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Model-based attempts to rigorously study the broad and imprecise concept 

of 'discriminating power' are scarce, and generally limited to nonlinear 

models for binary responses. This paper proposes a comprehensive 

framework for assessing the discriminating power of item and test scores 

which are analyzed or obtained using Spearman’s factor-analytic model. The 

proposed framework is organized on the basis of three criteria: (a) type of 

score, (b) range of discrimination, and (c) conceptualization and aspect that 

are measured. Within this framework, the functioning and interpretation of 

16 measures, of which 6 appear to be new, are discussed, and the relations 

between them are established. The usefulness of the proposal in 

psychometric FA applications is illustrated by means of an empirical 

example.  

 

As several authors have pointed out (Loevinger, 1954; Lord & 

Novick, 1968; McDonald, 1999) the term "discriminating power" is rather 

imprecise. In a broad sense, it refers to the degree to which a score varies 

with trait level, as well as the effectiveness of this score to distinguish 

between respondents with a high trait level and respondents with a low trait 

level. This property is directly related to the quality of the score as a 

measure of the trait (Lord & Novick, 1968; McDonald, 1999) so it is of 

central practical importance, particularly in the context of item selection. 

For this reason, most research has focused on developing indices that are 

thought to express this property numerically, whereas more theoretically-

oriented research is far scarcer. Below we provide a review of the literature 

that is most related to the present developments. The review is organized 
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around three classification criteria: (a) type of score, (b) range of 

discrimination, and (c) conceptualization, and the aspect that is measured. 

 As for criterion (a), in principle, the discriminating power can be 

assessed for all types of score (Lord, 1980; McDonald, 1999). However, 

most research has focused on direct scores: either single-item scores or (to a 

far lesser extent) total-test scores obtained by the unweighted sum of the 

item scores (e.g. Levine & Lord, 1959). The discriminating power of more 

complex scoring schemas such as maximum likelihood trait estimates has 

only been indirectly considered for some item response models via the 

related concept of test information  (Lord, 1980; McDonald, 1999).  

The term "range of discriminating power" for defining criterion (b) 

was proposed by Loevinger (1954) and we shall use Mellenbergh's (1996) 

distinction between population-independent measurement versus 

population-dependent measurement to discuss it. The criterion refers to 

whether discriminating power is assessed at a single point or trait level 

(population independent) or over the entire trait distribution in a given 

population (population dependent). Standard item discrimination indices 

used in classical test theory (CTT), such as the upper-lower index or the 

item-total correlation, assess the item discriminating power in a given 

population (Lord, 1980). Population-independent measures, both at the item 

and the total-test level, were developed subsequently, and aimed at more 

complex models in which measurement precision was assumed to be 

different at different trait levels. Lawley (1943) and Lord (1952) proposed 

the first indices of this type. More recently proposed measures of item and 

test information derived from certain item response theory (IRT) models 

can be considered as population-independent measures of discrimination 

(Lord, 1980, sec. 5.2; Nicewander, 1993).   

The relatively few studies that have dealt with criterion (c) have tried 

to arrive at a more precise conception of discrimination by defining more 

specific aspects of the general property. Loevinger (1954, Loevinger, Glaser 

& DuBois, 1953) distinguished two aspects that we shall consider here: 

fineness and probability. Discriminating fineness refers to the magnitude of 

the trait differences that the score is able to discriminate. It is this aspect 

that most existing measures of discrimination attempt to measure.  

Several authors (Lawley, 1943; Levine & Lord, 1959; Lord, 1952; 

Mandel & Stiehler, 1954; Nicewander, 1993) further distinguished two 

components of fineness, and discussed them in terms of population-

independent discrimination. The first component refers to the magnitude of 

the expected score difference for the given trait difference (at the point at 

which this difference is considered). This component is generally assessed 
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by the steepness of the score-trait slope at this point. The second component 

refers to the amount of measurement error of the score at this point. In terms 

of information theory (see e.g. Cronbach & Glesser, 1964; or Nicewander, 

1993) the first component can be interpreted as the strength of the 

transmission, and the second as the strength of the interference. Now, 

effective discriminating fineness is associated with both a high expected 

difference or steep slope, and a small error variance (Levine & Lord, 1959). 

So, all the authors referred to above proposed to combine both components 

in a single measure of the signal-to-noise-ratio type (Cronbach & Glesser, 

1964; Nicewander, 1993). 

Discriminating probability refers to a basic question which arises 

when assessing 'relations of difference' (Ferguson, 1949): does an observed 

difference between the scores of two individuals reflect a 'true' difference in 

their trait levels which goes in the same direction? Operationally, 

discriminating probability is measured by the proportion of discriminations 

which are in the same direction as trait differences (Loevinger, 1954; 

Milholland, 1955). Thurlow (1950), Ferguson (1949) and Milholland (1955) 

proposed discrimination indices that can be regarded as measures of 

probability. According to the present criteria, they are all population-

dependent measures intended for raw test scores. These indices have seldom 

been used, although recently they seem to be arousing some interest again 

(Hankins, 2007), and their main limitation is that they are difficult to link to 

an specific response model. The view adopted here is that probability 

indices are mostly useful as auxiliary measures of discrimination that 

provide additional information, and that enable the results obtained by using 

fineness measures to be interpreted more clearly.     

