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Abstract

This paper describes an approximation derivative pricing model recently
introduced in Kristensen and Mele (2011) (K-M, from now on) and illus-
trates its applications to different derivatives and continuous-time models.
This pricing model allows to obtain approximate asset prices for models that
do not provide closed-form expressions in terms of the analytical formulas
obtained for the price of these assets under a second (auxiliary) model.

Then, this approximation pricing model is based on the choice of an
“auxiliary” pricing model for which a closed-form expression for prices is
available. Given such auxiliary model, K-M derives an expression for the
difference between the unknown price of the model of interest (true model)
and that (known) in the auxiliary model. Such expression takes the form of
a conditional expectation and can be developed in terms of a Taylor series
expansion.

After describing this model, we illustrate its implementation to some
equity derivatives and models that reflect stochastic volatility and jumps.
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1 Introduction

During the last years, the use of continuous-time models have increased consid-
erably and a large number of models have arisen. Continuous-time modeling has
provided many benefits and it allows us to find elegant representations for the
price of a variety of contingent claims.

While many models have arisen, new approaches have also been developed and
they provided us new methods with applications to pricing, hedging, and span-
ning of derivatives contracts. In some cases, the approaches produce closed-form
solutions to cope with prices. In some others cases where the closed-form does
not exist, some other methodologies (as approximations or numerical approaches)
have been developed to compute prices.

Although the benefits of the continuous-time modeling have been proved, an
old issue remains:

How can we implement those methods that cannot be solved in closed-form?

Up to now, to deal with prices that are not given in a closed-form, several
alternatives have been proposed. We can mention Fourier transformations, tree
methods, numerical solutions to partial differential equations or Monte Carlo
methods, among others. While the implementation of some of these methods can
be cumbersome, a new approach has been recently proposed in Kristensen and
Mele (2011) (K-M, from now on).

These authors have developed a new approach to approximate prices in multi-
factor models. This approach develops what could be interpreted as a closed-form
price formula for each multi-factor model. The key idea underlying this approach
is to set as benchmark an auxiliary model for which a closed-form solution is
known. Once the auxiliary model is set, the goal of the K-M approach is to relate
the price under this auxiliary model to the price obtained from other model which
will be considered as the target price.

This method will provide an expression for the difference between the model
of interest (which price is not known in closed-form) and the auxiliary one (which
is known in closed-form). Although such expression will take the form of a con-
ditional expectation, K-M finds an expression that can be developed through a
Taylor series expansion. Because this series expansion contains a infinite number
of terms, we will need to truncate the series into a finite number of terms.

This paper is organized as follows. Section 2 introduces the K-M approach
in the most general case and discusses its similarities with respect to the Yang’s
expansion (see [7]) and the risk-neutral probabilities. We also discuss the appli-
cation of this method to compute sensitivities (“Greeks”). Section 3 applies the
K-M approach to different derivatives and models. First we will implement the
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method when the model of interest contains new information respect to the auxil-
iary model. We also illustrate the K-M method and its properties under the most
extreme conditions. We will illustrate how these conditions affect the percentage
errors obtained through this approach and implement the K-M method using
different number of terms in the series expansion. We also implement the model
under a new and richer model than in the previous case, present an alternative
to the K-M approach and, because of the complexity of this model, we will show
its limitations. Finally, Section 4 summarizes our main pricing results and the
robustness of this method. Proofs and technical details are deferred to a final
Appendix.

2 The general Kristensen-Mele approach

2.1 Theoretical framework

To introduce the reader into our framework, our first benchmark is to set a true
model, which produces our objective price. In this section we will consider our
true model as the most general model. Let x(t) be a d-dimensional multi-factor
model. Under the risk-neutral probability, we assume x(t), such that follows

dx(t) = µ(x(t), t)dt+ σ(x(t), t)dW (t), (2.1.1)

where W (t) is a standard Brownian motion under risk-neutral probability.
First of all, we set w(x, t) as the option price ∀t ∈ [0, T ]. Besides, the existence

of the L̂ for any d-dimensional multifactor model drives us into a differential
equation, which is satisfied by the option price w(x, t) and it takes the form

Lw(x, t) + c(x, t) = R(x, t)w(x, t), (2.1.2)

where the option price is subject to the boundary condition at maturity time
w(x, T ) = b(x), where b(x) is the payoff function of our derivative.

After the true model is presented, it is the moment to introduce the auxiliary
model, which has an option price given by w0(x0, t). As we mentioned before,
the option price for the auxiliary model also satisfies the equation 2.1.2, but with
w0(x, t) replacing w(x, t) and with L̂0 replacing L̂ (in this case, the boundary
condition at maturity time is w0(x, T ) = b0(x).

