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Maŕıa Dolores Furio Ortega

Abstract:

This paper examines the temporal stability of two electricity future pricing theories for the
Spanish market by conducting an empirical analysis of two models. The first model, the Mean
Reverting Jump Diffusion, was proposed by Cartea and Figueroa in 2005, a model which has been
used widely in the energy derivative pricing theories. The second one, the Stochastic Forward
Premium Model, proposed by Blanco et al., in 2014, is one of the most recent proposal where
the authors model the general factor affecting the whole swap curve within each market segment
(monthly, quarterly and yearly contracts).
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1 Introduction

The liberalization of the electricity sector, a phenomenon that has been occurring

in many countries in recent decades, has led to the possibility of exchanging the

electrical power on a market subject to competitive rules. In the case of Spain, the

liberalization process has been driven by the need of adapting itself to the guidelines

set by the European Union so as to continue on the path of economic integration.

The aim is to consolidate a common market of goods and services.

In a more financial context, electricity is considered as a commodity, though with

special characteristics. It is well known that electricity prices present high volatility.

This results in an increasing interest in modelling this commodity, in order to face

this market’s idiosyncratic risk. Two distinctive features are present in energy mar-

kets in general, and they are very evident in electricity markets in particular: The

mean reverting nature of spot prices and the existence of jumps or spikes thereof

(Cartea and Figueroa, 2005). There are different approaches to modelling prices

on electricity markets, that can mainly be classified in two categories: spot-based

models and forward-based models.

The first one is based on specific stochastic processes of the spot price on a set

of other state variables (Cartea and Figueroa, 2005). The spot prices can exhibit

various features such as seasonality, spikes and mean-reversion. Since the dereg-

ulated electricity markets are still developing and growing fast, practitioners, as

well as academics, have suggested several models to capture as many of these char-

acteristics (Benth et al, 2012). Thus, the standard approach in the literature is

to model the logarithmic electricity spot through a mean-reverting process (Benth

et al., 2005). Notable contributions have been made by Hilliard and Reis (1998),

Casassus and Collin-Dufresne (2005), German and Roncoroni (2006), Lucia and

Schwartz (2002), among others. Lucia and Schwartz’s (2002) extend the model

developed by Schwartz1 (1997) and derive a formula for the forward price of elec-

tricity by modelling the expected spot price during a future time period (Huisman

et al., 2012). Later, Cartea and Figueroa2 (2005) extended the model of Lucia and

Schwartz (2002) by adding jumps to the process.

According to Blanco et al. (2014) these kind of models present a forward price

curve which is not necessary consistent with the observable forward price. Therefore

those authors defend the second category of models, based on the direct modelling of

electricity forward prices’ term structure. Within this framework, models are fitted

1The author introduces an Ornstein-Uhlenbeck type of factor model which accounts for the mean reversion of
prices in 1997 (Cartea and Figueroa, 2005)

2Therefore, as Cartea and Figueroa (2005) state, in the process of pricing energy derivatives it is crucial that the
most significant features of the spot price dynamic, and consequently the forward, are captured.
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to forward prices directly, instead of modelling spot prices from which futures prices

are then derived. Previous literature studies based on the dynamics of the forward

curve as a whole are Heath et al.’s (1992), Cortaza and Schwartz (1994), Miltersen

and Schwartz (1998), or Miltersen (2003), among others. These models consider

the forward price curve as an input into the derivative pricing model (Blanco et

al., 2014). On the other hand, models such as the presented by Borovkova and

Gemman (2006a), Frestad, et al. (2010), Koekebakker and Ollmar (2005), Banco

et al. (2014), among others are, based on the idea of modelling a given function

of observed forward prices. Then, this functions’ stochastic deviations are analysed

and observed by means of using additional state variables.

In this paper, one outstanding model for each category has been selected to be

applied to the Spanish electricity market in order to evaluate their explanatory and

predictive ability for forecasting forward prices in the Spanish market area. The

first one was developed by Cartea and Figueroa (2005, which was based on the

Lucia and Sacharz (2002). They introduce a mean-reverting jump diffusion MRJD

model for the electricity spot price, attempting to capture electricity spot prices’

most important features. They also derive an expression for the forward curve in

a closed-form. The second one is the model presented by Blanco et al. (2014),

based on the Borovkova and Geman (2006), in which it is presented a stochastic

forward premium model for the pricing of electricity derivatives. As far as we know,

it is the first time that these two models are applied to the Spanish market. Then,

it will very interesting to learn how these models work when applied to the same

market with comparative purposes. To do so not only in-sample estimates will be

applied but also out-of-sample. When applying the above mentioned models, our

empirical analysis differs from the ones made in the referred papers to address some

identified drawbacks. In the first model we use a GARCH-model to compute the

daily volatility; and compute the forward price for each t as the average of the

estimated forward prices obtained for each day included in the period when delivery

will be made. Regarding the second model, the stochastic forward premium (SFP)

will be estimated following Borovkova and Geman (2006).

This research project is organised as follows. Section 2 introduces the models

and methodology. The data used in each model will be presented and analysed

in section 3. The empirical analysis is carried out and and displayed in section 4.

Section 5 addresses a comparative analysis of the two models through both in-sample

and out-sample estimations. Finally, section 6 summarizes the obtained results and

concludes
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2 Models and Methodology

In this section the two models and their principal features, as well as their implica-

tions for pricing electricity derivatives, are commented.

2.1 Mean Reverting Jump Diffusion (MRJD) Model

The Mean Reverting Jump Diffusion (MRJD) model presents a simpler process to

incorporate the observed features of the electricity market than other kind of mod-

els such as many froward-based models. Following Cartea and Figueroa (2005), two

characteristics that make the MRJD model interesting are its relative simple imple-

mentation and the greater availability of the needed data. In fact, the forward based

models do not usually have a wide range of data base to work with. Thereby, it is

presents a one-factor mean-reversion jump diffusion model which has the capability

to return a closed-form formula to the forward curve.

