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Abstract

This article pretends to investigate the application of the Malliavin

calculus for Greeks computation in the case of European options assuming

the Black-Scholes model dynamics for the underlying asset. We calculate

all the main Greeks formulae for vanilla and digital European options

employing the integration by parts formula developed in the theory of

Malliavin calculus. Then, we apply the localization technique presented

by Founié et al. for variance reduction in Monte Carlo simulation. This

two methods are compared to the previous ones existing, such as �nite-

di�erence, pathwise derivative and likelihood ratio methods.

1 Introduction

As it is known, in �nance the adecuate hedging of �nancial products is as im-
portant as their correct valuation. For that purpose, in the case of derivatives
the computation of their sensitivities, called Greeks, with respect to various of
the parameters of the problem becomes essential for the hedging. In this sense,
we focus on the case of the computation of Greeks for European options. In this
case, the price can be expressed as the updated expected value of the payo�

Vt = E[e−r(T−t)Φ(ST )]

The payo� Φ is a functional of the underlying asset at maturity and satis�es
the condition EQ[Φ(ST )2] < ∞. The underlying asset is given by a markovian
process {St; t ∈ [0, T ]} with values in Rn being the solution of the stochastic
di�erential equation

dSt = µ(t, St)dt+ σ(t, St)dWt

where {Wt; t ∈ [0, T ]} is a brownian motion with values in Rn. The coe�cients
µ(t, St) and σ(t, St) are Lipschitz ensuring the existence and uniqueness of a so-
lution for the di�erential equation. For this study we consider the Black-Scholes
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model assuming a geometric brownian motion for the underlying asset.

In most cases, there is not an analytical solution for the derivative price
because the density function of the payo� is unkown. Then, we can simu-
late trajectories for the underlying asset emplying Monte Carlo techniques and,
hence, also compute the price for the European options by calculating the ex-
pected value for all the �nal states of the trajectories. Then, for the hedging
of the options we compute the di�erentials with respect to some parameters of
the problem, called Greeks. The most common and important ones are Delta,
Gamma, Vega, Theta, Rho and Lambda.

There are several alternatives to compute these di�erentials. The �rst and
simplest one is to compute these quantities using �nite-di�erence method based
on the de�nition of the derivative

∂V0(α)

∂α
' V0(α+ h)− V0(α)

h

However, this method can produce large biases and variances, particularly with
the incresing of the derivative order. The second method is the pathwise deriva-
tive method which interchanges the derivative and expectative operators

∂V0(α)

∂α
=

∂

∂α
EQ[Φ(S(α))] = EQ

[
∂

∂α
Φ(S(α))

]
Nevertheless, this technique is not always executable, mainly when the payo�
is not smooth. The last alternative, until now, is the likelihood ratio method,
which can be seen as a complementary method of the parthwise derivative.
In this case, instead of derivate the payo� function, we apply the derivative
operator to the density function of the payo�

∂V0(α)

∂α
=

∂

∂α
EQ[Φ(S)] = EQ

[
Φ(S)

∂log(f(S;α))

∂α

]
where f(S;α) is the density function of the payo� depending on the parameter
α. Therefore, this method is applicable even with discontinuos payo�s but pro-
vides the higher variance of them all and we are limited by the knowledge of
the density function of the payo�, which rarely happens. So, in practice is the
less operative method.
In the appendix, in Section 7, we resume the basic points and development of
these methods applied to the case of European options. For more information
see Glasserman [4].

In this article we apply the Malliavin calculus as an alternative for the com-
putation of Greeks for European options showing that the sensitivities can be
expressed by a formula of the type

∂V0
∂α

= EQ
[
Φ′(S(α))

∂S(α)

∂α

]
= EQ

[
Φ(S(α))H

(
S(α),

∂S(α)

∂α

)]
where H is a random function to be determinated. As we see, this method
involves the payo� and a weight, which will be di�erent for each Greek.
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We complete the computation for all the main Greeks, following the work
started by Nualart [8], for European call vanilla options. Then we make use of
the localization technique developed by Fournié et al. [2] for variance reduction,
extended to all the Greeks. Finally, we extend the study to discontinuous pay-
o�s, for European call digital options. We will see that this technique makes
the Malliavin calculus more competitive and e�cient with respect to the rest of
the methods mentioned before.

The article scheme is the following. First of all, we present in Section 2
the basic results of Malliavin calculus for our purpose. In Section 3 we obtain
the formulae for the main Greeks of European options and, then in Section 4
we used the localization technique introduced by Fournie et al. [2] for variance
reduction which improves the Monte Carlo simulation for Greeks computation.
In Section 5 we present some simulations and numerical results, comparing the
results of this technique with the most common ones for Greeks computation.
Finally, in Section 6 we resume the most relevant conclusions observed in the
study. Moreover, in Section 7 we include an appendix explaining brie�y the
other computational techniques employed in the computation of the �nancial
derivatives sensitivities.

2 Fundamentals of Malliavin Calculus

In this section we present brie�y the main results of Malliavin calculus on de-
veloping the integration by parts formula, which relates the derivative operator
on the Wiener space and the divergence operator. Our goal is to de�ne the
Malliavin derivative of a square integrable random variable F : Ω → R with
respect to the parameter ω ∈ Ω, and the diverge operator which is the dual
of the derivative operator. Then, with these tools we are able to obtain the
integration by parts formula. For more information see Nualart [8].

