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In the first part of the study, nine estimators of the first-order autoregressive 
parameter are reviewed and a new estimator is proposed. The relationships 
and discrepancies between the estimators are discussed in order to achieve a 
clear differentiation. In the second part of the study, the precision in the 
estimation of autocorrelation is studied. The performance of the ten lag-one 
autocorrelation estimators is compared in terms of Mean Square Error 
(combining bias and variance) using data series generated by Monte Carlo 
simulation. The results show that there is not a single optimal estimator for 
all conditions, suggesting that the estimator ought to be chosen according to 
sample size and to the information available on the possible direction of the 
serial dependence. Additionally, the probability of labelling an actually 
existing autocorrelation as statistically significant is explored using Monte 
Carlo sampling. The power estimates obtained are quite similar among the 
tests associated with the different estimators. These estimates evidence the 
small probability of detecting autocorrelation in series with less than 20 
measurement times. 

The present study focuses on autocorrelation estimators reviewing 
most of them and proposing a new one. Hypothesis testing is also explored 
and discussed as the statistical significance of the estimates may be of 
interest. These topics are relevant for methodological and behavioural 
sciences, since they have impact on the techniques used for assessing 
intervention effectiveness. 
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It has to be taken into consideration that the previous decades’ 
controversy on the existence of autocorrelation in behavioural data (Busk & 
Marascuilo, 1988; Huitema, 1985; 1988; Sharpley & Alavosius, 1988; Suen 
& Ary, 1987) was strongly related to the properties of the autocorrelation 
estimators. The evidence on the presence of serial dependence (Matyas & 
Greenwood, 1997; Parker, 2006) has led to exploring the effects of violating 
the assumptions of independence of several widely used procedures. In this 
relation, liberal Type I error rates have been obtained in presence of positive 
serial dependence for traditional analysis of variance (Scheffé, 1959) and its 
modifications (Toothaker, Banz, Noble, Camp, & Davis, 1983). 
Additionally, randomization tests – a procedure that does not explicitly 
assume independence (Edgington, & Onghena, 2007) – have shown to be 
affected by positive autocorrelation both in terms in reducing statistical 
power (Ferron & Ware, 1995) and, more recently, in distorting Type I error 
rates (Manolov & Solanas, 2009). The independence of residuals required 
by regression analysis (Weisberg, 1980) has resulted in proposing that after 
fitting the regression model, a statistically significant autocorrelation in the 
errors has to be eliminated prior to interpreting the regression coefficients. 
For instance, generalized least squares procedures such as the one proposed 
by Simonton (1977) and the Cochrane-Orcutt and Prais-Winsten versions 
require estimating the autocorrelation of the residuals. Imprecisely 
estimated serial dependence may lead to elevated Type I error rates when 
assessing intervention effectiveness in short series. 

Autoregressive integrated moving average (ARIMA) modeling has 
also been proposed for dealing with sequentially related data (Box & 
Jenkins, 1970). This procedure includes an initial step of model 
identification including autocorrelation estimation prior to controlling it and 
determining the efficacy of the interventions. However, it has been shown 
that serial dependence distorts the performance of ARIMA in short series 
(Greenwood & Matyas, 1990). Unfortunately, the required amount of 
measurements is not frequent in applied psychological studies and, 
moreover, it does not ensure correct model identification (Velicer & Harrop, 
1983). 

Several investigations (Arnau & Bono, 2001; DeCarlo & Tryon, 
1993; Huitema & McKean, 1991, 2007a, b; Matyas & Greenwood, 1991; 
McKean & Huitema, 1993) have carried out Monte Carlo simulation 
comparisons of autocorrelation estimators for different lags. These studies 
have shown that estimation and hypothesis testing are both problematic in 
short data series. Most of the estimators studied had considerable bias and 
were scarcely efficient for short series. As regards the asymptotic test based 
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on Bartlett’s (1946) proposal, it proved to be unacceptable. These topics 
have to be taken into consideration when using widespread statistical 
packages, as they incorporate asymptotic results in their algorithms, making 
the correspondence between empirical and nominal Type I error rates 
dubious and compromising statistical power. Therefore, basic and applied 
researchers should know which estimators are incorporated in the statistical 
software, their mathematical expression and the asymptotic approximation 
used for testing hypotheses.  

The main objectives of the present study were: a) describe several lag-
one autocorrelation estimators, presenting the expressions for their calculus; 
b) propose a new estimator and test it in comparison with the previously 
developed estimators in terms of bias and Mean Square Error (hereinafter, 
MSE); c) estimate the statistical power of the tests associated with the ten 
estimators and based on Monte Carlo sampling.  

 
Lag-one autocorrelation estimators 

The rationale behind the present review can be found in the lack of an 
integrative compilation of autocorrelation estimators. Their correct 
identification is necessary in order to avoid confusions – for instance, Cox’s 
(1966) research seemed to centre on the conventional estimator, while in 
fact it was the modified one (Moran, 1970), both being presented 
subsequently.  

