find the following adiabatic equation:

∂P

∂t
+ v·∇P = c2

s

(
∂ρ

∂t
+ v·∇ρ

)
, (D.9)

with c2
s ≡

(
∂P
∂ρ

)
s

the relativistic sound speed.

Now we introduce a linear perturbation in the variables (ρ = ρ0 + ρ1,
P = P0 + P1 and v = v0 + v1). Perturbed, linearized Lorentz factor is
γ = γ0 + γ3

0v0·v1/c2, and γ2 = γ2
0 + 2γ4

0v0·v1/c2. Considering a steady slab
jet like that in Figure 2.1 in pressure equilibrium with the ambient medium,
and surrounded by a smooth transition or shear layer (with v0z(x) and ρ0(x),),
equation (D.5) results:

γ0

(
∂ρ1

∂t
+ v0z

∂ρ1

∂z
+ v1x

∂ρ0

∂x

)
+ ρ0h0

(
∂γ1

∂t
+

∂γ1v0z

∂z
+

∂γ0v1x

∂x
+

∂γ0v1z

∂z

)
= 0,

(D.10)
equation (D.4):

γ2
0ρ0h0

(
∂v1

∂t
+ (v1· ∇)v0 + (v0·∇)v1

)
= −∇P1 − v0

∂P1

∂t
, (D.11)

and equation (D.9):

∂P1

∂t
+ v0·∇P1 = c2

s

(
∂ρ1

∂t
+ v0· ∇ρ1 + v1·∇ρ0

)
. (D.12)

Assuming wave-like patterns for the perturbations ∝ x1(x) ei(wt−kzz), where
x1(x) contains the transversal dependence, we get, for equation (D.10):

i(w − kzv0z)ρ1 +
∂(ρ0h0v1x)

∂x
+

ρ0h0

(
i(γ2

0v0z(w − kzv0z)− kz)v1z + γ2
0v0z

dv0z

dx
v1x

)
= 0, (D.13)
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equation (D.4), transversal direction (x):

γ2
0ρ0h0i(w − kzv0z)v1x = −∂P1

∂x
, (D.14)

equation (D.4), axial direction (z):

γ2
0ρ0h0

(
i(w − kzv0z)v1z +

dv0z

dx
v1x

)
= i(kz − wv0z)P1, (D.15)

and equation (D.12):

i(wt− kzz)P1 = c2
s0

(
i(w − kzv0z)ρ1 +

dρ0

dx
v1x

)
. (D.16)

Expressing P1 in terms of the variables v1x in equation (D.14), v1z in equa-
tion (D.15) and ρ1 in equation (D.16), bringing these expressions to equation
(D.13), and after some algebra, we find the following differential equation for
pressure perturbation:

∂2P1

∂x2
+

(
2γ2

0
dv0z
dx (kz − wv0z)

(w − kzv0z)
−

dρ0

dx

ρ0h0

)
∂P1

∂x
+

γ2
0

(
(w − kzv0z)2

c2
s0

− (kz − wv0z)2
)

P1 = 0. (D.17)

D.2 Cylindrical rotating jet

If we consider a cylindrical jet, with angular velocity vθ 6= 0 (v0z(r), v0θ(r)
and ρ0(r)), equation (D.10) would read:

γ0

(
∂ρ1

∂t
+

v0θ

r

∂ρ1

∂θ
+ v0z

∂ρ1

∂z
+ v1r

∂ρ0

∂r

)
+

ρ0h0

(
∂γ1

∂t
+

1
r

∂(γ1v0θ)
∂θ

+
∂(γ1v0z)

∂z

)
+

ρ0h0

(
1
r

∂(rγ0v1r)
∂r

+
1
r

∂(γ0v1θ)
∂θ

+
∂(γ0v1z)

∂z

)
= 0. (D.18)

