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Abstract 

We propose and discuss tests of null hypothesis of no difference in the accuracy of two 

competing forecasts.  A wide variety of accuracy measures can be used, even if the loss 

function is not quadratic and even not symmetric. We review Diebold and Mariano (1995) and 

so we let forecast errors to be non-Gaussian, serially correlated and contemporaneously 

correlated.  

Secondly, we introduce in this discussion regressions of the competing models. All tests are 

repeated in this new context to see how the results are despite the errors due to the 

regressions introduced. In this part, we are less restrictive so we permit the errors to be 

serially correlated and contemporaneously correlated. The serial correlation is due to 

processes with short-memory and long-memory. Also errors can be in a context of 

heteroscedasticity. 

Finally all tests are evaluated in the context of an empirical example, with real data. 

 

Introduction 

In all sciences, prediction is of fundamental importance in order to guide decisions. In 

economics, comparing the forecast accuracy among competing models is also of a great 

importance because predictive performance and model adequacy are inextricably linked. 

The literature contains thousands of forecasts comparisons. In almost without exception, the 

forecast accuracy is evaluated with no regressions of the models that are competing and 

sometimes with no attempt to assess their sampling uncertainty. 

Correlation of forecast errors across space and time, as well as other additional complications, 

make formal comparisons of forecast accuracy difficult. Uncertainty due to the estimation also 

hinders formal comparisons. 

There are some publications offering pessimistic assessments of the possibilities for formal 

testing. Diebold and Mariano (1995) discussed some formal tests in a context of serial 

correlation and even with contemporaneous correlation but always in a without any kind of 

model regressions. 

We proceed by detailing our tests procedures in section 1, where we detail the tests as appear 

in Diebold and Mariano (1995). 

In section 2 we evaluate formal tests in a new context: introducing regressions of competing 

models and even giving the innovation part of the models different structures of serial 

correlation and contemporaneous correlation. The matching results are detailed in section 3. 

Finally, in section 4 we evaluated formal tests with an empirical example based on Audrino and 

Medeiros (2011). 



 

 

Section 1 

Suppose that   is an unknown variable we are interested in. Two variables   and    , which 

can have any dimension, are available to predict the value of  .  The task is to compare the 

forecast accuracy of these two variables, which means that it is required to study which of 

these two models is more accurate:  

(Model 1)                   

                                      (Model 2)                   

In particular, we compare these next two linear and individual models:                                          

(Model 1)                    

                                      (Model 2)                    

There are some publications about this subject.  In particular, Diebold and Mariano (1995) 

study the accuracy of two variables’ prediction maintaining always a context in which there is 

never any kind of estimation. However, they introduce structures to errors permitting  them to 

be serially correlated and even contemporaneously correlated. 

In this document, Diebold and Mariano’s work will be revised and it is going to be introduced a 

new context containing estimation in order to see how parametric uncertainty affect the 

results. 

It is wanted the “loss” associated with the individual forecast of variables    and   to be 

measured. In order to measure it, it is considered the loss function, which is a function 

depending on the forecast error.  

Let’s consider two forecasts { ̂  }   

 
  and { ̂  }   

 
 of the time series{  }   

 .  Let the 

associated forecast errors be denoted by {   }   
 and {   }   

 , so the loss function is 

 (    ̂  )         for      . This means that the loss function will be able to be written 

depending only on the forecast error, which is supposed to be zero-mean. 

We choose quadratic loss function to measure the quality of each fit:  

          
      . 

The null hypothesis of equal accuracy for two forecasts is 

                       

while the alternative is 

                       



If we introduce the notation of loss differential, this is                 , the 

corresponding null hypothesis is: 

                         (*) 

We test the accuracy of the individual prediction of variables    and    by using different tests 

and statistics. All of them were proposed and/or evaluated by Diebold and Mariano(1995). 

They are explained with details in sections 1.1, 1.2 and 1.3. 

1.1. Diebold and Mariano test 

Let’s consider a sample path of loss differential series, {  }   
  . We denote the sample mean 

loss differential by  ̅ .  

We make the assumption, as the authors did in their publication, that the loss differential 

series is covariance stationary and short memory, for example, a moving average process. 

In large samples,  ̅is approximately normally distributed with mean   and variance 
   ̂    

 
  

where  ̂     is the spectral density of the loss differential at frequency zero. Thespectral 

density estimate has relation with autocovariance terms and the serial correlation of the terms 

of  . Its formula is: 

 ̂     
 

  
∑      

 

    

 

where 

                        

To get a consistent estimate of the spectral density it is necessary to set a truncation lag ,    , 

so a good estimate to    ̂     can be a weighted sum of sample covariances which weight 

depends on the truncation lag. The value of the truncation lag keeps relation with the degree 

of dependence between the errors {   }   
 and {   }   

 .  In this case, the truncation lag,    , 

will be set to one, as in Diebold and Mariano’s publication. The authors did the next 

approximation: 
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Of course, the lag window (
 

    
) can be defined by another function. We are maintaining the 

same function to define the truncation lag as Diebold and Mariano did. 

Then, first statistic we are going to take into account is Mariano and Diebold’s statistic   , 

which is defined by 

   
 ̅

√   ̂    

 

        

It´s clear that    is asymptotically distributed by a standard normal distribution. This means 

that the mean of  ̅ is supposed to be  =0. 

  is not thought to be useful in finite small samples. It remains helpful in large samples 

because of its asymptotic nature. 

1.2. Exact finite simple test(The sign test) 

Another test we are going to consider and get into practice is the Sign Test. The null hypothesis 

is a zero median loss differential and this test is thought to be helpful in finite samples.  

Assuming that each loss differential seriess are i.i.d we can work the corresponding statistic 

out, which is (for small samples): 

                                                       ∑      

 

   

 

where       takes the value one if      and the value zero in the other case. This statistic is 

distributed by the binomial distribution (under the null hypothesis) with parameter T and 

½.This statistic is thought to be helpful with finite samples. 

For large samples we work another statistic out which is a light change of   . It is defined by 

  
  

        

√     
 

which is distributed, under the null hypothesis by a standard normal distribution. 

Furthermore, if loss differences are also symmetrically distributed, the median and mean are 

equal and then, the null hypothesis of Sign test is the same that (*). 

Advantages of these two tests 

One virtue of both tests explained previously is that loss function does not need to be 

quadratic and do not need even be symmetric or continuous. 



On the one hand, forecast errors do not need to be non-zero mean but they will always be 

supposed zero-mean. On the other hand forecast errors are allowed to be non-Gaussian and 

even contemporaneously correlated, as has been assumedin  
  test. 