Consider a multidimensional brownian motion {Wt; t ∈ [0, T ]} with values
in Rn de�ned on a complete probability space (Ω,F,P) with {Ft} the �ltration
generated by the brownian motion. Let C be the set of smooth random variables
of the form

F = f(W (h1), . . . ,W (hn)) f ∈ C∞p (Rn) (1)

with

W (hi) =

∫ ∞
0

hi(t)dWt, ∀i = 1, . . . , n (2)

where C∞p (Rn) is the set of functions f : Rn → R that are in�nitely di�eren-
tiable and its partial derivatives have polynomial growth.

De�nition 2.1 The derivative of a smooth random variable F of the form pre-

viosly de�ned in (1) is the random variable H-valued given by

DtF =

n∑
i=1

∂f

∂xi
(W (h1) . . .W (hn))hi (3)
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Proposition 2.1 The second derivative of a smooth random variable F of the

form previosly de�ned in (1) is the random variable H ⊗H-valued given by

D2
tF =

n∑
i,j=1

∂2ijf(W (h1) . . .W (hn))(hi ⊗ hj) (4)

In general, the k-th derivative of F, Dk
t F , for any k ≥ 1 is the H⊗k-valued

random variable obtained iterating the derivative operator k times.

Proposition 2.2 For any p ≥ 1 and k ≥ 1 natural numbers, the derivative

operator Dk
t is closable from C to Lp(Ω;H⊗k)

Proposition 2.3 The domain of the derivative operator Dk
t is the space Dk,p

de�ned as the completion of C with respect to the norm

||F ||k,p =

(
E[|F |p] +

k∑
i=1

E[||DiF ||p
H⊗k ]

) 1
p

(5)

Proposition 2.4 Let ϕ : Rn → R be a continuous di�erentiable function with

bounded partial derivatives, and �x p ≥ 1. Suppose that F = (F 1 . . . Fn) is a

random vector whose components belong to the space D1,p. Then ϕ(F ) ∈ D1,p,

and

Dt(ϕ(F )) =

n∑
i=1

∂iϕ(F )DtF
i (6)

De�nition 2.2 We denote by δ the adjoint operator of the derivative operator.
This means, δ is an unbounded operator on L2(Ω;H) with values in L2(Ω) such
that:

1. The domain of δ, denoted by Dom(δ), is the set of H − valued square

integrable random variables u ∈ L2(Ω;H) such that

|E[〈DtF, u〉H ]| ≤ c||F ||2 ∀F ∈ D1,2, c constant depending on u (7)

2. If u belongs to Dom(δ), then δ(u) is the element of L2(Ω) characterized

by

E[Fδ(u)] = E[〈DtF, u〉H ] for any F ∈ D1,2 (8)

Proposition 2.5 Let u ∈ Dom(δ) and F ∈ D1,2 such that Fu ∈ L2(Ω;H).
Then Fu ∈ Dom(δ) and satis�es

δ(Fu) = Fδ(u)− 〈DtF, u〉H (9)

Now we present the result known as the integration by parts formula, which
will be applied for the computation of Greeks.

Proposition 2.6 Let F,G be two random variables such that F ∈ D1,2. Con-

sider an H-valued random variable u such that 〈DtF, u〉H 6= 0 a.s. and Gu〈DtF, u〉−1H
∈ Dom(δ). Then, for any continuously di�erentiable function f with bounded

derivative we have

E[f ′(F )G] = E[f(F )H(F,G)] (10)

where H(F,G) = δ(Gu〈DtF, u〉−1H )
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3 Greeks for European options

We apply the integration by parts formula to the case of European options
considering the Black-Scholes model. Thus, the dynamics of the underlying
asset, under the risk-neutral probability measure, is described by the geometric
brownian motion

St = S0e
(r−σ22 )t+σWt (11)

The Black-Scholes model is complete, which means that any marketable asset is
replicable. We can create a self-�nancing replicating portfolio with a derivative
and its underlying asset, and value the derivative solving the partial di�erential
equation we obtain with a dynamic hedging strategy. In our case, we suppose
that there is no analytical solution for the di�erential equation and we use the
Monte Carlo simulation for pricing.

A Greek is a partial derivative of a �nancial derivative with respect to any of
the model parameters. This derivatives measure the sensitivity of the derivative
price under variations of any parameter. We consider an European option with
the payo� depending on the price of the underlying asset at maturity t = T ,
Φ(ST ) such that EQ[Φ(ST )2] < ∞, whose price at time t is given by Vt =
EQ[e−r(T−t)Φ(ST )]. Then, the partial derivative with respet to a parameter α
of the problem at time t = 0 will be given by

∂V0
∂α

= EQ
[
e−r(T−t)Φ′(ST )

∂ST
∂α

]
(12)

Making use of the integration by parts formula we obtain

∂V0
∂α

= EQ
[
e−r(T−t)Φ(ST )H

(
ST ,

∂ST
∂α

)]
(13)

where

H

(
ST ,

∂ST
∂α

)
= δ

(
∂ST
∂α

u〈DsST , u〉−1H
)

(14)

Employing this general result we obtain the speci�c formulae for the main
Greeks. First of all, we calculate the scalar product 〈DtST , u〉H for u = 1, which
will be used in the following calculations for each Greek

〈DtST , 1〉H =

∫
T

DtST dt =

∫ T

0

σST dt = σTST (15)

The Delta is the �rst partial derivative of the option value with respect to
the underlying asset price, and measures the rate change of the option value
with respect to changes of the underlying asset price

∆ =
∂V0
∂S0

= EQ
[
e−rTΦ′(ST )

∂ST
∂S0

]
= EQ

[
e−rTΦ′(ST )