Once the models are set, if we define the instantaneous price difference between
the two models as ∆w(x, t) = w(x, t) − w0(x, t) and then taking thee difference
between the equation 2.1.2 and the corresponding to the auxiliary model, we find:

L∆w(x, t)− r∆w(x, t) + δ(x, t) = 0, (2.1.3)
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where the term δ(x, t) is known as the mispricing function and takes the form

δ(x, t) = (L− L0)w0(x, t). (2.1.4)

The above equation could be developed and the mispricing function turns into:

δ(x, t) =
d

∑

i=1

∆µi(x, t)
∂w0(x, t)

∂xi

+
1

2

d
∑

i,j=1

∆σ2
ij(x, t)

∂2w0(x, t)

∂xi∂xj

, (2.1.5)

where ∆µ and ∆σ are the differences for the drift and diffusion terms between
the true and the auxiliary model, respectively.

Now, we can apply the Feynman-Kac representation to find a solution for the
price difference (see section A.4) and then the following identity holds:

∆w(x, t) = Ex,t

[

exp

(

−
∫ T

t

R (x(s), s) ds

)

d (x(t))

]

+

+

∫ T

t

Ex,t

[

exp

(

−
∫ s

t

R(xu, u)du

)

δ (x(s), s)

]

ds, (2.1.6)

where d(x) = b(x)− b0(x).
The right-hand side of the above equation shows two terms of errors owing

to the use of an auxiliary model. The first term arises due to the use of differ-
ent payoffs between true and auxiliary models (that difference is discounted to
the present value through the exponential function). The second term appears
because of differences related to the underlying factors of the models.

Taking advantage of the Appendix A of the reference [3], the above equation
can be written as a series expansion

wN(x, t) = w0(x, t) +
∞
∑

n=0

(T − t)n

n!
dn(x, t) +

∞
∑

n=0

(T − t)n+1

(n+ 1)!
δn(x, t). (2.1.7)

In practice, this formula is truncated to a finite number of terms, yielding:

wN(x, t) = w0(x, t) +
N
∑

n=0

(T − t)n

n!
dn(x, t) +

N
∑

n=0

(T − t)n+1

(n+ 1)!
δn(x, t), (2.1.8)

where δ0 = δ(x), d0 = d(x) and the δn function as well as the dn function satisfy
the recursive equations:

dn(x, t) = Ldn−1(x, t)−R(x, t)dn−1(x, t), (2.1.9)

δn(x, t) = Lδn−1(x, t)−R(x, t)δn−1(x, t). (2.1.10)

Since w0 is known in her closed form, we are able to approximate (through
the equation 2.1.8) the price of any option or also partial derivatives respect to
the variables of interest.

7



2.2 Yang’s expansion

In this section, we will deal with the relationship with other expansion similar
to Kristensen-Mele’s expansion (see Yang’s expansion through [7]). Under some
conditions (see section A.5), the Yang’s expansion suggests that the difference
between the price in the true market and in the auxiliary one satisfies

w(x, t) = w(0)(x, t) +

∫ T

t

E
0
x,t [(L− L0)w (x(u), u)] du. (2.2.1)

On the other hand, under simplifying assumptions done in Yang’s expansion
to the Kristensen-Mele method (R(x, t) = c(x, t) ≡ 0 and d(x) = 0), then, the
equation 2.1.6 drives into a similar but quite different price representation:

w(x, t) = w0(x, t) +

∫ T

t

E [(L− L0)w0 (x(u), u)] du. (2.2.2)

A quick look at both expressions might have some likenesses, but instead
look over likenesses, we focus on the differences. Although both representations
seem to be close, the Yang’s expansion is based on the expectation under the
base-model’s probability, while K-M expansion is under the auxiliary model’s
probability. It is also quite important to note that Yang’s expansion is based on
a unknown closed-form function, (L − L0)w, while that in K-M is based on a
well known closed-form function, due to the use of an auxiliary model, δ = (L−
L0)w0. For those reasons, the K-M expansion method allow us to approximate
directly the integrated expectation, while Yang’s expansion needs the Feynman-
Kac representations to be solved, which can be hard to implement.