Considering wave-like perturbations ∝ x1(r) ei(wt−nθ−kzz), where x1(r) con-
tains the radial dependence of the perturbation and n is the azimuthal wavenum-
ber (an integer number of waves around the circumference of the cylinder),
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previous equation would result:

γ0i
(
w − n

r
v0θ − kzv0z

)
ρ1 + γ0v1r

dρ0

dr
+

ρ0h0γ
3
0i

(
w − n

r
v0θ − kzv0z

)
(v0θv1θ + v0zv1z) +

ρ0h0

(
γ0v1r

r
+ v1r

dγ0

dr
+ γ0

∂v1r

∂r
− in

r
γ0v1θ − ikzγ0v1z

)
= 0, (D.19)

equation (D.4), radial direction (r):

γ2
0ρ0h0i

(
w − n

r
v0θ − kzv0z

)
v1r +

∂P1

∂r
= 0, (D.20)

equation (D.4), azimuthal direction (θ):

γ2
0ρ0h0i

(
w − n

r
v0θ − kzv0z

)
v1θ + γ2

0ρ0h0v1r
∂v0θ

∂r
− in

r
P1 + iwv0θP1 = 0,

(D.21)
equation (D.4), axial direction (z):

γ2
0ρ0h0i

(
w − n

r
v0θ − kzv0z

)
v1z + γ2

0ρ0h0v1r
∂v0z

∂r
− ikzP1 + iwv0zP1 = 0,

(D.22)
and equation (D.12):

i
(
w − n

r
v0θ − kzv0z

)
P1 − c2

s0

(
i
(
w − n

r
v0θ − kzv0z

)
ρ1 + v1r

∂ρ0

∂r

)
= 0.

(D.23)
Substituting P1 in terms of v1r in equation (D.20), in terms of v1θ in equation
(D.21), of v1z in equation (D.22) and ρ1 in equation (D.23) and bringing all
the resulting expressions to (D.19), we obtain:

∂2P1

∂r2
+ F1(r)

∂P1

∂r
+ F2(r)P1 = 0, (D.24)
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where F1(r) is:

F1(r) =
1
r
−

2
dv0θ
dr

(
γ2

0v0θ

(
w − n

r v0θ − kzv0z

)
+ n

r

)
(
w − n

r v0θ − kzv0z

) −

2
dv0z
dr

(
γ2
0v0z

(
w − n

r v0θ − kzv0z

)
+ kz

)
(
w − n

r v0θ − kzv0z

) −
dρ0

dr

ρ0h0
+

n

r2

v0θ(
w − n

r v0θ − kzv0z

) , (D.25)

and F2(r):

F2(r) =

(
w − n

r v0θ − kzv0z

)2
γ2

0

c2
s0

+
(
γ2

0v0θ

(
w − n

r
v0θ − kzv0z

)
+

n

r

)(
wv0θ − n

r

)
+

(
γ2
0v0z

(
w − n

r
v0θ − kzv0z

)
+ kz

)
(wv0z − kz). (D.26)

D.3 Conical rotating jet

In the case of a jet expanding in a decreasing density/pressure atmosphere
with constant opening angle, and following Hardee (1982), we use spherical
coordinates. In this frame, r is the radial coordinate, θ is the polar angle, and
φ is the azimuthal angle. We consider a pressure profile P0 = P0(r), where
the jet is in pressure equilibrium with the atmosphere at r = ct.. We consider
polar density and velocity profiles, in order to account for shear layers, and
radial velocity independent of the radius (ρ0 = ρ0(r, θ) and v0 = v0(θ). The
velocity vector includes a rotation velocity: v0 = (v0r, 0, v0φ), but we consider
v0θ = 0, as a consequence of pressure equilibrium at constant radius. Equation
(D.10) would thus be:

γ0

(
∂ρ1

∂t
+ v0r

∂ρ1

∂r
+

v0φ
r sin θ

∂ρ1

∂φ
+ v1r

∂ρ0

∂r
+

v1θ

r

∂ρ0

∂θ

)
+

ρ0h0

(
∂γ1

∂t
+

v1θ

r

∂γ0

∂θ
+ v0r

∂γ1

∂r
+

v0φ

r sin θ

∂γ1

∂φ
+

2γ1v0r

r
+

2γ0v1r

r

)
+

ρ0h0

(
γ0

∂v1r

∂r
+ γ0

v1θ cot θ

r

γ0

r

∂v1θ

∂θ
+

γ0

r sin θ

∂v1φ

∂φ

)
= 0. (D.27)
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Considering wave-like perturbations ∝ x1(θ) ei(wt−nφ−krr), where x1(θ) con-
tains the radial dependence of the perturbation and n is the azimuthal wavenum-
ber (an integer number of waves around the circumference of the conus), pre-
vious equation would result:

γ0i
(
w − n

r sin θ
v0φ − krv0r

)
ρ1 + γ0

(
v1r

∂ρ0

∂r
+ v1θ

∂ρ0

∂θ

)
+

ρ0h0

[
γ3

0i
(
w − n

r sin θ
v0φ − krv0r

)
v0r +

2γ0

r
(γ2

0v2
0r + 1)− ikr

]
v1r +

ρ0h0

[
γ3

0i
(
w − n

r sin θ
v0φ − krv0r

)
v0φ +

2
r
γ3

0v0rv0φ − inγ0

r sin θ

]
v1φ +

ρ0h0

[
1
r

∂γ0

∂θ
+

cot θ

r

]
v1θ + ρ0h0

∂v1θ

∂θ
= 0,(D.28)

equation (D.4), polar direction (θ):

γ2
0ρ0h0i

(
w − n

r sin θ
v0φ − krv0r

)
v1θ +

1
r

∂P1

∂θ
= 0, (D.29)

equation (D.4), radial direction (r):

γ2
0ρ0h0i

(
w − n

r sin θ
v0φ − krv0r

)
v1r + γ2

0ρ0h0v1θ
∂v0r

∂θ
− ikrP1 + iwv0rP1 = 0,

(D.30)
equation (D.4), azimuthal direction (φ):

γ2
0ρ0h0i

(
w − n

r sin θ
v0φ − krv0r

)
v1φ+γ2

0ρ0h0
v1θ

r

∂v0φ

∂θ
− in

r sin θ
P1+iwv0φP1 = 0,

(D.31)
and equation (D.12):

i
(
w − n

r sin θ
v0φ − krv0r

)
P1 + v1r

∂P0

∂r
−

c2
s0

[
i
(
w − n

r sin θ
v0φ − krv0r

)
ρ1 + v1r

∂ρ0

∂r
+

v1θ

r

∂ρ0

∂θ

]
= 0. (D.32)

Substituting P1 in terms of v1θ in equation (D.29), in terms of v1r in equation
(D.30), of v1φ in equation (D.31) and ρ1 in equation (D.32) and bringing all
the resulting expressions to (D.28), we obtain:

∂2P1

∂θ2
+ F1

∂P1

∂θ
+ F2r

2P1 = 0, (D.33)
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where F1 is:

F1 = −∂ln(γ0)
∂θ

− ∂ln(ρ0h0)
∂θ

+ cot θ −
1
iσ

(
∂v0r

∂θ
(Cr − ikr) +

∂v0φ

∂θ
(Cφ − in

r sin θ
)
)
− inv0φ cot θ

sin θ
, (D.34)

and F2:

F2 = −γ2
0(iσ)2

c2
s0

+ i(wv0r − kr)Cr + i
(
wv0φ − n

r sin θ

)
Cφ, (D.35)

where we have used:
σ = w − n

r sin θ
v0φ − krv0r, (D.36)

Cr = γ2
0iσv0r +

2
r
(γ2

0v2
0r + 1)− ikr +

1
c2
s0ρ0h0

∂P0

∂r
, (D.37)

and
Cφ = γ2

0iσv0φ +
2
r
γ2

0v0rv0φ − in

r sin θ
. (D.38)

