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If the variances of two treatment groups are heterogeneous and, at the same 

time, sample sizes are unequal, the Type I error probabilities of the pooled-

variances Student t test are modified extensively. It is known that the 

separate-variances tests introduced by Welch and others overcome this 

problem in many cases and restore the probability to the nominal 

significance level. In practice, however, it is not always apparent from 

sample data whether or not the homogeneity assumption is valid at the 

population level, and this uncertainty complicates the choice of an 

appropriate significance test. The present study quantifies the extent to 

which correct and incorrect decisions occur under various conditions. 

Furthermore, in using statistical packages, such as SPSS, in which both 

pooled-variances and separate-variances t tests are available, there is a 

temptation to perform both versions and to reject H0 if either of the two test 

statistics exceeds its critical value. The present simulations reveal that this 

procedure leads to incorrect statistical decisions with high probability.  

 

It is well known that the two-sample Student t test depends on an 

assumption of equal variances in treatment groups, or homogeneity of 

variance, as it is known. It is also recognized that violation of this 

assumption is especially serious when sample sizes are unequal (Hsu, 1938; 

Scheffe′, 1959, 1970). The t and F tests, which are robust under some 

violations of assumptions (Boneau, 1960), are decidedly not robust when 

heterogeneity of variance is combined with unequal sample sizes.  

A spurious increase or decrease of Type I and Type II error 

probabilities occurs when the variances of samples of different sizes are 

pooled to obtain an error term. If the larger sample is taken from a 

population with larger variance, then the pooled error term is inflated, 

resulting in a smaller value of the t statistic and a depressed Type I error 

                                                 
1
 Correspondence: Donald W. Zimmerman, Ph.D. Professor Emeritus of Psychology, 

Carleton University. Ottawa, Canada. Mailing address: 1978 134A Street. Surrey, BC, 

Canada, V4A 6B6.  
2 

Bruno D. Zumbo, Ph.D. Professor of Measurement and Statistics. University of British 

Columbia. Vancouver, BC, Canada. Email: bruno.zumbo@ubc.ca 



 D.W. Zimmerman & B.D. Zumbo 372 

probability. If the smaller sample is taken from a population with larger 

variance, the reverse is true (Overall, Atlas, & Gibson, 1995a, 1995b). See 

also the informative graphs presented by Hopkins, Glass, & Hopkins (1987, 

p. 168). 

In the literature, the need to modify the t test when the assumption of 

equal variances is violated has been known as the Behrens-Fisher problem 

(Behrens, 1929; Fisher, 1935). Early investigations showed that the problem 

can be overcome by substituting separate-variances tests, such as the ones 

introduced by Welch (1938, 1947), and Satterthwaite (1946), for the 

Student t test, and similar methods are available for the ANOVA F test. 

These modified significance tests, unlike the usual two-sample Student t 

test, do not pool variances in computation of an error term. Moreover, they 

alter the degrees of freedom by a function that depends on sample data. It 

has been found that these procedures in many cases restore Type I error 

probabilities to the nominal significance level and also counteract increases 

or decreases of Type II error probabilities (see, for example, Overall, Atlas, 

& Gibson, 1995a, 1995b; Zimmerman, 2004; Zimmerman & Zumbo, 1993). 

In recent years, separate-variances t tests have become more widely used 

and are included in various statistical software packages such as SPSS. 

The purpose of this paper is to call attention to some unforeseen 

dangers of this approach. For one thing, it is not easy to discern from 

sample data whether or not the populations from which the samples are 

drawn do in fact support or violate the homogeneity assumption. If a 

decision as to which test to employ is based on anomalous sample data that 

does not represent the population, the result can be misleading. Apparently 

homogeneous samples can arise frequently from heterogeneous populations, 

and vice versa. In those cases, choice of an inappropriate test can lead to a 

wrong decision, and sampling variability may produce that outcome more 

often than might be suspected. 

Another difficulty arises because some researchers using software 

packages, such as SPSS, may be inclined to employ both pooled-variances 

and separate-variances tests when in doubt about the homogeneity 

assumption and report the result of whichever version yields statistical 

significance. The spurious increase in the probability of rejecting H0 

resulting from applying multiple significance tests to the same data and then 

picking and choosing the desired result is well established. However, the 

problem is somewhat more serious and less apparent in the case of the two 

versions of the t test, and incorrect statistical decisions, we shall see, can 

occur with very high frequency when the two tests are performed together. 
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The present study quantifies the extent of correct and incorrect 

decisions that can be expected under various scenarios where sample data is 

not representative of the population. It also examines the modifications of 

significance levels that occur when a decision is based on the Student t test 

alone, on the Welch t test alone, or on a favorable outcome of either test.  