ST
S0

]
=

=
e−rT

S0
EQ[Φ′(ST )ST ] (16)
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Hence, we have for F = ST , G = ST and u = 1

δ

(
ST (σTST )−1

)
= δ

(
1

σT

)
=

1

σT

∫ T

0

dWt =
WT

σT
(17)

Replacing the result in the integration by parts formula we obtain for the Delta

∆ =
e−rT

S0
EQ
[
Φ(ST )

WT

σT

]
=

e−rT

S0σT
EQ[Φ(ST )WT ] (18)

The Gamma is the second partial derivative of the option value with respect
to the underlying asset price, and measures the rate change of the option Delta
with respect to changes of the underlying asset price

Γ =
∂2V0
∂S2

0

= EQ
[
e−rTΦ′′(ST )

(
∂ST
∂S0

)2]
= EQ

[
e−rTΦ′′(ST )

(
ST
S0

)2]
=

=
e−rT

S2
0

EQ[Φ′′(ST )S2
T ] (19)

Hence, we have for F = ST , G = S2
T and u = 1

δ

(
S2
T (σTST )−1

)
= δ

(
ST
σT

)
=

1

σT

(
ST

∫ T

0

dWt −
∫ T

0

DtST dt

)
=

=
1

σT

(
STWT − σTST

)
(20)

Replacing the result in the integration by parts formula we obtain

e−rT

S2
0

EQ[Φ′′(ST )S2
T ] =

e−rT

S2
0

EQ
[
Φ′(ST )

1

σT

(
STWT − σTST

)]
=

=
e−rT

S2
0

EQ
[
Φ′(ST )ST

(
WT

σT
− 1

)]
(21)

Now we apply again the integration by parts formula for F = ST ,

G = ST

(
WT

σT − 1

)
and u = 1

δ

(
ST

(
WT

σT
− 1

)
(σTST )−1

)
=

1

σT
δ

(
WT

σT
− 1

)
=

=
1

σT

(
1

σT

(
WT

∫ T

0

dWt −
∫ T

0

DtWT dt

)
−
∫ T

0

dWt

)
=

=
1

σT

(
W 2
T

σT
− 1

σ
−WT

)
(22)

Thus, replacing once more in the integration by parts formula

e−rT

S2
0

EQ
[
Φ′(ST )ST

(
WT

σT
− 1

)]
=
e−rT

S2
0

EQ
[
Φ(ST )

1

σT

(
W 2
T

σT
− 1

σ
−WT

)]
(23)
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Finally, we obtain the Gamma

Γ =
e−rT

S2
0σT

EQ
[
Φ(ST )

(
W 2
T

σT
− 1

σ
−WT

)]
(24)

The Vega is the partial derivative of the option value with respect to the
volatility of the underlying asset, and measures the rate change of the option
value with respect to changes of the volatility of the underlying asset

ν =
∂V0
∂σ

= EQ
[
e−rTΦ′(ST )

∂ST
∂σ

]
= e−rTEQ[Φ′(ST )ST (WT − σT )] (25)

Hence, we have for F = ST , G = ST (WT − σT ) and u = 1

δ

(
ST (WT − σT )(σTST )−1

)
= δ

(
WT

σT
− 1

)
=

=
1

σT

(
WT

∫ T

0

dWt −
∫ T

0

DtWT dt

)
−
∫ T

0

dWt =
W 2
T

σT
− 1

σ
−WT (26)

Replacing the result in the integration by parts formula we obtain for the Vega

ν = e−rTEQ
[
Φ(ST )

(
W 2
T

σT
− 1

σ
−WT

)]
(27)

Comparing this expression for the Vega with the previous one for the Gamma,
we can relate both of them as follows

ν = (S2
0σT )Γ (28)

The Theta is the partial derivative of the option value with respect to the
time, and measures the rate change of the option value with respect to changes
of the time to maturity

θ = −∂V0
∂T

= EQ
[
re−rTΦ(ST )− e−rTΦ′(ST )

∂ST
∂T

]
=

= EQ
[
re−rTΦ(ST )− e−rTΦ′(ST )ST

((
r − σ2

2

)
+
σWT

2T

)]
=

= re−rTEQ[Φ(ST )]− e−rTEQ
[
Φ′(ST )ST

((
r − σ2

2

)
+
σWT

2T

)]
(29)

We focus on the second term for applying the integration by parts formula. We

have for F = ST , G = ST

((
r − σ2

2

)
+ σWT

2T

)
and u = 1

δ

(
ST

((
r − σ2

2

)
+
σWT

2T

)
(σTST )−1

)
=

1

σT
δ

((
r − σ2

2

)
+
σWT

2T

)
=

=
1

σT

((
r − σ2

2

)∫ T

0

dWt +
σ

2T

(
WT

∫ T

0

dWt −
∫ T

0

DtWT dt

))
=

=
W 2
T

2T 2
+

1

σT

(
r − σ2

2

)
WT −

1

2T
(30)
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Therefore, we have for the Theta

θ = re−rTEQ[Φ(ST )]− e−rTEQ
[
Φ(ST )

(
W 2
T

2T 2
+

1

σT

(
r − σ2

2

)
WT −

1

2T

)]
=

= e−rTEQ
[
Φ(ST )

(
r − 1

2T

(
W 2
T

T
+

2

σ

(
r − σ2

2

)
WT − 1

))]
(31)

The Rho is the partial derivative of the option value with respect to the rate
of interest, and measures the rate change of the option value with respect to
changes of the rate interest

ρ =
∂V0
∂r

= EQ
[
−Te−rTΦ(ST ) + e−rTΦ′(ST )

