
ESSAYS ON ESTIMATING AND TESTING ASSET

PRICING MODELS

By

Mart́ın Lozano

Departamento de Fundamentos del Análisis
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Abstract

Asset pricing models are concerned with determining the expected returns of assets

whose payoffs are risky. These financial models analyze the relationship between risk

and expected return, and address the crucial question of how to value risk.

Empirical finance widely adopts either the classical Beta method or the stochas-

tic discount factor (SDF) method for the estimation and evaluation of asset-pricing

models. It is common for researchers to select one approach over the other and con-

sequently, certain specific areas of the literature appear to favor one method over

the other. However, only recently have there been attempts to empirically evaluate

the two approaches, and even though the generalized consensus is that there are no

significant differences between them, we find that this is not always the case.

One of the most relevant and original implication of our results is that if we are

interested on making inference on a multi-factor model estimator(s), we should prefer

the Beta method over the SDF method. Conversely, if we are primarily interested on

making inference on the sampling pricing error or Jensen’s alpha, the SDF method

should be implemented. We argue that previous studies are conducted under fairly

simple conditions which are not sufficient to raise substantial divergences.

Our results have an extensive list of practical implications in empirical asset pricing

and financial econometrics since both researchers and practitioners are interested on

retrieve efficient estimators when estimating asset pricing models. In this work, we

formulate a set of recommendations based on empirical analysis and finite sample

properties which will lead to more accurate hypothesis tests and calculations.
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for introduce me into LATEX and computational programming. I would like to show

my warm and sincere gratitude to Stuart Hyde (Manchester Business School), who

has been a cornerstone in my professional development. For expressed his interest

in my work and shared with me his knowledge I thank Ian Garrett and Massimo

Guidolin (Manchester Business School).

For administrative support I thank to Inés Garćıa, Ana Franco, Isabel Urrutia,
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Introduction

The asset pricing models play an important role in modern price theory and financial

economics because they help, among other things, to measure portfolio risk and the

return an investor can expect for taking that risk.

These models are widely used in empirical analysis because of the abundance

of available financial statistical data, and because they can be applied extensively

in practical research and decision making processes. For instance, researchers and

practitioners may employ asset pricing models for calculations of costs of capital

associated with investment and takeover decisions, which it is a recurrent task in areas

such as accountability and corporate finance. Also, asset pricing models are used in

comparative analysis of the success of different investors or performance evaluation of

investment funds. They are even applied in judicial inquires related to court decisions

regarding compensation to expropriated firms whose shares are not listed on the stock

market. Actually, the list of applications is endless.

Any econometric estimation technique has associated statistical errors, referred as

the standard error of an estimator. Generally speaking, a large amount of standard

error makes the estimator unreliable, and a relative small standard error is usually a

sign of estimator precision. Then, the efficiency of the econometric method becomes

1



Introduction

relevant for researchers and practitioners because as far as the chosen technique de-

livers more precise estimators, the calculations and hypothesis tests results will be

more trustworthy. For example, in order to evaluate an investment project, managers

have to discount the project’s future cash flows. To do so, they require a projection

of the cash flows and an estimation of a discount rate which may be obtained from

an asset pricing model. It follows that if this estimation is not accurate enough, the

evaluation of the investment project will not be assertive either.

Roughly speaking, there are two main inputs necessary to estimate an asset pricing

model, the factors and the expected returns of an asset or portfolio. We can associate

the expected returns of a portfolio to what we are interested to explain, whereas

the factors represent the explanatory variables. The actual interaction between the

inputs depends on the theoretical foundations of the model.

On the other hand, there are two main outputs when estimating an asset pric-

ing model, the risk premium and the pricing errors. The risk premium estimators

measure the statistical importance of the model’s incorporated factors at determining

the expected return of the financial asset. For example, if we want to test whether

the factor called size of the firm play an important role at determining the expected

return of the financial asset, we should test whether the size-risk-premium is statisti-

cally significant. The pricing error measure overall how well the model explains the

expected return of the financial asset; it helps to examine how good the model is as

an approximation of the real world.

We can classify the relevant econometric techniques to estimate asset pricing mod-

els into two main categories, the traditional Beta and the general and relatively new

Stochastic Discount Factor (SDF) methods. The Beta method usually involves the

2
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two-pass cross-sectional regression procedure, maximum likelihood, among others.

The SDF method requires to choose a functional form for the discount factor, and

traditionally involves the generalized method of moments procedure. Regardless of

the pricing model and application, researchers and practitioner either chooses the

Beta or the SDF method to conduct calculations and perform hypothesis tests. Nat-

urally, their results and tests are subject to the statistical properties of the estimators,

which at the same time are subject to the econometric method.

In the past few years, there have been concerns that, compared to the classical

Beta method, the generality of the SDF method comes at the cost of loosing efficiency

in the parameter estimation. This concern has motivated an interesting discussion,

particularly in the Journal of Finance. Basically, the main and current consensus is

that both methodologies provide virtually equal efficient estimators (i.e. risk premi-

ums and pricing errors).

Since the comparison is not a trivial exercise, the current discussion have been

criticized and debated. Actually, we have found that current studies are limited in

their applicability since their empirical results are valid exclusively for the single-factor

model case. The single factor model was introduced in the literature in the 50’s and

it is still an important benchmark, nevertheless recent models such as multi-factor

pricing models are by far the most commonly used in current empirical applications.

Our main hypothesis is to test whether divergences between the methodologies

emerge under more realistic conditions. There is no reason to expect that previous

results will remain when estimating multi-factor models or when testing other port-

folio formations which allow a greater return dispersion. Particularly, we argue that

current studies are valid but incomplete because their results are not extensive in a

3
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multi-factor framework.

Our main objective is find out under which circumstances – if any – both method-

ologies may lead to differences in terms of the estimator properties; and consequently

justify the use of a specific method over the other. This justification will depend on

whether the main interest relies on the risk premium or on the pricing errors.

By justifying the use of an specific method over the other, we intend to cover a gap

in the current empirical literature and contribute to the debate between the differences

of both methodologies. As pointed out before by other authors, this comparison can

be so important that it might change the course of our empirical research on asset

pricing models.

In order to achieve such objective we present four chapters. First chapter explore

in detail the econometrics of evaluating and estimating asset pricing models. This

chapter is based on some of the most influential work in this field and makes emphasis

on the risk premium and pricing errors estimation. One particular feature of this first

chapter is that facilitates the consecutive programming. Second chapter apply the

entire theoretical review to the empirical analysis of two dominant multi-factor models

namely Fama-French and Carhart. One remarkable finding is that we introduce a

third model empirically motivated called RUH which apparently outperform them.

Furthermore, we find that Fama-French model is consistently rejected by the data

while Carhart model is not. In addition, the size factor is usually statistically equal

to zero regardless of the method and model employed.

Third and fourth chapters are advocated to cover our main objective. Third

chapter analyze models and methods using historical dataset, we find evidence that

suggest that SDF method achieve lower pricing errors than Beta method. On the

4
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other hand, their specifications tests show evidence in favor of RUH model because

the likeliness of not rejecting the null is greater than in Fama-French and CAPM

models. We also find that double-sorted portfolios are hardest to price compared with

single-sorted portfolios, and this difference is correlated with the higher dispersion on

the test portfolios’ average returns. Our results suggest that the Beta method actually

do better than the SDF method at estimating risk premiums.

Fourth chapter emphasize on the formal comparison of the methods with artificial

data. In particular, we elaborate a finite sample analysis using simulations, in this

way our results are directly comparable to the current works on the comparison of

the Beta and SDF methods. One of our original contributions of this chapter is that

the efficiency of the methodologies is sensible to the number and to the statistical

properties of the factors employed. Furthermore, we find that each methodology tend

to favor the efficiency of one particular asset pricing output, so that no method fully

dominates the other in terms of deliver efficient estimators. A remarkable contribution

of this chapter rely on the comparison of alternative discount factor representations

commonly used in the literature. Even though third and fourth chapters have different

approaches, their results and implications are similar since we find out that once we

compare the methodologies under more complex setups differences clearly emerge.

There are other kinds of models such as the non-linear, often used for pricing

derivative securities like futures and options; however, they can be frequently lin-

earized and treated as multi-factor models as well. Therefore, our results regarding

multi-factor models imply a considerably wider range of applicability compared to

previous studies.

¥
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Chapter 1

A methodology review

§
Asset pricing models are concerned with determining the expected returns of assets

whose payoffs are risky. Explicitly, these models analyze the relationship between

risk and expected return, and address the crucial question of how to value risk.

This review summarizes some of the methodology currently available for estimating

and evaluating Beta and stochastic discount factor (SDF) models such as time-series

regression, cross-sectional regression, Fama-MacBeth procedure, and the generalized

method of moments (GMM).

1.1 Introduction

There is a large literature on econometric techniques to estimate and evaluate asset

pricing models. This review is based on some of the most influential work in this

§An earlier version of this work was presented at Instituto Complutense de Análisis Económico
(Madrid, May 2006); and at the IV Workshop in Quantitative Finance (València, June 2006), for
helpful comments I thank José Emilio Farinós (Universitat de València). Mart́ın Lozano grate-
fully acknowledges financial assistance from Consolidate Research Team 9/UPV-00038.321-15094,
Econometrics and Statistics Department, Departamento de Fundamentos del Análisis Económico II
at University of the Basque Country (Euskal Herriko Unibertsitatea), and Fundación BBVA.
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1.2 – Time-series estimation and evaluation

field such as Cochrane [25], Ferson [34, 35], Ferson and Jagannathan [38], Campbell,

Lo and MacKinlay [17], Shanken [93], Velu and Zhou [101], Ogaki [86], Jagannathan,

Skoulakis and Wang [55, 54], and Maŕın and Rubio [81]. Each econometric technique

focuses on the same questions: how to estimate parameters, how to calculate standard

errors of the estimated parameters, how to calculate standard errors of the pricing

errors, and how to test the model, usually with a quadratic test statistic of the form

α̂′V −1α̂, where α̂ represent an estimator of pricing errors, and V is a weighting matrix.

As Cochrane [25] resume, all the techniques come down to one of the two basic

ideas: time-series regression or cross-sectional regression1. Time-series regression

turns out to be a limiting case of cross-sectional regression. The stochastic discount

factor representation, in which the value of an asset p is equal to the expected value

of its payoff x and the discount factor m, such as p = E (mx), turns out to be

almost identical to cross-sectional regressions. The formulas for parameter estimates,

standard errors, and test statistics are all strikingly similar.

1.2 Time-series estimation and evaluation

1.2.1 Regressions

Let Rei
t be a vector of i = 1, ..., n asset returns in excess (e) of the risk-free rate. To

reduce notational complexity, we assume that there is one vector of economy-wide

pervasive risk factors ft. In this context, Black, Jensen and Scholes [9] suggested the

following approach for time-series estimation and evaluation:

Rei
t = αi + βift + εit. (1.2.1)

1Usually known as the CRS method.
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1.2 – Time-series estimation and evaluation

The model states that expected returns are linear in the betas, taking the expected

value of 1.2.1: E (Rei) = βiE (f) .

When the economy-wide factor ft is the return on a portfolio of traded assets,

we call it a traded factor. An example of a traded factor would be the return on

the value-weighted portfolio of stocks used in empirical studies like in Sharpe’s [95]

Capital Asset Pricing Model (CAPM). Examples of nontraded factors can be found

in Chen, Roll and Ross [21], who use the growth rate of industrial production and the

rate of inflation, and Breeden, Gibbons and Litzenberger [12], who use the growth

rate in per capita consumption as a factor.

Here we will suppose that the factor f is also an excess return as Rei, consequently

the model applies to the factor as well, so E (f) = 1×λ. Comparing the model (1.2.1)

and the expectation of the time-series regression E (Rei) = βiE (f), we see that the

model has one and only one implication for the data: all the regression intercepts αi

should be zero. Thus, the regression intercepts are equal to the pricing errors.

Given this fact, Black, Jensen and Scholes [9] suggested a natural strategy for

estimation and evaluation: run time-series regressions (1.2.1) for each test asset i.

Given that the factor is an excess return, the estimate of the factor risk premium λ̂

is just the sample mean of the factor:

λ̂ = ET (f) . (1.2.2)

This restriction allows us to use the sample mean of the factor as an estimator of

the risk premium. If the factor is not traded, this restriction does not hold, and we

have to estimate the risk premium using returns on traded assets. We focus on the

case where the factor is traded, although we also consider the case where the factor

9



1.2 – Time-series estimation and evaluation

is not traded.

1.2.2 Standard errors: OLS and GMM

We will show two versions of standard errors that came out from two assumptions

about the residuals εit at (1.2.1): assuming serially uncorrelated and homoskedastic

errors; and assuming serial correlation and conditional heteroskedasticity.2 Correcting

OLS standard errors for econometric problems is not the same thing as GLS. When

errors do not obey the OLS assumptions, OLS is consistent, and often more robust

than GLS, but its standard errors need to be corrected.

We start by deriving the OLS standard errors that correct for econometric prob-

lems. In general, OLS picks parameters β to minimize the variance of the residual

σ2
ε :

min
{β}

ET

[
(yt − β′xt)

2] , where: yt − β′xt = εt.

