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Abstract

Classic insurance mechanisms have proven to be inadequate
to deal with the losses caused by natural catastrophes, such as
hurricanes, earthquakes, floods and so on. Therefore, new finan-
cial and insurance instruments are needed. In this framework,
catastrophe bond arise as a useful tool to deal with catastrophe
losses. The aim of this paper is to extend the Nowak & Ro-
maniuk approach for cat bonds pricing to new models for the
risk-free spot interest rate, as well as to implement different dis-
tribution for the losses and two types of payoff. First we prove
a general pricing formula and then we apply it to price some
particular cases combining the three factors mentioned above.
Some studies of sensitivities are carried out. After that, we
study which factors have a bigger influence on the price.
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1 Introduction

Nowadays, insurance companies are not well prepared to face off losses caused

by natural catastrophes, such as hurricanes or earthquakes, losing huge amounts

of money when they try to use classic insurance mechanisms with such events. As

some examples, losses from Hurricane Katrina in 2005 are bigger than $40 billions,

and more than 60 insurance companies broke after Hurricane Andrew.

One of the main reasons that explains why classic insurance mechanisms are

not able to cover natural catastrophes lies on the fact that these phenomena

present a high dependence on location and period. The probability of occurrence

of some natural catastrophe is not the same in every region and in every period

of time. Additionally, we must take into account the fact that, classically, insu-

rance companies are used to face off losses that are small compared to the whole

insurance portfolio.

One possible way to deal with the huge losses caused by catastrophe events

consists of converting the losses into tradable assets, also known as catastrophe

derivatives, since financial markets all over the world move even bigger quantities

of money every day.

In this framework, catastrophe bonds (cat bonds from now on) have arisen as

the most confident instrument to deal with losses from natural catastrophe events

and they are starting to be used more and more, since they work well and their

mechanism is very simple to understand.

When someone acquires a cat bond, it comes along with some predetermined

triggering point, such as the occurrence of certain natural catastrophe in some

region and time predefined. If no event crossing that triggering point happens,

the bondholder is paid the face value, but, in case that such an event occurs and

the triggering point is reached, the bondholder would be paid the face value minus

a certain quantity, quantity that would be used by the insurance company to face

off the losses of his clients due to the natural catastrophe.

Being an instrument quite recent, techniques for cat bond pricing are still

needing to be developed and improved, because the methods implemented are

very simplified ones. Only few approaches developed include stochastic processes

with continuous time, and amongst them is the paper of Vaugirard (2003) [8],

which is the benchmark of the work done by Nowak & Romaniuk, (2013) [7],

work that we extend on this paper.

Vaugirard was one of the first authors to apply non-arbitrage conditions and

solved the problem of market incompleteness using the Merton method. Nowak &

Romaniuk used this method to price cat bonds through 3 different models for the

risk-free spot interest rate, Hull-White (1993), Vasicek and CIR, simulating losses

following two different distributions, lognormal and Weibull and also taking into

account 2 different types of payoff: stepwise and piecewise linear payoffs.

As we mentioned before, in this paper we will extend Nowak & Romaniuk

contributions, computing prices of cat bonds, using the combinations of factors
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that they did not use in their paper, and also adding some other models for

the risk-free spot interest rate, such as Black-Derman-Toy (1990), and Mercurio-

Moraleda (2000), and considering different distributions for the losses, like Gamma

and GPD distributions.

We will assume the following set of hypothesis:

1. Arbitrage is not possible.

2. Market behavior is completely independent from the occurrence of catastro-

phe events.

3. Interest rate changes can be replicated by other financial instruments.

The paper is organized as follows. Section 2 introduces a general formula to

price cat bonds. Section 3 explains the different cases considered for the risk-

free spot interest rate and the two types of payoff implemented. In Section 4, we

simulate the price of the cat bonds using the formulas calculated in Section 3 from

each model, and in the corresponding subsections, we study the sensitivity of each

of the parameters involved and which of the choices for the possible factors has a

bigger impact on the price. Section 5 presents the conclusions obtained from the

work previously done.

2 General Formula to Price a Cat Bond

In this Section we introduce a general pricing formula for catastrophe bonds,

following the approach used by Nowak & Romaniuk.

As mentioned in the previous section, our paper follows the method described

by Vaugirard, so we need to apply stochastic models with continuous time, be-

tween [0,T’]. According to that, some stochastic processes and random variables

describing the dynamics of the spot interest rate and aggregated losses need to be

defined, as we see below.

One of the most important issues we have to deal with is the choice of the

distribution for the losses. Let (Ui)
∞
i=1 be a sequence of independent and identically

distributed (i.i.d.) random variables, where Ui represents the losses caused by the

i-th catastrophe event. Since the losses are always a positive quantity, it would be

pointless to choose any distribution with both positive and negative values, and

we must only take into account those distributions bounded for positive values.