∂ST
∂r

]
=

= EQ[−Te−rTΦ(ST ) + e−rTΦ′(ST )TST ] =

= −Te−rTEQ[Φ(ST )] + e−rTEQ[Φ′(ST )TST ] (32)

As in the previous Greek, we focus on the second term for applying the integra-
tion by parts formula. We have for F = ST , G = TST and u = 1

δ(TST (σTST )−1) = δ

(
1

σ

)
=

1

σ

∫ T

0

dWt =
WT

σ
(33)

Hence, we have for the Rho

ρ = −Te−rTEQ[Φ(ST )] + e−rTEQ
[
Φ(ST )

WT

σ

]
=

= e−rTEQ
[
Φ(ST )

(
WT

σ
− T

)]
(34)

The Elasticity or Lambda is the rate of percentage change of option value
with respect to the percentage change of the underlying asset.

λ =
S0

V0

∂V0
∂S0

=
S0

V0
∆ (35)

Hence, we have for the Lambda

λ =
e−rT

V0σT
EQ[Φ(ST )WT ] (36)

4 Localization technique for variance reduction

Now we present the localization technique developed by Founié et al. [2] for
variance reduction in the Monte Carlo simulation for Greeks computation in
the case of Malliavin calculus. The idea is to localize the computation of the
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integration by parts formula around the singularity of the payo�. If the weights
are large then the expected quantities increase and have also a large variance.
So in order to reduce the variance we focus the calculations around the singu-
larities. Our goal is to de�ne the speci�c localization function for each Greek
in the following European options with continuous and discontinuous payo�
functionals.

4.1 European call vanilla option

For an European call vanilla option we have the payo� Φ(ST ) = (ST − K)+

which has no discontinuity but a singularity at the point ST = K.

We introduce the localization technique employing the following function

Hδ(ST ) =


0 , if ST −K < −δ
(ST−K)+δ

2δ , if − δ ≤ ST −K ≤ δ
1 , if ST −K > −δ

(37)

where δ > 0 is the localization parameter. Moreover, we also de�ne the func-

tions Gδ(ST ) =
∫ ST
−∞Hδ(s)ds and Fδ(ST ) = (ST −K)+ −Gδ(ST ).

Hence, for the Delta we have

∆ =
∂

∂S0
EQ[e−rT (ST −K)+] =

=
∂

∂S0
EQ[e−rTGδ(ST )] +

∂

∂S0
EQ[e−rTFδ(ST )] =

= EQ
[
e−rTHδ(ST )

ST
S0

]
+ EQ

[
e−rTFδ(ST )

WT

S0σT

]
=

=
e−rT

S0
EQ[Hδ(ST )ST ] +

e−rT

S0σT
EQ[Fδ(ST )WT ] (38)

We get the expression for the variance reduction of the Delta

∆ = e−rTEQ
[
Hδ(ST )

ST
S0

+ Fδ(ST )
WT

S0σT

]
(39)

Now, it is necessary to de�ne a new localization function for the Gamma. So

we de�ne Iδ(ST ) = 1
2δ1{|ST−K|<δ} and Jδ(ST ) = (ST −K)+−

∫ ST
0

∫ s
0
Iδ(u)duds.

With these localization functions we have for the Gamma

Γ =
∂2

∂S2
0

EQ[e−rT (ST −K)+] =

= EQ
[
e−rT Iδ(ST )

(
ST
S0

)2]
+ EQ

[
e−rTJδ(ST )

1

S2
0σT

(
W 2
T

σT
− 1

σ
−WT

)]
(40)

Hence, we get for the Gamma the variance reduction formula

Γ = e−rTEQ
[
Iδ(ST )

(
ST
S0

)2

+ Jδ(ST )
1

S2
0σT

(
W 2
T

σT
− 1

σ
−WT

)]
(41)
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For the Vega we have

ν =
∂

∂σ
EQ[e−rT (ST −K)+] =

=
∂

∂σ
EQ[e−rTGδ(ST )] +

∂

∂σ
EQ[e−rTFδ(ST )] =

= EQ[e−rTHδ(ST )ST (WT − σT )] + EQ
[
e−rTFδ(ST )

(
W 2
T

σT
− 1

σ
−WT

)]
(42)

We get the expression for the variance reduction of the Vega

ν = e−rTEQ
[
Hδ(ST )ST (WT − σT ) + Fδ(ST )

(
W 2
T

σT
− 1

σ
−WT

)]
(43)

For the Theta we have

θ = − ∂

∂T
EQ[e−rT (ST −K)+] = − ∂

∂T
EQ[e−rTGδ(ST )]− ∂

∂T
EQ[e−rTFδ(ST )] =

= −EQ
[
−re−rTGδ(ST ) + e−rTHδ(ST )

∂ST
∂T

]
− EQ

[
−re−rTFδ(ST ) + e−rTF ′δ(ST )

∂ST
∂T

]
=

= EQ[re−rT (Gδ(ST ) + Fδ(ST ))]− EQ
[
e−rTHδ(ST )ST

((
r − σ2

2

)
+
σWT

2T

)]
−

−EQ
[
e−rTFδ(ST )

1

σT

((
r − σ2

2

)
WT +

σ

2T
(W 2

T − T )

)]
(44)

We get the expression for the variance reduction of the Theta

θ = e−rTEQ
[
r(ST −K)+ −Hδ(ST )ST

((
r − σ2

2

)
+
σWT

2T

)
−

−Fδ(ST )
1

σT

((
r − σ2

2

)
WT +

σ

2T
(W 2

T − T )

