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Tests of the equality of variances are sometimes used on their own to 

compare variability across groups of experimental or non-experimental 

conditions but they are most often used alongside other methods to support 

assumptions made about variances.  A new nonparametric test of equality of 

variances is described and compared to current ‘gold standard’ method, the 

median-based Levene test, in a computer simulation study.  The simulation 

results show that when sampling from either symmetric or skewed 

population distributions both the median based and nonparametric Levene 

tests maintain their nominal Type I error rate; however, when one is 

sampling from skewed population distributions the nonparametric test has 

more statistical power. 

 

 

Most studies in education, psychology, and the psycho-social and 

health sciences more broadly, use statistical hypothesis tests, such as the 

independent samples t-test or analysis of variance, to test the equality of two 

or more means, or other measures of location.  In addition, some, but far 

fewer, studies compare variability across groups or experimental or non-

experimental conditions. Tests of the equality of variances can therefore be 

used on their own for this purpose but they are most often used alongside 

other methods to support assumptions made about variances. This is often 

done so that variances can be pooled across groups to yield an estimate of 

variance that is used in the standard error of the statistic in question.  In 

current statistical practice, there is no consensus about which statistical test 

of variances maintains its nominal Type I error rate and maximizes the 

statistical power when data are sampled from skewed population 

distributions.     

                                                 
*
 Address Correspondence to: David W. Nordstokke, Ph.D. Division of Applied 

Psychology. University of Calgary. 2500 University Drive NW. Education Tower 302. 

Calgary, Alberta, Canada T2N 1N4. Email: dnordsto@ucalgary.ca 



 D.W. $ordstokke & B.D. Zumbo 402

The widely used hypothesis for the test of equal variances, when, for 

example, there are two groups, is 
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wherein, a two-tailed test of the null hypothesis (H0) that the variances are 

equal against the alternative hypothesis (H1) that the variances are not equal 

is performed.  Nordstokke and Zumbo (2007) recently investigated the 

widely recommended parametric mean based Levene test for testing equal 

variances and, like several papers before them (e.g., Carroll and Schneider, 

1985; Shoemaker, 2003; Zimmerman, 2004), they highlighted that the 

Levene test is a family of techniques, and that the original mean version is 

not robust to skewness of the population distribution of scores.  As a way of 

highlighting this latter point, Nordstokke and Zumbo showed that if one is 

using the original variation of Levene’s test, a mean-based test, such as that 

found in widely used statistical software packages like SPSS and widely 

recommended in textbooks, one may be doing as poorly (or worse) than the 

notorious F test of equal variances, which the original Levene test (1960) 

was intended to replace.  

As a reminder, the mean version of the Levene test (1960) is 

                            ANOVA ( jij XX − ),                               (T1) 

wherein, equation (T1) shows that this test is a one-way analysis of variance 

conducted on the absolute deviation value, which is calculated by 

subtracting from each individual’s score, denoted  ���, from their group 

mean value, denoted ��� , for each individual i in group j.  The family of 

Levene tests can be applied to more than two independent groups but, 

without loss of generality, the current study focuses on the two-group case. 

The primary goal of this study is to compare the Type I error rates and 

the statistical power of the median version of the Levene test and a new 

nonparametric Levene test (described in detail below) that was briefly 

introduced by Nordstokke and Zumbo (2007).  Nordstokke and Zumbo 

remind readers that the mean version of the Levene test for equality of 

variances does not maintain its nominal Type I error rate when the 

underlying population distribution is skewed and, in so doing, introduced 

the nonparametric version of the Levene test that is intended to be more 

robust under the conditions where samples are collected from population 

distributions that are skewed.   
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As Conover and his colleagues (1981) showed, the top performing 

test for equality of variances was the median based Levene test.  The 

median based version of the Levene test for equal variances is 

                   ANOVA(
jij

MdnX − ),                            (T2) 

wherein, building on our notation above, the analysis of variance is 

conducted on the absolute deviations of individual’s score, denoted  ���, 

from their group median value, denoted ���� , for each individual i in 

group j.  The median based version has been shown to perform well in 

situations wherein data were skewed.  This test is available in widely used 

statistical software programs such as SAS (using, for example, PROC GLM 

and MEANS sample / HOVTEST=BF) and R using the packages “lawstat” 

(Hui, Gel, & Gastwirth, 2008) or “car” (Fox, 2009). Browne and Forsythe 

(1974), who are widely recognized as the developers of the median based 

version of the Levene test, also demonstrated that this test was suitable for 

use with skewed distributions. In terms of skewed distributions, Browne 

and Forsythe investigated the Chi-square distribution with 4 degrees of 

freedom (skew equals approximately 1.5) and showed that the Type I error 

rates were maintained in all of the conditions and had power values above 

.80 when the effect size was large (4/1), the ratio of sample sizes was 1/1, 

and the sample size was 40.  This result suggests that the median version of 

the test could potentially become the widely used standard if these results 

hold across a broader range of conditions.   

Therefore, another purpose of this paper is to investigate the 

performance of the Levene median test for equal variances under a wider 

range of conditions than studied by Browne and Forsythe (1974).  Conover, 

Johnson, and Johnson (1981) also showed that the Levene median test 

maintains its Type I error rates under an asymmetric double exponential 

distribution, but had average power values of .10.  It is important that the 

Levene median test be studied further to assess its usefulness across varying 

research situations.  For these reasons, the Levene median test for equal 

variances is used as a comparison for the newly developed nonparametric 

Levene test. 