The review of the literature shows that most model-based research on 

discrimination has focused on binary items and scores derived from these 

items. Binary items are still widely used, especially in ability measurement. 

However, in the attitude and personality domains, it is more common to use 

more continuous formats (e.g. Dawes, 1972; Ferrando, 2002) such as 

graded-responses with a sizable number of points, or even more continuous, 

such as graphic or visual scales.  These types of items are generally 

calibrated using linear factor analysis (FA; e.g. Ferrando, 2002, 2009; 

Hofstee, Ten Berge & Hendricks, 1998; McDonald, 1999). Now, linear FA 

is a model for continuous-unlimited variables whereas item responses are 

bounded and, to a greater or lesser extent, discrete. So, the model must be 

viewed as an approximation. This simple linear approximation, however, 

seems to work well in most applications (Atkinson, 1988; Ferrando, 2002, 

2009; Hofstee et al., 1998; McDonald, 1999), especially those based on the 

type of items discussed above.  
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In spite of its widespread use as an item response model, there seems 

to be no systematic study on the types of discrimination measures that can 

be used with the FA model. However, this statement should perhaps be 

qualified. Some widely used binary and graded-response IRT models can be 

parameterized as item FA models by using a formulation based on 

hypothetical underlying response variables (e.g. McDonald, 1999; Reckase, 

1997). The relations between both parameterizations, in turn, enable 

relations between IRT and FA measures of item discrimination to be 

obtained (see e.g. Kamata & Bauer, 2008, equation 2). As discussed above, 

however, this paper deals with the linear FA model when it is applied 

directly to the observed item responses. In particular, we shall focus on 

assessing the discriminating power of item and test scores which are 

analyzed or constructed using Spearman's (1904) unidimensional FA model. 

In the psychometric literature, when Spearman's model is used as an item 

response model it is also known as the congeneric test (item) score model 

(Jöreskog, 1971), a name that we shall use here. 

The present study provides a general framework which describes the 

properties of 16 discrimination measures, how they work and how they are 

related. As far as I know, this is the first comprehensive treatment of the 

discrimination measures that can be used in psychometric applications of 

the congeneric model. It mainly aims to be of interest to applied 

researchers, to serve as a guide to choosing the most appropriate 

discrimination measures for each particular study, hopefully improving both 

analyses and interpretation and leading to better applications of the model.  

Many of the measures discussed here are already known or can be 

considered as particular cases of general existing measures. However, the 

study also provides new theoretical and methodological contributions. At 

the theoretical level, some interpretations of existing measures, and the 

relations between them, which do not seem to have been considered to date 

are discussed. At the methodological level, six of the measures proposed, 

which are probability measures, appear to be new. Unlike existing measures 

of this type that cannot be linked to specific theory, the newly developed 

measures are directly derived from the congeneric model.  

 

Review of the Model, Basic Results, and General Scheme 

In this paper the congeneric model is conceptualized as a linear IRT 

model intended for (approximately) continuous responses (Ferrando, 2009; 

Mellenbergh, 1994; Thissen, Steinberg, Pyszcynski & Greenberg, 1983). 

More in detail, we shall adopt the same unified framework as in McDonald 

(1982, 1999) and Lord and Novick (1968, chapter 24), and consider the 
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congeneric model as a particular case of a general IRT (or latent trait) 

model described by the principle of local independence. 

Consider a set of n items that measure a single trait θ.  The congeneric 

model for the observed score in item j is: 

 

jjjjX εθλµ ++=  

 
(1) 

where Xj is the observed item score, µj is the item intercept, λj the item 

loading, slope, or regression weight, and εj the measurement error. For fixed 

θ, the item scores are distributed independently (this is the IRT principle of 

local independence that characterizes the general model). The conditional 

distribution is assumed to be normal, with mean and variance given by 

 

2

jjjjj XVarXE εσθθλµθ =+= )|(;)|( . (2) 

 

The two expressions in (2) summarize the main differences between 

the congeneric model and most standard IRT models intended for discrete 

responses. These differences are particularly clear with respect to the two-

parameter model (2PM)  for binary responses. The conditional mean in the 

first expression in (2) is, by definition, the item characteristic curve (ICC) 

of the congeneric model (see e.g. Ferrando, 2009), which is indeed a 

straight line.  The conditional variance in the second expression is constant 

and does not depend on the trait level (i.e. homoscedasticity). In contrast, in 

the 2PM the ICC is a sigmoid curve (an ogive), and the conditional variance 

is generally different at different trait levels (see e.g. McDonald, 1982, 

1999). As discussed below, these differences will be relevant regarding the 

measures discussed in this paper but, even so, we give θ the same meaning 

as it has in the standard IRT models. It is the quantitative attribute or 

characteristic of the respondents that the set of items measure in common. 