)]
(45)

For the Rho we have

ρ =
∂

∂r
EQ[e−rT (ST −K)+] =

∂

∂r
EQ[e−rTGδ(ST )] +

∂

∂r
EQ[e−rTFδ(ST )] =

= EQ
[
−Te−rTGδ(ST ) + e−rTHδ(ST )

∂ST
∂r

]
+ EQ

[
−Te−rTFδ(ST ) + e−rTF ′δ(ST )

∂ST
∂r

]
=

= EQ[−Te−rT (Gδ(ST ) + Fδ(ST ))] + EQ[e−rTHδ(ST )TST ] + EQ
[
e−rTF ′δ(ST )

∂ST
∂r

]
=

= EQ[−Te−rT (ST −K)+] + EQ[e−rTHδ(ST )TST ] + EQ
[
e−rTFδ(ST )

WT

σ

]
(46)

We get the expression for the variance reduction of the Rho

ρ = e−rTEQ
[
T (Hδ(ST )ST − (ST −K)+) + Fδ(ST )

WT

σ

]
(47)
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For the Lambda we have

λ =
S0

V0

∂V0
∂S0

=
S0

V0
∆ (48)

Hence, we have for the Lambda with variance reduction

λ = e−rTEQ
[
Hδ(ST )

ST
V0

+ Fδ(ST )
WT

V0σT

]
(49)

4.2 European call digital option

Now for an European call digital option we consider the payo� Φ(ST ) = Aθ(ST−
K) which has a discontinuity at the point ST = K.

We introduce the localization technique employing the following function

Hδ(ST ) =


0 , if ST −K < −δ
A (ST−K)+δ

2δ , if − δ ≤ ST −K ≤ δ
A , if ST −K > −δ

(50)

with δ > 0 the localization parameter. In this case, we de�ne the functions
Iδ(ST ) = A

2δ1{|ST−K|<δ} and Fδ(ST ) = Aθ(ST −K)−Hδ(ST ).

Hence, for the Delta we have

∆ =
∂

∂S0
EQ[e−rTAθ(ST −K)] =

∂

∂S0
EQ[e−rTHδ(ST )] +

∂

∂S0
EQ[e−rTFδ(ST )] =

= EQ
[
e−rT Iδ(ST )

∂ST
∂S0

]
+ EQ

[
e−rTF ′δ(ST )

∂ST
∂S0

]
=

= e−rTEQ
[
Iδ(ST )

ST
S0

]
+ e−rTEQ

[
Fδ(ST )

WT

S0σT

]
(51)

We get the expression for the variance reduction of the Delta

∆ = e−rTEQ
[
Iδ(ST )

ST
S0

+ Fδ(ST )
WT

S0σT

]
(52)

In this case, there is no possibility to de�ne a variance reduction formula
for Gamma, because there is no derivative for a function as the Dirac delta
(Iδ(ST )→ δD(ST ) as δ → 0).

For the Vega we have

ν =
∂

∂σ
EQ[e−rTAθ(ST −K)] =

∂

∂σ
EQ[e−rTHδ(ST )] +

∂

∂σ
EQ[e−rTFδ(ST )] =

= EQ
[
e−rT Iδ(ST )

∂ST
∂σ

]
+ EQ

[
e−rTF ′δ(ST )

∂ST
∂σ

]
=

= EQ[e−rT Iδ(ST )ST (WT − σT )] + EQ
[
e−rTFδ(ST )

(
W 2
T

σT
− 1

σ
−WT

)]
(53)
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We get the expression for the variance reduction of the Vega

ν = e−rTEQ
[
Iδ(ST )ST (WT − σT ) + Fδ(ST )

(
W 2
T

σT
− 1

σ
−WT

)]
(54)

For the Theta we have

θ = − ∂

∂T
EQ[e−rTAθ(ST −K)] = − ∂

∂T
EQ[e−rTHδ(ST )]− ∂

∂T
EQ[e−rTFδ(ST )] =

= −EQ[−re−rTHδ(ST ) + e−rT Iδ(ST )
∂ST
∂T

]− EQ[−re−rTFδ(ST ) + e−rTF ′δ(ST )
∂ST
∂T

] =

= EQ[re−rT (Hδ(ST ) + Fδ(ST ))]− EQ
[
e−rT Iδ(ST )ST

((
r − σ2

2

)
+
σWT

2T

)]
−

−EQ
[
e−rTFδ(ST )

1

σT

((
r − σ2

2

)
WT +

σ

2T
(W 2

T − T )

)]
(55)

We get the expression for the variance reduction of the Theta

θ = e−rTEQ
[
rAθ(ST −K)− Iδ(ST )ST

((
r − σ2

2

)
+
σWT

2T

)
−

−Fδ(ST )
1

σT

((
r − σ2

2

)
WT +

σ

2T
(W 2

T − T )

)]
(56)

For the Rho we have

ρ =
∂

∂r
EQ[e−rTAθ(ST −K)] =

∂

∂r
EQ[e−rTHδ(ST )] +

∂

∂r
EQ[e−rTFδ(ST )] =

= EQ[−Te−rTHδ(ST ) + e−rT Iδ(ST )
∂ST
∂r

] + EQ[−Te−rTFδ(ST ) + e−rTF ′δ(ST )
∂ST
∂r

] =

= EQ[−Te−rT (Hδ(ST ) + Fδ(ST ))] + EQ[e−rT Iδ(ST )TST ] + EQ
[
e−rTF ′δ(ST )