 
Conventional estimator 

Although there is a great diversity of autoregressive parameter 
estimators, the most frequently utilised one in social and behavioural 
sciences is the conventional one (as referred to by Huitema & McKean, 
1991). This estimator is defined by the following expression:  
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Its mathematical expectancy, presented in Kendall and Ord (1990), 
shows that its bias approximates − (1 + 4 ρ) / n for long series, where ρ is 
the autoregressive parameter and n is the series length. It has been 
demonstrated (Moran, 1948) that in independent processes −n

−1 is an exact 
result for r1’s bias without assuming the normality of the random term. As 
regards the variance of r1, Bartlett’s (1946) equation is commonly used, 
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although several investigations (Huitema & McKean, 1991; Matyas & 
Greenwood, 1991) have shown that it does not approximate sufficiently the 
data obtained through Monte Carlo simulation. The lack of matching 
between nominal and empirical Type I error rates and the inadequate power 
of the asymptotic statistical test reported by previous studies may be due to 
the bias of the estimator and the asymmetry of the sampling distribution. 

 
Modified estimator 

Orcutt (1948) proposed the following estimator of autoregressive 
parameters: 
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Hereinafter, this estimator will be referred to as the modified estimator 
as it consists in a linear modification of the conventional estimator 
presented above. On the basis of its mathematical expectancy described by 
Marriott and Pope (1954) it can be seen that the bias of the modified 
estimator approximates −(1 + 3 ρ)/n for long series and, thus, it is not 
identical to the one of the conventional estimator, as it has been assumed 
(Huitema & McKean, 1991). The differences in independent processes bias 
reported by Moran (1948) and Marriott and Pope (1954) can be due to the 
asymmetry of the sampling distribution of the estimator. This puts in doubt 
the utility of the mathematical expectancy as a bias criterion (Kendall, 
1954). Moran (1967) demonstrated that Var(r1

*
) depends on the shape of 

the distribution of the random term.  
 
Cyclic estimator 

A cyclic estimator for different lag autocorrelations was investigated 
by Anderson (1942), although it was previously proposed by H. Hotelling 
(Moran, 1948). It is defined as: 
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In independent processes, Anderson (1942) derived an exact 
distribution of the lag-one estimator for several series lengths. The 
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distribution is highly asymmetric in short series and, according to Kendall 
(1954), in those cases bias should not be determined by means of 
procedures based on the mathematical expectancy.  

 
Exact estimator 

The expression for the exact estimator (Kendall, 1954) corresponds to 
the one generally used for calculating the correlation coefficient:  
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Mathematical-expectancy-based procedures led Kendall (1954) to the 
attainment of the bias of the estimator in independent processes: 
approximately −1/(n − 1) for long series. 

 
C statistic 

The C statistic was developed by Young (1941) in order to determine 
if data series are random or not. Although it has been commented and tested 
for assessing intervention effectiveness (Crosbie, 1989; Tryon, 1982; 1984), 
DeCarlo and Tryon (1993) demonstrated that the C statistic is an estimator 
of lag-one autocorrelation, despite the fact it does not perform as expected 
in short data series. The C statistic can be obtained through the following 
expression: 
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Fuller’s estimator 

Fuller (1976) proposed an estimator supposed to correct the 
conventional estimator’s bias, especially for short series. The following 
expression represents what we refer to as the Fuller estimator: 
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Least squares estimators 

Tuan (1992) presents two least squares estimators, whose lag-one 
formulae can be expressed in the following manner:  

Least squares estimator: 
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Least squares forward-backward estimator: 
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In the first expression, in the denominator there are only n−1 terms, as 
the information about the last data point is omitted. The second expression 
has n terms in its denominator, where the additional term arises from an 
averaged deviate of the initial and final data points. 

 

Translated estimator 

The r1
+ estimator was proposed by Huitema and McKean (1991):  

1 1

1
r r

n

+ = +  

Throughout this article it will be referred to as the translated 

estimator, as it performs a translation over the conventional estimator in 
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order to correct part of the n−1 bias. It can be demonstrated that Bias(r1
+
) is 

approximately −(4ρ)/n.  
Other autocorrelation estimators  

It is practically impossible for a single investigation to assess all 
existing methods to estimate autocorrelation. The present study includes 
only the estimators which are common in behavioural sciences literature 
and in statistical packages, omitting, for instance, estimator r1′ fitted by the 
bias (Arnau, 1999; Arnau & Bono, 2001). Additionally, the estimators 
proposed by Huitema and McKean (1994c) and the jackknife estimator 
(Quenouille, 1949) were not included in this study, since they are not very 
efficient despite the bias reduction they perform. In fact, both the jackknife 
and the bootstrap methods are not estimators themselves but can rather be 
applied to any estimator in order to reduce its bias, as has already been done 
(Huitema & McKean, 1994a; McKnight, McKean, & Huitema, 2000).    

The maximum likelihood estimator is obtained resolving a cubic 
equation and assuming an independent and normal distribution of the errors. 
There is an expression of this estimator (Kendall & Ord, 1990) which would 
be more easily incorporated in statistical software, but it has not been 
contrasted in any other article, nor do the authors justify the simplification 
they propose.  

