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ABSTRACT 

The purpose of this paper is to investigate the volatility spillovers between oil, 

alternative energy and technology global markets. For such a study we applied two 

different methodologies: multivariate GARCH models (BEKK, diagonal, constant 

conditional correlation and dynamic conditional correlation) and the one recently 

proposed by Diebold and Yilmaz (2012). In addition, dynamic conditional correlations 

are used to address some interesting financial problems such as hedge ratios or risk-

minimizing portfolio weights. Our empirical results are based on a data set which 

covers from 2002 to 2015. The Ardour Global Alternative Energy Index, the nearest 

contract to maturity on the Brent futures contracts and the Dow Jones Technology 

Titans 30 Index, are considered as the best choices in order to represent the global 

markets for alternative energy, oil and technology, respectively. The outcomes derived 

from GARCH models (considering the BEKK model as the benchmark since it assumes 

a positive definite variance and it is the most general representation of all them) and 

those obtained from the Diebold and Yilmaz (2012) methodology, show that the 

strongest evidence for volatility spillovers is found between alternative energy and 

technology global markets. On average, a long position in alternative energy companies 

can be hedged with a short position in the Brent crude oil futures market. However, due 

to the high and positive correlation, which exists between global alternative energy and 

technology, it is not convenient for investors to hedge an investment in alternative 

energy companies with a short position in technology companies. Finally, some 

robustness checks are considered. 
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1. INTRODUCTION 

 Natural resources have usually been the driving factors for the world-wide 

economy, but in recent decades one additional factor has come on the scene and now it's 

on the top of our agenda, the alternative and renewable energy. 

  Global competition has led to strategic concerns due to the emergence of new 

world powers such as China or Brazil, the high commodity prices and the vulnerability 

of global supply. Hence, energy security issues (global oil supplies in the face of 

increased global demand or political insecurity in oil rich countries), coupled with an 

increased concern about the natural environment (climate change or local air quality 

issues), are decisive factors behind oil price movements. Thus, these facts underline our 

triple challenge of dealing with the economic, the socio-political, and the environmental 

dimensions of the resources allocation problem. 

 Moreover, these concerns about future oil shortages stem from current estimates 

that predict world oil production will peak somewhere between 2016 and 2040 

(Hubbert Peak Theory). Oil is a globally traded commodity and the price of oil is 

determined by its demand and supply conditions. So, such rapidly increasing demand 

for oil from emerging market economies and also, oil supply shortages will lead to 

much higher oil prices in the future and eventually a substitution away from oil to 

alternative energy sources. In addition, in the short to medium term, the perspectives for 

oil are complex since the largest consumers of oil are not the countries with the oil 

largest reserves.  

 While it is widely accepted that rising oil prices are good for the financial 

performance of alternative energy companies and also, that rising oil prices should help 

to spur a greater demand and supply of alternative energy, the truth is that we cannot be 

sure about that. In fact, there has been relatively little statistical work done to measure 

just how sensitive the financial performance of alternative energy companies is to 

changes in oil prices. What we could expect is that rising oil prices could provide a 

strong stimulus for substituting from petroleum based energy production and moving to 

alternative based energy sources production. In addition, even though the alternative 

energy industry may still be small compared to other more established energy 

industries, there is an undeniable growing role played by renewable sources of energy, 
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since annual investment increased from $60 billion in 2000 to a high point approaching 

$300 billion in 2011 (International Energy Agency, IEA). Besides, in 2013, new 

renewable power capacity expanded at its fastest pace to date. Globally, renewable 

generation was estimated on par with that from natural gas (Renewable Energy 

Medium-Term Market Report 2014, IEA).For these reasons, investors, consumers, 

governments and other industries will be seeking alternatives to current energy sources. 

According to Bloomberg New Energy Finance:  

 "World clean energy investment rebounded strongly in 2014, boosted by demand 

for large-scale and rooftop solar photovoltaics on the back of its greatly improved 

competitiveness, and by the financing of a record $19.4bn of offshore wind projects. 

Authoritative annual data, show that global investment in clean energy was $310bn last 

year. This was up 16% from a revised $268.1bn in 2013, and more than five times the 

figure of $60.2bn attained a decade earlier, in 2004, albeit still 2% below the all-time 

record of $317.5bn reached in 2011 .The jump in investment in 2014 reflected strong 

performances in many of the main centers for clean energy deployment, with China up 

32% to a record $89.5bn, the US up 8% to $51.8bn (its highest figure since 2012), 

Japan up 12% to $41.3bn, Canada up 26% at $9bn, Brazil up 88% at $7.9bn, India up 

14% to $7.9bn, and South Africa up 5% at $5.5bn. Europe, despite the flurry in offshore 

wind, was a relative dull spot overall, investment there edging 1% higher to $66bn." 

 Despite the fact that this bodes well for the industry in the long run, a better 

understanding of the relationship between oil prices and the financial performance of 

alternative and clean energy companies is crucial to infer the development that the 

alternative energy will experience in the next years. 

 The dynamics shown by the returns and volatilities and also, the correlations and 

volatility spillovers among the different international markets, will determine 

investment opportunities and profits that investors can get through diversification and 

portfolio hedging. Usually, investing internationally has often been a great opportunity 

for investors looking to increase the total return of their portfolio. The diversification 

benefits are achieved through the addition of low correlation assets of international 

markets that help to reduce the overall risk of the portfolio. However, although the 

benefits of investing internationally are widely accepted, many investors are still 

hesitant to invest abroad. 
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 However, very little is known about the volatility dynamics of alternative energy 

stock prices and the possible correlation between the stock prices of alternative energy 

companies and other relevant financial markets like those regarding oil prices or the 

stock prices of technology companies. In fact, we believe that alternative and renewable 

energy sources will play a crucial role in meeting future energy demand. Such an 

important role depends on many factors, including advances in technology, public 

acceptance and economic viability. In addition, questions about affordability, 

sustainability and reliability of the global energy system often boil down to questions 

about investments. Will market conditions, much influenced by policy, create sufficient 

opportunities for investment in the regions and sectors where it is needed? Will the 

available financing be sufficient, on suitable terms, for these opportunities to be 

realized? And will really investment be channeled towards areas that ameliorate and 

solve the future shortage in fossil fuels (especially oil)  and the problem of climate 

change? For all these reasons, it will be interesting to study the dynamics of global 

alternative energy market by measuring if it is more influenced by the oil price 

movements or on the contrary, by the technology sector, both in terms of giving and 

receiving volatility spillovers.  

 As mentioned before, there has been relatively little empirical research done to 

measure how sensitive the financial performance of alternative energy companies are to 

changes in other markets, such as those of oil or technology. As far as we know, there 

are two main researches related to the study of volatility dynamics of the alternative 

energy sector and its possible correlations and relationship with oil and technology 

markets. In the first one, Henriques and Sadorsky (2008), the authors investigate the 

empirical relationship between alternative energy stock prices, technology stock prices, 

oil prices, and interest rates by estimating a four variable vector autoregression model. 

Outcomes show how technology stock prices and oil prices each individually Granger 

cause the stock prices of alternative energy companies. In addition, simulation results 

show that a shock to technology stock prices has a larger impact on alternative energy 

stock prices than does a shock to oil prices. 

 Regarding the second of these main researches, Sadorsky (2011) analyzes the 

correlations and volatility spillovers between oil prices and the stock prices of clean 

energy companies and technology companies in the US market by using multivariate 

GARCH models. These four GARCH models (BEKK, diagonal, constant conditional 
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correlation and dynamic conditional correlation) are compared and contrasted. The 

results obtained show that definitely, the stock prices of clean energy companies 

correlate more highly with technology stock prices than with oil prices in the US 

market.  

 As an extension to Sadorsky (2011), this research has the same aim but trying to 

analyze the volatility spillovers among alternative energy, oil and technology global 

markets. In addition, in Sadorsky (2011) volatility spillovers are just analyzed using 

multivariate GARCH models. In the present work we will apply the GARCH 

methodology and also, another recent econometric procedure introduced by Diebold & 

Yilmaz (2012) where we use a generalized vector autoregression in which forecast-error 

variance decompositions are invariant to variable ordering proposed measures of both 

total and directional volatility spillovers.  

 This paper is organized as follows. In the following section, we discuss the two 

econometric methodologies applied. Section 3 describes the data and section 4 presents 

the empirical results (obtained with both methodologies). Section 5 includes two 

interesting financial applications. Finally, section 6 contains some robustness checks 

and section 7 the concluding remarks. 
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2. ECONOMETRIC METHODOLOGY 

 

2.1 Multivariate GARCH models  

 Volatility modeling and risk measuring are highly relevant in finance. In fact, 

since risk is unobservable, several methodologies and modeling procedures have been 

developed to analyze and to forecast it. The Generalized Autoregressive Conditional 

Heteroskedasticity (GARCH) model of Engle (1982) and Bollerslev (1986) has 

subsequently led to a family of autoregressive conditional volatility models. The 

success of GARCH models can be attributed largely to their ability to capture several 

stylized facts of financial returns, such as time-varying volatility, persistence and 

clustering of volatility, and also, asymmetric reactions to positive and negative shocks 

of equal magnitude.  

 In order to investigate the conditional correlations and volatility spillovers 

between oil prices, the stock prices of alternative energy and technology companies, 

some multivariate conditional volatility models are applied. In particular, four 

multivariate GARCH models (BEKK, Diagonal, CCC and DCC) are used to model the 

volatility dynamics of our data. As in Sadorsky (2011), the BEKK model is used as the 

benchmark since it assumes a positive definite variance and it is the most general 

representation. The restricted correlation models (Diagonal, CCC and DCC) are 

designed to address some of the problems encountered with the BEKK model (which 

can have a poorly behaved likelihood function, making estimation difficult) and still 

retain analytical tractability. However, these models are simpler than the BEEK one. 

 The mean equation used in this paper is represented in equation 1, where     are 

the market returns for series i and     is the random error term with conditional variance 

   . The market information available at time     is denoted as      . Equation 2 

specifies the relation between the error term     and the conditional variance    . In 

addition, equation 3 specifies a GARCH(1,1) process with VARMA terms (Ling and 

McAleer, 2003). The Ling and McAleer approach for modeling the conditional 

variances allows large shocks to one variable to affect the variances of other variables. 

This is a convenient specification which allows for volatility spillovers.  
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Let     be the vector for the returns with dimension      . The conditional 

variance for     is a       matrix, represented by    . The diagonal elements of     are 

variance terms and elements outside the diagonal are covariances.  

 Now, the four multivariate GARCH models applied in this research for volatility 

modeling are presented in a more detailed manner, so we can understand the idea 

behind each one of them.  

 

 The BEKK model [Baba, Engle, Kraft and Kroner (1990) and Engle and 

Kroner (1995)] assumes the following structure for the covariance matrix   : 
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This representation has been the most popular in the literature. In fact, some 

studies such as Karolyi (1995) that analyzes several specifications for the variances-

covariances matrix conclude that this one is the most appropriate among all those 

applied. This specification can be considered as a particular case of the VECH model 

and it even enhances it. In fact, the BEKK model improves VECH and diagonal 

representations because it practically ensures that    will be positive definite. 