 

Allowance for contemporaneous correlation is important because the forecasts being 

compared are forecasts of the same endogenous variables. If the endogenous variables is an 

economic time series, information of forecasters are largely overlapping, so forecasts errors 

tend to be strongly correlated. 

Furthermore,    also allows serial correlation in each one of the error seriess. This is also very 

important due to forecast errors are serially correlated in general. 

 

1.3. Other tests. 

We introduce another three tests which belong to another authors and were also used in 

Diebold and Mariano (1995). 

Previous statistics explained don’t impose any kind of loss function g. Now we are going to 

introduce these three tests which can be used by assuming that      is a quadratic function. 

Some other assumptions for each test will be made but it’s important to point out that we will 

do some violations of these assumptions later , in the empirical part of this paper,  in order to 

see how these tests work despite of these violations. We will never violate the assumption 

corresponding with the zero mean of the errors. 

The first one is the Simple F test.  

We assume that errors are zero mean, Gaussian, serially uncorrelated and contemporaneously 

uncorrelated. The test statistic is: 

  
     

     
        

where{   }   
  and {   }   

  are the forecast errors associated to each variable. 

It is distributed as       (under null hypothesis) if the length of both error seriessis  . 

As we  saidbefore we are going to violate some of the assumptions of this test and it is 

important to highlight that the presence of contemporaneous correlation, which is one of 

these violations,  has bad effects to the results obtained because numerator and denominator 

of   are correlated and then,   does not have the   distribution. 

The second one is the Morgan-Granger-Newbold test.  

We assume that errors are zero mean, Gaussian and serially uncorrelated.  With this test we 

allow the existence of contemporaneous correlation . 



The test statistic is: 

    
 ̂  

√   ̂  
 

   

        

where ̂   
   

√          
 and          ,          , 

 The null hypothesis is equal to zero correlation between  and  .  

MGN is distributed as Student’s t with  -1 degrees of freedom if   is the corresponding length 

of both forecast errors. 

The last one is the Meese-Rogoff test. 

We assume that errors are zero mean and Gaussian. The corresponding statistic is: 

   
 ̂  

√ ̂

 

        

where   (     ),   (     ), ̂   
   

 
 and  ̂is a consistent estimation of the variance of 

 ̂  √     

In our case, we choose  ̂following Diebold and Rudebusch (1991): 

 ̂  ∑  ̂      ̂       ̂      ̂     
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 ̂      {

 

 
∑              

 

     

 ̂                     

 

 ̂      {

 

 
∑              

 

     

 ̂                     

 

 ̂      
 

 
∑           

 

     

 

 ̂      
 

 
∑           

 

     

 

 



 

Of course, we can let some assumptions to be relaxed in some other combinations, but in 

these cases the distributions become tedious. For more information and details about these, 

see Diebold and Mariano (1995). 

 

Section 2 

In this section, we are going one step further, as we are going to evaluate all tests explained 

above but we are going to work with validation residuals in spite of simulated errors .This 

means that we are introducing some regressions. 

Our goal is to study two subjects: first one is how the parametric uncertainty due to the 

regressions affect the tests explained previously and second one is how the structure of the 

innovation terms affect to the results. Diebold and Mariano (1995) give the innovation term 

structure with short memory processes. Other structures for the innovation terms are going to 

be established.  

Ferreira and Stute (2009) study this new context with regressions and evaluate how Diebold 

and Mariano test works in a scenario ofi.i.d innovations. Now this scenario is going to be more 

complex. 

Both variables    and    explain the endogenous variable  . We want to choose which one 

has better predictive accuracy. 

Our model is: 

                         

The coefficients’ values  ,   and   are fixed and chosen in order to the systematic part has 

more information than the innovation part. We have established their values as follows: 

     ,     and       

It is known that each one of these variables    and    are helpful to predict   but now, in a 

regression context, we decompose   into terms depending only on    or    .  

We have to simulate variables    and    and so the variable  . The number of data simulated 

is    . 

We will regress next models: 

                          

                          

The regressions are done with the first   values of the variables and then, with the validation 

part of the sample (from  +1 to     observations) with the corresponding coefficients 

estimated we calculate the residuals, this means that residuals have length  . 



  ̂      ̂   ̂                                        

Once the residuals have been calculated, all tests can be evaluated changing errors to 

residuals. Now, we have to take into account that residuals haven’t length  and some 

parameter of statistics’ distribution under de null hypothesis have changed. 

In expression (2), terms    correspond with         (see (1)) and in expression (3) terms     

correspond with       . This lead us to some conclusions. First one is that innovations of 

models (2) and (3) are contemporaneously correlated because of the common random term 

  . They are also serially correlated if terms   have structure. The second conclusion is that 

the variances of the exogenous variables will be important in order to choose between models 

(2) and (3) depending on what we want to measure (the size or the power of these tests).  

In our study, our task is not looking for efficient  estimations so, for this regressions, Ordinary 

Least Squares is a good method to apply despite of the possible autocorrelation in the 

innovation part.   will take the same values as in Diebold and Mariano’s paper and the length 

of the validation part,  , will take the values    ,  and     . 

First of all we discuss how these tests work when the innovations {  } have nostructure , that 

is, they are with zero-mean, homoscedastic and with no serial correlation. In this case, when 

we test the statistic  , we can work with the version of Ferreira and Stute(1995).This is a good 

advantage because of the great operational cost of   ’s algorithm.Their version is a little more 

simple and the corresponding algorithm takes not as longer as does Diebold and Mariano’s 

version. 

Secondly,  timeseries{  } will be given the same MA(1) structure  as Diebold and Mariano do 

in their publication, so the parameter of the MA(1) process will take values 0,0.5,0.9.  

To build innovations with this structure it is necessary to simulate ani.i.dseries from a standard 

normal distribution, {  }   
   . To get a MA(1) it is only required to do the next transformation, 

which lead us to errors with variance one: 

   
 

√    
               

Thirdly, this procedure will be repeated  giving{  }  structure following a long memory and 

covariance stationary  process. This model is an AR(1) model without constant and with 

parameter’s value equal to 0.6 and 0.9. The second value of parameter is included to study if 

the persistence affect to the test. In this case, to get a AR(1) it is only required to do the next 

transformation: 

                                     

Lately, it will be introduced heteroscedasticity of errors but it will be explained with details 

lately because the method applied is a little different (section 2.1). 

We maintain the same significance level  (      , the same number of iterations (10000 in 

some cases and 5000 in others)as Diebold and Mariano (1995) . 