 
The δ-recursive estimator 

The present investigation proposes a new lag-one autocorrelation 
estimator, referred to as the δ-recursive estimator, which is defined as 
follows: 
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In the expression above, r1 is the conventional estimator, r1
+ is the 

translated estimator, n corresponds to the length of the data series, and δ is 
a constant for bias correction. This expression illustrates the close 
relationship between the translated and the proposed estimator, highlighting 
their equivalence when δ is equal to zero. As it can be seen, an additional 
correction is introduced to the translated estimator, since it is only unbiased 
for independent data series. Therefore, the objective of the δ-recursive 
estimator is to maintain the desirable properties of r1

+ for ρ1 = 0 and to 
reduce bias for ρ1 ≠ 0. This reduction of bias is achieved by means of the 
acceleration constant δ; a greater value of δ implies a greater reduction in 
bias, always keeping in mind that bias is also reduced when more 
measurements (n) are available. However, it has to be taken into account 
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that Var(r1
δ) = Var[r1

+(1+ δ/n)] = (1+ δ/n)2 Var(r1
+) and, thus, for greater 

values of the constant, the proposed estimator becomes less efficient than 
the translated one. Therefore, the value of δ has to be chosen in a way to 
reduce the MSE and not only bias, in order the proposed estimator to be 
useful.  

 Some analytical and asymptotical results have been derived for the δ-

recursive first order estimator: 
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Regarding the asymptotic distribution of the δ-recursive estimator in 
independent processes,  
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Although there is a considerable matching between the theoretical and 
empirical sampling distributions for 50 data points, preliminary studies 
suggest that 100 measurement points are necessary. 

 
 
Monte Carlo simulation: Mean Square Error 

Method 

The first experimental section of the current investigation consists in a 
comparison between the different lag-one autocorrelation estimators in 
terms of a precision indicator like MSE, which contains information about 
both bias and variance. This measure was chosen as it has been suggested to 
be appropriate for describing both biased and unbiased estimators (Spanos, 
1987) and for comparing between estimators (Jenkins & Watts, 1968).  

The computer-intensive technique utilised was Monte Carlo 
simulation, which is the optimal choice when the population distribution 
(i.e., the value of the autoregressive parameter and random variable 
distribution) is known (Noreen, 1989). Data series with ten different lengths 
(n = 5, 6, 7, 8, 9, 10, 15, 20, 50, and 100) were generated using a first order 
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autoregressive model of the form et = ρ1 et-1 + ut testing nineteen levels of 
the lag-one autocorrelation (ρ1): −.9(.1).9. This model and these levels of 
serial dependence are the most common one in studies on autocorrelation 
estimation (e.g., Huitema & McKean, 1991, 1994b; Matyas & Greenwood, 
1991). The error term followed three different distribution shapes with the 
same mean (zero) and the same standard deviation (one). Nonnormal 
distributions were included apart from the typically used normal 
distribution, due to the evidence that normal distributions may not represent 
sufficiently well behavioural data in some cases (Bradley, 1977; Micceri, 
1989). Nonnormal distributions have already been studied in other contexts 
(Sawilowsky & Blair, 1992). In the present research we chose a uniform 
distribution in order to study the importance of kurtosis (a rectangular 
distribution is more platykurtic than the normal one with a γ2 value of −1.2), 
specifying the α and β (i.e., minimum and maximum) parameters to be 
equal to −1.7320508075688773 and 1.7320508075688773, respectively, in 
order to obtain the abovementioned mean and variance. A negative 
exponential distribution was employed to explore the effect of skewness, as 
this type of distribution is asymmetrical in contrast to the Gaussian 
distribution, with a γ1 value of 2. Zero mean and unity standard deviation 
were achieved simulating a one-parameter distribution (θ = 0) with scale 
parameter σ equal to 1 and subtracting one from the data.  

For each of the 570 experimental conditions 300,000 samples were 
generated using Fortran 90 and the NAG libraries nag_rand_neg_exp, 
nag_rand_normal, and nag_rand_uniform. We verified the correct 
simulation process comparing the theoretical results available in the 
scientific literature with the estimators’ mean and variance computed from 
simulated data.  

Prior to comparing the ten estimators, we carried out a preliminary 
study on the optimal value of δ for different series lengths in terms of 
minimizing MSE across all levels of autocorrelation from −.9 to .9. Monte 
Carlo simulations involving 300,000 iterations per experimental condition 
suggest that the optimal δ depends on the errors’ distribution shape. 
Nevertheless, as applied researchers are not likely to know the errors’ 
distribution, we chose a δ that is suitable for the three distributional shapes 
studied. For series lengths from 5 to 9 the optimal value resulted to be 0 
and, thus, the MSE values for the δ-recursive estimator are the same as for 
the translated estimator. For n = 10 the δ constant was set to .4, for n = 15 
to .9, and for n = 20 to 1.2. For longer series, lower MSE values were 
obtained for δ ranging from .7 to 1.5. As there was practically no difference 
between those values for series with 50 and 100 data points, δ was set to 1 – 
the only integer in that interval.  
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Results 

The focus of this section is on intermediate levels of autocorrelation 
(between −.6 and .6) as those have been found to be more frequent in 
single-case data (Matyas & Greenwood, 1997; Parker, 2006). On the other 
hand, the results for shorter data series will be emphasised, as those appear 
to be more common in behavioural data (Huitema, 1985).   

There is an exponential decay of MSE with the increase of the series 
length and the differences between the estimators are also reduced to 
minimum for n > 20, as Figure 1 shows.  
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Figure 1. Example of the decrease of MSE (averaged across all ρ1) for 

three autocorrelation estimators in series with normally distributed 

error.  