What is different in linear and nonlinear models, then, is the link function 

that relates the θ levels to the observed item scores. 

In model (1) the item scores Xj are observed, and so the response 

variables are scaled (the scale depending on the scoring schema). However, 

a scaling choice must be made for θ. Kamata and Bauer (2008) discussed 

the two most common scaling conventions. Either θ is standardized, or the 

intercept and loading of an item, which acts as an indicator, are fixed. The 

second scaling allows the mean and variance of θ to be freely estimated. As 

discussed below, the possibility of θ having different variance in different 
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populations is a basic issue in the distinction between population-dependent 

and population-independent measures. 

The mean and variance of the unconditional (marginal) distribution of 

Xj over the entire population are 
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Consider now two trait levels—θ1 and θ2—and let δ = θ1 - θ2 be the 

difference between them, which we shall refer to as the 'true' difference. Let 

dj = Xj1-Xj2 be the corresponding difference in the observed scores in item j. 

For fixed δ, and according to the model assumptions, the conditional 

distribution of the observed differences is normal, with mean and variance 

given by 

 

2

jjjj 2dVardE εσδδλδ == )|(;)|(  (4) 

 

   In most applications, estimation of model (1) has two stages. In the 

first stage (item calibration), the item parameters (intercepts, loadings and 

error variances) are estimated and the global fit of the model is assessed. In 

the second stage (scoring), provided that the fit is acceptable, the item 

estimates are taken as fixed and known values, and individual trait estimates 

or scores based on the entire set of items are obtained. In this paper we shall 

assess the discriminating power of two types of total-test scores (see 

McDonald, 1999): raw scores obtained as the simple sum of the individual 

item scores, and maximum likelihood estimates (MLEs). 

The results that we need for the raw scores can be derived directly 

from the item results discussed above. Let X=ΣXj  be the sum of the n item 

scores. From the normality and local independence assumptions it follows 

that, for fixed θ, X is the sum of n independent normal variables. Now let δ 

be as defined above, and d = X1-X2 be the corresponding difference in the 

observed raw scores. For fixed δ, the conditional distribution of the 

observed differences is normal, with mean and variance given by 
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We turn now to the MLE, which we shall denote byθ̂ . Under the 

assumption of conditional normality, the MLE for respondent i is the 

Bartlett estimated factor score (McDonald, 1982; Mellenbergh, 1994). 

Asymptotically (as the number of items increases without limit) the 

conditional distribution of θ̂  for fixed θ is normal with mean and variance 

given by  

 

1)()|ˆ(;)|ˆ( −== IVarE ii θθθθθ  (6) 

 

where the conditional variance )|ˆ( iiVar θθ is the variance of the estimate 

error, and I is the test information function, defined as 
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The term Ij is item j’s contribution to the test information or, more 

simply, the item information (Mellenbergh, 1994). Now, again let δ be as 

defined above, and )ˆ(θd  be the corresponding difference in the MLEs. For 

fixed δ, the conditional distribution of the )ˆ(θd 's is (asymptotically) 

normal, with mean and variance given by 

 

1)(2)|)ˆ((;)|)ˆ(( −== IdVardE δθδδθ . (8) 

 

Equation (8) completes the results that are needed to interpret and or 

develop the measures of discrimination that we shall discuss in the 

following sections. To make the discussion clearer, table 1 shows all the 

measures categorized according to the type of score, range of 

discrimination, and conceptualization/aspect. For each measure, table 1 

provides the mathematical formula and the number of the equation in which 

it is defined in the article given in brackets. 
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Table 1. Measures of discriminating power for the congeneric model. 

 
 Population-independent Population-dependent 
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Measures of Item Discriminating Power 

 

Population-independent  measures 

In previous proposals of model (1), the weight λj was considered as 

the basic item discrimination index (Ferrando, 2002, 2009; McDonald, 

1999; Mellenbergh, 1994; Thissen et al., 1983). From equation (4) it 

follows that λj can be interpreted as the expected difference in item j’s score 

corresponding to a 'true' unit difference in θ (i.e. δ=1). So, λj is a 

population-independent measure of fineness: it gives the expected score 

difference for fixed trait difference (i.e. at a single point) regardless of the 

trait distribution and variance.  

It might be instructive to compare λj as a measure of fineness in the 

linear model to the item slope parameter (item discrimination) in the 2PM, 

where the ICC is an ogive, so the slope of the curve varies at different trait 

levels. To solve this indeterminacy, the discrimination parameter is defined 

as (proportional to) the slope at the point at which it is maximal (the 

inflexion point of the ICC). So, the item discrimination parameter in the 

2PM is a population-independent measure of fineness that assesses the 

ability of the item to discriminate at a specific trait level (the point of 
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maximal discrimination; see e.g. Reckase, 1997). In contrast, in the 

congeneric model the slope λj is a constant that does not depend on θ. So, λj 

is not specific but general: the fineness is the same at any point on the trait 

continuum. 

   As a measure of discriminating fineness, λj assesses only one of the 

two components discussed above: the strength of the transmission. 