Furthermore, it does not require so many parameters to be estimated as in the VECH 

model and it is not as restricted as the diagonal representation since it allows for certain 

relations that the last one would not allow. 

 

 The Diagonal VECH model.[Bollerslev, Engle and Wooldridge (1988)]. It is a 

simpler model that does not allow for dynamic interdependence between volatilities. In 

this case,    and    are diagonal matrixes and when dealing with two variables       

and      , the representation would be as follows: 
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 However, notice that this model assumes that individual conditional variances 

and covariances only depend on their own lags and lagged squared residuals, with the 

possibility of missing important information. Moreover, it is still necessary to impose 

restrictions in order to ensure a positive definite   . In such a way, it is a simple model 
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but it does not ensure the existence of a positive definite variance-covariance matrix in 

each step, so that it could generate numerical problems.  

  

 The CCC or Constant Conditional Correlation model [Bollerslev (1990)]. 

This model assumes that correlations between each pair of returns are constant, so the 

volatility model consists only of the equations for the variances. In the case of two 

variables      and      , the representation would be as follows: 

 

    
       

       
  

    
    

  
       

       
   (10) 

 

 In this case,    is assumed to be positive definite if certain restrictions on the 

parameters are correctly satisfied. Variance terms,        and        are univariate 

GARCH processes with      .  

   is the conditional correlation matrix defined as follows: 

 

   
     
   
     

                                     (11) 

 

where     is the correlation coefficient between variables i and j. Then, the conditional 

variance matrix    is defined as: 

 

                                                 (12) 

or equivalently,  

 

                                                 (13) 
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where       produces a diagonal matrix with the elements in     in the main diagonal. 

 The model can be applied with estimated variances coming from either EWMA 

(Exponentially Weighted Moving Average) or univariate GARCH schemes. Under both 

options, each covariance is obtained by multiplying the correlation coefficient between 

the standardized or non-standardized returns by the product of the standard deviations 

obtained from the conditional volatility models previously estimated by EWMA or 

GARCH schemes. In addition, this representation has been very popular among 

empirical studies because it reduces the conditional correlation matrix to constant 

correlation coefficients between variables, so the number of parameters to be estimated 

is small in comparison with other models.  

 Reasonably, once this model has been estimated it cannot be expected to 

generate dynamic correlations from the obtained covariances. In fact, the estimation of 

the covariance is the endpoint when we apply this estimation model.  

 

 The DCC or Dynamic Conditional Correlation model. [Engle (2002)]. Engle 

recently introduced this representation and it allows for dynamic dependencies in the 

correlations. Again in this model, an EWMA representation can be used to estimate 

variances of individual returns, or it can be estimated through univariate GARCH 

models. Engle (2002) generalizes the CCC model to the Dynamic Conditional 

Correlation model (DCC) and it is estimated in two steps. In the first step, the GARCH 

parameters are estimated. In the second step, the correlations are estimated.  

 

                                                       (14) 

 

 In the previous equation,     is the 3x3 conditional covariance matrix,    is the 

conditional correlation matrix, and     is the diagonal matrix with time-varying standard 

deviations on the diagonal.  
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   is a symmetric positive definite matrix.  

 

                             
            (17) 

 

   is the 3x3 unconditional correlation matrix of the standardized residuals     . The 

parameters   and    are non-negative with a sum of less than unity. The correlation 

estimator is,  

                                                           
     

             
                               (18) 

 

 In the previous representations, for the constant conditional correlation (CCC) 

case,       and          and in the Diagonal model,       for all   and     The 

choice of representing the correlation as a constant, instead of using a dynamic one, 

affects in a determinant way when we are dealing with financial data. 

 Finally, all the MGARCH models are estimated by Quasi-Maximum Likelihood 

estimation (QMLE) using the BFGS algorithm. T-statistics are calculated using a robust 

estimate of the covariance matrix.  
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2.2. Diebold & Yilmaz (2012) 

 Diebold and Yilmaz (2009) firstly introduces a volatility spillover measure or 

index, based on forecast error variance decompositions from vector autoregressions 

(VARs). This initial methodology can be applied to analyze spillovers in returns or in 

volatilities across individual assets, asset portfolios, asset markets, etc,. However, this 

procedure was based on a Cholesky-factor identification of VARs, so the resulting 

variance decompositions were dependent on variable ordering. In addition, it just 

considered total spillovers, (from/to each market i, to/from all other markets added 

across i) but in any case addresses directional spillovers (from/ to a particular market).   

 For such reason, Diebold and Yilmaz decide to make an extension of their 

previous work and they introduced huge improvements in their methodology. Indeed, 

whereas Diebold and Yilmaz (2009) focuses on total spillover within a simple VAR 

framework (order-dependent results based on Cholesky factorization), the methodology 

introduced in 2012 takes into consideration directional spillovers with a generalized 

VAR model. 

 Hence, we use the method developed by Diebold and Yilmaz (2012). The 

starting point of the analysis is the following p-order, 3-variable Vector Autoregressive 

(VAR) model: 

 

        
 
                            (19) 

 

where 

                                          (20) 

 

is a vector of independently and identically distributed errors. 

 Any stationary VAR model admits a moving average representation (MA) which 

is reached after successive substitutions of      in (19). The moving average 

representation is:  
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                                                       (21) 

 

where the     coefficient matrices    are estimated by the recursion: 

 

                                (22) 

 

with    being an     identity matrix and with      for    . 

 The moving average coefficients (or transformations such as impulse-response 

functions or variance decompositions) are the key to understanding the dynamics of the 

system. We rely on variance decompositions, which allow us to parse the forecast error 

variances of each variable into parts attributable to the various system shocks.  

 Diebold and Yilmaz (2012) use the generalized VAR framework of Koop et al. 

(1996) and Pesaran and Shin (1998), hereafter KPPS, in which variance decompositions 

are invariant in terms of the variable ordering. Variance decompositions allow us to 

assess the fraction of the M-step-ahead error variance in forecasting    that is due to 

shocks to   ,      for each      

 

 - Variance Shares 

 Assuming own variance shares to be the fractions of the M-step-ahead error 

variances in forecasting    due to shocks to   , for         and cross variance shares, 

or spillovers, to be the fractions of the M-step-ahead error variances forecasting    due 

to shocks to   , for        , such that       

 Denoting the KPPS M-step-ahead forecast error variance decomposition by 

   
 
      for         we have: 
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where   is the variance matrix for the error vector  ,      
     is the standard deviation 

of  the error term for the  th equation, and    is the selection vector, with one as the  th 

element and zeros otherwise. In the generalized VAR framework, the shocks to each 

variable are not orthogonalized; therefore, the sum of each row of the variance 

decomposition matrix does not add to unity: 

 

                                                            
  

                                       (24) 

 

 In this case, dividing it by the row sum normalizes each element of the 

decomposition matrix:  
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where, by construction,  
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 - Total Spillovers 

 Using the volatility contributions from the KPPS variance decomposition, we 

can construct a total volatility spillover index: 
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 This index captures the contribution of spillovers of volatility shocks across the 

three markets to the total forecast error variance.  

 

 -Directional Spillovers 

 Although it is sufficient to study the total volatility spillover index to understand 

how much of shocks to volatility spill over across markets, the generalized VAR 

approach enables us to examine the direction of volatility spillovers across markets. 

Specifically, the directional volatility spillovers received by market   from all other 

markets   are defined as follows: 

 

                                                
      

     
     

   
   

     
     

   

            (29) 

  

 In a similar fashion, the directional volatility spillovers transmitted by market   

to all other markets   are defined as: 
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 One can think of a set of directional spillovers as providing a decomposition of 

total spillovers into those coming from (or to) a particular source. 

 

 -Net Spillovers 

 The net directional volatility spillover provides information on whether a market 

is a receiver or a transmitter of volatility in net terms. We obtain the net spillover from 

market   to all other markets   by subtracting equation (30) from equation (29). Thus, 

the net directional volatility spillover is given by the following: 
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 -Net Pairwise Spillovers  

 To examine the net pairwise volatility spillover between markets   and  , we 

compute the difference between the gross volatility shocks transmitted from market   to 

market   and gross volatility shocks transmitted from   to  :  
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3. DATA 

 

 The data for this study includes the daily closing prices in US dollars of the 

Ardour Global Alternative Energy Index
 
(AE), the nearest contract to maturity on 

the Brent crude oil futures contract (OIL) and the Dow Jones Technology Titans 30 

Index (TECH). 

 The Ardour Global Alternative Energy Index (Extra Liquid) includes a fixed 

number of 30 stocks which are capitalization weighted, adjusted for free float. In fact, it 

is a compilation of global alternative energy stocks that are principally engaged in the 

business of alternative energy. This index comprises public companies engaged in five 

primary sectors: a) Enabling Technologies, b) Environmental Technologies, c) 

Environmental Efficiency, d) Alternative Energy Sources, and e) Distributed 

Generation. Constituents include the thirty largest and most actively traded stocks in the 

Ardour Global Alternative Energy Composite Index. All companies contained in the 

Ardour Global Alternative Energy Index (Extra Liquid) are categorized as being 

“principally” engaged in the global alternative energy industry. For the purposes of this 

index, a principally engaged company must derive 50% or more of its annual revenues 

from its participation in the alternative energy sector.  

 ICE Brent futures and options are traded at ICE Futures Europe, ICE’s London 

based futures exchange and executed on the ICE Web trading platform, which is 

distributed in more than 70 countries. In 2012, ICE Brent became the world’s largest 

crude oil futures contract in terms of volume and ICE Brent market share has almost 

doubled since 2008. Approximately two-thirds of the world’s traded crude oil uses the 

Brent complex, which includes ICE Brent futures with its deep liquidity and far-

reaching forward curve, as a price benchmark. Many national oil producers and other 

participants around the world price crude at a differential to Brent, depending on the 

crude grade. Factors such as Brent’s accessibility and reach as a seaborne crude, 

production, adaptation to changing global economics in the oil market, stability and 

geographic location have consolidated Brent’s global benchmark position. It has also 

contributed to physical participants, such as international airlines and oil producers in 

Asia, adopting Brent as a primary hedging tool. In addition to the extensive usage of 

Brent as both a pricing benchmark and a hedging tool for global crude prices, Brent’s 
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global relevance is also proved and supported by comparing historical changes in key 

spreads such as WTI, LLS, Mars, Brent and Dubai. 

 The Dow Jones Technology Titans 30 Index represents the leading companies 

in the global Technology sector. The index includes 30 stocks selected based on 

rankings by float-adjusted market capitalization, revenue and net profit. In addition, it 

covers the Technology Supersector of proprietary classification system described at 

www.djindexes.com. This Index was first calculated on February 12, 2001. There are no 

companies included in both AE and TECH. 

 The sample period for the data set covers January 2002 to April 2015. All this 

data is collected from Thomson Reuters Datastream. Other indexes were considered, but 

these were the best affordable options. See robustness check section for further details.  

 First, some plots of the raw data show the dynamics experienced by each one of 

the three global markets in Figures 1 to 3. 

 

Figure 1. Raw Data Plot for AE 
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Figure 2. Raw Data Plot for OIL 

 

 

Figure 3. Raw Data Plot for TECH  
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 Before the second half of 2008 the three sectors show relatively the same 

pattern, showing a huge fall on prices at the beginning of the recent Financial Crisis. 