 
 
The average MSE over all values of ρ1 studied can be taken as a general 
indicator of the performance of the estimators. This information can also be 
useful for an applied researcher who has to choose an autocorrelation 
estimator and has no clue on the possible direction and level of serial 
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dependence. The translated estimator shows lower MSE for series of length 
5 to 9, while for n ≥ 10 it is better to use the Fuller, the translated, or the δ-

recursive estimators, which show practically equivalent MSE values, 
outperforming the remaining estimators (see Table 1). The δ-recursive 
estimator performed slightly better than any of the estimators tested for n ≥ 

15 series. It is important to remark that the conventional estimator, 
commonly used in the behavioural sciences, is not the most adequate one in 
terms of MSE.  

It has to be highlighted that there is a notable divergence between the 
best performers for negative and positive serial dependence. As regards ρ1 = 

−.3 (see Table 1), the conventional and the cyclic estimators show a better 
performance for n ≤ 20. For ρ1 = .0 (see Table 2), the estimators with lower 
MSE are the translated, Fuller, and the δ-recursive. For positive values of 
the autoregressive parameter (Table 2), the same three estimators and the C 
statistic excel.  

When focusing on bias, as one of the components of MSE, the 
conventional and the cyclic estimators prove to be less biased for low 
negative autocorrelation (Table 3), while the translated, the C statistic, and 
the δ-recursive estimators are unbiased for independent data series (Table 
4). Table 4 also contains the information about some positive values of the 
autoregressive parameter. For ρ1 = .3, the bias of the Fuller, the translated, 
the C statistic, and the δ-recursive estimators is half the bias of the 
remaining estimators for 5 ≤ n ≤ 10. For higher positive serial dependence, 
the aforementioned four estimators are once again the less biased ones. The 
proposed δ-recursive estimator is the less biased one for positive 
autocorrelation and series with 10 and 15 data points, cases in which δ was 
set to .4 and .9, respectively.  

As regards the relevance of errors’ distribution, Figure 2 illustrates the 
general finding that MSE tends to be somewhat smaller when the errors 
follow a negative (i.e., positive asymmetric) exponential distribution and 
greater when they are uniformly distributed. 
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Table 1. Mean square error of the ten lag-one autocorrelation 

estimators in series with different lengths. Average: bias averaged 

across −.9 ≤ ρ1 ≤.9. 

 

Estimators 
Auto-

correlation 

SERIES LENGTH 

5 10 15 5 10 15 5 10 15 

Exponential errors Normal errors Uniform errors 

Conven-

tional 

Average .257 .116 .071 .270 .127 .077 .281 .133 .080 

−.6. .102 .067 .047 .107 .069 .047 .113 .073 .049 

−.3. .081 .061 .047 .086 .066 .049 .092 .071 .052 

Modified 

Average .297 .119 .070 .315 .131 .077 .331 .137 .080 

−.6. .122 .072 .049 .127 .073 .049 .134 .077 .051 

−.3. .135 .077 .054 .143 .082 .057 .152 .088 .060 

Cyclic 

Average .308 .127 .074 .322 .138 .071 .334 .145 .085 

−.6. .092 .069 .048 .103 .072 .049 .111 .077 .051 

−.3. .094 .066 .049 .103 .073 .052 .111 .078 .056 

Exact 

Average .335 .119 .069 .345 .129 .075 .356 .135 .079 

−.6. .151 .070 .047 .146 .069 .046 .154 .074 .049 

−.3. .188 .080 .054 .182 .083 .056 .189 .088 .060 

C 

statistic 

Average .232 .112 .069 .239 .117 .076 .250 .122 .075 

−.6. .238 .116 .072 .237 .112 .068 .245 .114 .069 

−.3. .153 .089 .062 .154 .089 .061 .158 .092 .062 

Fuller 

Average .211 .103 .065 .225 .113 .070 .237 .118 .074 

−.6. .221 .100 .062 .231 .103 .063 .239 .107 .065 

−.3. .138 .077 .054 .147 .084 .058 .154 .089 .061 

Least 

Squares 

Average .318 .122 .070 .334 .131 .072 .345 .137 .079 

−.6. .130 .073 .048 .139 .074 .048 .143 .078 .050 

−.3. .149 .081 .055 .159 .084 .057 .165 .089 .060 

Forward-

Backward 

Average .288 .117 .068 .306 .128 .075 .320 .135 .079 

−.6. .109 .068 .046 .114 .068 .046 .121 .073 .049 

−.3. .123 .074 .052 .130 .079 .055 .139 .085 .059 

Translated 

Average .209 .103 .065 .221 .113 .081 .231 .119 .074 

−.6. .205 .098 .062 .214 .101 .062 .221 .104 .063 

−.3. .114 .072 .051 .121 .077 .055 .127 .082 .058 

δ-recursive 

Average .209 .103 .064 .221 .113 .071 .231 .119 .073 

−.6. .205 .097 .060 .214 .099 .060 .221 .105 .065 

−.3. .114 .075 .055 .121 .081 .059 .127 .087 .063 
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Table 2. Mean square error of the ten different lag-one autocorrelation 

estimators in series with different lengths.  