METHOD
*
 

The simulations in this study were programmed using Mathematica, 

version 4.1, together with Mathematica statistical add-on packages. Each 

replication of the sampling procedure obtained two independent samples of 

n1 and n2 scores. For successive pairs, all scores in one sample were 

multiplied by a constant, so that the ratio σ1/σ2 had a predetermined value. 

This ratio varied from 1.0 to 1.8 in increments of .1 and then from 2 to 3 in 

increments of .5. In another part of the study, the ratio was 1.02, 1.05, 1.10, 

and 1.15. In most cases the sample sizes n1 and n2 varied between 10 and 

60, in such a way that the ratio n1/n2 was 1/6, 1/5, 1/4, 1/3, 1/2, 2/3, 3/2, 2, 

3, 4, 5, or 6. The total sample size n1 + n2 was fixed at 60 for the data in 

Tables 1 and 2 and in Figures 1, 2, and 3. There were 50,000 replications of 

the sampling procedure for each condition in the study. 

As a check, some simulations in Figures 1 and 2 in the study were 

repeated using random numbers generated by the method of Marsaglia, 

Zaman, & Tsang (1990), described by Pashley (1993), together with normal 

deviates obtained by the procedure of Marsaglia & Bray (1964). These 

methods reproduced the results in the tables very closely, so all subsequent 

simulations employed random normal deviates obtained directly from the 

Mathematica statistical add-on package. 

On each replication, the two-sample Student t test based on pooled 

variances, as well as the Welch-Satterthwaite version of the t test based on 

separate variances (Welch, 1938, 1947; Satterthwaite, 1946) were 

performed on each pair of samples, and the results were evaluated at the .01 

and .05 significance levels. For the Student t test, the error term in the 

denominator of the t statistic was 
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where n1 and n2 are sample sizes, and 2

1s and 2

2s  are sample variances, 

evaluated at n1 + n2 – 2 degrees of freedom. In the case of the Welch-

Satterthwaite separate-variances test, the error term was the unpooled 

estimate 
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taken to the nearest integer.  

The frequency with which each of the two test statistics exceeded its 

critical value was obtained over all replications to give an estimate of the 

probability of a Type I error for each test. In some cases, the frequencies 

with which either test statistic (or both) exceeded its critical value were 

obtained to give an estimate of the probability of a Type I error that would 

occur if a researcher computed both statistics and selected the most 

favorable one.  

RESULTS OF SIMULATIO%S 

The results of the simulations followed essentially the same pattern 

for all differences in sample sizes and both significance levels. Figure 1 

shows typical examples of the trend for the .05 significance level. The ratio 

of population standard deviations, σ1/σ2 varied from 1.0 to 1.8, and the 

sample sizes in this case were n1 = 60 and n2 = 10 (upper section) or n1 = 10 

and n2 = 60 (lower section). The curves in the figure for the Student t test 

and the Welch t test are consistent with earlier findings (See, for example, 

Hopkins, Glass, & Hopkins, 1987; Hsu, 1938; Scheffe′, 1959, 1970; 

Zimmerman & Zumbo, 1993). When the larger variance was associated 

with the larger sample size (upper section), the probability of a Type I error 

of the Student t test progressively declined below .05 as the ratio of 

standard deviations increased. When the larger variance was associated with 

the smaller sample size (lower section), the probability of a Type I error 

increased far above .05, reaching almost .19 when the ratio was 1.8. In both 
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cases, the separate-variances test restored the probability to a value quite 

close to the .05 significance level. 

 

 

 

Figure 1. Probability of rejecting H0 as a function of the ratio of 

population standard deviations. Upper section: Larger sample is from 

population with smaller standard deviation. Lower section: Larger 

sample is from population with larger standard deviation. 
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For the procedure in which the outcome of both tests determined the 

decision, the probability of a Type I error again depended on whether the 

larger variance was associated with the larger or smaller sample size. In the 

former case, this probability spuriously increased above the .05 significance 

level, although the probability for the Student t test alone declined below 

.05.  

