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Abstract 

This paper investigates empirically the asset allocation in a three hedge fund strategy 

portfolio under higher moments, first four moments (4M), and comparing the results with 

those obtained with the traditional mean-variance (MV) analysis. We begin showing the 

investor’s expected utility maximization problem, we consider a CRRA utility function, using 

a Taylor series expansion until the fourth moment to approximate the expected utility 

function. Then, we focus in present the co-skewness and co-kurtosis matrix tensors 𝑀3 and 

𝑀4, estimating the elements in those matrices by three methods: sample estimators, single 

factor estimators (Martellini and Ziemman, 2010), and a multivariate Variance Gamma 

distribution (Hitaj and Mercuri, 2011). We observe that the optimal portfolios obtained 

under the three methods, seem to be very similar to changes in the risk aversion degree, 

being the parametric Variance Gamma model the furthest in the results. We find that optimal 

portfolios vary greatly from MV to 4M under all the approaches. We perform an out-of-

sample analysis comparing the different optimal portfolios, finding 4M models perform 

better than MV in this sample.       

 

Keywords: Asset allocation; utility function; non normality; higher moments; improved 

estimators; Variance gamma distribution.  
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1 Introduction 

Markowitz’s (1952) portfolio theory has been the theoretical framework for academics and 

fund managers, and it represents the foundation of the current portfolio’s choice. Despite 

its easy interpretation and friendly implementation, the Mean-Variance strategy become 

imprecise when (i) we are dealing with non-Gaussian distribution of the asset returns, (ii) 

the investor’s utility function has a higher order than the quadratic and (iii) the first and 

the second centered moments do not determine the distribution, therefore is necessary to 

consider higher moments.  

Since is widely accepted that financial returns are not normally distributed showed for 

strong empirical evidence as long as the fact that expected utility function might be 

approximated by higher order moments (Samuelson, 1970; Scott and Hovarth, 1980), 

mean-variance approach would lead to welfare losses for investors.    

To overcome the inadequacy of mean-variance strategy in presence of the situations above 

referred; there have been attempts to include higher order moments in portfolio selection. 

In the existing literature that references the problem, has been considered up to the fourth 

moment, which makes skewness and kurtosis to be incorporated in the portfolio selection 

theory. However, several approaches have been developed with the porpoise of including 

the third and the forth moment in the analysis. One of them extends the literature by 

introducing higher dimensional ‘efficient frontiers’. It coincides with the standard efficient 

frontier approach that for a variety of utility functions the target of selecting an optimal 

portfolio becomes the task of selecting a point on the high dimensional ‘efficient frontiers’, 

Athayde and Flores (2003) investigate in this sense. Further studies regarding to this 

approach have been done by Malvergne and Sornette (2005) or Prakash et al. (2003). 

However, all of them do not consider the theoretical motivation of the expected utility 

maximization.   Another way of including higher moments consists in assuming certain 

kind of distribution for asset returns in pursuit to obtain closed-form portfolio solutions 

starting from the expected utility maximization problem, e.g. Mencia and Santana (2008), 

Hitaj and Mercuri (2011). 
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Alternatively, there has been introduced another method to consider higher moments in 

the asset allocation, it consists of doing an approximation to the expected utility function by 

using a Taylor expansion series of a certain order. This approach has been recently 

implemented by Harvey et al (2002), Guidolin and Timmermann (2006), Jondeau and 

Rockinger (2006), and Wongwachara (2009). The first study develops a Bayesian decision 

theoretic framework which assumes a skew normal distribution for modeling multivariate 

returns.  The second study use Taylor expansion series in a Markov-switching framework 

with conditional normal innovations for returns. Jondeau and Rockinger measure in their 

paper the advantage of using higher moments in the optimization strategy for 

approximating the expected utility.  

Nonetheless, the previous approach has some critics due to the arbitrariness of truncation 

of the Taylor series since there is no a particular rule at the moment of selecting the order 

of such a truncation. Further critics come from the fact that adding a new moment does not 

imply necessarily an improvement of the approximation.  Furthermore, the convergence to 

the expected utility function using Taylor series expansion is assured under restrictive 

conditions, which makes the convergence is not guaranteed for all kind of utility functions. 

When a Taylor series expansion is used to approximate an expected utility function, is 

especially important the estimation of the moments and the co-moments for each of them. 

Frequently sample estimators are the most used for estimating moments and co-moments, 

but it leads to high estimation error when the sample is small. Taking this into 

consideration, two methodologies have been introduced, (i) improved estimators, (ii) 

assuming a joint distribution for returns. 

Improved estimators have been lately developed by Martellini and Ziemann (2010) and 

Hitaj et. al (2010), where they extend to co-skewness and co-kurtosis tensors the constant 

correlation approach (Elton and Gruber, 1973) and the single-factor approach (Sharpe, 

1963), originally established for covariance matrix. Furthermore, they extend the concept 

of optimal shrinkage intensities to the presence of higher moments. They found that 

improved estimators diminish the estimator error, being particularly significant for the co-
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skewness matrix in accordance with the intuition that estimators for odd moments have 

more noise than estimators for even moments. 

In the second methodology, is supposed a particular joint distribution for returns, e.g. Hitaj 

and Mercuri (2011) assume a Variance gamma distribution; it was introduced by Madan 

and Seneta (1990), where univariate log-returns are said to be variance gamma 

distributed. Hitaj and Mercuri’s paper starts considering the expected utility maximization 

problem, then they suggest a parametric model constructed assuming a Multivariate 

Variance Gamma joint distribution using three different models: The symmetric case 

(Madan and Seneta, 1990), Semeraro model (Semeraro, 2008) and Wang model (Wang, 

2000).  

In this study, we focus in investigating empirically the effect that non-normality returns 

bring to allocation problem of wealth for an investor with a Constant Relative Risk 

Aversion utility function in a static single-period context, based on three hedge fund 

strategies sample. We use the Taylor series expansion up to the fourth moment to 

approximate the utility function following the Jondeu and Rockinger (2006) study, and 

comparing the allocation obtained with mean-variance and higher moments analysis. For 

estimating moments and co-moments, we use sample estimators as well as single factor 

estimators (improved estimators), in line with the study of Martellini and Ziemman (2010). 

Finally, we will focus in applying the multivariate variance gamma joint distribution model 

in the symmetric case, following Hitaj and Mercuri (2011) paper.  

This document is organized as follows. In section 2 we present the investors problem and 

introduce the higher moment theory. Section 3 is dedicated to present the generalized 

hyperbolic distribution family and introduced variance gamma distribution as a special 

case, showing the estimation procedure and the asset allocation process using a common 

gamma mixing density. In Section 4 data is described. Section 5 is dedicated to explain the 

Empirical Analysis and the results, and finally section 6 is reserved to conclusions.      
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2 Portfolio Selection under Higher Moments 

In this section we present the investor’s problem, then we continue with the approximation 

of the expected utility function by using a Taylor series expansion, and we explain how 

higher moments’ tensors can be computed from asset returns series.   

2.1 Investor’s problem 

With the objective of evaluating the impact of higher-order moment on portfolio choice, we 

start by considering an expected utility function maximization problem, finding the optimal 

portfolio weights that assure the maxim expected utility to the investor. The expected 

utility function is then expressed as follows. 

𝐸[𝑈(𝑊)] = �𝑈(𝑤)𝑓(𝑤)𝑑𝑤 

Where 𝑓(𝑤) is the density distribution function of the final period’s wealth, 𝑊 = 𝑊0(1 +

𝑟𝑝) represents the investor’s final wealth. 𝑊0 is the initial wealth whereas 𝑟𝑝 = 𝛼′𝑅 is the 

portfolio returns, where 𝛼 = (𝛼1,𝛼2, … ,𝛼𝑛)′  is the vector of weights assigned to the risky 

assets 𝑅. 

Working with a infinitely differentiable function 𝑈, we approximate utility function by 

doing a Taylor expansion series, centered in the mean of the terminal wealth, 𝑊� = 𝑊0(1 +

𝐸(𝑟𝑝)): 

𝑈(𝑊) = ��
𝑈(𝑘)𝐸(𝑊)

𝑘!
 �𝑊 − 𝐸(𝑊)�𝑘�

∞

𝑘=0
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Where the expected wealth is 𝐸(𝑊) = 𝑊� = 1 + 𝛼′𝜇, being 𝜇 = 𝐸(𝑅) the expected return 

vector1.  Then the utility can be represented as follows  

𝑈(𝑊) = ��
𝑈(𝑘)(𝑊� )

𝑘!
 (𝑊 −𝑊� )𝑘�

∞

𝑘=0

  

Due to the complex interpretation of moments higher than the forth, we assume that the 

previous utility function might be represented by the first four centered moments of the 

distribution of the portfolio return, as well as the derivatives of the utility function. The 

expression below shows such approximation.  