As Nordstokke and Zumbo (2007) describe it, the nonparametric 

Levene test involves pooling the data from all groups, ranking the scores 

allowing, if necessary, for ties, placing the rank values back into their 

original groups, and running the Levene test on the ranks.  Of course, if one 

were using SPSS (or some other program wherein the means version of the 

Levene test is computed) then one would merely have to apply the rank 

transformation and then submit the resulting ranks to the means Levene test 
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and one would have the nonparametric test, as described in Nordstokke and 

Zumbo (2007, pp. 11-12). Using our earlier notation, the nonparametric 

Levene test can be written as 

                               ANOVA (
R
jij XR − ),                               (T3) 

wherein a one-way analysis of variance is conducted on the absolute value 

of the mean of the ranks for each group, denoted �	�

, subtracted from each 

individual’s rank ���, for individual i in group j.  This nonparametric 

Levene test is based on the principle of the rank transformation (Conover & 

Iman, 1981).  When the data are extremely non-normal, perhaps caused by 

several outliers, or the variable is genuinely non-normal (e.g., salary), or 

some other intervening variables, the transformation changes the 

distribution and makes it uniform.  Conover and Iman suggested conducting 

parametric analyses, for example, the analysis of variance, on rank 

transformed data.  The use of rank transformed data, although popularized 

by Conover and Iman, is an idea that has had currency in the field of 

statistics for many years as a way to avoid the assumption of normality in 

analysis of variance (see, for example, Friedman, 1937; 1940).  Thus the 

nonparametric Levene test is a parametric Levene test on the rank 

transformed data. 

 It should be noted that the null hypothesis for both the median and 

nonparametric Levene test is not the same as for the mean version of the 

Levene test.  The null hypothesis of these two tests is that the populations 

are identically distributed in shape (not necessarily in location), and the 

alternate hypothesis is that they are not identically distributed in shape.  If 

two or more distributions are identically distributed in shape, then it is 

implied that the variances are equal.  That is, if the researcher can assume 

identical distributions, then they can assume homogeneity of variances.  

Thus the overlap between the hypotheses of parametric and nonparametric 

tests allows for interchangeability between them when testing for equal 

variances because implicit in the assumption of equal variances is identical 

distributions.  This overlap allows one to test for equal variances using the 

nonparametric hypothesis of identical distributions.   

 Rank transformations are appropriate for testing for equal variances 

because, if the rankings between the two groups are widely disparate, it will 

be reflected by a significant result.  For example, if the ranks of one of the 

groups tend to have values whose ranks are clustered near the top and 

bottom of the distribution and the other group has values whose ranks 

cluster near the middle of the distribution, the result of the nonparametric 
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Levene test would lead one to conclude that the variances are not 

homogeneous.   

METHOD 

Data Generation 

A computer simulation was performed following standard simulation 

methodology (e.g., Nordstokke & Zumbo, 2007; Zimmerman, 1987; 2004). 

Population distributions were generated and the statistical tests were 

performed using the statistical software package for the social sciences, 

SPSS.  A pseudo random number sampling method with the initial seed 

selected randomly was used to produce χ
2
 distributions.  An example of the 

syntax used to create the population distribution of one group belonging to a 

normal distribution is included in Appendix 1.  Building from Nordstokke 

and Zumbo (2007), the design of the simulation study was a 4 x 3 x 3 x 9 

completely crossed design with: (a) four levels of skew of the population 

distribution, (b) three levels of sample size, (c) three levels of sample size 

ratio,
2

1
n

n
, and (d) nine levels of ratios of variances.  The dependent 

variables in the simulation design are the proportion of rejections of the null 

hypothesis in each cell of the design and, more specifically, the Type I error 

rates (when the variances are equal), and power under the eight conditions 

of unequal variances.  Staying consistent with Nordstokke and Zumbo 

(2007), we only investigated statistical power in those conditions wherein 

the nominal Type I error rate, in our study .05, is maintained. 

 

Shape of the population distributions
1
  

Four levels of skew 0, 1, 2, and 3 were investigated. As is well 

known, as the degrees of freedom of a χ
2
 distribution increase it more 

closely approximates a normal distribution.  The skew of the distributions 

for both groups were always the same in all replications and are shown in 

                                                 
1
 It should be noted that the population skew was determined empirically for large sample 

sizes of 120,000 values with 1000, 7.4, 2.2, and .83 degrees of freedom resulting in skew 

values of 0.03, 1.03, 1.92, and 3.06, respectively; because the degrees of freedom are not 

whole numbers, the distributions are approximations. The well known mathematical 

relation is 1
8

df
γ = . 
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Figure 1 (reading from top left to bottom right) for skew values of 0, 1, 2, 

and 3 respectively. 

 

 

 

 

Skew = 0                                                                Skew = 1 

 

Skew = 2                                                                Skew = 3 

 

Figure 1. Shape of population distributions used in simulations 

 

 

Sample Sizes  

Three different sample sizes, 21 nn$ += , were investigated: 24, 48, 

and 96.  Three levels of ratio of group sizes (
2

1
n

n
: 1/1, 2/1, and 3/1) were 

also investigated.   
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Population variance ratios  

Nine levels of variance ratios were investigated ( 2
2

2
1

σ

σ
: 5/1, 4/1, 

3/1, 2/1, 1/1, 1/2, 1/3, 1/4, 1/5).  Variance ratios were manipulated by 

multiplying the population of one of the groups in the design by a constant 

2 (2/1, 1/2 ratios), 3 (3/1, 1/3 ratios), 4 (4/1, 1/4 ratios, and 5 (5/1, 1/5 

ratios).  The value of the constant was dependent on the amount of variance 

imbalance that was required for the cell of the design.  For example, for a 

variance ratio of 2/1, the scores would be multiplied by 2.  The design was 

created so that there were direct pairing and inverse pairing in relation to 

unbalanced groups and direction of variance imbalance.  Direct pairing 

occurs when the larger sample sizes are paired with the larger variance and 

inverse pairing occurs when the smaller sample size is paired with the larger 

variance (Tomarken & Serlin, 1986).  This was done to investigate a more 

complete range of data possibilities.  In addition, Keyes and Levy (1997) 

drew our attention to concern with unequal sample sizes, particularly in the 

case of factorial designs – see also O’Brien (1978, 1979) for discussion of 

Levene’s test in additive models for variances.  Findings suggest that the 

validity and efficiency of a statistical test is somewhat dependent on the 

direction of the pairing of sample sizes with the ratio of variance. 