In the case where the larger variance was associated with the smaller 

sample size, the spurious increase in probability for the combination of both 

tests exceeded the increase for the Student t test alone but became gradually 

less as the ratio of standard deviations increased. Obviously, when the 

larger variance is associated with the smaller sample size, using both the 

pooled-variance test and the separate-variance test together and selecting 

the most favorable outcome, does not restore the .05 significance level. In 

fact, it makes the spurious increase in the probability of rejecting H0 

somewhat worse than it is when using the Student t test alone. Again, the 

change was greatest when the difference between the two standard 

deviations was slight rather than extreme. 

Figure 2 plots the probability of rejecting H0 as a function of n1 when 

the total sample size, n1 + n2, remained constant at 60. In other words, the 

ratio of sample sizes, n1/n2 was 1/5, 1/3, ½, 5/7, 1, 7/5, 2, 3, and 5. The 

graphs indicate that, for the Student t test alone, the probability declines 

from about .09 to about .03, as n1 increases. that, for the Welch t test alone, 

it remains close to .05, and that, for the combination of both tests, it 

declines from .09 to .05 as the two sample sizes become more nearly equal 

and then increases slightly as the sample sizes diverge in the opposite 

direction. 

More complete data for a range of differences in sample sizes and for 

significance levels of .01 and .05 is provided by Table 1. In all cases, the 

results in the table follow the same trend as the results plotted in Figures 1 

and 2. From these figures and the results in Table 1, it is clear why the 

probability of a Type I error is modified when both pooled-variances and 

separate-variances tests are performed. When the ratio σ1/σ2 is close to 1.0, 

each test rejects H0 on some occasions where the other does not, because the 

two test statistics utilize somewhat different information. This means that 

the probability of rejecting H0 always increases to some degree when H0 is 

rejected if either test statistic exceeds its critical value.   
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Figure 2. Probability of rejecting H0 as a function of the ratio of sample 

sizes. Upper section Ratio of population standard deviations fixed at 

1.2. Lower section: Ratio of population standard deviations fixed at 3.0. 
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On the other hand, when the ratio σ1/σ2 is more extreme, one test 

dominates, depending on whether the larger variance is associated with the 

larger or smaller sample size. In the former case, the Welch test exceeds its 

critical value with probability close to .05, and there are relatively few cases 

where the Student t statistic exceeds its critical value and the Welch statistic 

does not. Substantial increases above .05 are limited to values of the ratio 

not too far from 1.0, for which each test rejects H0 on a considerable 

number of occasions. However, when the larger variance is associated with 

the smaller sample size, there are substantial increases in probability of 

rejecting H0 over the entire range of the ratio σ1/σ2. Unfortunately, reaching 

a decision by considering both test statistics eliminates the improvement 

that results from using the Welch test alone. 

Table 2 presents a breakdown of the total number of sampling 

occasions into instances where both tests resulted in the same statistical 

decision, either rejection or no rejection, as well as instances where the two 

tests resulted in different decisions, either rejection by the Student t test and 

no rejection by the Welch test, or vice versa. Also shown are the overall 

probabilities of rejection by each significance test. The sum of the values in 

the last 4 columns always is 1.0, within the limits of rounding error. Also, 

the value in the column labeled “Student t test rejects” is the sum of the 

value in the column labeled “Both tests reject” and the value in the column 

labeled “Student +, Welch −.” Similarly, the value in the column labeled 

“Welch test rejects” is the sum of the value in the column labeled “Both 

tests reject” and the value in the column labeled “Student − , Welch +.”  

When sample sizes are equal, there are relatively few occasions on 

which one test rejects H0 and the other does not. Both tests reject H0 with 

probability close to the nominal significance level, irrespective of equality 

or inequality of population variances. The same is true when population 

variances are equal but sample sizes are not. When both population 

variances and sample sizes are unequal and the smaller sample size is 

associated with the larger variance, there are no occasions on which the 

Welch test rejects and the Student t test does not. When both variances and 

sample sizes are unequal and the larger sample size is associated with the 

larger variance, the outcome is the reverse: There are no occasions on which 

the Student t test rejects and the Welch test does not. In other words, 

extensive inflation or depression of the probability of rejection of H0 by the 

Student t test is associated with a difference in the outcomes of the 

respective tests. The two tests are almost but not quite completely consistent 

when sample sizes are equal or when population variances are equal.   
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Sampling Variability of Heterogeneity of Variance 

 Because of the inescapable presence of random sampling in 

significance testing of differences between means, it is possible to obtain 

pairs of heterogeneous samples from homogeneous populations, as well as 

pairs of homogeneous samples from heterogeneous populations. For this 

reason, a decision to use the pooled or separate variances t test based on the 

data obtained from two samples, 2

1s and 2

2s , may not be consistent with a 

decision based on the known population parameters, 2

1σ  and 2

2σ . 