Nowak & Romaniuk considered Lognormal and Weibull distributions. Gamma

and Generalized Pareto Distribution are added to our results.

We will be able then to simulate one single loss according to the chosen distri-

bution, but we still have a problem to face off: the number of catastrophe events

that will take place between [0,T’] remains unknown. To deal with that, we also

need to introduce Ñt =
∑Nt

i=1 Ui , t ∈ [0, T ′], where Nt is an homogeneous Pois-

son process (HPP) with λ > 0 that represents the number of catastrophe events

occurred until time t. Let us remember now the main properties of an HPP:
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• N0 = 0

• For s ≤ t, Ns ≤ Nt

• EP [Nt] = λt

• P (Nt −Ns = k) = e−λ(t−s) (λ(t−s))
k

k!

That means that, between t=0 and t = t, we expect to have λ catastrophe

events and the distribution of the occurrence of those events follows a Poisson law.

Ñt is then a compound Poisson process and it shows the aggregated losses until

time t. It is important to mention that Nt is totally independent from Ui.

It is also needed to define the banking account, (Bt)t∈[0,T ′], and its dynamics,

that follows the equation

dBt = rtBtdt,B0 = 1

where r = (rt)t∈[0,T ′] is the risk-free spot interest rate.

In addition to the non-arbitrage condition and the possibility to replicate the

changes in r, we must add another assumption: investors are neutral towards the

nature jump risk. This will have important implications that will be seen later.

Not only catastrophe bonds can be found in this market, zero coupon bonds

are also traded in it. B(t,T) is the price of a zero coupon bond at time t, with a

maturity date T ≤T’, following a geometric Brownian motion:

dB(t, T )

B(t, T )
= µTt dt+ σTt dWt

where Wt is a Brownian motion, µT = (µTt )t∈[0,T ] and σT = (σTt )t∈[0,T ] are

the drift and the volatility of the bond price process, respectively. As we know,

investors will need to receive a prime over the risk-free interest rate to compensate

them for taking a riskier position. This prime, called market price of risk, is defined

as follows:

λ̄t ≡
µTt − rt
σTt

This prime must be equal for all bonds, no matter their maturity time, if we

are in a no-arbitrage market and we assume that it satisfies the Novikov condition:

EP
[
exp

(
1

2

∫ T

0
λ̄2tdt

)]
<∞

This is a sufficient condition that guarantees that λ̄t is a martingale and that

enables us to apply the Girsanov’s theorem to change from the real probability

measure P to the neutral probability measure Q, defined by the Radon-Nikodym

derivative as follows:

dQ

dP
= exp

(
−
∫ T

0
λ̄tdWt −

1

2

∫ T

0
λ̄2tdt

)
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Once we have found the neutral probability measure Q, pricing is as simple

as taking the conditional expectation under Q of the payoff multiplied by the

discount factor. That is, for the zero coupon bond:

B(t, T ) = EQ
[
exp

(
−
∫ T

t
rudu

)
|Ft
]
, t ∈ [0, T ]

Since the payoff at time T is B(T,T) = 1, it is not included in the equation.

And, for a catastrophe bond IB(t) with payoff νIBcat(T,Fv), the equation is:

IB(t) = EQ
[
exp

(
−
∫ T

t
rudu

)
νIBcat(T,Fv)|Ft

]
, t ∈ [0, T ]

Since we are assuming that the investors are neutral towards the risk, λ = 0

and both payoff and risk-free spot interest rate are independent so we can write

IB(0) = EQ
[
exp

(
−
∫ T

0
rudu

)]
EQ

[
νIBcat(T,Fv)|Ft

]
, t ∈ [0, T ]

This is our general pricing equation for any cat bond. Next section will focus

in some particular cases, in which we consider the previously mentioned models

for the risk-free spot interest rate, distribution of losses and types of payoff.

3 Particular Cases

3.1 Payoff

Once we have found a general formula to price catastrophe bonds, let us define

the two different models considered for the payoff, the stepwise model and the

piecewise linear model.

3.1.1 Stepwise payoff

First of all, let us define a sequence of constants:

0 < K1 < K2 < · · · < Kn, n > 1

that will act as the different triggering points of our cat bond. Using those trig-

gering points, we can define a sequence of stopping times τi as follows

τi(ω) = inft∈[0,T ′]

{
Ñ(t)(ω) > Ki

}
∧ T ′, 1 ≤ i ≤ n

where ω1 < ω2 < ... < ωn is a sequence of nonnegative constants acting as

weight parameters, so they must be such that
∑n

i=1 ωi ≤ 1.

So we have a sequence of stopping times, each one corresponding to the moment

in which the aggregated losses surpass a certain threshold. These stopping times

sequence has a cumulative distribution function that follows the next lemma
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Lemma 3.1. The value of the cdf Φi at the moment T is defined by

Φi(T ) = 1−
∞∑
j=0

(κT )j

j!
e(−κT )Φ

Ũj
(Ki)

where Ũj are the aggregated losses from 0 to j (different from Ñt, aggregated

losses from 1 to Nt).