The exogenous variables are both normally distributed, independent with mean zero. The 

variance of variable   is always fixed in one and variance of     is 1.5 or 2 if we measure the 

power of the test. If we want to measure the size of the test,   ’s variance is set to 1.2. This 

value is calculated imposing ratio of the errors’ variance of models to be one. We denote 

by   the variance of   so we have: 

                                                  

                                               

So, to test the size, it has to be        , independently of the structure of the innovations 

{  }. This occurs when        When is set to     or     it can be ckecked the corresponding 

values of ratio
        

        
 are: 

structure           

{  }i.i.d 1.5 2.6 

{  } MA(1)    1.5 2.6 

{  } AR(1)       1.5 2.51 

{  } AR(1)       1.35 2.12 

 

In order to see that the values of coefficients       are correctly fixed, some figures are 

represented below. They correspond with the systematic part,                against the 

innovation part,      All pictures represented correspond with the case of size of the estimation 

part  =1024 and size of the validation part  =2048. They also correspond with the case of 

variance of    equal to 1.2, in which case the size is tested.  

Obviously they are only calculated  in one iteration, in this case, the last one. There are as 

many pictures as structures of      have been set.  

 

*    innovations with no structure:  

 

 

 



 

*    AR(1) with parameter’s value equal to 0.6: 

 

 

*    AR(1) with parameter’s value equal to 0.9: 

 

 

*    MA(1) with parameter’s value equal to 0.5: 

 

 

*    MA(1) with parameter’s value equal to 0.9: 

 

 

 



 

2.1. Heteroscedasticity case 

The case of heteroscedasticity is a little more complex. In this case, the innovations have the 

structure         where    are independent standard normal observations and    is a 

variable chosen. In this paper,   is the time series corresponding to Spanish interest rate with 

maturity equal to 6 months. They  cover to  3/05/1995 from 17/10/2007 (3075 observations). 

They have been collected from Bloomberg website. 

The next figure represents         : 

 

As we can observe, there are some volatility groupages. 

Next figures represent the variable   and the systematic part against the innovation part. Last 

one corresponds with case of  =1024 and  =2048: 

 

 

 

In this case, the method to apply is not Ordinary Least Squares but Generalized Least Squares . 

It is clear that we have to transform our model to another onewith constant variance 

innovations: 



                      
  

  
 

 

  
  

   

  
  

   

  
    

Once the model has been transformed, Ordinary Least Squares is a good method to apply. 

As it has been done in other cases, it is wanted the size of all tests(under heteroscedasticity) to 

be measured and for this it is necessary to choose the correct variance of variable   .  The 

corresponding individual models now are: 

  

  
 

 

  
  

   

  
          

   

  
    

  

  
 

 

  
  

   

  
          

   

  
    

It is required to calculate the ratio of variances of    and    and for this it’s necessary to 

calculate the variance of 
   

  
 . We can do the next approximation as each variable      is 

independent from    
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In this case,                    . So the expression useful for us can be simplified and 

then we have: 
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To get a good approximation of the moments of the variable 
 

 
 we make the next  

approximations(seeFerreira and Tusell (1996)): 
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Following these approximations, we have: 
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We approximate         and      by the sample variance and sample mean of Z using all 

data (3072 observations). These respective values are 3.71 and 3.96 and so the ratio of 

variances of errors of the transformed models is: 
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It can be proved that the size will be measured when            . The corresponding 

values of theratio when we measure the power of the test are: 

√                

        
 

1.2 1 

1.5 1.28 

2 1.89 

 

 

Section 3:Results. 

3.1. Innovations with no structure (i.i.d)  

3.1.1. F-test: 

  with i.i.d. innovations 

( =1.5) 
Size of validation part  (10000 iterations) 

T n=T/2 n=T n=2*T 

64 43.82 63.9 86.11 

128 63.89 85.49 97.66 

256 84.63 97.7 99.98 

512 97.68 99.96 100 

1024 99.97 100 100 

 

  with i.i.d. innovations 

(  =2) 
Size of validation part  (10000 iterations) 



T n=T/2 n=T n=2*T 

64 91.74 99.47 100 

128 99.41 100 100 

256 100 100 100 

 

  with i.i.d.innovations 

(  =1.2) 
Size of validation part  (10000 iterations) 

T n=T/2 n=T n=2*T 

64 9.13 9.44 9.77 

128 10.26 10.18 9.93 

256 9.59 9.57 9.90 

512 10.18 10.22 10.12 

1024 9.73 9.90 9.75 

 

As we can see, F works well despite the estimates. It is correctly sized even when the sample is 

small.   It works well also when we measure the power of the test.As expected, when the 

variance of   increases, power increases too. 

3.1.2.Morgan-Granger-Newbold test: 

MGN with 

i.i.d.innovations(  =1.5) 
size of validation part  (10000 iterations) 

T n=T/2 n=T n=2*T 

64 45.80 64.62 86.09 

128 64.85 85.56 97.70 

256 85.82 97.79 99.99 

512 97.85 99.97 100 

1024 99.98 100 100 

 

 



   withi.i.d. 

innovations (  =2) 
Size of validation part  (10000 iterations) 

T n=T/2 n=T n=2*T 

64                92.68 99.45 100 

128 99.54 99.99 100 

256 100 100 100 

 

    with 

i.i.d.innovations (  

=1.2) 

Size of validation part  (10000 iterations) 

T n=T/2 n=T n=2*T 

64 10.21 9.94 9.99 

128 10.20 10.15 10.15 

256 10.33 10.82 9.75 

512 10.17 9.68 9.72 

1024 10.02 10.23 9.60 

 

As we can see, MGNworks as well as F test does.. It is correctly sized even when the sample is 

small. It works well also when we measure the power of the test. As in F test, when the 

variance of   increases, power increases too. 

3.1.3. Meese-Rogoff test: 

MR with i.i.d. 

innovations(  =1.5) 
size of validation part  (5000 iterations)  

T n=T/2 n=T n=2*T 

64 2.90 65.04 95.64 

128 13.02 85.92 99.66 

256 36.36 97.92 100 

512 75.18 100 100 

1024 98.01 100 100 



 

   with 

i.i.d.innovations (  =2) 
Size of validation part  (5000 iterations) 

T n=T/2 n=T n=2*T 

64 92.68 99.60 100 

128 99.46 100 100 

                  256 100 100 100 

 

Meese-Rogoff test is as correctly sized as F test and Morgan-Granger-Newbold tests are under 

i.i.d.innovations. The power measured with MR is similar to the previous tests ones. 

