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Abstract 

 

Due to the recent financial crisis risk management has gained much importance 

and has been put at the core of investment processes. One of the concerns that has 

raised in the asset management industry is the accuracy of the forecasted risk and 

the existing deviation between the ex-post or realised tracking error and the 

forecasted or ex-ante racking error. In this research a model for the forecast of the 

tracking error is proposed and tested with different volatility forecasting models.  
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1. Introduction 

 

The asset management industry has been changed by the economic crisis. As a matter of 

fact, risk management has gained much importance and has been put at the core of 

investment processes. For active portfolio management just as investment performance is 

naturally contrasted to a benchmark, so should the associated risk of a portfolio be. For 

this purpose, in this paper, a widely used statistic for risk measurement and risk allocation 

has been chosen, the ex-ante tracking error. We will define it as the forecasted deviation of 

the active return, which is the difference between the return obtained by the portfolio of 

the asset manager and the return generated by a benchmark.  Expressed in other words, it 

provides an estimation of the future relative performance of a portfolio against a 

benchmark index and gives an idea about the risk profile of a managed portfolio as it 

measures the relative risk that has been taken against a specified benchmark.  

Besides the ex-ante tracking error another widely used risk measure is the ex-post 

tracking error. The main difference between these two measures is that whilst the former 

has a forward-looking approach and tries to identify the standard deviation of future 

active returns based on the decisions made today on a portfolio, the latter one is 

backward-looking and reflects the decisions taken by a portfolio manager, with respect to 

the factors affecting the tracking error, for a specified past observation period. If a 

portfolio manager takes new decisions the ex-post tracking error would not give reliable 

information of future risk in the portfolio as it is computed using data from past periods.  

Due to the strong volatility swings in the past years, the investment industry has become 

more concerned about the accuracy of the forecasted risk and the existing deviation 

between the ex-post or realised tracking error and the forecasted or ex-ante racking error. 

In this research we will thus propose a model for measuring the ex-ante tracking error, 

which will require risk forecasting. The aim of the investigation will be to contrast 

different volatility forecasting models and then choose the one delivering most adequate 

and accurate results by comparing the obtained ex-ante tracking errors with the realized 

tracking error, i.e. the ex-post tracking error corresponding to the forecast period. The 

study will focus specifically on actively managed Global Fixed Income Portfolios. This type 

of portfolios invest in developed countries all over the globe, even though we will focus on 

a limited number of markets, and mainly on sovereign debt, even though exposure to 

corporate fixed income securities is allowed. 

In the next section we are going to review the theoretical concepts that are required to 

perform this investigation. It includes the already existing models, but also presents the 

model suggested in this research to estimate the ex-ante tracking error. In section 3 we 

specify the data that is used, this concerns the factor selection and portfolio data, and the 

assumptions that are made. Section 4 is dedicated to the estimation of sensitivities that 

will be required in the model for the tracking error forecast. In section 5 we will explain 
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the obtained results. Finally, in section 6 we will make a concluding summary and outline 

related lines of research. 
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2. Theoretical concepts 

In the asset management industry there are different kinds of fixed income portfolio 

managers, it is relevant to have a look at this different types of management as a different 

result for the ex-ante tracking error is expected for each of those. In order to measure a 

portfolio manager’s performance, a benchmark is chosen. In the fixed income industry the 

portfolio is benchmarked against liabilities or a bond market index. There are three 

principal portfolio management strategies. The first one, is the pure bond index matching 

strategy which tries to replicate the performance of the benchmark as exactly as possible 

and involves hence, the least risk of underperformance.  The second one, the enhanced 

indexing strategy, attempts to achieve the least deviation from benchmark by matching 

the main risk factors influencing its performance but without acquiring each of the issues 

in the selected bond market index. Finally, there is the active management strategy, which 

is the one I will focus on throughout the paper. The purpose of this one is to outperform 

the benchmark by constructing a portfolio that will differ much more from the benchmark 

that the enhanced index strategy and will take bets on the different factors affecting the 

performance.2 By bets we mean the decision of an active portfolio manager to divert to 

some degree from the factors explaining the benchmark returns. These decisions are 

based on an exhaustive analysis of how future return determinants may develop. The 

decisions taken can either lead to outperform the benchmark, which is the goal of actually 

taking these bets, or to an underperformance. The factors that are hence influenced by the 

portfolio manager are indeed risk factors.  

Having this in mind it is simple to see how the ex-ante tracking error is related to this kind 

of management strategies. The higher the value of the tracking error the more active is the 

management strategy pursued by the portfolio manager: 

 

 

 

 

 

 

 

 

                                                           
2
 For further details see Focardi, Sergio M. And Fabozzi, Frank J. (2004), The Mathematics of Financial 

Modelling & Investment Management, John Wiley & Sons, Inc. 
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                   Graph 1: Tracking Error depending on management style 

 

 

The ex-ante tracking error is a function of the portfolio and benchmark weights, the 

volatility of the assets and the correlation across assets. Based on these determinants, the 

ex-ante tracking error would be computed as follows:  

 

         
     

            [1] 

 

  
     Portfolio variance /    = portfolio standard deviation 

  
 :   Benchmark variance /    = benchmark standard deviation 

 :   Correlation between portfolio and benchmark returns 

 

However, as this study focuses on predicting the ex-ante tracking error of actively 

managed portfolios, where portfolio managers don’t replicate the benchmark by keeping 

their portfolios on the same risk factor levels, but try to outperform it by taking bets on 

some of these risk factors, hence deviating from the risk factor levels, we will make the 

standard deviation of the active returns depend on those factors on which active portfolio 

managers actually take these bets. Indeed, returns of a portfolio can be explained by the 

returns of each of its securities or by a set of factors explaining the evolution of returns, 

achieving herewith a reduction of dimension of the problem.   

 

2.1 Proposed ex-ante tracking error model  

Keeping in mind that we will be working under the approach of explaining active returns 

and thus the tracking error by considering different risks for which the active portfolio 
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managers take bets, we can move on to explaining the model we are going to implement 

to estimate the ex-ante tracking error. The model proposed to compute the ex-ante 

tracking error is shown in the following equation: 

 

                                              [2] 

 

     Relative exposure between portfolio and benchmark to the risk factors 

with dimension 1⨉N,   where N = number of risk factors considered 

 :   Weighted sensitivity vector of the active returns to the risk factors with 

dimension 1⨉N 

ones: Vector of ones with dimension 1⨉N 

  :   Variance – covariance matrix in period t of the risk factors composing the 

multi factor model with dimension N⨉N 

    Multiplication symbol indicating the multiplication of vectors element by 

element 

 

2.1.1 Model components – Variance and covariance matrix 

The accuracy of the resulting ex-ante tracking error will mostly (in the literature there is a 

general agreement on the ex-ante tracking error being underestimated, several other 

explanations for its underestimation, such as the stochastic nature of the portfolio weights, 

have been proved) depend on the estimation of the volatility and correlations across the 

chosen risk factors. It is hence on these estimations where we will focus to obtain an 

accurate ex-ante tracking error.  

Because the centre of attention of this study is put on the forecast of the variance-

covariance matrix we will quickly have a look at its basic properties and its composition. It 

is a square, symmetric matrix of variances and covariances, in this case of a set of risk 

factors, given by: 

 

Var - Covar =   

  
     

       

   
      

 

   =   

  
         

               

   
          

 

   [3] 

 

The variance – covariance matrix can hence be expressed as: 
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   =  

    
   
   
    

  ⨉  

     

       

   
     

  ⨉  

    
   
   
    

     [4] 

 

As we have just seen, the variance and covariance matrix is simply a mathematically 

convenient way to express a factor’s volatilities and correlations. 

We need to be aware that volatilities and correlations of financial and economic variables 

are parameters that are not observable and can therefore only be forecasted in the context 

of a model. Different methodologies will be tested to obtain the variance-covariance 

matrix, in particular we will test the historical moving average model, the EWMA model 

and the DCC-GARCH(1,1) model.  

Now that we have had a look at the main characteristics of the variance and covariance 

matrix, it is interesting to have a look at its composition for our concrete case.  The 

variance and covariance matrix will contain the risks into which a portfolio manager will 

incur when taking bets. The matrix will have a structure in blocks. If we wanted to know 

the contributions of a specific risk factor to the total ex-ante tracking error we would need 

to sum up the components of the block in the diagonal corresponding to the specific risk 

factor and the correlation it has with the other risk factors. To understand this notion 

better it is depicted graphically: 

 

           Graph 2: Decomposition of the variance and covariance matrix 
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2.1.1 Model components – Relative exposures to the risk factors 

The relative exposures between portfolio and benchmark to each risk factor are 

obtained dividing the share of the portfolio exposed to a concrete risk factor by the 

share of the benchmark exposed to this same risk factor. If the results of all relative 

exposures are equal to one, the benchmark is being exactly replicated and the ex-

ante tracking error should hence be equal to zero. If we left the exposure vector as 

it is and supposed that the benchmark is perfectly replicated the ex-ante tracking 

error would however be positive, concretely it would be the sum of all the 

components in the variance and covariance matrix.  In order to correct this effect 

we will subtract a matrix of ones from the relative exposures vector, leaving like 

this only the percentage deviation of the portfolio towards the exposure of the 

benchmark against the risk factors. 

 

2.1.1 Model components – Relative sensitivity of the active returns towards 

the risk   factors 

It is plausible to think, that taking a bet in one concrete risk factor, will not have the same 

strength of impact in the active return and hence on the tracking error. Therefore, as a 

new approach, the ex-ante tracking error has been made dependent on the sensitivities of 

the active return to the different risk sources. To estimate these sensitivities, a multiple 

lineal regression model3 will be used: 

 

                                                [5] 

 

    :   Portfolio returns in period t 

    :   Benchmark returns in period t 

 :   Constant variable 

         Sensitivities of the active returns to the selected risk factors 

 t:   Error term in period t 

 

However, what we want to take into consideration in the estimation of the ex-ante 

tracking error are not the sensitivities themselves. This would distortion the scale of the 

tracking error in an adequate manner. Instead, we are going to weight the sensitivities to 

                                                           
3 For more information on these type of models see: Novales, A. (2000), Econometría, Segunda 

Edición, McGraw-Hill. 
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the factors according to the level each parameter is above or below the mean value of all 

the coefficients, in order for the sensitivities to be centred around one. If our sensitivity 

vector is defined as: 

Θ = (                     ,         

 

 

we will perform the following transformation: 

 

 

   
 

       
                    

  

 

                                  

 

2.2 Volatility forecasting models 

In this section we are going to describe in detail the three models we are going to use to 

forecast the variance and covariance matrix. We will look at the analytical expressions and 

comment their properties, advantages and disadvantages.  

But to be able to accomplish the forecast for any of the volatility forecasting 

methodologies, we need first to model the behaviour of the movements of the percentage 

changes of the risk factors and the portfolio and benchmark returns. The model needs to 

consider the temporal dynamics of returns, as well as its distribution at any point in time. 

A widely used model to characterize the development of price returns, yields and foreign 

exchange rates is the random walk model4. A random walk is the process by which the 

variable follows a path consisting of a sequence of discrete steps with a fixed length. Each 

of the steps occurs randomly. The analytical expression is: 

 

                                   

 

        Percentage change of factor i in time period t 

 :   Mean of      

         Percentage change of factor i in time period t-1 

                                                           
4 For details about the model see: Hull, John, Options Futures and Other Derivatives, Seventh Edition, 2009, 

Pearson Prentice Hall. 
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    Standard deviation of      

     Random variable where               

 

As we can observe in the above expression the changes are assumed to have a constant 

variance, which is not ideal for financial time series data. We are going to relax this 

assumption and let the variance change with time: 

 

                                    

 

2.2.1  The historical moving average model 

We will start to compute the ex-ante tracking error forecasting the variance and 

covariance matrix with the simplest model that we want to analyze, which is the historical 

moving average volatility model5. To understand this model, let’s recall the expression 

used to compute the standard historical variance: 

 

    
  

 

   
      

 

   

     
                   

 

    
    Historical variance for time period T of factor i 

T:  Observation period  

        Percentage change of factor i in time period t 

   :  Mean of the percentage change of factor i 

 

For almost any conceivable financial and economic series and across all frequencies, 

volatility varies over time. This is caused by phenomena such as volatility clustering where 

periods of high volatility are followed by periods of high volatilities and the other way 

round. To capture the inconstant nature of volatility in this model, instead of computing 

the variance for the whole observation period as in the standard historical variance model, 

a fixed number of observations is chosen, a so called window, for which the variance is 

                                                           
5 For further details see: Gabudean, Radu and Schuehle, Niels (2011), Volatility Forecasting: A Unified Approach 

to Building, Estimating and Testing Models, Barclays Capital. 
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computed. In such a way, if we compute the variance in t and the window length is for 

example 20, the observations considered lie between t-19 and t. The variance in t+1 would 

be computed with the observations between t-18 and t+1. As we can see, the last 

observation in the sample length falls out to be replaced by the most recent one.  In terms 

of a forecasted variance,   the expression for the historical moving average model is: 

 

       
  

 

   
      

 

       

       
                    

 

 

       
 :   Forecasted variance for time period T+1 of factor i 

M:  Window length 

        Percentage change of factor i in time period t 

     :  Is the mean of the percentage change of factor i comprised in the window, 

where S = {T-M+1, T} 

   

Even though volatility is not constant over time, it has the feature to not change abruptly. 

Therefore, its level in the recent past still forecasts the future. The model takes strong 

advantage of this characteristic known as persistence over time. 