We can see how the factor that multiplies Φ
Ũj

(Ki) is, actually, a Poisson

distribution, due to the HPP defined previously.

As mentioned in the previous Section, the choice of the distribution of the

losses is really important, cause its cdf might or not be analytically tractable.

Once we have our sequence of stopping times perfectly characterized, we can

define the payoff of our bond, knowing that:

• If no catastrophe event occurs during the interval [0,T], the bondholder re-

ceives the face value :

τ1 > T ⇒ νIBs(T,Fv) = Fv

.

• If one (or many) catastrophe events occur between 0 and T, the bondholder

will receive the face value minus a function of the cdf of the stopping times

inside the interval [0,T], multiplied by the weight assigned to each stopping

time, ωi:

τn > T ⇒ νIBs(T,Fv) = Fv

[
1−

n∑
i=1

ωiΦi

]
.

So if catastrophe events are present, as the cumulative losses grow and surpass

the thresholds Ki defined previously, new stopping times need to be considered

and then the payoff starts to be reduced following the above formula. This can be

easily seen in the following graph, that synthesizes the behavior of the payoff:
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3.1.2 Piecewise linear payoff

We now consider a bond with a piecewise linear payoff. The mechanism is very

similar to the one applied above, but in this case, the quantity multiplying ωi is

not 0 or 1, but a changing value bounded between them, so that allows our payoff

to be a continuous function, with no jumps.

For this payoff we also define some thresholds Ki, but starting from K0 this

time. We will need some weight factors as well: 0 ≤ K0 < K1 < K2 < · · · < Kn

and ω1 < ω2 < · · · < ωn with
∑n

i=1 ωi ≤ 1.

In this case, the payoff follows the next equation:

νIBp(T,Fv) = Fv

1−
n−1∑
j=0

ÑT ∧Kj+1 − ÑT ∧Kj

Kj+1 −Kj
ωj+1


The behavior of the payoff is showed in the next graph:

So the payoff is here a linear payoff, but the slope does not have to be neces-

sarily constant, different slopes are allowed between different triggering points

This following lemma allows us to compute numerically the expected value

under Q of the payoff we have just defined:

Lemma 3.2. Let

ϕm = P (ÑT ≤ Km),m = 0, 1, 2, ...n

em = E
[
ÑT 1

Km<ÑT≤Km+1

]
,m = 0, 1, 2, ...., n− 1

Then we can write our payoff as

EQνIBp(T,Fv) = Fv

{
1− (1− ϕn)

n∑
j=1

ωj
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−
n−1∑
m=0

(ϕm+1 − ϕm)
∑

0≤j<m
ωj+1 +

em − (ϕm+1 − ϕm)Km

Km+1 −Km
ωm+1

}

3.2 Risk-free spot interest rate

Once we have the payoff models defined, let us focus on modeling the risk-free

interest rate, following each one of the models mentioned above.

3.2.1 Vasicek

Let us assume that the risk-free interest rate behaves according to Vasicek’s model,

that is,

drt = a(b− rt)dt+ σdWt

for positive constants a,b and σ. We also assume λ = 0, since investors are

assumed to be neutral towards the risk.

Applying Itô’s lemma and going through some calculation (Appendix A) we

obtain the expressions to price a zero coupon bond. Once we have done this,

pricing both a cat bond with stepwise and piecewise payoff is straightforward:

IBs(0) = Fve
−A(t,T )rt+D(t,T )[1− Φ(T )]

IBp(0) = e−A(t,T )rt+D(t,T )EQ
[
νIBp(T,Fv)

]
A(t, T ) =

1− e−a(T−t)

a

D(t, T ) =

(
b− σ2

2a2

)
[A(t, T )− (T − t)]− σ2A(t, T )2

4a

where EQ
[
νIBp(T,Fv)

]
can be calculated using lemma 3.2.

3.2.2 Hull-White

Now we are assuming r follows the Hull-White model. Once again, we will have

to price first a zero coupon bond and then add the payoff of our catastrophe, just

the same way we did in the Vasicek case (see Appendix B).

Let us denote by fM (t, T ) the market instantaneous forward rate at time t

for maturity T. We know that fM (0, T ) and the zero coupon bond are related

through the formula

fM (0, T ) = −∂lnP
M (0, T )

∂T

and the dynamic of the HW model follows

drt = (ϑ(t)− art)dt+ σdWt

for constants a, σ > 0 and function ϑ, whose expression is computed in Ap-

pendix B.
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After all the calculation, the obtained pricing formulas are:

IBs(0) = PM (0, T )eB(0,T )fM (0,0)e−B(0,T )r0Fv[1− Φ(T )]

IBp(0) = PM (0, T )eB(0,T )fM (0,0)e−B(0,T )r0EQ
[
νIBp(T,Fv)

]

with

B(t, T ) =
1

a

(
1− e−a(T−t)

)
3.2.3 CIR

Let us now study the CIR model, whose dynamics is described by

dr(t) = a(b− rt)dt+ σ
√
rtdWt

for constants a, b, σ > 0, with 2ab > σ2.