𝐸[𝑈(𝑊)] ≈ 𝑈(𝑊� ) + U(1)(𝑊� )𝐸[𝑊 −𝑊� ] +
1
2!

U(2)(𝑊� )𝐸[(𝑊 −𝑊� )2]

+
1
3!

U(3)(𝑊� )𝐸[(𝑊 −𝑊� )3] +
1
4!

U(4)(𝑊� )𝐸[(𝑊 −𝑊� )4] 

Following the notation in Jondeau and Rockinger (2006) the four centered moments above 

represented: the expected return, variance, skewness and kurtosis of the end-period are 

defined as: 

𝐸[(𝑊 −𝑊� )] = 𝐸��𝑟𝑝 − 𝜇𝑝�� = 𝜇𝑝 = 0 

𝐸[(𝑊 −𝑊)2] = 𝐸 ��𝑟𝑝 − 𝜇𝑝�
2� = 𝜎𝑝2 

𝐸[(𝑊 −𝑊)3] = 𝐸 ��𝑟𝑝 − 𝜇𝑝�
3� = 𝑠𝑝3 

𝐸[(𝑊 −𝑊)4] = 𝐸 ��𝑟𝑝 − 𝜇𝑝�
4� = 𝑘𝑝4 

By replacing the previous relations we obtain the following expression, which is the 

approximation of the expected utility function: 

                                                             
1  𝑊0 is set equal to one with the objective to make the problem free-scale of the wealth. It means that 

relative risk aversion does not depend on wealth. This is a reason to prefer the power or logarithm functions 
in this kind of problems, since they are scale-independent utility functions.      
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𝐸[𝑈(𝑊)] ≈ 𝑈(𝑊� ) + 1
2!

U(2)(𝑊� )𝜎𝑝2 + 1
3!

U(3)(𝑊� )𝑠𝑝3 + 1
4!

U(4)(𝑊� )𝑘𝑝4      (1) 

 

2.2 The Case of CRRA function 

In this document we consider an investor or asset manager in a static single-period context 

(short-term investor). Thus, the investor is said to do a myopic portfolio choice since she 

ignores what could happen in the next periods2

𝑈(𝑊) = � 𝑊
1−𝜆/1 − 𝜆    ;  𝜆 ≠ 1

log(𝑊)                 ;  𝜆 = 1
�    (2) 

.   This investor has some preferences that 

are represented by a power utility function also known as the Constant Relative Risk 

Aversion function (CRRA).  

Where 𝜆 measures the coefficient of relative risk aversion. CRRA function shows a 

decreasing absolute risk aversion. This utility function has been widely studied in the 

literature.     

In this case, the approximation using the expression (1) for the CRRA function is3

𝐸[𝑈(𝑊)] ≈ 𝑊� 1−𝜆

1−𝜆
− 1

2!
λW� −(λ+1)𝜎𝑝2 + 1

3!
(λ2 + λ)W� −(λ+2)𝑠𝑝3 −

1
4!

(λ3 + 3λ2 + 2λ)W� −(λ+3)𝑘𝑝4                (3)         

                                  

: 

We get the first order conditions (FOC), and after doing some simplifications we obtain the 

next condition: 

𝜕𝐸[𝑈(𝑊)]
𝜕𝛼

= 𝑊� −𝜆 𝜕𝜇𝑝
𝜕𝛼

− 1
2!
𝜆(𝑊� )−(𝜆+1) 𝜕𝜎𝑝

2

𝜕𝛼
+ (𝜆2 + 𝜆)(𝑊� )−(𝜆+2) �1

2!
𝜕𝜇𝑝
𝜕𝛼

𝜎𝑝2 + 1
3!
𝜕𝑠𝑝3

𝜕𝛼
� − (𝜆3 + 3𝜆2 +

2𝜆)(𝑊� )−(𝜆+3) �1
3!
𝜕𝜇𝑝
𝜕𝛼

𝑠𝑝3 + 1
4!
𝜕𝑘𝑝4

𝜕𝛼
� 1
4!

(𝜆4 + 6𝜆3 + 11𝜆2 + 6𝜆)(𝑊� )−(𝜆+4) 𝜕𝜇𝑝
𝜕𝛼

𝑘𝑝4                                      (4) 

                                                             
2  There exist some special cases in which long-term investors should make the same decisions that shor-term 

investors, becoming the investment horizon irrelevant. See Campbell and Viceira, 2002. 
3 Notice that an indispensable requirement in mean-variance analysis is that utility function must be quadratic. 

Equivalently, for the sake of incorporating skewness and kurtosis the utility function must be quartic.  
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2.3 Higher order tensors 

Now, we express the moments of a portfolio in a simple way that will help us to solve the 

asset allocation problem, introducing the higher order tensors. The 𝑀2 is the second 

moment tensor and consist in the variance co-variance matrix. Equivalently, tensor 𝑀3 is 

the skewness co-skewness matrix and 𝑀4 is the kurtosis co-kurtosis matrix.  

The 𝑀3 and 𝑀4 matrices are defined by the next relations:  

𝑀3 = 𝐸[(𝑅 − 𝜇)(𝑅 − 𝜇)′⨂(𝑅 − 𝜇)′] = {𝑠𝑖𝑗𝑘} 

𝑀4 = 𝐸[(𝑅 − 𝜇)(𝑅 − 𝜇)′⨂(𝑅 − 𝜇)′⨂(𝑅 − 𝜇)′] = �𝑘𝑖𝑗𝑘𝑙�                    (5) 

Elements 𝑠𝑖𝑗𝑘 and 𝑘𝑖𝑗𝑘𝑙 are defined as: 

𝑠𝑖𝑗𝑘 = 𝐸 �(𝑅𝑖 − 𝜇𝑖)�𝑅𝑗 − 𝜇𝑗�
′⨂(𝑅𝑘 − 𝜇𝑘)′�        𝑖, 𝑗,𝑘 = 1, … ,𝑛 

𝑘𝑖𝑗𝑘𝑙 = 𝐸 �(𝑅𝑖 − 𝜇𝑖)�𝑅𝑗 − 𝜇𝑗�
′⨂(𝑅𝑘 − 𝜇𝑘)′⨂(𝑅𝑙 − 𝜇𝑙)′�        𝑖, 𝑗, 𝑘, 𝑙 = 1, … ,𝑛 

Last notation is found in Harvey et al (2002), Athayde and Flores (2004) and Jondeau and 

Rockinger (2006).  

As an example, let suppose we are dealing with tree different asset (n=3), then we would 

obtain a (3,9) co-skewness matrix and a (3,27) co-kurtosis matrix. 

𝑀3 = �
𝑠111 𝑠112 𝑠113
𝑠121 𝑠122 𝑠123
𝑠131 𝑠132 𝑠133

�
𝑠211 𝑠212 𝑠213
𝑠221 𝑠222 𝑠223
𝑠231 𝑠232 𝑠233

�
𝑠311 𝑠312 𝑠313
𝑠321 𝑠322 𝑠323
𝑠331 𝑠332 𝑠333

� = [𝑆1𝑗𝑘  𝑆2𝑗𝑘  𝑆3𝑗𝑘] 

𝑆1𝑗𝑘 is a short notation for the (𝑛,𝑛) matrix �𝑠1𝑗𝑘�𝑗,𝑘=1,2,3
. With this notation we present the 

(3,27) 𝑀4 matrix. 

𝑀4 = [𝐾11𝑘𝑙   𝐾12𝑘𝑙   𝐾13𝑘𝑙|𝐾21𝑘𝑙   𝐾22𝑘𝑙   𝐾23𝑘𝑙|𝐾31𝑘𝑙   𝐾32𝑘𝑙   𝐾33𝑘𝑙] 

where 𝐾11𝑘𝑝 denotes the (𝑛,𝑛) matrix {𝑘11𝑘𝑙}𝑗,𝑘=1,2,3.  
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As we can see there is no need to compute all the elements in 𝑀3 and 𝑀4 due to 

symmetries, for instance, element 𝑠112 is the same than elements 𝑠121 and 𝑠211, it conduces 

to compute only 𝑛(𝑛 + 1)(𝑛 + 2)/6  and 𝑛(𝑛 + 1)(𝑛 + 2)(𝑛 + 3)/24 elements in  𝑀3 and 

𝑀4 matrices, respectively.  