Furthermore, its values depend on the measurement scale of the item scores 

as well as on the scaling choice for θ. So, λj is an incomplete measure 

whose values are difficult to interpret. In our view, λj is a basic item 

parameter that should be reported and considered. Ding and Hershberger 

(2002), for example, suggested testing λj for significance as the first step in 

deciding whether the item can be considered as a measure of the trait at all. 

If it can, λj is clearly insufficient as a single measure of item discriminating 

power. 

A more complete measure of the signal-to-noise-ratio type can be 

derived from the results in equation (4). The proposed measure is 
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The index Dcj is a population-independent measure of fineness that 

assesses both components: strength of the transmission/signal in the 

numerator, and strength of the interference/noise in the denominator. It can 

be interpreted as the ratio between the expected score difference discussed 

above and the amount of overlap in the conditional distributions of the Xj1 

and Xj2 values.  

In real applications λj is assumed to be always positive. So Dcj is 

bounded below by zero and has no upper bound. It does not depend on the 

measurement scale of Xj so it can be interpreted by setting standards of 

magnitude (possibly based on empirical evidence). Furthermore, 

interpretation of Dcj can be enhanced if it is viewed as the expected value of 

a critical ratio. In effect, for a 'true' unit difference, the probability that the 

corresponding observed difference is considered as statistically significant 

is given by 
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where zc is the critical value associated to the chosen significance level. 

Thus p(Dcj) can be interpreted as the probability that a 'true' unit difference 

be detected by item j’s scores.   Result (10) follows from the assumption 

that the conditional distribution of dj is normal with the mean and variance 

given in (4)  

Although strictly speaking Dcj appears to be a new proposal based on 

conditional distribution (4), it is directly related to already existing 

measures that were proposed either with no reference to a specific model or 

with reference to a different model. Thus, the λ-ratio proposed by Lawley 

(1943) for the 2-parameter normal-ogive model becomes Dcj when 

developed for the congeneric model. When the general discrimination index 

proposed by Lord, (1952), Levine & Lord (1959) and Mandel & Stiehler 

(1954) is applied to the congeneric model, it becomes proportional to Dcj. 

Finally, the square of Dcj is proportional to the item information (see 

equation 7). The interpretation of Dcj as an expected critical ratio and result 

(10) appear to be new. 

We turn now to the population-independent measures of 

discriminating probability. For a fixed 'true' difference δ (in absolute value), 

the probability that the expected difference dj is in the same direction as the 

'true' difference is found to be  
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By using the same rationale as above we propose as a measure of 

probability the p value in (11), which corresponds to a 'true' unit difference 

(i.e. δ=1).  
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Mathematically, Dcj is the normal equivalent deviate or the probit 

transform of ∆cj. Conceptually, ∆cj can be interpreted as the probability that 

the observed difference in item j's score is in the same direction as the 'true' 

difference in the trait level when this 'true' difference has a value of 1. 

Given that Dcj and ∆cj are transformations of each other, the main interest 

of ∆cj is as an auxiliary measure which provides additional information. For 

example, assume that Dcj=0.50 and Dck=1.50. In item j's scores, the signal 

has only half the strength of the noise, while for item k the signal is 1.5 

times stronger than the noise. So, item k has more discriminating fineness 

than item j. The corresponding probability values are ∆cj=0.69 and 

∆ck=0.93. So, for a 'true' unit difference, the probability that item j's score 

reflects a difference in the same direction is only 69%, whereas the 

probability for item k's score is 93%. 

Measures (9) and (12) are more complete and informative than λj and 

their values do not depend on the measurement scale of the item scores. 

However, they do depend on the scaling choice which is made for θ, and 

this fact must be considered when interpreting the results they provide. As 

one reviewer noted, a ‘true’ unit difference has a different meaning 

depending on the scale on which the differences are measured. Further 

discussion on this point is provided in the measures proposed below. 

 

Population-dependent measures 

A plausible proposal for a population-dependent measure of fineness 

(e.g. Jackson, 1939) is to combine the conditional amount of finesses at a 

given 'true' difference with the magnitude of the true differences in the 

population. So, if an item score has a high amount of fineness for 

discriminating at a given difference level, but the differences in the 

population are consistently small (i.e. the trait levels are all similar), the 

fineness in the population will be low. On the other hand, if the population-

independent fineness is only moderate but the population trait levels are 

very different, the overall fineness in the population will be high. 

The sensitivity coefficient (SC) proposed by Jackson (1939) can be 

shown to be a direct combination of both components. In the congeneric 

model it is given by 
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The relation between both expressions in (13) is obtained from the 

result Var(δ)=2Var(θ), which is discussed below in detail  (see discussion 

regarding equation 15). In the context of CTT in which was proposed, SCj is 

the square root of the ratio between ‘true’ variance and error variance. So, it 

is bounded below by zero and has no upper bound. Here, we interpret it as 

the amount of fineness item j has for discriminating a 'true' unit difference 

(i.e. Dcj) weighted by the typical difference in the population of interest (i.e. 

)(δVar , and note that )(δVar  is also the root mean square of the 

differences).  