This model is an extension of Vasicek’s, with a volatility proportional to
√
rt

that avoids the possibility of negative interest rates for all positive values of a and

b, the main problem of Vasicek’s model.

After all the corresponding computation, the obtained pricing formulas are

IBs(0) = P (r, 0)Fv[1− Φ(T )]

IBp(0) = P (r, 0)EQ
[
νIBp(T,Fv)

]
where the expression of P(r,0) is given in Appendix C.

3.2.4 Black-Derman-Toy (BDT)

This is a one factor model with no closed solution, even if we know that it follows

this stochastic differential equation:

d ln(r) =

[
θt +

σ′t
σt

ln(r)

]
dt+ σtdWt

where

• θt is the value of the underlying asset at option expiry.

• σt is the instant short rate volatility.

• Wt is a standard Brownian motion.

That means we have to use a binomial tree to calibrate the model parameters to

fit both the current term structure of interest rates (yield curve), and the volatility

structure for interest rate caps.
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To calibrate the model, we have to take into account the following assumptions

(see Black-Derman-Toy [1]):

• Both probabilities of going up or down on a one-step move are 1/2, so that

means that today’s price S can be calculated as

S =
1
2 ∗ (Su + Sd)

1 + r

where r is the instant short rate valid today.

• For each input spot rate, we iteratively adjust the rate at the upper node

at the current instant of time, i, then we find all other nodes in that time,

using 0.5 ∗ ln(ru/rd) = σi ∗
√

∆t.

• Once we have done this, we have to discount recursively through the tree,

from the instant of time we are at to the first node in the tree, and repeat

this process until the calculated spot-rate equals the assumed spot-rate.

3.2.5 Mercurio-Moraleda. Humped volatility model

Due to the mean reversion property, it is known that short-term rates are more

volatile than long-term rates. Taking this into account, the mean-reverting effect

has always been modeled considering that the volatility of interest rates is a strictly

decreasing function of the maturity. Empirical studies, however, have shown that

the volatility structure is actually humped. That is, the volatility has an slope

that increases at first until a maximum, and then it decreases as the maturity

grows, as an effect of the mean reversion property.

Mercurio & Moraleda[6] modeled the yield curve dynamics according to a

humped form of the volatility according to the Heath et al. [4](HJM from now

on) framework.

Let us denote by P(t,T) a zero coupon bond and by f(t,T) the instantaneous

forward rate at time t for a maturity T. As we saw already, the following relation

can be written:

f(t, T ) = −∂lnP (t, T )

∂T

The following diffusion process models the instantaneous forward rate, assum-

ing a fixed maturity T:

df(t, T ) = α(t, T )dt+ σ(t, T )dW (t)

with f(0,T) given and deterministic, σ(t, T ) is a deterministic function, inte-

grable over closed interval, and α(t, T ) is a deterministic function related with

σ(t, T ) through the HJM no-arbitrage condition:

α(t, T ) = σ(t, T )

(∫ T

t
σ(t, s)ds− θ(t)

)
where θ(t) = 0 under the Q measure of probability, which we are assuming

throughout our work.
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Application of Ito’s Lemma gives the following dynamics of the bond price:

dP (t, T ) = P (t, T )

[(
r(t)−

∫ T

t
α(t, v)dv +

1

2

(∫ T

t
σ(u, T )du

)2
)
dt−

(∫ T

t
σ(t, v)dv

)
dW (t)

]

where r(t) is the instantaneous short-term interest rate at time t, that is r(t) =

f(t, t).

In their paper, Mercurio & Moraleda considered the following characterization

of the volatility of the instantaneous forward rates:

σ(t, T ) = σ [γ(T − t) + 1] exp(−λ/2(T − t))

where σ, γ and λ are non-negative constants. This expression defines a humped

volatility with this form:

for σ = 0.2, λ = 0.6 and γ = 0.6.

With this humped volatility formula, the integrals on the expression of the zero

bond coupon price have no closed form, and we must solve them using numerical

methods to get the coupon price.

The initial term structure of interest rates is assumed to be rT = 0.08 −
0.05 exp(0.18T ) as in Hull & White.

4 Numerical Experiments

Now that all the pricing formulas have been obtained, it is time to conduct some

simulations to check if they can be appropriate to price catastrophe bonds.
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Since we have 5 different models for the risk-free spot interest rate, 4 distri-

butions for the losses and 2 kinds of payoff, 40 different models can be simulated.

To avoid being repetitive, we will only present here some of the most relevant of

those 40 models.