Let (Ω,P, F ) be a complete filtered probability space, with an increasingly and

right-continuous filtration [Ft]t∈[0,T ] and T <∞ a fixed time horizon. Moreover the

electricity spot price at time 0 ≤ t ≤ T is denoted by s(t), and following Lućıa and

Schwartz (2002), it is assumed that the log-price process, lnSt, takes the form

lnSt = g(t) +Xt (1)

given that the spot price can be written as

St = eg(t)eXt (2)

let G(t) ≡ eg(t) be a deterministic function modelling the seasonal trend and Yt

be a stochastic process3 whose dynamics are given by

dXt = −αXtdt+ σ(t)dZt + lnJdqt (3)

where ‘α’ is the speed of mean-reversion, dZt is the increment of the standard

Brownian motion Z, σ(t) is the time dependent volatility, J is a proportional random

jump size and dqt is a Poisson process such that

dqt =

{
1 with probability ldt

0 with probability (1− l)dt
(4)

In (4) ‘l’ is the intensity or frequency of the process. Moreover, the following

assumptions are adopted:

3A zero level mean-reverting jump diffusion process (MRJD).
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• lnJ ∼ N(µj, σ
2
j ).

• J , dqt and dZt are independent.

Where ‘l’ is the intensity or frequency of the process. Furthermore, I, dqt and dZt

are considered independent.

The SDE for St is obtained from (2) and (3) as follows 4

dSt = α(ρ(t)− ln(St))Stdt+ σ(t)Stdzt + st(J − 1)dqt (6)

Where the time dependent mean reverting level is given by

ρ(t) =
1

α

(
dg(t)

dt
+

1
σ2(t)

)
+ g(t) (7)

As can be seen, the equation (5) shows a mean reverting diffusion process with

an additional term dqt = 0. Most of the time, this latter term has a value that

is equal to zero but at random times St will jump from the previous jump S(t−1),

resulting in a new value JS(t−1).

Regarding the jump size J , the following assumptions are made:

• J is log-Normal, i.e. lnJ ∼ N(µJ , σ
2
J)

• E(J) = 1

• E(lnJ) = −σ2
J

2

• V ar(lnJ) = sigma2
J

2.2 Stochastic Forward Premium (SFP) Model

In this section, the Stochastic Forward Premium (SFP) model developed by Blanco

et al. (2014) is introduced, lightly modified to better explanation the seasonal fac-

tor construction. Differing from the MRJD model, in this one the forward structure

is used as an input to price derivatives on electricity prices. Blanco et al. (2014)

describe how to identify the factors such as the average forward price within each

market segment, the deterministic seasonal factor and the stochastic changes in the

forward curve shape. The stochastic factor are driven by processes which follow the

Multivariate Normal Inverse Distribution (MNIG) distribution.

4The diffusion process followed by the spot price indicated in the equation (6) in the discrete version has the
following form

St = St−1 + α(ρ(t)− lnSt−1)St−1∆t + σ(t)St−1

√
∆tnS,t−1 + St−1(J − 1)dqt (5)

where, nS,t−1 are i.i.d standard normal random variables.
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The starting point must be seasonal cost-of-carry model, proposed by Borovkova

and Geman (2006). This factor relates forward prices for any maturity T and deliv-

ery length period i as follows,

Fi(t, T ) = Fi(t)e
(si(K)+γi(t,T )) (8)

where Fi is the non-seasonal quantity defined as the average level of the swap

price referred to each market segment i5 . This component has been estimated below

as the geometric average of the current swap prices

Fi = N

√√√√ N∏
T=1

Fi(t, T ) (9)

or equivalently

lnFi =
1

N

N∑
T=1

lnFi(t, T ) (10)

Si(k) is the seasonal deterministic premia, defined as the collection of long-term

average premia on swaps expiring in the calendar period, month or quarter6, with

respect to the average swap price lnFi. To estimate this deterministic factor si(K)

we have proceeded as Borovkova and Geman (2006) 7 indicate,

ŝ(T ) =
1

2

n∑
t=1

(lnF (t, T )− lnF (t)) (11)

where n denotes the number of days in the historical dataset. Here N is the most

distant maturity. Finally the last term γi(t, T ) is the stochastic forward premium

(SFP) for the delivery period i and expiry date T , which can be defined as

γi(t, T ) = lnFi(t, T )− Fi(t)− si(K) (12)

Both, the seasonal deterministic premia and the SFP are zero on average by con-

struction.

Once the components of the model have been determined, the next step is intro-

ducing the stochastic dynamics of the state variables in terms of Multivariate Normal
5For instance, i = 1 = Montly(M), i = 2 = Quarterly(Q) and i = 3 = Y early(Y )
6Depending on the value of i, K will take 12 (monthly) or 4 (quarterly)
7See Appendix D for Further information.
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Inverse Gaussian MNIG. Let L(t) be a d-dimensional8 vector of MNIG. Following

Blanco et al. (2014), the L(t)’s increments defined as dL(t) = L(t+dt)−L(t) = X are

standardized and MNIG distributed9. The MNIG distribution is included in the fam-

ily of multivariate generalized hyperbolic distribution (MGH). Thus, the probability

density function of the d-dimensional MNIG distribution MNIGd(X;α, β, δ, µ,Σ)

is given by (10)

f(X) =
δ

2(d−1)/2

[
(

α

πq(x)

](d+1)/2

K d+1
2

[αq(x)]ep(x) (13)

where q(x) =
√
δ2 + (x− µ)′Σ−1(x− µ, p(x) = δ

√
(α2 − β′Σβ) + β′(x− µ) and

K d+1
2

(x) is the modified Bessel function of the second kind with index (d+ 1).