 

Estimators 
Auto-

correlation 

SERIES LENGTH 

5 10 15 5 10 15 5 10 15 

Exponential errors Normal errors Uniform errors 

Conven-

tional 

0 .123 .072 .052 .130 .081 .058 .137 .087 .062 

.3 .242 .106 .066 .253 .119 .076 .264 .125 .079 

.6 .464 .177 .097 .485 .195 .108 .506 .203 .112 

Modified 

0 .192 .089 .059 .203 .100 .067 .214 .107 .071 

.3 .310 .116 .069 .325 .132 .081 .342 .140 .085 

.6 .517 .173 .092 .545 .194 .104 .573 .202 .108 

Cyclic 

0 .157 .081 .055 .167 .091 .063 .176 .097 .066 

.3 .301 .117 .070 .315 .132 .081 .329 .140 .085 

.6 .571 .192 .102 .588 .212 .114 .609 .220 .118 

Exact 

0 .255 .095 .061 .258 .104 .068 .267 .110 .071 

.3 .371 .122 .071 .381 .136 .081 .393 .143 .085 

.6 .556 .174 .091 .578 .193 .103 .595 .201 .107 

C 

statistic 

0 .122 .077 .055 .125 .081 .058 .128 .083 .060 

.3 .156 .083 .055 .160 .091 .062 .167 .095 .064 

.6 .269 .118 .070 .283 .132 .079 .303 .139 .082 

Fuller 

0 .100 .064 .048 .109 .074 .055 .116 .080 .058 

.3 .124 .071 .049 .135 .084 .059 .146 .090 .062 

.6 .242 .115 .070 .259 .131 .080 .278 .138 .083 

Least 

Squares 

0 .215 .096 .062 .226 .104 .068 .234 .109 .071 

.3 .344 .126 .072 .355 .137 .082 .369 .143 .085 

.6 .554 .180 .093 .573 .196 .104 .594 .204 .108 

Forward-

Backward 

0 .182 .088 .059 .195 .099 .066 .206 .106 .070 

.3 .303 .117 .069 .321 .132 .081 .337 .140 .085 

.6 .511 .173 .092 .540 .193 .103 .563 .201 .107 

Translated 

0 .083 .062 .047 .090 .071 .054 .097 .077 .057 

.3 .123 .074 .051 .132 .086 .061 .141 .092 .064 

.6 .258 .119 .071 .274 .135 .081 .290 .142 .084 

δ-recursive 

0 .083 .067 .053 .090 .077 .060 .097 .083 .064 

.3 .123 .078 .055 .132 .091 .066 .141 .097 .069 

.6 .258 .118 .069 .274 .134 .079 .290 .141 .083 
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Table 3. Bias of the ten lag-one autocorrelation estimators in series with 

different lengths. Average: bias averaged across −.9 ≤ ρ1 ≤.9. 

 

Estimators 
Auto-

correlation 

SERIES LENGTH 

5 10 15 5 10 15 5 10 15 

Exponential errors Normal errors Uniform errors 

Conven-

tional 

Average −.220 −.115 −.077 −.224 −.118 −.079 −.225 −.118 −.079 

−.6. .158 .103 .075 .166 .108 .079 .172 .112 .082 

−.3. −.018 .001 .003 −.015 .006 .007 −.012 .008 .008 

Modified 

Average −.275 −.128 −.082 −.279 −.131 −.084 −.281 −.131 −.085 

−.6. .048 .048 .037 .058 .054 .041 .065 .058 .045 

−.3. −.098 −.032 −.018 −.093 −.027 −.014 −.090 −.024 −.013 

Cyclic 

Average −.277 −.129 −.082 −.277 −131 −.084 −.278 −.131 −.084 

−.6. .124 .093 .071 .134 .099 .075 .139 .103 .078 

−.3. −.063 −.009 −.001 −.057 −.004 .002 −.055 −.001 .004 

Exact 

Average −.245 −.119 −.077 −.257 −124 −.080 −.256 −.124 −.080 

−.6. -.043 .049 .040 .344 .057 .045 .063 .062 .049 

−.3. −.102 −.035 −.019 −.093 −.027 −.014 −.089 −.023 −.012 

C 

statistic 

Average −.014 −.012 −.010 −.020 −.016 −.012 −.023 −.017 −.013 

−.6. .339 .193 .133 .350 .196 .137 .350 .200 .139 

−.3. .172 .096 .067 .174 .100 .070 .177 .103 .072 

Fuller 

Average −.012 −.025 −.021 −.016 −.028 −.022 −.018 −.028 −.023 

−.6. .340 .180 .123 .350 .186 .128 .355 .190 .131 

−.3. .186 .095 .065 .189 .100 .069 .191 .102 .070 

Least 

Squares 

Average −.276 −.127 −.081 −.281 −.129 −.082 −.281 −.129 −.082 

−.6. .045 .044 .035 .047 .049 .039 .056 .054 .043 

−.3. −.095 −.032 −.018 −.094 −.027 −.014 −.092 −.025 −.013 

Forward-

Backward 

Average −.255 −.120 −.078 −.262 −.128 −.081 −.264 −.125 −.081 

−.6. .076 .059 .044 .085 .065 .048 .091 .069 .052 

−.3. −.081 −.027 −.016 −.076 −.023 −.012 −.074 −.020 −.010 

Translated 

Average .020 −.015 −.011 −.024 −.018 −.012 −.025 .−.018 −.012 

−.6. .358 .203 .141 .366 .193 .145 .372 .197 .148 

−.3. .182 .101 .070 .185 .106 .073 .188 .108 .075 

δ-recursive 

Average −.020 −.016 −.011 −.024 −.019 −.013 −.025 −.019 −.013 

−.6. .358 .187 .114 .366 .208 .118 .372 .212 .121 

−.3. .182 .093 .056 .185 .098 .060 .188 .101 .061 
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Table 4. Bias of the ten lag-one autocorrelation estimators in series with 

different lengths.  