For the forecast of covariances the model takes the following form: 

         
 

   
      

 

           

                                     

 

        :  Forecasted covariance for time period T+1 between the factors i and j 

M:  Window length 

        Percentage change of factor i in time period t 

       Percentage change of factor j in time period t 

     :  Mean of the percentage changes of factor i comprised in the window, where 

S = {T-M+1, T} 

        Mean of the percentage changes of factor j comprised in the window, where 

S = {T-M+1, T} 

 

However, this model has some disadvantages like the fact that it reacts to increases in 

volatility with some delay as we are dealing with the average of volatility levels of the last 
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M days. It also equally weights the M days selected for the calculus, so for example the 

presence of one day of high volatility will increase the forecasted volatility and will tend to 

maintain this high volatility level during M days to reduce drastically afterwards. Another 

problem that this model entails is the specification of the window length. A shorter sample 

length assigns more weight to recent data delivering a timelier estimate whilst a longer 

sample length provides more precision. To determine the optimal value we will use a 

parametric method, the quasi-maximum likelihood estimation method6. We will assume 

that the parameter has a normal distribution. This assumption can be accepted due to the 

“Law of Large Numbers” that states that as the sample size is increased the estimated 

parameter converges to its true value even though if in reality it does not have a normal 

distribution. The log-likelihood function that we want to optimize looks as follows: 

 

      
 

 
          

 

              
                                    

              

We can see that the parameter we want to estimate, the window length, is part of the 

variance-covariance matrix. Of course, volatility is affected by many other factors, like past 

data, but for this estimation technique the relevant issue is that there is a parameter M 

that actually will influence the volatility estimate and how it will be affected by it. The 

interest does not rely on how the effect comes to be. As a result we can observe a clear 

separation between the model we use to forecast volatility and how the associated 

parameter is estimated. This parameter estimation method can hence be used for other 

volatility estimation methods and this is actually what we are going to do. Remember that 

the variance and covariance matrix is symmetric and semi-definite positive, the estimation 

of parameters via the quasi-maximum likelihood method is thus computationally possible.  

 

2.2.2  The EWMA model 

As we have seen, the historical moving average model confers to each observation the 

same weight. Any event has the same influence on the volatility from the day it starts 

being part of the window until it exits the sample again. The Exponentially Weighted 

Moving Average Model7 improves this issue by giving higher weight and hence more 

                                                           
6 For more details see: Gabudean, Radu and Schuehle, Niels (2011), Volatility Forecasting: A Unified Approach 

to Building, Estimating and Testing Models, Barclays Capital. 

7 For more information see: Mina, Jorge and Xiao, Jerry Yi (2001), Return to RiskMetrics: The Evolution of a 

Standard, RiskMetrics Group, Inc. 
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importance to more recent data. This model defines the weights as the power of a constant 

parameter between 0 and 1, which makes the weight of the observations decrease 

exponentially: 

      
                  

 

   

    
                

 

In practice the above expression needs to be truncated, leading to: 

 

      
                  

   

   

      
     

 

 
      

 

   

                    

 

       
 :   Forecasted variance for time period T+1 of factor i 

     Parameter between 0 and 1 that defines the weights of the observations 

        Percentage change of factor i in time period t 

     :  Mean of the percentage changes of factor i comprised in the sample 

window, where S = {T-M+1, T} 

 

 

The term        
 
            is the sample variance of the time series and can be 

interpreted as the level of long term variance. 

Note that the total sum of the weights needs to be equal to one: 

 

             

   

   

                 

 

Going back to equation 9, it can be written down as: 
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Introducing the expression 12 we get to the usual EWMA expression: 

 

       
                    

         

                     

 

       
 :   Forecasted variance for time period T+1 of factor i 

     Parameter between 0 and 1 that defines the weights of the observations 

        Percentage change of factor i in time period t 

     :  Mean of the percentage changes of factor i comprised in the sample 

window, where S = {T-M+1, T} 

      

      Volatility of factor i for the day T 

To forecast covariances the model takes the following expression: 

 

                                                                

 

Besides the positive characteristic of attributing more weight to recent information, this 

model has other advantages like the fact that it doesn’t need a big amount of data given 

that the power of λ will converge to 0 with the increase of the time periods considered. In 

essence the model considers an infinite horizon and thus avoids the problem of having to 

select a sample length. Another positive aspect is that once the volatility has been 

computed for a specific day, the formula doesn’t require historical input again, the storage 
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of big amounts of data is not necessary. At any point in time, we only need to remember 

the current estimated variance and the most recent observation. Finally, it only needs the 

estimation of one single parameter λ. The closer the parameter to 1, the more persistent is 

the estimated volatility, meaning that the estimator is not strongly affected by recent and 

current events. The EWMA approach was proposed by the RiskMetrics Team, who uses a λ 

of 0.94 for daily variance estimations. In this paper we will estimate the parameter via the 

quasi-maximum likelihood estimation method, as we did for the estimation of the window 

length in the previous section. The volatility in the log-likelihood function will now depend 

on the parameter λ: 

 

      
 

 
          

 

              
        

                          

 

Even though this model improves the historical moving average model it still carries some 

inconvenience. The main problem is that even if it captures the persistent character of 

volatility it doesn’t incorporate its mean reverting nature. The EWMA model doesn’t 

include a constant that can serve as a reference level for long term volatility. 

 

2.2.3  The DCC-GARCH(1,1) model  

 

Before we explain the DCC-GARCH(1,1) model it is best to have first a look at the more 

simple univariate GARCH(1,1) model. In contrast to the EWMA model, the Generalized 

Autoregressive Conditional Heteroskedastic model, proposed by Bollerslev in 1986, 

includes a weighted long term average variance rate: 

 

       
                   

         

                     

 

       
 :   Forecasted variance for time period T+1 of factor i 

         Weight parameters where          

      Long term or unconditional variance;              xp          ω 

        Percentage change of factor i in time period t 

     :  Mean of the percentage changes of factor i comprised in the sample 

window, where S = {T-M+1, T} 

      

      Volatility of factor i for the day T 
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Note that when γ = 0, α = 1- λ and β = λ, the model becomes the EWMA model which is 

essentially a particular case of the GARCH(1,1) model. Having a closer look at the 

parameters we can say that α reflects the “reaction” of the volatility to market changes, the 

higher its value the more sensitive is the volatility to those changes. The β contemplates 

the persistence of volatility, if it has a high value it signals that shock in the conditional 

variance take a long time to disappear. The parameter γ that we can write as 1 – α – β is 

the rate of reversion to the long run variance. The higher the sensitiveness to shocks and 

the higher the persistence, the lower will be the rate of reversion. In the EWMA model the 

persistence is equal to one, so the model expects that any shock in volatility will persist 

forever and hence, any increase in volatility will raise the estimate of all future. For the 

variance and covariance matrix generated by the GARCH(1,1) model to be semi-definite 

positive the following conditions are sufficient: ω ≥ 0, α ≥ 0, β ≥ 0. 

In 2001 Engle and Sheppard introduce the Dynamic Conditional Correlation model8. It is a 

multivariate GARCH model designed to estimate large time varying covariance matrices. 

The model aims to simplify the estimation of multivariate conditional variance by 

estimating univariate GARCH models for each factor and using the resulting transformed 

residuals to estimate a conditional correlation estimator. It is thus a model that is 

estimated in two steps.  

To apply this model we need to work with the standardized values of the percentage 

changes     , which we assume again to be normally distributed. Writing      as the 

conditional standard deviation times the standard disturbance, which has mean zero and 

variance one for each series, we have: 

 

          
            

    

    
                 

        Standardized disturbance with mean zero and variance one 

 

In the DDC-GARCH model the covariance matrix can be decomposed as follows: 

 

Ht = Dt Rt Dt                    [21] 

                                                           
8 Engle, Robert and Sheppard, Kevin (2001), Theoretical and Empirical Properties of Dynamic Conditional 

Correlation Multivariate GARCH, National Bureau of Economic Research. 
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where Dt is a diagonal matrix containing the time varying standard deviations of the 

factors that are computed in the univariate GARCH model: 

 

    

 
 
 
 
 
     

     

       
       

  
  
  

      

   
       

 
 
 
 

                    [22] 

 

and Rt represents the conditional correlation matrix of the standardized disturbances       

 

    

 
 
 
 
 

      

      

           

           

          

  
          

       

    
        

 
 
 
 

                    [23] 

 

We can see that the conditional correlation is the conditional covariance between the 

standardized disturbances: 

 

     
                        

     
      

                       [24] 

 

As the variance and covariance matrix needs to be semi-definite positive, to accomplish 

this Rt, also needs to be semi-definite positive. Moreover, being Rt a correlation matrix all 

its components must be equal or less than one. There are two most common ways to 

parameterize the conditional correlation matrix. The most simple is via the exponential 

smoother, which is a geometrically weighted average of standardized residuals. We are 

going to use its alternative, the GARCH(1,1) model: 
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where the correlation estimator has the following expression: 

 

 

      
     

           

                          

 

 

           Estimated covariance of the standardized disturbances 

    :   Unconditional expectation of the cross product, for variances       . Each 

term in the denominator has an expected value equal to one. 

α  β   Weight parameters 

       Standardized disturbance of factor i at time T 

       Standardized disturbance of factor j at time T 

 

Because the covariance matrix              is a weighted average of a positive definite and 

a semi-positive definite matrix, the correlation matrix will be positive definite as well.  

As long as α + β < 1 the model will be mean reverting to the unconditional expectation   , 

with β standing for the persistence of the volatility and α reflecting the reaction of the 

volatility to changes in the market. 

The parameters will again be estimated via the quasi-maximum model, expressed as: 
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3. Data specifications 

In this section we are going to specify the risk factors we are going to use, based on the 

type of securities we are treating. We are also going to give details about the data used to 

perform the research, as well as the assumptions that are made in the different stages of 

the analysis. 

 

3.1 Factors description 

As we are focusing on fixed income portfolios we need to select factors that have an 

influence on the returns of this concrete type of securities. The factors influencing fixed 

income returns have been widely studied and there is a general consensus on those being 

mainly influenced by changes in the yield curve such as shift, twist and butterfly effects, 

which have an imminent impact on prices of fixed income securities, as well as credit risk. 

These return determinants need to be included in the model as risk factors as we aim to 

capture the risk, or in other words the deviation of active returns i.e. the ex-ante tracking 

error, taken by active portfolio managers, by making decisions on the degree of deviation 

from the factor levels explaining the benchmark returns. In this research they will be 

represented as market risk, duration risk and swap spread risk. We need to recall that we 

are dealing with international portfolios; we have therefore selected six different 

developed countries’ markets: the Euro-zone, UK, the US, Japan, Australia and Canada. 

Their currencies are: USD, EUR, GBP, JPY, CAD and AUD. For each of these markets we will 

need to analyse the different risk factors as they vary from market to market. The 

domestic market will be the United States and hence the domestic currency will be the 

USD. 

The first factor, the market risk, will capture the effects of risk due to changes in the yield 

curve level, slope and curvature. To reproduce this risk the LIBOR rate for each specific 

market has been taken. As we want to reflect the risk throughout the whole yield curve, in 

each market the 3 months and the 2, 5, 10 and 30 years LIBOR rate series have been 

selected. The next risk factor, the duration risk, will capture the sensitivity of securities to 

changes in the level of interest rates. To account for duration risk, the time series of the 

Macaulay duration and the yield to maturity of the benchmark have been taken. Both the 

Macaulay duration and the yield to maturity are available by country of risk, so the data 

has been taken for the countries subject to study. Out of this data the modified duration 

will be calculated, which is the data that is finally used to pattern duration risk. And last 

but not least, the swap spread, measuring the spread between points on the swap curve 

and points on the sovereign curve in a concrete market, will be used as a proxy to explain 

credit risk9. The concrete point selected is the 10 year swap spread. Because we are 

dealing specifically with global portfolios, an extra factor influencing returns and adding 

                                                           
9
 See Lang et al. 1998 and the Barra Risk Model Handbook. 
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risk to the portfolio will be needed to be taken into account, the foreign exchange risk. This 

involves five additional risk sources, one for each investment outside the domestic 

country. The foreign exchange rates of the EUR, GBP, JPY, CAD and AUD against the USD 

will therefore be included to capture this risk. 

 

3.2 Portfolio description 

To make this investigation, two real international portfolios will be used. They will be 

called portfolio 1 and portfolio 2. They have been taken at four different points in time; 

one just prior to this century’s financial crisis on the 31.12.2007, the next in the middle of 

the crises on the 31.08.2008, another one on the 30.06.2009 and one last point in time 

after the big momentum of the crisis, concretely on the 30.06.2011. The idea behind taking 

these concrete moments in time is to see whether the macroeconomic environment 

influences the selection of the model computing the ex-ante tracking error.  

All the selected portfolios benchmark against the JPMorgan Global Traded Index. Bond 

market indices are a method to measure the value of a specific section of the bond market. 

It is usually computed as a weighted average of market capitalization from the prices of 

the bonds eligible for the index. The JPMorgan Global Traded Index considers government 

bonds valued in local currencies for the following developed markets: the Euro-zone, UK, 

the US, Japan, Australia, Canada, Denmark and Sweden. However, over 98% of its total 

share is invested in the markets we are treating, therefore, it fits our purposes quite well. 

The securities issued outside the markets we are analyzing won’t be considered in the 

analysis.  