3.1.4. Diebold and Mariano test: 

S1 with 

i.i.d.innovations(  =1.5) 
size of validation part (5000 iterations)  

T n=T/2 n=T n=2*T 

128 16.52 86.32 99.64 

256 38.12 97.58 100 

512 75.18 100 100 

 

 

   with 

i.i.d.innovations (  

=1.2) 

Size of validation part  (5000 iterations) 

T n=T/2 n=T n=2*T 

64 8.88 9.54 10.06 

128 9.34 10.28 9.92 

256 10.48 9.98 9.56 

512 9.88 9.98 10.36 

1024 10.06 10.22 9.54 



   with i.i.d.innovations 

(  =2) 
Size of validation part  (5000 iterations) 

T n=T/2 n=T n=2*T 

128 99.46 100 100 

256 100 100 100 

 

  withi.i.d. innovations 

(   =1.2) 
Size of validation part  (5000 iterations) 

T n=T/2 n=T n=2*T 

128 11.08 10.06 10.04 

256 10.98 9.98 9.78 

512 9.88 9.74 10.86 

1024 10.74 9.50 10.14 

 

Mariano and Diebold’s statistic works better than previous tests. It is as correctly sized as 

others but it reaches greater percentages of power, even in small samples. 

3.1.5. The sign test: 

  
  with 

i.i.d.innovations(  =1.5) 
size of validation part (5000 iterations)    

T n=T/2 n=T n=2*T 

64        19.64 38.20 57.72   

128 38.42 54.38 79.26   

256 56.62 78.96 94.98   

512 78.36 95.68 99.82   

1024 94.94 99.70  100     

 

 

 



  
 withi.i.d. innovations 

(  =2) 
Size of validation part  (5000 innovations)  

T n=T/2 n=T n=2*T 

64 54.72 85.70 98.38 

128 84.60 98.30 100 

256 98.04 99.98 100 

512 100 100 100 

 

  
  with i.i.d.innovations 

(  =1.2) 
Size of validation part  (5000 innovations) 

T n=T/2 n=T n=2*T 

64 5.94 8.52 9.20 

128 7.58 8.96 10.18 

256 10.10 9.64 9.90 

512 9.10 9.70 9.10 

1024 10.42 9.64 10.74 

 

As tables show,    
 is correctly sized, reaches the significance level when T=128 and n=256 but 

it does not work as well as Diebold and Mariano’s test, which reaches the significance level 

with smaller samples.Table of powers show that percentages are high but not as high as in the 

case of Diebold and Mariano test. 

 

 

 

 

 

 

 

 



3.2. Innovations with structure MA(1). 

   
 

√    
               

3.2.1. F test: 

F with MA(1) 

innovations 

(  =1.5) 

 Size of the validation part (10000 iterations) 

n=T/2 n=T n=2*T 

T      =0.5  =0.9      =0.5  =0.9      =0.5  =0.9 

 

64 43.67 43.92 43.22 64.27 63.97 64.16 87.58 87.67 87.69 

 

128 64.02 64.30 64.17 85.74 85.68 85.57 98.42 98.45 98.48 

 

256 84.69 84.96 85.05 97.69 97.71 97.72 99.99 99.99 99.99 

 

512 97.68 97.81 97.81 99.96 99.94 99.95 100 100 100 

 

1024 99.97 99.98 99.98 100 100 100 100 100 100 

 

 

 

 

 

 

 

 

 

 



F with 

MA(1) 

innovations 

(  =2) 

size of the validation part (10000 iterations) 

n=T/2 n=T n=2*T 

T      =0.5  =0.9      =0.5  =0.9      =0.5  =0.9 

 

64 92.21 92.28 91.66 99.43 99.38 99.40 99.99 100 100 

 

128 99.45 99.39 99.45 100 100 100 100 100 100 

 

256 100 99.99 100 100 100 100 100 100 100 

 

 

F with 

MA(1) 

innovations 

(    =1.2) 

size of the validation part (10000 iterations) 

n=T/2 n=T n=2*T 

T      =0.5  =0.9      =0.5  =0.9      =0.5  =0.9 

 

64 9.16 9.23 9.50 9.38 9.45 9.38 9.78 9.47 10.01 

 

128 9.62 9.30 9.29 9.60 9.90 9.83 9.43 9.61 9.63 

 

256 9.61 10.46 9.88 9.59 9.43 10.00 9.71 9.93 9.79 

 

512 9.57 10.16 9.06 9.60 10.09 9.67 10.21 9.86 9.80 

 

1024 10.04 9.55 9.62 10.12 9.86 10.14 10.27 9.93 10.18 



When power is measured, F remains unaffected by the autocorrelation. As observed, if the 

variance of    increases, the power increases too. F is correctly sized. The presence of 

autocorrelation makes the size of the test be, in general, below the nominal size but always 

close to 10% . 

3.2.2. MGN test 

MGN with MA(1) 

innovations 

(   =1.5) 

size of the validation part(10000 iterations) 

n=T/2 n=T n=2*T 

T      =0.5  =0.9      =0.5  =0.9      =0.5  =0.9 

 

64 45.73 45.62 45.78 65.81 65.64 65.75 88.34 88.40 88.32 

 

128 64.83 65.19 65.24 86.16 86.10 86.07 98.51 98.54 98.57 

 

256 84.95 85.20 85.45 97.76 97.75 97.83 99.99 99.99 99.99 

 

512 97.77 97.86 97.86 99.96 99.94 99.95 100 100 100 

 

1024 99.97 99.98 99.98 100 100 100 100 100 100 

 

 

 

 

 

 

 

 

 

 



MGNwith 

MA(1) 

innovations 

(  =2) 

size of the validation part (10000 iterations) 

n=T/2 n=T n=2*T 

T      =0.5  =0.9      =0.5  =0.9      =0.5  =0.9 

 

64 92.37 92.48 92.87 99.49 99.58 99.49 100 100 99.99 

 

128 99.48 99.43 99.56 100 100 100 100 100 100 

 

256 100 100 100 100 100 100 100 100 100 

 

MGN with 

MA(1) 

innovations 

(  =1.2) 

size of the validation part (10000 iterations) 

n=T/2 n=T n=2*T 

T      =0.5  =0.9      =0.5  =0.9      =0.5  =0.9 

 

64 10.10 10.47 10.05 10.55 10.53 10.46 10.53 10.72 10.56 

 

128 10.50 9.79 9.74 10.03 10.27 10.13 10.09 10.06 9.94 

 

256 9.90 9.66 9.41 9.78 10.03 9.79 10.14 10.26 10.01 

 

512 10.47 9.48 9.82 10.83 10.17 10.42 10.15 10.08 9.64 

 

1024 10.08 9.57 9.86 10.20 10.01 10.52 10.32 9.93 10.32 

 



The results of MGN are similar to F results. MGN remains practically unaffected by the 

autocorrelation. As observed, if the variance of    increases, the power increases too as in F 

test. MGN is also correctly sized.  