∂ST
∂r

]
=

= EQ[−Te−rTAθ(ST −K)] + EQ[e−rT Iδ(ST )TST ] + EQ
[
e−rTFδ(ST )

WT

σ

]
(57)

We get the expression for the variance reduction of the Rho

ρ = e−rTEQ
[
T (Iδ(ST )ST −Aθ(ST −K)) + Fδ(ST )

WT

σ

]
(58)

For the Lambda we have

λ =
S0

V0

∂V0
∂S0

=
S0

V0
∆ (59)

Hence, we have for the Lambda with variance reduction

λ = e−rTEQ
[
Iδ(ST )

ST
V0

+ Fδ(ST )
WT

V0σT

]
(60)
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5 Numerical results

In this section we examine numerical results, mainly for an European call digital
option for the model parameters S0 = 100, K = 100, r = 0.1, T = 1, σ = 0.2
and A = 10. First, we check the results of Delta for an European call vanilla,
extending the comparison to all methods.

Figure 1: Delta for vanilla option with parameters S0 = 100, K = 100, r = 0.1,
T = 1, σ = 0.2.

The behavior observed is general for all Greeks, except the Gamma which is
a second derivative. The �nite-di�erence and pathwise methods have the least
variance while the likelihood and Malliavin methods have large variance. Given
that the most general method, until now, is the �nite-di�erence method, from
now on we focus on the comparison between this one and the Malliavin calculus,
together with the variance reduction technique.

In the case of Gamma, we observe the largest variance for the �nite-di�erence
method because we estimate a second derivative �nding even worse computa-
tional problems than in the case of �rst derivative.

Nonetheless, we also check the e�ectiveness of the variance reduction tech-
nique in reducing the variance of the Malliavin estimators and increasing the
convergence rate to the exact value given by the Black-Scholes model formulae.
We present this results for Delta and Gamma, which can be extended to the rest
of Greeks. At the end of the section we include di�erent tables with numerical
values for di�erent simulations to check this facts.
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Figure 2: Delta for vanilla option with parameters S0 = 100, K = 100, r = 0.1,
T = 1, σ = 0.2.

Figure 3: Gamma for vanilla option with parameters S0 = 100, K = 100,
r = 0.1, T = 1, σ = 0.2.
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Now, we present the results for the case of an European call digital option.
Here, the pathwise method is not applicable and, as we saw, the likelihood ratio
method provides large variance and is not practical, so we will not make use of
this two methods.

We see that in the case of European option with discontinuous payo� the
Malliavin calculus is much more competitive than any other method even with-
out applying the reduction variance technique, specially for the second derivative
computation.

Figure 4: Delta for digital option with parameters S0 = 100, K = 100, r = 0.1,
T = 1, σ = 0.2, A = 10.
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Figure 5: Gamma for digital option with parameters S0 = 100, K = 100,
r = 0.1, T = 1, σ = 0.2, A = 10.

Figure 6: Zoom of Gamma for digital option with parameters S0 = 100, K =
100, r = 0.1, T = 1, σ = 0.2, A = 10.
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Figure 7: Theta for digital option with parameters S0 = 100, K = 100, r = 0.1,
T = 1, σ = 0.2, A = 10.

Figure 8: Vega for digital option with parameters S0 = 100, K = 100, r = 0.1,
T = 1, σ = 0.2, A = 10.
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Figure 9: Rho for digital option with parameters S0 = 100, K = 100, r = 0.1,
T = 1, σ = 0.2, A = 10.

Figure 10: Lambda for digital option with parameters S0 = 100, K = 100,
r = 0.1, T = 1, σ = 0.2, A = 10.
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We complete this section with some tables showing the numerical results for
Greeks computation employing di�erent number of simulations for each method
and option. We do not include the likelihood ratio method but its results have
the same magnitude as the obtained for Malliavin calculus.

We have the exact values for the Black-Scholes model in the case of an Euro-
pean call vanilla option: Delta = 0.7257, Gamma = 0.0167, Theta = −9.2627,
V ega = 33.3225, Rho = 59.3050 and Lambda = 5.4692. The numerical results
obtained are the following.

Greeks Fin.Difer. Pathwise Malliavin Mal.Local
Delta 0.7342(0.0054) 0.7319(0.0055) 0.7439(0.0160) 0.7495(0.0098)
Gamma 0.0195(0.0035) - 0.0167(0.0014) 0.0174(0.0005)
Theta -9.3730(0.1017) -9.4577(0.1050) -9.4231(0.4212) -9.5924(0.1956)
Vega 33.7336(0.7987) 34.9503(0.8328) 33.4468(2.8589) 33.1885(1.3964)
Rho 59.9963(0.4320) 59.6269(0.4333) 60.7844(1.4570) 61.3534(0.8334)
Lambda 5.4680(0.0778) 5.3955(0.0780) 5.4692(0.0976) 5.1394(0.0736)

Table 1: Greeks of a call vanilla option calculated with 10000 simulated trajec-
tories.

Greeks Fin.Difer. Pathwise Malliavin Mal.Local
Delta 0.7255(0.0031) 0.7282(0.0031) 0.7214(0.0092) 0.7229(0.0057)
Gamma 0.0182(0.0019) - 0.0167(0.0009) 0.0163(0.0003)
Theta -9.2089(0.0580) -9.2574(0.0580) -9.2387(0.2483) -9.3290(0.1119)
Vega 32.7070(0.4543) 33.0068(0.4539) 33.4241(1.7077) 32.9596(0.6068)
Rho 59.3822(0.2490) 59.5675(0.2486) 58.9629(0.8385) 59.1198(0.3844)
Lambda 5.5085(0.0455) 5.4956(0.0452) 5.4757(0.0581) 5.4077(0.0446)

Table 2: Greeks of a call vanilla option calculated with 30000 simulated trajec-
tories.