In addition, the mean and covariance matrix of the vector X are defined as

(Oigard et al, 2005),

E(X) = µ+
δΓβ√

α2 − β′Γβ
(14)

Σ = δ
√
α2 − β′Γβ

[
Γ + (α2 − β′Γβ)−1Γββ′Γ

]
(15)

Taking into account the fact that the marginal distributions of the (MGH) dis-

tribution are univariate Normal Inverse Gaussian, (NIG) ,the γi parameter10 can be

defined as

γi =
√
γ2
i − β2

i (16)

Finally, the dynamics of Fi(t) and γi(t, T ) under the market probability measure

are given by the following stochastic differential equations:

dlnF i(t) = κi(ςi − lnF i(t))dt+ θF idLF i(t); i = 1, ..., I (17)

γi(t, T ) = $i,Tγi(t, T )dt+ θ
γ
(T )
i
dL

γ
(T )
i

(t); i = 1, ..., I, T = 1, ..., N (18)

Besides, Blanco et al. (2014) established that the SFP are subject to their own

sources of uncertainty given by the MING, dLF i(T ) and dLγi(T ), which are assumed

8d=I+IxN, where I=2, due to the fact that i indicates the delivery length period given, 1(M) and 2(Q), and N=3
is the maximum liquid maturity.

9L(t)’s mean has stationary and independent increments in the sense that the distribution of L(t)−L(s), t > s ≥ 0,
is only dependent on t− s and not on t and s separately (Blanco et al., 2014).

10See Blanco et al. (2014) for a detailed proof.
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to be correlated. Moreover, in the special case where the increments L(t)−L(s) are

normally distributed with zero mean and covariance matrix Π.

2.3 Models’ evaluation

In order to evaluate the ‘goodness of fit’ of each model in this specific market, the

Mean Square Error (MSE) is used.

MSE =
1

N

N∑
t=1

(Yt −Xt)
2, (19)

where N indicates the total number of observations, Y denotes the market for-

ward quotes path whereas X refers to the model-estimated forward prices.

3 Data Analysis

3.1 Spot series used in the MRJD Model

For our empirical analysis, a data set for the spot price for the Spanish electricity

market has been used. Although the data series is available for a range that goes

from 1/01/1998 to 1/05/2015 the first two years have been ignored with the aim of

avoiding the rigidities that electricity markets usually show during the first years of

liberalization. Therefore, the sample period covers from 1/01/2000 to 1/05/2015 (a

total number of 5593 observations were included)

There are three key features of electricity spot prices that can be generally ob-

served in electricity markets (Benth et al., 2005):

• Firstly, electricity prices typically show very sharp spikes. The consequence of

this is the presence of an inelastic demand, combined with an exponentially increas-

ing curve of marginal costs. When an abrupt change of demand or supply takes

place(for instance caused by weather conditions), this results in strong jumps of

electricity prices.

• Secondly, another singular feature that electricity price dynamics show is that

they rather tend to quickly revert back to a mean level, which makes a mean reverting

process appropriate to model spot prices.

• Finally, all magnitudes that have been included, such as the mean level, jump

intensities and jump sizes, normally exhibit seasonal behaviour throughout the sam-

ple.

The peculiarities mentioned above can be checked in Figure 1. Hence, the mean

reversion can be observed, together with the jumps across the series and the periods

of high volatility. It can also be observed how some disturbances are going away

9



from the mean, with the series then swiftly returning to its mean, thus revealing

the mean reversion. These traits will be taken into account in the forward price

modelling process in order to obtain accurate estimations.

Figure 1: Spot prices in the Spanish Electricity Market from January 01, to April 25, 2015

Moreover, as it can be seen in Table 1, the series presents a positive skewness. The

positive skewness of electricity spot prices can be attributed to the fact that power is

non-storable and to the convex shape of the power supply curve (Viehmann, 2011).

Furthermore, the data shows a leptokurtic form due to the presence of significant

kurtosis.

Table 1: Spot Series’ Statistics
mean 0.0000
volatility 0.1118
kurtosis 42.9177
skewness -1.1289

Taking into consideration the statistics analysed above, it is clear that the series

cannot be identified as normally distributed. This fact is confirmed by representing

the QQplot, shown in the Figure 2. So the possibility of assuming normality cannot

be the best option to model electricity derivatives since the series present fat tails.

The existence of fat tails is linked to the probability of rare events which are more

frequent than the ones predicted by a Normal distribution (Cartea and Figueroa,

2005). Consequently, as can be observed in Figure 2, the returns of the electricity

spot prices present a behaviour which cannot be modelled by a normal distribution.

Therefore, a straight line in the QQplot, as consequence of the fat tails, cannot be

seen. For instance, corresponding to a 2.12 per cent, there are returns which are

higher than 0.5. This would be zero if we were working with normal distributed

series. Spot prices show large spikes due to the sudden imbalances in supply and

demand, for instance, when a large production utility experiences a back-out or

temperatures suddenly drop (Benth et al., 2014).

10



Figure 2: Returns’ Analysis

3.2 Forward series used in the SFP Model

With comparative purposes, daily data11 on settlement prices has been used for

monthly and quarterly baseload forward contracts traded in the Iberian Futures for

the Spanish area. The data has been obtained from the Reuters database12. We

have selected the most liquid contracts within each market segment, which usually

are the closest to maturity. In particular, the three closest to maturity monthly

(Figure 3) and quarterly (Figure 4)13.

Figure 3: Monthly forward Price evolution from July 02,2007 to April 23,2015

11Ranges for each market segment: 02/07/2007-23/04/2015 for M+1 and M+2, 02/0712007-23/04/2015 for M+3,
03/07/2006-23/04/2015 for Q+1 and 02/01/2007-23/04/2015 for Q+2 and Q+3.