3.2.3. MR test: 

MR with 

MA(1) 

innovations 

(  =1.5) 

size of the validation part (5000 iterations) 

n=T/2 n=T n=2*T 

T      =0.5  =0.9      =0.5  =0.9      =0.5  =0.9 

 

64 45.54 45.18 45.30 64.38 64.70 65.06 88.38 88.50 88.44 

 

128 64.96 64.62 64.78 86.00 85.92 86.00 98.56 98.54 98.56 

 

256 84.56 84.90 85.20 97.62 97.60 97.72 100 100 100 

 

512 97.70 97.98 98.06 95.94 95.92 95.92 100 100 100 

 

1024 99.96 99.98 99.98 100 100 100 100 100 100 

 

 

 

 

 

 

 

 

 

 



MR with 

MA(1) 

innovations 

(  =2) 

size of the validation part (5000 iterations) 

n=T/2 n=T n=2*T 

T      =0.5  =0.9      =0.5  =0.9      =0.5  =0.9 

 

64 92.48 91.96 92.80 99.40 99.42 99.42 99.98 100 100 

 

128 99.38 99.44 99.38 100 100 100 100 100 100 

 

256 100 100 100 100 100 100 100 100 100 

 

MR with 

MA(1) 

innovations 

(  =1.2) 

size of the validation part (5000 iterations) 

n=T/2 n=T n=2*T 

T      =0.5  =0.9      =0.5  =0.9      =0.5  =0.9 

 

64 9.68 9.64 8.98 11.00 9.84 9.98 10.18 10.56 10.98 

 

128 10.38 9.92 10.60 10.08 10.04 10.22 10.78 10.32 10.22 

 

256    9.64    9.92   10.26 10.60 10.66 9.98 10.20 10.04 10.22 

 

512 9.66 10.18 10.42 10.08 10.04 10.04 10.52 10.20 10.22 

 

1024 9.74 9.90 9.44 09.56 10.10 9.96 9.36 10.68 9.52 

 



MR results are similar to F and MGN.In  this case, we can observe that in general, the presence 

of serial correlation, makes the size be above the nominal size but extremely closed to the 

significance level. 

3.2.4. Diebold and Mariano test 

S1 with 

MA(1) 

innovations 

(  =1.5) 

size of the validation part (5000 iterations) 

n=T/2 n=T n=2*T 

T      =0.5  =0.9      =0.5  =0.9      =0.5  =0.9 

 

128 78.36 66.72 67.04 85.68 85.74 86.08 98.56 98.60 98.62 

 

256 85.38 85.96 85.58 97.80 97.54 97.78 99.96 99.98 100 

 

512 97.36 97.88 97.60 99.94 99.98 99.92 100 100 100 

 

S1 with 

MA(1) 

innovations 

(  =2) 

size of the validation part (5000 iterations) 

n=T/2 n=T n=2*T 

T      =0.5  =0.9      =0.5  =0.9      =0.5  =0.9 

 

128 99.54 99.56 99.54 100 100 100 100 100 100 

 

256 100 100 100 100 100 100 100 100 100 

 

 

 

 



S1 with 

MA(1) 

innovations 

(  =1.2) 

size of the validation part(5000 iterations) 

n=T/2 n=T n=2*T 

T      =0.5  =0.9      =0.5  =0.9      =0.5  =0.9 

 

128 20.66 20.78 20.44 10.74 10.94 10.94 10.60 10.68 10.84 

 

256 10.74 10.62 10.84 10.62 10.78 11.14 10.80 10.02 10.30 

 

512 11.06 10.04 9.76 10.92 10.22 11.12 10.46 10.64 10.26 

 

1024 10.16 10.60 10.25 10.81 10.79 10.42 10.48 10.23 10.51 

 

The power of S1ishigher than previous tests. When power is measured it is clear than greater 

percentages are reached in small samples. Furthermore, the test is correctly sized but in this 

case it starts (with the smaller value of T) with results worse than the other tests. Despite this, 

it is correctly sized and it tends to be slightly above the nominal size.  

 

 

 

 

 

 

 

 

 

 

 



3.2.5. The sign test 

 

  
  

MA(1) 

(  =1.5) 

Size of the validation part (5000 iterations) 

n=T/2 n=T n=2*T 

T      =0.5  =0.9      =0.5  =0.9      =0.5  =0.9 

 

64     19.72 20.24 20.32 38.20 37.96 38.20 56.26 58.82 57.40 

 

128 39.48 38.94 38.58 57.32 57.36 57.02 78.82 79.64 78.24 

 

256 57.36 56.76 57.02 77.86 77.68 78.30 95.30 95.64 95.56 

 

512 77.62 77.66 77.56 95.42 95.26 95.22 99.76 99.88 99.92 

 

1024 95.38 95.26 95.62 99.86 99.88 99.92 100 100 100 

  

 

 

 

 

 

 

 

 

 

 



  
  MA(1) 

(  =2) 

size of the validation part (5000 iterations) 

n=T/2 n=T n=2*T 

T      =0.5  =0.9      =0.5  =0.9      =0.5  =0.9 

 

64 55.94 100 100 86.38 100 100 98.70 98.54 98.46 

 

128 85.24 100 100 97.96 100 100 99.98 99.98 100 

 

256 98.12 100 100 99.98 100 100 100 100 100 

 

512 100 100 100 100 100 100 100 100 100 

 

1024 100 100 100 100 100 100 100 100 100 

 

  
  MA(1) 

(  =1.2) 

size of the validation part(5000 iterations) 

n=T/2 n=T n=2*T 

T      =0.5  =0.9      =0.5  =0.9      =0.5  =0.9 

 

64 5.14 10.38 10.68 9.04 8.42 8.16 9.86 9.98 9.30 

 

128 7.74    8.82 9.46 8.84 9.74 9.38 9.10 9.62 9.30 

 

256 9.76 9.66 9.90 9.56 9.82 9.94 9.68 10.44 10.34 

 

512 9.46 9.00 9.22 10.48 10.46 10.66 9.88 8.96 9.70 

 

1024 9.90 10.32 10.00 8.84 10.16 10.10 10.62 10.48 10.38 



As we can see,   
  works well. When power is measured, it works worse than    . It is also 

correctly sized. 