As a whole, the complex multivariate variable space represented by 

our simulation design captures many of the possibilities found in day-to-day 

research practice. 

 

Determining Type I Error Rates & Power 

The frequency of Type I errors was tabulated for each cell in the 

design. In all, there were 324 cells in the simulation design. As a description 

of our methodology, the following will describe the procedure for (T2) and 

(T3) for completing the steps for one cell in the design.  First, for both tests, 

two similarly distributed populations were generated and sampled from; for 

this example, it was two normally distributed populations that were sampled 

to create two groups.  In this case each group had 12 members, and the 

population variances of the two groups are equal.  So, this example tests the 

Type I errors for the two tests under the current conditions on the same set 

of data.  For (T2), the absolute deviation from the median is calculated for 

each value in the sampled distribution and an ANOVA is performed on 

these values to test if the variances are significantly different at the nominal 

alpha value of .05 (±.01).  For (T3), values are pooled and ranked, then 

partitioned back into their respective groups.  An independent samples t-test 
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is then performed on the ranked data of the two groups.  A Levene’s test for 

equality of variances, by which we mean (T3), is reported in this procedure 

as a default test to determine if the variances are statistically significantly 

different at the nominal alpha value of .05 (±.01).  The value of ±.01 

represents moderate robustness and comes from Bradley (1978).  The 

choice of Bradley’s criterion is somewhat arbitrary, although it is a middle 

ground between his alternatives, and some of our conclusions may change 

with the other criteria.  It should be noted that when Type I error rates are 

less than .05, the validity of the test is not jeopardized to the same extent as 

they are when they are inflated.  This makes a test invalid if Type I errors 

are inflated, but when they decrease, the test becomes more conservative, 

reducing power.  Reducing power does not invalidate the results of a test, so 

tests will be considered to be invalid only if the Type I error rate is inflated.  

Again, note that we intend to mimic day-to-day research practice, hence the 

number of cells under varying conditions.  This procedure was replicated 

5000 times for each cell in the design.   

In the cells where the ratio of variances was not equal and that 

maintained their Type I error rates, statistical power is represented by the 

proportion of times that the Levene’s median test, (T2) and the 

nonparametric Levene’s test (T3), correctly rejected the null hypothesis.     

RESULTS 

The Type I error rates for the Levene median test (T2) and the 

nonparametric Levene test (T3) for all of the conditions in the study are 

illustrated in Table 1.  For example, the first row in Table 1 (reading across 

the row left to right), for a skew of 0, and a sample size of 24 with equal 

group sizes each containing 12 per group, the Type I error rate for the 

nonparametric Levene test is .049 and the Type I error rate for the Levene 

median test is .038.  In all of the conditions of the simulation, both tests 

maintain their Type I error rate, with the Levene median test (T2) being 

somewhat conservative in some of the conditions.    

As mentioned previously, the power values of the Levene median test 

(T2) and the nonparametric Levene (T3) will only be investigated if the 

nominal Type I error rate was maintained.  It was the case that the Type I 

error rates of both tests was maintained in all of the conditions of the 

present study.  Table 2 reports the power values of the Levene median test 

(T2) and the nonparametric Levene tests when the population skew is equal 

to 0.  In nearly all of the cells of the Table 2 the Levene median test (T2) 

has slightly higher power values.  For example, in the first row of the table 
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are the results for the nonparametric Levene test (T3), which, for a sample 

size of 24 with equal groups and a ratio of variances of 5/1, the power is 

.42; that is, 42 percent of the null hypotheses were correctly rejected.  In 

comparison, the power of the Levene median (T2) test (the next row in the 

table) under the same conditions was .50.   In 61 of the 72 cells in Table 2, 

the median test had higher power than the nonparametric test.   

The values for the power of the nonparametric Levene test (T3) and 

the Levene median test (T2) when the population distributions have a skew 

equal to 1 are illustrated in Table 3.  Again, in most of the cases, the Levene 

median test (T2) had slightly higher power values than the nonparametric 

Levene test (T3); however the discrepancy between the scores is reduced.  

The power values are much closer than when the population skew was 

equal to 0.  For example, in the first row of Table 3 are the power values for 

the nonparametric Levene (T3).  For a sample size of 24 with equal groups 

and a ratio of variances 5/1, the power value is .474.  In comparison, the 

Levene median test (T2) under identical conditions has a power value of 

.434.  The median test was more powerful than the nonparametric test in 25 

of the 72 cells in Table 3.5. 

The power of the two tests when population skew is equal to 2 is 

listed in Table 4. In a great number of the cells of the table, the 

nonparametric Levene (T3) has higher power values than the Levene 

median test (T2).  For example, the power for the nonparametric Levene test 

(T3) is present in the first row of Table 4.  For a sample size of 24 with 

equal group sizes and a ratio of variances of 5/1, the power value is .572.  In 

comparison, the power of the Levene median test under the same conditions 

is .296.  The nonparametric test was more powerful than the median test in 

every cell of Table 4. 