12Thomson Reuters to Launch its Industry-Leading Market Data Services in CME Group’s Aurora Data Center.
13When there are days with no trading prices during the time of period covered by our data, prices for forward

contracts from the day before have been fixed as the price of the days with missing data. The missing data percentage
was 0.4030% 0.1423% for monthly and quarterly segments respectively.
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Figure 4: Quarterly forward Price evolution from January 02, 2007 to April 23, 2015

It can be observed in Figures 3 and 4 that the forward prices are much less volatile

than spot prices. According to Benth et a.(2005), this is because forward contracts

typically have delivery periods of fully months, quarters and years.

Table 2 displays, the statistics for each market segment (monthly, quarterly and

yearly). as can be observed, the average price tends to increase with the maturity

of the contract. Volatility is higher for the close-to-maturity contract (Samuelson

effect), that means that short-dated forward contracts tend to be more volatile than

long-dated. Additionally, the volatility presents a more complex behaviour than the

mean, which shows a more stable pattern. Furthermore, volatility shows a different

structure in each market segment. Thus, for the monthly contracts, the volatility

has a structure similar to an inverted u-shape (Figure 5); in the case of quarterly

contracts, it has a u-shape structure (Figure 5). In the case of monthly contracts,

the volatility follows the expected pattern, decreasing with time to maturity, which

also can be corroborated with the historical series. All the series present significant

kurtosis and asymmetry, suggesting that the normality assumption is unlikely to be

appropriate for these series (see Appendix A), similarly to the spot series case.

Table 2: Forward Series’ Parameters
Historical returns

Parameters M1 M2 M3 M1 M2 M3

mean 48.7195 49.5505 50.0351 0.0000 0.0000 0.0000
volatility 9.7746 9.2385 7.5477 0.0247 0.0212 0.0140
kurtosis 3.015441 3.950 4.9370 56.1502 45.9101 54.9842
skewness 0.3030 0.3756 0.9589 4.1198 2.6417 1.5934

Parameters Q1 Q2 Q3 Q1 Q2 Q3

mean 49.4563 50.1530 49.8558 0.0000 0.0000 0.0000
volatility 8.3244 7.3526 6.8061 0.0182 0.0137 0.0121
kurtosis 3.4870 5.1025 3.9969 100.1261 55.7866 52.3385
skewness 0.5326 0.9324 0.8696 4.8348 1.5871 2.9564
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Figure 5: Volatility structure

4 Empirical Analysis

In this section the two considered models presented above will be applied to the

Spanish electricity market. Apart from evaluating the performance of the models

by means of the Mean Squared Error (MSE) concept, the estimated prices will be

compared with the observed ones to check and compare their predictive ability.

4.1 Mean Reverting Jump diffusion (MRJD) model

Once the parameters14 have been estimated, as indicated above, it is proceeded to

obtain the forward price estimation. The predicted forward price of the Cartea and

Figueroa (2005) model is given by15

F (t, T ) = G(T )

(
S(t)

G(t)

)
e(

∫ T
t

1
2
σ2(s)e−2α(T−s)ds+

∫ T
t ξ(σJ ,α,T,s)lds−l(T−s)) (20)

where ξ(σJ , α, T, s) ≡ e−
σ2J
2
e−α(T−s)+

σ2J
2
e−2α(T−s)

When maturity arrives, electricity is continuously delivery for each hour for each

day included in the delivery period of the corresponding forward contract, rather

than on a particular day. Thereby, for instance, the January forward contracts in-

volves the delivery of electricity from January 1st (T1) to January 31st (T2). Subse-

quently in contrast to Cartea and Figueroa (2005) that obtain an estimated forward

price for a given T day, we use equation (20) to obtain an estimated forward price for

each day included in the delivery period, namely the interval [T1, T2]. The average

of all of these estimations will be the specific Forward price for every t. This is given

as follows
14Annualized estimates for the standard deviation of the jumps σJ , frequency of the jumps l and the mean

reversion rateα. The 95% confidence bounds are presented in parenthesis.
15Here we proceed as it is common in the literature, assuming that we are already under an equivalent measure

due to the scarcity of liquidity of instruments which would enable to do the change of measure (Cartea and Figueroa,
2005).
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F (t, T1, T2) =
1
∑T2

T=T1
F (t, T )

T2 − T1

(21)

Seasonality trend parameters estimation

As previously mentioned, electricity is a commodity with a sharp seasonal compo-

nent shown in its prices (Gemman et al., 2008). Benth et al. (2005) also states that

the construction of the seasonal factor modelling function is a key issue, since the

specified tendency should be able to explain the market expectations for the price

path for the next period (month, quarter, year). To obtain the monthly and quar-

terly seasonality function, we follow Cartea and Figueroa (2005). They propose a

deterministic seasonality function obtained as the result of a fitting procedure where

the monthly average of the spot series are fitted with a Fourier series of order 5.

This procedure is applied to the monthly and quarterly averages of the historical

electricity spot price for the Spanish market. Thus, it has been found that monthly

averages have a goodness of fit with a Fourier series of order 5 as can be seen in

figure 6.

Figure 6: Fitting Fouries series of order 5 to the monthly averages of the sample (1/01/2000-
1/05/2015)

The Fourier series of order 5 equation given for this specific electricity price series

is set as

F (x) = a0 + a1cos(xw) + b1sin(xw) + a2cos(2xw) + b2sin(2xw)

+ a3cos(3xw) + b3sin(3xw) + a4cos(4xw) + b4sin(3xw)

+ a5cos(5xw) + b5sin(xw)

(22)

where the parameters have been obtained as the result of fitting the series to the

corresponding Fourier series of order 516, and x takes the value corresponding to the

16The equation and the parameters obtained and the order of the Fourier series has been obtained through a
testing procedure using the ‘curve fitting’ application in the Matlab program.
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month under evaluation. The estimated parameters are shown in Appendix B.

On the other hand, the quarterly averages have the highest level of goodness of

fit with Fourier series of order 1 as Figure 7 shows.