3.3. Innovations with AR(1) structure:                    

3.3.1. F test 

F with 

AR(1) 

innovations 

  =0.6 

size of the validation part (10000 iterations) 

n=T/2 n=T n=2*T 

T                                                 

64 9.00 41.95 91.09 9.71 61.52 99.23 9.89 86.41 100 

128 9.96 61.50 99.19 9.61 83.24 100 9.71 98.09 100 

256 9.72 82.22 100 9.57 96.80 100 9.77 99.99 100 

512 9.52 98.80 100 9.56 99.89 100 10.19 100 100 

1024 9.75 99.95 100 9.38 100 100 10.41 100 100 

 

F test is correctly sized and in general below the nominal size but extremely close to the 

significance level. It reaches appropriate values of power and when the variance of    

increases, the power increases too. 

3.3.2. MGN test 

MGN with 

AR(1) 

innovations 

  =0.6 

size of the validation part (10000 iterations) 

n=T/2 n=T n=2*T 

T                                                 

64 9.81 43.52 91.45 10.52 63.17 99.28 10.54 87.08 100 

128 10.66 62.61 99.23 10.07 83.87 100 10.18 98.20 100 

256 10.07 82.63 100 9.97 96.92 100 10.03 99.99 100 

512 9.79 96.90 100 9.85 99.89 100 10.39 100 100 

1024 10.00 99.95 100 9.63 100 100 10.52 100 100 

 



MGN  testworks as well as F test does. It is correctly sized .It reaches appropriate values of 

powers and when the variance of    increases, the power increases too. 

3.3.3. MR test 

MR with 

AR(1) 

innovations 

  =0.6 

size of the validation part (5000 iterations) 

n=T/2 n=T n=2*T 

T                                    .2           

64 9.58 42.88 91.10 9.70 62.42 99.14 10.26   87.16 100 

128 10.42 62.40 99.28 9.78 83.82 100 10.30 98.08 100 

256 10.32 82.72 100 9.80 96.80 100 9.98 100 100 

512 9.68 97.08 100 9.78 99.86 100 10.84 100 100 

1024 10.62 99.94 100 9.36 100 100 10.14 100 100 

 

MR results are similar to the results of F and MGN. 

3.3.4. Diebold and Mariano test 

  with 

AR(1) 

innovations 

  =0.6 

size of the validation part(5000 iterations) 

n=T/2 n=T n=2*T 

T                    .2                           

128 12.04 63.98 99.34 10.56 83.54 100 10.56 98.20 100 

256 10.96 83.22 100 10.28 96.88 100  10.06 100 100 

512  10.34 97.28 100 10.04 99.84 100 10.88 100 100 

1024  10.06 100 100 10.36 100 100 10.15 100 100 

 

  works well. It is correctly sized. Size of test tends to be slightly above the nominal size but 

always close to the significance level. It reaches greater values of powers than other tests and 

when the variance of    increases, the power increases too. 

 



3.3.5. The sign test: 

  
  with 

AR(1) 

innovations 

  =0.6 

size of the validation part (5000 iterations) 

n=T/2 n=T n=2*T 

T                                                 

64 (S2)5.10 19.12 53.94 8.52 35.86 83.36 9.52   54.58 97.58 

128 8.68 36.66 84.22 9.30 54.26 97.66 10.58 75.86 99.94 

256 9.96 54.30 97.50 9.70 74.72 99.96 9.84 94.52 100 

512 9.46 74.98 99.98 9.78 93.86 100 10.88 99.60 100 

1024 10.42 94.26 100 10.04 99.64 100 10.78 100 100 

 

  
   is correctly sized. In this case, the values of power are slightly smaller than other cases. In 

general, powers calculated are as good as in other cases. 

3.4. Innovations with AR(1) structure:                    

3.4.1. F test: 

F with 

AR(1) 

innovations 

  =0.9 

size of the validation part (10000 iterations) 

n=T/2 n=T n=2*T 

T                                                 

64 8.62 33.53 81.33 9.08 49.45 95.94 9.96 78.86 99.98 

128 8.89 47.10 95.09 9.14 68.69 99.89 9.47 94.66 100 

256 8.91 68.23 99.74 8.56 88.65 100 9.67 99.80 100 

512 8.49 88.06 100 8.44 98.76 100 9.65 100 100 

1024 8.19  98.67 100 8.18 99.98 100 9.95 100 100 

 

With respect the change of the value of the coefficient, results haven´t change practically. Size 

of the test has been decreased but it is correctly sized. It is maintained always below the 

nominal size.  The power is as good as it was with the value of coefficient equal to 0.6. 



3.4.2. MGN test 

MGN with 

AR(1) 

innovations 

  =0.9 

size of the validation part (10000 iterations) 

n=T/2 n=T n=2*T 

T                                                 

64 11.24 37.58 80.22 11.46 50.87 94.34 12.74 68.79 99.17 

128 10.68 49.67 95.23 11.60 68.53 99.71 12.19 87.22 99.97 

256 10.12 70.30 99.75 10.30 88.93 100 11.32 98.50 100 

512 10.45 89.51 100 10.52 98.61 100 10.70 99.98 100 

1024 10.84 98.77 100 10.10 100 100 10.68 100 100 

 

MGN is correctly sized. It is always slightly above the nominal size. With respect to the power 

of the test, it works well. The increase of the persistence parameter has not actually change 

the results drastically. 

3.4.3. MR test 

MR with 

AR(1) 

innovations 

  =0.9 

size of the validation part (5000 iterations) 

n=T/2 n=T n=2*T 

T                                                 

64 10.04 35.26 79.46 11.40 50.38 94.56 11.96 68.54 99.06 

128 10.26 48.94 95.24 11.32 68.20 99.64 12.14 87.40 100 

256 11.22 69.40 99.70 10.56 87.84 100 11.10 98.44 100 

512 9.76 89.34 100 11.04 98.80 100 11.46 100 100 

1024 10.36 99.06 100 9.98 100 100 10.26 100 100 

 

The MR results are similar to MGN ones. 

 

 



3.4.4. Diebold and Mariano test: 

   with 

AR(1) 

innovations 

  =0.9 

size of the validation part (5000 iterations)  

n=T/2 n=T n=2*T 

T                                                 

128 Problemas 10.84 72.12 99.86 10.32 95.36 100 

256 11.52 71.84 99.74 11.04 89.62 100 10.62 99.88 100 

512 10.88 89.26 100 10.12 98.84 100 10.66 100 100 

1024 10.48 99.00 100 9.90 99.98 100 10.56 100 100 

 

As it can be observed,   works well. It is correctly sized and is the best test if we compare the 

power reached with other tests.Power reachs higher percentages than other tests if we 

compare even samples with equal size. 