Concerning the data range and frequency for each portfolio return and risk factor series 

and each moment in time in which we are going to analyze the different portfolios, we will 

always work with daily data for the last 5 years excluding Saturdays and Sundays. Thus, if 

we are working with portfolio 1 in time period 31.12.2007, the data used in the analysis 

will range from 01.01.2002 to 31.12.2007. Finally, the described time series will be 

converted into the percentage changes of the variables from one period to the next before 

working with them. This means, if we have an observation on day t and an observation on 

day t-1 of factor i, the percentage change in t of this factor will be: 

 

     
           

      
                 

 

 All the required series have been downloaded from Bloomberg and all the programming 

will be done in R. 
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3.3 Assumptions made for the ex-ante and ex-post tracking error 

computations 

For each of the selected points in time where we have taken the status of the portfolios 

subject to study, we will always compute three forecasting horizons; two weeks, one 

month and one year. To obtain the variance and covariance matrix on T+10 and T+20 

(recall that we consider a 5-day week), where T is the evaluation date, we forecast the 

volatility on a daily basis, meaning T+1, T+2 until T+10 and T+20. The variances and 

covariances in the matrix are daily estimations. So once we have forecasted the matrix in 

T+10 and T+20 we need to multiply the values by the square root of 10 and 20 

respectively to convert the components into biweekly and monthly variances and 

covariances. To obtain the ex-ante tracking error in one year we will simply annualize the 

variance and covariance matrix obtained for T+20 by multiplying it by the square root of 

twelve.   

For each of these forecasting horizons and each forecasting methodology, the ex-ante 

tracking error will be computed 100’000 times by giving the bets a random structure. This 

means that the relative exposures will change randomly. However, the source of 

randomness will only be the exposure of the portfolio to the risk factors as it is the only 

exposure that a portfolio manager can influence, the exposure of the benchmark will hence 

be kept constant as it is found on the period of time in which we are making the analysis. 

There will however be some restrictions on the random character of the portfolio weights. 

Each time exactly five factor exposures will be allowed to change. Also, if we increase or 

decrease the exposure to some factor, the exact opposite will be done with a factor of the 

same category. For example, if the exposure to AUD is incremented by 5%, the exposure to 

another currency will be needed to be reduced by another 5%. In total 10 risk factor 

weights will be changed in each iteration. The reason behind this restriction is the fact, 

that at the time a decision is taken, we only have a concrete and limited amount of assets 

available.   

We will consequently obtain 100’000 different ex-ante tracking errors for each volatility 

model and period of time of analysis. On these results we will finally perform back testing 

against the realized tracking errors, i.e. the ex-post tracking errors. This risk measure will 

be obtained by calculating the volatility of the difference of the total portfolio’s and 

benchmark’s return, with the historical volatility model: 

 

    
  

 

   
      

 

   

     
                    

 

    
    Historical variance for time period T of factor i 
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T:  Observation period  

        Percentage change of factor i in time period t 

   :  Mean of the percentage change of factor i 

 

The analytical expression for the ex-post tracking error10 is: 

 

                                   

 

    :   Portfolio returns for a given time period 

    :   Benchmark returns for a given time period 

 

To make a proper comparison with the different forecast horizons, we need to compute 

the two weeks, one month and one year backward looking tracking errors for each 

portfolio and period of analysis. As we use daily data, with equation 7 we will obtain daily 

volatility estimates. We need therefore to transform the results into the correct volatility 

horizon as we do for the estimated variance and covariance matrix. If T is the period of 

analysis of the portfolio and we want to compute the monthly ex-post tracking error, we 

obtain first the daily volatility in T+20 and multiply the results by the square root of 20. 

Consequently, for the biweekly and annual ex-post tracking errors the daily volatilities in 

T+10 and T+250 need to be multiplied respectively by the square root of 10 and 250. As 

there is no standard about the data window that needs to be used to compute the standard 

deviation, we will use different sample windows and have a look at how this affects the 

results. Concretely the used windows will contain 30, 60, 120 and 250 observations 

respectively. 

If a portfolio manager takes different bets, different securities or amounts of securities will 

be needed to achieve the level of risk on a specific risk factor. The portfolio returns depend 

thereby on the bets taken. That being so, the 100’000 vectors of relative exposures used in 

the computation of the ex-ante tracking error will be stored and used to weight the 

different securities contained in the portfolio in such a way, that the amount of risks taken 

are met. The way this is done is by defining matching conditions between the risk in which 

we incur and the securities. For example, if the bet is to increase 10 year euro bonds by 

some percentage, those securities trading in Euros and maturing in 10 years will be 

filtered out and incremented in the same proportion. The sum of the increments in the 

                                                           
10 For further details see: Focardi, Sergio M. And Fabozzi, Frank J. (2004), The Mathematics of Financial 

Modeling & Investment Management, John Wiley & Sons, Inc. 
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filtered bonds will be equal to the total percentage of the bet taken. At the end we will also 

have 100’000 ex-post tracking errors for each portfolio and analysed time period.  

On these two risk measures we will perform backtesting to draw conclusions on which 

volatility model gives the best results under which circumstance and forecasting horizon. 
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4. Estimation of the active return’s sensitivities towards the risk factors 

To estimate the sensitivities of the active return towards the different factors in section 

2.1.1 we propose a multiple linear regression model. With the described risk factors  the 

model has the following expression: 

 

                       
             

                
              

    

                                                       

   
  

         

   
  

 

           

   
  

                                           [31] 

 

    :   Portfolio returns in period t 

    :   Benchmark returns in period t 

 :   Constant variable 

          Sensitivities of the active returns to market risk in USD, EUR, GBP, JPY, CAD 

and AUD for the selected term structure 

          Sensitivities of the active returns to duration risk in USD, EUR, GBP, JPY, 

CAD and AUD 

          Sensitivities of the active returns to swap spread risk in USD, EUR, GBP, JPY, 

CAD and AUD  

          Sensitivities of the active return to foreign exchange risk in EUR, GBP, JPY, 

CAD and AUD 

           
        

:  Market risk for the respective currencies and maturities in period t 

              Duration risk for the respective currencies and maturities in period t 

               Swap spread risk for the respective currencies and maturities in period t 

          

   
   :  Foreign exchange risk being the USD the domestic currency in period t 

 t:   Error term in period t 

 

There are some main assumptions that underlie this type of models. First of all, that there 

is a linear relationship between the dependent and the explanatory variables. The error 

term included in the model should, on one hand, have a homoscedastic variance and on 

the other hand, have no serial correlation. Finally, the distribution of the error term should 

be normal. Let’s remark that if we wanted to forecast the ex-ante tracking error for only 

one specific market, the factors duration and swap spread could also be divided into 

different maturities to obtain more precise results and capture the risk better. If we would 

do that for an international portfolio we would obtain even more factors to consider and 

thus, estimating the sensitivities would be a too complicated task. 
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We will proceed by estimating the multiple regression model using the well known 

Ordinary Least Squares method. Successively, we will contrast whether the independent 

variables selected are of significance for the explanation of the dependent variable and 

will check whether the assumptions are actually met. 

Because of the relatively high amount of independent variables and the common 

information that these variables most surely carry, many coefficients show to be 

statistically insignificant. However, the fact that their parameters show statistical 

insignificance does not mean that the variable itself does not carry relevant information 

for the model. A much more reliable way in this situation than using indicators such as the 

t-statistic to contrast whether a variable provides relevant information and should hence 

be kept in the model or not, is to check whether withdrawing the variables increments the 

variance of the residuals. This is done for each of the variables and we come to the 

conclusion that we can remove the 3 month LIBOR rates series for all the markets from the 

model. The rest of the proposed risk factors are kept in the model. We need to mention 

that in a few cases, the variance of the residuals did not increment, or at least not 

substantially for the factors we leave. Nonetheless, as it did not happen for a type of 

variable in all the markets (by type we mean for example the 5 year Libor rate 

independently of which country), but most of the cases in only one market, because we 

need to have the same risk factors in each market to be able to make consistent bets, the 

variable was kept.  

Keeping only the factors that changed the variance of the residuals in a significant way, we 

estimate via OLS the definitive multiple regression model, which is: 
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    :   Portfolio returns in period t 

    :   Benchmark returns in period t 

 :   Constant variable 

          Sensitivities of the active returns to market risk in USD, EUR, GBP, JPY, CAD 

and AUD for the selected term structure 

          Sensitivities of the active returns to duration risk in USD, EUR, GBP, JPY, 

CAD and AUD 

          Sensitivities of the active returns to swap spread risk in USD, EUR, GBP, JPY, 

CAD and AUD  
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          Sensitivities of the active return to foreign exchange risk in EUR, GBP, JPY, 

CAD and AUD 

           
        

:  Market risk for the respective currencies and maturities in period t 

              Duration risk for the respective currencies and maturities in period t 

               Swap spread risk for the respective currencies and maturities in period t 

          

   
   :  Foreign exchange risk being the USD the domestic currency in period t 

 t:   Error term in period t 

 

Checking now for the assumptions, the results show uncorrelated, heteroskedastic and not 

normally distributed residuals. In order to provide an overview of the estimation outputs, 

in the next table we show some statistics and indices for each of the treated portfolios and 

estimation periods: 

 

Table 1: Estimation Output 

 
* Recall that for each time period we work with daily data excluding weekends for a data range of 5 years. 

 

The R2 represents the fraction of the dependent variable’s variance that is explained by the 

model, it is thus a measure of fit. As we can see in the table, the R2 values range from over 

0.6 to around 0.81, meaning that we have generally obtained a relatively good fit.  Further, 

as we can read from the table, we have F-statistics that clearly reject the null hypothesis 

which states that the independent variables don’t jointly explain the dependent variable. 

The model has therefore explanatory power. The next statistic is the Durbin-Watson 

diagnostic statistic which helps to determine whether the residuals are correlated or not. 

As the values are all above 2 or close to it, we can say that the residuals are independently 

distributed, which is, together with the linear relationship between the variables, the most 

important assumption of the linear regression model. The next three tests in the table, the 

R-squared F-statistic
    Durbin-

Watson stat

Breusch-Pagan-

Godfrey Test
Harvey Test Glesjer Test Jarque Bera

Portf 1 - 31.12.2007 0.73
83.22139

(0)
2.146772

2.470210

(0)

1.283031

(0.1106)

2.078763

(0.0001)

1967.075

(0)

Portf 1 - 31.08.2008 0.77535
106.3188

(0)
2.122813

2.580382

(0)

1.559674

(0.0141)

1.944176

(0.0004)

3121.090

(0)

Portf 1 - 30.06.2009 0.744363
89.62634

(0)
2.045261

1.323168

(0.0849)

1.415969

(0.0440)

1.721120

(0.0034)

1935.104

(0)

Portf 1 - 30.06.2011 0.812012
132.8508

(0)
2.216594

1.307267

(0.0944)

2.146788

(0)

0.962899

(0.5386)

6006.789

(0)

Portf 2 - 31.12.2007 0.606685
47.47854

(0)
2.105671

1.640635

(0.0070)

1.436299

(0.0378)

1.965361

(0.0003)

2422.768

(0)

Portf 2 - 31.08.2008 0.725457
81.39945

(0)
2.144948

2.472118

(0)

1.394768

(0.0514)

1.961181

(0.0003)

2829.228

(0)

Portf 2 - 30.06.2009 0.743005

88.99018

(0)
2.103105

1.657512

(0.0061)

0.915611

(0.6243)

1.531475

(0.0179)

1297.245

(0)

Portf 2 - 30.06.2011 0.756501
95.55303

(0)
2.273803

1.502456

(0.0226)

0.744865

(0.8815)

1.025386

(0.4277)

3937.125

(0)
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Brausch-Pagan-Godfrey Test, the Harvey Test and the Glesjer Test, contrast the null 

hypothesis that the variance of the residuals is homoscedatic. As we can see, the general 

result for all portfolio and points in time in which they are analyzed, the different 

heteroskedasticity tests agree on rejecting homoscedatic residuals. Finally, the table 

shows the results for the Jarque-Bera test which contrasts the normal distribution of 

residuals. We can clearly see that normality is rejected in all portfolios as was the case 

when doing the simple linear regressions. The reason is, as already mentioned, the excess 

of kurtosis, meaning there are several extreme events present in the data. In order to show 

that we plot the histograms of the residuals, where the outliers are clearly visible: 

 

 

 Graph 3: Histogram of residuals – portfolio 1 
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Graph 4: Histogram of residuals – portfolio 2 

 
 

 

In the next charts we show the actual and fitted values of the dependent variable, along 

with the residuals, in order to get an additional feel for the fit of the model. 
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       Graph 5: Dependent variable and residuals – portfolio 1 

 

 

     Graph 6: Dependent variable and residuals – portfolio 2 
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For both portfolios we can observe that the fitted graph adapts acceptable when there 

aren’t outliers in the actual graph. Consequently we have higher absolute residuals when 

extreme events take place. 

 

As we could see along the analysis the model does present some good features. However, 

the fact that we have problems such as heteroskedasticity and non normality of residuals, 

to get reliable and not distorted results, we would require a further development of the 

model. Nonetheless, as this is not the main focus of this research and the aim of estimating 

the coefficients of the independent variable is simply to capture the fact that a change in a 

concrete risk factor will not have the same strength of impact in the active return, we will 

not continue to develop this model further, but we will use the weighted sensitivities as 

described in section 2.1.1.. To see the estimated and transformed sensitivity values please 

check the appendix. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



33 
 

5. Results 

In this part we will show on one hand the results obtained for the different parameters 

that are needed in the different volatility forecasting models, on the other hand, we will 

explain the performed backtest and show its results.  

 

5.1 Parameters of the volatility forecasting models 

In the historical moving average model, before being able to forecast the variance and 

covariance matrix, we needed first to estimate the optimal window length. Using the 

quasi-maximum likelihood model for its estimation, we have retrieved the optimal sample 

length for each of the four estimation periods. Because the extraction of the optimal 

sample length is computationally intense, we have used a grid of possible M values. We 

have imposed the window length to start with 20 and have a maximum of 500 

observations. The value for M increases on a 5 observations step. With a more powerful 

data processor, the extraction of M could be performed more precisely. In the following 

charts we plot the maximum likelihood function values for different sizes of the window 

length M. The one delivering the highest value for the likelihood function is the optimal 

window and hence the one used to perform the volatility forecasts. The M values and the 

likelihood functions for each period are depicted in the following charts: 

 

    Graph 7: Maximum likelihood functions - Optimal window length 
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As for both portfolios we are analyzing the same risk factors, the same optimal window 

lengths are valid for both of them. As we can see in the graphs, the output seems to be 

consistent. For all periods in time subject to analysis the likelihood function reaches the 

optimum value at 50 observations.  