We find β from the first-order condition, which states that the residual εt is

orthogonal to the right-hand variable xt:

gT (β) = ET [xt (yt − x′tβ)] = 0.

This condition is exactly identified – the number of moments g equals the number

of parameters (β). Thus, we set the sample moments exactly to zero and there is no

weighting matrix (a = I). We can also solve for the estimate analytically

β̂ = [ET (xtx
′
t)]
−1 ET (xtyt) .

2Thanks to John Cochrane (University of Chicago) for kindly sharing complimentary notes for
facilitating the programming of this section 1.2.2.
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1.2 – Time-series estimation and evaluation

This is the familiar OLS formula.

At this moment we need some distribution theory. Hansen [46, theorem 3.1] states

that the asymptotic distribution of the GMM estimate is:

√
T

(
b̂− b

)
−→ N

[
0, (ad)−1 aSa′ (ad)−1′] , (1.2.3)

where: d ≡ E
[

∂f
∂b′ (xt, b)

]
= ∂gT (b)

∂b′ .

Precisely d is defined as the population moment in the identity which we estimate

in sample by the equality, where

a ≡ plim aT ,

S ≡
∞∑

j=−∞
E

[
f (xt, b) , f (xt, b)

′] .

In practical terms, this means to use

var
(
b̂
)

=
1

T
(ad)−1 aSa′ (ad)−1′ . (1.2.4)

Coming back to our task, according to (1.2.3), the rest of the ingredients for the

general standard errors formula are

d = −E (xtx
′
t) ,

f (xt, β) = xt (yt − x′tβ) = xtεt.

Taking a = I, equation (1.2.3) gives a formula for OLS standard errors,

varGMM

(
β̂
)

=
1

T
E (xtx

′
t)
−1

[ ∞∑
j=−∞

E
(
εtxtx

′
t−jεt−j

)
]

E (xtx
′
t)
−1

. (1.2.5)
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1.2 – Time-series estimation and evaluation

So, by mapping OLS regressions in to the GMM framework, we derive a formula

(1.2.5) for OLS standard errors that correct for autocorrelation and conditional het-

eroskedasticity of the errors. In order to find the standard errors we only have to take

the square root of the diagonal of (1.2.5).

Taking (1.2.5) and assuming serially uncorrelated and homoskedasticity errors

(usual OLS assumptions) such that

E (εt | xt, xt−1, ..., εt−1, εt−2...) = 0,

E
(
ε2

t | xt, xt−1, ..., εt−1, εt−2...
)

= constant = σ2
ε .

The first assumption means that only the j = 0 term enters the sum

∞∑
j=−∞

E
(
εtxtx

′
t−jεt−j

)
= E (εtxtx

′
tεt) = E (ε2

t xtx
′
t) .

The second assumption means that

E (ε2
t xtx

′
t) = E (ε2

t ) E (xtx
′
t) = σ2

εE (xtx
′
t) .

Hence, equation (1.2.5) reduces to the well known expression,

var
(
β̂
)

= 1
T
E (xtx

′
t)
−1 [σ2

εE (xtx
′
t)] E (xtx

′
t)
−1 ,

varOLS

(
β̂
)

=
1

T
σ2

εE (xtx
′
t)
−1

. (1.2.6)

Thus, equation (1.2.6) is a particular case of (1.2.5).
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1.2 – Time-series estimation and evaluation

1.2.3 Tests statistics

We can use t-tests to check whether the pricing errors α are in fact zero. These

distributions are usually presented for the case that the regression errors in (1.2.1)

are uncorrelated and homoskedastic, but (1.2.5) show easily how to calculate standard

errors for arbitrary error covariance structures.

We also want to know whether all the pricing errors are jointly equal to zero. This

requires us to go beyond standard formulas for the regression (1.2.1) taken alone, as we

want to know the joint distribution of α estimates from separate regressions running

side by side but with errors correlated across assets E
(
εi

tε
j
t

) 6= 0.

χ2 statistic

The classic form of these tests assumes no autocorrelation or heteroskedasticity. Di-

viding the α̂ regression coefficients by their variance-covariance matrix leads to a χ2

test,

T

[
1 +

(
ET (f)

σ̂ (f)

)2
]−1

α̂′Σ̂−1α̂ ∼ χ2
N , (1.2.7)

where ET (f) denotes sample mean, σ̂2 (f) denotes sample variance, α̂ is a vector of

the estimated intercepts, α̂ = [α̂1 α̂2 ... α̂N ]′ , Σ̂ is the residual covariance matrix,

i.e., the sample estimate of E (εtε
′
t) = Σ, where εt =

[
ε1

t ε2
t ... εN

t

]′
, N = number of

assets.

As usual when testing hypotheses about regression coefficients, expression (1.2.7)

is valid asymptotically. The asymptotic distribution theory assumes that σ2 (f) and

Σ have converged to their probability limits; therefore, it is asymptotically valid

even though the factor is stochastic and Σ is estimated, but ignores those sources of
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1.2 – Time-series estimation and evaluation

variation in a finite sample. It does not require that the errors are normal, relying on

the central limit theorem so that α̂ is normal.

From (1.2.7), and following the classic form of these tests, we can derive the

variance-covariance matrix of α̂:

var (α̂) = T

[
1 +

(
ET (f)
σ̂(f)

)2
]−1

Σ̂.

We now show the derivation of the χ2 statistic and distributions with general

errors. The last approach at (1.2.7) allows us to generate straightforwardly the re-

quired corrections for autocorrelated and heteroskedastic disturbances. MacKinlay

and Richardson [80] advocate generalized method of moments (GMM) approaches to

regression tests in this way. It also serves to remind us that GMM and the stochastic

discount factor representation p = E (mx) are not necessary paired; one can do a

GMM estimate of an expected return-beta model, too. The mechanisms are only

slightly different than we did to generate distributions for OLS regression coefficients,

since we keep track of N OLS regressions simultaneously.

First, we write the equations for all N assets together in vector form,

Re
t = α + βft + εt.

Then, we use the usual OLS moments to estimate the coefficients,

gT (b) =

[
ET (Re

t − α− βft)

ET [(Re
t − α− βft) ft]

]
= ET

([
εt

ftεt

])
= 0.

These moments exactly identify the parameters, so the a matrix in agT

(
b̂
)

= 0

is the identity matrix. Solving, the GMM estimates are of course the OLS estimates,
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1.2 – Time-series estimation and evaluation

α̂ = ET (Re
t )− β̂ET (ft) ,

β̂ =
ET [(Re

t − ET (Re
t )) ft]

ET [(ft − ET (ft)) ft]
=

covT (Re
t , ft)

varT (ft)
.

The d matrix in the general GMM formula (1.2.3) is

d ≡ ∂gT (b)
∂b′ = −

[
IN INE (ft)

INE (ft) INE (f 2
t )

]
= −

[
1 E (ft)

E (ft) E (f 2
t )

]
⊗ IN .

where IN is an N ×N identity matrix. The S matrix is

S =
∞∑

j=−∞

[
E

(
εtε

′
t−j

)
E

(
εtε

′
t−jft−j

)

E
(
ftεtε

′
t−j

)
E

(
ftεtε

′
t−jft−j

)
]

.

Using the GMM variance formula (1.2.4) with a = I, we have

var

([
α̂

β̂

])
=

1

T
d−1Sd−1′. (1.2.8)

At this point, we are done. The upper left-hand corner of (1.2.8) gives us var (α̂)

and the test we are looking for is

α̂′var (α̂)−1 α̂ ∼ χ2
N . (1.2.9)

The standard formulas make this expression prettier by assuming that the errors

are uncorrelated over time and not heteroskedastic. These assumptions simplify the S

matrix, as for the standard OLS formula. If we assume that f and ε are independent

as well as orthogonal, E (fεε′) = E (f) E (εε′) and E (f 2εε′) = E (f 2) E (εε′). If we

assume that the errors are independent over time as well, we lose all the lead and lag

terms. Then S matrix simplifies to
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1.2 – Time-series estimation and evaluation

S =

[
E (εtε

′
t) E (εtε

′
t) E (ft)

E (ft) E (εtε
′
t) E (εtε

′
t) E (f 2

t )

]
=

[
1 E (ft)

E (ft) E (f 2
t )

]
⊗ Σ.

Now we can plug into (1.2.8). Using (A⊗B)−1 = A−1⊗B−1 and (A⊗B) (C ⊗D) =

AC ⊗BD, we obtain

var

([
α̂

β̂

])
= 1

T




[
1 E (ft)

E (ft) E (f 2
t )

]−1

⊗ Σ


 .

Evaluating the inverse,

var

([
α̂

β̂

])
= 1

T
1

var(f)

[
E (f 2

t ) −E (ft)

−E (ft) 1

]
⊗ Σ.

We are interested in the top left corner, where the pricing errors are. Using the

variance property E (f 2) = E (f)2 + var (f) ,

var (α̂) = T

[
1 +

(
E(f)
σ(f)

)2
]−1

Σ.

This is the same formula as (1.2.7). Note that there is no reason to assume

that errors are i.i.d. or independent of the factors. By simply calculating (1.2.8)

we can easily construct standard errors and test statistics that do not require these

assumptions.

Gibbons-Ross-Shanken test

As usual in a regression context, we can derive a finite-sample F distribution for the

hypothesis that a set of parameters are jointly zero,

T −N −K

N

[
1 +

(
ET (f)

σ̂ (f)

)2
]−1

α̂′Σ̂−1α̂ ∼ FN,T−N−K , (1.2.10)
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1.3 – Cross-sectional estimation and evaluation

where K is the number of factors.

Expression (1.2.10) is known as the Gibbons, Ross and Shanken [41] or GRS test

statistic. The F distribution recognizes sampling variation in Σ̂, which is not included

in (1.2.7). This distribution requires that errors ε are normal as well as uncorrelated

and homoskedastic. With normal errors, the α̂ are normal and Σ̂ is an independent

Wishart (the multivariate version of a χ2), so the ratio is F . This distribution is

exact in a finite sample.

All these tests have a very intuitive form. The basic part of the test is a quadratic

form in the pricing errors α̂′Σ̂−1α̂. If there were no βf in the model, then the α̂ would

simply be the sample mean of the regression errors εt. Assuming i.i.d. εt, the variance

of their sample mean is just 1
TΣ

. Thus, if we knew Σ, then T α̂′Σ−1α̂ would be a sum

of squared sample means divided by their variance-covariance matrix, which would

have an asymptotic χ2
N distribution, or a finite-sample χ2

N distribution if the εt are

normal. But we have to estimate Σ, which is why the finite-sample distribution is F

rather than χ2.

1.3 Cross-sectional estimation and evaluation

We can fit E (Rei) = β′iλ + αi by running a cross-sectional regression of average

returns on the betas. This technique can be used whether the factor is a return or

not. Skoulakis [96] and Jagannathan, Skoulakis, and Wang [55] provide excellent

syntheses of the two-pass CSR (cross-sectional regression) methodology.

In this section, we discuss OLS and GLS cross-sectional regressions, and show

formulas for the standard errors of λ estimators, and a χ2 test whether the pricing

errors α are jointly zero. As in the previous section we derive the distributions as an
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1.3 – Cross-sectional estimation and evaluation

instance of GMM, and show how to implement the same approach for autocorrelated

and heteroskedastic errors.

1.3.1 Regressions

Start again with the K factor model, the asset pricing model under the beta repre-

sentation is given by

E (Rei) = β′iλ, i = 1, 2, ...N.

The central economic question is why average returns vary across portfolios ; ex-

pected returns of an asset should be high if that asset has high betas or a large

exposure of factors that carry high risk premia.

1.3.2 Ordinary least squares

The model says that average returns should be proportional to betas. Given this

facts, a natural idea is to run a cross-sectional regression, but first, we have to find

the estimates of the betas from time-series regressions. Rewriting equation 1.2.1:

Rei
t = ai + β′ift + εi

t, t = 1, 2, ..., T for each i.

Then estimate the factor risk premia λ from a regression across portfolios of

average returns on the betas,

ET

(
Rei

)
= β′iλ + αi, i = 1, 2, ..., N. (1.3.1)

β are the right-hand variables, λ are the regression coefficients, and the cross-sectional

regression residuals αi are the pricing errors. This procedure is also known as a
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two-pass regression estimate, because one estimates first time-series and then cross-

sectional regressions.

We can run (1.3.1) with or without a constant. The theory says that the constant

or zero-beta excess return should be zero. One can impose this restriction or estimate

a constant and see if it turns out to be small (we evaluate both alternatives in Chapter

2). The usual trade-off between efficiency (impose the null as much as possible to get

efficient estimates) and robustness applies.

The OLS cross-sectional risk premium and pricing errors estimates are

λ̂cross-section
OLS = (β′β)

−1
β′ET (Re) , (1.3.2)

α̂cross-section
OLS = ET (Re)− λ̂β. (1.3.3)

Again, (1.3.2) can be estimated with or without a constant.