3.4.5. The sign test 

  
  with 

AR(1) 

innovations 

  =0.9 

size of the validation part (5000 iterations) 

n=T/2 n=T n=2*T 

T                                                 

64 6.30 15.50 42.10 9.14 28.82 70.02 10.50 43.82 89.66 

128 9.12 29.80 70.62 9.76 42.54 90.10 10.56 61.00 99.12 

256 9.76 42.54 90.64 9.36 61.28 99.42 10.60 83.26 99.96 

512 10.30 62.80 99.40 10.04 83.98 100 9.72 97.26 100 

1024 10.68 84.42 100 9.76 97.24 100 10.28 99.96 100 

 

  
 is correctly sized but in this case, as happens with the another value of the parameter of the 

AR(1) process, the values of power are slightly smaller than other cases.  New value of the 

persistence parameter has not led us to drastic changes in the results. 

 



3.5 .Innovations with heteroscedasticity 

Under heteroscedasticity of innovations, when we test the size of F, MGN and MR test, the 

results are not as good as in previous contexts.  All of them show an increasing size as T 

increases. However,    and   
  tests work correctly. 

All of five tests work well when we measure the power of tests.   works slightly better than 

others. 

3.5.1. F test 

F 

 

size of the validation part (10000 iterations)  

n=T/2 n=T n=2*T 

T                                                 

64 9.52 47.23  94.48 9.25 69.02 99.82 10.19 89.63 100 

128 9.41 69.13 99.72 10.82 88.98 99.99 10.78 98.55 100 

256 10.23 88.94 100 10.35 98.15 100 11.74 99.96 100 

512 10.35 98.24 100 12.40 99.84 100 13.31 100 100 

1024 11.96 99.94 100 14.30 100 100 14.29 100 100 

 

3.5.2. MGN test 

MGN size of the validation part (10000 iterations)  

n=T/2 n=T n=2*T 

T                                                 

64 10.21 49.82 94.61 10.42 71.08 99.76 10.83 89.94 100 

128 10.14 69.50 99.70 10.52 89.10 100 11.00 98.36 100 

256 10.06 88.54 100 11.18 98.09 100 12.21 99.92 100 

512 9.92 98.18 100 12.77 99.82 100 13.51 100 100 

1024 12.40 99.99 100 14.26 99.99 100 13.80 100 100 

 



3.5.3. MR test 

MR size of the validation part (5000 iterations)  

n=T/2 n=T n=2*T 

T                                                 

64 9.38 48.36 94.61 9.62 70.90 99.76 10.30 90.22 100 

128 9.68 69.66 99.70 10.58 88.34 100 11.72 98.34 100 

256 10.40 88.42 100 11.70 97.92 100 12.32 99.94 100 

512 10.12 98.36 100 13.04 99.90 100 13.42 100 100 

1024 12.66 99.92 100 14.26 100 100 14.08 100 100 

 

3.5.4. Diebold and Mariano test 

   

 

size of the validation part (5000 iterations)  

n=T/2 n=T n=2*T 

T                                                 

128 11.40 70.04 99.64 10.82 89.48 100 11.24 98.40 100 

256 9.88 88.04 100 10.26 98.00 100 10.52 99.94 100 

512 10.50 98.14 100 9.98 99.92 100 10.72 100 100 

1024 9.96 99.94 100 9.64 99.96 100 10.74 100 100 

 

3.5.5. Thesign test 

  
  

 

size of the validation part (5000 iterations)  

n=T/2 n=T n=2*T 

T                                                 

64 5.52 21.20 53.26 8.82 40.74 88.80 9.38 62.24 99.20 

128 8.74 41.08 88.30 9.24 61.90 99.08 9.74 82.48 99.98 

256 9.54 60.54 98.70 9.38 81.62 100 10.16 95.52 100 

512 9.12 80.90 99.98 9.98 95.80 100 10.46 99.86 100 

1024 10.18 96.96 100 9.78 99.90 100 10.42 100 100 



Section 4: An empirical example. 

Finally, all tests are going to be applied with real data. In order to follow this section, see 

Audrino and Medeiros (2011).  

In this paper, authors propose a smooth transition tree model for both the conditional mean 

and variance of the short-interest rate process. All equations have dynamic coefficients. The 

estimation of such models is addressed and they work the quasi-maximum likelihood 

estimator. This means that they want the estimates to be efficient. 

Our  models estimated are not as sophisticated as Audrino and Medeiros (2011) because our 

task is focused on comparing accuracy predictions. 

The data used in this section is provided by this recent publication and all variables have been 

downloaded from Datastream Results.  

The data used in this study are, for all variables, 564 monthly observations which correspond 

with the time period between January 1960 and December 2006. All data refer to US. 

The variables they use are: 

    one-month US Treasury bill rates downloaded from the Fama CRSPTreasury bill files. It is 
necessary to take first differences. It is the endogenous variable. 
 
Exogenous variables: 
 
             annual zero coupon bond yield from the FAMA CRSP bond files. 
 
               inflation and (finished goods) inflation, respectively. It is calculated at time   

t  as   
  

     
 where    is the (seasonally adjusted) inflation index. 

 
         index of help wanted  advertising in newspapers. 
 
         (seasonally adjusted) growth rate in industrial production.It is calculated at time t     

as    
  

     
 where    is the (seasonally adjusted) industrial production. 

       unemployment rate. 
 
        the US gross domestic product. 
 
Authors consider   as the endogenous variable  .When the author‘s model is applied to the US 

short-term interest rate, they find leading indicators for inflation and real activity are the most 

relevant predictors in characterizing the multiples regime’s structure. Furthermore, after 

comparing the goodness-of-fit of the models they suggest, they find that relevant variables are 

HELP, GDP and PPI.  

First of all we analyze our data and we regress the endogenous variable fitting a linear model 

with constant term an including all exogenous variables: 

                                                           

                                      



  and   are two categories of two dummies variables. On the one hand,   takes value equal 

to one if the observation corresponds to the period between years 1973-1975 (OPEC oil 

crises). It takes zero in other case.  On the other hand,   takes value equal to one if the 

observation corresponds to the period between years 1979-1982 (Fed experiment). It takes 

zero in other case.  Both have been introduced following the corresponding paper.  

 

The corresponding fit is: 

 

 ̂                                                                     

                                                              

 

Once the linear model including all exogenous variables has been estimated, we analyze 

associated residuals and notice indicators of the presence of heteroscedasticity. 

 

Due to this results we proceed by two ways. 

 

 Alternative A 

 

We evaluate Breusch and Pagantest and it shows signs of heteroscedasticity. We find relevant 

variables to explain the heteroscedasticityare        ,           .We conclude this after 

comparing the squares of residuals of regression      with variables and trying several fits to 

predict the value of the squares of regression     . The next figures represent the squares of 

residuals of model      against each exogenous variable: 

 

 

 

 



 
 

An a priori argument, we cannot choose which variables explain the heteroscedasticity by 

seeing the figures above.  