When population skew was equal to 3, the greatest differences 

between the power values of the two tests were present and are illustrated in 

Table 5.  The nonparametric Levene test (T3) has notably higher power 

values than the Levene median test (T2).  For example, the first row of 

Table 5 lists the power values for the nonparametric Levene test (T3).  For a 

sample size of 24 with equal group sizes and a ratio of variances of 5/1, the 

power value is .667.  In comparison, the power of the Levene median test 

(T2) is .155.  The nonparametric test was more powerful than the median in 

every cell of Table 5. 
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Table 1. Type I error rates of the �onparametric and Median versions of the Levene 

tests. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

� n1/n2 �onparametric 

Levene  

Levene 

Median 

Skew = 0 

24 1/1 .049 .038 

24 2/1 .050 .037 

24 3/1 .047 .039 

48 1/1 .044 .039 

48 2/1 .053 .043 

48 3/1 .054 .046 

96 1/1 .047 .040 

96 2/1 .051 .043 

96 3/1 .051 .043 

Skew = 1  

24 1/1 .043 .040 

24 2/1 .048 .041 

24 3/1 .049 .039 

48 1/1 .046 .041 

48  2/1 .048 .040 

48 3/1 .058 .044 

96 1/1 .050 .052 

96 2/1 .048 .044 

96 3/1 .047 .042 

Skew = 2 

24 1/1 .051 .050 

24 2/1 .049 .047 

24 3/1 .054 .050 

48 1/1 .053 .055 

48 2/1 .052 .047 

48 3/1 .053 .045 

96 1/1 .051 .051 

96 2/1 .049 .050 

96 3/1 .054 .048 

Skew =3 

24 1/1 .049 .053 

24 2/1 .054 .050 

24 3/1 .046 .049 

48 1/1 .049 .045 

48 2/1 .046 .043 

48 3/1 .050 .044 

96 1/1 .045 .044 

96 2/1 .054 .048 

96 3/1 .050 .043 
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Table 2. Power values of the nonparametric and median versions of the Levene test 

for equality of variances for skew of zero. 

 
   

Population Variance Ratio, 2
2

2
1

σ

σ
 

Test  N n1/n2 1/5 1/4 1/3 1/2 2/1 3/1 4/1 5/1 

Skew = 0   Inverse Pairings Direct Pairings 

Nonparametric Levene 24 1/1 .420 .354 .239 .124 .124 .239 .354 .420 

Levene 

Median 

24 1/1 .500 .407 .272 .132 .132 .272 .407 .500 

Nonparametric Levene 24 2/1 .326 .260 .183 .095 .14 .246 .37 .459 

Levene 

Median 

24 2/1 .509 .401 .267 .122 .098 .197 .32 .393 

Nonparametric Levene 24 3/1 .256 .206 .145 .073 .130 .222 .314 .402 

Levene 

Median 

24 3/1 .466 .351 .244 .110 .088 .139 .214 .285 

Nonparametric Levene 48 1/1 .783 .673 .484 .222 .222 .484 .673 .783 

Levene 

Median 

48 1/1 .899 .805 .595 .272 .272 .595 .805 .899 

Nonparametric Levene 48 2/1 .661 .546 .391 .188 .231 .480 .681 .796 

Levene 
Median 

48 2/1 .874 .755 .566 .263 .242 .515 .728 .851 

Nonparametric Levene 48 3/1 .535 .448 .315 .156 .211 .443 .631 .746 

Levene 

Median 

48 3/1 .805 .698 .508 .237 .193 .425 .625 .755 

Nonparametric Levene 96 1/1 .98 .943 .787 .438 .438 .787 .943 .980 

Levene 
Median 

96 1/1 .998 .988 .913 .56 .56 .913 .988 .998 

Nonparametric Levene 96 2/1 .95 .876 .699 .378 .426 .798 .941 .980 

Levene 

Median 

96 2/1 .994 .976 .879 .532 .493 .884 .981 .997 

Nonparametric Levene 96 3/1 .875 .779 .607 .293 .374 .739 .911 .970 

Levene 

Median 

96 3/1 .984 .951 .833 .439 .401 .815 .957 .989 
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Table 3. Power values of the nonparametric and median versions of the Levene test 

for equality of variances for skew of one. 

   

Population Variance Ratio, 2
2

2
1

σ

σ
 

Test  N n1/n2 1/5 1/4 1/3 1/2 2/1 3/1 4/1 5/1 

Skew = 1   Inverse Pairings Direct Pairings 

Nonparametric Levene 24 1/1 .474 .385 .278 .142 .142 .278 .385 .474 

Levene 

Median 

24 1/1 .434 .340 .229 .120 .120 .229 .340 .434 

Nonparametric Levene 24 2/1 .357 .293 .202 .105 .154 .296 .416 .505 

Levene 

Median 

24 2/1 .436 .348 .234 .117 .090 .167 .253 .321 

Nonparametric Levene 24 3/1 .285 .230 .160 .087 .143 .244 .356 .439 

Levene 

Median 

24 3/1 .424 .312 .214 .113 .069 .112 .168 .221 

Nonparametric Levene 48 1/1 .836 .730 .566 .276 .276 .566 .730 .836 

Levene 
Median 

48 1/1 .820 .705 .515 .241 .241 .424 .705 .820 

Nonparametric Levene 48 2/1 .715 .609 .439 .215 .261 .558 .732 .852 

Levene 

Median 

48 2/1 .804 .681 .485 .228 .182 .418 .587 .740 

Nonparametric Levene 48 3/1 .586 .485 .350 .178 .253 .524 .701 .815 

Levene 
Median 

48 3/1 .735 .613 .428 .206 .156 .330 .500 .634 

Nonparametric Levene 96 1/1 .991 .966 .878 .522 .522 .878 .966 .991 

Levene 

Median 

96 1/1 .991 .965 .852 .466 .466 .852 .965 .991 

Nonparametric Levene 96 2/1 .966 .913 .774 .423 .492 .860 .970 .993 

Levene 

Median 

96 2/1 .987 .941 .807 .430 .389 .774 .937 .980 

Nonparametric Levene 96 3/1 .905 .837 .673 .359 .463 .822 .947 .986 

Levene 
Median 

96 3/1 .964 .908 .752 .390 .335 .689 .873 .959 
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Table 4. Power values of the nonparametric and median versions of the Levene test 

for equality of variances for skew of two. 