The next model we defined for volatility forecasting is the EWMA model. This method is 

supposed to improve the historical moving average model by giving more weight to more 

recent data by weighting the observation with the power of a constant parameter lambda, 

between 0 and 1. To obtain an estimation of this parameter we used again the quasi-

maximum likelihood model. Because the optimization process is again computationally 

demanding, a grid was again specified. The parameter is defined to move between 0.6 and 

0.95 with steps equal to 0.05.  For all periods of analysis the value of the constant 

parameter that maximizes the likelihood function is equal to 0.85. This can be seen in the 

following charts:  

 

             Graph 8: Maximum likelihood functions - Optimal lambda 
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For values of the parameter lambda lower than 0.65 the variance and covariance matrix is 

close to being singular, leading the likelihood function to tend towards infinity.  

 

Finally, the parameters we needed to optimize are those contained in the last volatility 

forecasting model subject to study, the DCC-GARCH(1,1) model. First we had the 

parameter gamma accounting for the rate of reversion to the long run variance. Next we 

needed to estimate the parameter alpha that considers the “reaction” of the volatility to 

market changes. Finally, the estimation of the parameter beta was required, which reflects 

the persistence of volatility.  The quasi-maximum likelihood model has been used for the 

estimation of the parameters, but this time we have used an optimizer to obtain the 

estimations included in the R package called fGarch. The obtained results for each data 

period are shown in the next table 2: 

 

 

      Table 2: Optimal parameter values 

 
 

 

From the table we can clearly see that for all periods of analysis we have a high 

persistence in volatility. When a shock in volatility occurs, it will therefore take a long time 

until the volatility reverts to its mean level. This is consistent with the resulting gamma 

value that clearly shows that the rate of reversion to the mean is very low. The alpha value 

also shows that the reaction of volatility to changes in the market won’t be pronounced. To 

better understand these results, we represent these results graphically: 

 

Graph 9: Volatility effects in the DCC-GARCH(1,1) model 

 

γ α β

0.000201849 0.088933132 0.910865019

0.000242633 0.086442137 0.91331523

4.2842E-05 0.099269682 0.900687476

4.2842E-05 0.099269682 0.900687476
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5.2 Backtesting – Mean Squared Error 

To perform the backtesting we used one of the most important criterions to evaluate the 

performance of predictors, the Mean Squared Error (MSE)11. It has the advantages of being 

adequate for comparative purposes and is analytically tractable. In fact it is nothing else 

than a statistical loss function. Adapted to our case the Mean Squared Error is expressed as 

follows: 

 

    
                     

 
   

 
                     

 

where S stands for the number of simulated vectors of relative exposures, with whom we 

calculated S times the ex-ante and ex-post tracking errors. The subscript l stands for the 

different types of volatility methods and forecast horizons for which we computed the ex-

ante tracking error. In total we have 9 different forward looking tracking errors as we use 

three different volatility estimation methods and the same number of forecast horizons. 

Finally, the subscript h accounts for the number of different windows used to compute the 

ex-post tracking errors. As we take four different windows, we computed for each vector 

of relative exposures, four different realized tracking errors. 

In the tables shown below, we present the obtained Mean Squared Errors. The tables are 

grouped by period of analysis. To make the interpretation easier, for each of the 

forecasting periods and portfolios, the Mean Squared Errors with lower values, which 

represent better approximations to the ex-post values, are green coloured. As the values of 

the Mean Squared Error become worse they start turning into red. 

The first table shows the results for the period of analysis just prior to the financial crisis, 

concretely for the portfolios as of the 31.12.2007. In general we can say that the ex-ante 

tracking error that approximates the realized tracking error is the one computed with the 

volatility forecasting model EWMA. This is valid for all forecasting periods and both 

portfolios. The volatility forecasting model DCC-GARCH(1,1) seems to deliver the next best 

results, however it differs only marginally from the results obtained by the historical 

moving average model. The ex-post tracking errors that are best approximated by all ex-

ante tracking errors are the ones computed with a sample window of 250 observations.  

 

 

                                                           
11 For more details see: Novales, A. (2000), Econometría, Segunda Edición, McGraw-Hill. 
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        Table 3: Mean Squared Errors – 31.12.2007 

 
 

 

For the period of analysis as of the 31.08.2008, when the global financial crisis is at its 

worst moment with the threat of total collapse of large financial institutions, the bailout of 

banks by national governments, and downturns in stock markets around the world, we 

obtain for all volatility forecasting models the worst results, meaning the highest Mean 

Squared Error values. While for the periods 31.12.2007, 30.06.2009 and 30.06.2011 the 

highest Mean Squared Error values in the tables are 0.5791249, 0.5265762 and 1.8665694 

respectively, in evaluation period 31.08.2008 the highest value goes up to 21.5811112. 

Keeping in mind that for turbulent periods none of the ex-ante tracking error estimations 

are satisfactory, for the forecasting horizons T+10 and T+20 the best results are delivered 

by the DCC-GARCH(1,1) model, while for the forecasting horizon T+250 the historical 

moving average model clearly delivers the lowest Mean Squared Error values. In general 

we can observe that the ex-post tracking error that is best approximated for all forecasting 

periods is in that case the one computed with the shortest window, meaning 30 

observations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

EPTE V30 EPTE V60 EPTE V120 EPTE 250 EPTE V30 EPTE V60 EPTE V120 EPTE 250

HIST 0.2512658 0.1168729 0.054515 0.0210867 0.3045006 0.1515858 0.0778413 0.0359666

EWMA 0.2338921 0.1051256 0.0465935 0.0162814 0.2183834 0.092933 0.0378402 0.0110696

DCC_GARCH 0.2571341 0.1208867 0.0572673 0.0228116 0.2742171 0.130459 0.0629331 0.0260941

HIST 0.5791249 0.2752388 0.1307949 0.0524258 0.530297 0.2391299 0.1051243 0.0363978

EWMA 0.0320411 0.0043127 0.0502946 0.1269726 0.2518956 0.0690545 0.0096866 0.0014411

DCC_GARCH 0.2575316 0.0736129 0.0118949 0.0008779 0.4605291 0.1931206 0.0754849 0.0200233

HIST 1.226764 2.1604608 1.56869 2.5315149 1.0179015 1.8122228 1.2892241 2.2580396

EWMA 0.0057906 0.1510853 0.0315529 0.257397 0.3454951 0.8555428 0.5101699 1.1694696

DCC_GARCH 0.405646 0.9970994 0.6104027 1.2530092 0.8402622 1.5722353 1.0881943 1.9891254

FORECASTING PERIOD T+250FORECASTING PERIOD T+250

PORTFOLIO 1 PORTFOLIO 2

FORECASTING PERIOD T+10FORECASTING PERIOD T+10

FORECASTING PERIOD T+20FORECASTING PERIOD T+20

http://en.wikipedia.org/wiki/Bailout
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       Table 4: Mean Squared Errors – 31.08.2008 

 
 

 

One year after the big turmoil we can see the Mean Squared Error values shrink back to 

even lower levels than for the period of analysis 31.12.2007. This is plausible as at the end 

of 2007 the financial crisis had already started to show its first symptoms. For the two 

shorter forecast horizons T+10 and T+20 the ex-ante tracking error that best approaches 

the backward looking tracking error is the one computed with the EWMA model. For the 

forecasting horizon T+250 the best results are delivered by the historical moving average 

model. Regarding which ex-post tracking error is better approximated depending on the 

sample length with which it was computed, we cannot see any clear pattern. 

 

           Table 5: Mean Squared Errors – 30.06.2009 

 
 

 

EPTE V30 EPTE V60 EPTE V120 EPTE 250 EPTE V30 EPTE V60 EPTE V120 EPTE 250

HIST 0.1539987 0.2513504 0.2945105 0.36434672 0.1671352 0.1983723 0.2128198 0.2450337

EWMA 0.3749468 0.574875 0.548958 0.4386495 0.7442857 0.826503 0.8568712 0.9184724

DCC_GARCH 0.1037422 0.1859392 0.2233572 0.28473498 0.0872564 0.0598462 0.0965412 0.0432586

HIST 0.633641 0.9351446 1.0740085 1.25804083 0.8173471 0.9825884 1.0590019 1.1751572

EWMA 2.6584938 2.859646 2.7589357 2.9475975 7.8485393 8.5867076 8.8731879 9.2761705

DCC_GARCH 2.3598826 2.9148281 3.1562029 3.46651462 0.4291474 0.2317935 0.1731304 0.1087128

HIST 3.776868 3.3879543 3.4495046 1.94633944 8.3803739 6.1155885 6.3398696 6.2657708

EWMA 4.2748442 4.8648706 4.8438358 5.19463847 21.581112 20.475532 19.909805 18.345369

DCC_GARCH 11.026106 10.355708 10.464225 7.68534694 18.173753 14.771803 15.600233 16.314484

PORTFOLIO 1 PORTFOLIO 2

FORECASTING PERIOD T+20FORECASTING PERIOD T+20

FORECASTING PERIOD T+250 FORECASTING PERIOD T+250

FORECASTING PERIOD T+10 FORECASTING PERIOD T+10

EPTE V30 EPTE V60 EPTE V120 EPTE 250 EPTE V30 EPTE V60 EPTE V120 EPTE 250

HIST 0.084316 0.0599246 0.16903 0.1859254 0.0167208 0.0398957 0.0506092 0.05048334

EWMA 0.135519 0.1132537 0.2598492 0.280459 0.0267301 0.0085328 0.0045854 0.00467592

DCC_GARCH 0.1808683 0.1601244 0.3297988 0.3526957 0.0384274 0.0155949 0.0100271 0.01014962

HIST 0.004578 0.0911901 0.2756412 0.3205081 0.0110105 0.0388845 0.0563998 0.05261557

EWMA 0.0411296 0.0657579 0.1837007 0.2190483 0.0122785 0.0004634 0.0012999 0.001068

DCC_GARCH 0.0207663 0.1915033 0.468494 0.5265762 0.0128283 0.0015681 0.0026602 0.00242238

HIST 0.0201389 0.0178116 0.0096602 0.0158341 0.0118346 0.0088258 0.0083972 0.02836103

EWMA 0.1396212 0.1411818 0.1207742 0.0255911 0.189525 0.1241912 0.1282833 0.27860098

DCC_GARCH 0.0837913 0.0767854 0.0867893 0.2341796 0.1893091 0.1245807 0.1286944 0.27694202

FORECASTING PERIOD T+250 FORECASTING PERIOD T+250

PORTFOLIO 1 PORTFOLIO 2

FORECASTING PERIOD T+10 FORECASTING PERIOD T+10

FORECASTING PERIOD T+20 FORECASTING PERIOD T+20
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The last table showing the results for the evaluation period as per 30.06.2011 shows the 

generally lowest Mean Squared Error values. For the forecasting horizons T+10 and T+20, 

for portfolio 1 the best approximations to the ex-post tracking errors are those delivered 

by the historical moving average model. In contrast, for portfolio 2 the best 

approximations are attained via the ex-ante tracking error calculated with the EWMA 

model. For the 1 year forecast horizon however, the historical moving average model is 

the one delivering the most accurate results for both portfolios.  Like for the estimation 

period 31.12.2007, in that case the ex-ante tracking error that is best approximated is the 

one computed with a window length of 250 observations.  

 

        Table 6: Mean Squared Errors – 30.06.2011 

 
 

 

From these observations we can make some general deductions. For periods with high 

instability in the markets, the results for the forecast of the tracking error are generally 

poor. However, if a volatility model needs to be selected the best choice seems to be the 

historical moving average model, at least when estimating for a 1-year horizon. For the 

forecasting horizons T+10 and T+20 the DCC-GARCH(1,1) model could also be considered. 

Under negative economic environments the ex-post tracking error that is best 

approximated is one computed with a short window length.  

 

The more stable the economic environment, the more accurate are the ex-ante tracking 

errors, independently of the volatility estimation model that has been used. The volatility 

model delivering the best results under these economic circumstances seems to be for the 

forecasting period T+250 the historical moving average model. For the two shorter 

forecasting periods it is unclear whether to favour the historical moving average or the 

EWMA model.  It would be interesting to see whether the EWMA would definitely 

outperform the historical moving average model in an environment of more economic 

EPTE V30 EPTE V60 EPTE V120 EPTE 250 EPTE V30 EPTE V60 EPTE V120 EPTE 250

HIST 0.0053757 0.0040183 0.0032461 0.0014238 0.0067746 0.0038239 0.0038625 0.0015704

EWMA 0.1602434 0.1521043 0.146826 0.128988 0.0023177 0.0008075 0.0008701 0.0002741

DCC_GARCH 0.0230048 0.0200035 0.0181187 0.0123126 0.0437716 0.0356259 0.035581 0.0272167

HIST 0.0650839 0.0570606 0.0543636 0.0392749 0.0324266 0.0232331 0.0232747 0.0140516

EWMA 0.6011712 0.5763181 0.5677571 0.5146453 0.0080182 0.0037789 0.0039075 0.0010908

DCC_GARCH 0.5414785 0.5180363 0.5098726 0.4593505 0.2557276 0.2287564 0.2285108 0.1961669

HIST 0.006628 0.0117276 0.0380225 0.0429306 0.0403268 0.0140534 1.5674599 0.6531313

EWMA 0.9636416 1.1129505 1.3327152 1.3515879 0.1227406 0.0723101 1.8665694 0.8418223

DCC_GARCH 0.8246446 0.9627265 1.1680018 1.1857655 0.2154162 0.2758274 0.9649613 0.446593

FORECASTING PERIOD T+250 FORECASTING PERIOD T+250

PORTFOLIO 1 PORTFOLIO 2

FORECASTING PERIOD T+10 FORECASTING PERIOD T+10

FORECASTING PERIOD T+20 FORECASTING PERIOD T+20
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stability than being the case for the year 2011, where the financial crisis is still patent. 