Moments of the portfolio can be computed given a vector of weights 𝛼 as: 

𝜇𝑝 = 𝛼′𝜇 

𝜎𝑝2 = 𝛼′𝑀2𝛼 

𝑠𝑝3 = 𝛼′𝑀3(𝛼 ⨂ 𝛼)                                                                  (6) 

𝑘𝑝4 = 𝛼′𝑀4(𝛼 ⨂ 𝛼 ⨂ 𝛼) 

Where the derivatives with respect to weights 𝛼 are: 

𝜕𝜇𝑝
𝜕𝛼

= 𝜇 

𝜕𝜎𝑝2

𝜕𝛼
= 2𝑀2𝛼 

𝜕𝑠𝑝3

𝜕𝛼
= 3𝑀3(𝛼 ⨂ 𝛼)                                                              (7) 

𝜕𝑘𝑝4

𝜕𝛼
= 4𝑀4(𝛼 ⨂ 𝛼 ⨂ 𝛼) 

Now we have obtained all the elements needed to solve the asset allocation problem. We 

replace values (6) and (7) in the equation (4) and recalling that  𝑊� = (1 + 𝛼′𝜇) we get the 

expression required to do the optimization when 𝜆 ≠ 1. 

𝜕𝐸[𝑈(𝑊)]
𝜕𝛼

= (1 + 𝛼′𝜇)−𝜆𝜇 − 𝜆(1 + 𝛼′𝜇)−(𝜆+1)𝑀2𝛼 + 1
2

(𝜆2 + 𝜆)(1 + 𝛼′𝜇)−(𝜆+2)[𝜇𝛼′𝑀2𝛼 +

𝑀3(𝛼 ⨂ 𝛼)] − 1
6

(𝜆3 + 3𝜆2 + 2𝜆)(1 + 𝛼′𝜇)−(𝜆+3)[𝜇𝛼′𝑀3(𝛼 ⨂ 𝛼) + 𝑀4(𝛼 ⨂ 𝛼 ⨂ 𝛼)] + 1
24

(𝜆4 + 6𝜆3 +

11𝜆2 + 6𝜆)(1 + 𝛼′𝜇)−(𝜆+4)𝜇 𝛼′𝑀4(𝛼 ⨂ 𝛼 ⨂ 𝛼)                                     (8) 
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So far, we have showed the asset allocation problem starting from the investor’s expected 

utility maximization problem, considering a CRRA utility function. After that we have 

approximated CRRA by using a Taylor series expansion until the fourth moment, later we 

got the FOC needed to find the optimal weights. Then, we have focused in present the co-

skewness and co-kurtosis matrix tensors 𝑀3 and 𝑀4 in very suitable way. The elements in 

those matrices can be estimated using diverse methods; as we have mentioned earlier in 

this document, we use three methods; sample estimators, single factor estimators 

(Martellini and Ziemman, 2010), and establishing a joint density distribution for asset 

returns. In the coming section we explore the last approach, specifying a multivariate 

variance gamma distribution developed by Hitaj and Mercuri (2011). 

 

3 The Variance Gamma multivariate model with a common gamma density  

We move to present a parametric model which assumes a joint variance gamma 

distribution for asset returns. First we make a brief review of generalized hyperbolic 

distributions family where the variance gamma distribution belongs as a special case. Then, 

we present the estimated closed formulas used to obtain the moments and the co-moments 

needed to compute 𝑀2,𝑀3 and 𝑀4 and then the estimation procedure assuming a common 

mixing density. 

3.1 The Generalized Hyperbolic Distribution   

The principal features of the family of generalized hyperbolic distribution (GH), are 

mentioned in McNeil et al (2005). This family is built by using a mean variance mixture and 

a conditional mean specification. Thus, a random vector 𝑋 has a GH distribution if it can be 

represented as: 

𝑋 = 𝜇 + 𝜃𝑊 + √𝑊Σ1/2 𝑍                                          (9) 
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where,  

(i) 𝑍 ∼ 𝑁𝑘(0, 𝐼𝑘) 

(ii) 𝜇,𝜃 ∈  ℝ𝑑 

(iii) Σ1/2 ∈ ℝ𝑑𝑥𝑘 is a matrix  

(iv) 𝑊 ≥ 0, is a scalar valued random variable which is independent 𝑍 and has a 

Generalized Inverse Gaussian Distribution, 𝐺𝐼𝐺(𝜆,𝜒,𝜓). 

Consequently, 𝑋 depends on six parameters, 𝑋~𝐺𝐻𝑑(𝜆,𝜒,𝜓, 𝜇, Σ,𝜃). Parameters 𝜆,𝜒 and 𝜓 

give the shape of the distribution, while 𝜇 is the location parameter, 𝜃 is the skewness 

parameter, and dispersion matrix Σ is a 𝑑𝑥𝑑 positive semidefinite matrix given by the 

relation Σ = Σ1/2�Σ1/2�′.  

The joint density distribution in case Σ had rank 𝑑 is provided by mixing 𝑋|𝑊 with respect 

to 𝑊. 

𝑓(𝑥) =  � 𝑓𝑋|𝑊(𝑥|𝑤)𝑓𝑊(𝑤)d𝑤
∞

0
 

𝑓(𝑥) =  �
𝑒(𝑥−𝜇)′Σ−1γ

(2𝜋)
𝑑
2|Σ|

1
2𝑤

𝑑
2  

∞

0
exp �−

(𝑥 − 𝜇)′Σ−1(𝑥 − 𝜇)
2𝑤

� − �
𝛾′Σ−1𝛾

2
𝑤

�𝑓𝑊(𝑤)d𝑤  

By evaluating the integral above, we obtain the generalized hyperbolic density function. 

𝑓(𝑥) =  
��𝜒𝜓�

−𝜆
𝜓𝜆(𝜓 + 𝛾′Σ−1𝛾)�

𝑑
2�−𝜆

(2𝜋)
𝑑
2|Σ|

1
2𝐾𝜆��𝜒𝜓�

𝐾
𝜆−𝑑2

��𝜒 + (𝑥 − 𝜇)′Σ−1(𝑥 − 𝜇)� (𝜓 + 𝛾Σ−1𝛾)𝑒(𝑥−𝜇)′Σ−1𝛾

�𝜒 + (𝑥 − 𝜇)′Σ−1(𝑥 − 𝜇)�(𝜓 + 𝛾′Σ−1𝛾 ))�
𝑑
2�−𝜆 

     (10) 

where 𝐾𝜆 is a modified Bessel function of the third kind. 

3.1.1 Special Cases 

The family of Generalized Hyperbolic distribution is composed by several special cases 

according to the values of the parameters. 



13 

 

• If 𝜆 = 𝑑+1
2

, we call this case the d-dimensional hyperbolic distribution, nevertheless 

its margins are not hyperbolic .  

• If 𝜆 = 1 we get the multivariate generalized hyperbolic distribution and its margins 

are one dimensional hyperbolic distribution. 

• If 𝜆 = −1
2
 we refer to this case as the Normal Inverse Gaussian NIG. 

• If 𝜆 > 0 and 𝜒 = 0, we get a limiting case known as the Variance Gamma 

distribution. Generalized Laplace or Bessel function. 

• If 𝜆 = −𝜈
2

,𝜒 = 𝜈 and 𝜓 = 0, we obtain a limiting case called the skewed-t 

distribution, containing the usual Student t-distribution by setting the skewness 

parameter 𝜃 = 0. 

So far we have introduced the special cases of the Generalized hyperbolic distribution, next 

we will focus in the Variance Gamma distribution following the Hitaj & Mercuri (2011) 

approach for asset allocation with higher order moments. 

3.2 Multivariate Variance Gamma with a common gamma mixing density  

The Variance Gamma distribution  was first introduced in finance by Madan and Seneta 

(1990), formulating a three parameter model for market returns, being possible to control 

skewness and kurtosis of the return distribution.  

Let’s begin with the general representation of the GH distribution seen in equation (9).  