This state of affairs probably occurs more often than one might 

suspect. Some examples that could occur in practical research are shown in 

Figure 3, based on 50,000 replications of the sampling procedure. The top 

section of the figure is a frequency distribution of ratios of the larger to the 

smaller sample standard deviations, when samples of size 8 and 12, 

respectively, are taken from two populations in which the variances are 

equal. Obviously, the sample ratios vary over a wide range and include 

many values that would suggest a violation of the homogeneity assumption. 

The reverse situation is shown in the lower section. In this case, the ratio of 

population standard deviations is 1.5, which indicates the need for a 

separate-variances t test, especially since the sample sizes are unequal. In 
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both cases, the ratios are clustered around the population values, but the 

tails of the distributions include many ratios far from those values. The 

mean of the sample ratios in the upper section is 1.041, and the standard 

deviation is .391. The mean of the ratios in the lower section is 1.556, and 

the standard deviation is .581. 

 

Figure 3. Relative frequency distributions of ratios of sample standard 

deviations when ratios of population standard deviations are 1.0 (upper 

section) and 1.5 (lower section). 
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Table 4 provides more specific information about these 

uncharacteristic outcomes. The values in the table are proportions of 

instances in which the sample ratios exceed various cutoff values that might 

be taken to indicate homogeneity or heterogeneity. The left-hand section, in 

which the population standard deviations are equal, includes cutoff values at 

successively higher ratios of sample standard deviations that could be taken 

to indicate heterogeneity. The right-hand section, where the population ratio 

is 1.5, includes successively lower ratios that could mistakenly indicate 

homogeneity. When sample sizes are relatively small, up to about 20, the 

proportions of anomalous samples are quite large. However, as sample sizes 

increase to 50, 100, or higher, the proportions decline and eventually 

become close to zero. It is clear that inappropriate selection of the 

significance test under this scenario is largely restricted to small-sample 

research settings. For the very small sample sizes, the decision can be 

wrong in a substantial proportion of cases. 
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Effects of Slight Variance Heterogeneity Together with Unequal 

Sample Sizes 

The probability of rejecting H0 by the Student t test is severely 

inflated or depressed when sample sizes are unequal at the same time 

variances are heterogeneous. If one of the two is not an issue─ that is, if 

variances are equal or if sample sizes are the same─the influence of the 

other is not large. However, when both conditions occur at the same time, 

the influence of one can be greatly magnified by changes in the other. 

Table 5 exhibits some cases where ratios of population standard 

deviations fairly close to 1.0 produce large changes in the probability of 

rejecting H0 provided sample sizes differ greatly. For example, a ratio of 

standard deviations of only 1.05 elevates or depresses the probability of 

rejecting H0 considerably above or below the nominal significance level 

when the difference in sample sizes is large, such as n1 = 10 and n2 = 100. 

Even a ratio of only 1.02 has noticeable effects under these large differences 

in sample sizes. The data in Table 5 also show that the Welch test still 

restores the probability to a value fairly close to the nominal significance 

level in these extreme cases. 

Considering the results in Table 5 together with the results of 

sampling variability shown in the foregoing tables, it becomes clear that 

there is a danger in disregarding slight differences in sample variances and 

assuming that the Student t test is appropriate, especially if the difference in 

sample sizes is large. The slight differences in standard deviations included 

in Table 5, we have seen, can be expected to arise frequently from sampling 

variability even though population variances are equal. In such instances, a 

large difference in sample sizes can lead to an incorrect statistical decision 

by the Student t test with high probability 

FURTHER DISCUSSIO% 

If multiple significance tests are performed on the same data at the 

same significance level, and if H0 is rejected when any one of the various 

test statistics exceeds its critical value, the probabilities of Type I and Type 

II errors are certainly modified to some extent. For example, if a Student t 

test and a Wilcoxon-Mann-Whitney test are performed on the same data, at 

the .05 significance level, then this omnibus procedure makes the Type I 

error probability about .055, or perhaps .06. For other significance tests of 

differences between means, the outcome is about the same. In the case of 

most commonly used significance tests of location, the change is not large, 

and textbooks pay relatively little attention to this illegitimate procedure. 
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The result is always an increase in Type I error probability, because the 

critical region for multiple tests is a union of the critical regions of the 

individual tests. Since various significance tests utilize much the same 

information in the data, the change usually is minimal. 