   

Population Variance Ratio, 2
2

2
1

σ

σ
 

Test  N n1/n2 1/5 1/4 1/3 1/2 2/1 3/1 4/1 5/1 

Skew = 2   Inverse Pairings Direct Pairings 

Nonparametric Levene 24 1/1 .572 .499 .376 .214 .214 .376 .499 .572 

Levene 

Median 

24 1/1 .296 .238 .166 .091 .091 .166 .238 .296 

Nonparametric Levene 24 2/1 .431 .364 .275 .151 .222 .405 .517 .612 

Levene 

Median 

24 2/1 .342 .266 .195 .101 .067 .118 .143 .193 

Nonparametric Levene 24 3/1 .333 .298 .229 .128 .203 .358 .466 .551 

Levene 

Median 

24 3/1 .326 .267 .189 .112 .056 .074 .103 .127 

Nonparametric Levene 48 1/1 .920 .864 .723 .428 .428 .723 .864 .920 

Levene 

Median 

48 1/1 .629 .522 .346 .155 .155 .346 .522 .629 

Nonparametric Levene 48 2/1 .795 .723 .602 .351 .436 .746 .884 .940 

Levene 
Median 

48 2/1 .622 .514 .353 .181 .122 .268 .390 .495 

Nonparametric Levene 48 3/1 .663 .596 .472 .253 .395 .704 .846 .917 

Levene 

Median 

48 3/1 .583 .472 .326 .156 .093 .185 .271 .342 

Nonparametric Levene 96 1/1 .999 .995 .964 .740 .740 .964 .995 .999 

Levene 
Median 

96 1/1 .926 .834 .662 .315 .315 .662 .834 .926 

Nonparametric Levene 96 2/1 .988 .972 .907 .648 .741 .965 .996 .999 

Levene 

Median 

96 2/1 .909 .813 .624 .308 .248 .538 .749 .864 

Nonparametric Levene 96 3/1 .946 .914 .820 .547 .688 .950 .992 .999 

Levene 

Median 

96 3/1 .871 .768 .574 .274 .196 .447 .646 .779 
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Table 5. Power values of the nonparametric and median versions of the Levene test 

for equality of variances for skew of three. 

   

Population Variance Ratio, 2
2

2
1

σ

σ
 

Test  N n1/n2 1/5 1/4 1/3 1/2 2/1 3/1 4/1 5/1 

Skew = 3   Inverse Pairings Direct Pairings 

Nonparametric Levene 24 1/1 .667 .622 .565 .443 .443 .565 .622 .667 

Levene 

Median 

24 1/1 .155 .124 .094 .073 .073 .094 .124 .155 

Nonparametric Levene 24 2/1 .504 .485 .419 .320 .461 .603 .676 .712 

Levene 
Median 

24 2/1 .215 .183 .127 .088 .044 .053 .071 .076 

Nonparametric Levene 24 3/1 .454 .405 .333 .255 .411 .568 .627 .695 

Levene 

Median 

24 3/1 .221 .187 .144 .096 .031 .032 .034 .043 

Nonparametric Levene 48 1/1 .954 .944 .919 .810 .810 .919 .944 .954 

Levene 

Median 

48 1/1 .319 .258 .178 .093 .093 .178 .258 .319 

Nonparametric Levene 48 2/1 .843 .829 .789 .677 .829 .956 .983 .993 

Levene 
Median 

48 2/1 .373 .299 .230 .123 .060 .104 .146 .185 

Nonparametric Levene 48 3/1 .735 .697 .671 .525 .792 .937 .977 .990 

Levene 

Median 

48 3/1 .376 .290 .210 .118 .040 .055 .082 .105 

Nonparametric Levene 96 1/1 .999 .999 .999 .987 .987 .999 .999 .999 

Levene 
Median 

96 1/1 .648 .499 .351 .168 .168 .351 .499 .648 

Nonparametric Levene 96 2/1 .984 .986 .984 .950 .989 .999 .999 .999 

Levene 

Median 

96 2/1 .657 .540 .382 .178 .109 .241 .377 .494 

Nonparametric Levene 96 3/1 .946 .947 .938 .867 .984 .999 .999 .999 

Levene 

Median 

96 3/1 .615 .511 .352 .186 .081 .174 .262 .339 
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 At this point, the results of some of the variables that were 

manipulated in this study will be investigated in a more in depth manner.  In 

particular, the result of the main effects (overall sample size (N), ratio of 

sample sizes (n1/n2), inverse vs. direct pairings, and skew) will be illustrated 

graphically.  As well, several of the interactions of these factors will be 

shown.  For comparative purposes, especially when summarizing data 

across a number of conditions, the power difference between the two tests 

will be used.  A power difference is simply the difference in statistical 

power between the two tests.  The Levene median test will be used as a base 

because it is generally accepted as the gold standard.  Essentially, if the 

power difference is negative, the Levene median test is performing better in 

terms of statistical power; if the power difference is positive, the 

nonparametric Levene test is performing better in terms of statistical power, 

and if the difference score is zero, the two tests are equal as far as statistical 

power.  This section of the results is intended to be a more direct 

comparison between the two tests.   