 

Estimators 
Auto-

correlation 

SERIES LENGTH 

5 10 15 5 10 15 5 10 15 

Exponential errors Normal errors Uniform errors 

Conven-

tional 

0 −.200 −.100 −.066 −.200 −.100 −.067 −.200 −.100 −.066 

.3 −.398 −.208 −.140 −.402 −.213 −.145 −.408 −.217 −.147 

.6 −.615 −.338 −.229 −.629 −.351 −.238 −.640 −.356 −.241 

Modified 

0 −.250 −.111 −.071 −.250 −.111 −.071 −.250 −.111 −.070 

.3 −.422 −.198 −.128 −.428 −.204 −.134 −.436 −.208 −.136 

.6 −.618 −.309 −.203 −.637 −.324 −.212 −.649 −.329 −.215 

Cyclic 

0 −.250 −.111 −.071 −.250 −.111 −.072 −.250 −.111 −.070 

.3 −.458 −.220 −.145 −.463 −.226 −.150 −.468 −.229 −.152 

.6 −.697 −.353 −.234 −.703 −.365 −.242 −.711 −.369 −.245 

Exact 

0 −.235 −.109 −.071 −.238 −.110 −.071 −.239 −.111 −.070 

.3 −.376 −.189 −.125 −.395 −.199 −.132 −.405 −.204 −.135 

.6 −.545 −.292 −.196 −.581 −.311 −.207 −.590 −.317 −.211 

C 

statistic 

0 .000 .000 .000 .000 .000 .000 .000 .000 .001 

.3 −.186 −.105 −.072 −.190 −.109 −.077 −.197 −.113 −.079 

.6 −.383 −.226 −.158 −.402 −.240 −.167 −.415 −.245 −.171 

Fuller 

0 .019 .003 .001 .017 .002 .001 .016 .001 .001 

.3 −.171 −.105 −.073 −.178 −.111 −.079 −.186 −.115 −.081 

.6 −.386 −.242 −.171 −.402 −.255 −.179 −.414 −.260 −.183 

Least 

Squares 

0 −.025 −.111 −.071 −.251 −.071 −.071 −.250 −.111 −.071 

.3 −.424 −.197 −.128 −.424 −.201 −.133 −.431 −.205 −.135 

.6 −.613 −.300 −.196 −.625 −.311 −.204 −.635 −.316 −.208 

Forward-

Backward 

0 −.238 −.109 −.070 .240 −.071 −.071 −.241 −.111 −.070 

.3 −.410 −.196 −.128 −.419 −.203 −.134 −.427 −.208 −.136 

.6 −.602 −.304 −.201 −.625 −.320 −.211 −.636 −.326 −.215 

Translated 

0 .000 .000 .000 .000 .000 .000 .000 .000 .001 

.3 −.198 −.108 −.073 −.202 −.113 −.078 −.208 −.117 −.080 

.6 −.415 −.238 −.163 −.429 −.251 −.171 −.440 −.256 −.174 

δ-recursive 

0 .000 .000 .000 .000 .000 .000 .000 .000 .001 

.3 −.198 −.101 −.059 −.202 −.106 −.065 −.208 −.110 −.067 

.6 −.415 −.224 −.136 −.429 −.237 −.145 −.440 −.243 −.149 

  



 A. Solanas, et al. 372

Series length

A
ve

r
a

g
e

 M
S

E
 a

c
ro

s
s 

a
ll

 r
h

o

100502015105

0.25

0.20

0.15

0.10

0.05

0.00

Errors
Exponential
Normal
Uniform

Delta-recursive estimator

 

Figure 2. Mean square error (averaged across all ρ1) for the δ-recursive 

estimator applied to series with different lengths and errors’ 

distributions.   

 

 

Monte Carlo sampling: Statistical power 

Method 

In a first stage the 1% and 5% cut-off points were estimated for each 
estimator sampling distribution and each series length. In contrast with 
previous studies (e.g., Huitema & McKean, 1994b; 2000), Monte Carlo 
methods based on 300,000 iterations were used to estimate the cut-off 
points, as an alternative to asymptotic tests, as those do not seem to be 
appropriate for short series (Huitema & McKean, 1991). That is, the power 
estimates presented here are not founded on a test statistic based on large-
sample properties. Instead, the statistical tests associated with the 
autocorrelation estimators were based on Monte Carlo sampling, which is a 
suitable approach when the sampling distribution of the test statistic is not 
known (Noreen, 1989). The analysis was based on nondirectional null 
hypotheses (H0: ρ1 = .0) and, thus, the values corresponding to quantiles 
.005 and .995 for 1% alpha and quantiles .025 and .975 for 5% alpha were 
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identified. Power was estimated as the proportion of values smaller than the 
lower bound or greater than the upper bound out of 300,000 iterations per 
parameter level.      

 

Results 

The differences between the best and worst performers in terms of 
power are generally small, as can be seen comparing the first and the second 
column of Tables 5, 6, and 7. The proposed estimator performs 
approximately as the best performers in each condition. In general, 
sensitivity is rather low in short series and unless the applied researcher has 
at least 20 measurement times, high degrees of │ρ│may not be reliably 
detected as statistically significant (Table 7).  

If a 1% alpha level is chosen, Type II errors would be excessively 
frequent for series shorter than 50 observations. Greater power was found 
for series with exponentially distributed errors – exactly the case for which 
MSE was lower. Correspondingly, uniform errors’ distribution was 
associated with less sensitivity.  