𝑋 = 𝜇 + 𝜃𝑊 + √𝑊Σ1/2𝑍 

As we already told, the Variance Gamma (VG) is obtained by setting in the GH distribution 

parameters to be 𝜒 = 0 and 𝜆 > 0, hence 𝑉𝐺~(𝜆, 0,𝜓, 𝜇, Σ,𝜃). Therefore, 𝑊 that in the GH 

case is a Generalized Inverse Gaussian random variable 𝐺𝐼𝐺(𝜆,𝜒,𝜓) becomes Gamma 

distributed 𝛤(𝜆,𝜓) in the Variance Gamma model (See appendix A). The parameters 𝜆 and 

𝜓 are identified as the shape parameter and the scale parameter respectively, while the 

Σ1/2 is a lower triangular matrix: 
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Σ1/2 = �𝑎𝑖𝑗         𝑠𝑖 𝑖 ≥ 𝑗
0  otherwise

� 

The 𝑖𝑡ℎ component of the vector 𝑋 is said to be a univariate variance gamma model. 

𝑋𝑖 = 𝜇𝑖 + 𝜃𝑖𝑊 + √𝑊�𝑎𝑖ℎ

𝑖

ℎ=1

𝑍ℎ                                            (11) 

3.2.1 Computing moments and co-moments 

We can proceed to compute the moments and co-moments4

The mean of each asset is given: 

𝐸(𝑋𝑖) = 𝜇𝑖 + 𝜃𝑖𝜆 

 in order to get 𝑀2, 𝑀3 and 𝑀4 

tensors, for the expected utility maximization problem.  

The covariance matrix is calculated: 

𝐶𝑜𝑣�𝑋𝑖 ,𝑋𝑗� = 𝜆�𝜃𝑖𝜃𝑗 + 𝜎𝑖𝑗�       for   𝑖 ≠ 𝑗 

𝑉𝑎𝑟(𝑋𝑖) = 𝜆(𝜃2 + 𝜎𝑖2)                for   𝑖 ≠ 𝑗 

where covariance is computed as  𝜎𝑖𝑗 = ∑ 𝑎𝑖ℎ𝑎𝑗ℎ
min (𝑖,𝑗)
ℎ=1  

The co-skewness matrix is calculated: 

s𝑖𝑖𝑖 = 𝜆θi(3σi2 +  2θi2)    for 𝑖 = 𝑗 = 𝑘 

sii𝑘 = 𝜆(𝜃𝑘𝜎𝑖2 + 2𝜃𝑖𝜎𝑖𝑘 +  2𝜃𝑘θi2)        for 𝑖 = 𝑗 ≠ 𝑘 

𝑠𝑖𝑗𝑘 = 𝜆(𝜃𝑘𝜎𝑖𝑗 +  𝜃𝑖𝜎𝑗𝑘 + 𝜃𝑗𝜎𝑖𝑘 + 2𝜃𝑘𝜃𝑗𝜃𝑖)         for 𝑖 ≠ 𝑗 ≠ 𝑘                                 (12) 

The co-kurtosis matrix is calculated: 

                                                             
4  The moments and the co-moments in this VG model are obtained through the moment generating function.  
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𝑘𝑖𝑖𝑖𝑖 = 3(𝜆2 +  𝜆)� 𝒶𝑖ℎ4
𝑖

ℎ=1
+ (𝛼2 + 2𝛼)(6𝜃𝑖2𝜎𝑖2 + 3𝜃𝑖4) 

𝑘𝑖𝑖𝑖𝑗 = 3(𝜆2 +  𝜆)� 𝒶𝑖ℎ3 𝒶𝑗ℎ
min (𝑖,𝑗)

ℎ=1
+ (𝜆2 + 2𝜆)(3𝜃𝑖𝜃𝑗𝜎𝑖2 + 3𝜃𝑖2𝜎𝑖𝑗 + 3𝜃𝑖3𝜃𝑗) 

𝑘𝑖𝑖𝑗𝑗 = 3(𝜆2 +  𝜆)� 𝒶𝑖ℎ2 𝒶𝑗ℎ2
min (𝑖,𝑗)

ℎ=1
+ (𝜆2 + 2𝜆)�𝜃𝑗2𝜎𝑖2 + 4𝜃𝑖𝜃𝑗𝜎𝑖𝑗 + 𝜃𝑖2𝜎𝑗2�

+ (3𝜆2 + 6𝜆)𝜃𝑖2𝜃𝑗2 

𝑘𝑖𝑖𝑗𝑘 = 3(𝜆2 +  𝜆)� 𝒶𝑖ℎ2 𝒶𝑗ℎ𝒶𝑘ℎ
min (𝑖,𝑗,𝑘)

ℎ=1

+ (𝜆2 + 2𝜆)�𝜃𝑗𝜃𝑘𝜎𝑖2 + 2𝜃𝑖𝜃𝑘𝜎𝑖𝑗 + 2𝜃𝑖𝜃𝑗𝜎𝑖𝑘 + 𝜃𝑖2𝜎𝑗𝑘� + (3𝜆2 + 6𝜆)𝜃𝑖2𝜃𝑗𝜃𝑘 

3.2.2 Parametrical estimation 

Following Hitaj & Mercuri (2011), we will assume parameter  𝜓 = 1. Therefore, we get that   

𝑊~𝛤(𝜆, 1). Then, we prepare to estimate the multivariate VG model with a common mixing 

random variable. However, as we have seen, the joint density distribution in this kind of 

family distributions has a difficult form. It conduces that there exist some problems with 

the estimation based in a joint likelihood distribution. Taking this into account, it is 

implemented an univariate estimation and later we try to advance to the multivariate 

model. According with the Hitaj & Mercuri (2011) the estimation procedure to do so is the 

following: 

i). Estimate the parameters 𝜇𝑖 ,𝜃𝑖 ,𝜎2and 𝜆𝑖 for each financial time series by the Maximum 

Likelihood method. 

ii). After estimating we take a common shape parameter 𝜆 by computing �̂� = 1
𝑁
∑ 𝜆𝑖𝑁
𝑖=1 .   

iii). We re-estimate 𝜇𝑖 ,𝜃𝑖 ,𝜎𝑖2 for one financial time series by one  by Maximum Likelihood 

Method with �̂�   fixed. 
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iv). To estimate the elements in Σ1/2, is proposed the minimization of the Frobenius norm 

between covariance matrix and theoretical under the constrains 𝜎𝑖2  = ∑ 𝑎𝑖ℎ2𝑖
ℎ=1 .  

 

4 Data 

4.1   Data source and descriptions 

The focus is to construct a portfolio on the basis of tree hedge fund strategies: Equity Hedge 

(EH), Event Driven (ED) and Macro. The time series used in this study are the Hedge Fund 

Research (HFRX) indices prices extracted from Datastream5

The reasons behind the choice to select hedge fund as assets susceptible to be traded are 

fundamentally three: i) the main motivation of the asset allocation problem is to build 

optimal portfolios with a large amount of assets. Nonetheless, as we have seen in section 2 

the task of constructing matrices 𝑀3 and 𝑀4 growths exponentially as we include a new 

single asset which means a great computationally cost at the optimization process if we are 

dealing with a large based equity portfolio. Considering this, it is not ideal to have a 

portfolio based on merely three equities. ii) Given the previous, using hedge fund strategies 

the asset manager or investor can develop a wide range of buys and sells in any kind of 

security, to execute the strategy and she would not be restricted to a barely three assets. iii) 

Hedge fund series of returns are said not to be normally distributed (Stefanini, 2006) 

. The indices are measured in 

US dollars, from January 2009 to December 2011. Despite hedge fund strategies are not 

properly tradable assets, the Hedge fund series can replicate the risk borne of taking 

positions according to any of those individual strategies (See appendix B).  

                                                             
5 Other possible hedge fund index providers are: C/S Tremont, S&P Hedge index, MSCI/Lyxor, Hennessee, Van 

Hedge, Eurekahedge, Altvest/Investorforce and FRM. It is important to mention that the any hedge fund 
index databases have two biases: Self selection bias and Survivorship bias. The first is due to the fact that 
only best funds tend to report data, while the second is caused by the exclusion from the databases of funds 
that have disappeared over timer because their negative performance. These elements make databases 
from diverse providers to be incomparable among them.  
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which make them a priori ideal for our porpoise to observe the investor’s welfare change of 

taking into account higher moments instead of the mean-variance analysis.  

The data set is described in Table 1, the study uses daily returns computed as:  

𝑅𝑖𝑡 = ln(𝑃𝑡) − ln (𝑃𝑡−1) 

Where 𝑅𝑖𝑡 denote the log return of the asset 𝑖 at date 𝑡.  