 

2/1 variance ratio 

Figure 2 illustrates the difference in power between the two versions 

of the test for equal variances across the 3 sample sizes (24, 48, and 96) for 

each of the four levels of skew (0, 1, 2, and 3) when the ratio of sample 

sizes are equal (n1/n2 = 1/1).  It should be noted here that the ratio of 

variances (effect size) that is being described represents the smallest ratio of 

variances that was tested (2/1) because, in practice, it is the smaller effect 

sizes that usually are of interest to researchers and they also usually present 

more of a challenge when trying to detect differences than larger effect 

sizes.  

It can be seen in Figure 2 that, when sample sizes are equal and small 

(24) and the distribution has a skew of 0, the median test has a slight power 

advantage over the nonparametric test and this is maintained as sample size 

increases.  However, as the skew of the population distribution increases, 

the nonparametric test has more power than the median version and this 

power advantage increases as the skew of the population distribution 

increases.  For example, in the condition where skew=3, the power 

difference favors the nonparametric version of the test with a power 

difference of nearly .40 when the sample size is 24 and increasing to a 

power advantage of nearly .80 when the sample size is 96. 

 Figure 3 illustrates the power differences between the two tests 

across the three levels of sample sizes and four levels of skew when the 

ratio of variances is 2/1.  As sample size increases, generally there is an 
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increase in the power difference between the two tests that favors the 

nonparametric version of the test.  Notice however, that when the skew of 

the population distribution equals 0 and the pairing of sample size to 

variance ratio is inverse (i.e., the larger sample size with the smaller 

variance), the median version of the test has a slight power advantage over 

the nonparametric test that increases slightly as the sample size increases.  

Interestingly, under the same conditions except with a direct ratio of sample 

sizes and variance ratio (i.e., the larger sample size is associated with the 

larger variance) the power advantage of the median test over the 

nonparametric test is reduced.  That is to say, when the larger sample size is 

associated with the smaller variance, the median test performs better 

compared to itself, under the same condition than when the pairing is direct.   

Also, when the larger sample size is associated with the larger variance, the 

nonparametric test performs better compared to itself, under the same 

condition, when the sample size and variance are inversely paired.  This is 

consistent across all of the levels of skew in Figure 3.  For example, when 

skew=3 the nonparametric test clearly has more power than the median test, 

but when the ratio of sample size/variance ratio pairing are inverse the 

power differences are slightly less than when the pairing is direct, 

demonstrating that the median test performs better in terms of power when 

there are inverse pairings.  For example, see Table 5 for the condition where 

the skew=3, the sample size of 48, with a ratio of sample sizes 2 to 1 (16/8), 

and a 2 to 1 ratio of variances, the nonparametric Levene test’s power is 

.677 when the sample size and variance are inversely related.  When they 

are directly related, the power is .829.  In contrast, the median version of the 

Levene test, under the same conditions, has a power of .123 when sample 

size and variance are inversely related.  When sample size and variance are 

directed related the power of the median test is .060.   

The power differences between the two tests across the three sample 

sizes and four levels of skew when the ratio of variances is 2 to 1 are shown 

in Figure 4.  When the skew is equal to 0 and the ratio of sample sizes and 

variances ratios are inversely related, as the sample size increases, the 

median test gains a slight power advantage.  This relationship is reversed as 

the level of skew increases.  As the sample size and the skew increase, the 

power difference between the median test and the nonparametric test 

increases in favor of the nonparametric test.  The power advantage was 

more pronounced when sample size ratios and variance ratios were directly 

paired and less so when sample sizes and variance ratios were inversely 

paired.  This was due to the fact the median test performed generally better 

in terms of power when sample sizes and variance ratios were inversely 

paired than when sample sizes and variance ratios were directly paired.   
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Figure 2. Power difference (2 to 1 variance ratio) for equal sample size 

ratios. Note: Power differences are based on the nonparametric test minus the median test 

with a negative value representing superior power for the median test and a positive value 

representing superior power for the nonparametric test.  

 

 

4/1 variance ratio 

 This section of results focuses on the condition where the ratio of 

variances is 4 to 1.  These results report the same set of conditions as in the 

preceding section, but with a larger ratio of variances to add continuity and 

completeness to the results.  Figure 5 illustrates the power difference 

between the two tests when sample sizes are equal across the three sample 

sizes.  When the skew=0 the median test has a slight power advantage over 

the nonparametric test.  This is reasonably stable across the three levels of 

sample size.  As the skew increases, the power advantage begins to favor 

the nonparametric test and when the skew reaches 3, the power advantage 

of the nonparametric test is quite pronounced across all the sample sizes.   

The reduction in the power difference between sample size of 48 and 

96 when the skew is equal to 2 and 3 is explained by an increase in the 

power of the median test when the sample size becomes larger (i.e., 96).  

This is not due to a loss of power by the nonparametric test.  It can be 
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confirmed by looking at Tables 2 and 3 that the nonparametric test is 

correctly rejecting the null hypothesis nearly 100 percent of the time when 

the sample size is 96.   

 

 

Figure 3. Power difference (2 to 1 variance ratio) values for sample size 

ratio of 2 to 1. 

 

 

 

Figure 6 illustrates the power difference between the two tests when 

the ratio of variances is 4 to 1 across the three different sample sizes 

categorized by inverse versus direct pairing at each level of skew.  The 

median test once again shows a power advantage when distributions are not 

skewed across all sample sizes in the simulation.  As shown in previous 

results of this manuscript, as the skew of the population distributions 

increases the power advantage of the nonparametric test becomes more 

pronounced.  As well, the power difference is less pronounced when the 
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pairing of sample size ratios and variance ratios are inverse instead of 

direct.   

 

 

Figure 4. Power difference (2 to 1 variance ratio) values for sample size 

ratio of 3 to 1. 

 

 

Figure 7 shows the power difference for a 4 to 1 variance ratio across 

each of the sample size conditions when the sample size ratio is 3 to 1.  