Finally, the last pattern that can be read out is that for more stable markets the ex-post 

tracking error that is best approximated is the one computed with a longer sample length 

which in our case is 250 observations. 
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6. Conclusions 

Triggered by the recent financial crisis, growing concerns about forecasted risk have come 

up. One of those concerns regards the existing deviation between the ex-post or realised 

tracking error, and the forecasted or ex-ante racking error. The tracking error has been 

defined as the volatility of active returns, which is the difference between portfolio and 

benchmark returns. 

In this research we have proposed a model for the estimation of the ex-ante tracking error 

specifically for actively managed global fixed income portfolios. Instead of making the 

active returns depend on securities, we have chosen variables standing for the risks on 

which active fixed income portfolio managers take bets to try to outperform the 

benchmark.  

The main focus has been put on testing the model with different volatility forecasting 

methodologies to figure out which one delivers the best approximation of the estimated 

ex-ante tracking error to the realized tracking error under different economic 

environments. For this purpose two international fixed income portfolios, benchmarking 

both against the JPMorgan Global Traded Index, have been selected for analysis, at four 

different points in time around the financial crisis. 

The volatility forecasting methodologies that have been used for the analysis are the 

historical moving average model, the Exponentially Weighted Moving Average (EWMA) 

model and the Dynamic Conditional Correlation (DCC-GARCH(1,1)) model.  Each of those 

models differs in the way the different observations are weighted. The last model also tries 

to capture characteristics of return volatilities such as volatility clustering and mean 

reversion.  The different parameters contained in the mentioned models have been 

estimated using the quasi-maximum likelihood model. 

As a new approach, the model that is proposed for the forecast of the tracking error tries 

to account for the fact that the active returns are not influenced in the same proportion by 

all the risk factors that have been selected. To include this effect, the sensitivities of the 

active returns towards the risk factors have been estimated applying Ordinary Least 

Squares to a multiple linear regression model. The sensitivities are however not included 

in the model as is, but are transformed in order to be centred around one. 

To perform backtesting and be able to make a comparison between the results obtained 

with the different volatility forecasting models, for each portfolio and period of analysis 

100’000 bet strategies have been simulated. Each single strategy has been applied to the 

portfolios afterwards, to obtain the according ex-post tracking errors.  

The comparison of the obtained results has been done using the Mean Squared Error, 

which is suitable for the assessment of the performance of predictors. The values of the 

Mean Squared Errors showed that for unstable economic environment the model 

performs badly for all volatility forecasting models. The best result is however delivered 
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by the historical moving average model, at least for the 1-year horizon. For more stable 

economic environments for the forecasting periods T+10 and T+20, it is unclear whether 

to favour the historical moving average or the EWMA model. For T+250 the historical 

moving average model seems again to be the better choice. 

To improve the forecast of the tracking error the investigation could be developed further 

on different grounds. The model to estimate the sensitivities of the active returns towards 

the risk factors could for example be strongly worked out. The analysis could also be 

centred on portfolios trading in one single market eliminating in that way the additional 

foreign exchange risks and in exchange, more factors could be introduced to replicate the 

unavoidable risks. It would also be interesting to incorporate periods with more economic 

stability to gain a better insight on whether the EWMA does outperform the historical 

moving average under such economic conditions. Of course, different volatility forecasting 

models, such as for example stochastic volatility models could be tested out as well. 
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8. Appendix 

 

Table 7: Sensitivities of the active returns towards the risk factors – Portfolio 1 

 
 

 

 

 

 

 

 

Estimated 

coefficients

Transformed 

coefficients

Estimated 

coefficients

Transformed 

coefficients

Estimated 

coefficients

Transformed 

coefficients

Estimated 

coefficients

Transformed 

coefficients

0.013625 3.376879794 -0.006229 -1.688286791 0.004783 1.675937883 -0.002544 -1.392182163

-0.01562 -3.871329349 0.025897 7.019034039 -0.00233 -0.816419667 0.001033 0.565300383

0.0094 2.329737252 6.24E-05 0.016912682 0.015528 5.440929007 -0.001096 -0.599776592

-0.028394 -7.037293568 -0.019962 -5.410431999 0.008068 2.826984495 -0.009399 -5.14352207

-0.004813 -1.192875042 -0.010021 -2.716057462 -0.010687 -3.744668232 -0.002321 -1.270147327

0.017313 4.290929899 -0.01827 -4.951838124 0.011333 3.971023212 -0.004579 -2.505818444

-0.019225 -4.76480837 -0.021654 -5.869025875 0.032561 11.40920205 0.015452 8.455974361

-0.011659 -2.889617726 0.001766 0.478650582 0.00116 0.40645786 0.012344 6.75514804

-0.00663 -1.643208296 0.007576 2.05337305 0.003328 1.166113584 -0.001779 -0.973542479

0.004499 1.115051904 -0.020168 -5.466265533 0.00781 2.73658266 -0.001745 -0.954936271

0.029316 7.265806095 0.030887 8.37150652 0.004544 1.592193548 0.014564 7.970023984

-0.033513 -8.306008993 -0.037775 -10.23840641 -0.002113 -0.740384016 0.004249 2.325228777

-0.000699 -0.173243228 0.006344 1.719455997 0.012553 4.398504755 -0.008559 -4.68383928

-0.01708 -4.233182156 -0.021055 -5.70667497 -0.069219 -24.25397121 -0.071965 -39.38222851

-0.059602 -14.77202125 -0.144965 -39.29081629 -0.087606 -30.69667869 0.024389 13.3466709

0.013451 3.33375487 0.078422 21.25522985 0.01624 5.690410039 -0.026406 -14.45045683

-0.003055 -0.757164607 0.003244 0.879242631 -0.007825 -2.741838581 -0.00063 -0.344762092

-0.003759 -0.931647057 -0.018525 -5.020952449 0.003877 1.358480278 0.011098 6.073285236

-0.024897 -6.170581742 -0.023408 -6.344424018 -0.010063 -3.526021935 -0.016561 -9.062865092

0.036359 9.011374123 0.05774 15.64965152 0.016963 5.943745412 0.006379 3.490852993

-0.012011 -2.976858951 -0.061713 -16.72647981 -0.003644 -1.276838312 -0.001353 -0.740417636

0.032889 8.151354095 0.049577 13.43718 -0.003987 -1.397023696 -0.001819 -0.995432136

-0.063917 -15.84146978 0.022346 6.056583181 -0.024278 -8.506882692 -0.002222 -1.215970427

0.009873 2.446967648 -0.038785 -10.51215335 0.006534 2.289479014 -0.00361 -1.975541512

-0.081295 -20.14850957 -0.082926 -22.47597856 -0.128002 -44.85122326 -0.053625 -29.34582094

-0.012878 -3.191740036 -0.026641 -7.220685247 -0.034379 -12.04621963 -0.005455 -2.985201925

-0.019536 -4.841887975 -0.011262 -3.052413845 -0.00591 -2.070832717 -6.56E-05 -0.035899037

0.079092 19.60250838 0.085608 23.20289864 0.085373 29.91424731 0.047607 26.0525221

0.001814 0.449589721 0.015578 4.222207679 0.00246 0.861970979 -5.45E-03 -2.9835602

0.006451 1.59884415 0.016228 4.398381449 0.023298 8.163495879 0.011572 6.332677667

0.001547 0.383415269 0.001946 0.527437164 0.001788 0.626505736 -0.000121 -0.066216211

-0.001506 -0.373253649 0.0043 1.165457249 0.000956 0.33497734 -6.41E-05 -0.035078175

-1.46E-06 -0.000361853 -0.000555 -0.150425296 0.001139 0.399099571 -3.20E-05 -0.017511725

-5.92E-06 -0.001467239 -2.55E-05 -0.006911433 -1.99E-05 -0.006972855 2.47E-06 0.001351686

0.000627 0.155398432 -0.001784 -0.48352924 -0.003939 -1.38020475 0.003355 1.835994951

-0.001142 -0.283038292 -0.001594 -0.432032292 0.000213 0.074634073 -0.001035 -0.566394866

0.000944 0.233965103 -0.007136 -1.93411696 -0.018388 -6.443057869 -0.015164 -8.298368834

-0.016366 -4.056221263 0.001557 0.422003939 0.021465 7.521222382 -0.007614 -4.166696142

0.012428 3.080210061 -0.006659 -1.804832516 -0.021251 -7.446237915 0.01749 9.571252367

-0.014325 -3.550370866 0.015108 4.094820491 0.006273 2.198025996 0.016384 8.966003361

0.016875 4.182374057 0.005655 1.5327118 0.028383 9.945252964 -0.015624 -8.550099885
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Table 8: Sensitivities of the active returns towards the risk factors - Portfolio 2 

 
 

 

 

Estimated 

coefficients

Transformed 

coefficients

Estimated 

coefficients

Transformed 

coefficients

Estimated 

coefficients

Transformed 

coefficients

Estimated 

coefficients

Transformed 

coefficients

0.015745 4.195438021 -0.012039 -3.105060202 -0.007873 -2.582746909 0.0000214 0.011834575

-0.013341 -3.554864315 0.033356 8.603072355 0.002867 0.940522722 -0.002141 -1.18401051

-0.00003 -0.007993848 3.50E-04 0.090270876 -0.008087 -2.65294986 -0.009913 -5.482062674

-0.021776 -5.80246798 -0.023453 -6.048922411 -0.021158 -6.940906781 0.006625 3.663741069

-0.000941 -0.250740373 -0.00782 -2.016909276 -0.005461 -1.791487472 -0.002311 -1.278023488

0.005362 1.428767143 -0.017158 -4.425336235 -0.00394 -1.292521633 -0.006045 -3.342990908

-0.002908 -0.774870357 -0.04169 -10.75255086 0.010386 3.407139514 0.02772 15.32964565

-0.026206 -6.982892905 0.005372 1.385528981 -0.010526 -3.453066678 -0.00237 -1.310651522

-0.007599 -2.024841761 0.00775 1.998855101 -0.001077 -0.353311117 -0.002193 -1.212767421

-0.00259 -0.690135565 -0.025588 -6.599574752 0.015812 5.187145195 -0.003839 -2.123034259

0.026416 7.038849843 0.038784 10.00304468 -0.01558 -5.111037322 0.012171 6.730776234

-0.032725 -8.719956129 -0.035214 -9.082281746 0.008438 2.768095823 0.00357 1.974272546

0.001684 0.448721348 0.007814 2.015361775 0.011236 3.685983013 0.000342 0.189131992

-0.000311 -0.08286956 -0.011284 -2.910333027 -0.04797 -15.73661491 -0.066506 -36.77898318

-0.06486 -17.28269991 -0.175927 -45.37452663 -0.068431 -22.44887002 0.021162 11.70295676

0.007611 2.0280393 0.094963 24.49255187 0.00523 1.71570765 -0.04135 -22.86727445

-0.008875 -2.364846773 0.001933 0.49855315 -0.007633 -2.504014626 0.002571 1.421808044

0.003969 1.057586123 -0.01587 -4.093139413 0.006164 2.022107449 0.00531 2.93652303

-0.011046 -2.943334924 -0.019628 -5.0623907 -0.005068 -1.66256336 -0.01009 -5.579946775

0.025127 6.69538083 0.062276 16.06202584 0.01136 3.726661359 0.014719 8.139864875

-0.013422 -3.576447705 -0.076483 -19.72624964 -0.016847 -5.526678162 -0.002823 -1.561168459

0.035631 9.494293562 0.054505 14.05775449 0.012352 4.052088126 0.014189 7.846765589

-0.061667 -16.43188799 0.040203 10.3690286 -0.008666 -2.842891491 -0.010441 -5.774055925

0.005886 1.568393026 -0.048541 -12.51953877 -0.003248 -1.06551022 0.002032 1.1237316

-0.074936 -19.96756707 -0.100427 -25.90180919 -0.035585 -11.6737011 -0.038222 -21.13743564

-0.008788 -2.341664613 -0.036263 -9.352836456 -0.001956 -0.6416681 -0.016815 -9.298989597

-0.015571 -4.149073701 -0.011022 -2.842758829 -0.004089 -1.341401259 -3.61E-04 -0.199639325

0.073735 19.64754668 0.103496 26.69335581 0.03421 11.22263073 0.041107 22.73289119

0.002779 0.740496809 0.019667 5.072449455 0.011907 3.906105352 4.83E-03 2.672180656

0.004299 1.145518454 0.017499 4.51328586 0.00882 2.893411372 -0.004242 -2.345900319

0.001687 0.449520733 0.002059 0.531050665 0.001659 0.544236901 0.000417 0.230608306

-0.000791 -0.210771132 0.004388 1.131738862 0.001929 0.632810718 -1.22E-05 -0.006746814

-2.63E-04 -0.070079403 -0.000783 -0.201948844 0.00072 0.236196847 -1.80E-05 -0.009954315

-3.32E-06 -0.000884653 -3.40E-05 -0.008769171 -7.95E-05 -0.026080068 1.61E-05 0.008903582

0.000388 0.103387104 -0.001267 -0.326780569 -0.002846 -0.933633647 0.002829 1.564486564

-0.001493 -0.397827181 -0.00169 -0.43587937 0.000321 0.105304427 -0.001 -0.55301752