In applications of the FA model, however, the population-dependent 

measure of discrimination that is routinely used is the standardized item 

weight, denoted here by αj. This is, indeed, the weight obtained when the 

inter-item correlation matrix is factor analyzed. It is given by 
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As a measure of discrimination, αj has important advantages. Under 

the assumptions considered here, it is a normed index, bounded between 0 

and 1, which can be interpreted as the product-moment correlation between 

θ and the item score. So, it is a "classical" measure of fineness with the 

same rationale as the item-total correlation index (Henrysson, 1962). 

Furthermore, in the context of CTT, αj is the square root of the ratio 

between ‘true’ variance and total variance. So, its squared value can be 

interpreted as the item reliability coefficient (Lord & Novick, 1968, sec. 

3.4). As far as the present considerations are concerned, however, it is of 

more interest to assess the relation between αj and SCj. The relation is 
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So, αj can be viewed as a transformation of the sensitivity coefficient 

that maps its values on the 0-1 interval. In spite of the interpretative 

advantages of αj just discussed, it is not clear that it is always preferable to 

SCj. Given that SCj  has no upper bound, it follows that when the αj values 

are near to one, small changes in αj lead to large changes in SCj. So, in these 
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cases SCj will be more sensitive for detecting differences or changes in 

fineness than αj. At the same time, however, a ratio that increases without 

bound can become very unstable. 

The natural extension of the ∆cj probability measure to the entire 

population is the proportion of observed differences in the population that 

go in the same direction as the corresponding 'true' differences, a measure 

considered by Milholland (1955). To obtain this marginal measure, 

however, the distribution of δ must first be specified.  

In applications of model (1) the distribution that is specified is that of 

θ. Now, the distribution of δ can be viewed as the distribution of the 'true' 

differences between all pairs of trait levels in the population (see 

Milholland, 1955). If so, it follows that the distribution of δ is the same as 

that of θ, but with zero mean and Var(δ)=2Var(θ). (This last result has been 

used in equation 13). 

Once the distribution of δ has been established, it can be 

approximated as accurately as required using numerical quadrature. A simple 

procedure is to use rectangular quadrature over q equally spaced points. The 

probability measure ∆uj is then computed as (see the last term on the right 

hand side in equation 11) 
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where Xk are the nodes and W(Xk) are the weights that approximate the 

distribution of δ. 

 

 

Measures of Discriminating Power for Total-Test Scores  

 

For both raw scores and MLEs, the extension of all the indices that 

were proposed at the item level is rather direct, and can be obtained by 

using equations (5) and (6), respectively. We shall discuss the score-based 

extensions in the same order in which they were discussed at the item level. 

For the raw scores, the population-independent signal-to-noise 

measure of fineness Dc, which is the extension of Dcj, is given by 
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And for the MLEs it is given by 
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Both measures have the same interpretation as in the original item. 

The Dc and )ˆ(θDc  indices measure the amount of fineness of the 

corresponding score (raw or MLE) in discriminating between two 

respondents whose ‘true’ trait levels differ by one unit. 

The ratio DcDc )ˆ(θ is a particular application of the sensitivity ratio 

(SR) proposed by Mandel and Stiehler (1954). Furthermore, the square of 

this ratio is the relative efficiency of the MLEs with respect to the raw 

scores (e.g. McDonald, 1999). It can be shown that the relative efficiency 

(and, therefore, the SR) is always greater than one except when the Dcj 

values are the same for all of the items, in which case it is exactly one 

(McDonald, 1999). So, the amount of conditional discriminating fineness of 

the MLEs is always greater than that of the raw scores. In applications, the 

SR can be used to determine whether the improvement in fineness obtained 

by using the more complex MLEs is negligible or not. 

The auxiliary probability measures that correspond to Dc and )ˆ(θDc  

are given by 

 

)).ˆ(()ˆ(;)( θθ DccDcc Φ=∆Φ=∆  (19) 

 

And they can be interpreted as the probability that the observed 

difference in the corresponding score (raw or MLE) is in the same direction 

as the 'true' trait difference when this 'true' difference is one. 
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We turn now to the population-dependent measures. The direct 

extensions of the item sensitivity coefficient to the raw and MLE scores are 

given by 

 

)()ˆ()ˆ(;)( δθθδ VarDcSCVarDcSC == . (20) 

 

In the CTT context, the square of the SC on the left-hand-side of (20) 

has a one-to-one relation with the well known omega (ω) reliability 

coefficient (e.g. McDonald, 1999). SC-squared is a ratio of true variance to 

error variance while omega is the ratio of true variance to total variance. So, 

the relation is 

 

ω
ω
−

=
1

2SC . (21) 

 

According to the present framework, and, for the corresponding score, 

the two indices on (20) reflect the two components discussed above: (a) the 

amount of fineness at a unit difference level, and (b) the typical difference 

in the population.  