The recession of 2008-2009 had a significant impact on the stock prices of alternative 

energy and technology companies and also, on the oil prices, which suffered a steep 

drop. Moreover, AE and TECH variables tend to move together at the beginning of the 

sample period since both show a common drop in 2003 and a subsequent rise after that.  

From 2009-2010 the three sectors do not show a clear common pattern, but they 

experienced different cyclical movements up to now.   

 In addition, for each of the data series, continuously compounded daily returns 

are calculated as               where    is the daily closing price. A summary 

statistics for the returns are provided in Table 1. 

 

 

Table 1. Summary statistics for daily returns 

 

 Alternative 

Energy 
Oil Technology 

Mean -0.0398 0.0340 0.0181 

Median 0.0692 0.0228 0.0681 

Maximum 14.2012 12.7066 9.5422 

Minimum -12.4123 -10.9455 -8.4052 

Std. Dev. 1.7785 2.0701 1.3147 

Skewness -0.3574 -0.0688 0.0736 

Kurtosis 10.6297 6.1118 8.2987 

 

 For each of the series, the mean and the median values are close to zero and also, 

the standard deviation values are higher than those corresponding to the mean. 

Moreover, the three series show a scanty amount of skewness and a larger amount of 

kurtosis so the returns of the three variables are not normally distributed.  

 Unconditional correlations in Table 2 present similar results from the ones 

obtained by Sadorsky (2011), which implies a strong positive correlation between AE 

and TECH. The unconditional correlation between AE and OIL is positive but the value 

is less than a half of the unconditional correlation between AE and TECH. Regarding 
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the unconditional correlation between OIL and TECH, it can be seen that it's the lowest 

one.  

 

Table 2. Correlations between daily returns 

 

 
Alternative Energy Oil Technology 

Alternative Energy 1 0.3076 0.7406 

Oil 0.3076 1 0.1884 

Technology 0.7406 0.1884 1 

 

 

 The correlations between the squared daily returns show a similar pattern as for 

the correlations between the returns in Table 3. Again, the correlation between AE and 

TECH is positive and larger than the one between AE and OIL.  

 

 

Table 3. Correlations between daily squared returns 

 

 
Alternative Energy Oil Technology 

Alternative Energy 1 0.3884 0.6238 

Oil 0.3884 1 0.2614 

Technology 0.6238 0.2614 1 

  

 In addition, time series graphs of the squared daily returns are computed and 

they show how volatility has changed across time.  These graphs appear in Figures 4 to 

6.  
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Figure 4. Squared daily returns for AE 

 

 

Figure 5. Squared daily returns for OIL 
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Figure 6. Squared daily returns for TECH 

 

  

 The three plots display clear episodes of volatility clustering between September 

2008 and September 2009 with the beginning of the Global Financial Crisis. In addition, 

TECH shows some large spikes in volatility in 2002-2003 in response to the bursting of 

the technology stock market bubble. During 2003-2004 OIL also reflects considerable 

jumps in volatility.  

 

 According to the second part of the sample period, once the Global Financial 

Crisis have been started, the three graphs present another pronounced volatility 

clustering between 2011-2012. Finally, looking at the second graph corresponding to 

the oil market, it is also evident that there have been relevant increases in volatility from 

2014 up to now due to the huge fluctuations in the prices of Brent.  
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4. EMPIRICAL RESULTS  

 

4.1 MGARCH models methodology  

 First, we will present the results obtained from multivariate GARCH models. 

This methodology follows two steps. A vector autoregression (VAR) with one lag is 

applied to model the returns, which is compatible with the idea of possible 

autocorrelations and cross-autocorrelations in returns. VAR length is selected according 

to the AIC and SIC criterion. Then, a multivariate GARCH model is used to model the 

time varying variances and covariances. For restricted correlation models, that is, 

Diagonal, CCC and DCC models, the conditional variance is assumed to have a 

VARMA-GARCH (1,1) structure (Ling & McAleer, 2003). 

 Table 4 contains the results derived from both mean and variance models. As in 

Sadorsky (2011), the BEKK model is considered the benchmark since it assumes a 

positive definite variance and it is the most general representation and it is compared to 

the other three restricted correlation models (diagonal, constant conditional correlation 

and dynamic conditional correlation). Models are estimated using QMLE and variable 

order is AE (1), OIL (2) and TECH (3). In the variance equations,   denotes the 

constant terms,   denotes the ARCH terms and   denotes the GARCH terms. In the 

mean equation     represents the effect of a one period lag TECH returns on current 

period AE returns. The coefficient     for example represents the short-term volatility 

spillover from TECH to AE while     represents the long-term volatility spillover from 

TECH to AE. In addition, in brackets next to the parameter estimates are the 

corresponding t-statistics and ** indicates significance at 5 %.  
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Table 4. MGARCH parameter estimates  

 
BEKK DIAGONAL CCC DCC 

 
Coeff T stat Coeff T stat Coeff T stat Coeff T stat 

Mean                 

    0.0607*** 3.76 0.0741*** 3.22 0.0716*** 3.28 0.0687*** 3.29 

    0.0853*** 6.63 0.0908*** 4.05 0.1034*** 5.99 0.0818*** 3.73 

    0.0222** 2.26 0.0261** 2.18 0.0235** 2.27 0.0210 1.85 

    0.0345** 2.29 0.0572** 2.07 0.0207 1.10 0.0354 1.26 

    0.0413 1.48 0.0439 1.44 0.0055** 2.04 0.0512 1.81 

    -0.0056 -0.23 0.0128 0.47 0.0190 0.95 0.0064 0.30 

    -0.0574*** -3.81 -0.0607*** -3.18 -0.0595*** -3.33 -0.0586*** -3.27 

    0.0561 1.71 0.0415 1.18 0.0365*** 3.96 0.0388 1.50 

    0.0625*** 5.09 0.0515*** 3.34 0.0605*** 3.96 0.0635*** 4.14 

    0.0190** 2.24 0.0167 1.01 0.0287*** 2.72 0.0166 1.08 

    -0.0019 -0.26 -0.0448 -0.58 -0.0043 -0.56 -0.0028 -0.33 

    0.0625*** 4.94 0.0722*** 3.04 0.04188*** 2.80 0.0645*** 3.03 

 

Variance         

    0.1848*** 10.16 0.0413*** 5.17 0.0647*** 4.25 0.0424*** 5.00 

    0.0324 1.58 
      

    0.1156*** 7.21 0.0181*** 3.13 0.0273*** 3.05 0.0197*** 3.30 

    0.0646*** 5.12 
      

    0.0306** 2.24 
      

    0.0570*** 5.61 0.0129*** 4.32 0.0093 1.83 0.0156*** 5.96 

    0.2891*** 13.55 0.0759*** 3.89 0.1048*** 8.15 0.0649*** 5.58 

    0.0100 0.49 0.0087 1.36 0.0048 0.79 0.0129** 2.14 

    0.0612*** 4.26 0.0009 0.09 -0.0742*** -6.07 -0.0059 -0.41 

    0.0128 1.40 0.0338 3.58 0.0567*** 4.34 0.0512*** 3.73 

    0.1749*** 17.61 0.0391*** 7.80 0.0390*** 7.26 0.0395*** 8.50 

    0.0024 0.34 -0.0512*** -4.49 -0.0945*** -5.56 -0.0697*** -4.37 

    -0.0816*** -2.85 0.0055 0.79 -0.0181** -2.26 0.0333*** 4.65 

    0.0345 1.32 -0.0016 -0.40 -0.0066 -1.41 -0.0029 -0.68 

    0.1622*** 7.63 0.0670*** 6.89 0.0881*** 7.55 0.0260*** 2.94 

    0.9478*** 129.01 0.9043*** 129.22 0.8145*** 25.11 0.9127*** 52.29 

    0.0005 0.09 0.2953 0.13 -0.0278 -0.79 -0.0107 -1.19 

    -0.0165*** -3.97 0.1858 0.12 0.1852*** 3.65 0.0145 0.75 

    -0.0006 -0.29 2.4939 1.38 -0.0989 -1.92 -0.0298 -1.42 

    0.9828*** 528.38 0.9541*** 171.83 0.9433*** 112.98 0.9551*** 179.82 

    0.0003 0.23 5.5260 1.38 0.2986*** 3.28 0.0345 1.29 

    0.0233*** 2.82 1.0211 1.29 0.0533** 2.21 -0.0458*** -4.39 

    -0.0135 -1.80 3.5369 1.32 0.0854** 2.44 0.0038 0.75 

    0.9862*** 181.01 0.9190*** 98.36 0.8499*** 32.13 0.9762*** 80.90 

    
    

0.2626*** 17.07 
  

    
    

0.7200*** 91.87 
  

    
    

0.1580*** 9.89 
  

   
      

0.0236*** 7.41 

   
      

0.9724*** 241.70 

Log L -16845,24 18401,48 -17013,94 -16802,06 

AIC 9727 10622 9824 9702 

SIC 9791 10680 9888 9764 

Variable order is AE (1), OIL (2) and TECH (3). In brackets, next to the parameter values estimates are 

the corresponding t-statistics. ** indicates significance at 5%. 
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 Regarding the VAR structure for returns, except for the constants       and 

      own terms, which of course, do not provide us with relevant ideas, there is not 

one cross- parameter that was significant at the same time in the four models. 

 In our study for the global market there is not such statistically significant 

parameter common in the four models. However, since we are considering the BEKK 

model as the benchmark, we can see that both     and     are positive and significant 

at 5%. This result is important in establishing a positive relationship between current 

period AE returns and last period TECH returns and vice versa. Hence, for the global 

market scenario it can be seen that there is a bidirectional spillover in terms of returns 

between AE and TECH. In other words, current period AE returns are influenced by last 

period TECH returns and vice versa.  

 In addition, parameters     and     are also statistically significant at 5% and 

at 1% in the Diagonal and CCC models, respectively. Furthermore, there is another 

interesting result corresponding to the      parameter. This last mentioned coefficient is 

statistically significant at 5% in all models except for one, the DCC. Thus, this will 

indicate that Alternative Energy could also depend on Oil but in a weaker way. 

 According to the variance model, firstly we will examine the own conditional 

effects, for GARCH,      and ARCH,      schemes, which have a key role in 

explaining conditional volatility.  

 On the one hand, regarding GARCH parameters that measure long-term 

persistence in volatility, we focus on all the estimated     elements. For example, 

    element refers to the GARCH term in the AE equation, while     refers to the 

GARCH term in the OIL equation and finally,     refers to the GARCH term in the 

TECH equation.  All these estimated coefficients are statistically significant at the 1% 

level for the four models and also, they show similar values in each of the MGARCH 

models. In the case of the BEKK model, TECH shows the most amount of long-term 

persistence in volatility, followed by OIL and AE.  

 On the other hand, own conditional ARCH effects,     which measure short-term 

persistence in volatility are also decisive in explaining conditional volatility. As in 

Sadorsky (2011) it can be checked how all the estimated     coefficient values are 

smaller than their respective estimated     values, which means that own volatility long-
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run persistence effects (GARCH) is larger than short-run persistence effects (ARCH). In 

addition, they are also statistically significant at the 1% level for the four models. The 

results obtained in the BEKK model show that AE presents the most amount of short-

term persistence followed by OIL and TECH. 