Greeks Fin.Difer. Pathwise Malliavin Mal.Local
Delta 0.7248(0.0024) 0.7252(0.0024) 0.7170(0.0070) 0.7270(0.0043)
Gamma 0.0187(0.0015) - 0.0159(0.0006) 0.0165(0.0002)
Theta -9.3131(0.0457) -9.2543(0.0449) -9.0378(0.1887) -9.2847(0.0855)
Vega 34.0088(0.3598) 33.2850(0.3510) 31.8634(1.2985) 32.9532(0.6156)
Rho 59.1221(0.1927) 59.2578(0.1924) 58.5147(0.6388) 59.5188(0.3685)
Lambda 5.4272(0.0348) 5.4690(0.0348) 5.4392(0.0442) 5.4145(0.0340)

Table 3: Greeks of a call vanilla option calculated with 50000 simulated trajec-
tories.
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In the case of an European call digital option we have the exact values:
Delta = 0.1666, Gamma = −0.0050, Theta = −0.0734, V ega = −9.9967,
Rho = 10.7307 and Lambda = 2.8094. For di�erent number of simulated tra-
jectories for the underlying asset we get the following results.

Greeks Fin.Difer. Malliavin Mal.Local
Delta 0.1639(0.0085) 0.1642(0.0028) 0.1673(0.0015)
Gamma -0.0009(0.0174) -0.0049(0.0002) -
Theta -0.0084(0.1664) -0.0665(0.0669) -0.0956(0.0369)
Vega -11.0796(1.5954) -9.8688(0.4462) -9.8839(0.3081)
Rho 11.6253(2.8407) 10.5335(0.2632) 10.8402(0.1740)
Lambda 2.7695(0.1457) 2.7893(0.0517) 2.8095(0.0331)

Table 4: Greeks of a call digital option calculated with 10000 simulated trajec-
tories.

Greeks Fin.Difer. Malliavin Mal.Local
Delta 0.1623(0.0049) 0.1660(0.0016) 0.1669(0.0009)
Gamma -0.0106(0.0099) -0.0050(0.0001) -
Theta -0.1034(0.1030) -0.0573(0.0380) -0.0806(0.0210)
Vega -10.09599(0.8735) -10.0897(0.2532) -9.9516(0.1753)
Rho 10.7503(1.5903) 10.6627(0.1506) 10.7581(0.0944)
Lambda 2.7277(0.0827) 2.7965(0.0294) 2.7809(0.0187)

Table 5: Greeks of a call digital option calculated with 30000 simulated trajec-
tories.

Greeks Fin.Difer. Malliavin Mal.Local
Delta 0.1663(0.0038) 0.1660(0.0012) 0.1685(0.0007)
Gamma -0.0105(0.0078) -0.0050(0.0001) -
Theta -0.0931(0.0721) -0.0785(0.0296) -0.0749(0.0163)
Vega -9.7722(0.6635) -9.9169(0.1977) -10.0979(0.1377)
Rho 10.7078(1.2257) 10.7020(0.1162) 10.9467(0.0770)
Lambda 2.7993(0.0647) 2.8138(0.0228) 2.8134(0.0147)

Table 6: Greeks of a call digital option calculated with 50000 simulated trajec-
tories.
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6 Conclusions

In this study, we have seen that the Malliavin calculus and, in particular, the
integration by parts formula can be extended to the case of discontinuous pay-
o�s for European options with better results, in general, than any other method
avaliable for Greeks computation. This fact is of particular interest for �nancial
derivatives with not smooth payo� functionals, because in these cases the only
practical alternative is the �nite-di�erence method which exhibits large vari-
ance and possible biases. As we see, the Malliavin calculus provides unbiased
estimators for Greeks but we �nd the handicap of large variances. Nevertheless,
this can be solved suitably employing the variance reduction technique for the
appropriate localization functions.

There are many possibilities for further research to this work. The �rst one
is to develop a systematic way to estimate optimally the localization parameter
δ, for the variance reduction technique. A second one is to extend this study to
more complicated discontinuous payo�s and check the results with the rest of
the methods. The last one is to extend this study to the multidimensional case
and to more sophisticated and realistic models for the underlying asset.

7 Appendix

7.1 Finite-di�erence method

This method relies on the de�nition of the derivative. Considering the price of
an option V0, its sensitivity with respect to a parameter α of the problem is

∂V0(α)

∂α
= lim
h→0

V0(α+ h)− V0(α)

h

Then, the �nite-di�erence method requires to evaluate or simulate at more than
one value of the parameter of derivation. Employing the Monte Carlo method-
ology we have the following estimator

∂V0(α)

∂α
' ∆V0(α)

∆α
=
V̂0(α+ h)− V̂0(α)

h

E
[

∆V0(α)

∆α

]
=
V0(α+ h)− V0(α)

h

Nevertheless, this method produces biased estimators. Considering a Taylor
series expansion

V0(α+ h) = V0(α) +
dV0(α)

dα
h+

1

2

d2V0(α)

dα2
h2 +O(h3)

V0(α+ h)− V0(α)

h
=
dV0(α)

dα
+

1

2

d2V0(α)

dα2
h+O(h2) =

dV0(α)

dα
+O(h)

Then, the expectation of the estimator has a bias of order h

E
[

∆V0(α)