The corresponding α transformations are 
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. (22) 

 

As in the item case, both α and )ˆ(θα can also be interpreted in ways 

that are more related to CTT-based analysis. Each index can be interpreted 

as the product-moment correlation between the trait and the corresponding 

score. Its square can be interpreted as the reliability of the corresponding 

score (raw or MLE; e.g. Mellenbergh, 1994). 

Finally, the population-dependent probability measures, which are the 

extensions of ∆uj, can be obtained as 
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(23) 
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As in the item case, and for each type of score, the index ∆u is 

interpreted as the proportion of observed differences in the population that 

are in the same direction as the corresponding 'true' differences. 

ILLUSTRATIVE EXAMPLE 

To illustrate the measures discussed in this article we shall use a 

multiple-group application of the congeneric model. This type of 

application was chosen to show how, under certain item invariance 

conditions, some measures of discrimination do not depend on the group 

(population) in which they are assessed, whereas other do. A short 5-item 

scale for measuring Extraversion was administered to two groups of 

undergraduate students. The items used a 5-point Likert format, and, for 

interpretative purposes, the scores were scaled in the 0-1 interval. In group 

1 (;=455), participants were asked to respond to the scale under standard 

instructions, which, among other things, advised them to give honest 

answers. In group 2 (;=418) participants were instructed to imagine they 

were applying for a job and to try to give a good impression regardless of 

the truthful answer. 

Because the model is small and the samples are reasonable large, the 

congeneric model in equation (1) was fitted using full weighted least 

squares estimation as implemented in the Mplus program version 5 (Muthén 

and Muthén, 2007). The item weights and error variances in equations (1) 

and (2) were constrained to be equal in both groups (see Millsap & Meredith, 

2007). Conceptually the restriction implies that each of the items has the same 

quality as a measure of the trait under honest and faking-good conditions. The 

two scaling conventions discussed by Kamata and Bauer (2008) were used 

for fitting the model. In group 1 θ was standardized. In group 2, and given 

the invariance constraints just discussed, the fixed values of the item 

parameters allowed the variance of θ to be freely estimated in this group  

(relative to the fixed unit variance in group 1). Model-data fit was 

reasonably good. The chi-squared test statistic value with 19 degrees of 

freedom was χ2
(19)=39.12, the root mean squared error of approximation 

(RMSEA) and its 95% confidence interval were 0.049 and (0.025; 0.072), 

respectively, and the Non-Normed Fit index was 0.97.  

The variance estimates of the trait were 1.00 in group 1 (fixed) and 

0.30 in group 2. So the corresponding δ variances were 2.00 and 0.60. The 

reduced variance in group 2, then, suggests that under faking-motivating 

instructions participants tend to respond in a more similar way, thus 

reducing the inter-individual differences in this respect. As discussed above, 
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this homogenization of the group will decrease the population-dependent 

discriminating power in all types of scores.    

The results on all the measures of discrimination discussed in this 

paper are shown in table 2. 

 

 

Table 2. Assessment of discriminating power. Illustrative example 

 
 Population-independent Population-dependent 

    SCj .αj ∆uj 

 λj Dcj ∆cj G1 G2 G1 G2 G1 G2 

i1 0.15 (0.01) 0.61 0.73 0.86 0.47 0.66 0.43 0.73 0.64 

i2 0.21(0.01) 1.04 0.85 1.47 0.80 0.83 0.62 0.82 0.72 

i3 0.14(0.01) 0.49 0.69 0.69 0.38 0.57 0.35 0.70 0.62 

i4 0.16(0.01) 0.48 0.68 0.67 0.37 0.56 0.35 0.69 0.61 

i5 0.13(0.01) 0.67 0.75 0.95 0.52 0.68 0.45 0.74 0.65 

    SC α ∆u 

  Dc ∆c G1 G2 G1 G2 G1 G2 

Raw  1.38 0.92 1.95 1.06 0.89 0.73 0.86 0.77 

MLE  1.54 0.94 2.17 1.19 0.91 0.76 0.88 0.79 

 

 

 

Before interpreting the specific results, we first note that, given the 

invariance constraints which were imposed, the population-independent 

measures of discrimination are the same in both groups, and so they are 

reported only once with no group reference. As discussed above, they 

measure discrimination for a fixed trait difference, regardless of the trait 

distribution and variance. Second, we note that the standard errors of the λ's 

are very small, which is to be expected given the reasonable sample sizes 

and the simplicity of the model. 

We first discuss the population-independent item measures. If the λ 

values are compared to their respective standard errors, it is clear that the 

discriminating power of all the items can be considered as significantly 

different from zero. As for interpretation, however, the λ values only 

indicate that a unit change in the trait level results in an expected change 

between 0.13 and 0.21 units in the 0-1 item score scale, which is 

insufficient for evaluating the amount of discriminating fineness of the item 

scores. Note that, except for item 2, the λ  values are quite similar for the 

remaining items, a typical result in personality items (Ferrando, 2002, 

2009).  
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The Dcj values provide more useful information. First, because both 

components of fineness are now taken into account, the differences between 

the items are accentuated, which allows for finer comparisons. As for 

interpretations, in all of the items except item 2, the signal is smaller than 

the noise. For the worst items (3 and 4) the expected difference for unit δ is 

less than half of the standard error of the differences. If the Dcj values are 

interpreted as expected values of a critical ratio, it is clear that they are far 

smaller than the cut-off value for considering significance at the 0.05 level 

(zc=1.65). So, the probability that a 'true' unit difference might lead to a 

difference being detected as significant at the 0.05 level is only 0.12 (see 

equation 10). For the best item (2) the expected difference is slightly larger 

than one standard error, the expected value is still below the cut-off value, 

and p(1.04)=0.27.  