 As we mentioned before, BEKK model is going to be the benchmark since the 

other three models (Diagonal, CCC and DCC) are considered more restricted. Thus, we 

will analyze the possible evidences of volatility spillovers shown by the BEKK model 

and then, we will focus on the other MGARCH models. Hence, looking at BEKK 

results, it can be seen that they follow the same line as the one introduced by Sadorsky 

(2011). For short-term volatility persistence there is evidence of volatility spillovers 

between AE and TECH       and between TECH and AE      . There is also evidence 

of long-term persistence volatility spillovers between AE and TECH       and between 

TECH and AE      . In fact, all this estimated coefficients are statistically significant at 

1% and they present both negative and positive values and relatively of the same order. 

Considering the full suite of models again there is evidence of inter-sector spillover 

effects between AE and TECH and TECH and AE both in short and long terms. In the 

case of the CCC model, parameters    ,   ,    and also,     are statistically significant. 

The DCC model also provides evidence in this same line, so     and     appear to be 

statistically significant at 1%, showing once again spillover effects between TECH and 

AE. In addition, the three restricted correlation models (Diagonal, CCC and DCC) show 

that for short-term volatility persistence there is evidence of volatility spillovers 

between AE and OIL and also, between TECH and OIL     and     so oil prices could 

be influenced by both the stock prices of Alternative Energy and Technology 

companies.  

 On balance, in our proposal for the Global Market, the strongest evidence for 

volatility spillovers is the same as Sadorsky found for the US Market. Therefore, 

contrary to what we might initially expect, there is closer relationship between AE and 

TECH than between AE and OIL. Shocks to Technology stock prices have a greater 

impact on the stock prices of Alternative Energy companies than does a shock to Oil 

prices. This result is crucial when analyzing the future expectations of Alternative and 

Clean energy in terms of investment decisions and hedging strategies.  
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 Table 4 shows correlations between OIL and AE      , TECH and AE       

and TECH and OIL       and they are each positive and statistically significant at 1% 

level. As in Sadorsky (2011) the highest correlation is found between TECH and AE 

(0.7200) and the second highest is between OIL and AE (0.2626). TECH and OIL 

correlation (0.1580) presents the lowest value. For the DCC model, the estimated 

coefficients on    and    are each positive and statistically significant at the 1% level. 

These estimated coefficients sum to a value, which is less than one, meaning that the 

dynamic conditional correlations are mean reverting.  

 Furthermore, the AIC and SIC criteria show that the DCC model is the best 

model which shows evidence of volatility spillovers but not in a bidirectional way, but 

in a unidirectional one, from AE to TECH. In addition, both AIC and SIC information 

criteria rank the BEKK model as the second best with results very close to those 

obtained in the DCC model. Moreover, if the model is adequate, the standardized 

residuals should be serially uncorrelated (if the mean model is chosen correctly), and 

their squares should be as well (if the variance model is chosen correctly). The first can 

be tested with Ljung-Box (1978) and the second with the McLeod-Li (1983). In Table 5 

the diagnostic tests for the standardized residuals and standardized squared residuals are 

presented. The four models show no evidence of serial correlation at 10% level and so 

they fit very well to our data. 

 

Table 5. Diagnostic tests for standardized residuals. 

 

 
BEKK 

  
DIAG 

  
CCC 

  
DCC 

  

 
AE OIL TECH AE OIL TECH AE OIL TECH AE OIL TECH 

Q(20) r 18.89 16.42 14.36 15.56 16.82 13.04 16.83 15.77 14.21 19.69 16.84 14.58 

p-value 0.5291 0.6901 0.8120 0.7437 0.6648 0.8755 0.6639 0.7309 0.8194 0.4776 0.6634 0.7998 

Q(20) r
2
 18.14 26.85 28.10 10.71 21.88 20.44 29.36 21.75 35.22 19.25 20.41 23.14 

p-value 0.5779 0.1395 0.1071 0.9534 0.3470 0.4307 0.0809 0.3541 0.0190 0.5055 0.4328 0.2821 
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Dynamic conditional correlations 

 The DCC model is used to construct dynamic conditional correlations. Figure 7 

shows time-varying conditional correlations from such a model. Thus, it can be seen 

how dynamic conditional correlations considerably vary from the constant conditional 

correlations (          ,            and            . Besides, dynamic 

conditional correlations can provide much more useful information than what the 

constant correlations can do. 

 

Figure 7. Time-varying conditional correlations from the DCC model 
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 Until 2008 we can easily appreciate that graphs 1 and 3, that is, AE-OIL and 

OIL-TECH conditional correlations present relatively a similar pattern. In fact, both 

conditional correlation dynamics vary in a range between -0.5 and 0.5. The second 

graph regarding AE-TECH dynamic conditional correlation presents only positive 

values and in most of the cases, larger than 0.5. This means that there is little scope for 

portfolio diversification between these two sectors. The AE and OIL conditional 

correlation plot shows negative values at the beginning of the sample period, between 

2003-2004 but after that, it has positive values between 0 and 0.5. OIL and TECH 

conditional correlation plot presents a similar pattern than AE and OIL reaching also 

lower values in 2003 and 2004.  

 However, the three pair of conditional correlations present an inflection point in 

the late of 2008 with the arrival of the recent Financial Crisis. Thus, since 2008 there is 

an evident upward trend in each pair of correlations that is maintained up to 2011, year 

in which a fall occurs in the three of the dynamic graphs. In addition, the dynamic 

correlation between AE and OIL reached very low values in 2003 and surpass the 0.5 

value for the first time in December of 2008. Then, since 2009 it experienced a slight 

downward trend up to April 2015, with a dynamic conditional correlation of about 0.25. 

The dynamic conditional correlation between AE and TECH reaches low values in the 

second half of 2008, about 0.35. Then, it experienced its highest values at the end of 

2008 of about 0.8 and also, at the end of 2011 by reaching a value closed to 0.9. Now, 

during 2015 AE-TECH dynamic conditional correlation is about 0.7. Finally, regarding 

the last graph between OIL and TECH it presents its lower values in 2003 and it attains 

the 0.5 value at the end of 2008. Since the end of the sample period, from 2014 up to 

April 2015 the correlation is close to 0.  
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4.2 Diebold and Yilmaz (2012) methodology  

Now, we will examine the evidence of volatility spillovers among these three 

global markets (Alternative Energy, Oil and Technology) by using the methodology 

introduced by Diebold and Yilmaz 2012. 

 Firstly, we will make some comments related to the management of the data. 

Then, we present an initial analysis of the data with descriptive statistics and finally, we 

will analyze spillover dynamics according to this methodology. Spillover dynamics will 

be studied by examining rolling-sample total spillovers, rolling-sample directional 

spillovers, rolling-sample net directional spillovers and rolling-sample net pairwise 

spillovers.  

- Some comments about the data 

 Following Diebold and Yilmaz (2012) methodology, we will examine daily 

volatilities of the three sectors: AE, OIL and TECH. The data sample is exactly the 

same one used with the GARCH methodology. Thereby, daily returns are again 

calculated as the change in log prices and multiplying by 100 but daily volatilities have 

to be computed, since we have not dealt with them until now.  

 We opted for calculating daily volatilities with a usual estimator, squared 

returns. Consider a time series of returns      and        , and the sample variance, 

  : 

     
 

   
      
 
                       (33) 

where      is the return at time    , and μ is the average return of a day, and        

is the unconditional volatility for the period 1 to T. Considering that the average return 

on a reduced period of time (as the time between two transactions from one day to the 

next one) is very small, the estimator for the volatility is defined as follows: 

 

         
 

   
     

  
            (34) 
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 In order to annualizes the volatility we multiply it by the squared root of 252, 

since we are dealing with data based on a trading year. Next, the plots for the volatility 

dynamics corresponding to the three sectors are presented in Figure 8. In addition, some 

descriptive statistics were provided in Table 6. 

 

Figure 8: Daily Volatilities - Annualized Std. Deviation % (Alternative Energy; 

Oil; Technology) 

 

 

Table 6: Volatility Summary Statistics 

 
Alternative Energy Oil Technology 

Mean 0.3315 0.4003 0.2417 

Median 0.2449 0.2885 0.1625 

Maximum 3.8265 3.4238 2.5711 

Minimum 0 0 0 

Std. Deviation 0.3460 0.3885 0.2590 

Skewness 3.1740 2.1002 2.5478 

Kurtosis 20.6054 9.8059 13.5524 
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 The previous results provide us some interesting ideas. Oil prices have been the 

most volatile followed by Alternative Energy and Technology sectors. Moreover, the 

three sectors present similar volatility patterns. In general, they show higher volatility 

levels at the beginning of the recent crisis, that is, between 2008 and 2010, displaying 

huge jumps in 2009. Notice that a pattern of volatility clustering is evident for each one 

of the three sectors. Thus, up to 2008 there was no a common trend but after 2008, there 

is a slight upward common trend. We can observe two peaks both at 2010 and 2012, 

which of course are more evident in the case of Alternative Energy and Oil sectors than 

in Technology, since this last one is less volatile and not highly persistent. In addition, 

at the end of the sample period during the first months of 2015, the Oil sector again has 

been reaching higher volatility levels.  

 

- Unconditional Patterns: The Full-Sample Volatility Spillover Table 

 In this section we provide a full-sample analysis of the three sectors volatility 

spillovers in Table 7. Following Diebold and Yilmaz (2012), the entry ij
th 

is the 

estimated contribution to the forecast error return and variance of sector i coming from 

innovations in sector j. Thus, the off-diagonal column sums (labeled "Contribution to 

others") or row sums (labeled "Contribution from others") are the "to" and "from" 

directional spillovers, and the "from minus to" differences are the net volatility 

spillovers. In addition, the total volatility spillover measure appears in the lower right 

corner of the spillover table. In fact, this total volatility spillover index is approximately 

the grand off-diagonal column sum (or row sum) relative to the grand column sum 

including diagonals (or row sum including diagonals), expressed as a percentage. As 

Diebold and Yilmaz (2012) well explained, volatility spillovers displayed in Table 7 

provides a kind of "input-output" decomposition of the total volatility spillover measure.  
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Table 7. Volatility Spillover Table 

 

Alternative 

Energy 
Oil Technology Directional FROM others 

Alternative Energy 61.9 7.9 30.3 38 

Oil 16.5 72.7 10.8 27 

Technology 34.5 6.3 59.3 41 

Directional TO others 51 14 41 106 

Directional including 

own 
113 87 100 

Total Spillover Index 

(106/300): 35.33% 

The results are based on a vector autoregression of order 1 and on a generalized variance decomposition 

of 10-day-ahead volatility forecast errors. 

 

 The total volatility spillover index among the three global markets is equal to 

35.3% which indicates that slightly more than a third of the total variance of the forecast 

errors during the sample is explained by shocks across global markets, whereas the 

remaining 64.67% is explained by idiosyncratic shocks.  