Figure 7: Fitting Fourier series of order 1 to the quarterly averages of the sample (1/01/2000-
1/05/2015)

and its respective equation is given by

F (x) = a0 + a1cos(xw) + b1sin(xw) + a2cos(2xw) (23)

Spot price volatility ‘σ(t)’

As expected, spot price volatility is not constant across time. Estimating a moving

historical volatility is usually considered a useful approach to check this feature

(Cartea and Figueroa, 2005). Figure 8 shows the evolution of the volatility across

time. In this case,a window of 30 days has been used.

Figure 8: Rolling Historical Spot Price Volatility (31/01/2000-25/04/2015)

As can be seen in Figure 8, there is not a clear seasonal pattern in the spot

price volatility, which greatly contrasts with other analysed markets such as the
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European Energy Exchange (EEX) studied by Benth et al. (2012). In that paper,

three electricity spot price models are compared. It seems that volatility in the

Spanish market presents a certain stochastic element. Volatility appears to be time

dependent, which is consistent with Cartea and Figueroa (2005). Benth et al. (2012),

however, set the volatility as a constant, and calculate it as the overall average of

the rolling historical volatility over the period with data. In this paper, a GARCH

model17 has been used in order to obtain a volatility value for every single t.

Furthermore, the volatility obtained with the GARCH-model is more varying

than the produced with windows of 30 days or through the EWMA approach (Ap-

pendix C shows a shorter sample of 200 observations). Moreover in contrast with

the use of windows by using instead the EWMA or GARCH models we do not

throw away any observation. If we use windows the high returns effects can does

not disappear quickly affecting the following estimations. Besides, the weight of

each observation included in the window is considered to be equal which is not real-

istic due to de different values taken by every single observation. In order to avoid

the drawbacks the EWMA or GARCH model can be used. With any of them the

weight parameter decreases exponentially as moving back in time. Between them,

GARCH model, in contrast with the EWMA model generates a reversion to the

long-run average volatility rate (Haochen 2012), which makes it specially suitable

for electricity . For all of these reasons the GARCH model has been finally selected

to compute spot price volatility.

Mean-Reversion Rate ‘α’

To obtain the estimation for the mean-reversion rate we proceed as it was described

by Cartea and Figueroa (2005). They suggest linear regression as a good alternative

to estimate this parameter. In this case we regress the returns ∆xt versus the series

xt of the log-spot price.

Jump parameters ‘l′

As it was tested above, the returns cannot be modelled by a normal distribution

due to the presence of fat tails18. This suggesting that the probability of rare

events occurring is higher than that predicted by a Gaussian distribution. Figure 2

showed that the Gaussian distribution cannot capture the spikes produced in this

singular market. In order to obtain jumps from the data, the technique that is based

on the standard deviation of the returns, applied by Cartea and Figueroa (2005),

will be used. They present an iterative procedure in order to extract the jumps

from the original series of returns. They do this by filtering out the returns with

17GARCH model is considered as a good alternative to EWMA model and rolling volatility obtained thought
windows of a set number of observations. See Appendix C to further information.

18The high Kurtosis shown for the returns analysis gave us a primarily indication about the existence of this
feature.
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absolute values higher than three times the standard deviation of historical data

series’ returns, at the current iteration. This algorithm operates until no further

returns can be filtered. The main result of this procedure is the standard deviation

of jumps, σj and the cumulative frequency of jumps, l.

As can be observed in Figure 9, which contrasts to Figure 2, the filtered returns are

closer to be normally distributed. The right graph shows the contrast between the

filtered and the non-filtered returns and the differences are clear between these two

series.

Figure 9: QQplot filtered serie

Table 3 displays the estimated parameters for the stadard deviation of the jumps,

frequency of the jumps and the mean reversion rate19 for the Spanish electricity

market.

Table 3: Annualised estimates for the standard deviation of the jumps σj , frequency of the jumps
l, and the mean reversion rate α.

Parameter Value
σJ 0.8004
l 21.0137
α 0.5081 ( 0.1271, 0.8891)

4.2 Stochastic Forward Premium (SFP) Model

Having a historical dataset of daily swaps curves Fi(t, T ) 20 t=1,...n, where vector

T indicates the different swap contracts starting delivery dates which are available

at trading date t. The starting point will be the SFP model in logarithmic version,

lnFi(t, T ) = lnFi(t) + si(K) + γi(t, T ) (24)

19At the 95% confidence level.
20As it was indicated above, the subscript i refers to the electricity delivery period over which is defined each

curve’s forward contract
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where the first component’s least squares optimal estimator, lnFi(t), is the arith-

metic average of log-swap prices within each market segment i, as expressed in the

equation (10). The other two remaining components will be analysed below.

Seasonal Factor

In order to analyse this component21, the procedure applied by Borovkova and Ge-

man (2006) has been followed (See Appendix D for further indications.). Figure

10 display the seasonal factor for month-ahead contracts (left) and quarterly-ahead

contracts (right).

The monthly seasonal component shows higher positive spikes in months such

as January, July and November. On the other hand, there are just three negative

spikes being the highest one identified in April. The explanation for these peaks

can be mainly found from factors such as the season of consumption together with

some working patterns. For instance, December and January are typically very cold

months resulting in a higher demand for heating and, hence, higher prices. More-

over this effect is somewhat compensated in December due to the great impact of

the Christmas holidays on the electricity demand by many enterprises which reduce

or even stop their production or activity for this period. November is overall also

a cold month and in this month the level of working patterns is higher than the

remaining winter months resulting in a positive seasonal factor due to the higher

demand of electricity for this period of the year. On the contrary, it is in April

when the demand reaches the lowest peak, giving rise to a negative seasonal factor.

This fact is directly linked to the non-storable possibilities of the electricity. The

existence of inventories would help to reduce identified differences between months.