2.3 Risk-neutral probabilities

Let p and p0 be the risk-neutral conditional densities underlying the true model
(p) and the auxiliary model (p0) and considering that the payoff functions are the
same in both models (d(x) = 0). Then the two prices are

w(x, t) =

∫

Rd

b(y)p(y, T |x, t)dy,

w0(x, t) =

∫

Rd

b(y)p0(y, T |x, t)dy.
(2.3.1)

Taking the difference of these two different prices, we find

w(x, t) = w0(x, t) +

∫

Rd

b(y)∆p(y, T |x, t)dy. (2.3.2)
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Now, it is easy to see such relation with the K-M method. First, let assume
R = 0, c = 0 and d(X) = 0. Those assumptions set the first term in the right
side of equation 2.1.6 equal to zero, the exponential of the second term equal
to one, and hence the Kristensen-Mele’s method relates with that of probability
densities as follows:

∫

Rd

b(y)∆p(y, t|x, t)dy =

∫ T

t

Ex,t [δ(x(s), s)] , (2.3.3)

where δ has the from of eq. 2.1.5. The right-hand of equation 2.3.3 can be
solved through a power series expansion as shown in equation 2.1.8, while the
risk-neutral method could be solved through Riemann integral, which can be
cumbersome to implement (particularly when dimensionality of our model grows,
the implementation becomes harder).

2.4 Greeks

Once equation 2.1.8 is given explicitly, the partial derivatives with respect to the
variables of interest can be easily derived. Hence, the k-th order derivative of
w(x, t) is given by:

∂wN(x, t)

∂xk
=

∂w0(x, t)

∂xk
+

N
∑

n=0

(T − t)n

n!
d(k)n (x, t)+

N
∑

n=0

(T − t)n+1

(n+ 1)!
δ(k)n (x, t), (2.4.1)

where

d(k)n (x, t) =
∂kdn(x, t)

∂xk
,

δ(k)n (x, t) =
∂kδn(x, t)

∂xk
.

These terms have been developed until second order of derivative in [3].

3 Pricing Results

The main goal of the next sections will be to validate the K-M method through
pricing results. We will analyze the method and the sensitivity under different
contexts and we will depict the error for each context. It is also quite interesting
how many terms we need in order to obtain good results.

First of all, we set our scenario for the auxiliary and the true models. In all
our cases, the auxiliary model will be the Black-Scholes, while the true model will
be selected with different purposes, but all of them adding new more information
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on a sequential basis. First we will consider a richer model than the Black-
Scholes model, which adds new information in terms of stochastic volatility. The
selected model has been the CEV model (analyzed in [4]) which has a similar
process than the Black-Scholes model, but including a stochastic process for the
volatility. This model has already been studied by K-M. Our objective will be
to check our methodology and study new extreme scenarios that have not been
studied by K-M, for example, when the option price is very close to zero.

After we test the approximation from Black-Scholes to CEV, a new richer
model will be presented. We have considered the Merton model with stochas-
tic volatility as our last experiment, which contains information about Jump
Diffusion and therefore add new more information than Black-Scholes and even
remaining the stochastic volatility information that was introduced by the CEV
model. Although this method has been introduced in a theoretical framework by
K-M, they have not studied this model empirically. We will study (empirically)
this case under the theoretical framework proposed by K-M and under a new
alternative that we will develop.

Once the structure has been explained, in the next section, our benchmark
will be the auxiliary model and those properties that are related with our purpose.
After the auxiliary model’s presentation, we will test the K-M approach through
the models we have mentioned above.

3.1 The auxiliary model

In all our futures scenarios, we will develop the K-M approach through the same
auxiliary model, the Black-Scholes model (see [1]). We have chosen this one as the
auxiliary model, because the Black-Scholes model provides a closed-form pricing
formulas for a large number of derivatives and therefore this start point could be
extended to any other derivatives and models.

The Black-Scholes model is a one-dimensional factor model where the state
variable is the stock price and is the solution to

dS(t)

S(t)
= rdt+ σ0dW (t), (3.1.1)

where W (t) is a standard Brownian motion under the risk neutral probability, r
and σ0 are the short-term rate and the volatility respectively, and both taken to
be constant.

The infinitesimal operator related to this model is given by

L̂0 =
∂

∂t
+ rS(t)

∂

∂S
+

1

2
σ2
0S(t)

2 ∂2

∂S2
. (3.1.2)

In addition to that, in the whole paper, we will refer to w0(x, t) as the price
given by the auxiliary price, which should be known in closed form.
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3.2 Models with stochastic volatility

3.2.1 Theoretical framework

In this subsection we will consider the CEV model (see [2]) as the true model and
Black-Scholes remains as the auxiliary one. The CEV model is a 2-dimensional
multi-factor model, so that x(t) is in this case, the vector [S(t) v(t) ]. The explicit
formula that follows the CEV model satisfies

dS(t)

S(t)
= rdt+

√

v(t)dW (t), (3.2.1)

where W (t) is a standard Brownian motion under risk-neutral probability, r is
the short-term rate (taken to be constant) and the variance follows the below
stochastic process

dv(t) = κ(α− v(t))dt+ ω|v(t)|ξdWv(t), (3.2.2)

where Wv(t) is a standard Brownian motion correlated with W (t) with instanta-
neous correlation ρ, ξ < 0 is the CEV parameter and (κ, α, ω) are three additional
constants.