Next, we need a distribution theory for the estimated parameters (1.3.2) and

(1.3.3) in order to find their standard errors. The most natural place to start is with

the standard OLS distribution formulas. We start with the traditional assumption

that the true errors are i.i.d. over time, and independent of the factors.

In an OLS regression Y = Xβ+u and E (u u′) = Ω, the variance of the β estimate

is (X ′X)−1 X ′ΩX (X ′X)−1 . The residual covariance matrix is:
(
I −X (X ′X)−1 X ′) Ω

(
I −X (X ′X)−1 X ′)′ .

To apply these formulas we need the error covariance in the cross-sectional re-

gression, cov (α, α′). With the traditional assumption that the factors and errors are

i.i.d. over time, the answer is cov (α, α′) = 1
T

(βΣfβ
′ + Σ), where Σf ≡ cov (ft, f

′
t)

and Σ = cov (εt, ε
′
t) . To see this, start with α = ET (Re) − βλ. With Re

t =
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a + βft + εt, we have ET (Re
t ) = a + βET (ft) + ET (εt) . Under the null that the

model is correct, so ET (Re) = a + βE (f) = βλ, consequently, we have cov (α, α′) =

cov
[
ET (Re) , ET (Re)′

]
= 1

T
(βΣfβ

′ + Σ) . It is important to note that this covariance

is not the same as the covariance of the estimated α in the cross sectional regression.

Then, the conventional OLS formulas for the covariance matrices of OLS estimates

and residuals, accounting for correlated errors, give us

σ2
OLS

(
λ̂
)

=
1

T

[
(β′β)

−1
β′Σβ (β′β)

−1
+ Σf

]
, (1.3.4)

covOLS (α̂) =
1

T

[
I − β (β′β)

−1
β′

]
Σ

[
I − β (β′β)

−1
β′

]′
. (1.3.5)

Now, we test whether all pricing errors are zero with the overidentifying restric-

tions statistic

α̂′cov (α̂) α̂ ∼ χ2
N−K . (1.3.6)

Note that the distribution is χ2
N−K , and not χ2

N as in (1.2.7), because the covari-

ance matrix is singular. The singularity and the extra terms in (1.3.5) result from

the fact that the λ coefficient was estimated along the way, and means that we have

to use a generalized inverse.

1.3.3 Generalized least squares

Since the residuals in the cross-sectional regression (1.3.1) are correlated with each

other, the standard advice is to run a GLS cross-sectional regression rather than OLS,

using E (αα′) = 1
T

(Σ + βΣfβ
′) as the error covariance matrix.
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The GLS cross-sectional risk premium and pricing error estimates are

λ̂cross-section
GLS =

(
β′Σ−1β

)−1
β′Σ−1ET (Re) , (1.3.7)

α̂cross-section
GLS = ET (Re)− λ̂β, (1.3.8)

which are analogous to expressions (1.3.2) and (1.3.3).

Again, we could estimate (1.3.7) with or without a constant.

The GLS formula is in fact

λ̂ =
[
β′

(
βΣ−1

f β′ + Σ
)−1

β
]−1

β′
(
βΣ−1

f β′ + Σ
)−1

ET (Re) .

However, as shown in the appendix, we can drop the βΣ−1
f β′ term.

The standard regression formulas give the variance of (1.3.7) and (1.3.8) estimates

as

σ2
GLS

(
λ̂
)

=
1

T

[(
β′Σ−1β

)−1
+ Σf

]
, (1.3.9)

covGLS (α̂) =
1

T

[
Σ− β

(
β′Σ−1β

)−1
β′

]
. (1.3.10)

The GLS regression should improve efficiency, i.e., give more precise estimates.

However, Σ may be hard to estimate and to invert, especially if the cross section N

is large. One may well choose the robustness of OLS over the asymptotic statistical

advantages of GLS. We will review this issue in Chapter 2.

A GLS regression can be understood as a transformation of the space of returns,

to focus attention on the statistically most informative portfolios. Finding (say, by

Choleski decomposition) a matrix C such that CC ′ = Σ−1, the GLS regression is
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the same as an OLS regression of CET (Re) on Cβ, i.e., of testing the model on

the portfolios CRe. The statistically most informative portfolios are those with the

lowest residual variance Σ. But this asymptotic statistical theory assumes that the

covariance matrix has converged to its true value.

As usual, we could test the hypothesis that all the α are equal to zero with (1.3.6).

Though the appearance of the statistic is the same, the covariance matrix is smaller,

reflecting the greater power of the GLS test. The expression is

T α̂′Σ−1α̂ ∼ χ2
N−K . (1.3.11)

A formal derivation of this test can be found in the appendix.

Shanken correction

In applying standard OLS formulas to a cross-sectional regression, we assume that

the right-hand variables β are fixed. The β in the cross-sectional regression are not

fixed, of course, but are estimated in the times series regression (see equation 1.3.1).

This turn out to matter, even asymptotically. In this subsection, we derive the correct

asymptotic standard errors. With the simplifying assumption that the errors ε are

i.i.d. over time and independent of the factors, the result is

σ2
Shanken

(
λ̂OLS

)
=

1

T

[
(β′β)

−1
β′Σβ (β′β)

−1 (
1 + λ′Σ−1

f λ
)

+ Σf

]
, (1.3.12)

σ2
Shanken

(
λ̂GLS

)
=

1

T

[(
β′Σ−1β

)−1 (
1 + λ′Σ−1

f λ
)

+ Σf

]
. (1.3.13)

Where Σf is the variance-covariance matrix of the factors. This correction is due
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to Shanken [92]. Comparing these standard errors to (1.3.4) and (1.3.9), we see that

there is a multiplicative correction
(
1 + λ′Σ−1

f λ
)
.

The asymptotic variance-covariance matrix of the pricing errors is

covShanken (α̂OLS) =
1

T

[
IN − β (β′β)

−1
β′

]
Σ

[
IN − β (β′β)

−1
β′

] (
1 + λ′Σ−1

f λ
)
,

(1.3.14)

covShanken (α̂GLS) =
1

T

[
Σ− β

(
β′Σ−1β

)−1
β′

] (
1 + λ′Σ−1

f λ
)
. (1.3.15)

Comparing these results to (1.3.5) and (1.3.10), we see the same multiplicative

correction.

We can form the asymptotic χ2 test of the pricing errors by dividing pricing errors

by their variance-covariance matrix, α̂cov (α̂) α̂′. Following (1.3.11), we can simplify

this result for the GLS pricing errors resulting in

T
(
1 + λ′Σ−1

f λ
)
α̂′GLSΣ−1α̂GLS ∼ χ2

N−K . (1.3.16)

Cochrane [25] show that, when using annual data, this term is too large to ignore.

However, the mean and variance both scale with horizon, so the Sharpe ratio scales

with the square root of horizon. Therefore, for a monthly interval the multiplicative

term is quite small, so ignoring it makes little difference. In our estimation, this

hypothesis holds very well, mainly when estimating the three factor model.

Comparing (1.3.16) to (1.2.7) and (1.2.10), we see basically the same statistic. The

only difference is that by estimating λ from imposing λ = E (f), the cross-sectional

regression loses degrees of freedom equal to the number of factors K.
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GMM

In this subsection, we will derive the formulas that do not require i.i.d. errors. This

subsection has benefited from the work of Jagannathan, Skoulakis and Wang [54].

The easy and elegant way to account for the effects of generated regressors such

as the β in the cross-sectional regression is to map it into GMM. Then, we treat

the moments that generate the regressors β at the same time as the moments that

generate the cross-sectional regression coefficient λ, and the covariance matrix S

between the two sets of moments captures the effects of generating the regressors

on the standard error of the cross-sectional regression coefficients. Comparing this

straightforward derivation with the difficulty of Shanken’s [92] paper that originally

derived the corrections for λ̂, and noting that Shanken did not go on to find the

formulas (1.3.14) that allow a test of pricing errors is a nice argument for the simplicity

and power of the GMM framework.

To keep the algebra manageable, let’s treat the case of a single factor f for now.

The moments are

gT (b) =




E (Re
t − a− βft)

E [(Re
t − a− βft) ft]

E (Re − βλ)


 =




0

0

0


 .

The top two moment conditions exactly identify a and β as the time-series OLS

estimates3. The bottom moment condition is the asset pricing model. It is general

overidentified in a sample, since there is only one extra parameter λ and N extra

moment conditions. If we use the weighting vector β′ on this condition, we obtain the

OLS cross-sectional estimate of λ. If we use a weighting vector β′Σ−1, we obtain the

3Note a not α. The time-series intercept is not necessarily equal to the pricing error in a cross-
sectional regression.

24



1.3 – Cross-sectional estimation and evaluation

GLS cross-sectional estimate of λ. To accommodate both cases, we use a weighting

vector γ′, and then substitute γ′ = β′ or γ′ = β′Σ−1 at the end. However, once

we abandon i.i.d. errors4, the GLS cross-sectional regression weighted by Σ−1 is

no longer the optimal estimate. Once we recognize that the errors do not obey

classical assumptions, and if we want efficient estimates, we might as well calculate the

correct and fully efficient estimates. Having decided on a cross-sectional regression,

the efficient estimates of the previous set of moments are d′S−1gT (a, β, λ) = 0.

The standard errors for λ̂ come straight from the general GMM standard error

formula (1.2.4). The α̂ are not parameters, but are the last N moments. Their

covariance matrix is thus given by the Hansen’s [46, Lemma 4.1]

√
TgT

(
b̂
)
→ N

[
0,

(
I − d (ad)−1 a

)
S

(
I − d (ad)−1 a

)′]
.

All we have to do now is map the problem into the GMM notation. The parameter

vector is

b′ = [a′ β′ λ] .

The d matrix is the sensitivity of the moment conditions to the parameters,

d = ∂gT

∂b′ =




−IN −INE (f) 0

−INE (f) −INE (f 2) 0

0 −λIN −β


 .

The S matrix is the long-run covariance matrix of the moments,

4i.i.d. stands for independent and identical distribution.
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S =
∞∑

j=−∞
E







Re
t − a− βft

(Re
t − a− βft) ft

Re
t − βλ







Re
t−j − a− βft−j(

Re
t−j − a− βft−j

)
ft−j

Re
t−j − βλ




′
 ,

S =
∞∑

j=−∞
E







εt

εtft

β (ft − Ef) + εt







εt−j

εt−jft−j

β (ft−j − Ef) + εt−j




′
 .

In the second expression, we have used the regression model and the restriction

under the null that E (Re
t ) = βλ. In calculations, of course, one could simply estimate

the first expression.

We have the elements to calculate GMM standard error formula (1.2.4) and for-

mula for the covariance of moments showed before. Now with a vector f, the moments

are

ad =

[
IN ⊗ IK+1

γ′

]



ET (Re
t − a− βft)

ET [(Re
t − a− βft)⊗ ft]

E (Re − βλ)


 = 0,

Where βi = N × 1, γ′ = β′ for OLS and γ′ = β′ (Σ−1) for GLS.

Note that the GLS estimate is not the efficient GMM estimate when returns are

not i.i.d. The efficient GMM estimate is d′S−1gT = 0. The d matrix is

d = ∂gT

∂(α′ β′ λ′) = −




1 E (f ′)

E (f) E (ff ′)

0 λ


⊗ IN




0

0

β


 .

We can recover the classic formulas (1.3.12), (1.3.13), (1.3.14), (1.3.15) by adding

the assumption that the errors are i.i.d. and independent of the factors, and that the

factors are uncorrelated over time as well. The assumption that the errors and factors
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are uncorrelated over time means we can ignore the lead and lag terms. Thus, the top

left corner of S is E (εtε
′
t) = Σ. The assumption that the errors are independent from

the factors ft simplifies the terms in which εt and ft are multiplied: E (εt (ε′tft)) =

E (f) Σ for example. The result is

S =




Σ E (f) Σ Σ

E (f) Σ E (f 2) Σ E (f) Σ

Σ E (f) Σ ββ′σ2 (f) + Σ


 .

Multiplying a, d, S together as specified by the GMM formula for the covariance

matrix of parameters (1.2.4), we obtain the covariance matrix of all the parameters,

and its (3, 3) element gives the variance of λ̂.

Once again, there is really no need to make the assumption that the errors are

i.i.d. and especially that they are conditional heteroskedastic. It is quite easy to

estimate an S matrix that does not impose those conditions and calculate standard

errors. They will not have the pretty analytic form given above, but they will more

closely report the true sampling uncertainty of the estimate. Furthermore, if one is

really interested in efficiency, the GLS cross-sectional estimate should use the spectral

density matrix as weighting matrix applied to all the moments rather than the Σ−1

applied only to the pricing errors.

1.4 Fama-MacBeth estimation and evaluation

We introduce the Fama-MacBeth procedure for running cross-sectional regression and

calculating standard errors that correct for cross-sectional correlation. This section is

partially based on Jagannathan and Wang [57], who illustrate the asymptotic distribu-

tion theory for the two-stage cross-sectional regression method and the FamaMacBeth
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procedure5; and Cochrane [25].

1.4.1 Regression

Fama and MacBeth [32] suggest an alternative procedure for running cross-sectional

regressions, and for producing standard errors and test statistics.