The quarterly seasonal factor (right side of Figure 10) shows the quarterly pattern

of electricity pricing throughout year. Thus, it is in the first quarter where the

highest value appears mainly due to the effect of usage of heating. Also, during the

Summer season the demand for electricity futures rises due to the widespread use of

air-conditional for this reason the third quarter display a positive value. It contrast

with Spring and Fall, where the (mild) weather pushes the electricity demand down

obtaining a greater evidence of such an effect during Spring, when the seasonal factor

becomes negative (second quarter). This results is consistent with the obtained one

for April, when analysing monthly seasonality. The fourth quarter show the lowest

seasonal positive value due to the October and December effects.

21Is should be mentioned that the seasonal factor must be zero on average for each seasonal period (monthly or
quarterly) having the following equality (Borovkova and Geman, 2006):

K∑
k=1

Si(k) = 0

.
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Figure 10: Seasonal Factor for Monthly and Quarter segments. The quarters are organized as
follow: 1oQ = January, February and March; ...; 4o = October, Nobember, December

Stochastic Forward Premium SFP

To estimate this component, the equation (12) is used. Its evolution is revealed

in Appendix D. Once the SFP has been estimated as well as the arithmetic mean

of the logarithmic prices, the next step is obtaining the parameters of the MNIG

distribution followed by the X vector (equations 13-18), being this latter vector an

estimation of the vector dL(t).

Thus, the procedure used will be the same as in Blanco et al. (2014) and it will

be carried out in two phases as well. Firstly, all the parameters of mean reversion

and volatility in discrete-time versions of equations (14) and (15) will be estimated

through a Seemingly Unrelated Regression Equations (SURE)22. The system is de-

scribed as follows,

[
∆lnF̄i(t)

∆γ̂i(t, T )

]
=

[
κiςi − κilnF̄i(t− 1)

$i,T γ̂i(t− 1, T )

]
+

[
θF̄iεF̄i(t)

θ
γ
(T )
i
ε
γ
(T )
i

(t)

]
(25)

i = 1(M), 2(Q), 3(Y )

T = 1, ..., 6

t = 1, ..., n

There will be three systems of 4 equations for each i. The set of 12 series will be

grouped in sets of series which are interrelated23.

22This model has been estimated using Generalised Least Squares (GLS). Appendix E displays the estimated
parameters

23There is 3 series for each segment market plus one lnF̄ series for each segment market.
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As suggested in Urzua (1997) the follow normalization will be used, Let the

residuals from equation (25) be defined as

Y =

[
εF̄i(t)

ε
γ
(T )
i

(t)

]
(26)

t = 1, ...n

Y is a vector with dimension of 4xn for each set. This vector has a mean vector

of zero and covariance matrix, Ω. Obtaining the eigenvalues and eigenvectors of this

latter matrix we have the following decomposition,

Ω−1/2 = Γ ∧−1/2 Γ′ (27)

where Γ denote the orthogonal matrix whose columns are the standardized eigen-

vectors of Γ , and Γ denote the diagonal matrix of the eigenvalues of Ω. Moreover

Ω−1/2 refers to the inverse of the square root decomposition of Ω. Then, we obtain

the X vector as

X = Ω−1/2Y (28)

Once the parameters for the MNIG distribution have been obtained, the NIG

distribution will be used in order to obtain the individual estimation for each singular

market segment24(Appendix F displays the MNIG parameters).

5 Model Comparison

5.1 In-sample estimation

In this section we will discuss the properties present in each estimated curve. Figures

11-22 show the in-sample simulations for the MRJD and SFP model. Firstly, and as

a first ‘test’ for both models the corresponding simulated path has been obtained.

Visually, an acceptable fit of the movements of each simulated curve with regards

to the observed market prices can be observed, seeming the performance of both

models quite satisfactory. However, although the series’ changes obtained from the

MRJD model move in the same direction as the market forward price, they present

more noise than the observed series’ changes as we can see in Figures 11-16 and as

its volatility points out (Table 5). The principal reason of this effect is that in the

first model we are using as principal component of the estimation procedure the spot

price, whereas the SFP model focuses on the forward curve prices directly. In fact,

the second model does not only seems to capture the movements quite satisfactory,

24The univariate NIG is the marginal distribution of the MNIG.
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but also the estimations are very close to the observed market forward for every

market segment. In contrast to the first model it can be note that the movements

are no so sharply and move accordingly to the forward market price.

Table 4 shows the MSE value for each contract maturity for both models. The

MRJD model display a higher MSE value for all the considered maturities in each

market segment (monthly and quarterly) confirming the visuall intuition.

Table 4: MSE values to evaluate the ‘goodness-of-fit’ of the models. The MSE has been obtained
from the returns.

MRJD SFP
Parameter M+1 M+2 M+3 M+1 M+2 M+3

MSE 0.1979 0.1923 0.1358 0.00098 0.00055 0.00054

Parameter Q+1 Q+2 Q+3 Q+1 Q+2 Q+3

MSE 0.1766 0.11309 0.0994 0.00112 0.00102 0.00064

Table 5: Mean and Volatility of the series. The volatilities have been obtained from the returns.
Mean Volatility

Model M+1 M+2 M+3 M+1 M+2 M+3

Historical 48.72510 49.55790 50.03215 0.0247 0.0212 0.0140
MRJD model 49.4910 52.3001 54.0005 0.2922 0.2873 0.2385
SFP model 48.7236 49.58160 50.06662 0.03355 0.02723 0.02408

Parameters Q+1 Q+2 Q+3 Q+1 Q+2 Q+3

Historical 49.45171 50.15333 49.8597 0.018285 0.0137 0.0121
MRJD model 54.2447 53.8595 51.8230 0.420604 0.3120 0.2937
SFP model 49.50246 50.23922 50.33618 0.03309 0.03137 0.02568

MRJD model estimations

Figure 11: The simulated forward vs observed forward dynamics from July 02, 2007 to April
23,2015 -MRJD model-M1
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Figure 12: The simulated forward vs observed forward dynamics from July 02, 2007 to April
23,2015 -MRJD model-M2

Figure 13: The simulated forward vs observed forward dynamics from January 02, 2007 to April
23,2015 -MRJD model-M3