In terms of the infinitesimal generator, the CEV model has an operator which
satisfies

L̂ =
∂

∂t
+ S(t) · r ∂

∂S
+ κ(α− v(t))

∂

∂v
+

1

2
S(t)2v(t)

∂2

∂S2
+

+
1

2
ω2v(t)2ξ

∂2

∂v2
+ ρωS(t)v(t)ξ+1/2 ∂2

∂S∂v
. (3.2.3)

The above expression redefines the “mispricing function”, δ, (see eq. 2.1.4)
which is given by

δ(x, v, t; σ0) =
1

2
(v − σ2

0)S
2∂

2w0

∂S2
, (3.2.4)

since w0(S, v, t; σ0) is known in closed form, we can compute directly the mis-
pricing function. As we mentioned before, the recursive function remains the
same

δn(x, t) = L̂δn−1(x, t)−R(x, t)δn−1(x, t), (3.2.5)

and the initial condition is δ0 = δ(x, t).

3.2.2 Pricing results

Once the code has been developed, the validation of the Kristense-Mele approach
we will be analysed through different ways.
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S CEV MC
Kristensen-Mele Kristensen-Mele

N=0 N=4
950 57.5661 58.0455 57.7312
960 62.1077 62.5759 62.2049
970 66.8486 67.3055 66.8835
980 71.7846 72.2332 71.7666
990 76.9181 77.3568 76.8532
1000 82.2477 82.6742 82.1418
1010 87.7666 88.1826 87.6300
1020 93.4722 93.879 93.3153
1030 99.3647 99.7601 99.1943
1040 105.443 105.822 105.263
1050 111.702 112.061 111.518

Table 1: European call option prices for the CEV model computed through Monte
Carlo simulations and through the K-M method. Variations on stock price. The
volatility parameter is set equal to v(t) = 0, 5172.

Tables 1 and 2 compare European call option prices for the CEV model com-
puted through Monte Carlo simulations and through the K-M method. European
call options have a strike of K = 1000, time to expiration equals to one month
(T − t = 1/12), and the parameters of the equations 3.2.1 and 3.2.2 are set equal
to κ = 0.1465, α = 0, 5172, ω = 0.5786, ξ = 0.6, ρ = −0.0243, and r = 0. Panel 1
produces option prices when the initial value of the instantaneous variance equals
to v(t) = α. Panel 2 produces option prices when the initial value of the underly-
ing stock price equals S(t) = 1000. Both panels provide the prices of our method
for different number of leading terms of eq. 2.1.8.

Tables 1 and 2 also show how the prices accurate as we reach high terms
(N = 4) of our expansion (see eq. 2.1.8). As we can see, the price given by
the Kristensen-Mele’s method tends to converge to the true price1 (CEV). These
tables also show how the K-M approach captures the variations through different
variables of interest, in our case, the volatility v(t) and the stock price S(t) (in
both cases show a high level of confidence).

Tables 1 and 2 also show how the prices accurate as we reach high terms
(N = 4) of our expansion (see eq. 2.1.8). As we can see, the price given by
the K-M method tends to converge to the true price2 (CEV). These Tables also

1The option price computed through Monte Carlo simulation have been designed with 50000
number of paths.

2The option price computed through Monte Carlo integration have been designed so that we
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show how the K-M approach captures the variations through different variables
of interest, in our case, the volatility v(t) and the stock price S(t) (in both cases
show a high level of confidence).

On the other hand, figures 1a, 1b and 1c show the joint variation of the
percentage error of the K-M method respect to the stock price S(t) and respect
to the variance v(t). In those figures, the behavior of the percentage pricing error
is quite different for option with in-the-money stock price from those with out-of-
the-money stock price. First, attending to in-the-money stock prices, we conclude
that the K-M’s method produces good results in a large range of volatility, being
the percentage pricing errors around 0.5% for N = 0, a percentage error of 0.4%
for N = 1 and lower than 0.1 for N = 4. In contrast to in-the-money options,
the options with out of the money stock price produces percentage errors around
1% when N = 0, a percentage error of 0.8% when N = 1 and 0.5% when N = 4.
A special case, which has not studied by [3], is when we attend to far-out-of-the-
money options (stock prices between 850 and 950). The further-out-of-the-money
options produces higher percentage errors, specially when the volatility is close
to zero. It happens because the option prices are very close to zero and due to
the definition of the percentage error.

From these results, we might confirm that the K-M approach produces a good
closed pricing formula and we have also proved that the L̂ operator add new
information about the true model as the operator iterates upon the mispricing
function so that only a very few terms of eq. 2.1.8 are needed to provide quite
accurate approximations to the unknown price.

keep less than 0.5% discrepancy between the price computed through Monte Carlo integration
and the prices obtained through Fourier transforms.