In the simulations, the face value of the cat bond is set to 1, and the trading

horizon is 1 year. The parameters of the different models for the interest rate

have been previously fitted in Episcopos (2000)[3] and Hull & White (1993)[5],

as well as the adjusted parameters for all the losses distributions can be found in

Chernobai (2005)[2].

For our first model, let us consider the Vasicek interest rate model, combined

with the gamma distribution for the losses and the stepwise payoff. The parame-

ters of the model can be found in the following table:

Parameters

Vasicek model a = 0.0235, b = 0.0055, σ= 0.0, r0 = 0.0614

Intensity of HPP κHPP = 31.7143

Gamma distribution α = 0.5531, β = 1.5437e-9

Triggering points K1 = QHPP−GAM(0.75), K2 = QHPP−GAM(0.95)

Losses coefficients ω1 = 0.2,ω2 = 0.3

Table 1: Parameters for model 1.

Where, for the triggering points we have taken the 0.75 and 0.95 quantiles of

the corresponding gamma distribution. With these parameters, the price obtained

for the cat bond is 0.865546.

For the next model, we consider the CIR model, combined with a GPD distri-

bution and a piecewise payoff, according to the following parameters:

Parameters

CIR model a = 0.0241, b = 0.0539419, σ= 0.0141421, r0 = 0.0614

Intensity of HPP κHPP = 31.7143

GPD distribution ξ = -0.8090, σGPD = 0.534e+8, θ = 0

Triggering points K0 = QHPP−GPD(0.75), K1 = QHPP−GPD(0.85),

K2 = QHPP−GPD(0.95)

Losses coefficients ω1 = 0.2,ω2 = 0.3

Table 2: Parameters for model 2.

And this time, the price obtained is 0.877098

Let us show now the result of combining the humped volatility model of Mer-

curio & Moraleda with a lognormal distribution and a stepwise payoff:

14



Parameters

Humped volatility model σ= 0.2, γ = 0.6, λ = 0.6, r0 = 0.03

Intensity of HPP κHPP = 31.7143

LN distribution µLN = 17.357, σLN = 1.7643

Triggering points K1 = QHPP−LN(0.75), K2 = QHPP−LN(0.95)

Losses coefficients ω1 = 0.2,ω2 = 0.3

Table 3: Parameters for model 3.

In this case, the price obtained is 0.911380. As we will see later, the prices

involving the humped volatility model are always considerably higher than those

obtained from the other models.

To finish showing some model samples, we present here the model combining

BDT with GPD distribution and stepwise payoff. The following table contains

the yield curve and yield volatility used to compute the binomial tree needed to

get the discount factor:

Maturity (years) Yield (%) Yield Volatility (%)

1 10 20

2 11 19

3 12 18

4 12.5 17

5 13 16

Table 4: Parameters for model 4.

In this model we compute the discount factor using different number of steps

(1,2,4 and 12) in the binomial tree, simulating an annual, semiannual, quarterly

and monthly tree, respectively. As we can see, the discount factor is slightly

smaller as we implement more steps in our tree. This decreasing behavior is not

constant with the number of steps, i.e the difference between considering one or

two steps is much notorious that the one between 4 and 12 steps.

The prices computed in this model are:

1 step 2 steps 4 steps 12 steps

0.799823 0.798616 0.797640 0.798062

It is clear that the price decreases as the number of steps is higher. The fact

that the price for 12 steps is a bit higher than the one for 4 steps is understandable

if we take into account that we are working with simulations, so every time we

run the simulation the output is slightly different.
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As it is mentioned previously, 40 different models were implemented, but we

only comment here some of the most relevant. In the next subsection, we perform

some studies in order to characterize the sensitivity of the parameters involved.

4.1 Sensitivities of the parameters

In this subsection, our aim is to show the individual influence of each of the

parameters considered in the final price. To show that, we present the prices

obtained by simulation when an individual parameter changes its value a 5%

(both positive and negative increments are considered).

This calculation is showed here for one model to avoid being redundant, but it

could be applied to any other. The chosen model is the one with the combination

CIR + Weibull + Piecewise, whose price is 0.878329. Let us show first, in table

5, the prices obtained when the parameters related with the interest rate are

modified:

Parameter Price (+5%) Price (-5%)

a
0.879621 0.879833

0.15% 0.17%

b
0.878416 0.878476

0.01 % 0.02 %

σ
0.879043 0.879227

0.08 % 0.1%

r0
0.876154 0.883095

-0.24 % 0.55%

Table 5: Prices and relative changes when interest rate parameters are changed.

As we can see, changing one single parameter of the interest rate model does

not really produce big changes in the price of the cat bond. If we now consider

the parameters involving the payoff function (Table 6):

In this case, the weights ω do not have a big influence on the price, but the

thresholds seem to be more important, specially as it gets closer to the quantile 1

of the distribution, i.e, changes on quantile 0.95 produce bigger diferences on the

price that changes on quantile 0.75.