First, we find beta estimates with a time-series regression. Fama and MacBeth use

rolling 5-years regressions, but one can also use the technique with full-sample betas

as we actually did in this work. Second, instead of estimating a single cross-sectional

regression with the sample averages, we now run a cross-sectional regression at each

time period, i.e.,

Rei
t = β′iλt + αit, i = 1, 2, ..., N for each t. (1.4.1)

1.4.2 Estimators

Then, Fama and MacBeth suggest that we estimate λ and αi as the average of the

cross-sectional regression estimates,

λ̂ = 1
T

T∑
t=1

λ̂t, α̂i = 1
T

T∑
t=1

α̂it.

Most importantly, they suggest that we use the standard deviations of the cross-

sectional regression estimates to generate the sampling errors for these estimates,

σ2
(
λ̂
)

= 1
T 2

T∑
t=1

(
λ̂t − λ̂

)2

, σ2 (α̂i) = 1
T 2

T∑
t=1

(α̂it − α̂i)
2 .

5In particular, they show that without the assumption of conditional homoskedasticity, previously
imposed by Shanken [92], a general asymptotic distribution theory for the two-stage cross-sectional
regression method shows that the standard errors produced by the FamaMacBeth procedure do not
necessarily overstate the precision of the risk premium estimates.
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Note that it is 1
T 2 because we are finding standard errors of sample means, σ2

T
.

This is an intuitively appealing procedure. Sampling error is, after all, about how

statistic would vary from one sample to the next if we repeated the observations.

We cannot do that with only one sample, but why not cut the sample in half, and

deduce how a statistic would vary from one sample to the next from how it varies

from the first half to the sample to the next half? Proceeding, why not cut the

sample in fourths, eights, and so on? The Fama-MacBeth procedure carries this idea

to its logical conclusion, using the variation in the statistic λ̂t over time to deduce its

variation across samples.

We are used to deducing the sampling variance of the sample mean of a series

xt by looking at the variation of xt through time in sample, using σ2 (x) = σ2(x)
T

=

1
T 2

∑
t (xt − x)2 . The Fama-MacBeth technique just applies this idea to the slope and

pricing error estimates. The formula assumes that the time series is not autocorre-

lated, but one could easily extend the idea to estimates λ̂t that are correlated over

time by using a long-run variance matrix, i.e., estimate

σ2
(
λ̂
)

= 1
T

∞∑
j=−∞

covT

(
λ̂t, λ̂t−j

)
.

1.4.3 Tests statistics

It is natural to use this sampling theory to test whether all the pricing errors are

jointly zero as we have done before. Denote by α the vector of pricing errors across

assets. We could estimate the covariance matrix of the sample pricing errors by
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α̂ =
1

T

T∑
t=1

α̂t,

cov(α̂) =
1

T 2

T∑
t=1

(α̂t − α̂) (α̂t − α̂)′ ,

or a general version that accounts for correlation over time, and finally use the test

α̂′tpinv (cov(α̂)) α̂t ∼ χ2
N−K , (1.4.2)

where pinv is the Moore-Penrose pseudoinverse of a matrix.

1.5 General method of moments / Stochastic dis-

count factor - estimation and evaluation

The use of the stochastic discount factor (SDF) method for econometric evaluation

of asset pricing models has become common in the recent empirical finance litera-

ture. A SDF has the following property: The value of a financial asset equals the

expected value of the product of the payoff on the asset and the SDF. An asset pric-

ing model identifies a particular SDF that is a function of observable variables and

model parameters. For example, a linear factor pricing model identifies a specific lin-

ear function of the factors as a SDF. The SDF method involves estimating the asset

pricing model using its SDF representation and the generalized method of moments

(GMM). As Cochrane [25] points out, the SDF method is sufficiently general that it

can be used for analysis of linear as well as nonlinear asset-pricing models, including

pricing models for derivative securities.
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The SDF representation can be traced back to Dybvig and Ingersoll [28], who

derive the SDF representation for the CAPM. Ingersoll [53] derives the SDF repre-

sentation for a number of theoretical asset pricing models6. Hansen and Jagannathan

[48] and [49] develop diagnostic tests for asset pricing models based on the SDF repre-

sentation. Ferson [35], Campbell, Lo, and MacKinlay [17], Velu and Zhou [101], Maŕın

and Rubio [81], and Cochrane [25] provide introductions to the stochastic discount

factor framework.

One can summarize asset pricing by two equations:

pt = Et (mt+1xt+1) ,

mt+1 = f (data, parameters) ,

where pt is the current price of the security, ET is the conditional expectation

given information up to time point t, mt+1 is the stochastic discount factor, and xt+1

is the payoff of the asset at time point t + 1.

This approach allows us to conveniently separate the setup of specifying economic

assumptions of the model (second equation) from the step of deciding which kind of

empirical representation to pursue or understand.

The development of the generalized method of moments (GMM) by Hansen [46]

has had a major impact on empirical research in finance, especially in the area of asset

pricing because it allows for conditional heteroscedasticity, serial correlation, and non-

normal distributions. GMM has made econometric evaluation of asset-pricing models

6However, he does not use the term “stochastic discount factor” — Hansen and Richard [50]
coined the term.
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possible under more realistic assumptions regarding the nature of the stochastic pro-

cess governing the temporal evolution of exogenous variables.

The GMM approach is a natural fit for a discount factor formulation of asset pric-

ing theories, since we just use sample moments in the place of population moments.

As we will describe, there is no singular GMM estimate and test. As Cochrane [25]

indicates, GMM is a large canvas and a big set of paints and brushes; a flexible tool for

doing all kind of sensible things to the data.7 See for example Hall [44] for an extensive

exposition and applications of the GMM method in finance and econometrics.

In this section we will review the estimation and testing of linear discount factor

models expressed as p = E (mx), m = b′f (for notational convention, time subscripts

are usually deleted). This form naturally suggests a GMM approach using the pricing

errors as moments. The resulting estimates look a lot like the regression estimates of

the pasts sections.

1.5.1 Introduction to the GMM methodology

GMM can be applied in exactly the same way as described earlier to estimate the

asset-pricing model parameters and test the overidentifying restrictions implied by

the asset-pricing model using its SDF representation.

7Although it is well known that the GMM estimates are no more efficient than the maximum
likelihood estimates, the advantages of the maximum likelihood estimates vanishes if one does not
know the joint distribution of the returns and the factors. If we make the wrong distribution
assumption, the maximum likelihood estimates can be biased, while the GMM does not suffer from
the same problem. This point is well explained by Hansen and Singleton [51]. For further details on
the ML approach see Gibbons [40].
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First-stage estimators: W = I

If we could, we would pick b to make every element of gT (b) = 0 – to have the

model price perfectly in sample. However, there are usually more moment conditions

(returns times instruments) than there are parameters. There should be, because

theories with as many free parameters as facts (moments) are vacuous. Thus, we

choose b to make the pricing errors gT (b) as small as possible, by minimizing the

quadratic form,

min
{b}

[
gT (b)′ WgT (b)

]
. (1.5.1)

W is a positive definite weighting matrix that tells us how much attention to

pay to each moment, or how to trade off doing well in pricing one asset or linear

combination of assets versus doing well in pricing another. When imposing W = I,

GMM treats all portfolios symmetrically, and the objective is to minimize the sum of

squared pricing errors.

The result of making such simplification (use the identity as the weighting matrix)

is what we will call first-stage estimators. This estimator is consistent and asymptot-

ically normal.

Using the identity matrix, as a prespecified weighting matrix, weights the initial

choice of assets or portfolios equally in estimation and evaluation. This choice has a

particular advantage with large systems in which S is nearly singular, as it avoids most

of the problems associated with inverting a near-singular S matrix. Many empirical

asset pricing studies use OLS cross-sectional regressions, which are the same thing as

first-stage GMM estimate with an identity weighting matrix.

Thus, the first-stage estimators assumes no serial correlation and regression errors
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independent of right-hand variables.

Second-stage estimators: W = S−1

This second-stage estimate picks a weighting matrix based on statistical considera-

tions. Some assets returns may have much more variance than others, as we will

show in next chapters. For those assets, the sample mean gT = ET (mtRt − 1) will

be a much less accurate measurement of the population mean E (mR− 1), since the

sample mean will vary more from sample to sample. Hence, it seems like a good idea

to pay less attention to pricing errors from assets with high variance of mtRt − 1.

One could implement this idea by using a W matrix composed of inverse variances of

ET (mtRt − 1) on the diagonal. More generally, since asset returns are correlated, one

might think of using the covariance matrix of ET (mtRt − 1) . This weighting matrix

pays most attention to linear combinations of moments about which data set at hand

has the most information. This idea is exactly the same as heteroskedasticity and

cross-correlation corrections that lead you from OLS to GLS in linear regressions.

The covariance matrix of gT = ET (ut+1) is the variance of a sample mean. Exploit-

ing the assumption that E (ut) = 0 and that ut is stationary so E (u1u2) = E (utut+1)

depends only on the time interval between the two u’s, we have

var (gT ) = var

(
1

T

T∑
t=1

ut+1

)
,

var (gT ) =
1

T 2

[
TE (utu

′
t) + (T − 1)

(
E

(
utu

′
t−1

)
+ E

(
utu

′
t+1

))
+ ...

]
.

As T →∞, (T−j)
T

→ 1, so var (gT ) → 1
T

∞∑
j=−∞

E
(
utu

′
t−j

)
= 1

T
S.
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The last equality denotes S, known for other reasons as the spectral density matrix

at frequency zero of ut
8.

This fact suggest that a good weighting matrix might be the inverse of S. In fact,

Hansen [46] shows formally that the choice

W = S−1, S ≡
∞∑

j=−∞
E

(
utu

′
t−j

)
,

is the statistically optimal weighting matrix, meaning that it produces estimates

with lowest asymptotic variance.

Different values of j can change dramatically the second-stage estimates as shown

in (1.5.1), so we choose j = 0 and j = 12. Note that when j = 0 (0 lag estimate) we

allow conditional heteroskedasticity, but no time-series correlation of residuals; and

when j = 12 (12 lag, Newey-West estimate) is a correction of one year autocorrelation.

Note that neither 0 nor 12 is the optimal number of lags, these fixed values for j are

intended to compare two states for the second-stage estimates.

The first- and second-stage estimates should remind us of standard linear regres-

sion models. We start with OLS regression. If the errors are not i.i.d., the OLS

estimates are consistent, but not efficient. If we want efficient estimates, we can use

the OLS estimates to obtain a series of residuals, estimate a variance-covariance ma-

trix of residuals, and then do GLS. GLS is also consistent and more efficient, meaning

that the sampling variation in the estimated parameters is lower. Hall [44] illustrate

a more detailed discussion about GMM first and second-stage properties.

8Precisely, S so defined is the variance-covariance matrix of gT for fixed b. The actual variance-
covariance matrix of gT must take into account the fact that we choose b to set a linear combination
of the gT to zero in each sample.

35



1.5 – GMM/SDF estimation and evaluation

1.5.2 Second moment matrix as the weighting matrix in second-

stage estimators

Another example of prespecified economically interesting weighting matrix is the sec-

ond moment matrix of returns and factors, advocated by Hansen and Jagannathan

[49]. Hence, for this subsection 1.5.2 we will refer to S as the second moment matrix

E (xx′) = cov (x) + E (x) E (x)′ .

Writing the model as m = a − b′f , we cannot separately identify a and b so

we have to choose some normalization. The choice is entirely one of convenience;

lack of identification means precisely that the pricing errors do not depend on the

choice of normalization. The easiest choice is a = 1. Then gT (b) = −ET (mRe) =

−ET (Re) + E (Ref ′) b. We have d = ∂gT (b)
∂b′ = E (Ref ′) , the second moment matrix

of returns and factors. The first-order condition to minimize (1.5.1) is

d′W [ET (Re)− db] = 0,

Looking at (1.5.1), the first stage has W = I, the second stage has W = S−1.

Since this is a linear model, we can solve analytically for the GMM estimate, and it

is

First stage : b̂1 = (d′d)
−1

d′ET (Re) , (1.5.2)

Second stage : b̂2 =
(
d′S−1d

)−1
d′S−1ET (Re) .

The GMM estimate is a cross-sectional regression of mean excess returns on second

moment matrix with factors. We find the distribution theory from the usual GMM

standard error formulas in equations (1.2.3) and (1.2.4), this will help us on deriving

the standard errors of b̂1 and b̂2. In the first stage, a = d′ :
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First stage : cov
(
b̂1

)
=

1

T
(d′d)

−1
d′Sd (d′d)

−1
, (1.5.3)

Second stage : cov
(
b̂2

)
=

1

T

(
d′S−1d

)−1
.

For testing, we also need the covariance matrix of the pricing errors gT

(
b̂
)

:

First stage : Tcov
[
gT

(
b̂
)]

=
(
I − d (d′d)

−1
d′

)
S

(
I − d (d′d)

−1
d′

)
,(1.5.4)

Second stage : Tcov
[
gT

(
b̂
)]

= S − d
(
d′S−1d

)−1
d′.