13



850
900

950
1000

1050
1100

1150

0.2

0.4

0.6

0.8

1

0

0.5

1

1.5

underlying
volatility

%
D

iff

(a)

850
900

950
1000

1050
1100

1150

0.2
0.4

0.6
0.8

1

0

0.2

0.4

0.6

0.8

1

1.2

underlying
volatility

%
D

if
f

(b)

850
900

950
1000

1050
1100

1150

0.2

0.4

0.6

0.8

1

−1

0

1

2

3

4

5

6

underlying
volatility

%
D

iff

(c)

Figure 1: Joint variation of the percentage error of the Kristensen-Mele’s method
with respect to the stock price S(t) and to the variance v(t) when N = 0 (figure
1a), N = 1 (figure 1b) and N = 4 (figure 1c).
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v CEV MC
Kristensen-Mele Kristensen-Mele

N=0 N=4
0.1 36.006 36.4058 35.5547
0.2 51.0693 51.4676 50.7666
0.3 62.6054 63.0128 62.389
0.4 72.3192 72.7357 72.1618
0.5 80.8676 81.2927 80.755
0.6 88.5887 89.0208 88.511
0.7 95.6825 96.1201 95.6327
0.8 102.279 102.721 102.252
0.9 108.470 108.914 108.462
1.0 114.320 114.766 114.327
1.1 119.885 120.326 119.899

Table 2: European Call Option prices for the CEV model computed through
Monte Carlo and through the K-M method. Variations in volatility. The stock
price is set to S(t) = 1000.

3.3 Models with jumps and stochastic volatility

Finally, a richer model will be studied. The K-M approach will be tested with a
model which includes jump diffusion as well as stochastic volatility.

3.3.1 Theoretical framework

The jump-diffusion model with stochastic volatility that will be analyzed is the
Merton jump-diffusion (76) model (see [5] and [6]) and the stochastic volatility
follows a CEV process.

dS(t)

S(t)
= (r − λj̄)dt+

√

v(t)dW (t) + jdP (t), (3.3.1)

where W (t) is a Brownian motion, dP (t) is a Poisson process with a bounded
intensity parameter of λ, j is a random bariable with probability of measure on
[−1,∞), density p and expectation j̄. The stochastic process that our volatility
follows is a CEV model, that is, v(t) evolves according to

d(v) = κ(α− v(t))dt+ ω|v(t)|ξdWv(t), (3.3.2)

where Wv(t) is a Brownian motion correlated with W (t) with correlation ρ, ξ > 0
is the CEV parameter and (κ, α, ω) are three additional constants.

This model has been developed through two similar ways, so that we could
test the robustness of the K-M approach and the limits of this method.
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• First method

First, we set the infinitesimal generator related to the Merton-CEV model
as K-M suggests in [3]. In this case, the L̂ operator is given by the following
expression

L̂Jf(x, v, t) = L̂f(x, v, t)+λ

∫

∞

−1

[f(x(1+ j), v, t)− f(x, v, t)]p(dj), (3.3.3)

where the L̂ operator takes the form of the equation 3.2.3.

Since eq. 3.3.3 split the expression of the L̂J operator into the L̂ operator,
eq. 3.2.3 (which contains stochastic volatility information) and a second
term (which contains jump-diffusion information through the integral), our
mispricing function function is simply the eq. 3.2.4, but adding the right
hand term of eq. 3.3.3. The mispricing function is now

δ(x, v, t; σ0) =
1

2
(v−σ2

0)S
2∂

2w0

∂S2
+λ

∫

∞

−1

[w0(x(1+j), v, t)−w0(x, v, t)]p(dj),

(3.3.4)
where δn follows the recursive function

δn(x, t) = L̂Jδn−1(x, t)−R(x, t)δn−1(x, t). (3.3.5)

• Second method

As a second method, we present an alternative to the previous method
which is related to the L̂ operator through the Itô’s lemma, and takes the
form of:

L̂J = (r − λj̄)S(t)
∂

∂S
+ κ(α− v(t))

∂

∂v(t)
+

∂

∂t
+

+
1

2
S(t)2(v(t) + j2λ)

∂2

∂S2
+

1

2
ω2|v(t)|2ξ ∂2

∂v2
+

+ρS(t)v(t)1/2ω|v(t)|ξ ∂2

∂S∂v
, (3.3.6)

where j2 is j2 = E[j2] = var[j] + E[j]2 = σ2
j + j̄2.