 In addition, regarding the previous table from the "Directional to others" row, 

gross directional volatility spillovers amount to others from both Alternative Energy and 

Technology are much more higher than in the case of Oil. In addition, from the 

"Directional from others" column, gross directional volatility spillovers amount from 

others show similar outcomes, although Oil continues to be the one with the lowest. So, 

initially the results obtained according to the Diebold and Yilmaz (2012) methodology 

provide us concise and similar evidences to the ones of the BEKK model.   

 Regarding pairwise directional spillovers (the off-diagonal elements of the 

upper-left 3×3 sub-matrix), the highest observed pairwise volatility spillover is from 

TECH to AE (34.5%). In return, the pairwise volatility spillover from AE to TECH 

(30.3%) is second highest. In fact, the results in Tables 7 follow the same line of the 

MGARCH models and the conclusions discussed by Sadorsky (2011) for the case of 

U.S.A. Thus, AE and TECH show a positive relationship in terms of volatilities, from 

AE to TECH and also, from TECH to AE. So, definitely, they are influenced by each 

other. In such a way, AE and TECH volatility spillovers in both directions with respect 

to the OIL sector show lower figures, so they seem to be less influenced by the Brent 

price movements.  
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 In terms of the directional spillovers to others throughout the full sample, our 

results suggest that volatility in AE contributed the most to the other markets’ forecast 

error variance (51 points), followed by TECH (41 points) and OIL (14 points). As for 

the directional spillovers received from others, Technology global market appears to be 

the sector that received the highest percentage of shocks from the other two sectors (41 

points) but Alternative Energy remains closely (38 points) and followed by Oil (27 

points).  

 Finally, net directional spillovers were calculated by the difference between the 

column-wise sum (“Contribution to others”) and the row-wise sum (“Contribution from 

others”). AE (51-38 = 13 points) is a net transmitter of volatility to other markets, 

TECH (41-41 = 0 points), which is neutral, since it receives the same volatility amount 

as it transmits to the others and OIL, which is definitely the leading net receiver of 

volatility (14-27 = -13 points). 

 

- Conditioning and Dynamics I: The Rolling- Sample Total Volatility Spillover 

Plot 

 The static full-sample analysis of volatility spillovers in Table 7, although it 

provides a useful summary of the "average" volatility spillovers behavior, it doesn't 

address the issue of capturing cyclical movements. To gain further insights into the 

dynamics of the total volatility spillovers, we now estimate them using a 200-day 

rolling-sample window with a step horizon of 10 days as Diebold and Yilmaz (2012) 

proceed in their research. We assess the extent and nature of spillover variation over the 

time, via the corresponding time series of spillover indexes, which we examine 

graphically in Figure 9.  
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Figure 9. Total Volatility Spillover, Three Global Markets (200-day rolling 

window) 

The x-axis represents the period of time and the y-axis measures the level of volatility expressed as a 

percentage.  

  

 In Figure 9 we can identify two different periods, before and after the Global 

Financial Crisis of 2007-2008. In addition, it can be seen that it initially starts with a 

value around 27%, which was due to the remaining effects of the tech bubble which 

started at 2000. Then, volatility spillover experienced a gradual decreasing trend up to 

the late of 2007 or the beginning of 2008. After that, the spillover plot is obviously 

determined by the recent Financial Crisis. In addition, the spillover index reached 

values that surpass the 50%. Finally, regarding the higher volatility levels reached in 

2009-2010 during this recent crisis, they were the result of: 

- July-August 2007: Credit crunch 

-September- December 2008: Collapse of Lehman Brothers 

-First half of 2009: European contagion and the effects on global economy.  

 Moreover, we also perform some changes in this rolling-sample analysis in order 

to check for the robustness with respect to the rolling window width and the chosen 

forecast horizon. Figure 10 shows volatility spillover plots produced using a shorter 75-

day rolling window width. In addition, in Figure 11 we use the original 10-day forecast 

horizon in panel 2a and a shorter 2-day horizon in panel 2b for a 75-day rolling window 

width. Thus, these results appear largely robust to all variations. The reduced smoothing 

due to the shorter window width lets us track movements in volatility spillovers with 

greater resolution and details. 
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Figure 10. Total Volatility Spillover, Three Global Markets (75-day rolling 

window) 

The x-axis represents the period of time and the y-axis measures the level of volatility expressed as a 

percentage. 

 

 

Figure 11. Total Volatility Spillover, Three Global Markets (10-day and 2-day 

forecast horizon)  

The x-axis represents the period of time and the y-axis measures the level of volatility expressed as a 

percentage.  
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- Conditioning and Dynamics II: Rolling- Sample Gross Directional Volatility 

Spillover Plots 

 Although the previous analysis provides a general overview of total volatility 

dynamics, it doesn't take into account directional spillover information. As we have 

mentioned before, this information is contained in the " Directional to others" row and 

the "Directional from others" column. The purpose of this section is to analyze this row 

and column in a dynamic way. In Figures 12, 13 and 14, we present the directional 

volatility spillovers from each of the three sector to the others, that is, "Directional to 

others" row in Table 7. 

 

Figure 12. Volatility Spillover from AE to others 

 

Figure 13. Volatility Spillover from OIL to others 



42 
 

Figure 14. Volatility Spillover from TECH to others 

 

 The three plots above follow a different pattern. Nevertheless, in general terms 

spillovers for the three markets are lower before the start of the recent Financial Crisis 

and much more higher after that. In fact, this dynamic is very clear in the case of Oil, 

whose directional spillovers were in most of the cases below 20% before mid-2008 and 

then, during the Crisis and volatile times, directional spillovers increased up to 70%. In 

addition, the Alternative Energy market also goes from a 35% of volatility on average 

before mid-2008 and then, during the first years of the Financial Crisis (2008-2009) it 

has reached higher levels, around 50-60%. 

 Finally, the Technology market also presents higher directional spillovers to the 

others sectors during the post-crisis period than during pre-crisis years. Technology 

market is perhaps that one in which the difference before and after the Financial Crisis 

is not as significant as in the other two global markets. 

 Next, we will present Figures 15, 16 and 17, which represent the directional 

volatility spillovers from others to each of the three sectors; they correspond to the 

"Directional from others" column in Table 7.  
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Figure 15. Volatility Spillover from others to AE 

 

Figure 16. Volatility Spillover from others to OIL. 

 

Figure 17. Volatility Spillover from others to TECH. 
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 As with the directional spillovers to others, the spillovers vary greatly over the 

sample period. One can quickly check that Oil market is certainly that one which 

receives lower volatility spillovers from the other two markets before the Financial 

Crisis but the spillovers considerably increase during the post-crisis period. Regarding 

Alternative Energy and Technology markets, they receive greater spillovers in the 

period before the Crisis than Oil. However, although the intensity of volatility spillovers 

is also higher after the beginning of the Crisis, they don't suffer a huge and pronounced 

change from the pre to the post-crisis period as Oil does.  

 

- Conditioning and Dynamics III: Rolling- Sample Net Directional Volatility 

Spillover Plots  

 So far, we have discussed the gross volatility spillover plots. However, this 

methodology provides us with a very useful measure in terms of net directional 

spillovers. Hence, we will present additional plots, Figures 18, 19 and 20. These plots 

correspond to the net directional spillover, that is, the difference between the 

"Contribution from" column sum and the "Contribution to " row sum. Besides, net 

pairwise spillovers for each one of the possible combinations of the three sectors are 

calculated and presented in Figures 21, 22 and 23.  

 

Figure 18. Net Volatility Spillovers: Alternative Energy  
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Figure 19. Net Volatility Spillovers: Oil 

 

Figure 20. Net Volatility Spillovers: Technology  

 

Figure 21. Net Pairwise Volatility Spillovers: Alternative Energy - Oil 
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Figure 22. Net Pairwise Volatility Spillovers: Alternative Energy - Technology 

 

 

Figure 23. Net Pairwise Volatility Spillovers: Oil - Technology  

 

 Until the recent global crisis, in general terms net volatility spillovers from/to 

each of the three markets do not exceed the 10% mark. Moreover, until 2007, all three 

markets were relatively both the giving and receiving ends of volatility transmissions. 

However, although the general patterns show that things dramatically changed since 

January 2008, there are few exceptions. In fact, Figure 20, which displays the net 

volatility spillovers related to the global Technology market, shows that in 2006, this 

market reflect a peak of volatility, surpassing the 10% level. 

 Figure 18 shows that during the first part of the sample period, from 2003 up to 

the mid-2005, Alternative Energy global market was a net transmitter. Then, from mid-
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2005 to mid-2008, Alternative Energy global market was a net receiver. After the 

beginning of the crisis up to 2011, Alternative Energy changed its role and it clearly 

became a net transmitter. Alternative Energy global market was transmitting volatility 

to both Oil and Technology sectors (see Figures 21 and 22).  

 From 2013 up to now, it seems that the Alternative Energy global market is 

receiving volatility spillovers from the other two markets but the intensity of volatility 

has significantly decreased.  

 The second net volatility spillover plot refers to Oil dynamics. In general, we 

could say that Oil is clearly the dominant net receiver but there are some episodes in 

which Oil was transferring volatility to the other markets. We refer to the period 

between the late 2006 and the beginning of 2007 and also, during the beginning of 

2008. In addition, during the last months of the sample period, Oil is a net transmitter of 

volatility (see Figures 21 and 23). 

 Finally, regarding Figure 20, which reflects the net volatility spillover dynamics 

of the Technology global market, in general terms, this market can be considered as a 

net transmitter of volatility rather than a net receiver. However, as it happened with the 

oil market there are some individual episodes during which technology is a net receiver. 

We can point out the period between 2003 and 2004, the late of 2006 and the beginnng 

of 2007 and also, between 2010 and 2011. 
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5. SOME APPLICATIONS: HEDGING AND PORTFOLIO WEIGHTS 

 

 Estimating the time-varying covariance matrix is crucial for portfolio selection, 

asset allocation and risk management. In this section, we propose some interesting 

financial applications that prove the relevance of calculating such covariance matrices. 

Hence, we applied our results to two essential financial problems. Both applications will 

provide useful information for investors involved in the Alternative Energy industry.  

 First, we will consider the problem of estimating a dynamic risk-minimizing 

hedge ratio using multivariate GARCH models. In particular, by applying the 

methodology introduced by Kroner and Sultan (1993), conditional volatility estimates 

can be used to construct hedge ratios. Thus, a long position in a given asset (asset  ) can 

be hedged with a short position in another asset (asset  ). The hedge ratio between asset 

  and asset   is:  

      
      

     
                     (35) 

 For our purpose and by using the DCC model, we have computed the hedge 

ratios and so, their dynamics have been represented in Figures 24, 25 and 26. In 

addition, we provide summary statistics for each one of the hedge ratios (long/short) in 

Table 8. 