The auxiliary ∆cj values help to complete the interpretation. For unit δ 

the expected percentage of differences that are in the same direction as the 

'true’ difference would be between 0.68 and 0.85. In other words, for the 

worst items 32% of the differences are expected to have a sign that is 

opposite the sign of the 'true' difference. Overall, it seems clear that the 

discriminating fineness of these items is rather modest, a result that is 

common to most personality items (Ferrando, 2002, 2009). 

 We turn now to the population-independent item measures. In group 

1, the typical 'true' difference is 4112 .= , larger than 1. So the SCj's are 

larger than the corresponding Dcj's. Conceptually this means that the 

amount of item fineness at a unit difference is somewhat improved in a 

population in which differences larger than 1 are common. The 

corresponding α values, if interpreted as item-trait correlations, appear to be 

acceptable. However, the marginal proportion of differences which are 

expected to be in the same direction as 'true' differences is still quite low, 

even for the best item. These proportions were assessed by assuming that 

the distribution of δ was normal. Overall, the increase in discriminating 

fineness in this group is not accompanied by a clear increase in discriminant 

probability. 

As expected, the situation is far worse in group 2. Here, the typical 

difference is 77060 .. = . If the power for discriminating a unit trait 

difference is poor, the marginal power in a population in which most 

differences are lower than 1 would be expected to be very low, and this 

appears to be the case according to all the measures.  

We turn now to the total-test scores. As for the population-

independent measures, in spite of the reduced number of items, it appears 

that the discriminating power of the test scores is considerably better than 
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that of the individual items, and the signal is here clearly stronger than the 

noise. If the Dc's are interpreted as expected critical-ratio values, both 

values are still below the 1.65 cut-off point, but are quite close. For the raw 

scores the probability that a 'true' unit difference might lead to a difference 

being detected as significant at the 0.05 level is:  p(1.38)= 0.40. For the 

MLEs it is:  p(1.54)= 0.46. As auxiliary measures, the proportions of 

differences expected to go in the same direction as the 'true' unit difference 

are far better than in the individual-item case: 92% and 94%. Finally, as for 

the improvements of the MLEs over the raw scores, the sensitivity ratio is 

1.12.  Given that the discriminating power of the test scores is still quite 

modest it seems reasonable to take advantage of the small gains provided by 

the MLEs. 

The differential amount of population-dependent discrimination in 

both groups at the item level are also reflected in the total scores although 

with improvements in all cases. And these improvements allow the 

differences between some indices to be better appreciated. Thus, in group 1, 

in which the α values are rather high, the difference between raw scores and 

MLEs in terms of α is small, but it becomes clearer in terms of SCj. Overall, 

in the best case, the MLEs in group 1 would have an acceptable (for a short 

personality test) amount of discriminating power both in terms of fineness 

and probability.  On the other hand the discriminating power would still be 

poor in group 2. 

DISCUSSIO. 

Most psychometric applications based on (approximately) continuous 

items use linear FA as the response model for calibrating items and scoring 

individuals. In spite of the generalized use and relative simplicity of the 

model, however, the procedures that are routinely used, as well as the 

interpretation of results are generally very improvable (Reckase, 1997). As 

for the issues discussed here, the most general problems seem to be of two 

types. First, most applications use less information than is provided by the 

data. Second, the choice of the discrimination measures that are reported 

and interpreted is guided more by the type of data used as input than by the 

objectives of the analysis. For example, whether unstandardized (λ's) or 

standardized (α's) weights are used depends more on whether the input 

matrix is covariance or correlation than whether population-independent or 

population-dependent discrimination is of most interest. Overall, and as 

discussed above, the present study is expected to be useful for improving 

these two problems. 
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We shall start with the first problem. The present study discusses 

measures of discriminating power both at the item and at the total score 

level. At the item level, the most immediate application is in the process of 

item analysis. The present proposals allow the researcher to make a detailed 

assessment of the item discriminating power that is far more complete than 

the one that is habitually used in applications. In this way, the basic λj index 

is compared to its standard error and its significance is assessed. If it is 

found to be significant, however, the amount of population-independent 

item discriminating fineness can be assessed much more completely by 

using Dcj. and its auxiliary measure ∆cj. The Dcj measure combines the two 

aspects of fineness, does not depend on the item scale and can be clearly 

interpreted both as a signal-to-noise ratio and as the expectation of a critical 

ratio. As for the population-dependent measures, αj is a well-known, 

routinely-used measure that has several meaningful interpretations and is 0-

1 normed. However in situations in which the items have very high αj 

values, SCj can be a better measure for comparison purposes. In both cases, 

the probability measures add non-redundant and useful auxiliary 

information. As the example shows, the probability values can still be quite 

low in situations in which the fineness seems to be acceptable. Overall, the 

results of this detailed scrutiny can be used to select the most discriminating 

items or for selecting a subset of items that retains the maximum 

discriminating power when a reduced version of a test is designed. 