 



 D.W. Zimmerman & B.D. Zumbo 388 

However, in the case of the pooled-variances and separate-variances t 

tests, the outcome of such a procedure is quite different and more serious. 

The disparity arises as a consequence of two effects of heterogeneous 

variances. First, the probability of a Type I error is altered extensively when 

the ratio of variances and the ratio of sample sizes are both large. Second, 

the direction of the change depends on whether the larger variance is 

associated with the larger or smaller sample size. In the first case the 

probability of a Type I error declines below the nominal significance level, 

and in the second case it increases (see Figure 1 and Table 1). 

Suppose, for example, that the ratio σ1/σ2 is about 1.1, that n1 = 60, n2 

= 10, and that both pooled-variances and separate-variances tests are 

performed at the .05 significance level. Then, it is clear from Figure 1 that 

rejecting H0 when either test statistic exceeds its critical value makes the 

probability of a Type I error about .06 instead of .05. This can be contrasted 

with the decline to .035 when the pooled-variances test alone is performed. 

However, the probability for the separate-variances test alone is close to 

.05. 

  Next, suppose the ratio σ1/σ2 remains 1.1, while the sample sizes are 

reversed: n1 = 10 and n2 = 60. Then, rejecting H0 when either test statistic 

exceeds its critical value makes the probability of a Type I error about .08, 

which is worse than the .07 resulting from the pooled-variances test alone. 

Again, the separate-variances test alone yields the correct value of .05. If 

the ratio σ1/σ2 is somewhat larger, say, 1.6, then performing both tests 

makes the probability of a Type I error about .15, which is the same as 

employing the pooled-variances test alone. In this case, rejecting H0  after 

applying the separate-variances test alone has a more favorable outcome. 

The result of performing both pooled-variances and separate-

variances tests on the same data, therefore, is not simply an increase in the 

probability of rejecting H0 to a value slightly above the nominal 

significance level, because of capitalizing on chance. That is true only if the 

ratio σ1/σ2 falls in a rather narrow range between about 1.0 and about 1.5 

and, in addition, the larger sample is associated with the larger variance. In 

all cases of heterogeneous variances examined in the present study, 

employing the separate-variance test alone resulted in rejecting H0 with 

probability close to the nominal significance level. In most cases, the 

pooled-variances test, either alone or in combination with the separate-

variances test, substantially altered the probability. To look at it another 

way, reaching a decision by considering both the pooled and separate-

variances test statistics together eliminates the improvement that comes 

from using the separate-variances test alone. 
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Another complication arises from the fact that researchers may not 

always know when population variances are heterogeneous. And in some 

cases it is even problematic whether a larger variance is associated with a 

larger or smaller sample size. If the ratio of sample sizes is quite different 

from 1.0, say 1/4 or 1/5, then the probability of a Type I error is sensitive to 

slight differences in population variability. For example, as we have seen, 

an apparently inconsequential ratio of standard deviations of 1.1 can 

increase the probability of a Type I error substantially. On the other hand, 

interchanging the larger and smaller standard deviations, so that the ratio 

becomes .91, significantly decreases the nominal Type I error probability. 

Because sample variances do not always reflect population variances, 

it is difficult to determine whether Type I error probabilities will increase or 

decrease if sample sizes differ. A ratio of sample standard deviations of 1.1 

or 1.2 could easily arise in sampling from populations with ratios 

considerably more extreme and possibly when the ratio is less than 1.0. The 

sensitivity of the Type I error probabilities to small differences, makes it 

risky to reach a decision about the appropriate test solely on the basis of 

sample statistics. 

Preliminary tests of equality of variances, such as the Levene test, the 

F test, or the O’Brien test, are ineffective and actually make the situation 

worse (Zimmerman, 2004). That is true because, no matter what 

preliminary test is chosen, it inevitably produces some Type II errors. On 

those occasions, therefore, a pooled- variances test is performed when a 

separate-variances test is needed, modifying the significance level to some 

degree. On the other hand, a Type I error, resulting in using a separate-

variances test when variances are actually homogeneous, is of no 

consequence.    

Instead of inspecting sample data and performing a preliminary test of 

homogeneity of variance, it is recommended that researchers focus attention 

on sample sizes. Then, to protect against possible heterogeneity of variance, 

simply perform a separate-variances test unconditionally whenever sample 

sizes are unequal. That strategy protects the significance level if population 

variances are unequal, whatever the outcome of a preliminary test might be. 

And if variances are in fact homogeneous, nothing is lost, because then both 

pooled and separate-variances tests lead to the same statistical decision.  
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