 

Figure 24. Time-varying hedge ratios (DCC model) - AE 
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Figure 25. Time-varying hedge ratios (DCC model) - OIL          

 

 

 

 

Figure 26. Time-varying hedge ratios (DCC model) - TECH 

 

 

 

 

Table 8. Hedge ratio (long/short) summary statistics 

 

 
Mean St. Dev Min Max 

AE/OIL 0.24 0.21 -0.19 0.94 

AE/TECH 1.01 0.21 0.48 1.76 

OIL/AE 0.31 0.27 -0.87 1.07 

OIL/TECH 0.26 0.41 -0.94 1.46 

TECH/AE 0.55 0.18 0.21 1.19 

TECH/OIL 0.11 0.16 -0.24 0.76 
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 For most of the hedge ratios, computed from the DCC model, the graphs show 

considerable variability since the beginning of the recent Financial Crisis. Hence, for 

many of the hedge ratios it is also the case that the maximum value is achieved at the 

beginning of the Financial Crisis or some years later. In fact, in Figure 24, the AE with 

OIL hedge has it maximum value at mid-2010 and the AE/ TECH hedge has its highest 

value in the late of 2011 and the beginning of 2012. In the case of the Figure 25, which 

shows the hedge ratios of OIL with respect to AE and TECH, it can be seen than in both 

cases (Hedge of OIL with AE/Hedge of OIL with TECH) the maximum values are 

attained in the late of 2009 and the beginning of 2010.  

 However, looking at Figure 26, which shows TECH/AE and TECH/OIL hedge 

ratios, we can see that the highest values for these hedge ratios were recorded near the 

beginning of the sample period, in the pre-crisis period. In such a way, it was not 

convenient for investors to hedge TECH with short position in AE or OIL during the 

initial years of the sample period.  

 In addition, in Table 8 we can see that the average value of the hedge ratio 

between AE and OIL is 0.24 while the average value of the hedge ratio between AE and 

TECH is 1.01. The average value of the hedge ratio between OIL and TECH is 0.26, 

which is higher than the hedge between AE and OIL. These results reflect that a $1 long 

position in AE can be hedged for 24 cents with a short position in the Oil market. 

Similarly, a $1 long position in OIL can be hedged for 26 cents with a short position in 

the TECH index. In addition, as expected from what we obtained from the dynamic 

conditional correlation analysis, it is not convenient to hedge AE with a short position in 

TECH. Notice that four of the hedge ratios record maximum values in excess of unity.  

  Secondly, we consider the problem of calculating the optimal fully invested 

portfolio holding subject to a no-shorting constraint. This application is illustrative of 

the types of problems faced by portfolio managers when deriving their optimal portfolio 

holdings. In order to avoid forecasting expected returns, we assume here that the 

expected returns are zero, making the problem equivalent to estimating the risk-

minimizing portfolio weights. In such a way, following Kroner and Ng (1998), the 

conditional volatilities from MGARCH models can be used to construct optimal 

portfolio weights: 
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                           (36) 

 

       

            

                     

               

                 (37) 

  

 In constructing portfolio weights between two assets,       is the weight of the 

first asset in a one dollar portfolio of two assets (asset  , asset  ) at time t,       is the 

conditional covariance between assets   and   and       is the conditional variance of 

asset  . The weight of the second asset is        . In such a way, we have provided 

summary statistics for portfolio weights computed from the DCC model which are 

reported in Table 9. 

 

Table 9. Portfolio weights summary statistics 

 
Mean St. Dev Min Max 

AE/OIL 0.61 0.19 0.05 1.03 

AE/TECH 0.05 0.34 -0.66 1.34 

OIL/TECH 0.23 0.16 -0.06 0.96 

  

 The average weight for the AE/OIL portfolio is 0.61, indicating that for a $1 

portfolio, 61 cents should be invested in AE and 39 cents invested in OIL. The average 

weight for the AE/TECH portfolio indicates that 5 cents should be invested in AE and 

95 cents invested in TECH. Finally, the average weight for the OIL/TECH portfolio 

indicates that 23 cents should be invested in OIL and 77 cents invested in TECH.    
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6. ROBUSTNESS CHECKS  

 

 In this section we consider several robustness checks. Firstly, we propose to 

study volatility spillovers with another type of data coming from ETFs. Secondly, we 

investigate another alternative for our global market volatility spillovers research by 

considering different indexes from those ones previously used for representing the 

Alternative Energy and Technology markets.   

 

6.1. ETFs  

 Why ETF's? Exchange Traded Funds are hybrid investment instruments between 

funds and shares so, they combine the diversification offered by a portfolio fund 

portfolio with the flexibility of being able to enter and leave the fund with a simple 

trading operation on the stock exchange. As we commented at the beginning, our final 

objective is to analyze volatility spillovers among these three markets in order to have a 

better understanding of the financial performance of alternative energy companies and 

provide useful information for investors. In fact, this could be the key to encourage the 

development of the alternative energy industry in the forthcoming years. In such a way, 

the idea of extending the proposal with ETFs comes because when analyzing 

investment strategies or hedging ratios, it is easier for investors if they invest and they 

make use of ETFs (after all, they replicate certain indexes) rather than doing so directly 

in the indexes. Some of the most important characteristics of this products are 

accessibility (easy access for investors); flexibility (you can buy or sell at any time); 

transparency (ETFs usually replicate very well known indexes), liquidity (ETFs can be 

bought and sold at any time) and strength (these products are already established in 

international markets). Therefore, there are relevant benefits derived from the 

investment in ETFs instead of investing in the indexes. 

 Thus, we found that both The Market Vectors Global Alternative Energy 

ETF (GEX) and The iShares Global Tech ETF (IXN) were the most adequate ETFs 

representing Alternative Energy and Technology global markets, respectively. The data 

for these ETFs were also collected from Thomson Reuters Datastream and the sample 

period for this data set covers May 2007 to May 2015. Again, in the case of Oil, we use 



53 
 

the nearest contract to maturity on the Brent crude oil futures for the corresponding time 

period.  

 

6.2. The S&P Global Clean Energy Index and The DJ Global 

Technology Index. 

 The aim of this proposal is to contrast the results that we will get when we 

consider other indexes for both Clean Energy (CE from now on) and Technology, in 

which the US market had a lower weight. In such a way, we can check if the obtained 

outcomes with the Ardour Global Alternative Energy Index and the Dow Jones 

Technology Titans 30 Index are unbiased or not due to the strong presence of the US 

market in those indexes. Thus, we can conclude if our results are very similar from 

those obtained by Sadorsky (notice he made his study just for the US market) due to the 

high number of US company components in both indexes or on the contrary, our results 

are not influenced by such fact. Hence, we considered that for such purpose both The 

S&P Global Clean Energy Index (SPGTCED) and The Dow Jones Global 

Technology Index (W1TEC) were the most appropriate indexes representing Clean 

Energy and Technology sector, respectively. In fact, in the S&P Global Clean Energy 

Index the US market representation is 22.9% whereas in the Ardour Global Alternative 

Energy Index is higher, 65.97%. In the case of the global Technology sector, in the Dow 

Jones Global Technology Index the US market represents the 48.74% out of the total 

whereas in the Dow Jones Technology Titans 30 Index, the US market presents a higher 

percentage, 76.78%.    

 The data for these two indexes were both collected from Thomson Reuters 

Datastream and Google Finance. The sample period for this data set covers November 

2003 to May 2015. Again, in the case of Oil we use the nearest contract to maturity on 

the Brent crude oil futures for the corresponding time period.  
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6.3. Empirical results 

 Now, we will provide the results derived from both proposals when we apply 

MGARCH models and the recent methodology of Diebold and Yilmaz coupled with the 

two financial applications discussed in the previous section.  

 Table 10 contains the MGARCH parameter estimates for ETFs data coupled 

with Table 11 in which the diagnostic tests for the standardized residuals and 

standardized squared residuals are presented. Again, in Table 10 models are estimated 

using QMLE and variable order is AE (1), OIL (2) and TECH (3). In the variance 

equations,   denotes the constant terms,   denotes the ARCH terms and   denotes the 

GARCH terms. 

 In addition, Table 12 provides the results obtained from the Diebold and Yilmaz 

(2012) methodology. Moreover, the outcomes derived from the two financial 

applications, hedge ratios and portfolio weights are presented in Tables 13 and 14.  

 Similarly, in Table 15 we present the MGARCH parameter estimates obtained 

for the S&P Global Clean Energy Index and the Dow Jones Global Technology Index. 

As in the previous case, Table 16 shows the diagnostic tests for the standardized 

residuals and standardized squared residuals. In addition, in Table 17 we provide the 

outcomes from the Diebold and Yilmaz (2012) methodology applied for this proposal. 

Finally, time-varying hedge ratios computed from DCC model and the required invested 

portfolio holdings are presented in Table 18 and 19, respectively.  

 Only the most relevant results have been included in order to save space but they 

are available by the author upon request. 
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Table 10. MGARCH parameter estimates (ETFs) 

 BEKK DIAGONAL CCC DCC 

 Coeff T stat Coeff T stat Coeff T stat Coeff T stat 

Mean                 
    0.0603** 2.18 0.1009*** 3.04 0.0586 1.77 0.0692** 2.09 

    -0.0163 -0.58 0.0023 0.07 -0.0004 -0.01 -0.0141 -0.46 

    -0.0034 -0.21 -0.0127 -0.65 -0.0054 -0.25 -0.0093 -0.47 

    0.0292 0.65 0.0273 0.55 0.0445 0.90 0.0379 0.81 

    0.0199 0.60 0.0263 0.83 0.0216 0.70 0.0350 1.06 

    0.0273 1.19 0.0437 1.60 0.0412 1.49 0.0367 1.43 

    -0.0734*** -3.43 -0.0693*** -2.97 -0.0729 -2.98 -0.0733*** -3.24 

    0.0519 1.34 0.0389 0.88 0.0654 1.49 0.0547 1.25 

    0.0793*** 4.30 0.0497** 2.17 0.0653*** 3.12 0.0775*** 3.66 

    -0.0169 -1.12 -0.0179 -0.94 -0.0120 -0.62 -0.0200 -1.20 

    -0.0035 -0.34 0.0034 0.27 -0.0020 0.15 -0.0019 -0.15 

    0.0122 0.43 -0.0036 -0.12 0.0056 0.17 0.0151 0.51 

 

Variance         

    0.2120*** 7.66 0.0597*** 3.94 0.0225 0.79 0.0499*** 4.74 

    0.0445 1.77 
      

    0.1014*** 5.12 0.0197*** 3.00 0.0201** 2.10 0.0276*** 3.39 

    0.0966*** 4.19 
      

    0.0166 0.66 
      

    0.0779*** 5.96 0.0248*** 4.70 0.0218** 1.95 0.0182*** 4.32 

    0.3302*** 13.50 0.1122*** 6.19 0.1242*** 7.04 0.0647*** 4.30 

    0.0321 1.51 0.0239 1.84 0.0211 1.30 0.0338*** 2.95 

    0.0974*** 6.14 -0.0569** -2.18 -0.1611*** -5.66 -0.0098 -0.37 

    0.0412*** 2.77 0.0600*** 4.25 0.0647*** 4.39 0.0645*** 3.87 

    0.1743*** 12.97 0.04323*** 6.39 0.0482*** 6.10 0.0494*** 5.88 

    -0.0040 -0.38 -0.08578*** -4.53 -0.1161*** -5.11 -0.0889*** 3.00 

    -0.1515*** -3.33 0.0302*** 7.66 0.0015 0.15 0.0420*** 5.48 

    0.0137 0.39 -0.0075 -1.32 -0.0360*** -4.36 -0.0040 -0.65 

    0.1484*** 5.76 0.0522*** 5.00 0.0804*** 4.63 0.0155 1.18 

    0.9349*** 94.99 0.8932*** 68.87 0.6626*** 6.12 0.9199*** 43.22 

    -0.0000 -0.00 -1.3051 -0.48 -0.1824 -1.84 -0.0692*** -4.62 

    -0.0281*** -4.79 -0.8496 -0.43 0.7264*** 2.57 0.0493 1.20 

    -0.0055 -1.47 -0.5647 -0.23 -0.0931 -1.17 -0.0054 -0.18 

    0.9844*** 380.40 0.9471*** 122.78 0.9204*** 48.99 0.9383*** 82.59 

    0.0054** 2.01 -1.0342 -0.22 0.2869*** 1.52 0.0085 0.19 

    0.0469*** 2.72 -0.2591 -0.46 0.1396*** 1.68 -0.0358*** 2.77 

    -0.0212** -2.12 -0.7200 -0.48 0.1547** 2.35 -0.0054 -0.66 

    0.9863*** 115.56 0.9001*** 77.79 0.6747*** 5.20 0.9736*** 43.61 

    
    