Table 1. Description of data set 

Name of Variable Period Frequency No. Observations 

Equity Hedge strategy index (EH)      
Event Driven strategy index (ED)  
Macro strategy index (MACRO) 

From 01/01/2009 
to 31/12/2011 Daily 758 

 

The HFRX indices are constructed by using quantitative techniques and analysis, multi-

level screening, cluster analysis. Monte-Carlo simulation and optimization techniques 

ensure that each Index is a representation of its corresponding investment focus, reflecting 

the associated risk implicit in each strategy6

In Table 2, we report some descriptive statistic features for each time series of log-returns 

on the whole period to considerate. We start estimating its first four moments and testing 

the null hypothesis of normality in the univariate case, being the last especially important 

in this study, we compute the Jarque-Bera test and the Kolmogorov Smirnov tests. 

.  

We can observe that the three time series are bearish, in line with the markets in the 

proper period. The three hedge fund strategies returns are negatively skewed and shows 

great excess of kurtosis, which is consistent with the general characteristics of hedge fund 

strategies returns. 

                                                             
6 Source: Datastream. 
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The correlation coefficient estimation for the relation EH-ED strategies, in comparison with 

the others relations is high, which means the two series of returns are highly linear 

correlated. The relations EH-Macro and ED-Macro exhibit low linear correlation.  

Looking at the Jarque-Bera and Kolgomorov-Smirnov tests we reject the null hypothesis of 

Normality of any single time series returns, we can assert they are clearly non-Gaussian. 

This result is important since we look to work with non-normal returns.  In order to 

illustrate this graphically, figure 1 shows the QQplots of the sample returns for all 

strategies.    

 Table 2. Descriptive statistics 
Return(%) EH ED Macro 
Mean -1.2599 -2.9385 -1.0381 
Std. Dev 0.3566 0.5159 0.4301 
Skewness -1.3013 -0.7685 -0.3230 
Kurtosis 16.5605 7.6766 4.4375 
Normality 

   Jarque-Bera 8015.66 1018.803 104.423 
p-val 0.001 0.001 0.001 
Kol – Smirnov 0.2903 0.2081 0.2231 
p-val 0.000 0.000 0.000 
Correlation       
EH 1.000     
ED 0.7356 1.000 

 Macro -0.0133 0.0435 1.000 
Notes: Jarque-Bera and Kolmogorov-Smirnov test are computed using 
Matlab specific function, as well as p-values. 
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Figure 1. Returns Nomatility 

 

5 Empirical Analysis 

In this section we report the empirical analysis based on a portfolio composed of three 

different hedge fund strategies: Equity Hedge (EH), Event Driven (ED), and Macro.  

In order to minimize the F.O.C (equation 8), we need to estimate 𝜇, 𝑀2, 𝑀3, and 𝑀4 

elements. Therefore, we need to estimate the moments (mean, variance, skewness and 

kurtosis) and the co-moments (covariance, co-skewness and co-kurtosis) necessaries to 

build such matrices.  

5.1  Sample Approach  

The easiest way and the most intuitive, consists in using the sample estimators, which are 

constructed as follows. 

The sample mean of hedge strategy 𝑖 is given by: 

𝜇𝚤� =  
1
𝑇
�𝑋𝑖,𝑡

𝑇

𝑡=1
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The sample covariance between strategy 𝑖 and strategy 𝑗 is given by: 

𝜎𝚤𝚥2� =  
1

(𝑇 − 1)�(𝑅𝑖𝑡 − 𝜇𝚤� )(𝑅𝑗𝑡 − 𝜇𝚥� )
𝑇

𝑡=1

 

The sample co-skewness between strategies  𝑖,  𝑗, 𝑘 is given by: 

𝑠𝚤𝚥𝑘� =  
𝑇

(𝑇 − 1)(𝑇 − 2)
�(𝑅𝑖𝑡 − 𝜇𝚤� )(𝑅𝑗𝑡 − 𝜇𝚥� )(𝑅𝑘𝑡 − 𝜇𝑘�)
𝑇

𝑡=1

              (13) 

The sample co-kurtosis between strategies  𝑖,  𝑗, 𝑘, 𝑙 is given by: 

𝑘𝚤𝚥𝑘𝑙� =  
𝑇

(𝑇 − 2)(𝑇 − 3)
�(𝑅𝑖𝑡 − 𝜇𝚤� )(𝑅𝑗𝑡 − 𝜇𝚥� )(𝑅𝑘𝑡 − 𝜇𝑘�)
𝑇

𝑡=1

(𝑅𝑙𝑡 − 𝜇𝑙� ) 

where 𝑅𝑖𝑡 is the log-return of hedge fund strategy 𝑖 in time 𝑡, while  𝑇 is the length of the 

sample.  The table below report the moments and co-moments resulting from using this 

approach in our sample. 

Table 3. Multivariate Statistics. Sample Approach. 
Covariance 
matrix stat. stat. stat. 

Co-skewness 
matrix stat. stat. stat. stat. 

  𝑥1 𝑥2 𝑥3   𝑥12 𝑥22 𝑥32 𝑥1𝑥2 
𝑥1 0.057 0.066 0.004   -0.012 -0.035 -0.004   

𝑥2 0.066 0.192 0.024   -0.021 -0.049 -0.008   

𝑥3 0.004 0.024 0.130   -0.002 -0.010 -0.014 -0.00007 
Co-kurtosis 
matrix                 

  𝑥13 𝑥23 𝑥33 𝑥1𝑥22 𝑥1𝑥32 𝑥2𝑥32 𝑥12𝑥2   
𝑥1 0.025 0.032 0.004 0.00002 0.00006       

𝑥2 0.095 0.222 0.027   0.00003 0.00002     
𝑥3 0.003 0.012 0.076 0.00002     0.0001   

Note: 𝑥1 represents EH strategy, 𝑥2 represents ED strategy, 𝑥3represents Macro strategy. 
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5.2  Single Factor Approach 

For the improved estimators approach we use the Sharpe’s single–factor methodology 

introduced for higher moments by Martellini and Ziemman (2009). It establishes a single-

factor for any asset return: 

𝑅𝑖𝑡 = 𝑐 + 𝛽𝑖𝐹𝑡 + εit                                                      (14) 

We have a lineal model, where 𝐹𝑡 is the value of the market factor represented by a stock 

market index in time 𝑡, 𝜀𝑖𝑡 captures the idiosyncratic error term of each asset, while 𝛽𝑖 is 

the regression coefficient.  We assume the regression residuals are homoscedastic and 

cross-sectionally uncorrelated, then 𝜀~(0,Ψ)7. The last two assumptions lead to be zero all 

off-diagonal elements in the matrix Ψ, while the diagonal elements represent the 

idiosyncratic risk of the assets. We take as single factor the S&P500 index.  

The variance-covariance matrix with size (3,3) for the three strategies is given by 

(following the Martellini and Ziemman notation): 

𝑀2 = (𝛽𝛽′)𝜇0
(2) + Ψ 

𝛽 is extracted from the previous regression, whereas 𝜇0
(2) is the second centered moment 

(variance) of the single-factor used.  

Replacing equation (14) in equations (5) we get 

𝑀3 = 𝐸[(𝛽𝐹� + ε)(𝛽𝐹� + ε)′⨂(𝛽𝐹� + ε)′] = {𝑠𝑖𝑗𝑘} 

𝑀4 = 𝐸[(𝛽𝐹� + ε)(𝛽𝐹� + ε)′⨂(𝛽𝐹� + ε)′⨂(𝛽𝐹� + ε)′] = �𝑘𝑖𝑗𝑘𝑙�                      (15) 

Term 𝐹� is the centered market returns  𝐹� = 𝐹 − 𝜇0.  

From equation (15) result that 𝑀3 and 𝑀4 tensors are given by: 

                                                             
7 This assumption is stronger than the no-correlation assumption.  
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𝑀3 = (𝛽𝛽′⨂ 𝛽′)𝜇0
(3) + ϕ 

𝑀4 = (𝛽𝛽′⨂ 𝛽′⨂ 𝛽′)𝜇0
(4) + Υ                                (16) 

Estimating regression model with last-squares technique we obtain a factor return process 

independent of the residual return process, in addition according with the argument of 

factor model approach, we suppose all cross-sectional residuals 𝜀𝑖 and  𝜀𝑗   (𝑖 ≠ 𝑗) are 

independent.  