0.005401 1.439159146 -0.006485 -1.672590365 -0.02467 -8.093022512 -0.011677 -6.457585579

-0.011086 -2.953993389 0.004707 1.214014318 0.02686 8.811454587 -0.008326 -4.60442387

0.007324 1.951564819 -0.011118 -2.867518841 -0.02209 -7.246650477 0.010551 5.834887852

-0.014685 -3.912988717 0.016268 4.195790295 0.013775 4.518904949 0.010547 5.832675782

0.019001 5.063037018 0.005428 1.399972321 0.013854 4.544820992 -0.014175 -7.839023344

Dez 07 Aug 08 Jun 09 Jun 11
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Programming code in R: 

 

# This is the final script where all the calculations of my master's thesis "Estimating the ex-ante tracking error: 
emphasis on the forecast of the variance and covariance matrix" are included. 
# The structure of this script is as follows: On the first part all the functions that have been created for this 
purpose are defined; after defining all the needed functions, all the calculations are done. 
#  
# Author: Patricia 
#  
############################################################################
### 
 
############################################################################
## 
#  Definition of functions 
############################################################################
## 
 
setwd("C:/Users/Patricia/workspace/TesinaQFB/") 
library(fGarch) 
library(plyr) 
 
# Function for calculating the dynamics of the variance covariance matrix with the historical volatility model 
getHistoricalVolatilities = function(.data, .M) 
{ 
 j = T - .M 
 ls_Sigma = vector("list", j) 
 for(i in 1:j) 
 { 
  window = .data[i:(.M+i-1), ] 
  ls_Sigma[[i]] = cov(window) 
 } 
 return(ls_Sigma) 
} 
 
# Function for calculating the dynamics of the variance and covariance matrix with the EWMA model 
getVolatilities_EWMA = function(.data, .lambda) 
{ 
  
 Sigma0 = cov(.data) 
 vec_histMean = apply(.data, 2, mean) 
 numObs = nrow(.data) #Number of observations 
 numFact = ncol(.data) #Number of risk factors 
 ls_Sigma_EWMA = vector("list", (numObs+1)) 
 ls_Sigma_EWMA[[1]] = Sigma0 
  
 for(i in 2:(numObs+1)) 
 { 
  Sigma_t = matrix(0, ncol = numFact, nrow = numFact) 
  x_t_prev = .data[(i-1), ] 
  Sigma_t_prev = ls_Sigma_EWMA[[(i-1)]] 
  for(j in 1:numFact) 
  { 
   for(k in 1:numFact) 
   { 
    if(k<j) 
    { 
     Sigma_t[j, k] = Sigma_t[k, j] 
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    } else { 
      
     Sigma_t[j, k] = as.numeric((1-.lambda) * (x_t_prev[j] - 
vec_histMean[j]) * (x_t_prev[k] - vec_histMean[k]) + .lambda * Sigma_t_prev[j, k]) 
    } 
     
   } 
  } 
  ls_Sigma_EWMA[[i]] = Sigma_t 
 } 
 return(ls_Sigma_EWMA) 
} 
 
# Function for calculating the dynamics of the volatility of each risk factor with an univariate GARCH(1,1) 
getVolatilities_GARCH = function(.data, .alpha, .beta) 
{ 
 #Get the volatility series for each risk factor via a GARCH(1,1) 
 Sigma0 = diag(cov(.data)) 
 vec_histMean = apply(.data, 2, mean) 
 numObs = nrow(.data) #Number of observations 
 numFact = ncol(.data) #Number of risk factors 
 ma_Sigma_GARCH = matrix(0, ncol = numFact, nrow = (numObs + 1)) 
 ma_Sigma_GARCH[1, ] = Sigma0 
 for(i in 2:(numObs+1)) 
 { 
  ma_Sigma_GARCH[i, ] = (1 - .alpha - .beta) * Sigma0 + .alpha * (as.numeric(.data[(i-1), ]) - 
vec_histMean)^2 + .beta * ma_Sigma_GARCH[(i-1), ] 
 } 
 return(ma_Sigma_GARCH) 
} 
 
# Function for obtaining the dynamics of the matrix R, which will be needed for building the DCCGARCH 
getMatrixR = function(.E, .alpha, .beta, .ma_Hist_Correl_E = NA) 
{ 
 if(all(is.na(.ma_Hist_Correl_E))) 
 { 
  ma_histCorrel = cor(.E) 
  E = .E 
 } else { 
  ma_histCorrel = .ma_Hist_Correl_E 
  E = t(as.matrix(.E)) 
 } 
 numObs = nrow(E) 
 numFact = ncol(E) 
 ls_R = vector("list", (numObs+1)) 
 ls_R[[1]] = ma_histCorrel 
 for(i in 2:(numObs+1)) 
 { 
  R_t = diag(numFact) 
  R_previous_t = ls_R[[(i-1)]] 
  epsilon_t = E[(i-1), ] 
   
  for(j in 1:numFact) 
  { 
   for(k in 1:numFact) 
   { 
    if(j == k) 
    {      
    }  
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    else 
    { 
     if(j>k){R_t[j, k] = R_t[k, j]} 
     else {R_t[j, k] = as.numeric(ma_histCorrel[j, k] + .alpha * 
(epsilon_t[j] * epsilon_t[k] - ma_histCorrel[j, k]) + .beta * (R_previous_t[j, k] - ma_histCorrel[j, k]))} 
    } 
   } 
  } 
  ls_R[[i]] = R_t 
 } 
 return(ls_R)  
} 
 
# Function for calculating the dynamics of the variance and covariance matrix with the DCC GARCH model 
getVolatility_DCCGARCH = function(.lsD, .lsR) 
{ 
 D.length = length(.lsD) 
 R.length = length(.lsR) 
 if(D.length != R.length) 
 { 
  stop("The input lists must have the same length") 
 } else { 
   
  ls_H = vector("list", D.length) 
  for(i in 1:D.length) 
  { 
   ls_H[[i]] = .lsD[[i]] %*% .lsR[[i]] %*% .lsD[[i]] 
  } 
 } 
 return(ls_H) 
} 
 
#Function which gives, for a specific value of M, the value of the likelihood function  
OptimizeM = function(.M) 
{ 
 j = T - .M #Number of observations in output 
 ls_Sigma = getHistoricalVolatilities(df_riskFactorSeries, .M) 
 QML = 0 #Initial value of the likelihood function 
 checkfield = numeric(T) 
 for (i in 1:j) 
 { 
  Sigma_t = data.matrix(ls_Sigma[[i]]) 
  x_t = data.matrix(df_riskFactorSeries[i, ]) 
  if(is.infinite(QML)) 
  { 
    
  } else { 
   if(det(Sigma_t) < 1.120882e-296) 
   { 
    value_t = Inf 
   } else { 
    value_t = as.numeric(N * log(2 * pi) + log(det(Sigma_t)) + x_t %*% 
solve(Sigma_t) %*% t(x_t)) 
   }} 
  QML = QML + value_t 
  checkfield[i] = i 
 } 
 return(-0.5 * QML) 
} 
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# Function which gives, for a specific value of the parameter lambda, the value of the likelihood function 
OptimizeLambda = function(.lambda) 
{ 
 j = 200 #Number of observations in output 
 N = 41 
 ls_Sigma = getVolatilities_EWMA(df_riskFactorSeries_cut, .lambda) 
 QML = 0 #Initial value of the likelihood function 
 checkfield = numeric(j) 
 for (i in 1:j) 
 { 
  Sigma_t = data.matrix(ls_Sigma[[i+1]]) 
  x_t = data.matrix(df_riskFactorSeries_cut[i, ]) 
  if(is.infinite(QML)) 
  { 
    
  } else { 
   if(det(Sigma_t) < 1.120882e-294) 
   { 
    value_t = Inf 
   } else { 
    value_t = as.numeric(N * log(2 * pi) + log(det(Sigma_t)) + x_t %*% 
solve(Sigma_t) %*% t(x_t)) 
  }} 
  QML = QML + value_t 
  checkfield[i]=i 
 } 
 return(-0.5 * QML) 
} 
 
# Function for predicting the variance-covariance matrix with the historical model 
PredictReturnsAndVolatilities = function(.data, .lastWin, .Sigma_T, .M, n) 
{ 
 ls_PredictedSigma = vector("list", n) 
 vec_histMean = apply(.data, 2, mean) 
 for(i in 1:n) 
 { 
  if(i == 1) {Sigma_new = .Sigma_T} 
  else {Sigma_new = ls_PredictedSigma[[(i-1)]]} 
  x_next_period = numeric(N) 
  for(j in 1:N) 
  { 
   x_next_period[j] = vec_histMean[j] + .data[(T + i - 1), j] + sqrt(Sigma_new[j, j]) * 
rnorm(1) #Random walk 
  } 
  .data[(T+i), ] = x_next_period 
  window = .data[(nrow(.data)-.M+1):nrow(.data), ] 
  ls_PredictedSigma[[i]] = cov(window) 
 } 
 return(ls_PredictedSigma) 
} 
 
# Function for predicting the variance and covariance matrix with the EWMA model 
PredictReturnsAndVolatilities_EWMA = function(.data, .Sigma_EWMA_T, .lambda, n) 
{ 
 ls_PredictedSigma_EWMA = vector("list", n) 
 vec_histMean = apply(.data, 2, mean) 
 for(i in 1:n) 
 { 
  if(i == 1)  
  { 
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   Sigma_last_period = .Sigma_EWMA_T 
  } else { 
   Sigma_last_period = ls_PredictedSigma_EWMA[[(i-1)]] 
  } 
  x_next_period = numeric(N) 
  Sigma_t = matrix(0, ncol = N, nrow = N) 
  for(j in 1:N) 
  { 
   x_next_period[j] = vec_histMean[j] + .data[(T + i - 1), j] + 
sqrt(Sigma_last_period[j, j]) * rnorm(1) #Random walk 
   for(k in 1:N) 
   { 
    if(k<j) 
    { 
     Sigma_t[j, k] = Sigma_t[k, j] 
      
    } else { 
      
     Sigma_t[j, k] = as.numeric((1-.lambda) * (x_next_period[j] - 
vec_histMean[j]) * (x_next_period[k] - vec_histMean[k]) + .lambda * Sigma_last_period[j, k]) 
    } 
     
   } 
  } 
  .data[(T+i), ] = x_next_period 
  ls_PredictedSigma_EWMA[[i]] = Sigma_t 
 } 
 return(ls_PredictedSigma_EWMA) 
} 
 
# Function for predicting the variance and covariance matrix with the DCC GARCH model 
PredictReturnsAndVolatilities_DCCGARCH = function(.data, .ma_VolatilitiesGARCH, .ma_Hist_Correl_E, 
.Sigma_DCCGARCH_T, .params, n) 
{ 
 ls_PredictedSigma_DCCGARCH = vector("list", n) 
 vec_histMean = apply(.data, 2, mean) 
 Sigma0 = apply(.data,2,var) 
 ma_Sigma_GARCH = matrix(0, ncol = N, nrow = (n+1)) 
 ma_Sigma_GARCH[1, ] = Sigma0 
 for(i in 1:n) 
 { 
  if(i == 1)  
  { 
   Sigma_last_period = .Sigma_DCCGARCH_T 
  } else { 
   Sigma_last_period = ls_PredictedSigma_DCCGARCH[[(i-1)]] 
  } 
  x_next_period = numeric(N) 
  for(j in 1:N) 
  { 
   x_next_period[j] = vec_histMean[j] + .data[(T + i - 1), j] + 
sqrt(Sigma_last_period[j, j]) * rnorm(1) #Random walk 
   ma_Sigma_GARCH[(i+1), j] = (1 - .params[1] - .params[2]) * Sigma0[j] + 
.params[1] * (as.numeric(x_next_period[j]) - vec_histMean[j])^2 + .params[2] * ma_Sigma_GARCH[i, j] 
#    
  } 
  .data[(T+i), ] = x_next_period 
  E_i = x_next_period / sqrt(ma_Sigma_GARCH[(i+1), ]) 
  diag_i = sqrt(ma_Sigma_GARCH[(i+1), ]) 
  D_i = diag(diag_i)   
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  R_i = getMatrixR(E_i, .params[1], .params[2], .ma_Hist_Correl_E)[[2]] 
  H_i = getVolatility_DCCGARCH(list(D_i), list(R_i))[[1]] 
  ls_PredictedSigma_DCCGARCH[[i]] = H_i  
 } 
 return(ls_PredictedSigma_DCCGARCH) 
} 
 