As discussed above, the discriminating power of test scores is almost 

never assessed in FA applications. However, the present proposals allow 

two important points in practical research to be assessed. First, whether the 

discriminating power is sufficient for the purpose of the test. Second, 

whether more complex MLEs lead to a substantial increase in the score’s 

discriminating power with respect to that obtained with the simple raw 

scores. As for the first point, for example, a selection study would mainly 

require population-independent measures of both fineness and probability 

while population-dependent measures seem more useful in validity studies 

carried out in a specific population or in different populations.  In both 

situations, and as in the item case, the present proposal regards fineness 

measures as the main indicators of discrimination and probability measures 

as useful auxiliary measures. However, this might also depend on the 

purposes of the research. Lord (1952), for example, considers a situation in 

which a given proportion of respondents have been selected on the basis of 

their test scores, and asks what proportion of the selected individuals really 

belong to the group with the highest trait levels. This question is best 

assessed by using a measure of discriminating probability.  
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We turn now to the second problem. Perhaps the confusion observed 

in some applications regarding population-independent and population-

dependent measures of discrimination partly arises because the distinction is 

not the same as that in the most common IRT models. In non-linear IRT 

models the variance of the error of estimate is generally different at 

different ranges of the trait continuum. So, population-independent 

measures are generally used for assessing discrimination in a given range, 

while population-dependent measures are used for assessing the average 

discriminating power over the whole trait range (e.g. Nicewander, 1993). In 

the congeneric model, however, the variance of the error of estimate for all 

the scores considered here remains constant at all trait levels (see e.g. 

equations 6 and 7). So, in this case, population-independent measures are 

most appropriate when interest focuses on the discriminating power of the 

score in general, with no reference to a specific population. Population-

dependent measures are most useful when the discriminating power in a 

specific population is of interest or when possible changes in discrimination 

over different populations need to be assessed. As the illustrative example 

shows, population-dependent measures appear to be particularly useful in 

multiple-group studies. In this type of studies it seems recommendable to 

follow the strategy of the illustrative examples: first, population-

independent measures should be used to get a general idea of the 

discriminating power of the scores, and then population-dependent 

measures should be used to assess how the discriminating power changes as 

a function of the homogeneity/heterogeneity of the group.  

We shall finally discuss some limitations of the present study. To start 

with, it is perhaps better to view the study as an initial, comprehensive 

proposal that highlights new (or not well known) relations among potential 

measures of discrimination, and discusses how they can be interpreted. 

Now, to determine which of these measures will be considered really 

relevant in future applications requires, indeed, further intensive research, 

both empirical or simulated. For example, the results of the study suggest 

that the probability measures add non-redundant and useful auxiliary 

information, and also that the use of the more complex scoring schemas 

leads to increases in discriminating power with respect to the simple raw 

scores. However, results from a single study are hardly generalizable, and 

these results might be valid only under specific conditions. 

 The present proposal is limited to the unidimensional FA model. In 

the domains that most use the items for which FA behaves reasonably well 

(mainly personality and attitude), single-trait measures are common, but so 

are multi-trait questionnaires. In the case of FA solutions that approach an 

independent-cluster structure (see McDonald, 2000), with factorially simple 
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items, the use of the proposed measures on a separate-scale basis can act as 

a reasonable approximation. For more factorially complex solutions, it may 

be interesting to extend the measures proposed here to the multidimensional 

case. This is left for future research.  

As for the feasibility of the proposal, it should be stressed that all the 

measures considered in this article can easily be computed from a standard FA 

output by using a calculator or a spreadsheet. However, in the near future the 

author expects to develop a user-friendly program. 

RESUME. 

Evaluación de la capacidad discriminitava de las puntuaciones de los 
ítems y del test en el modelo de análisis factorial lineal. Las propuestas 

rigurosas y basadas en un modelo psicométrico para estudiar el impreciso 

concepto de “capacidad discriminativa” son escasas y generalmente 

limitadas a los modelos no-lineales para items binarios. En este artículo se 

propone un marco general para evaluar la capacidad discriminativa de las 

puntuaciones en ítems y tests que son calibrados mediante el modelo de un 

factor común. La propuesta se organiza en torno a tres criterios: (a) tipo de 

puntuación, (b) rango de discriminación y (c) aspecto específico que se 

evalúa. Dentro del marco propuesto: (a) se discuten las relaciones entre 16 

medidas, de las cuales 6 parecen ser nuevas, y (b) se estudian las relaciones 

entre ellas. La utilidad de la propuesta en las aplicaciones psicométricas que 

usan el modelo factorial se ilustra mediante un ejemplo empírico. 
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