Again the median test shows a power advantage when distributions are not 

skewed across all sample sizes in the simulation.  As reported in previous 

conditions described in the results, as the skew of the population 

distributions increases, the power advantage of the nonparametric test 

becomes more pronounced.   The power difference is more pronounced 

between the two tests when the pairing of sample size ratios and variance 

ratios is direct instead of inverse. 
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Figure 5. Power difference (4 to 1 variance ratio) for equal sample size 

ratios.  

 

 

 

Figure 8 highlights how the ratio of sample sizes has an effect on the 

power difference between the nonparametric and median tests across the 

four different levels of distributional skew when the ratio of variances is 2 

to 1 and the sample size is 24.  When the sample sizes are equal and the 

degree of skew in the population distribution is 0, the power difference 

between the two tests favors the median test slightly and as the skew 

increases, the power difference shifts in the favor of the nonparametric test.  

Using the case where the sample sizes are equal as a comparison, in both 

cases where the sample size ratios (2/1 and 3 /1) and variance ratios are 

inversely related, the power difference lines are below the comparison line.  

In the cases where the sample size ratios (2/1 and 3/1) and variance ratios 

are directly related, the power difference lines are above the comparison 

lines.   
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Figure 6. Power difference (4 to 1 variance ratio) values for sample size 

ratio of 2 to 1. 

 

 

 

 

Figure 9 shows how the ratio of sample sizes has an effect on the 

power difference between the nonparametric and median tests across the 

four different levels of distributional skew when the ratio of variances is 4 

to 1 and the sample size is 24.  When the ratio of sample sizes is equal and 

the skew is 0, the power difference between the two tests is in the direction 

of the median test.  Once again, as the skew of the population distribution 

increased, the power difference shifted in favor of the nonparametric test.  

Again using the condition where the sample sizes are equal as a 

comparison, when sample sizes (2/1 and 3/1) and the ratio of variances are 

inversely paired, the lines are below the comparison line, and when the ratio 

of sample sizes (2/1 and 3/1) and the ratio of variances are directly paired, 

the plotted lines are above the comparison line.   
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Figure 7. Power difference (4 to 1 variance ratio) values for sample size 

ratio of 3 to 1. 

 

 

 

To further investigate the relationship between the ratio of sample 

sizes and statistical power, the power values of each test were plotted 

against each other.  Figure 10 illustrates the results of inverse pairing 

between the sample size and the variance from the cells of the design where 

(N = 24, skew = 3, and the ratio of variances is 1/5). The power of the 

nonparametric test was influenced by the ratio of sample sizes when the 

sample size and the variance were inversely paired.  As the numbers in each 

of the groups became more unbalanced the power of the nonparametric test 

was reduced.  The median test was more robust against unbalanced numbers 

in each of the groups when sample sizes and variances are inversely paired.  

As the sample size ratio becomes larger, the power of the nonparametric test 

is reduced by .213, whereas the power of the median test experiences a 

slight increase in power of .066.  The nonparametric test was more powerful 

across all of the levels in Figure 10. 
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Figure 8. Power Difference (2 to 1 variance ratio) across levels of skew. 

 

 

Figure 11 illustrates the results of direct pairing between the sample 

size and the variance from the cells of the design where (N = 24, skew = 3, 

and the ratio of variances is 1/5.  As the sample size ratio increases from 1/1 

to 3/1, the nonparametric test maintains its power with minor fluctuations in 

power values.  For the median test, as the sample size ratio increases from 

1/1 to 3/1, the power values decrease, with a power loss of .112 when the 

sample size ratio is 3/1.  Again, the nonparametric test was more powerful 

across all of the levels in Figure 11.   

Figure 12 illustrates the power comparison between the two tests 

across four variance ratios (2/1, 3/1, 4/1, 5/1 from left to right) when sample 

sizes are small (24) and equal (12 per group) and the population 

distributions are heavily skewed (3).  When data are heavily skewed (3), the 

nonparametric based test is consistently more powerful than the median test, 

and becomes more powerful as the variance ratio increases.  It is evident 

from the results that as the population distribution becomes more skewed, 

the nonparametric Levene becomes more powerful and the Levene median 

test becomes less powerful across all the levels of variance ratios. 
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Figure 9. Power Difference (4 to 1 variance ratio) across levels of skew. 

DISCUSSIO� 

When data come from heavily skewed population distributions, the 

nonparametric version of the Levene test performs quite well in terms of 

maintaining its Type I error rate and statistical power.  The median version 

of the test consistently showed a power advantage over the nonparametric 

test when population distributions had skew=0.  This is interesting because, 

when data come from skewed population distributions, the median test lacks 

substantive power compared to the nonparametric test.  This leaves the 

situations when the population distributions are normal where the median 

test is more powerful than the nonparametric test.  Recalling the results of 

Nordstokke and Zumbo (2007), when data are sampled from normal or 

symmetrically distributed populations, the Levene mean test has suitable 

statistical power, leaving the gold standard of tests for equal variances “out 

in the cold” so to speak.  If one was to use Levene mean test when 

distributions are considered normally distributed and the nonparametric 

version of the Levene test when distributions are considered to be skewed, 

then this leaves very few options to use the median version of the Levene 

test.  This is only generalizable to the limits of the conditions investigated in 

the simulations.     

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

 0                      1                       2                      3

Skew

P
o
w
e
r 
D
if
fe
re
n
c
e

Equal Sample size

2 to 1 inverse

2 to 1 direct

3 to 1 inverse

3 to 1 direct



$onparametric test of equal variances 

 

425

 

Figure 10. Power comparisons between the Levene median and the 

nonparametric Levene tests across simulated sample size ratios for 

inverse pairings. 