Once the explicit expression for the L operator is known and considering
Black-Scholes as the auxiliary model as we did in previous section, we are
able to compute the recursive function

δn(x, t) = L̂Jδn−1(x, t)−R(x, t)δn−1(x, t), (3.3.7)
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where L̂J behaves liking in equation 3.3.6 and the mispricing function is the
solution to

δ0 = (L̂− L̂0)w0 = −λj̄S(t)
∂w0

∂S
+ κ(α− v(t))

∂w0

∂v(t)
+

+
1

2
S(t)2(v(t) + (σ2

j + j̄2)λ− σ2
0)
∂2w0

∂S2
+

1

2
ω2|v(t)|2ξ ∂

2w0

∂v2
+

+ρS(t)v(t)1/2ω|v(t)|ξ ∂
2w0

∂S∂v
,

where L̂0 takes the form of 3.1.2. Because of the Black-Scholes model does
not depend on the v parameter (it depends on the σ0), all the partial deriva-
tives with respect to v are equal to zero, that is ∂w0/∂v = ∂2w0/∂v

2 =
∂2w0/∂Sv = 0. Under these assumptions, the mispricing function formula
for the Merton-CEV model is given by

δ0 = −λj̄S(t)
∂w0

∂S
+

1

2
S(t)2

(

v(t) + (σ2
j + j̄2)λ− σ2

0

) ∂2w0

∂S2
. (3.3.8)

Once our objectives have been set, we will compare our method with that of
the K-M approach.

3.3.2 Pricing results

As in Section 3.2.2, we will analyze the K-M approach through different methods.
First we will depict the percentage approximation error as a function of the stock
price and the volatility in 3D plots. Later on, a table will provide explicit prices
given by our method for many different leading terms. This Table compares
the performance of our approximations with those of Merton with stochastic
volatility.

In figures 2 and 3, options are European call options. They have a strike
price of K = 1000, time to maturity equals one month (T − t = 1/12), and
the parameters of equations 3.3.1 and 3.3.2 are set equal to κ = 1, ω = 0.5786,
ξ = 0.6, ρ = −0.5, λ = 1, z̄ = 0 and σz = 0.4. Where z is distributed as a
Normal distribution and therefore j = (exp(z)−1) is distributed with probability
of measure [−1,∞). We have also set α equals to the instantaneous variance v(t)
and the volatility of the Black-Scholes model equals to σ0 =

√
v.

As we can see, Figures 2 and 3 depict the approximation errors resulting from
our method for the two alternatives we presented in the previous section. Once
again, both methods provides better results as we add new more terms. In this
case, the results could only be tested until first leading term, and hence, we
can not confirm a strong evidence of convergence to the Merton with stochastic
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Figure 2: Joint variation of the percentage error of our method respect to the
stock price S(t) and respect to the variance v(t) when N = 0 (figure 1a), N = 1
(figure 1b).
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Figure 3: Joint variation of the percentage error of our method respect to the
stock price S(t) and respect to the variance v(t) when N = 0 (figure 1a), N = 1
(figure 1b).
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S
Merton-CEV Our alternative Kristensen-Mele

MC N=1 N=1
950 59,5270 57,0572 56,5877
960 64,1573 61,4851 61,0106
970 68,9898 66,1588 65,6809
980 74,0289 71,078 70,5982
990 79,2761 76,2412 75,7609
1000 84,7222 81,6453 81,166
1010 90,3661 87,2864 86,8096
1020 96,2039 93,1595 92,6867
1030 102,235 99,2588 98,7912
1040 108,456 105,577 105,117
1050 114,854 112,108 111,655

Table 3: European call option prices for the Merton-CEV model computed
through Monte Carlo and through the K-M method. Variations in stock price.
The variance parameter is set to v(t) = 0.58.

volatility prices. Nevertheless, the percentage errors are substantially cutting
down when only a new one leading term is added.

With the purpose of explaining why we only could develop our methods until
first order, we might take a look to the number of partial derivatives our L̂J

operator contains in eq. 3.3.3 as well as in eq. 3.3.6. These partial derivatives
have been computed through central finite differences until fourth order because
the second order approximation bounded us into errors (see A.6). Attending
to the central finite differences method until fourth order, each single partial
derivatives iterates four times upon the recursive function, each second partial
derivative iterates five times, the cross partial derivatives iterates eight times and
the independent term iterates once. All in all, when the recursive function acts,
it makes our method cumbersome, and in some cases, when N becomes higher,
we are limited by the computer’s memory. For instance, if we want to develop
the eq. 2.1.8 until first order, we calculate 27 evaluations over the mispricing
function, for N = 2 we need 272 = 729 and in general, for N = i we need 27i

evaluations. Under this assumptions, with only a very few leading terms in our
eq. 2.1.8, we reach millions of evaluations.