In order to obtain the estimate values of the time series corresponding to the variance of the 

innovations in model     , we regress the squares of the residuals obtained fitting model 

      ̂ 
   using variables        ,             

 

After severalattempts, we find that the values of the time series corresponding to the variance 

of the innovations in model      can be explained by next model,  

 

 ̂ 
               

 
              

 
  ̂  

 

which fits well with real value of  ̂ 
 , quality represented in next figure, which shows  ̂ 

 ̂ against 

 ̂ 
 : 

 

 
 

Once the previous regression has been done, we consider its corresponding estimated 

values, ̂ 
 ,as the variance responsible of the heteroscedasticity. 

 

We transform model      by dividing it by√ ̂ 
  to get a new model with constant innovations 

variance and to be able to do an OLS regression.  This is, we applied Feasible Generalized Least 

Squares Method. After doing this, we notice that themost  relevant (transformed) variables in 

this model are     and      Actually, all variables (with the exception of dummies) are relevant 

but not as relevant as     and      



After comparing some models we find that the variables with less relevance are          , 

opposed to the authors, who conclude that      is one of the macroeconomic relevant variables 

to explain, with their proposed model, changes in short term interest. 

We propose next two models for being compared by using all of the tests of accuracy 

prediction explained in this paper: 

 

                                                 

                                       

                                                           

                              

 

 

Next table contains the tests results, considering significance level equal to 10%: 

 

 F MGN MR        

T=503, n=60 Does not 
reject null 
hypothesis 

Does not 
reject null 
hypothesis 

Does not 
reject null 
hypothesis 

Does not 
reject null 
hypothesis 

Does not 
reject null 
hypothesis 

T=n=281 Does not 
reject null 
hypothesis 

Rejects null 
hypothesis 

Rejects null 
hypothesis 

Rejects null 
hypothesis 

Rejects null 
hypothesis 

 

Alternative B 

 

We directly estimate a GARCH(1,1) model in order to get the time series corresponding to the 

variance of the error. The estimated model obtained is: 

 

 ̂                                                                          

                                                  

               

 ̂ 
                 ̂   

           ̂   
  

Once we know { ̂ 
 }, we proceed as in Alternative A, transforming the linear model to another 

with innovations with constant variance and continue by estimating the transformed model 

applying OLS (FGLS). After doing this, we found that the unique relevant variable is     , 

opposed toAlternativeA results. The second variable in order of relevance is     but it has 

poor explication power. 

Following this new results, we propose next two models for being compared by using  all of the 

tests of accuracy predictions explained in this paper: 

 

                                                 

                                       

                                                           

                              



 

Second model is expected to be more accurate but all tests do not lead us to this conclusion. 

 

Next table contains the tests results, considering significance level equal to 10%: 

 

 

 F MGN MR        

T=503, n=60 Does not 
reject null 
hypothesis 

Rejects null 
hypothesis 

Rejects null 
hypothesis 

Rejects null 
hypothesis 

Rejects null 
hypothesis 

T=n=281 Does not 
reject null 
hypothesis 

Does not 
reject null 
hypothesis 

Does not 
reject null 
hypothesis 

Rejects null 
hypothesis 

Does not 
reject null 
hypothesis 

 

 

 

 

 

5. Conclusions 

We have proposed several tests to compare the accuracy prediction of two competing models. 

Our task has been to check if these tests conclude good results even if we change the 

hypothesis of the innovations terms of models. We have permitted innovations to have 

structure of serial correlation and contemporaneous correlation. The correslation has been 

due to processes with short memory and with long memory with respective MA or AR 

processes. We have also analyzed if the increase persistence has a drastic effect on the results, 

but we conclude that it has not. Even, we have permitted heteroscedasticity structure in the 

innovation term. 

All of the checkings of the tests effectivenesshave been studied in an estimation context. 

However, in this part of the paper all variables and random innovation terms have been 

simulated.  

In the case of heteroscedastic innovations, it has been necessary to transform the model 

proposed in order to get another one with innovations with constant variance (GLS), which 

was not necessary if we only permit correlation in innovation terms. 

 In spite of permitting correlation in the innovations terms and heteroscedasticity, the 

corresponding results show the good functioning of all tests, although there were slightly 

worse in case of heteroscedasticity of innovation terms. 

When we set the tests out using real data, we are based on a model recently publicated, 

Audrino& Medeiros (2011). In this case we notice the presence of heteroscedasticity. It has a 

more complicated structure than the simulated case.After stablishing two alternatives to 

capture the heteroscedasticity with proposed models for modeling the variance of the 

innovation term, we propose two models to be compared expecting one of them to be more 



accurate. Results of test show that some of them detect this difference between the accuracy 

of the models proposed but not all of them.  

However we cannot establish a pattern in which these test work correctly based on the length 

of the validation part    . Withalternative A, tests which detected the difference in the 

accuracy prediction work well when  =281 but, in general, with alternativeB, occurs the 

opposite. 

Although heterocedasticity has been taken into account, we are conscious that the systematic 

part of the model has not been estimated in such a sophisticated way as authors. We include 

the estimation ofa  GARCH model to capture the heterocedasticity but they included a GARCH 

model with dynamic coefficients. We suspect that the lack of these dynamic coefficients can 

be a reason of our conclusions. 

Also, we have great parametric uncertainty because the number of variables is high and some 

of them present correlation. 

In conclusion, all tests for comparing accuracy prediction of modelshave better functioning 

when data are simulated and do not work as well when variables are extracted from a real 

source. 

To end, we leave the option to analyze this subject posing a more complex 

heteroscedasticitycase and posing dynamic coefficients in the systematic part of the model. 

 
6. Bibliography  
 
Francis X. Diebold and Robert S. Mariano (1995), “ Comparing Predictive Accuracy”, Journal of 
Business and Economic Statistics, 13, 253-265. 
 
Eva Ferreira and Winfried Stute (2009), “Testing for differences in Predictive Accuracy”, Pak. J. 
Statist. Vol 25(4), 403-417. 
 
Eva Ferreira and Fernando Tusell (1996), “Un modelo aditivo semiparamétrico para estimación 
de capturas: el caso de las pesquerías de Terranova”, Investigaciones económicas. Segunda 
Época. Volumen XX(1). 
 
Francesco Audrino and Marcelo C. Medeiros (2011), “ Modeling and forecasting short-term 
interest rates: the benefits of smooth regimes macroeconomic variables and bagging”, Journal 
of Applied Econometrics, 26, 999-1022. 
 
 