These are obvious analogues to the standard regression formulas for the covariance

matrix of regression residuals. The model test is

First stage : gT

(
b̂
)′

cov (gT )−1 gT

(
b̂
)
∼ χ2

(N−K), (1.5.5)

Second stage : TgT

(
b̂
)′

S−1gT

(
b̂
)
∼ χ2

(N−K).

As usual, the test is a quadratic form in the vector of pricing errors. This test is

known as the test of the model’s overidentifying restrictions or Hansen’s J-statistic

[46], and it is often used as a specification test to examine whether the data are

consistent with the model. When the linear factor pricing model holds, the JT statistic

converges to a central χ2 distribution as T becomes large.

Notice, however, that there are two ways to get small value of the JT statistic:

generate small pricing errors with a high degree of precision, or generate a large

pricing errors with even higher standard deviation of those errors. In the empirical

work presented in the following sections, it will be important to distinguish between

these two situations.
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One interesting and, to the best of our knowledge, original result is to point out

that both first and second-stage tests in 1.5.5 lead to the same value 9. This equality

does not hold when taking the covariance as the weighting matrix in the second-stage

estimators, even though the numerical values are similar. Neither in OLS and GLS

respective tests in a cross-sectional analysis, even though similarities arise when T is

sufficiently long. Thus, it only holds when taking the second moment matrix as in

equation 1.5.5.

The main implication that both first and second-stage tests in 1.5.5 lead to the

same value is that regardless of testing the model with first or second-stage estimators,

the result or p-value will be the same. Naturally, this does not imply a failure of the

test. We know that second-stage estimators will lead to higher pricing errors in

order to achieve more efficient estimators. Therefore, first stage estimators leads to

lower pricing errors than second-stage estimators, and the weighting matrix in 1.5.5

compensate the test in such way that the value of both stages turns out to be the

same.

1.5.3 Covariance as the weighting matrix in second-stage es-

timators

In this subsection we follow Cochrane [25] methodology, which have been also followed

in recent works such as in Kan, Robotti, and Shanken [65]. The main idea es that we

can obtain a cross-sectional regression of mean excess returns on covariances, which

are just a heartbeat away from betas, by choosing the normalization a = 1 + b′E (f)

rather than a = 1. Then, the model is m = 1− b′ [f − E (f)] with mean E (m) = 1.

9This issue has been briefly discussed with John Cochrane.
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1.5 – GMM/SDF estimation and evaluation

The pricing errors are gT (b) = ET (mRe) = ET (Re)−ET

(
Ref̃ ′

)
b, where we denote

f̃ ′ ≡ f − E (f) . We have d = ∂gT (b)
∂b′ = E

(
Ref̃ ′

)
, which now denotes the covariance

matrix of returns and factors. The first-order condition to minimize (1.5.1) is now

−d′W [ET (Re)− db] = 0. Then, the GMM estimates of b are

First stage : b̂1 = (d′d)
−1

d′ET (Re) , (1.5.6)

Second stage : b̂2 =
(
d′S−1d

)−1
d′S−1ET (Re) .

The GMM estimate is a cross-sectional regression of expected excess returns on

the covariance between returns and factors. Naturally, the model says that expected

excess returns should be proportional to the covariance between returns and factors,

and we estimate that relation by a linear regression. The standard errors and variance

of the pricing errors are the same as in (1.5.3) and (1.5.4), with d now representing

the covariance matrix.

We must bear in mind that the mean of the factor E (f) is estimated (as well as

b), and the distribution theory should recognize sampling variation induced by this

fact as we did for the fact that betas are generated regressors in the cross-sectional

regressions. We can write the model as

E
[
Re

(
1− (f − Ef)′ b

)]
= 0,

E (Re) = cov (Ref ′) b.

The moments g are

gT =

[
ET [Re −Re (f ′ − Ef ′) b]

ET (f − Ef)

]
.
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1.5 – GMM/SDF estimation and evaluation

Ef represents the unknown parameter mean of the factors. The d matrix giving the

derivative of moments with respect to parameters (b′, Ef ′) is

d =


−E

(
Ref̃ ′

)
E (Re) b′

0 −IK


 ,

where f̃ = f − Ef and K is the number of factors.

We choose as a first stage estimate an OLS cross-sectional regression. The a

matrix

aT =


ET

(
f̃Re′

)
0

0 −IK


 ,

generates the cross-sectional regression estimate of b in the first row and Ef = ET (f)

in the second row,

b̂ = [C ′C]
−1

C ′ET (Re) ,

E (f) = ET (f) ,

where C ≡ E
(
Ref̃ ′

)
denotes the covariance matrix of returns and factors.

To find the standard errors, we now just plug in to the general GMM formulas.

The general formula is

cov

(
b̂

Êf

)
=

1

T
(ad)−1 aSa′ (ad)−1′ . (1.5.7)

Filling the pieces, the S matrix is

S =
∞∑

j=−∞
E

[
utu

′
t−j utf̃

′
t−j

f̃ ′tu
′
t−j f̃ ′t f̃

′
t−j

]
=

[
Suu Suf ′

Sf ′u Sff

]
,

ut ≡ Re
t

(
1− f̃ ′tb

)
.
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1.5 – GMM/SDF estimation and evaluation

The covariance of pricing errors cov(gT (̂b)) follows from the usual general formula.

The first stage standard errors look a lot like Shanken correction.

ad =

[
−C ′ 0

0 −IK

][
−C E (Re) b′

0 −IK

]

ad =

[
C ′C −C ′E (Re) b′

0 IK

]

(ad)−1 =

[
(C ′C)−1 (C ′C)−1 C ′E (Re) b′

0 IK

]

(ad)−1 a = −
[
(C ′C)−1 C ′ (C ′C)−1 C ′E (Re) b′

0 IK

]
.

Under the null, asymptotically, we will have E (Re) = Cb, so we can simplify the

formula now with that substitution.

(ad)−1 a = −
[
(C ′C)−1 C ′ bb′

0 IK

]
.

We are interested in the top left and bottom right elements of

1
T

(ad)−1 a

[
Suu′ Suf ′

Sf ′u Sff ′

]
a′ (ad)−1′ .

The bottom right element is thus var [ET (f)] = 1
T
Sff .

This is the standard formula for the variance of the sample mean. The top left

element is

var
(
b̂
)

=

1
T

(
(C ′C)−1 C ′Suu′C (C ′C)−1 + bb′Sff ′bb

′ + (C ′C)−1 C ′Suf ′bb
′ + bb′Sf ′uC (C ′C)−1) .
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1.5 – GMM/SDF estimation and evaluation

This equation reminds an important issue about the correction for cross-sectional

regressions of average returns on betas. The first term is the same standard error

we derived ignoring sampling variation in the sample mean Ef , and looks like the

usual formula for OLS regression of expected returns on covariances C, corrected

for residual covariation Suu′ . The second term is a lot like the term Σf in the cross-

sectional regression formulas. The remaining terms add the effects of the fact that the

sample mean must be estimated, as the extra terms in the Shanken formula correct

for the fact that the betas had to be estimated. The presence of b′Sffb in the formulas

is a lot like λ′Σ−1
f λ =

(
b′Σ−1

f

)
Σ−1

f

(
bΣ−1

f

)
in the OLS regression formula.

The general pricing error test also has a simple form for the first-stage estimate.

Use the general formula,

Tcov
[
gT

(
b̂
)]

=
(
I − d (ad)−1 a

)
S

(
I − d (ad)−1 a

)′
.

We have (ad)−1 a. Then

I − (ad)−1 a = I −
[
C E (Re) b′

0 −IK

][
(C ′C)−1 C ′ bb′

0 IK

]

=

[
I − C (C ′C)−1 C ′ (E (Re)− Cb) b′

0 0

]

=

[
I − C (C ′C)−1 C ′ 0

0 0

]
.

Under the null, E (Re) − Cb = 0, so the top right term vanishes. Thus, only the

top N ×N block survives. We should have expected this, as the E (f) moments are

set to zero in every sample. The top left part, in which we are interested, gives us

cov (α̂1) = 1
T

[
I − C (C ′C)−1 C ′] Suu′

[
I − C (C ′C)−1 C ′]′ .
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1.5 – GMM/SDF estimation and evaluation

Thus, the pricing error test statistic is not affected by the fact that the factor

mean E (f) is estimated. This is natural, again, since the E (f) moments are set to

zero in each sample.

We might set up a second stage GMM by using the standard weighting matrix on

the first set of moments only. In other words, if we wanted estimates b corresponding

to: min
[
ET (mRe)′ S−1

uu′ET (mRe)
]
, we would set

aT =


ET

(
f̃Re′

)
S−1

uu′ 0

0 −IK


 .

This mirrors what we did with the GLS cross-sectional regression. But this is not the

efficient estimate. The efficient estimate is formed by a = d′S−1, i.e.,

a =


−E

(
f̃Re′

)
0

bE (Re′) −IK




[
Suu′ Suf ′

Sf ′u Sff ′

]−1

.

The two approaches are not the same. Intuitively, the fact that we must estimate

Ef spills in to the optimal set of moments for estimating b. This estimate will allow

us to estimate Ef 6= ET (f) if so doing helps a lot on the other moments, and that is

what an efficient estimate should do.

The second-stage efficient estimate is

d′S−1gT

[
b

f

]
= 0,

d′S−1

[
ET [Re −Re (f ′ − Ef ′) b]

ET (f − Ef)

]
= 0.

The top term is quadratic in Ef ′b, so we cannot solve it directly. It should

be straightforward to solve a quadratic equation in b, Ef , but it is equivalent to

minimization the following expression,
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1.5 – GMM/SDF estimation and evaluation

min
{b,Ef}

[
gT (b, Ef)′ S−1gT (b, Ef)

]
, (1.5.8)

which can be solved using a numeric method. In this work, we use the MATLAB

fminsearch function in order to minimize (1.5.8).

1.5.4 Efficient GMM, iterated to convergence.

Another possibility is estimating the spectral density matrix, in other words, use

the optimal weighting matrix, instead of take prespecified weighting matrix on the

second-stage estimators, as we advocate in pasts subsections.

The iterated GMM estimator using the optimal weighting matrix may present

two important, and related, practical problems. First, if the covariance matrix for

the iterated GMM estimator is poorly measured, hence the estimator will put too

much weight on moments that spuriously appear to be measured precisely. Second,

the iterated estimator may place too much weight on portfolios that are economically

uninteresting, in the sense that they are composed of extreme short and long positions

in some of the assets.10 One straightforward solution to overcome this potential

problems could be to include restrictions or exit flags which avoids unusual results.

The fact that S matrix changes with the model leads to a subtle trap. One

model may improve a JT = g′T S−1gT statistic because it blows up the estimates of S,

rather than by making any progress in lowering the pricing errors gT . As Cochrane

[25] indicates, no one would formally use a comparison of JT tests across models to

compare them. This is one of the reasons because it is recommended to use a common

weighting matrix W for comparing models like those presented before.

10See Chapman [20].
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The optimal weighting matrix S depends on population moments, as well as on

the parameters b. Work back trough the definitions,

S =
∞∑

j=−∞
E

(
utu

′
t−j

)
, ut ≡ (mt (b) xt − pt−1) .

In order to estimate this matrix we estimate the population moments by their

sample counterparts. Thus, use a first-stage b estimates and the data to construct

sample versions of the definition of S. This procedure can produce a consistent

estimate of the true spectral density matrix.

There are at least two alternatives to the second-stage procedure: iteration and

one step. Hansen and Singleton [51] describe the above two-step procedure, and it has

become popular for that reason. Two alternative procedures may perform better in

practice, i.e., may result asymptotically equivalent estimates with better small-sample

properties.

Estimating the spectral density matrix: Iterate

The second-stage estimate b̂2 will not imply the same spectral density as the first

stage. It might seem appropriate that the same estimate of b and of the spectral

density be consistent, i.e., to find a fixed point of b̂ = min{b}
[
gT (b)′ S−1 (b1) gT (b)

]
.

One way to search for such a fixed point is to iterate: find b2 from

b̂2 = min
{b}

[
gT (b)′ S−1 (b1) gT (b)

]
,

where b1 is a first-stage estimate, held fixed in the minimization over b2.

Then use b̂2 to find S
(
b̂2

)
, find

b̂3 = min
{b}

[
gT (b)′ S−1

(
b̂2

)
gT (b)

]
,
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and so on. There is no fixed-point theorem that such iterations will converge, but

they often do. Ferson and Foerster [36] find that iteration gives better small-sample

performance than two-stage GMM in Monte Carlo experiments. This procedure is

also likely to produce estimates that do not depend on the initial weighting matrix.

Estimating the spectral density matrix: Pick b and S simultaneously

It is not true11 that S must be held fixed as one searches for b. Instead, one can use

a new S (b) for each value of b. Explicitly, one can estimate b by

min
{b}

[
gT (b)′ S−1 (b) gT (b)

]
. (1.5.9)

The estimates produced by this simultaneous search will be not numerically the

same in a finite sample as the two-step or iterated estimates.

For our purposes, we will use this simultaneous procedure in the next two chapters

in order to estimate the optimal weighting matrix.

Final note on prespecified vs. efficient GMM

The estimator from a prespecified weighting such as the identity matrix has three

advantages over efficient GMM according to Ferson and Foerster [36].