In addition to that, eq. 3.3.6 and the mispricing function (see eq. 3.3.8)
contain integrals, which needs to be calculated by numerical method (in our case
computed by the rectangle rule). Although the integral term seems to be a simple
integral, we might attend when L̂J acts over the recursive function in eq. 3.3.7
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v
Merton-CEV Our Alternative Kristensen-Mele

MC N=1 N=1
0,3 72,0123 68,9270 68,3378
0,42 77,7557 74,7045 74,1695
0,54 83,0434 79,9767 79,4849
0,66 87,9711 84,8695 84,4132
0,78 92,6028 89,4613 89,0349
0,90 96,9868 93,8053 93,4045
1,02 101,159 97,9398 97,5613
1,10 103,838 100,594 100,229

Table 4: European call option prices for the Merton-CEV model computed
through Monte Carlo simulations and through the Kristensen-Mele’s method.
Variations on volatility. Parameter value of stock price is S(t) = 1000.

as well as when it does over the mispricing function (see eq. 3.3.8). When the
integral needs to be calculated, we have to choose between high precision, which
means a high number of iterations, or either a lower number of iterations, which
might lead to numerical errors.

In both scenarios we built, we have tried to test the K-M approach, and
the results are quite interesting. Although both methods seems to reduce the
percentage price errors as we add new more terms, our method performs better
than K-M suggestion, unless when first order of approximation are developed.

On the other hand, Tables 3 and 4 compares the performance of the K-M
approach. The option prices for Merton-CEV model have been computed through
Monte Carlo simulation. Table 3 provides option price variations respect to the
stock price, while table 4 does respect to the variance variable.

In both Tables, our alternative through eq. 3.3.6, provides better results
than those of K-M and the percentage difference error have been reduced when
options are in-the-money as well as far-out-of-the-money. As we saw with the
CEV model, the percentage error tends to increase as volatility tends to lower
values, and also as prices go far-out-of-the-money (due to the low value of price).
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4 Conclusions

This paper has analyzed the K-M approach and illustrated its implementation
for different derivatives and models.

In our first case, where the CEV model was chosen as true model, we have
studied how new terms in the series expansion of eq. 2.1.8 add new more in-
formation about the true model and they capture the stochastic behavior of our
objective model. We have also confirmed that we can obtain quite accurate ap-
proximations to the unknown price, with only a very few additional corrective
terms to eq. 2.1.8.

For this scenario, with four leading terms, the K-M approach includes enough
additional information about the stochastic volatility and also seems to be the
best choice in terms of computational time.

We have also shown that the percentage errors increase when options are very
far-out-of-the-money. This behavior is due to the definition of the percentage
error and the fact that prices are very close to zero.

In our second scenario, with the Jump Diffusion model and stochastic volatil-
ity as true model, the results are quite interesting, despite we have been forced
to face off some numerical issues because the numerical computation becomes
harder.

One of them was the error propagation through the iterations when the re-
cursive function is applied. As central finite differences until second order does
not produce accurate prices and the errors propagate through the iterations, we
have extend our approximation to derivatives through central finite differences
until fourth order. They have minimized the propagation of the errors and prices
seem to converge to the true price.

Because of computational limitations, the computation of the integral in eq.
3.3.3 does not allow us to calculate more terms in the series expansion than the
two first leading terms. Although we only could develop our results until the
two first leading term, some interesting conclusions could be obtained. As we
add these two leading terms (δ0 and δ1), prices seem to converge to the price of
interest.

We have introduced an alternative to the approximation suggested by the K-
M approach. This alternative is also computationally cumbersome but we do not
deal with the propagation of errors through the iterations of the integral. Our
alternative decreases the computational time with respect to the K-M suggestion.
Since we can avoid the errors related to the integral, the results might be more
accurate.

In this section, we were computationally limited and the choice of another
model as the auxiliary model could make it lighter. It might be for instance, the
Merton model, which only needs to add information about stochastic volatility.
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A Appendix

A.1 The infinitesimal generator of the option price

Let our model be associated with equations 3.2.1 and 3.2.2. Considering the Itô’s
lemma and let w(t) = w(S, v, t) be the option price function, then the infinitesimal
process of the option price follows

dw(t) =
[

S(t) · r∂w
∂S

+ κ(α− v(t)) +
1

2
S(t)2v(t)

∂2w

∂S2

+
1

2
ω2v(t)2ξ

∂2w

∂v2
+ ρωS(t)v(t)ξ+1/2 ∂2w

∂S∂v
+

∂w

∂t

]

dt+

+S(t)
√

v(t)
∂w

∂S
dW (t) + ω|v(t)|ξ ∂w

∂v
dWv(t).

In operator’s notation holds:

dw(t) = L̂wdt+ M̂wdW (t) + N̂wdWv(t), (A.1.1)

where the L̂ operator is considered as the Heston’s infinitesimal generator.
Any other model could be proved in the same way.