 

 

An interesting finding is that, when sample sizes were inversely 

paired with the ratio of variances (i.e., large sample size paired with the 

smaller variance), the median test has an increase in power, compared to it 

when the pairing is direct, holding all other conditions constant.  When the 

ratio of sample sizes were directly paired with the ratio of variances (i.e., 

large sample size paired with the larger variance), the nonparametric test 

experiences an increase in power, compared to itself when the pairing is 

inverse, holding all other conditions used in the simulation constant.  This 

may be attributed to the fact that, when sample sizes are directly paired with 

the ratio of variances, the sums of squares between (SSB) becomes distorted.  

In the case of direct pairing, it becomes attenuated, thus leading to a smaller 

value for the SSB, hence leading to relatively larger sums of squares within 

(SSW).  The relationship can be expressed as (SSW = SST – SSB), where SST 

is the total sums of squares in the model.  Direct pairing will affect the 

values of the mean squares within (MSW) and between (MSB), resulting in a 

reduction in the MSB and an inflation of the MSW, resulting in a reduction 

of power because a reduction in the MSB and an inflation of the MSW will 

lead to fewer rejections of the null hypothesis even when true differences 

are present (Type II errors). 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1/1 2/1 3/1

Ratio of Sample Sizes

P
o
w
e
r

Non-parametric

Levene

Levene Median



 D.W. $ordstokke & B.D. Zumbo 426

 

Figure 11. Power comparisons between the Levene median and the 

nonparametric Levene tests across simulated sample size ratios for 

direct pairings. 

 

 

 

Interestingly, as the skew of the population distribution increased, the 

median version of the test for equal variances was affected more by the 

direct pairing of the sample sizes and ratio of variances and became less 

powerful.  The opposite occurred for the nonparametric test; it was less 

affected by the direct pairing as distributions became more skewed.  This 

could be related to the nature of the rank transformation that may moderate 

the effect of design imbalance when calculating the mean of the ranks and 

the SSB (i.e., controlling for the attenuation of the SSB).  This suggests that, 

even when designs are unbalanced and population distributions are heavily 

skewed, the nonparametric test possesses good statistical properties and 

should be implemented by researchers.   

As pointed out by Bridge and Sawilowsky (1999), it often may be the 

case that the applied researcher does not know the shape of the population 

distribution that they are sampling from and thus should more often choose 

a nonparametric version of tests to maintain efficiency by increasing the 

odds that the test selected has sufficient power to correctly reject the null 

hypothesis.  As noted by Kruskal and Wallis (1952), the advantage of ranks 

is that only very general assumptions are made about the kind of 

distributions from where the observations come, which is that the 
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distributions have the same form.  This provides researchers and 

statisticians a great deal of flexibility with their analyses.  Put in the context 

of a test for equal variances, if applied researchers are unsure of the shape 

of the population distribution, they should employ the nonparametric 

Levene test for equality of variances. 

 

 

Figure 12. Power comparison between the Levene median and the 

nonparametric Levene test across simulated variance ratios when 

population distributions have skew=3. 

 

 

 

Even though, in many cases, the Levene median test has higher power 

under non-skewed distributions, both tests have quite low power values 

under these conditions suggesting that neither of these tests should be used 

when there is evidence to suggest a normally distributed dependent variable.  

Selection of another test such as the mean version of the Levene test is 

recommended when the normality assumption is tenable.  It is imperative 

that data analysts and researchers use such test selection strategies when 

analyzing data because it reduces the chance that incorrect decisions are 
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made based on incorrect results from a statistical test.  Investigating 

empirical distributions provides some evidence about the nature of the 

population distribution.  This, plus prior knowledge (previous empirical 

work) of the dependent variable, should help guide statistical practices and 

allow an approximate estimation of the shape of the population distribution.  

Based on this information, the most appropriate version of the test for 

equality of variances may be selected.   

One limitation of this study is that the two tests were compared on 

only one distributional form.  All of the distributions used in the simulations 

were based on χ
2

, thus limiting the range of distributional properties 

investigated.  This is not really a limitation, per se, because it does not 

disqualify the results of the study, but implies that future work should focus 

on other distributions, for example, multimodal distributions. 

To summarize, this paper investigated the Type I error rates and 

statistical power of the median version of the Levene test and the new 

nonparametric version of the Levene test for equal variances.  In cases 

where samples were generated from population distributions with 

increasing skew, the nonparametric version of the Levene test was superior 

in statistical power to the median version of the Levene test.  It is 

recommended that data analysts and researchers use the nonparametric 

Levene test when there is evidence that data come from populations with 

skewed distributions.  Future research will also expand the comparative 

study by Lim and Loh (1996) and investigate a possible bootstrap version of 

Nordstokke and Zumbo’s nonparametric test. 
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APPE�DIX 1 

Sample SPSS syntax for generating population distributions. 

 

 
*  setting the seed, i.e., the starting value, for the pseudo-random number generator. 

 

set seed=random. 

 

*===================  GROUP 1   ============================== 

 

* Step #1: Generate the variables for your simulation.  

 

INPUT PROGRAM. 

LOOP #I = 1 to 60000. 

    COMPUTE  group=1. 

   COMPUTE dv = RV.CHISQ(1000).    

END CASE.    

END LOOP. 

END FILE. 

END INPUT PROGRAM. 

EXECUTE. 

compute dv = dv - 1000. 

execute 

 

* Step #2: sample from the population, with a particular sample size, and run the statistical 

test. 

 

COMPUTE draw=UNIFORM(1). 

COMPUTE nobreak=1. 

RANK  VARIABLES=draw  (A) BY nobreak  /NTILES (5000). 

* Check that it works. 

FREQ VAR=ndraw. 

execute. 

 

SORT CASES BY Ndraw (A) . 

 

SAVE OUTFILE='x1.sav' 

  /KEEP=all /COMPRESSED. 
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