First, given this prespecified weighting matrix, this estimates match the mean of

the stochastic discount factor, and minimizes the sum of squared pricing errors on

the Fama-French portfolios, given each portfolio equal weight. Thus, this choice of

weighting matrix forces the model to explain the size effect and the value premium.

Efficient GMM on the other hand minimizes the sum of squared pricing errors on

11See Cochrane [25].
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weighted combinations of the portfolios, focusing on linear combinations of returns

that have low variance, and often ignoring the value and size effect if they are hard to

price, see Julliard and Parker [62]. In practice, efficient GMM prices rather unusual

combination of portfolios, with extreme long and short positions.

Second, because GMM with a prespecified weighting matrix such as I tries to

price the same portfolios as one vary S, measures of fit and specification tests are

more comparable across different models (different S) than efficient GMM.

Third, GMM with a prespecified weighing matrix has a superior small sample

properties.

At the end, we want good estimates of an approximate model, not efficient esti-

mates of an exact model. Efficient GMM can do a poor job of that task because pays

attention to well-measured linear combinations of moments, guided by S, not “large”

or “economically interesting” moments. In other words, we want a GMM estimate of

the approximate factor model that explains most of the variance of expected returns,

not the one that minimizes the best measured, even if tiny, moments.

1.6 Conclusions

This econometric review is based on some of the most influential work in this field

such as Cochrane [25], Ferson [34, 35], Ferson and Jagannathan [38], Campbell, Lo

and MacKinlay [17], Shanken [93], Velu and Zhou [101], Ogaki [86], Jagannathan,

Skoulakis and Wang [55, 54], and Maŕın and Rubio [81]. The organization of this

introductory chapter will facilitate consecutive empirical exercises. Therefore it would

not be uncommon that next chapters include continuous references to some specific

sections and equations.
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Nonetheless, next chapters will include a brief methodology section which help

to follow the corresponding empirical results. Furthermore, adding a abbreviated

methodology section contribute to have independent chapters.

It is quite difficult to include all possible ways to estimate and test asset pricing

models. Here, we include a wide range of possibilities in which the same problem can

be solved. However, next chapter include even more possibilities. For example, chap-

ter 3 examine the weighted least squares, and chapter 4 study the GMM methodology

in Beta models.

¥
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1.7 Appendix

1.7.1 Derivation of the χ2 test.

We could test the hypothesis that all the α are equal to zero with a test that does

not require a generalized inverse. Define, say by Choleski decomposition, a matrix C

such that CC ′ = Σ−1. Now, find the covariance matrix of
√

TC ′α̂ :

cov
(√

TC ′α̂
)

= C ′ ((CC ′)−1 − β (β′CC ′β)−1 β′
)
C = I − δ (δ′δ)−1 δ′,

where δ = C ′β.

In sum, α̂ is asymptotically normal so
√

TC ′α̂ is asymptotically normal too,

cov
(√

TC ′α̂
)

is an independent matrix with rank N − K; therefore T α̂′CC ′α̂ =

T α̂′Σ−1α̂ is χ2
N−K .
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Chapter 2

Estimating and evaluating the
Fama-French & Carhart models

§

We attempt to answer a classic empirical question in asset pricing: How do time-

series regression, cross-sectional regression, Fama-MacBeth procedure, and GMM/SDF

compare when applied to a test of linear factor models such as the Fama-French and

Carhart models? We find that those econometric methods produce practically the

same results for this classic exercise. In our sample of 871 monthly observations and

25 test portfolios, the pricing errors are jointly significant in Fama-French model,

while in Carhart model are not.

Our findings support that efficient weighting matrix on GMM blow up standard

errors rather than improve pricing errors, and with a prespecified weighting matrix

§An earlier version of this work was presented at Instituto Complutense de Análisis Económico
(Madrid, May 2006); and at the IV Workshop in Quantitative Finance (València, June 2006), for
helpful comments I thank José Emilio Farinós (Universitat de València). Mart́ın Lozano grate-
fully acknowledges financial assistance from Consolidate Research Team 9/UPV-00038.321-15094,
Econometrics and Statistics Department, Departamento de Fundamentos del Análisis Económico II
at University of the Basque Country (Euskal Herriko Unibertsitatea), and Fundación BBVA.
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2.1 – Introduction

we give up asymptotic efficiency but still obtaining consistent and more robust esti-

mators.

Finally, according to our empirical results, we propose a slightly different specifica-

tion that works somewhat better than Fama-French and Carhart models on explaining

cross-sectional returns.

2.1 Introduction

The linear factor models, as the Fama-French [30, 31], and Carhart [18], are by

far the most common in empirical asset pricing, and there is a large literature on

econometric techniques to estimate and evaluate them. Each technique focuses on the

same question: how to estimate parameters, how to calculate standard errors of the

estimated parameters, how to calculate standard errors of the pricing errors, and how

to test the model, usually with a test statistic of the form α̂′V −1α̂. All the techniques

come down to one of the two basic ideas: time-series regression or cross-sectional

regression. Time-series regression turns out to be a limiting case of cross-sectional

regression. The GMM, p = E (mx) approach turns out to be almost identical to

cross-sectional regressions. The formulas for parameter estimates, standard errors,

and test statistics are all strikingly similar.

The GMM/discount factor, time-series, and cross-sectional regression procedures

and distribution theory are similar but not identical. Cross-sectional regressions on

betas are not the same thing as cross-sectional regressions on second moments. Cross-

sectional regressions weighted by the residual covariance matrix are not the same thing

as cross-sectional regressions weighted by the spectral density matrix. GLS cross-

sectional regressions and second-stage GMM have a theoretical efficiency advantage
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over OLS cross-sectional regressions and first-stage GMM, but how important is this

advantage, and is it outweighed by worse finite-sample performance?

The GMM/stochastic discount factor approach is still a new procedure (see Cochrane

[25]). Thus, it is important to verify that it produces similar results and well-behaved

test statistics in the setups of the classic regression tests1. To address these questions,

we apply the various methods to a classic empirical question. How do time-series re-

gression, cross-sectional regression, Fama-MacBeth procedure, and GMM/SDF com-

pare when applied to a test of the Fama-French and Carhart models? We find that

three methods produce practically the same results for this classic exercise. They pro-

duce almost exactly the same estimates, standard errors, t-statistics, and χ2 statistics

that the pricing errors are jointly zero.

The balance of this work is organized as follows. Section 2.2 describes the models,

the test portfolios and the factors. Sections 2.3, 2.4 and 2.5 presents the empirical

results. Each of these sections sets the basic econometric theory and their corre-

sponding empirical results for Fama-French and Carhart models. Section 2.6 presents

conclusions.

2.2 The models and data

2.2.1 Fama-French 3 factor model

Explaining cross-sectional differences in asset expected returns is one of the great

challenges of modern finance. Asset pricing theory recognized at least since Merton

1Before the advent of GMM, the primary econometric tool in the asset-pricing area in finance
was the maximum likelihood method originally proposed by Gibbons [40] and further explored by
Shanken [91], which is often implemented using linear or nonlinear regression methods.
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[82, 83], the theoretical possibility, indeed probability, that we should need factors,

state variables, or sources of priced risk beyond movements in the market portfolio in

order to explain why some average returns are higher than others. The Fama-French

model is one of the most popular multifactor model

that now dominate empirical research. In 1993, Fama and French presents the

model; and in 1996 they give an excellent summary, and also show how the three-

factor model performs in evaluating expected return puzzles beyond the size2 and

value effects that motivated it.

Value stocks have market values that are small relative to the accountant’s book

value. That is because book values essentially track past investment expenditures.

Book value is a better divisor for individual-firm price than are dividends or earnings,

which can be negative. This category of stocks has given large average returns.

Growth stocks are the opposite of value and have had low average returns. Since low

prices relative to dividends, earnings, or book value forecast times when the market

return will be high, it is natural to suppose that these same signals forecast categories

of stocks that will do well; the value effect is the cross-sectional analogy to price-ratio

predictability in the time series.

High average returns are consistent with the CAPM, if these categories of stocks

have high sensitivities to the market, high betas. However, small and especially value

stocks seem to have abnormally high returns even after accounting for the market

beta. Conversely, growth stocks seem to do systematically worse than their CAPM

betas suggest.

Figure 2.1 shows the value-size puzzle for the period 1932-2002, here, stocks are

2Banz [6] first documented the size effect by showing that small firms had higher risk-adjusted
returns than large firms for the 1936-1977 period.
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sorted into portfolios based on size and book-to-market ratio. As we can see, the

highest portfolios have almost three times the average excess return of the lowest

portfolios, and this variation has nothing at all to do with market betas.
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Figure 2.1: Representation of the size and value anomalies.

In the two bottom graphs (see Figure 2.1 again), we dig a little deeper to diagnose

the problem, by connecting portfolios that have different size within the same book-to-

market category, and different book-to-market within size category. We can see that

portfolios with high book-to-market ratios have bigger returns; and small portfolios
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have also bigger returns3. Because of this value effect, the CAPM faces difficulties

when confronted with these portfolios.4

To explain these patterns in average returns, Fama and French advocate a multi-

factor model with the market return (rmrf ), the return of the small less big stocks

(smb) and the return of high book-to-market minus low book-to-market stocks (hml)

as three factors. They show that variation in average returns of the 25 size and book-

to-market portfolios can be explained by varying loadings (betas) on the latter two

factors. All their portfolios have betas close to one on the market portfolio, which

is consistent with recent studies such as Grauer and Janmaat [42, Table 2]. Thus,

market beta explains the average return difference between stocks and bonds, but not

across categories of stocks.

2.2.2 Carhart 4 factor model

Although the benefits of the three-factor model are acknowledged, the Fama-French

model has been subject to further improvement.

At every moment there is a most-studied anomaly, and momentum is that anomaly5.

It is not explained by the Fama-French three factor model. The past losers have low

prices and tend to move with value stocks. Hence the Fama-French model predicts

3Since the size effect disappeared in 1980, it is likely that almost the whole story can be told
with book-to-market effects alone.

4The CAPM of Sharpe [95] and Lintner [75] faces some severe empirical difficulties. Specifically,
Basu [7], Banz [6], Reinganum [88], and Jegadeesh and Titman [59] among others show that the
CAPM fails to explain the returns of several equity investment strategies based on accounting data
or past returns. Some authors explain the failures of the CAPM with nonrisk-based explanations
such as biases in the empirical methodology, see for example Lo and MacKinlay [76], MacKinlay [79]
and Kothari, Shanken and Sloan [69], or investor irrationality. While others take a rational view
and explain differences in return with differences in risk (see Fama and French [31], Cochrane [24]
and Lettau and Ludvigson [71]).

5See Jegadeesh and Titman [59] for a complete exposition of the momentum strategy.
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they should have high average returns, not low average returns. Momentum stocks

move together as do value and small stocks, so a momentum factor works to explain

momentum portfolio returns. To put in other way, since a string of good returns gives

a high price, it is not surprising that individual stocks that do well for a long time

(and reach a high price) subsequently do poorly, and stocks that do poorly for a long

time (and reach a low price, market value, or market to book ratio) subsequently do

well.

A momentum factor is more palatable as a performance attribution factor. If we

run fund returns on factors including momentum, we may be able to say that a fund

did well by following a mechanical momentum strategy rather than by stock-picking

ability, leaving aside why a momentum strategy should work. Carhart [18] uses it

in this way; we will call Carhart model to a Fama-French three factor model plus

momentum. Momentum (umd fourth factor) is really a new way of looking at an old

phenomenon, the small apparent predictability of monthly individual stock returns.

We focus on the so-called anomalies and factors, such as the size effect (Banz [6]),

the value premium (Fama and French), and the momentum anomaly (Jegadeesh and

Titman [59]) because they provide the most empirically successful multifactor models

and have attracted much industry as well as academic attention.

2.2.3 Data description

We thank Kenneth French for making the Fama-French portfolios and factors data

available on his Web page:

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/index.html

The complete database are 852 monthly observations (71 years) from January
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2.2 – The models and data

1932 to December 2002 for four factors and 25 test portfolios. Most estimations and

tests were done with MATLAB, version 7.

Test portfolios

The question of which test assets or test portfolios to use is not trivial. In fact, studies

such as Roll [89] argues that forming portfolios can potentially impair asset pricing

tests by reducing cross-sectional variation in some characteristics of the test assets6.

In this chapter we choose a set of test portfolios with more return dispersion than the

traditionally used; however, there are other portfolio formations (discussed in next

chapters) which allow even more cross-sectional variation.7

We use the monthly returns on the 25 Fama and French [29] portfolios and con-

struct excess returns as these return on a three-month Treasury bill. We study these

returns because the Fama-French portfolios have a large dispersion in average returns

that is relatively stable in subsamples, see Julliard and Parker [62], and because they

have been used extensively to evaluate asset pricing models. These portfolios are

designed to focus on two features of average returns: the size effect, firms with small

market value have, on average, higher returns; and the value premium, firms with

high book values relative to market equity have, on average, higher returns.