Table 7 presents the prices when the losses distribution parameters are changed:

In this case, it is clear that the changes in the parameters have a much bigger

influence than in the previous tables, so we might conclude that the well fitting of

the parameters of the losses distribution is a crucial point when it comes to price

cat bonds.
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Parameter Price (+5%) Price (-5%)

ω1
0.878089 0.880836

-0.02% 0.28%

ω2
0.879074 0.880050

0.08 % 0.19 %

K0
0.882612 0.875681

0.49 % 0.30%

K1
0.887855 0.871452

1.08 % -0.79%

K2
0.896837 0.870566

2.11 % 0.88%

Table 6: Prices and relative changes when payoff parameters are changed.

Parameter Price (+5%) Price (-5%)

β
0.895672 0.856642

1.97% -2.47%

σWei
0.933371 0.711184

6.27 % -19.03 %

Table 7: Prices and relative changes when losses parameters are changed.

4.1.1 Dynamic of the prices when interest rate parameters are

changed

At this point, we want to see from a different point of view the study of variations

in interest rate parameters we just carried out. Our aim here is to take a look

at the evolution of prices when the parameters are changed and to check if the

results agree what we could expect from the theory.

Let us consider first the parameter a of CIR model, which is nothing but the

speed of reversion of the model. As we change its value, the prices obtained can

be seen in the next graph:
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As the value for the speed of reversion grows, the price also becomes bigger.

That is perfectly understandable if we take into account that the factor we are

modifying tells us how fast the value of the risk-free spot interest rate reaches its

final value, the mean reversion value. As the speed is higher, the risk-free spot

interest rate becomes more stable, and then the price is higher.

If we now modify the value of b, that is, the mean reversion value, the price

changes as follow:
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In this case, the price decreases as the mean reversion goes higher. This is also

reasonable, since what it is being changed here is the final value that the risk-free

spot interest rate will reach, and remembering that the discount factor goes like

exp(−r ∗ T ), it is straightforward that as r grows, the discount factor is smaller,

so the price is too.

The following graph shows how the price changes when the volatility of the

risk-free spot interest rate is changed:

In this case, we are not able, a priori, to expect that the price will be higher or

lower when the value of the volatility grows. Looking at the graph, it is clear that

the price is directly proportional to the value of the volatility and this may be a

result of the fact that we are assuming the bondholders to be neutral towards the

risk, so they are willing to pay more as the uncertainty grows, regarding more on

their possible winnings than on their possible losses.
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To conclude, we present the graph showing how changes on the value of r0

affect the price:

The parameter being changed here is the initial value of the risk-free spot

interest rate. Let us remember that it will revert to a final value of b = 0.0539419,

but, as we start the reversion from a higher value, the discount factor is initially

smaller as r0 grows, and so the prices are.

4.2 Influence of the election of the factors

This subsection aims to answer the following question: Imagine that we want to

price a cat bond; we have seen up to now that our cat bond can be modeled through

choosing a combination of three factors: the payoff function, the distribution for

the losses and the risk-free spot interest rate. Hence, a question arises: Which of

the three decisions to make has a bigger influence on the price? To answer this, a

very simple procedure is performed: We start by computing all the prices obtained

that have 2 of the 3 factors in common, i.e all the models that have lognormal

distribution and stepwise payoff, so the only factor changing is the interest rate.

Then, we compute the dispersion of these results, as the maximum price minus

the minimum, divided by the mean of the set of prices, and we get how much, in

%, the price can vary due to the choice of one or another model for the interest

rate. After that, the factor with bigger influence is found by repeating the same

process with the payoff function and the losses distribution.

Once the procedure has been introduced, let us show in this graph the prices

obtained for the different interest rate models:
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As we can see, the same pattern is repeated almost exactly in every model, the

humped volatility model always on top, followed by CIR and then the others all

very close amongst them. Vasicek model is not included in the graph because its

results are very close to HW and BDT, but its taken into account when computing

the dispersion.

Let us now present the equivalent graph for the losses distribution:

It is really easy to observe in the graph that there are two different patterns,

one involving models with the stepwise payoff , in which lognormal and Weibull

give always the higher prices, followed closely by gamma,with GPD always the

lowest,and the other including all the models with the piecewise linear payoff, in

which all the distribution give almost the same price.
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Prices as a function of the payoff function implemented can be seen in the graph

above. As we mentioned earlier, it is clear that the models with the piecewise

linear function give almost the same price for all distributions for losses, while the

stepwise payoff gives prices with much less correlation.

Next table computes the values obtained for the dispersion in each case:

Factor changing Dispersion (%)

Interest rate 8.12

Losses distribution 3.36

Payoff function 2.24

Table 8: Dispersions in %.

Then, we can affirm that the factor whose election can affect more the price

is the risk-free spot interest rate model, since the price can vary up to a 8 %

depending on which model we choose.