The composition of the (3,3) covariance matrix of residual returns Ψ, will be defined by 

𝜓𝑖𝑖 = 𝐸(ε𝑖2),    estimated as 1
𝑇
∑ ε�𝑖2𝑇
𝑡=1  

𝜓𝑖𝑖 = 0 

The composition of the (3,9) co-skewness matrix of residual returns ϕ, will be defined by 

𝜙𝑖𝑖𝑖 = 𝐸(ε𝑖3),    estimated as 1
𝑇
∑ ε�𝑖3𝑇
𝑡=1  

𝜙𝑖𝑖𝑗 = 0,    

𝜙𝑖𝑗𝑘 = 0,        ∀𝑖 ≠ 𝑗 ≠ 𝑘        

In the superdiagonals of this matrix, can be found the idiosyncratic skewnesses proxied by 

the third order moment of the residuals, while all off-superdiagonal elements are zero due 

to the assumption of independence.   

The composition of the (3,27) co-kurtosis matrix of residual returns Υ will be defined by 

𝜐𝑖𝑖𝑖𝑖 = 𝐸(ε𝑖4),    estimated as 1
𝑇
∑ ε�𝑖4𝑇
𝑡=1  

𝜐𝑖𝑖𝑖𝑗 = 3𝛽𝑖𝛽𝑗𝜇0
(2)𝜓𝑖𝑖 ,     

𝜐𝑖𝑖𝑗𝑗 = 𝛽𝑖2𝜇0
(2)𝜓𝑗𝑗 + 𝛽𝑗2𝜇0

(2)𝜓𝑖𝑖 + 𝜓𝑖𝑖𝜓𝑗𝑗 , 
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𝜐𝑖𝑖𝑗𝑘 = 𝛽𝑗𝛽𝑘𝜇0
(2)𝜓𝑖𝑖, 

𝜐𝑖𝑗𝑘𝑙 = 0         ∀𝑖 ≠ 𝑗 ≠ 𝑘 ≠ 𝑙        

In the superdiagonals of this matrix can be found the idiosyncratic kurtosis proxied by the 

forth order moment of the residuals, elements in all off-superdiagonal come from the 

equation (15). For the sake of illustration the case 𝜐𝑖𝑖𝑖𝑗 is obtained as follows 

𝑀4
𝑖𝑖𝑖𝑗 = 𝐸�(𝛽𝑖𝐹� + ε𝑖)3�𝛽𝑗𝐹� + ε𝑗�� 

= 𝐸�(𝛽𝑖3𝐹�3 + 3𝛽𝑖2𝐹�2ε𝑖 + 3𝛽𝑖𝐹�ε𝑖2 + ε𝑖3)�𝛽𝑗𝐹� + ε𝑗��      

= 𝛽𝑖3𝛽𝑗𝜇0
(4) + 3𝛽𝑖𝛽𝑗𝜇0

(2)𝜓𝑖𝑖                                                  

Where the first term 𝛽𝑖3𝛽𝑗𝜇0
(4) is an element of the (𝛽𝛽′⨂ 𝛽′⨂ 𝛽′)𝜇0

(4) matrix in equation 

(16), this is why it does not make part in matrix Υ. 

The following table report the moments and co-moments resulting from using the single-

factor approach in our three hedge fund strategies sample. 

Table 4. Multivariate Statistics. Single Factor Approach. 
   Covariance 

matrix stat. stat. stat. 
Co-skewness 

matrix stat. stat. stat. stat. 

  𝑥1 𝑥2 𝑥3   𝑥12 𝑥22 𝑥32 𝑥1𝑥2 

𝑥1 0.057 0.042 -0.004   -0.00283 -0.00099 -0.00001   

𝑥2 0.042 0.192 -0.007   -0.00048 -0.00481 -0.00001   

𝑥3 -0.004 -0.007 0.130      0.00004  0.00017 -0.0152 0.00008 
Co-kurtosis 

matrix                 

  𝑥13 𝑥23 𝑥33 𝑥1𝑥22 𝑥1𝑥32 𝑥2𝑥32 𝑥12𝑥2   

𝑥1 0.011 -0.002 -0.001 0.0182 0.0074       

𝑥2 0.009 -0.006 -0.003   0.0027 0.0227     

𝑥3 -0.001 0.023 0.074 -0.0020     -0.001   
      
       Note: 𝑥1 represents EH strategy, 𝑥2 represents ED strategy, 𝑥3represents Macro strategy 
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Finally, to estimate the parameters for the multivariate VG model needed to construct 

tensors 𝑀2, 𝑀3 and 𝑀4 we follow Hitaj and Mercuri (2011) procedure described in section 

3.2.2. We deviate from their steps in the estimation method since they use Maximum 

Likelihood and we use Method of Moments8

1). we estimate the parameters 𝜇𝑖 ,𝜃𝑖 ,𝜎2and 𝜆𝑖 for each financial time series by the Method 

of moments. 

. Then, the estimation procedure goes like: 

As is usually known, the idea of this method is to match theoretical moments with the 

sample moments. The theoretical moments in this model are (Loregian et al, 2011): 

𝐸(𝑥) = 𝜇 + 𝜃𝜆 

𝑉𝑎𝑟(𝑥) = 𝜆(𝜃2 + 𝜎2) 

𝑆𝑘𝑒𝑤(𝑥) =
(2𝜃2 + 3𝜎2)𝜃

√𝜆�(𝜃2 + 𝜎2)3
                                            (17)  

𝑘(𝑥) =
(2𝜃2 + 3𝜎2)𝜃

√𝜆�(𝜃2 + 𝜎2)3
  

The next table shows the result of the previous step using fsolve in Matlab to find the zeros 

of the functions.  

 Table 5. Estimated parameters for VG model 

Strategy �̂� 𝜃� 𝜎�2 �̂� 

EH 0.0753 -0.0801 0.3174 0.7035 

ED 0.0856 -0.0877 0.4195 1.0886 

Macro 0.0542 -0.0362 0.2450 2.1314 

                                                             
8  We have also estimated parameters 𝜇,𝜃,𝜎2 and 𝜆 for each time series using Maximum likelihood. However, 

the results vary greatly as we modify the initial conditions of the parameters; the previous is consistent with 
the findings of Loregian et al (2011). Contrary, the results with the Method of Moments converge 
independent to the initial conditions.  With both of them ML and MoM is observed a high number of 
iterations to stop the algorithm, which makes these procedures computationally expensive working with a 
large quantity of assets.  
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2). After estimating, we take a common shape parameter 𝜆 by computing   �̂� = 1
𝑁
∑ 𝜆𝑖𝑁
𝑖=1 .   

�̂� =
1
3
�𝜆𝐸𝐻 + 𝜆𝐸𝐷 + 𝜆𝑀𝑎𝑐𝑟𝑜

𝑁

𝑖=1

= 1.308 

3). We re-estimate 𝜇𝑖 ,𝜃𝑖 ,𝜎𝑖2 for each hedge funds strategies returns series by Method of 

Moments with �̂�   fixed. 

Having a unique parameter �̂� for the three series returns, means we already have a 

common gamma mixing density. Then, with equations (17) we re-estimate the remaining 

parameters 𝜇𝑖 ,𝜃𝑖 ,𝜎𝑖2 by finding the zeros of each function. Using fsolve in Matlab we obtain 

the following parameters. 

 Table 6. Estimated parameters for VG model 

Strategy �̂� 𝜃� 𝜎�2 

EH 0.1234 -0.0743 0.2268 

ED 0.1110 -0.0859 0.3848 

Macro 0.0256 -0.0369 0.3150 

 

4). To estimate the elements in Σ1/2, we use the minimization of the Frobenius norm 

between sample covariance matrix and theoretical variance under the constrains 

𝜎�𝑖2  = ∑ 𝑎𝑖ℎ2𝑖
ℎ=1 .  

Following the first three steps we get the theoretical variance for each asset return, now we 

require to estimate the elements of matrix Σ1/2  to assure we have a multivariate variance 

gamma model. In order to obtain Σ1/2  we use Cholesky inferior decomposition of sample 

covariance matrix and theoretical variances 𝜎�𝑖2,  and then we minimize the norm of 

frobenius constrained to: 
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𝜎�12 = 𝑎112  

𝜎�22 = 𝑎212 +  𝑎222  

𝜎�32 = 𝑎312 +  𝑎322 +  𝑎332   

The function fmincon in Matlab allows us to minimize this norm using no linear 

constraints.  The following table shows the results of this step for matrix Σ�1/2  . 