The 25 Fama-French portfolios are the intersections of five portfolios formed on

size (market equity) and five portfolios formed on the ratio of book equity to market

6In Brennan, Chordia and Subrahmanyam [13] perform cross-sectional regressions on individual
assets in order to increase the cross-sectional variation. The cost of this approach is discussed in
Black, Jensen and Scholes [9], basically it increases the error in variables bias.

7This extension in the following chapters is important since according to Lewellen, Nagel, and
Shanken [72] it is difficult to differentiate models that have been developed to explain the cross-
sectional returns of the 25 size and book-to-market portfolios using traditional methods, because
these models tend to have small pricing errors for the test assets by construction.
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Table 2.1: Mean returns and standard deviation for the 25 size-value portfolios

Mean returns
low

(growth stocks)
2 3 4 high

(value stocks)

small 0.681 1.015 1.253 1.439 1.567
2 0.702 1.063 1.193 1.258 1.373
3 0.810 0.985 1.037 1.129 1.292
4 0.732 0.823 1.019 1.082 1.243
big 0.655 0.646 0.818 0.893 1.097

Standard deviation
small 12.468 10.690 9.010 8.679 9.696
2 8.093 7.802 7.459 7.489 8.611
3 7.732 6.539 6.735 6.691 8.470
4 6.142 6.268 6.292 6.997 8.973
big 5.374 5.112 5.601 6.696 8.359

Data range: January 1932-December 2002.

Book-to-market goes from low to high; size goes from small to big.

equity. We denote a portfolio by the rank of its market equity and then the rank

of its book-to-market ratio so that portfolio 15 is the smallest quintile of stocks by

market equity and the largest quintile of stocks by book-to-market. We will also call

portfolio small-high, small for size and high for book-to-market ratio.

Here are the 25 portfolios’ mean returns and standard deviation. We organize this

type of tables into 5× 5 blocks, with small to big size on the vertical axis and low to

high book-to-market on the horizontal axis. It will be easy to see the size and value

effect in the following table, as we did before in Figure 2.1.

As shown in Figure 2.2, which collect the information of the upper panel of Table

2.1, small firms have the biggest expected returns, they are usually riskier and in-

vestors ask them for an extra premium. Firms with high book-to-market ratio have

an accountant valuation that is not according to their market value. Those firms
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Figure 2.2: Average returns for 25 size-value portfolios.

are especially affected by economic crisis and investors will demand them an extra

premium. These two effects together are located at the top-right cluster in Table 2.1

(in bold). Conversely, big-growth stocks have the lowest mean returns (bottom-left

cluster).

We must keep in mind the numbers here, the returns spread is from 0.655 (portfolio

51) to 1.567 (portfolio 15), that is 1 per cent month spread in average returns, which

is about 12 per cent per year. This annual return is relatively large, so there is a

return spread in these 25 portfolios to explain. Other portfolio formations have even
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2.2 – The models and data

bigger monthly return spread like the size-momentum portfolios, which has 1.8 per

cent for the same time period. In the appendix, Figure 2.13 we show a similar plot

to Figure 2.2 for the 25 size-momentum portfolios.

Factors: rmrf, smb, hml & umd

The construction of the Fama-French factors is described in Fama and French [31]. In

particular, the factors used in Fama-French model are market, size and value, denoted

as rmrf, smb, hml respectively. On the other hand, in Carhart model are market, size,

value and momentum: rmrf, smb, hml, umd.

The excess return on the market (rmrf ), is the value-weight return on all NYSE,

AMEX, and NASDAQ stocks (from the Center for Research in Security Prices, CRSP)

minus the one-month Treasury bill rate (from Ibbotson Associates).

The smb monthly factor is computed as the average return for the smallest 30% of

stocks minus the average return of the largest 30% of stocks in that month. A positive

smb in a month indicates that small cap stocks out-performed large cap stocks in that

month. A negative smb in a given month indicates the large caps outperformed. In

this way, the smb factor will try to capture the size effect we described on Table 2.1.

Constructed in a fashion similar to that of smb, hml is computed as the average

return for the 50% of stocks with the highest book-to-market ratio minus the average

return of the 50% of stocks with the lowest book-to-market ratio each month. A

positive hml in a month indicates that value stocks outperformed growth stocks in that

month. A negative hml in a given month indicates the growth stocks outperformed.

Hence, the hml factor will try to explain the value effect on Table 2.1.
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2.3 – Empirical results: Beta representation

Table 2.2: Market, size, value and momentum factors descriptive statistics

rmrf smb hml umd
Mean 0.7096 0.2780 0.4637 0.6934
Standard deviation 5.3160 3.4043 3.6310 4.6530

Mean
Standard deviation

0.133 48 8. 166 1× 10−2 0.127 71 0.149 02
rmrf 1 0.3496 0.1896 −0.3050
smb 0.3496 1 0.0924 −0.1644
hml 0.1896 0.0924 1 −0.3857
umd −0.3050 −0.1644 −0.3857 1

Data range: January 1932-December 2002.

Momentum factor umd (up minus down) is the average return on the two high

prior return portfolios minus the average return on the two low prior return portfolios.

The size, value and momentum effects are said to be anomalies in the sense that

these cross-sectional patterns of portfolios’ returns are not explained by beta risk

as the covariance between market return and portfolio return (divided by market

variance).

All means are positives. Thus, small caps stocks out-performed large cap-stocks

in average, this is consistent with the pattern showed at Table 2.1. Moreover, value

stocks out-performed growth stocks on average, this is also consistent with the returns

of our 25 test portfolios. The positive value of momentum is like saying that winners

continue to win, and the losers continue to loose.

Note that smb and hml factors are close to be orthogonal, and that is good since

we are interested on explaining the size and value effect. Fama and French also find

that hml and smb do not explain momentum.
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2.3 – Empirical results: Beta representation

2.3 Empirical results: Beta representation

2.3.1 Time-series

We estimate time-series regression of (1.2.1) by OLS. Standard errors are calculated

in two ways, the classics OLS standard errors (1.2.6); and the GMM standard errors

(1.2.5) using 0 and 12 lags. Also, both asymptotic χ2 test (1.2.7) and GRS F test

(1.2.10) are calculated in this section.

Jensen’s alphas

The alphas presented in Table 2.3 are not all that small, at least for the Fama-French

model. Even though, must of them (approximately 68%) are less than 0.1% per

month, that is interesting because the phenomenon was a 1% per month spread8

and the residuals or alphas are 1
10

that size. Still, other alphas are more than two

standard errors from zero. For instance, take a look of the small-low or 11 portfolio

with alpha equal to −0.864 which has a wide standard error (as shown in appendix,

Table 2.26) which goes from 0.177 when considering GMM standard errors to 0.253

when considering OLS standard errors.

Note that not only the small-low portfolio has a large alpha, it is statistically large

too, according to the t-statistics shown in the appendix, Table 2.31. The largest of 25

t-statistics should not be much over 2, so this will drive to a statistical rejection of the

model. Some of the other alphas are individually significant as well, most clustered

in the upper left corner and two more in the lower right. This result could drive to

reject the model, time-series estimation cannot explain very well the portfolio returns,

8Remember the previous descriptive analysis on test portfolios (Table 2.1).
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Table 2.3: Jensen alpha estimators α̂ for the 25 size-value portfolios

Fama-French model
low 2 3 4 high

small −0.864 −0.419 −0.042 0.124 0.056
2 −0.233 −0.034 0.073 0.083 −0.018
3 −0.148 0.084 0.022 0.082 −0.087
4 0.074 −0.053 0.093 −0.013 −0.211
big 0.077 0.021 0.038 −0.136 −0.188

Carhart model
small −0.668 −0.262 0.028 0.1570 0.153
2 −0.204 0.051 0.085 0.0693 0.023
3 −0.057 0.064 0.044 0.0672 0.011
4 0.051 −0.019 0.111 0.0742 −0.099
big 0.104 0.034 0.064 −0.052 −0.099

Alphas (pricing errors) less than −0.1 and statistically different from zero in bold. Estimates correspond to equation 1.2.1

especially those of extreme characteristics.

On the other hand, the Carhart model seems to do better. The spread and the

magnitude of the alphas in Table 2.3 are smaller, as well as the number of statistically

significance estimates (see Table 2.31). In general terms, this model seems to price

better the portfolios that Fama-French had difficulties to price such as 11 and 12.

Such difficulty is represented in the two bold inputs on the lower panel of Table 2.3.

Remember we present α̂i standard errors and t-statistics in the appendix Tables

2.26 and 2.31, there are three version of them: OLS following equation (1.2.6) and

GMM following equation (1.2.5) taking 0 and 12 Newey-West lags in the spectral

density matrix.9 The various standard errors are broadly the same, note that GMM

standard errors, which accounts for bias, is not always larger than OLS.

9See Newey and West [84].
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Table 2.4: OLS betas in the Fama-French model

b̂i beta on rmrf
low 2 3 4 high

small 1.307 1.203 1.048 0.966 0.970
2 1.087 1.044 0.979 0.979 1.059
3 1.168 1.013 1.032 0.956 1.149
4 1.059 1.050 1.012 1.062 1.242
big 1.034 0.960 0.977 1.063 1.167

ŝi beta on smb
small 1.364 1.522 1.218 1.234 1.398
2 1.049 0.978 0.866 0.806 0.898
3 0.784 0.506 0.400 0.455 0.520
4 0.274 0.223 0.211 0.188 0.351
big −0.159 −0.197 −0.211 −0.160 −0.117

ĥi beta on hml
small 0.514 0.338 0.460 0.618 0.935
2 −0.275 0.181 0.399 0.553 0.840
3 −0.192 0.089 0.369 0.524 0.905
4 −0.365 0.150 0.323 0.623 1.023
big −0.240 −0.002 0.314 0.689 1.057

Most of these betas are statistically different from zero.

We already show the portfolios with large alphas, now it is time to look at their

t-statistics. Again, we present 3 different versions since there are 3 different standard

errors calculated. It is noteworthy that 11 and 12 portfolios present a significant

alpha, even though the significance level is smaller when estimating Carhart model.

It is also interesting that alphas on portfolios 45 and 54 become to zero from Fama-

French to Carhart. We will formally test this sense of improvement on Table 2.7.
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Betas

Now let’s move to the betas estimates following equation (1.2.1). The estimates for

the Fama-French model are in Table 2.4, and in Table 2.5 for the Carhart model.

Results for the Fama-French model in Table 2.4 show that the market betas b̂i are

all about one for most portfolios. The smb betas ŝi vary up and down, while the hml

betas ĥi vary side to side. Therefore, this results imply that the characteristic size

and book-to-market are in fact associated with behavior, covariance with smb and

hml portfolio. This is also one of the reason of getting high R2 values, as we show in

Table 2.6.

We present the standard errors values for Fama-French betas in the appendix,

Tables 2.27, 2.28 and 2.29. In the case of se(̂bi), OLS and GMM formulas can be

quite different. For example, GMM standard errors can be two times as large as plain

OLS standard errors. In every case we reject the null hypothesis that the estimate b̂i is

equal to zero using the t-statistic. In the case of se (ŝi), again, GMM standard errors

can be three times large as plain OLS standard errors, even for simple estimation like

OLS time-series regressions. The estimate ŝi is also statistically different from zero in

every case10. And, for completeness, the hml standard errors se(ĥi) are shown in Table

2.29, GMM are often 2-3 times as big. In this last case, the estimator is statistically

equal to zero in only three of the 25 portfolios when considering autocorrelation and

heteroskedasticity. Hence, must of the estimators are statistically different from zero.

In all cases, there is not much difference between zero and 12 Newey-West lags,

as there is not a lot of autocorrelation in stock returns. Clearly, heteroskedasticity is

the problem. In this hugely long dataset with high R2 the betas are all well estimated

10In fact, there is an exception: the estimator for the big-high portfolio is the only one statistically
equal to zero when using GMM standard errors.
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Table 2.5: OLS betas in the Carhart model

b̂i ŝi

Low 2 3 4 High Low 2 3 4 High
Small 1.2 1.1 1.0 0.9 0.9 1.3 1.5 1.2 1.2 1.3
2 1.0 1.0 0.9 0.9 1.0 1.0 0.9 0.8 0.8 0.8
3 1.1 1.0 1.0 0.9 1.1 0.7 0.5 0.3 0.4 0.5
4 1.0 1.0 1.0 1.0 1.2 0.2 0.2 0.2 0.1 0.3
Big 1.0 0.9 0.9 1.0 1.1 −0.1 −0.1 −0.2 −0.1 −0.1

ĥi ûi

Small 0.4 0.2 0.4 0.6 0.8 0.1 0.1 0.0 0.0 0.0
2 −0.2 0.1 0.3 0.5 0.8 0.0 0.0 0.0 0.0 0.0
3 −0.2 0.0 0.3 0.5 0.8 0.0 0.0 0.0 0.0 0.0
4 −0.3 0.1 0.3 0.5 0.9 0.0 0.0 0.0 0.0 0.0
Big −0.2 −0.0 0.3 0.6 1.0 0.0 0.0 0.0 0.0 0.0

Values statistically equal to zero in bold.

(standard errors are low) but that is often not the case.