∆α

]
=
V0(α+ h)− V0(α)

h
=
∂V0(α)

∂α
+O(h)
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In order to reduce the bias of the sensitivity estimator we consider an alter-
native de�nition for the derivative given by

∂V0(α)

∂α
= lim
h→0

V0(α+ h)− V0(α− h)

2h

Then, in this case the error of the estimator will be lower, given that h < 1:

∂V0(α)

∂α
' ∆V0(α)

∆α
=
V̂0(α+ h)− V̂0(α− h)

2h

E
[

∆V0(α)

∆α

]
=
V0(α+ h)− V0(α− h)

2h
=
∂V0(α)

∂α
+O(h2)

The variance of the estimator is

Var
[

∆V0(α)

∆α

]
=

1

(2h)2
[V̂0(α+ h)− V̂0(α− h)]

For the second derivatives we have the approximation

∂2V0(α)

∂α2
' V0(α+ h) + 2V0(α)− V0(α− h)

h2

The implementation of the second derivatives by means of �nite di�erences has
numerical problems worse than the case of �rst derivatives.

7.2 Pathwise derivative method

We remember that the price of an European option and the sensitivities at time
t = 0 are given by

V0(α) = EQ[e−rTΦ(ST ;α)]

∂V0(α)

∂α
=

∂

∂α
EQ[e−rTΦ(ST ;α)]

When it is possible, if we interchange the expectative and derivative operators
we can calculate the sensitivity of the option with respect to a parameter α as
follows

∂V0(α)

∂α
=

∂

∂α
EQ[e−rTΦ(ST ;α)] = e−rTEQ

[
∂

∂α
Φ(ST ;α)

]
The ambit of this method is limited by the required condition of continuity of
the payo�, which is the function to derivate. This is an unbiased estimator of
the corresponding Greek. Again, for error estimations we have to calculate the
variance of the estimators.

In the case of European call vanilla option we have for the Greeks the fol-
lowing estimators
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Greeks European call vanilla option

Delta e−rTEQ
[
ST
S0
θ(ST −K)

]
Gamma e−rTEQ

[(
ST
S0

)2

δ(ST −K)

]
Vega e−rTEQ

[
σTST

(
WT

σT − 1

)
θ(ST −K)

]
Theta e−rTEQ

[
r(ST −K)+ − ST

((
r − σ2

2

)
+ σWT

2T

)
θ(ST −K)

]
Rho e−rTEQ

[
T

(
ST θ(ST −K)− (ST −K)+

)]
Lambda S0

V0
e−rTEQ

[
ST
S0
θ(ST −K)

]
On the other hand, for an European call digital option

Greeks European call digital option

Delta e−rTEQ
[
ST
S0
Aδ(ST −K)

]
Vega e−rTEQ

[
σTST

(
WT

σT − 1

)
Aδ(ST −K)

]
Theta e−rTEQ

[
rAθ(ST −K)− ST

((
r − σ2

2

)
+ σWT

2T

)
Aδ(ST −K)

]
Rho e−rTEQ

[
T

(
STAδ(ST −K)−Aθ(ST −K)

)]
Lambda S0

V0
e−rTEQ

[
ST
S0
Aδ(ST −K)

]
We see that in the case of the digital option this method is not applicable

in practice due to the discontinuity of the payo�, because the derivative of the
heaviside step function is the Dirac delta function which is hard to implement
computationally.

7.3 Likelihood ratio method

In the previous method we derivate the payo� function. Then, the pathwise
derivative method fails when we have discontinuities in the payo� function. One
possible alternative is to derivate, not the payo� itself, but the density function
of the payo�. In this sense, we can see this method as the complementary of
the pathwise method. Of course, this method is the less used of all because we
are limited by the knowledge of the payo� density function.

For an European option the price at time t = 0 is given by the expectation

V0(α) = EQ[e−rTΦ(ST )] =

∫
e−rTΦ(ST )f(ST ;α)dST
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Then, the sensitivity with respect to the α parameter is given by

∂V0(α)

∂α
=

∫
e−rTΦ(ST )

∂f(ST ;α)

∂α
dST =

=

∫
e−rTΦ(ST )f(ST ;α)

∂log(f(ST ;α))

∂α
dST =

= EQ
[
e−rTΦ(ST )

∂log(f(ST ;α))

∂α

]
Considering the Black-Scholes model we have the density function

f(ST ;α) =
1

σ
√
TST

1√
2π
exp

[
−ζ(ST )2

2

]
; ζ(ST ) =

log

(
ST
S0

)
−
(
r − σ2

2

)
T

σ
√
T

In the case of vanilla and digital European call options we have for the Greeks
the same estimators, for the corresponding payo�s Φ(ST ) in each of both cases,
given by

Greeks European call vanilla/digital option

Delta e−rTEQ
[
Φ(ST ) 1

S0σ
√
T
ζ(ST )

]
Gamma e−rTEQ

[
Φ(ST ) 1

S2
0σ

2T

(
ζ(ST )2 − 1− σ

√
Tζ(ST )

)]
Vega e−rTEQ

[
Φ(ST )

(
1
σ (ζ(ST )2 − 1)−

√
Tζ(ST )

)]
Theta −e−rTEQ

[
Φ(ST )

(
1
2T (ζ(ST )2 − 1) +

r−σ22
σ
√
T
ζ(ST )

)]
Rho e−rTEQ

[
Φ(ST )

√
T
σ ζ(ST )

]
Lambda S0

V0
e−rTEQ

[
Φ(ST ) 1

S0σ
√
T
ζ(ST )

]
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