A.2 Option Pricing Differential Equation

Let π be our portfolio and assuming it is a hedge portfolio composed by options
of interest and the underlying

dπ = k1dw + k2dS. (A.2.1)

If we suppose Heston as our model and therefore

dS = rSdt+
√

v(t)SdW (t).

As shown in the previous section

dw(t) = L̂wdt+ M̂wdW (t) + N̂wdWv(t).

Replacing dS and dw(t) from the equation A.2.1, and applying discretization
methods,

∆π = [k1Lw + k2rS] ∆t+
[

k1Mw +K2

√

v(t)S
]

∆W (t) + k1Nw∆Wv(t),

where we set k1 = −1. Assuming that risk can be protected against with a hedge,

k2 =
Mw

√

v(t)S
≡ ws. (A.2.2)
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Assuming our portfolio is a hedge portfolio, then ∆π = rπ∆t, and also as-
suming that the diffusion term of the variance can not be hedge, we get:

r [−w + wsS] = −Lw + wsrS,

Lw(S, v, t) = rw(S, v, t). (A.2.3)

The differential equation has been proved for the CEV model. Any other
model follows the same process.

A.3 Mispricing function

As we obtained the differential equation A.2.3, for any other models

L0w0(S, v, t)− rw0(S, v, t) = 0.

Taking the difference between the above equation and the equation A.2.3, it
is trivial to find the explicit form of the mispricing function

Lw − rw − (L0w0 − rw0) = L∆w − r∆w + (L− L0)w0 = 0,

and therefore

L∆w(S, v, t; σ0)− r∆w(S, v, t; σ0) + δ(S, v, t; σ0) = 0, (A.3.1)

where ∆w = w(S, v, t)− w0(S, t; σ0) and δ = (L− L0)w0.

A.4 The Feynman-Kac Theorem

Stochastic differential equations are closely linked to partial differential equations.
The Feynman-Kac theorem is key to Financial modeling.

The Feynman-Kac Representation 1 Let f ∈ C1,2 be a solution to the de-
terministic partial differential equation:

∂

∂t
f(t, x) + µ(t, x)

∂

∂x
f(t, x) +

1

2
σ2(t, x)

∂2

∂x2
f(t, x)− v(x)f(t, x) + g(t, x) = 0,

(A.4.1)
for all (t, x) ∈ [0, T ] subject to the terminal condition f(T, x) = h(x). Let the
solution to the stochastic differential equation:

dXt = µ(s,Xs)ds+ σ(s,Xs)dWs,

where s ∈ [t, T ] and Xt = x. Then,

f(T, x) = E

[

exp

(

−
∫ T

t

v(s,Xs)ds

)

h(XT )|Xt = x

]

+

+

∫ T

t

E

[

exp

(

−
∫ s

t

v(u,Xu)du

)

g(s,Xs)|Xt = x

]

ds

(A.4.2)
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A.5 Yang’s expansion

For the purpose of simplifying these section, we will assume R(x, t) = c(x, t) ≡ 0
and that the payoff function are the same for both models (implying d(x) = 0).
Yang’s expansion starts with a base-model, which satisfies L0w

(0) = 0. Using the
equation A.2.3, the unknown price can be written as the solution to

0 = Lw(x, t) ≡ L0w(x, t) + (L− L0)w(x, t). (A.5.1)

The fact that L0w
(0) = 0 allows us to rewrite the above equation to a new one

L0∆w(x, t) + (L− L0)w(x, t) = 0, (A.5.2)

and its solutions satisfies:

w(x, t) = w(0)(x, t) +

∫ T

t

E
0
x,t [(L− L0)w(x(u), u)] du. (A.5.3)

A.6 Finite Difference

The approximation of derivatives by finite differences plays a central role in finite
difference methods for the numerical solution of differential equations. We will
develop the central finite differences for first and second derivatives until fourth
order.

1. Finite differences for first derivatives.

Central finite difference scheme second order:

∂f(x)

∂x
=

f(x(1 + h))− f(x(1− h))

2xh
+ ǫ(2).

Central finite difference scheme fourth order:

∂f(x)

∂x
=

−f(x(1 + 2h)) + 8f(x(1 + h))− 8f(x(1− h)) + f(x(1− 2h))

12xh
+ǫ(2).

2. Finite differences for second derivatives.

Central finite difference scheme second order:

∂2f(x)

∂x2
=

f(x(1 + h))− 2f(x) + f(x(1− h))

x2h2
+ ǫ(4).

Central finite difference scheme fourth order:

∂f(x)

∂x
=

−f(x(1 + 2h)) + 16f(x(1 + h))− 30f(x)

12x2h2
+

+
16f(x(1− h))− f(x(1− 2h))

12x2h2
+ ǫ(4).
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