# Function for simulating relative weights (bets) on the different risk factors 
SimulateWeights = function(.originalWeights, .benchmarkWeights, .numWeightsToSimulate, 
.numSimulations) 
{ 
 numRisks = length(.originalWeights) 
 ma_WeightSimulations = matrix(0, ncol = numRisks, nrow = .numSimulations) 
 for(i in 1:.numSimulations) 
 { 
  posToSimulate1 = sample(1:24, .numWeightsToSimulate[1]) 
  posToSimulate2 = sample(25:30, .numWeightsToSimulate[2]) 
  posToSimulate3 = sample(31:36, .numWeightsToSimulate[3]) 
  posToSimulate4 = sample(37:41, .numWeightsToSimulate[4]) 
  weights = .originalWeights 
  sumSelectedWeights_original_1 = sum(weights[posToSimulate1]) 
  sumSelectedWeights_original_2 = sum(weights[posToSimulate2]) 
  sumSelectedWeights_original_3 = sum(weights[posToSimulate3]) 
  sumSelectedWeights_original_4 = sum(weights[posToSimulate4]) 
   
  weights[posToSimulate1] = weights[posToSimulate1] * runif(.numWeightsToSimulate[1], 
min = 0.8, max = 1.2) 
  weights[posToSimulate2] = weights[posToSimulate2] * runif(.numWeightsToSimulate[2], 
min = 0.8, max = 1.2) 
  weights[posToSimulate3] = weights[posToSimulate3] * runif(.numWeightsToSimulate[3], 
min = 0.8, max = 1.2) 
  weights[posToSimulate4] = weights[posToSimulate4] * runif(.numWeightsToSimulate[4], 
min = 0.8, max = 1.2) 
   
  sumSelectedWeights_simulated_1 = sum(weights[posToSimulate1]) 
  sumSelectedWeights_simulated_2 = sum(weights[posToSimulate2]) 
  sumSelectedWeights_simulated_3 = sum(weights[posToSimulate3]) 
  sumSelectedWeights_simulated_4 = sum(weights[posToSimulate4]) 
   
  weights[posToSimulate1] = weights[posToSimulate1] * (sumSelectedWeights_original_1 / 
sumSelectedWeights_simulated_1) 
  weights[posToSimulate2] = weights[posToSimulate2] * (sumSelectedWeights_original_2 / 
sumSelectedWeights_simulated_2) 
  weights[posToSimulate3] = weights[posToSimulate3] * (sumSelectedWeights_original_3 / 
sumSelectedWeights_simulated_3) 
  weights[posToSimulate4] = weights[posToSimulate4] * (sumSelectedWeights_original_4 / 
sumSelectedWeights_simulated_4) 
  ma_WeightSimulations[i, ] = weights / .benchmarkWeights 
  ma_WeightSimulations[i, ][is.na(ma_WeightSimulations[i, ])] = 1 
   
 } 
 return(ma_WeightSimulations) 
} 
 
# Function for calculating the ex-ante tracking error using a particular series of variance and covariance 
matrices and relative exposures 
getEATE = function(.ls_PredictedSigma, .sensit, .ma_SimulatedWeights, .T) 
{ 
 EATE = matrix(0, ncol = length(.T), nrow = nrow(.ma_SimulatedWeights)) 
 Theta = t(as.matrix(.sensit)) 
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 ones = matrix(rep(1,41), ncol = 41) 
 for(i in .T) 
 { 
  Sigma = .ls_PredictedSigma[[i]] 
  for(j in 1:nrow(.ma_SimulatedWeights)) 
  { 
   Omega = as.matrix(.ma_SimulatedWeights[j, ]) 
   EATE[j, which(.T == i)] = ((Omega - ones) * Theta) %*% Sigma %*% t(((Omega - 
ones) * Theta)) * sqrt(i) 
  } 
 } 
 return(EATE) 
} 
 
# Function for calculating the ex-post tracking error (EPTE) 
getEPTE = function(.securities, .relativeExposures, .originalWeights_pf, .originalWeights_bm, .indicators, 
.shares, .returnBenchmark, .additional, .T) 
{ 
 vec_BenchmarkReturns = .returnBenchmark 
 additional = .additional 
 numSecurities = ncol(.securities) 
 originalExposures = .originalWeights_pf / .originalWeights_bm 
 originalExposures[is.na(originalExposures)] = 1 
   
 EPTE_V30 = matrix(0, ncol = 3, nrow = nrow(.relativeExposures)) 
 EPTE_V60 = matrix(0, ncol = 3, nrow = nrow(.relativeExposures)) 
 EPTE_V120 = matrix(0, ncol = 3, nrow = nrow(.relativeExposures)) 
 EPTE_V250 = matrix(0, ncol = 3, nrow = nrow(.relativeExposures)) 
 ls_EPTE = vector("list", 4) 
 for(i in 1:nrow(.relativeExposures)) 
 { 
#  print(i) 
  relativeExposures_i = .relativeExposures[i, ] 
  indicators_i = as.matrix(.indicators[, originalExposures != relativeExposures_i]) 
  relativeDeviations_i = ((originalExposures - relativeExposures_i) / 
relativeExposures_i)[originalExposures != relativeExposures_i] 
   
  shares = .shares 
  if(ncol(indicators_i) > 0) 
  { 
    
   for(j in 1:ncol(indicators_i)) 
   { 
    combination_j = indicators_i[, j] 
    comb_j_curr = as.vector(combination_j[1]) 
    comb_j_factor = as.vector(combination_j[2]) 
    positions = NULL 
     
    for(k in 1:numSecurities) 
    { 
     curr = as.vector(additional[1, k]) 
     factors = as.vector(additional[2:5, k]) 
     if(comb_j_curr == curr && comb_j_factor %in% factors) 
     { 
      positions = c(positions, k) 
     } 
    } 
     
    sharesToChange = shares[positions] 
    sharesToChange.length = length(sharesToChange) 
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    newShares = sharesToChange + relativeDeviations_i[j] / 
sharesToChange.length 
    shares[positions] = newShares 
     
   } 
  } 
  vec_finalWeights = shares 
  securities = .securities 
  for(l in 1:length(vec_finalWeights)) 
  { 
   securities[, l] = securities[, l] * as.numeric(vec_finalWeights[l]) 
  } 
  vec_PortfolioReturns = apply(securities, 1, sum, na.rm = TRUE) 
  vec_ActiveReturns = vec_PortfolioReturns - vec_BenchmarkReturns 
  EPTE_V30[i, 1] = sd(vec_ActiveReturns[(.T + 10 - 29):(.T + 10), ]) * sqrt(10) 
  EPTE_V30[i, 2] = sd(vec_ActiveReturns[(.T + 20 - 29):(.T + 20), ]) * sqrt(20) 
  EPTE_V30[i, 3] = sd(vec_ActiveReturns[(.T + 250 - 29):(.T + 250), ]) * sqrt(250) 
  EPTE_V60[i, 1] = sd(vec_ActiveReturns[(.T + 10 - 59):(.T + 10), ]) * sqrt(10) 
  EPTE_V60[i, 2] = sd(vec_ActiveReturns[(.T + 20 - 59):(.T + 20), ]) * sqrt(20) 
  EPTE_V60[i, 3] = sd(vec_ActiveReturns[(.T + 250 - 59):(.T + 250), ]) * sqrt(250) 
  EPTE_V120[i, 1] = sd(vec_ActiveReturns[(.T + 10 - 119):(.T + 10), ]) * sqrt(10) 
  EPTE_V120[i, 2] = sd(vec_ActiveReturns[(.T + 20 - 119):(.T + 20), ]) * sqrt(20) 
  EPTE_V120[i, 3] = sd(vec_ActiveReturns[(.T + 250 - 119):(.T + 250), ]) * sqrt(250) 
  EPTE_V250[i, 1] = sd(vec_ActiveReturns[(.T + 10 - 249):(.T + 10), ]) * sqrt(10) 
  EPTE_V250[i, 2] = sd(vec_ActiveReturns[(.T + 20 - 249):(.T + 20), ]) * sqrt(20) 
  EPTE_V250[i, 3] = sd(vec_ActiveReturns[(.T + 250 - 249):(.T + 250), ]) * sqrt(250) 
   
 } 
 ls_EPTE[[1]] = EPTE_V30 
 ls_EPTE[[2]] = EPTE_V60 
 ls_EPTE[[3]] = EPTE_V120 
 ls_EPTE[[4]] = EPTE_V250 
 return(ls_EPTE) 
} 
 
# Function for calculating the mean squared error out of two series 
getMSE = function(vec_EATE, vec_EPTE) 
{ 
 return(mean((vec_EATE - vec_EPTE)^2)) 
} 
 
# Function for building a table summarizing all MSE values of a portfolio in a specific period 
buildMSETable = function(.EATE_HIST, .EATE_EWMA, .EATE_DCCGARCH, .ls_EPTE) 
{ 
 outputTable = matrix(0, ncol = 12, nrow = 3) 
 for(i in 1:4) 
 { 
  currentEPTEWindow = .ls_EPTE[[i]] 
  for (j in 1:3) 
  { 
   outputTable[1, (i*3-3+j)] = getMSE(.EATE_HIST[, j], currentEPTEWindow[, j]) 
   outputTable[2, (i*3-3+j)] = getMSE(.EATE_EWMA[, j], currentEPTEWindow[, j]) 
   outputTable[3, (i*3-3+j)] = getMSE(.EATE_DCCGARCH[, j], currentEPTEWindow[, 
j]) 
  } 
 } 
 df_MSE = as.data.frame(outputTable) 
 colnames(df_MSE) = paste(c(rep("V30", 3), rep("V60", 3), rep("V120", 3), rep("V250", 3)), c("T+10", 
"T+20", "T+250")) 
 rownames(df_MSE) = c("HIST", "EWMA", "DCC_GARCH") 
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 return(df_MSE) 
} 
 
############################################################################
##################### 
#  Calculations 
############################################################################
##################### 
 
 
 
# Importing the data 
data_1_07 = read.csv(file="pf1_p1.csv",head=TRUE,sep=";") 
data_1_08 = read.csv(file="pf1_p2.csv",head=TRUE,sep=";") 
data_1_09 = read.csv(file="pf1_p3.csv",head=TRUE,sep=";") 
data_1_11 = read.csv(file="pf1_p4.csv",head=TRUE,sep=";") 
data_2_07 = read.csv(file="pf2_p1.csv",head=TRUE,sep=";") 
data_2_08 = read.csv(file="pf2_p2.csv",head=TRUE,sep=";") 
data_2_09 = read.csv(file="pf2_p3.csv",head=TRUE,sep=";") 
data_2_11 = read.csv(file="pf2_p4.csv",head=TRUE,sep=";") 
 
#adapt manually for each series 
df_riskFactorSeries = data_1_07[, -c(1:3, 45)] 
 
T = nrow(df_riskFactorSeries) #Number of observations in time 
N = ncol(df_riskFactorSeries) #Number of risk factors 
 
# Obtaining the optimal window size M 
intervalForM = seq(20,500,5) 
LikelihoodFuntionValue = numeric(max(intervalForM)) 
for(k in intervalForM) 
{ 
 LikelihoodFuntionValue[k] = OptimizeM(k) #Applies the function OptimizeM for a grid of values for 
M 
} 
 
# Plotting the results and saving the plot as a pdf file 
pdf("plot_M_4.pdf") #adapt manually! 
plot(intervalForM, LikelihoodFuntionValue[intervalForM], type = "l", lwd = 2, xlab = "M", ylab = "Likelihood 
Function Value") 
ymax = max(LikelihoodFuntionValue[is.finite(LikelihoodFuntionValue)],na.rm=TRUE) 
xmax = which(LikelihoodFuntionValue==ymax) 
points(xmax,ymax, col="red", lwd=5) 
x = as.character(xmax) 
text((xmax+20),ymax, x, col = "red", lwd=2) 
dev.off() 
 
M = 50 # Define the value of the optimal M 
ls_Sigma_Historical = getHistoricalVolatilities(df_riskFactorSeries, M) #Obtain historical variance and 
covariance matrices 
 
lastWin = df_riskFactorSeries[(nrow(df_riskFactorSeries)-M+1):nrow(df_riskFactorSeries), ] 
Sigma_T = ls_Sigma_Historical[[length(ls_Sigma_Historical)]] 
 
numPredictionPeriods = 20 
 
# Predict variance and covariance matrices with the historical method 
ls_PredictedSigma = PredictReturnsAndVolatilities(df_riskFactorSeries, lastWin, Sigma_T, M, 
numPredictionPeriods) 
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#Importing sensitivities and weights 
 
sensit_1_07 = read.csv(file="coefficients1.csv",head=FALSE,sep=";")#Sensitivities portfolio 1, period up to 
2007 
sensit_1_08 = read.csv(file="coefficients2.csv",head=FALSE,sep=";")#Sensitivities portfolio 1, period up to 
2008 
sensit_1_09 = read.csv(file="coefficients3.csv",head=FALSE,sep=";")#Sensitivities portfolio 1, period up to 
2009 
sensit_1_11 = read.csv(file="coefficients4.csv",head=FALSE,sep=";")#Sensitivities portfolio 1, period up to 
2011 
sensit_2_07 = read.csv(file="coefficients5.csv",head=FALSE,sep=";")#Sensitivities portfolio 2, period up to 
2007 
sensit_2_08 = read.csv(file="coefficients6.csv",head=FALSE,sep=";")#Sensitivities portfolio 2, period up to 
2008 
sensit_2_09 = read.csv(file="coefficients7.csv",head=FALSE,sep=";")#Sensitivities portfolio 2, period up to 
2009 
sensit_2_11 = read.csv(file="coefficients8.csv",head=FALSE,sep=";")#Sensitivities portfolio 2, period up to 
2011 
 
weights_pf_1_07 = as.numeric(read.csv(file="weights1.csv",head=TRUE,sep=";")[1, ])#Weights portfolio 1, 
period up to 2007 
weights_bm_07 = as.numeric(read.csv(file="weights1.csv",head=TRUE,sep=";")[2, ])#Weights bechmark, 
period up to 2007 
weights_pf_1_08 = as.numeric(read.csv(file="weights2.csv",head=TRUE,sep=";")[1, ])#Weights portfolio 1, 
period up to 2008 
weights_bm_08 = as.numeric(read.csv(file="weights2.csv",head=TRUE,sep=";")[2, ])#Weights bechmark, 
period up to 2008 
weights_pf_1_09 = as.numeric(read.csv(file="weights3.csv",head=TRUE,sep=";")[1, ])#Weights portfolio 1, 
period up to 2009 
weights_bm_09 = as.numeric(read.csv(file="weights3.csv",head=TRUE,sep=";")[2, ])#Weights bechmark, 
period up to 2009 
weights_pf_1_11 = as.numeric(read.csv(file="weights4.csv",head=TRUE,sep=";")[1, ])#Weights portfolio 1, 
period up to 2011 
weights_bm_11 = as.numeric(read.csv(file="weights4.csv",head=TRUE,sep=";")[2, ])#Weights bechmark, 
period up to 2011 
weights_pf_2_07 = as.numeric(read.csv(file="weights5.csv",head=TRUE,sep=";")[1, ])#Weights portfolio 2, 
period up to 2007 
weights_pf_2_08 = as.numeric(read.csv(file="weights6.csv",head=TRUE,sep=";")[1, ])#Weights portfolio 2, 
period up to 2008 
weights_pf_2_09 = as.numeric(read.csv(file="weights7.csv",head=TRUE,sep=";")[1, ])#Weights portfolio 2, 
period up to 2009 
weights_pf_2_11 = as.numeric(read.csv(file="weights8.csv",head=TRUE,sep=";")[1, ])#Weights portfolio 2, 
period up to 2011 
 