 

 

Discussion 

The present investigation extends previous research on 
autocorrelation estimators comparing ten estimators (including a new bias-
reducing proposal) in terms of two types of statistical error, bias and 
variance, summarised as mean square error. Current results concur with 
previous findings on the existence of bias of autocorrelation estimators 
applied to short data series, especially in the case of ρ1 > 0, as reported by 
Matyas and Greenwood (1991). It was also replicated that the translated 
estimator is less bias for positive autocorrelation and more biased for 
negative one than the conventional estimator (Huitema & McKean, 1991). 
In general, all estimators studied show lower MSE for negative values of 
the autoregressive parameter. However, there is not a single optimal 
estimator for all levels of autocorrelation and all series lengths, as the 
comparison in terms of MSE values and bias suggests. Bias is present in 
independent data and gets more pronounced in short autocorrelated series. 
Out of all of the estimators tested only the δ-recursive, the translated, and 
the C statistic are not biased for independent series. The magnitude of the 
bias is heterogeneous among the estimators and, as expected, tends to 
decrease for longer series. The presence of negative bias when ρ1 > 0 
implies that an existing positive serial dependence will be underestimated. 



 A. Solanas, et al. 374

The positive bias in conditions with ρ1 < 0 also entails that the 
autocorrelation estimate will be closer to zero than it should be. In both 
cases, it will be harder for the estimates to reach statistical significance 
when testing H0: ρ1 = 0. 

 
 
 

Table 5. Power estimates for 5% alpha for five-measurement series and 

several values of the autoregressive parameter. The first column 

represents the most sensitive test for each error distribution; the second 

contains the less sensitive one; and third focuses on the proposed 

estimator.  

 
  Exponential error 

ρ1 C statistic Circular δ-recursive 
−.6 .1430 .0954 .1348 
−.3 .0674 .0599 .0634 
.0 .0504 .0501 .0501 
.3 .0643 .0559 .0616 
.6 .1224 .0683 .0976 

  Normal error 
ρ1 FBackward Circular δ-recursive 
−.6 .1358 .0859 .1340 
−.3 .0656 .0570 .0658 
.0 .0507 .0503 .0502 
.3 .0630 .0549 .0628 
.6 .0934 .0624 .0910 

 Uniform error 
ρ1 C statistic Circular δ-recursive 
−.6 .1175 .0799 .1180 
−.3 .0640 .0576 .0626 
.0 .0499 .0488 .0504 
.3 .0598 .0542 .0603 
.6 .0874 .0626 .0788 
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Table 6. Power estimates for 5% alpha for ten-measurement series and 

several values of the autoregressive parameter. The first column 

represents the most sensitive test for each error distribution; the second 

contains the less sensitive one; and third focuses on the proposed 

estimator. 

 

  Exponential error 
ρ1 Translated C statistic δ-recursive 
−.6 .4876 .4463 .4877 
−.3 .1528 .1537 .1529 
.0 .0502 .0499 .0504 
.3 .1076 .0962 .1081 
.6 .2991 .2643 .3000 

  Normal error 
ρ1 FBackward Circular δ-recursive 
−.6 .3803 .3462 .3799 
−.3 .1153 .1087 .1177 
.0 .0497 .0496 .0497 
.3 .1124 .1069 .1126 
.6 .2980 .2684 .2913 

 Uniform error 
ρ1 Least Sq Circular δ-recursive 
−.6 .3477 .3160 .3521 
−.3 .1085 .1042 .1128 
.0 .0502 .0502 .0501 
.3 .1063 .0986 .1037 
.6 .2706 .2346 .2574 
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Table 7. Power estimates for 5% alpha for twenty-measurement series 

and several values of the autoregressive parameter. The first column 

represents the most sensitive test for each error distribution; the second 

contains the less sensitive one; and third focuses on the proposed 

estimator. 

 

  Exponential error 
ρ1 FBackward C statistic δ-recursive 

−.6 .8167 .7761 .8095 
−.3 .3368 .3215 .3321 
.0 .0506 .0501 .0500 
.3 .1981 .1803 .1986 
.6 .6694 .6345 .6674 

  Normal error 
ρ1 Least Sq C statistic δ-recursive 

−.6 .7287 .6993 .7242 
−.3 .2307 .2251 .2308 
.0 .0488 .0491 .0485 
.3 .2262 .2182 .2253 
.6 .6677 .6575 .6606 

 Uniform error 
ρ1 Least Sq Circular δ-recursive 

−.6 .7080 .6828 .7061 
−.3 .2210 .2112 .2227 
.0 .0505 .0505 .0507 
.3 .2145 .2048 .2135 
.6 .6431 .6186 .6369 

 
 
 
The variance of the estimators is also dissimilar and the efficiency of 

the estimators depends on the autoregressive parameter and series length. 
Therefore, there is not a single uniform minimum variance unbiased 
estimator among the ones assessed in the present study. The proposed δ-

recursive estimator equals or improves the performance of the other 
estimators (in terms of MSE and bias) when n ≥ 10 in the cases of positive 
autocorrelation and considering the overall performance across all ρ1. 
Therefore, it can be considered a viable alternative whenever the sign of the 
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autoregressive parameter is not known or is supposed to be positive. For 
series with less than ten measurement times, the Fuller and the translated 
estimators are the most adequate ones if the applied researcher assumes that 
ρ1 ≥ 0 or has no information about the possible direction of the serial 
dependence. For ρ1 < 0 the conventional estimator is the one showing best 
results for all series lengths studied.  