    
Table 7. Cholesky inferior matrix 
Cholesky 𝑎1 𝑎2 𝑎3 

𝑎1 0.476191 0.000000 0.000000 

𝑎2 0.000042 0.620359 0.000000 

𝑎3 0.000044 0.000044 0.561269 

 

We have already obtained the estimators  µ�i, θ�i, λ� and the matrix Σ�1/2. We can proceed to 

compute the moment and co-moments in order to get 𝑀2, 𝑀3 and 𝑀4 tensors for the 

expected utility maximization problem. For this, we take equations (12) to compute 

moments and co-moments for any tensor. The table below shows such relations.   

Table 8.  Multivariate Statistics. Variance Gamma Model (VGM) 

Covariance 
matrix stat. stat. stat. 

Co-skewness 
matrix stat. stat. stat. stat. 

  𝑥1 𝑥2 𝑥3   𝑥12 𝑥22 𝑥32 𝑥1𝑥2 

𝑥1 0.305 0.009 0.004   -0.067 -0.039 -0.031   

𝑥2 0.009 0.513 0.004   -0.027 -0.131 -0.036   
𝑥3 0.004 0.004 0.414   -0.011 -0.019 -0.046 -0.0006 

Co-kurtosis 
matrix                 
  𝑥13 𝑥23 𝑥33 𝑥1𝑥22 𝑥1𝑥32 𝑥2𝑥32 𝑥12𝑥2   

𝑥1 0.499 0.036 0.012 0.019 0.010       

𝑥2 0.021 1.419 0.013   0.003 0.013     

𝑥3 0.009 0.016 0.909 0.005     0.010   
 
Note: 𝑥1 represents EH strategy. 𝑥2 represents ED strategy. 𝑥3represents Macro strategy. 
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Having the moments and co-moments estimated from non parametric and parametric 

approaches, we can solve the equation (8) through the function fmincon in Matlab. Since 

Hedge funds do not have restrictions to short selling, the bounds for the weights in each 

asset will be between -1 and 1, meaning that short selling are not restricted in our models.  

We will construct optimal portfolios for different levels of risk aversion in the CRRA 

investor’s utility function, varying   𝜆 = [1, 2, … , 20]. In addition we get optimal weights 

using two moments (mean-variance MV) and four moments (4M). 

The next figure shows the optimal weights for the three Hedge fund strategies portfolio 

using the complete sample, daily log-returns from 01/01/2009 to 31/12/2011 and 

computing tensors 𝑀2, 𝑀3 and 𝑀4 with the sample approach.    

      Figure 2. Optimal Weights. Sample Approach with MV and 4M. 

 
 

In the sample approach we can see extreme values for EH in mean-variance (MV), the 

difference in the allocation for diverse levels of risk 𝜆 is subtle in  Macro strategy in both 

MV and four moments (4M), unlike EH weights in 4M where is reduced as 𝜆 rises, the 

contrary happens for ED. The disparity of weights in MV and 4M is noticeable for any level 

of risk aversion being greater in EH and ED. The EH appears to have an important role in 

diversification and dominates the EH-ED-Macro portfolio in MV, however, the influence of 
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EH in 4M portfolios is diminished due to its returns being more negatively skewed and 

leptokurtic than ED and Macro. The graph depicts ED strategy would be ‘shorted’ in both 

MV and 4M which is of central importance in this case due to the predominantly ‘bearish’ 

period taken and it.   

The optimal weights for the three Hedge fund strategies portfolio using the complete 

sample, daily log-returns from 01/01/2009 to 31/12/2011 and computing tensors 𝑀2, 𝑀3 

and 𝑀4 with the single-factor approach is showed in the following figure.   

   Figure 3. Optimal Weights. Single Factor Approach with MV and 4M. 

 

In the graphic above we see some similar results with the sample approach. In general, the 

differences in the portfolios’ weights between MV and 4M are not as large as the previous 

case. Nonetheless, 4M portfolios appear to response more as the level of risk aversion 

moves. Alike the previous case the EH appears to have an important role in diversification 

and dominates the EH-ED-Macro portfolio in MV, as well as 4M.  Again the role of ED is 

crucial in the diversification since it would be necessary to take short positions in this 

asset. Interaction between ED and Macro is visible in single-approach, almost the same 
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weights are allocated but in contrary position, this is due to the extreme weights allocated 

in EH.  

The optimal weights for the three hedge fund strategies portfolio using the complete 

sample, daily log-returns from 01/01/2009 to 31/12/2011 and computing tensors 𝑀2, 𝑀3 

and 𝑀4 with the multivariate Variance Gamma model approach is showed in the next 

figure.   

    Figure 4. Optimal Weights. Variance Gamma Model with MV and 4M. 

 
The VG approach shows dissimilar results in comparison with the two cases analyzed 

before. In this case no assets would be ‘shorted’ in 4M, and none of them dominates the 

portfolio. The 4M portfolios do not exhibit change with the level of risk aversion 𝜆 whereas 

MV portfolios are more sensible to the level of risk aversion. The interaction in VG optimal 

weights between EH and Macro is visible in MV due to the few relevance ED takes, being 

near zero the weight placed in this asset.    

Here, we perform an out-of-sample analysis in order to examine the possible gain that this 

investor would have considering the first four moments (4M) instead of just the first two 
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(MV).  We implement a buy and hold strategy, in which, we use the information of one 

month to determine the optimal portfolio. Then we hold the optimal weights during the 

next month computing at the end of the month the out-of sample returns for each approach 

(sample approach, single factor approach, MVG model approach) in both cases 4M and MV.   

Table 9 shows the out-of-sample statistics results of each approach considering MV and 4M 

with different degrees of aversion 𝜆 of the utility function. 

         Table 9.  Out-of-sample statistics 

lambda lambda = 1 lambda = 10 

  annual mean % annual std % skewness kurtosis annual mean % annual std % skewness kurtosis 
sample MV 6.1533 21.8225 -0.0579 3.6117 4.9460 20.2195 -0.2212 3.9803 
single f MV 6.9390 21.1034 -0.5021 5.6169 4.9911 20.4861 -0.4523 6.0806 
VGM MV 4.4561 19.4643 -0.5946 3.3053 4.4860 19.9837 -0.4072 4.4213 
sample 4M 7.5889 23.8772 -0.4358 4.5459 6.8874 19.1256 -0.2772 3.6380 
single f 4M 7.8237 24.7027 -0.3379 5.2172 6.7124 20.8691 -0.0882 4.9321 
VGM 4M 5.0924 17.9549 -0.5788 3.0924 3.7550 17.8428 -0.5653 2.8059 

lambda lambda = 15 lambda = 20 

  annual mean % annual std % skewness kurtosis annual mean % annual std % skewness kurtosis 
sample MV 2.7801 18.9880 -0.0254 4.4651 4.4651 21.8612 -0.0250 3.9224 
Single f MV 4.3692 18.9836 -0.3777 5.0496 4.1442 17.5959 -0.1479 4.5556 
VGM MV 4.2445 18.6962 -0.3540 4.6442 4.1893 19.5782 -0.0155 5.9907 
sample 4M 6.7599 19.5033 -0.4386 4.2939 5.8837 19.0885 -0.3717 3.8110 
single f 4M 6.9382 19.7685 -0.0820 5.9308 6.2128 19.1929 -0.0686 5.6470 
VGM 4M 3.2200 17.2976 -0.5604 2.0463 3.1026 23.4849 -0.1118 2.2926 

 

As is noticed above, the investor obtains higher returns with 4M than MV in the sample and 

single approach, while in the VGM approach the results are mixed, so we can not assert the 

same. In general, the annual returns fall, the variance becomes shorter and the skewness 

gets less negative as lambda increases. For the kurtosis results, there is no a clear tendency 

in any model. These results are consistent with the theory, where more risk averse 

investors prefer to get shorter returns with lower variance, in addition the skewness is 

expected to be less negative. 
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6 Conclusions 

In this study, we have showed the asset allocation problem starting from the investor’s 

expected utility maximization problem, considering a CRRA utility function, using a Taylor 

series expansion until the fourth moment to approximate the expected utility function. 

Then, we have focused in present the co-skewness and co-kurtosis matrix tensors 𝑀3 and 

𝑀4, estimating the elements in those matrices by three methods: sample estimators, single 

factor estimators (Martellini and Ziemman, 2010), and VG distribution by Hitaj and 

Mercuri (2011). Using three hedge fund strategies we find the optimal weights under the 

methods mentioned in MV and 4M analysis. 