0.3659*** 20.89 
  

    
    

0.7537*** 85.69 
  

    
    

0.3304*** 17.87 
  

   
      

0.0302*** 75.64 

   
      

0.9635*** 179.41 

Log L -10554.74 -11598.91 -10607.45 -10523.83 

AIC 10.149 11.147 10.200 10.119 

SIC 10.247 11.236 10.297 10.213 

Variable order is AE (1), OIL (2) and TECH (3). In brackets, next to the parameter values estimates are 

the corresponding t-statistics. ** indicates significance at 5%. 
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Table 11. Diagnostic tests for standardized residuals (ETFs) 

 
BEKK 

  
DIAG 

  
CCC 

  
DCC 

  

 
AE OIL TECH AE OIL TECH AE OIL TECH AE OIL TECH 

Q(20) r 26.17 18.26 17.14 25.59 17.30 17.38 25.29 16.89 16.62 28.65 17.53 32.80 

p-value 0.1603 0.5702 0.6438 0.1796 0.6333 0.6281 0.1906 0.6602 0.6776 0.0949 0.6186 0.6179 

Q(20)   14.91 32.01 27.38 8.42 28.92 25.99 51.06 27.92 69.20 19.32 17.54 32.80 

p-value 0.7818 0.0432 0.1250 0.9887 0.0894 0.1663 0.0002 0.1113 0.0000 0.5014 0.6179 0.0354 

 

 

Table 12. Volatility Spillover Table (ETFs) 

 

Alternative 

Energy 
Oil Technology Directional FROM others 

Alternative Energy 55.6 13.5 30.9 44 

Oil 25.3 55.1 19.6 45 

Technology 41.5 14.3 44.3 56 

Directional TO others 67 28 51 145 

Directional including own 122 83 95 
Total Spillover Index (145/300): 

48.3% 

The results are based on a vector autoregression of order 1 and on a generalized variance decomposition 

of 10-day-ahead volatility forecast errors.  

 

Table 13. Hedge ratio (long/short) summary statistics (ETFs) 

 Mean  St. Dev Min  Max  

AE/OIL 0.42 0.21 -0.08 1.04 

AE/TECH 1.23 0.21 0.63 0.83 

OIL/AE 0.35 0.17 -0.08 0.97 

OIL/TECH 0.47 0.32 -0.73 1.40 

TECH/AE 0.47 0.09 0.15 0.72 

TECH/OIL 0.23 0.16 -0.26 0.69 
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Table 14. Portfolio weights summary statistics (ETFs) 

 
Mean St. Dev Min Max 

AE/OIL 0.43 0.21 -0.03 1.00 

AE/TECH -0.22 0.21 -1.03 0.5 

OIL/TECH 0.25 0.15 -0.07 0.73 
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Table 15. MGARCH parameter estimates (The S&P Global Clean Energy & The 

DJ Global Technology Indexes) 

 BEKK DIAGONAL CCC DCC 

Mean Coeff T stat Coeff T stat Coeff T stat Coeff T stat 

    0.0740*** 4.08 0.0666*** 3.16 0.0783*** 3.26 0.0780*** 3.56 

    0.1317*** 8.53 0.1405*** 7.08 0.1359*** 6.79 0.1295*** 6.69 

    0.0399*** 4.12 0.0370*** 3.19 0.0327*** 2.46 0.0403*** 3.17 

    0.0052 0.27 0.0159 0.75 0.0323 1.28 0.0078 0.40 

    0.0575 18.64 0.0481 1.69 0.0605*** 2.06 0.0718*** 2.45 

    0.0518*** 2.91 0.0435** -2.23 0.04401** 2.25 0.0469** 2.24 

    -0.0513*** -3.16 -0.0628*** -3.42 -0.0583*** -3.02 -0.0480** -2.42 

    0.0092 0.39 -0.0089 -0.32 -0.0006 -0.02 -0.0044 0.15 

    0.0552*** 3.17 0.0567*** 3.87 0.0741*** 5.00 0.0579*** 3.65 

    -0.0051 -0.51 -0.0103 -0.94 -0.0070 -0.61 -0.0093 -0.92 

    -0.0053 -0.61 -0.0038 -0.46 -0.0096 -1.10 -0.0058 -0.69 

    0.0963*** 5.92 0.1068*** 5.35 0.1015*** 4.94 0.0969*** 4.38 

 

Variance         

    -0.1307*** -7.89 0.0367*** 4.49 0.0054 0.16 0.0535*** 3.68 

    -0.0209 -0.66 
      

    -0.1029*** -4.46 0.0180*** 2.72 0.0072 0.55 0.0220*** 3.01 

    -0.0843*** -4.35 
      

    -0.0302 -1.00 
      

    0.0958*** 5.10 0.0165*** 4.57 0.0325*** 2.58 0.0168*** 4.33 

    0.2614*** 21.08 0.0774*** 8.18 0.0855*** 6.23 0.0782*** 7.37 

    0.0562*** 3.90 0.0250*** 2.78 0.0451*** 4.06 0.0256*** 2.59 

    0.0465*** 3.61 -0.0110 -0.86 -0.0901*** -4.05 0.0093 0.48 

    -0.0060 -0.57 0.0064 1.06 0.0103 1.20 0.0181** 2.09 

    0.1679*** 13.87 0.0477*** 7.33 0.0430*** 6.60 0.0480*** 7.00 

    -0.0035 -0.35 -0.0151 -1.04 -0.0236 -1.50 -0.0166 -1.01 

    -0.0582** -2.04 0.0072 1.17 0.0236*** 2.05 0.0120 1.33 

    -0.0201 -0.78 0.0070 1.06 0.0018 0.24 0.0066 0.85 

    0.2274*** 15.30 0.0725*** 8.04 0.1243* 8.69 0.0720*** 7.37 

    0.9633*** -289.37 0.9013*** 79.91 0.3578*** 3.88 0.8863*** 42.25 

    -0.0139*** -3.76 -0.9896 -0.34 -0.5542*** -3.80 0.0239 0.93 

    -0.0110 -3.69 2478.0470 0.35 17.0111*** 3.24 -0.0846*** -2.63 

    0.0026*** 1.08 -0.2329 -0.15 -0.6858*** -4.35 -0.0172 -1.64 

    0.9847 418.66 0.9467*** 128.70 0.8950*** 47.05 0.9478*** 116.19 

    0.0022 0.88 11.3067 0.16 19.3968 1.85 -0.0016 -0.04 

    0.0000 0.01 263.5052 0.19 3.7285*** 3.21 -0.0127 -0.92 

    -0.0097 -1.23 4.7869 0.19 4.2240 1.78 0.0132 -0.92 

    0.9629*** 231.14 0.9119*** 83.50 0.3208*** 4.00 0.9132*** 81.41 

    
    

0.2678*** 17.18 
  

    
    

0.0654*** 3.70 
  

    
    

0.0200 1.80 
  

   
      

0.0162*** 11.30 

   
      

0.9828*** 592.52 

Log L -15289.04 -15425.85 -15256.54 -15220.86 

AIC 10.251 10.340 10.229 10.205 

SIC 10.323 10.407 10.301 10.275 

Variable order is CE (1), OIL (2) and TECH (3). In brackets, next to the parameter values estimates are 

the corresponding t-statistics. ** indicates significance at 5%. 
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Table 16. Diagnostic tests for standardized residuals (The S&P Global Clean Energy 

& The Dow Jones Global Technology) 

 BEKK   DIAG   CCC   DCC   

 CE OIL TECH CE OIL TECH CE OIL TECH CE OIL TECH 

Q(20) r 19.82 16.40 22.49 18.04 16.13 19.89 19.44 14.21 18.85 18.17 16.07 20.63 

p-value 0.4695 0.6916 0.3144 0.5845 0.7082 0.4647 0.4931 0.8197 0.5318 0.5760 0.7123 0.4190 

Q(20)    22.05 31.47 36.67 13.14 23.37 25.09 25.37 18.93 40.21 14.21 23.33 25.11 

p-value 0.3376 0.0493 0.0128 0.8713 0.2709 0.1979 0.1875 0.5264 0.0047 0.8196 0.2728 0.1974 

 

 

Table 17. Volatility Spillover Table (The S&P Global Clean Energy & The Dow Jones 

Global Technology) 

 
Clean Energy Oil Technology Directional FROM others 

Clean Energy 54.3 6.1 39.6 46 

Oil 15.2 66.5 18.4 34 

Technology 25.3 6.8 67.9 32 

Directional TO others 40 13 58 111 

Directional including own 95 79 126 
Total Spillover Index 

(111/300): 37% 

The results are based on vector autoregression of order 1 and on a generalized variance decomposition of 

10-day-ahead volatility forecast errors. 

 

Table 18. Hedge ratio (long/short) summary statistics(The S&P Global Clean Energy 

& The Dow Jones Global Technology Indexes) 

 Mean  St. Dev Min  Max  

CE/OIL 0.27 0.21 -0.02 0.98 

CE/TECH 0.04 0.24 -0.51 0.82 

OIL/CE 0.32 0.18 -0.52 0.77 

OIL/TECH -0.03 0.19 -1.20 0.34 

TECH/CE 0.06 0.17 -0.19 0.85 

TECH/OIL 0.00 0.04 -0.16 0.18 
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Table 19. Portfolio weights summary statistics (The S&P Global Clean Energy & The 

Dow Jones Global Technology) 

 Mean  St. Dev Min  Max  

CE/OIL 0.59 0.20 0.01 0.96 

CE/TECH 0.31 0.13 0.05 0.93 

OIL/TECH 0.24 0.10 0.03 0.68 

 

 

 Regarding the results obtained for the ETF's proposal, GARCH methodology 

provides some outcomes in the same line as the original proposal (the Ardour Global 

Alternative Energy Index and the Dow Jones Global Titans 30 Index). Looking at the 

mean equation, there is no any evidence of spillovers. In fact, except for some constants 

      and       own terms, there is not any statistically significant cross-parameter at 

the same time individually in any of the four models. Focusing on the variance model, 

as it happened with our initial proposal, both     and     are statistically significant at 1% 

in each of the four models. In addition, taking into consideration cross-parameters in the 

BEKK model, it can be seen that    ,    ,     and also,     are statistically significant 

at 1%. The restricted correlation models also have some of these mentioned parameters 

statistically significant, so again the results are consistent among the different applied 

models. In such a way, for the ETFs proposal, which replicate the underlying indexes, 

once again we get to the idea that there are spillover effects between TECH and AE and 

between AE and TECH. As it happened with the US market, also for the Global Market, 

shocks to Technology stock prices have a greater impact on the stock prices of 

Alternative Energy companies than a shock to Oil prices does. Finally, parameters     

and     are statistically significant at 1% in all of the four models and in the three 

restricted correlation models, respectively. This outcome indicates that Oil depends both 

on Alternative Energy and Technology, but there is no evidence of bidirectional 

volatility spillover.  