Figure 14: The simulated forward vs observed forward dynamics from July 03, 2006 until to 23,2015
-MRJD model-Q1
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Figure 15: The simulated forward vs observed forward dynamics from January 02, 2007 to April
23,2015 -MRJD model-Q2

Figure 16: The simulated forward vs observed forward dynamics from January 02, 2007 to April
23,2015-MRJD model-Q3

SFP model estimations

Figure 17: The simulated forward vs observed forward dynamics from July 02, 2007 to April
23,2015 -SFP model-M+1)
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Figure 18: The simulated forward vs observed forward dynamics from July 02, 2007 to April
23,2015 -SFP model-M+2)

Figure 19: The simulated forward vs observed forward dynamics from January 02, 2007 to April
23,2015 -SFP model- M+3)

Figure 20: The simulated forward vs observed forward dynamics from July 03, 2007 to April
23,2015-SFP model-Q+1)
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Figure 21: The simulated forward vs observed forward dynamics from January 02, 2007 to April
23,2015-SFP model-Q+2)

Figure 22: The simulated forward vs observed forward dynamics from January 02, 2007 to April
23,2015 -SFP model- Q+3)

5.2 Out-of-sample estimation

Generally speaking,similar conclusions obtained from the in-sample are achieved for

the out-of-sample one day estimation. Thus, Table 6 evidences that the SFP model

has a better ‘goodness-of-fit’ showing smaller values for every kind of contract than

the obtained with the MRJD model. Furthermore, Table 7, confirms these results

given the similarities between the historical and the simulated series obtained from

the SFP model. Volatility tend to decrease with time to maturity in both models as

in the historical series, however, the SFP model has the closer values to the observed

series’ values than the MRJD model.

.

25



Table 6: MSE values to evaluate the ‘goodness-of-fit’ of the models, November 2013. The MSE
has been obtained from the returns.

MRJD SFP
Parameter M1 M2 M3 M1 M2 M3

MSE 0.22189 0.12933 0.00008 0.00038 0.000014 0.00003

Parameter Q1 Q2 Q3 Q1 Q2 Q3

MSE 0.13093 0.13170 0.17670 0.00005 0.00003 0.00003

Table 7: Mean and Volatility of the series. The volatilities have been obtained from the returns.
Mean Volatility

Model M+1 M+2 M+3 M+1 M+2 M+3

Historical 48.15476 51.03619 44.93000 0.01649 0.00874 0.00407
MRJD model 41.7472 46.5198 59.4501 0.4862 0.3703 0.0297
SFP model 47.8368 50.70706 44.77959 0.01285 0.00806 0.00426

Parameters Q+1 Q+2 Q+3 Q+1 Q+2 Q+3

Historical 49.21761 44.93000 51.99190 0.00471 0.00407 0.0041
MRJD model 42.8549 53.1321 66.4992 0.3730 0.3721 0.2937
SFP model 51.11986 44.90998 52.982817 0.00484 0.00394 0.00413

MRJD model estimations

Figure 23: The predicted forward vs observed forward dynamics with maturity in December 2013
(M+1)

Figure 24: The predicted forward vs observed forward dynamics with maturity in January 2013
(M+2)
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Figure 25: The predicted forward vs observed forward dynamics with maturity in February 2014
(M+2)

Figure 26: The predicted forward vs observed forward dynamics with maturity in the first quarter
of 2014 (Q+1)

Figure 27: The predicted forward vs observed forward dynamics with maturity in the second
quarter of 2014 (Q+2)
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Figure 28: The predicted forward vs observed forward dynamics with maturity in the third quarter
of 2014 (Q+3)

SFP model estimations

Figure 29: The predicted forward vs observed forward dynamics with maturity in December 2013
(M+1)

Figure 30: The predicted forward vs observed forward dynamics with maturity in January 2013
(M+2)
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Figure 31: The predicted forward vs observed forward dynamics with maturity in February 2014
(M+3)

Figure 32: The predicted forward vs observed forward dynamics with maturity in the first quarter
of 2014 (Q+1)

Figure 33: The predicted forward vs observed forward dynamics with maturity in the second
quarter of 2014 (Q+2)
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Figure 34: The predicted forward vs observed forward dynamics with maturity in the third quarter
of 2014 (Q+3))

6 Conclusions

This work has carried out an empirical analysis with the aim to compare two es-

timation models for electricity forward prices, each of them representative of two

different modelling approaches, the MRJD model, a spot-based model, and the SFP

model, which uses the forward curve to price derivatives. The results of the applica-

tion of these two models to the Spanish electricity market have shed light not only

on the characteristics of the Spanish electricity prices, but also on the fitting level

of each model to this specific market.

A preliminary visual analysis, it can be observed that the SFP model shows a

better fit than that shown by the MRJD model. Then this result is confirmed by

the Mean Squared Error (MSE) of the differences between the observed and esti-

mated forward prices by each model. Within each model, in the in-sample analysis,

the farthest maturities present a better adjustment. In the case of out-of-sample

prediction, it is the monthly contracts the ones that show a similar behaviour to

the in-sample estimation, whereas for the quarterly contracts, the opposite happens.

Thus, in the MRJD model, the closer maturities show a better fit, while in the SFP

model it is the farthest maturities the ones that present the best adjustment.

Although the MRJD model describes the stylized facts of electricity spot price

quite well, it becomes less suitable for further analysis of derivatives pricing, being

the SFP model the one that shows better abilities for modelling the Spanish forward

contracts in the electricity market, and the Quarterly segment the one that can be

modelled most accurately.