# Simulating the relative exposures (bets) to the risk factors 
numBets = c(4,2,2,2) 
numSimulations = 100000 #Number of different vectors of relative exposures to simulate 
ma_RelativeExposures_1_07 = SimulateWeights(weights_pf_1_07, weights_bm_07, numBets, 
numSimulations)#Matrix where each row represents a vector of relative exposures 
ma_RelativeExposures_1_08 = SimulateWeights(weights_pf_1_08, weights_bm_08, numBets, numSimulations) 
ma_RelativeExposures_1_09 = SimulateWeights(weights_pf_1_09, weights_bm_09, numBets, numSimulations) 
ma_RelativeExposures_1_11 = SimulateWeights(weights_pf_1_11, weights_bm_11, numBets, numSimulations) 
ma_RelativeExposures_2_07 = SimulateWeights(weights_pf_2_07, weights_bm_07, numBets, numSimulations) 
ma_RelativeExposures_2_08 = SimulateWeights(weights_pf_2_08, weights_bm_08, numBets, numSimulations) 
ma_RelativeExposures_2_09 = SimulateWeights(weights_pf_2_09, weights_bm_09, numBets, numSimulations) 
ma_RelativeExposures_2_11 = SimulateWeights(weights_pf_2_11, weights_bm_11, numBets, numSimulations) 
 
evaluationPeriods = c(10,20) # T+10, T+20 
# Calculating the ex-ante tracking error using the historical variance covariance matrices 
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EATE = getEATE(ls_PredictedSigma, sensit_2_11, ma_RelativeExposures_2_11, evaluationPeriods) #the inputs 
of this function have to be adapted manually for each portfolio/period 
EATE = as.data.frame(EATE) 
EATE$V3 = EATE$V2 * sqrt(12) 
#head(sqrt(EATE)) 
 
write.csv(sqrt(EATE),"EATE_HIST_1_07.csv") #adapt manually 
 
write.csv(ls_EPTE_1_08[[1]], file = "EPTE_1_08_V30.csv") 
write.csv(ls_EPTE_1_08[[2]], file = "EPTE_1_08_V60.csv") 
write.csv(ls_EPTE_1_08[[3]], file = "EPTE_1_08_V120.csv") 
write.csv(ls_EPTE_1_08[[4]], file = "EPTE_1_08_V250.csv") 
 
 
# EWMA model 
 
# Finding the optimal value of the parameter lambda 
intervalForLambda = seq(0.6,.95,0.05) 
LikelihoodFuntionValue = numeric(length(intervalForLambda)) 
for(k in intervalForLambda) 
{ 
 LikelihoodFuntionValue[which(intervalForLambda == k)] = OptimizeLambda(k) 
} 
 
# Plotting the results and saving the plot as pdf 
pdf("plot_lambda_1.pdf") #adapt manually 
plot(intervalForLambda, LikelihoodFuntionValue, type = "l", lwd = 2, xlab = "lambda", ylab = "Likelihood 
Function Value") 
ymax = max(LikelihoodFuntionValue[is.finite(LikelihoodFuntionValue)],na.rm=TRUE) 
xmax = intervalForLambda[which(LikelihoodFuntionValue==ymax)] 
points(xmax,ymax, col="red", lwd=5) 
x = as.character(xmax) 
text((xmax+.02),ymax, x, col = "red", lwd=2) 
dev.off() 
 
lambda = .85 # Defining lambda with the optimal value obtained previously 
T = nrow(df_riskFactorSeries) 
 
# Obtaining the dynamics for the variance-covariance matrix with the EWMA method 
ls_Sigma_EWMA = getVolatilities_EWMA(df_riskFactorSeries, lambda) 
Sigma_T_EWMA = ls_Sigma_EWMA[[length(ls_Sigma_EWMA)]] 
 
# Predicting the variance-covariance matrices with the EWMA method 
ls_PredictedSigma_EWMA = PredictReturnsAndVolatilities_EWMA(df_riskFactorSeries, Sigma_T_EWMA, 
lambda, numPredictionPeriods) 
 
# Calculating the ex ante tracking error with the EWMA variance covariance matrices 
EATE_EWMA = getEATE(ls_PredictedSigma_EWMA, sensit_1_07, ma_RelativeExposures_1_07, 
evaluationPeriods)#adapt manually inputs 
EATE_EWMA = as.data.frame(EATE_EWMA) 
EATE_EWMA$V3 = EATE_EWMA$V2 * sqrt(12) 
#head(sqrt(EATE_EWMA)) 
 
write.csv(sqrt(EATE_EWMA),"EATE_EWMA_1_07.csv")#adapt manually 
 
 
# DCC GARCH 
 
# Optimize GARCH Parameters using the package fGarch 
params = matrix(0, ncol = 3, nrow = 41) 
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for(i in 1:41) 
{ 
 riskSerie_i = df_riskFactorSeries[, i] 
 params[i, ] = (garchFit(data = riskSerie_i))@fit$par[2:4] 
} 
 
sumParams = apply(params, 1, sum) 
 
for(i in 1:41) 
{ 
 params[i, ] = params[i, ] / sumParams[i] 
} 
 
params = apply(params,2,mean) 
params=params[2:3] 
 
# Build the volatility series for each risk factor using a GARCH(1,1) model 
alpha = params[1] 
beta = params[2] 
 
ma_VolatilitiesGARCH = getVolatilities_GARCH(df_riskFactorSeries, alpha, beta)  
 
# Build the additional matries E, R and Dt for the DCC GARCH 
E = df_riskFactorSeries / sqrt(ma_VolatilitiesGARCH[2:nrow(ma_VolatilitiesGARCH), ]) 
ls_D = vector("list", 100) 
for(i in 1:100) 
{ 
 diag_i = sqrt(ma_VolatilitiesGARCH[2:101, ][i, ]) 
 ls_D[[i]] = diag(diag_i) 
} 
 
ls_R = getMatrixR(E, alpha, beta) 
ls_R = ls_R[-1] 
 
# Calculate the variance and covariance dynamics with the DCC GARCH model 
ls_Volatilities_DCCGARCH = getVolatility_DCCGARCH(ls_D, ls_R) 
 
#Predict the variance and covariance matrices using this method 
numPredictionPeriods = 20 
 
ma_Hist_Correl_E = cor(E) 
sigma_T_DCCGARCH = ls_Volatilities_DCCGARCH[[length(ls_Volatilities_DCCGARCH)]] 
 
ls_PredictedSigma_DCCGARCH = PredictReturnsAndVolatilities_DCCGARCH(df_riskFactorSeries, 
ma_VolatilitiesGARCH, ma_Hist_Correl_E, sigma_T_DCCGARCH, params, numPredictionPeriods) 
 
#Obtain the ex-ante tracking error using the DCC GARCH volatilities 
EATE_DCCGARCH = getEATE(ls_PredictedSigma_DCCGARCH, sensit_1_07, ma_RelativeExposures_1_07, 
evaluationPeriods)#adapt manually 
EATE_DCCGARCH = as.data.frame(EATE_DCCGARCH) 
EATE_DCCGARCH$V3 = EATE_DCCGARCH$V2 * sqrt(12) 
#head(sqrt(EATE_DCCGARCH)) 
write.csv(sqrt(EATE_DCCGARCH), "EATE_DCCGARCH_1_07.csv") #save the results in a csv file 
 
 
# Calculate the ex-post tracking error 
 
indicators = read.csv(file="indicators.csv",head=TRUE,sep=";")#Used to match deviations in risk exposures 
with weights of each security in the portfolio 
# For each portfolio and every period we import the corresponding files 
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securities_1_07 = read.csv(file="securities1.csv",head=FALSE,sep=";") 
shares_1_07 = read.csv(file="shares1.csv",head=FALSE, sep=";") 
return_Benchmark_07 = read.csv(file="rb1.csv",head=TRUE,sep=";") 
additional_1_07 = read.csv(file="additional1.csv",head=FALSE,sep=";") 
 
securities_1_08 = read.csv(file="securities2.csv",head=FALSE,sep=";") 
shares_1_08 = read.csv(file="shares2.csv",head=FALSE, sep=";") 
return_Benchmark_08 = read.csv(file="rb2.csv",head=TRUE,sep=";") 
additional_1_08 = read.csv(file="additional2.csv",head=FALSE,sep=";") 
 
securities_1_09 = read.csv(file="securities3.csv",head=FALSE,sep=";") 
shares_1_09 = read.csv(file="shares3.csv",head=FALSE, sep=";") 
return_Benchmark_09 = read.csv(file="rb3.csv",head=TRUE,sep=";") 
additional_1_09 = read.csv(file="additional3.csv",head=FALSE,sep=";") 
 
securities_1_11 = read.csv(file="securities4.csv",head=FALSE,sep=";") 
shares_1_11 = read.csv(file="shares4.csv",head=FALSE, sep=";") 
return_Benchmark_11 = read.csv(file="rb4.csv",head=TRUE,sep=";") 
additional_1_11 = read.csv(file="additional4.csv",head=FALSE,sep=";") 
 
securities_2_07 = read.csv(file="securities51.csv",head=FALSE,sep=";") 
shares_2_07 = read.csv(file="shares5.csv",head=FALSE, sep=";") 
return_Benchmark_07 = read.csv(file="rb1.csv",head=TRUE,sep=";") 
additional_2_07 = read.csv(file="additional5.csv",head=FALSE,sep=";") 
 
securities_2_08 = read.csv(file="securities6.csv",head=FALSE,sep=";") 
shares_2_08 = read.csv(file="shares6.csv",head=FALSE, sep=";") 
return_Benchmark_08 = read.csv(file="rb2.csv",head=TRUE,sep=";") 
additional_2_08 = read.csv(file="additional6.csv",head=FALSE,sep=";") 
 
securities_2_09 = read.csv(file="securities7.csv",head=FALSE,sep=";") 
shares_2_09 = read.csv(file="shares7.csv",head=FALSE, sep=";") 
return_Benchmark_09 = read.csv(file="rb3.csv",head=TRUE,sep=";") 
additional_2_09 = read.csv(file="additional7.csv",head=FALSE,sep=";") 
 
securities_2_11 = read.csv(file="securities8.csv",head=FALSE,sep=";") 
shares_2_11 = read.csv(file="shares8.csv",head=FALSE, sep=";") 
return_Benchmark_11 = read.csv(file="rb4.csv",head=TRUE,sep=";") 
additional_2_11 = read.csv(file="additional8.csv",head=FALSE,sep=";") 
 
 
T_1_07 = 261 #These values indicate the position at which we will start the predictions 
T_1_08 = 260 
T_1_09 = 261 
T_1_11 = 261 
T_2_07 = 261 
T_2_08 = 260 
T_2_09 = 261 
T_2_11 = 261 
 
# Applying the function for calculating the EPTE for each portfolio/period 
ls_EPTE_1_07 = getEPTE(securities_1_07, ma_RelativeExposures_1_07, weights_pf_1_07, weights_bm_07, 
indicators, shares_1_07, return_Benchmark_07, additional_1_07, T_1_07) 
ls_EPTE_1_08 = getEPTE(securities_1_08, ma_RelativeExposures_1_08, weights_pf_1_08, weights_bm_08, 
indicators, shares_1_08, return_Benchmark_08, additional_1_08, T_1_08) 
ls_EPTE_1_09 = getEPTE(securities_1_09, ma_RelativeExposures_1_09, weights_pf_1_09, weights_bm_09, 
indicators, shares_1_09, return_Benchmark_09, additional_1_09, T_1_09) 
ls_EPTE_1_11 = getEPTE(securities_1_11, ma_RelativeExposures_1_11, weights_pf_1_11, weights_bm_11, 
indicators, shares_1_11, return_Benchmark_11, additional_1_11, T_1_11) 
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ls_EPTE_2_07 = getEPTE(securities_2_07, ma_RelativeExposures_2_07, weights_pf_2_07, weights_bm_07, 
indicators, shares_2_07, return_Benchmark_07, additional_2_07, T_2_07) 
ls_EPTE_2_08 = getEPTE(securities_2_08, ma_RelativeExposures_2_08, weights_pf_2_08, weights_bm_08, 
indicators, shares_2_08, return_Benchmark_08, additional_2_08, T_2_08) 
ls_EPTE_2_09 = getEPTE(securities_2_09, ma_RelativeExposures_2_09, weights_pf_2_09, weights_bm_09, 
indicators, shares_2_09, return_Benchmark_09, additional_2_09, T_2_09) 
ls_EPTE_2_11 = getEPTE(securities_2_11, ma_RelativeExposures_2_11, weights_pf_2_11, weights_bm_11, 
indicators, shares_2_11, return_Benchmark_11, additional_2_11, T_2_11) 
 
#MSE 
 
# Build the MSE summary table for each case and export it as csv 
tableMSE = buildMSETable(EATE_HIST_1_07, EATE_EWMA_1_07, EATE_DCCGARCH_1_07, ls_EPTE_1_07) 
#adapt manually 
 
write.csv(tableMSE, file = "tableMSE_2_11.csv") 
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