The present study also estimates power using tests based on Monte 
Carlo sampling rather than on asymptotic formulae, as has been previously 
done. The estimates obtained here are somewhat higher than the ones 
reported for Bartlett’s test (Arnau & Bono, 2001; Huitema & McKean, 
1991) and somewhat lower than the ones associated with the test 
recommended by Huitema and McKean (1991). Regarding Moran’s (1948) 
approximation for the conventional estimator, the Monte Carlo sampling 
tests are more sensitive for ρ1 > 0 and less sensitive for ρ1 < 0. For the 
translated estimator, power estimates are similar for Monte Carlo sampling 
and Moran’s approximation (Arnau & Bono, 2001). In general, present and 
past findings coincide in the low sensitivity in short data series. The 
difference in power between the tests associated with the estimators is only 
slight.  

Combining the findings of previous research and the present 
investigation it seems that empirical studies on real behavioural 
measurements (e.g., the surveys by Busk and Marascuilo, 1988; Huitema, 
1985; and Parker, 2006) are not likely to resolve unequivocally the question 
of the existence and statistical significance of serial dependence in single-
case data. The reason is the high statistical error of the estimators applied to 
short data series and the lack of power of the test associated with those 
estimators. Only for series containing 50 or 100 data points would the 
evidence have any meaning.  

For applied researchers the lack of precision and sensitivity in 
estimating autocorrelation implies uncertainty about the degree of serial 
dependence that may be present in the behavioural data collected. It has 
been remarked that low estimates of serial dependence do not guarantee the 
adequacy of applying statistical techniques based on the General Linear 
Model to assess intervention effectiveness (Ferron, 2002). Therefore, 
clinical, educational, and social psychologists need to assess intervention 
effectiveness by means of procedures with appropriate Type I and Type II 
error rates in presence of autocorrelation.  

A specific contribution of the present study to methodological 
research is the comparison between errors’ distribution shapes. The results 
indicate that generating data with errors following a normal, a rectangular or 
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a highly asymmetric distribution does not influence critically the MSE and 
power estimates. Hence, the findings of studies based solely on normally 
distributed errors may not be limited to the conditions actually simulated.  

A limitation of the present study consists in the fact that only an 
AR(1) model was employed to generate data. As it has been pointed out 
(Harrop & Velicer, 1985), there are other models that may be used to 
represent behavioural data. Future studies may be based, for instance, on 
moving average models to extend the evidence on the performance of 
autocorrelation estimators. Additionally, in view of the presence of bias in 
each successive estimator proposed by different authors, a bias reducing 
technique may be useful. The bootstrap adjustment of bias has been shown 
to be effective correcting the positive bias for ρ1 < 0 and the negative one 
for ρ1 > 0 and reducing the MSE, according to the data presented by 
McKnight et al. (2000) for series with n ≥ 20, in contrast to jackknife 
methods which increase the error variance (Huitema & McKean, 1994a). 
We consider that bootstrap ought to be applied to the estimators that seem 
to have a more adequate performance in terms of MSE – the Fuller, the 
translated, and the δ-recursive estimators when positive serial dependence 
is assumed or when the sign of the autocorrelation is unknown, and the 
conventional estimator for negative one. Therefore, it is necessary to 
investigate the degree to which the bootstrap improves those estimators 
when few measurements are available, as is the case in applied 
psychological studies. Another possible application of the bootstrap is to 
construct confidence intervals about the autocorrelation estimates, since 
those have shown appropriate coverage (McKnight et al., 2000), and use 
them to make statistical decisions. Bootstrap has the advantage of allowing 
asymmetric confidence intervals which correspond to the skewed 
distributions of the estimators for short data series. In this case, the power of 
the tests based on bootstrap confidence intervals has to be compared to the 
sensitivity of the test constructed using Monte Carlo sampling, since 
Bartlett’s (1946) and Moran’s (1948) approximations for hypothesis testing 
seem inappropriate for short data series (Arnau & Bono, 2001; Huitema & 
McKean, 1991; Matyas & Greenwood, 1991).      
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RESUME� 

Autocorrelación de primer orden en series cortas: Estimación y prueba 
de hipótesis. La primera parte del estudio consiste en revisar nueve 
estimadores del parámetro autorregresivo de primer orden y proponer un 
estimador nuevo. Las relaciones y diferencias entre los estimadores se 
explican para conseguir una diferenciación mejor entre ellos. En la segunda 
parte del estudio se explora la precisión de la estimación de la 
autocorrelación. El rendimiento de los diez estimadores se compara en 
términos de error cuadrático medio, combinando sesgo y varianza, 
utilizando series de datos generadas mediante simulación Monte Carlo. Los 
resultados muestran que no hay un estimador óptimo para todas las 
condiciones, sugiriendo que el estimador a utilizar debería escogerse según 
la longitud de las series y la información disponible sobre la posible 
dirección de la dependencia serial. Además, la probabilidad de etiquetar una 
autocorrelación existente como estadísticamente significativa se estudió 
mediante muestreo Monte Carlo. Las pruebas asociadas con los diferentes 
estimadores muestran potencia similar, observándose que es poco probable 
detectar la dependencia serial si se dispone de menos de 20 medidas.   
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