5 Conclusions

Once it has been demonstrated that the classical insurance methods are not

appropriate when it comes to natural catastrophe events, new approaches are

needed, such as the conversion of losses into tradable assets called cat bonds.

In this paper we extend the Nowak & Romaniuk approach, introducing some

new risk-free spot interest rates and distribution of losses that were not considered
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in their work. The pricing approach considers no possibility of arbitrage, inde-

pendence of the catastrophe occurrence from the behavior of the market, and the

possibility of replication of interest rate changes by other instruments. We use

two types of payoff (stepwise and piecewise linear), four different losses distribu-

tion (Lognormal, Weibull, Gamma and GPD) and five models for the interest rate

(Vasicek, Hull & White, CIR, Black-Derman-Toy and Mercurio & Moraleda).

On the first part of the paper, we show some of the prices obtained for certain

combination of our models. If we take a look at the interest rate, the results

always present the same pattern: Humped volatility model gives a price around

0.91, CIR model decreases to 0.87 and the other models give always prices around

0.84. This higher value obtained with the humped volatility model might be a

consequence of the increasing slope present in the humped volatility expression

for short maturities. If we extend our computation to, let us say, 10 years, we will

expect a lower price with this model compared to the others.

After that, we carried out some studies to quantify the sensitivity of each of the

parameters involving our models, modifying a 5% their values and computing the

relative variation of the price. Results show that variations on the parameters of

the loss distribution have a much bigger impact compared to the other parameters.

In section we also studied the behavior of the price as a function on the parameters

characterizing the risk-free spot interest rate dynamics, and the results obtained

coincide with what we might expect from the theory: prices getting higher as we

increase the speed of reversion and the volatility of the interest rate and decreasing

when the mean reversion and the r0 grow. This studies were implemented for the

combination CIR + Weibull + Piecewise linear payoff, and of course it is possible

to extend them to any other combination treated on this paper.

And finally, we proposed the question of which of the three decisions to make

(choices of the interest rate models, losses distributions and type of payoff) has a

bigger impact on the price. This could be possibly the most important study on

the paper, since it provides information about which factor should be chosen more

carefully when pricing a certain cat bond. The results show that the impact of the

interest rate model chosen can be up to more than twice the impact of the losses

distribution and almost four times the influence of the type of payoff chosen.
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6 Appendix

A Vasicek model

rt = eat
[
r0 +

∫ T

0
abeaudu+ σ

∫ T

0
eaudWu

]
rt = µt + σ

∫ T

0
ea(u−t)dWu

where µt is the deterministic part of the equation, such that E[rt] = µt.

rt is a gaussian random variable. This follows from the definition of the stochas-

tic integral term, which is

lim
|π|→0

n−1∑
i=0

ea(ui−t)(Wui+1 −Wui)

where the increments are given by

(Wui+1 −Wui) ∼ N(0, ui+1 − ui)

Consider we have a catastrophe bond, with the general pricing formula showed

before,

IB(0) = EQ
[
exp

(
−
∫ T

t
rudu

)]
EQ

[
νIBcat(T,Fv)|Ft

]
, t ∈ [0, T ]

We need to compute the integral using Vasicek’s model for r

E

[
exp

(
−
∫ T

0
rudu

)
|Ft
]

.

To do that, we will use the following transformation

X(u) = ru − b

where X(u) is the solution of the Ornstein-Uhlenbeck process

dX(t) = −aX(t) + σdWt

Applying Itô’s lemma to this process, we obtain

X(u) = e−au
(
X(0) +

∫ u

0
σeasdWs

)
.

X(u) is a Gaussian process with continuous path and then
∫ T
0 X(u)du is also

Gaussian, with expected value

E

[∫ T

0
X(u)du

]
=

∫ T

0
E[X(u)]du =

X(0)

a
(1− e−at)
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Using that X(u) = ru − b, it is possible to write

E

[
−
∫ T

0
rudu

]
= −rt − b

a
(1− e−aT )− bT

and the variance

V ar

[
−
∫ T

0
rudu

]
= V ar

[
−
∫ T

0
X(u)du

]
=

σ2

2a3
(
2aT − 3 + 4e−aT − e−2aT

)
This computation can be easily done using the following relation

V ar

[∫ T

0
rudu

]
= Cov

[∫ T

0
rudu,

∫ T

0
rsds

]
Regarding the Itô representation of rt, we can notice that rt satisfies the

Markov property, so we can write

E

[
exp(−

∫ T

0
rudu)|Ft

]
= E

[
exp(−

∫ T

0
rudu)|rt

]
= E

[
exp(−

∫ T

0
ru(rt)du)

]
.