Equation (D.33) transforms into the following equation for the perturbation
inside the jet, derived by Hardee (1982)

sin2 θ
∂2P1

∂ sin2 θ
+ sin θ

∂P1

∂ sin θ
+ P1

[
β2(r)

sin2 θ

cos2 θ
− n2

cos2 θ

]
= 0, (D.39)

with:

β2(r) =
w2r2

c2
s0

− k2
rr

2 − i

(
2krr +

krr
2

c2
s0ρ0

∂P0

∂r

)
, (D.40)

if we consider a vortex sheet flow (no dependencies on θ), v0φ = 0, ρ0h0 → ρ0,
and γ0 → 1, i.e., sub-relativistic flows, both kinematically and thermodynam-
ically.
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[49] Donat, R., Font, J.A., Ibáñez, J.Ma, Marquina, A. 1998, J. Comput.
Phys., 146, 58

[50] Donat, R., and Marquina, A. 1996, J. Comput. Phys., 125, 42

[51] Drazin, P.G., Davey, A., 1977, J. Fluid Mech., 82, 255

[52] Duncan, G.C., Hughes, P.A., 1994, ApJL, 436, 119

[53] Falle, S.A.E.G., 1991, MNRAS, 250, 581

[54] Falle, S.A.E.G., Komissarov, S.S. 1996, MNRAS, 278, 586

[55] Fanaroff, B.L., Riley, J.M. 1974, MNRAS, 167, 31

[56] Ferrari, A., Trussoni, E., and Zaninetti, L. 1978, A&A, 64, 43

[57] Ferrari, A., Trussoni, E., Zaninetti, L. 1981 MNRAS, 196, 1051

[58] Ferrari, A., Massaglia, S., Trussoni, E., MNRAS, 1982, 198, 1065

[59] Ferrari, A. 1998, ARA&A, 36, 539
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1995, ApJ, 449, L19



BIBLIOGRAPHY 233
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[71] Hanasz, M., Sol, H. 1996, A&A, 315, 355

[72] Hanasz, M., 1997, in Relativistic jets in AGNs, Ostrowski, M., Sikora,
M., Madejski, G., Begelman, M., eds, Kraków, p. 85 (astro-ph 9711275)

[73] Hanasz, M., Sol, H. 1998, A&A, 339, 629

[74] Hanasz, M., Sol, H., Sauty, C. 2000, MNRAS, 316, 494

[75] Hardcastle, M.J., Worrall, D.M., Birkinshaw, M., Laing, R.A., Bridle,
A.H. 2002, MNRAS, 334, 182

[76] Hardee, P.E. 1979, ApJ, 234, 47

[77] Hardee, P.E. 1982, ApJ, 257, 509

[78] Hardee, P.E. 1984, ApJ, 287, 523

[79] Hardee, P.E. 1986, ApJ, 303, 111

[80] Hardee, P.E. 1987, ApJ, 318, 78

[81] Hardee, P.E., Norman, M.L. 1988, ApJ, 334, 70

[82] Hardee, P.E., Rosen, A., Hughes, P.A., Duncan, G.C. 1998, ApJ, 500,
559

[83] Hardee, P.E. 2000, ApJ, 533, 176

[84] Hardee, P.E. 2001, in Gamma-Ray Astrophysics, Ritz, S., Gehrels, N.,
Shrader C.R., eds., 276

[85] Hardee, P.E., Hughes, P.A., Rosen, A., Gomez, E.A. 2001, ApJ, 555, 744

[86] Hardee, P.E. 2003, ApJ, 597, 798



234 BIBLIOGRAPHY

[87] Hardee, P.E., Hughes, P.A. 2003, ApJ, 583, 116

[88] Hardee, P.E., Walker, R.C., Gómez, J.L. 2005, ApJ, 620, 646
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