According to our results, the spot-based model could benefit from the introduc-

tion of a daily seasonal factor. Moreover, the analysis could be extended to yearly

contracts in order to evaluate how the models work for this kind of contracts where
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the seasonal factor is not taken into account. This is left for further research.
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7 Appendix

7.1 Appendix A

Figure 35: Returns and their qqplots

7.2 Appendix B

Table 8: Parameters of the MRJD model for November (2013) estimation.
Parameter November

σj 0.74367
l 17.69169
α 0.018835

Parameters obtained for the Fourier series of order 5 and 1 are showed in Table

9 and 10 respectively.
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Table 9: Fourier series of order 5’s parameters
Parameter Value Parameter Value

a0 39.33 w 0.6176
a1 2.753 b1 -2.954
a2 -0.1231 b2 1.283
a3 0.08702 b3 -1.078
a4 -1.14 b4 -0.8584
a5 -1.266 b5 -0.6176

Table 10: Fourier series of order 1’s parameters
Parameter Value Parameter Value

a0 41.37 w 1.846
a1 3.903 b1 -0.3111

7.3 Appendix C

Figure 36: Rolling Historical Volatility over a set of 200 observations (31/01/2000-17/08/2000
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7.4 Appendix D

Figure 37: Stochastic factor evolution (γM ) M+(1,2,3)

Figure 38: Stochastic factor evolution (γQ) for Q+(1,2,3)

Seasonal deterministic premia si(K) estimation procedure (Borovkova and Geman,

2006):

As Borovkova and Geman (2006), we obtain the differences s(M) − s(L) for all

possible combinations of moths (M, L), by averaging lnF (t,M) − lnF (t, L)) over

the entire historical dataset. Here the fact that γτ (t) is zero on average for all τ . In
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this way we obtain the matrix of the difference estimates:

̂s(1)− s(2)

̂s(1)− s(2) ̂s(1)− s(2)

̂s(1)− s(2) ̂s(1)− s(2) ̂s(1)− s(2)

. . . .

. . . .

. . . .

̂s(1)− s(2) ̂s(1)− s(2) ... ... ̂s(1)− s(2)


(29)

The individual estimates for s(M) can be obtained by adding up the columns of

the above matrix and using the restrictions
∑12

M=1 s(M) = 0. Denoting the sun of

the first column by

Sigma1 we have

Σ1 = 11s(1)−
12∑

M=2

s(M) = 12s(1) (30)

Thus, from the first column sum Σ1 the estimation for s(1) is obtained as

ŝ(1) =
Σ1

12
(31)

The sum of the second column is denoted by

Σ2 = 10s(1)−
12∑

M=3

s(M) = 11s(2)− s(1) (32)

Thus, the estimation for s(2) is

ŝ(1) =
Σ2 + ŝ(1)

11
(33)

The procedure is similar to obtain the remaining estimations for all s(M), M =

1, 2, ..., 12.

Once the seasonal factors have been estimated we proceed to e obtain the the

estimation for the lnF̄i. Thus, if N denotes the number of available expiries and

suppose that at date t, the first expiry month is January. Note that in this case (for

a specific i)

12lnF̄i(t) =
12∑

M=1

Fi(t,M) ≈
N∑

M=1

Fi(t,M) + (12−N)lnF̄ (t) +
12∑

M=N+1

s(M) (34)

and taking into account the fact that γtau(t) is essentially zero. Hence, the
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estimate of lnF̄i(t) is

̂lnF̄i(t) =

∑N
M=1 +

∑12
M=N ŝ(M)

N
(35)

Figure 40 show the comparison between lnF̄ and lnF̄ estimated as described

above.

Figure 39: Comparison between lnF̄ and lnF̄ estimated
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7.5 Appendix E

Table 11: SURE model’s parameters

Parameters lnF̄M M+1 M+2 M+3 lnF̄Q Q+1 Q+2 Q+3

Coefficient 0.0216315 0.0059325 0.0224272 0.0170726 0.0033594 0.0225243 0.027109 0.027494
Constant 0.000418 -0.022999 0.000486 0.000135 -0.0130844 0.0002497 -0.000153 -0.000071

Figure 40: Monthly seasonal factor for November (2013) estimations.

Figure 41: Quarterly seasonal factor for November (2013) estimations.
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7.6 Appendix F

To estimate each path the Schoutens’ (2003) indications have been followed. He

states that NIG process XNIG with parameters α > 0, |β| < α, µ ∈ R and δ > 0

can be obtained by time-changing a standard Brownian motion W = (Wt, t ≥ 0

with drift by an Inverse Gaussian process I = (It, t ≥ 0) with parameters a = 1 and

b = δ
√
a2 − β2, Hence,

XNIG
t = µ+ βδ2It + δWIt (36)

is a NIG process with parameters α, β and δ.

Table 12: Parameters of the MNIG distribution
MNIG α β δ µ
FBM 0.08223 -0.01734 0.20582 0.03118
M+1 0.08223 0.00143 0.20582 -0.0147
M+2 0.08223 -0.00375 0.20582 -0.02740
M+3 0.08223 -0.0123 0.20582 0.00170
FBQ 0.11140 0.00292 0.21118 -0.00975
Q+1 0.11140 0.03563 0.21118 -0.00634
Q+2 0.11140 0.01249 0.21118 0.01258
Q+3 0.11140 0.03406 0.21118 -0.02610
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Glossary

EWMA Exponential Weighted Moving Average. 16

GARCH Generalized Autoregressive Conditional Heteroscedasticity. 4, 16

GLS Generalized Least Squares. 19

MGH Multivariate Generalized Hyperbolic. 7, 8

MNIG Multivariate Normal Inverse Gaussian. 6, 7, 19, 20, 40

MRJD Mean Reverting Jump Diffusion. 1, 4, 5, 6, 9, 13, 20, 21, 22, 25, 30, 34

MSE Mean Square Error. 9, 13, 21, 25, 30

NIG Normal Inverse Gaussian. 8, 20, 40

SDE Stochastic Differential Equations. 6

SFP Stochastic Forward Premium. 1, 4, 6, 7, 11, 17, 19, 20, 21, 23, 24, 25, 28, 30

SURE Seemingly Unrelated Regression Equations. 19
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