We have found that optimal portfolios vary greatly from MV to 4M under all the 

approaches, noticed that the EH strategy is preferred in the MV analysis, but considering 

higher moments (4M) this strategy is less demanded by the investor, this can be explained 

by its larger kurtosis and more negative skewness in comparison with the other strategies.  

The optimal portfolios obtained under the three methodologies, seem to be very similar to 

changes in the risk aversion degree, being the parametric VG model the furthest in the 

results.  

In this paper we have used a VG model with a common mixed density parameter, 

implementing an univariate estimation and then we move to the multivariate model. A 

possible extension to this paper, is to use directly the multivariate generalized hyperbolic 

density function (10) estimating by maximum likelihood method with the algorithms of the 

EM (Expectation – Maximization) type9

The estimation procedure for VG model is computationally more expensive than the non-

parametric models, which means that allocating a large number of assets will require more 

hardware capacity. 

. 

                                                             
9  See McNeil et al (2005). Quantitative Risk Management: Concepts, techniques and tools. Princenton 

University Press. 
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As the out-of-sample results show, the methodologies perform similar for the four 

moments and have parallel tendencies to changes in lambda, making complicated to choose 

a model that performs better than the others. 
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Appendix 

A. Generalized Inverse Gaussian 

The random variable 𝑋 is a generalized inverse Gaussian (GIG) distributed,  𝑋~𝑁−(𝜆,𝜒,𝜓), 

if its density is 

𝑓(𝑥) =  
𝜒−𝜆��𝜒𝜓�

𝜆

2𝐾𝜆(�𝜒𝜓)
𝑥𝜆−1 exp�−

1
2

(𝜒𝑥−1 + 𝜓𝑥)� ,        𝑥 > 0, 

𝐾𝜆 is a modified Bessel function of the third kind with index 𝜆. The parameters satisfy 

𝜒 > 0,𝜓 ≥ 0 if 𝜆 < 0; 𝜒 > 0,𝜓 > 0 if 𝜆 = 0; 𝜒 ≥ 0,𝜓 > 0 if 𝜆 > 0.  

The GIG contains the gamma and inverse gamma densities as limiting cases, corresponding 

to 𝜒 = 0 and 𝜓 = 0, respectively. In this cases the density must be interpreted and a limit, 

which can be evaluated using the asymptotic relations 𝐾𝜆(𝑥) ~ Γ(λ)2λ−1𝑥−𝜆 as 𝑥 → 0 + for 

𝜆 > 0  and 𝐾𝜆(𝑥) ~ Γ(−λ)2−λ−1𝑥𝜆 as 𝑥 → 0 + for 𝜆 < 0.  

B. Hedge Fund Strategies 

Next we make a brief review of the three strategies, equity hedge, event driven and global 

macro, mention their main features, the management style, time horizon, the assets they 

trade, etc.  

Equity Hedge strategy 

Also known as long/short equity, equity hedge strategy finds its root in the original idea of 

hedge fund. It consists mainly in combining long and short positions in equities, as a result 

are obtained portfolios that have reduced market risk. Managers look for shares that they 

think have undervaluing prices, and shares they believe are being overvalued, taking a long 

position in the first and shorting the second. The profit would come when long positions go 

up and short positions go down, if the contrary happens they would suffer losses. The goal 

of any equity hedge strategy is to minimize exposure to the market in general and taking 
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advantage of the spread between two stocks, this is why equity hedge is referred as ‘double 

alpha’ strategy. The short portfolio serves for both provide a negative exposure to 

securities which are supposed to be overvalued and reducing the market exposure by 

hedging the systematic risk. 

There exist a wide variety of equity hedge strategies, including market neutral where the 

core idea in this strategy is that long position outperforms the short position on a relative 

basis, if both stocks fall in price the portfolio is still profitable since long position declines 

less than short position, in addition managers can maintain directional strategies generally 

positive market exposure called long bias strategy, which seeks to make profits of generally 

bullish periods.     

Equity hedge manager may display further approaches in the investment process, they can 

used a bottom-up or top down analysis, also can be distinguished by the geographical 

market, the sector or their investment style. Most equity hedge managers apply 

fundamental techniques or quantitative analysis, employed by traditional equity managers 

with the difference that equity hedge managers can make profits even in declining markets. 

Furthermore, they may follow a management style with an intense short-term oriented 

trading or a more long-term oriented investment horizon, also can be characterized 

according to the market capitalization they invest (large cap or small cap), the kind of 

approach to the reference market’s prevailing trend in followers (momentum) or 

forerunners of trend reversal (counter trend).  

Event Driven strategy 

Event driven or also called “special situations” is an investment strategy that seeks to 

exploit pricing inefficiencies that are likely to occur before or after wide variety of 

corporate events including but not limited to merger, acquisition, bankruptcy, spinoffs, 

restructurings, liquidations, financial distress, tender offers, shareholder buy-backs, 

recapitalizations, hostile takeover-bias or other capital structure adjustments.  Depending 

on the opportunities available on the market, managers allocate their capital across the 

different sub-strategies, with this porpoise they make researches on the operating and 
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financial profiles of companies. Because of its concern with micro events this strategy 

follows a bottom up analysis. Nevertheless, anticipating events is not the core of this 

investment strategy but the ability of manage them, the success will be in trying to predict 

the outcome of a given deal along with indentify the best moment to allocating capital in 

the investment. Given the nature of the strategy the performance does not depend on 

market direction, but the bearish equity markets may make fail the deal or at least be 

redefined, and bullish markets represents investment opportunities for even driven 

strategy.   

Even driven includes also other strategies such as activist, distressed securities, merger 

arbitrage, credit arbitrage, regulation D among others. It is usually used by Distressed 

securities managers, since distressed securities are often corporate bonds, bank debt and 

trade claims of companies in some kind of distress, which makes both strategies 

complementaries. Event driven is likely to work best when the state of the economy is 

performing well while distressed restructuring works best if the contrary happens.  

Risk exposure of event driven strategy results from a combination of sensitivities to equity 

markets, credit markets and idiosyncratic company specific factors.  

Global Macro Strategy 

The Global Macro strategy is the broadest implemented strategy among managers, being 

able of allocating capital on almost any market, region or sector using any financial 

instrument. The macro term comes from managers’ to employ macroeconomic principles 

to distinguish distortions in asset prices. This strategy has the larger size in terms of assets 

under management in comparison with any other hedge fund strategy.    

Global macro managers can execute a variety of strategies in which the investment process 

and its choices are taken considering principally a macro-economic analysis, identifying 

possible movements in economic variables and the impact that these have on the 

investment which makes Global macro a top-down strategy mainly. Some managers design 

trades based on their subjective opinion of the market conditions, this is called the 
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discretionary approach, while others follow the systematic approach where are used 

quantitative tools and econometric models for forecasting those economic variables in 

order to find discrepancies between information provided by models and macro-economic 

variables like GDP, public deficit, public debt, interest rates, exchange rates, inflation, 

equity market returns, net exports, etc.  Then these views are established in global markets 

through appropriate positions -long or short- in equities, bonds, commodities and 

currencies.  

Global macro managers try to anticipate price changes i.e. on capital markets and execute 

directional positions, for this they have to identify whole the factors may affect those 

quotes like political events, macro-economic announcements and external factors, the 

trade is usually done in liquidity markets like commodity, currency or treasury markets, 

facilitating quick changes in positioning as new opportunities are identified.  Besides, the 

use of liquid financial contracts, for instance index options, forwards and futures 

guarantees that minimal expenditure is afforded in the execution of the strategy.  As 

outcome, the performance of this strategy would deeply depend on the quality and timing 

of the prediction.  

Global macro trading strategies can be split in two categories, directional and relative. In 

the first they implement a long or short position as a stand alone strategy and try to take 

benefit from the direction of the movements on financial markets or assets prices, 

establishing directional positions that reflect their predictions. Directional strategies 

deviate from the original hedge fund philosophy since they do not provide hedge but they 

keep the original idea of the non existence of constrains as well as the non limitations of 

mutual funds. In the second category, they structure by pairing a long and a short position 

in similar assets to take advantage of a relative mispricing while maintaining neutral 

exposure to the broader asset class, for instance take a short position in corn and a long 

position in wheat.  Nonetheless, Global macro strategy differs from Relative value strategy 

as the idea behind the first is the prediction of future movements whereas in Relative value 

is the discrepancy of valuation between securities.   
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