 In addition, AIC and SIC criteria rank DCC as the best model which fits the 

ETFs data (notice that DCC only has    and     parameters statistically significant). 

The diagnostic tests for the residuals provide us with excellent results so we can 
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conclude that the applied models fit the data and there is no evidence of serial 

correlation (see Table 11). 

 Secondly, according to the outcomes from Diebold and Yilmaz methodology in 

Table 12 we can highlight the following facts. Again, the strongest effect of volatility 

spillover is between AE and TECH (from AE to TECH: 30.9 and from TECH to AE: 

41.5).  

 Finally, Table 13 contains the summary statistics for the different hedge ratios. 

The average value of the hedge ratio between AE and OIL is 0.42 while the average 

value of the hedge ratio between AE and TECH is 1.13. Again, these results are similar 

than those obtained with the Ardour Global Alternative Energy and the Dow Jones 

Technology Titans 30. In addition, the average value of the hedge ratio between OIL 

and TECH is 0.47, which is higher than the hedge between AE and OIL. This result will 

imply that a $1 long position in AE can be hedged for 42 cents with a short position in 

the Oil market. Similarly, a $1 long position in OIL can be hedged for 47 cents with a 

short position in the TECH ETF, that is, in the iShares Global Tech ETF (IXN). So, for 

this ETF proposal we can again conclude, that it could be not efficient to hedge AE with 

a short position in TECH, since they present the higher hedge ratio: 1.23. In addition, 

Table 14 shows the summary statistics for portfolio weights computed from the DCC 

model. Hence, the average weight for the AE/OIL is 0.43, indicating that for a $1 

portfolio, 43 cents should be invested in AE and 57 cents invested in OIL. The average 

weight for the OIL/TECH portfolio indicates that 25 cents should be invested in OIL 

and 75 cents invested in TECH. Finally, the average weight for the AE/TECH portfolio 

indicates that, since short-selling is not allowed we should invest 1€ in TECH and 

nothing in AE, so we should not hedge AE by investing in TECH.  

 According to the second additional proposal of the S&P Global Clean Energy 

Index and the Dow Jones Global Technology Index in which the US market 

representation is lower, we observe how results change to some extent. First, looking at 

Table 15 with the GARCH parameter estimates, the mean models show both     and 

    terms to be statistically significant at 1% in each one of the four models. So this 

initial results imply that, in contrast of what the previous two proposal have revealed, 

there could be some evidence that a one period lag of OIL positively affects current 

period CE and vice versa. Then, once the US market has not such a considerable weight 
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in the selected indexes the relationship between CE and OIL appears to be stronger, at 

least in terms of returns. 

 Variance models provide us with some interesting results. In fact, we can see 

how the GARCH models suggest that there is evidence of spillovers volatility between 

CE and OIL and between CE and TECH, so contrary to the previous proposals, it would 

not be so clear whether CE is more influenced by OIL or by TECH. Again, this method 

ranks the DCC as the model, which best fits the data and there are no problems of serial 

correlation. 

 According to the results in the Table 17, which corresponds to the Diebold and 

Yilmaz methodology, we note that volatility spillover between OIL and CE is equal to 

15.2% and the volatility spillover between TECH and CE show a value of 25.3%. 

Hence, while in this proposal for the global market the US market has a lower weight, 

the global Technology sector still has a major influence on Clean Energy than Brent. 

However, it is also important to consider that contrary to the two previously analyzed 

proposals (Ardour -Titans and ETFs), in this case, the volatility spillover from Clean 

Energy to Technology, (39.6%) is higher than that one from Technology to Clean 

Energy, (25.3%). 

 Moreover, Table 18 reports the summary statistics for the computed hedge 

ratios. In this case, the average value of the hedge ratio between CE and OIL is 0.27 

while the average value of the hedge ratio between CE and TECH is lower, 0.04. So, we 

can easily see how things change when the US market representation is not so 

remarkable. In addition, the average value of the hedge ratio between OIL and TECH is 

-0.03, contrary to what we have previously observed when we deal with the Ardour and 

the Dow Jones Titans and also, with ETF data. These results will imply that a $1 long 

position in CE can be hedged for 27 cents with a short position in the oil market. 

Besides, a $1 long position in OIL can be hedged by selling (short-selling) 3 cents with 

a long position in the TECH index. However, in this case it could be convenient to 

hedge CE with a short position in TECH, since a $1 long position in CE can be hedged 

for 4 cents with a short position in TECH. The CE/TECH hedge ratio is equal to 0.04. 

Regarding the maximum and minimum values, minimum values are all below zero and 

maximum values don't excess the unity in anyone of the cases. In addition, Table 19 

shows the summary statistics for portfolio weights computed from the DCC model. 

Thus, the average weight for the CE/OIL is 0.59, indicating that for a $1 portfolio, 59 
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cents should be invested in CE and 41 cents invested in OIL. The average weight for the 

OIL/TECH portfolio indicates that 24 cents should be invested in OIL and 76 cents 

invested in TECH. Finally, the average weight for the CE/TECH portfolio indicates that 

for a $1 portfolio, 31 cents should be invested in CE and 69 cents invested in TECH.  

 Consequently, we conclude that in the case of ETFs, the results are very similar 

to those obtained previously with the Ardour Global Alternative Energy Index and the 

Dow Jones Global Technology Titans 30 Index. In the case of the S&P Global Clean 

Energy Index and the Dow Jones Global Technology Index (in which the US market 

representation is more limited) the stock prices of Technology companies continue to 

have a more important role in explaining the fluctuations of the stock prices of 

Alternative Energy companies than Brent does, but to a lesser extent. 
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7. CONCLUDING REMARKS  

 

 In 2014, world clean energy amounted to $310 billion. This implies a rise of 

16% from a $268.1 billion in 2013, and more than five times the figure of $60.2 billion 

attained a decade earlier, in 2004. Undoubtedly, from the last decade, the Alternative 

Energy sector (especially renewable sources) has become one of the fastest growing 

sectors of the energy industry. In fact, energy security issues coupled with an increased 

concern about the natural environment are the main responsible for such an incredible 

growth. Nevertheless, very little is known about the volatility dynamics of the global 

Alternative Energy market and the possible correlation between the stock prices of 

Alternative Energy companies and other important markets, such as those involving 

global Oil and Technology sectors. This paper uses multivariate GARCH models and 

the methodology introduced by Diebold and Yilmaz (2012) to investigate the volatility 

spillovers between Oil prices and the stock prices of Alternative Energy and 

Technology companies at a global scale.  

 Our empirical results show that both unconditional correlations as well as 

dynamic conditional correlations between global Alternative Energy stock prices and 

Technology stock prices are more significant than those between Alternative Energy 

stock prices and Oil prices. The outcomes derived from GARCH models (considering 

the BEKK model as the benchmark) and those obtained from the methodology of 

Diebold and Yilmaz (2012) show that the strongest evidence for volatility spillovers is 

found between Alternative Energy and Technology global markets. Specifically, the 

second methodology illustrates the intensity and the magnitude of such volatility 

spillovers among the three global markets, both in a static way (it numerically quantifies 

such spillovers) and in a dynamic way (via charts). Oil effects on Alternative Energy are 

important but not as important as Technology stock price effects. 

 In addition, the conditional volatility from the DCC model can be used to 

estimate dynamic hedge ratios. On average, a long position in Alternative Energy 

companies can be hedged with a short position in the Brent crude oil futures market. 

However, due to the existence of a high and positive correlation between global 

Alternative Energy and Technology, it is not convenient for investors to hedge an 

investment in Alternative Energy companies with a short position in Technology 
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companies. That's why, on average, the hedge ratio between Alternative Energy and 

Technology is 1.01 whereas the hedge ratio between Alternative Energy and Oil is 0.24. 

Moreover, when calculating the optimal portfolio holdings, investors should invest a 

little more than half on Alternative Energy and the rest in Oil. On the contrary, just a 

5% of the total should be invested in Alternative Energy and the remainder in 

Technology.  Hence, there is strong empirical evidence of volatility spillovers between 

Alternative Energy and Technology global markets when we analyze the dynamics of 

indexes in which the weight of the US market is very high.  

 However, our robustness checks show that when we examine other indexes in 

which the US market has a lower representation, which is the case of the S&P Global 

Clean Energy Index and the Dow Jones Global Technology Index, the results change to 

some extent in terms of the financial results for investors.   

 On balance, if we consider that those companies with a higher market 

capitalization represent current global markets, analyzing the Ardour Global Alternative 

Energy and the Dow Jones Technology Titans 30 Indexes provides us the results that 

truly reflect world dynamics in Alternative Energy and Technology sectors. All in all, 

we can conclude that global Alternative Energy is more influenced and dependent on 

global Technology than on Oil prices movements. 

 Considering all these results, international policies and financial markets should 

be adapted to support the active transformation of the global energy system. Hence, due 

to the high relationship that exists between Alternative Energy and Technology sectors, 

evaluating a range of possible technological options for more integrated energy systems 

will provide an increased number of solutions for countries and regions to achieve such 

transformation of the global energy system. Nevertheless, policy and market risks 

increasingly cloud the development picture, raising concerns over how fast Alternative 

and Renewable Energy can scale up to meet long-term development objectives. In fact, 

in some emerging economies the lack of targeted policies and access to finance, as well 

as the persistence in some countries of fossil-fuel subsides, create serious obstacles to 

investments in the Alternative Energy sector. 

 As a result, despite the huge experienced growth in the Alternative and 

Renewable Energy sector, consistent and credible policies and innovative financing 

vehicles are needed so they can provide the bridge to pass from a fossil-fuel based 
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energy system to a new one, based on Alternative Energy sources. Moreover, these 

policies should ensure that global investment in Alternative Energy offers a sufficiently 

attractive returns and financial opportunities for investors.  

 It will take time, realism and determination to harness the skills of the financial 

world to the ambition for obtaining such transformation in the current energy system 

and also, for solving energy security issues and reaching climate change targets. 

However, it is crucial that we begin to work on it as soon as possible. The continued 

dependence on fossil fuels and recent trends of unexpected energy market fluctuations 

reinforce the role of governments and private sector to stimulate targeted action to 

ensure that resources are optimally aligned to accelerate progress. Establishing policy 

and market frameworks that support innovation and build investor confidence over the 

long term is a first-order task to deliver. 
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