And, knowing that rt is a Gaussian process, ert is a lognormal process, and

then

E

[
exp(−

∫ T

0
ru(rt)du)

]
= exp

(
E

[
−
∫ T

0
ru(rt)du

]
+

1

2
V ar

[
−
∫ T

0
ru(rt)du

])
And we arrive at our final expression after some algebra

E

[
exp(−

∫ T

0
ru(rt)du)

]
= e−A(t,T )rt+D(t,T )

A(t, T ) =
1− e−a(T−t)

a

D(t, T ) =

(
b− σ2

2a2

)
[A(t, T )− (T − t)]− σ2A(t, T )2

4a

This

is exactly the same formula that appears in Nowak & Romaniuk paper, if we

take into account that

b− r =
λσ

a
, with λ =

µ− r
σ

IBs(0) = Fve
−A(t,T )rt+D(t,T )[1− Φ(T )]

IBp(0) = e−A(t,T )rt+D(t,T )EQ
[
νIBp(T,Fv)

]
where EQ

[
νIBp(T,Fv)

]
can be calculated using the lemma 3.2.
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B Hull & White

The dynamics of the model are described by

drt = (ϑ(t)− art)dt+ σdWt

where a and σ are positive constants, and ϑ(t) is a function perfectly fitted to

the initial rate and volatility term structure.

The expression for this ϑ(t) can be deduced by the following procedure:

First we take the transformation r(t) = x(t) + α(t) where dx(t) = −ax(t)dt+

σdW (t), x(0) = 0

Simple integration from 0 to t gives

x(t) = x(0)e−at + σ

∫ t

0
e−a(t−s)dW (s)

So, this integral can be computed:∫ t

0
x(u)du = x(0)

∫ t

0
e−audu+ σ

∫ t

0

∫ u

0
e−a(u−s)dW (s)du

with expected value and variance, obtained through simple algebra,

E

[∫ t

0
x(u)du

]
= x(0)

∫ t

0
e−audu = 0

V ar

[∫ t

0
e−audu

]
=

σ2

a2

(
t+

1− e−2at

2a
− 2

1− e−at

a

)
We now move to the pricing formula for a coupon zero bond,

P (t, T ) = EQ
[
exp

(∫ T

t
r(u)du

)
|t
]

= EQ
[
exp

(∫ T

t
x(u)du

)
|t
]

exp

(
−
∫ T

t
α(u)du

)
since α is deterministic.

As we know, xt is a gaussian process, so we can write

P (0, T ) = exp

(
1

2
V ar

[
−
∫ T

0
x(u)du|0

])
exp

(
−
∫ T

0
α(u)du

)
= exp

(
σ2

2a2

(
t+

1− exp(−2at)

2a
− 2

1− exp(−at)
a

))
exp

(
−
∫ T

0
α(u)du

)
Let us now denote by fM (t, T ) the market instantaneous forward rate at time

t for maturity T, where

fM (0, T ) = −∂lnP
M (0, T )

∂T

Using this definition and rearranging the expression above, is not hard to arrive to the

following expression

α(t) = f(0, T ) +
σ2

2a2
(
1 + e−2at − 2e−at

)
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Now we only have to compare these two relations

dr(t) = dx(t) + dα(t)dt = [dα(t) + aα(t)− ar(t)]dt+ σdW (t)

drt = (ϑ(t)− art)dt+ σdWt

And directly write

ϑ(t) = dα(t) + aα(t) = ft(0, T ) + af(0, T ) + σ22a
(
1− e−2at

)
And we have finally reached the expression of ϑ(t).

Now the process to get the pricing formula is very similar to that used with Vasicek, we

have to propose a solution for the differential equation of the form A(t, T )e−B(t,T )rt , where in

this case

B(t, T ) =
1

a

(
1− e−a(T−t))

A(t, T ) =
PM (0, T )

PM (0, t)
exp

(
B(t, T )fM (0, t)− σ2

4a
(1− exp(−2at))B(t, T )2

)
And consequently the pricing formulas for the cat bonds are

IBs(0) = PM (0, T )eB(0,T )fM (0,0)e−B(0,T )r0Fv[1− Φ(T )]

IBp(0) = PM (0, T )eB(0,T )fM (0,0)e−B(0,T )r0EQ
[
νIBp(T,Fv)

]
C CIR

To obtain the pricing equation we have to repeat the same process we used in the previous

models, that is, find the pricing equation for a zero coupon bond, solving it according to CIR

parameters and then add the corresponding payoff for each type of cat bond.

To solve the pricing equation, we propose once again a solution of the form

P (r, 0) = A(T ) exp(−r0B(T ))

where, in this particular case,

A(T ) =

[
θ1 exp(θ2T )

θ2 (exp(θ1T )− 1) + θ1

]θ3
B(T ) =

exp(θ1T )− 1

θ2 (exp(θ1T )− 1) + θ1

where

θ1 =
√

(a+ λ)2 + 2σ2, θ2 =
a+ λ+ θ1

2
, θ3 =

2ab

σ2

And the corresponding pricing formulas are

IBs(0) = P (r, 0)Fv[1− Φ(T )]

IBp(0) = P (r, 0)EQ[νIBp(T,Fv)]
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