The Carhart model shows b̂i values (see Table 2.5) even closer than one as we

compare them with Fama-French model. The fourth factor is statistically equal to

zero in 11 out of 25 portfolios (see bold values in Table 2.5) according to a t-statistic,

but it is interesting that it is actually different from zero for those portfolios that

Fama-French cannot price well. To put it in another way, the momentum factor

seems to do a good job on pricing the portfolios located on top-left and bottom-right

clusters. For that reason, we should expect that tests will show smaller pricing errors

compared with the Fama-French model.
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Table 2.6: Goodness of fit, time-series estimation

Fama-French Carhart
R2

low 2 3 4 high low 2 3 4 high
small 0.65 0.84 0.88 0.93 0.93 0.66 0.84 0.88 0.93 0.93
2 0.89 0.93 0.93 0.95 0.95 0.89 0.93 0.93 0.95 0.95
3 0.93 0.92 0.92 0.92 0.94 0.93 0.92 0.92 0.92 0.94
4 0.92 0.92 0.91 0.92 0.92 0.92 0.92 0.91 0.92 0.92
big 0.95 0.92 0.90 0.92 0.86 0.95 0.92 0.90 0.92 0.86

adjusted R2

small 0.65 0.84 0.88 0.93 0.93 0.66 0.84 0.88 0.93 0.93
2 0.89 0.93 0.93 0.95 0.95 0.89 0.93 0.93 0.95 0.95
3 0.93 0.92 0.92 0.92 0.94 0.93 0.92 0.92 0.92 0.94
4 0.92 0.92 0.91 0.92 0.92 0.92 0.92 0.91 0.92 0.92
big 0.95 0.92 0.90 0.92 0.86 0.95 0.92 0.90 0.92 0.86

In bold the worst priced portfolio small-low.

Goodness of fit

Both, R2 and adjusted R2 are used in order to analyze the goodness of fit of equation

(1.2.1).

These values are in general high as we already expected from our previous analysis.

In fact, when running a CAPM on the same period, we obtained a mean R2 of 0.7,

while the mean of Fama-French model is 0.9 and 0.91 for Carhart.

These results are also consistent with previous work in the subject. According to

Cochrane [25], most factor models have fairly high R2, so σ2 (ε) < σ2 (f). Common

CAPM values of R2 = 1− σ2(ε)
σ2(f)

for large portfolios are about 0.6 - 0.7; and multifactor

models have R2 often over 0.9. Typical numbers of assets N = 10 to 50 make the

first term vanish compared to the second term.

Other authors such as Petkova [87] show that using the commonly employed 25
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size and book-to-market ranked portfolios as test assets, there is not much statistical

evidence to establish that other models like the five-factor intertemporal capital asset

pricing model (ICAPM) outperforms even the simple unconditional CAPM in terms

of cross-sectional R2. However, the advantage of the Fama and French three-factor

model over the CAPM is statistically significant for this metric.

Nevertheless, we know that R2 is not the only way to measure the goodness of

fit11, these results are intended to give a rough idea rather than exhaustive test suite.

In the next subsection we will use the formal statistical measure for evaluating the

time-series regressions detailed before in section 1.2.3.

Tests statistic

There is one and only one implication for the data: all regression intercepts α̂i should

be zero12.

First column refers to (1.2.7) test, second and third to (1.2.9) and the last one to

(1.2.10). The critical values for both models are the same because degrees of freedom

do not depend on the number of factors. On the other hand, in the case of the GRS

test, the degrees of freedom does depend on the number of factors but at least for

the third decimal place both critical values are the same. The null hypothesis is that

alphas are jointly equal to zero. As we can see, the tests all dramatically reject. We

also expected this from the t-statistic on individual alphas above, specially for the

Fama-French model. Joint tests can only be worse. As the GMM standard errors of

alpha are a bit smaller, the GMM χ2 values are a little bit larger, leading to more

11See Kan, Robotti and Shanken [65] for a discussion about use of R2 for the judgement about
the empirical success of a beta pricing models.

12In time-series regression, intercepts are equal to the pricing errors.
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Table 2.7: Tests statistics, time-series estimation

χ2 (eq. 1.2.7 and 1.2.9) F (eq. 1.2.10)
Normality 0 lags 12 lags GRS

Fama-French model 74.9 81.8 105.1 2.898
Carhart model 54.0 56.7 82.4 2.089
5% critical value 37.6525 1.519
1% critical value 44.3141 1.795

H0: Pricing errors are equal to zero.

dramatic rejections.

Table 2.7 support the idea that adding momentum is not a bad idea, since the

Carhart’s statistics are smaller than Fama-French’s.

For completeness, we present estimates and standard errors of the factor risk

premia λ in Table 2.8. For a time-series regression, these are just the means of the

factors as we indicated on (1.2.2). As we can see, there is so little autocorrelation that

the 12 lag and i.i.d. standard errors are about the same. All of the risk premia are

statistically significant. The units are percent per month, so they are economically

large as well.

It is clear that all factor risk premia are statistically significant in Table 2.8.

However there are differences among factors, the smb factor has the biggest p-value

while momentum has the lowest. In other words, momentum seems to be the most

significant in statistical terms, even more than the market.

It is appropriate to show a plot of actual versus predicted means returns for the

Fama-French and Carhart model in Figures 2.3 and 2.4 respectively. We put the

actual on the y axis so that this is like E (Re) versus β that we would plot for a single

factor model as CAPM. It is clear to see the decent fit, as well as the problems with
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Table 2.8: Market, size, value and momentum factors’ risk premia

rmrf smb hml umd
Estimate equation (1.2.2) 0.709 0.278 0.463 0.693
Standard error (normality) 0.182 0.116 0.124 0.159
Standard error (GMM, 12 lags) 0.184 0.122 0.140 0.144
t-statistic (normality) 3. 898 2. 384 3. 730 4. 352
t-statistic (GMM, 12 lags) 3. 850 2. 271 3. 293 4. 808

Values statistically different from zero in bold.

the 11 and 12 portfolios13. Naturally, the distance between each portfolio and the 45

degree line represent the Jensen’s alpha (see [60]) that we shown before in Table 2.3.

Figure 2.3 serves to clarify even further our previous analysis, the 11 portfolio

is hard to price for the Fama-French model and the goodness of fit is not bad at

all. Therefore, we reject the hypothesis that pricing errors are zero. One way to

summarize these kind of plots is collecting their root mean square errors
√

1
N

α′α

(rmse hereafter), as well as the mean absolute value (mav hereafter). The results are

0.2171 and 0.1310 respectively.

Now, let’s take a look of the same representation for Carhart model in Figure 2.4.

Probably one of the most notorious differences among Figures 2.3 and 2.4 is portfolio

11 valuation, the Fama-French predicted value is close to 1.6 while in Carhart model

is close to 1.4. This is good since this portfolio seems to be the hardest to price, and

a better prediction of it represents an improvement of the model. Actually, we have

a better fit with respect to Fama-French since rmse is equal to 0.1669.

The goodness of fit is related to the standard deviation of the expected returns’

portfolios. In other words, portfolios with higher expected return dispersion will be

13The labels are size, then book-to-market, so 11 = small-low.
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Figure 2.3: Time series Fama-French model actual versus predicted returns

harder to explain independently of the model. In the next chapter we will show how

portfolios formation with low dispersion like the 10 size portfolios are associated with

high goodness of fit even when estimating the CAPM model.

In the next section, we will perform a similar analysis based on cross-sectional

estimation and evaluation.

72



2.3 – Empirical results: Beta representation

0.6 0.8 1 1.2 1.4 1.6 1.8

0.6

0.8

1

1.2

1.4

1.6

11

12

13

14

15

21

22

23

24

25

31

32

33

34

35

41

42

43

44

45

51 52

53

54

55

Carhart. Time-series regression
A

ct
ua

l E
(r

x)

Predicted E(rx) = β × λ

Figure 2.4: Time series Carhart model actual versus predicted returns

2.3.2 Cross-sectional

Recall that betas and intercepts are now the right hand variables taken from the

time-series regression, so we do not have to estimate them again in this section 2.3.2.

The difference of course is the factor risk premia in (1.3.1). For a detailed exposition

of the econometrics used hereafter, see section 1.3.

We present the results for the cross-sectional estimates in Tables 2.9 and 2.10 for

the Fama-French and Carhart models respectively. In general, the lambdas are in fact

sensibles to the model estimated. Note most of the lambdas are close to the factor
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Table 2.9: Cross-sectional estimation, Fama-French model

Ordinary Least Squares (OLS)
Equation Description const. rmrf smb hml

(1.3.2) λ without a constant 0.6964 0.1715 0.4544
(1.2.2) factor mean 0.7096 0.2780 0.4637
(1.3.2) λ with a constant 1.96 −1.1713 0.2065 0.4904
(1.3.4) se, i.i.d., no Shanken 0.1842 0.1228 0.1278
(1.3.12) se, i.i.d., Shanken 0.1843 0.1229 0.1279
(1.2.5) se, GMM, 0 lags 0.1833 0.1175 0.1224
(1.2.5) se, GMM, 12 lags 0.1806 0.1166 0.1441

Generalized Least Squares (GLS)
(1.3.7) λ without a constant 0.7364 0.2698 0.4499
(1.2.2) factor mean 0.7096 0.2780 0.4637
(1.3.7) λ with a constant 1.583 −0.8071 0.2804 0.4557
(1.3.9) se, i.i.d., no Shanken 0.1827 0.1179 0.1264
(1.3.13) se, i.i.d., Shanken 0.1827 0.1179 0.1264
(1.2.5) se, GMM, 0 lags 0.1808 0.1161 0.1237
(1.2.5) se, GMM, 12 lags 0.1816 0.1223 0.1447

Values statistically different from zero in bold.

means, but they are not exactly the same as factor means. Also, as expected, OLS

cross-sectional regressions (upper panels in Tables 2.9 and 2.10) allows some alpha on

the factors in order to better fit the other portfolios.

Ordinary and generalized least squares

Allowing a constant in the cross-sectional regressions changes smb and hml λ a little

in both models, but has a dramatic effect on the market premium. The market is

basically a constant here, as there is very little spread in market betas14. Thus, the

market and the constant are close to be collinear and the regression has trouble picking

14This is also shown in Tables 2.4 and 2.5, where b̂i is close to 1 for every portfolio.
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between them. As we will see later, the cross-sectional regressions with constant

do much better in the actual versus predicted plots, but as we already know, they

are not believable. In fact, adding a constant leads to a misleading economically

interpretation such as a negative market premium.

One interesting result of this section is that the standard errors with and without

the Shanken correction are almost numerically identical except for the momentum

factor in the last column of Table 2.5. Recall the only difference between equations

1.3.4 and 1.3.12 is the multiplicative (1+λ′Σ−1
f λ) correction to the first term, and that

is a small correction. In this case, the effects of autocorrelation and heteroskedasticity

are small, so GMM versus Shanken turns out to make little difference at least on the

market, size and value factors. It is also interesting to see that in OLS cross-sectional

regressions, smb (when estimated) is not statistically significant no matter which

method do we pick in order to calculate standard errors.

Note that even in GLS estimation in both Tables 2.9 and 2.10, the constant and

market premium are so collinear that adding a constant makes a big difference. Also,

the lambdas are closer to the factor means. If the test portfolios spanned the factors,

that is, if we could recover rmrf, smb, hml and/or umd as combinations of the test

portfolios, then the lambdas would come out exactly equal to the factor means, and

the cross sectional and time-series regressions would yield the same results. Here, we

can almost get the factors back from the test portfolios but not quite, so it is only

very close15.

Shanken correction makes no difference out to four decimal places. In fact,
Σf

T

15Actually, if we could get the test portfolios back exactly, the GLS regression would have failed
as Σ would have been singular. For a detailed discussion about the use of spanned and unspanned
factors at estimating risk premiums see Hou and Kimmel [52].
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is the dominant term, so a small multiplicative λ′Σ−1
f λ term makes little difference.

Shanken versus GMM also makes little difference in this not very autocorrelated or

heteroskedastic dataset.

Momentum factor, as well as the market factor, are basically a constant; so if we

add a constant in the model, the regression has trouble picking between them and

constant becomes strongly significant. To see this, refer to the Table 2.5, market beta

(upper left panel) is close to 1 and momentum beta (lower right panel) is close to zero

for every portfolio. Table 2.5 show how standard errors on momentum (last column)

are very sensible to changes in the estimation procedure. Here, contrary to the rest

of the factors, effects of autocorrelation and heteroskedasticity are not as small at all.

An interesting read on both Tables 2.9 and 2.10 is to verify that GLS standard

errors are in fact smaller than OLS without exception.

Actual versus predicted plots

Here we present plots of actual returns versus model predictions, i.e., βλ. Figure 2.5

refer to the Fama-French model and Figure 2.6 to the Carhart model. As we did

before, we report the root mean square errors
√

1
N

α′α (rmse hereafter), as well as the

mean absolute value (mav hereafter) in Table 2.11.

It is clear that in all cases, a free constant allows the model to explain the returns

better for both models (see Figures 2.5 and 2.6), though by allowing a substantial

alpha and leading to economically misleading estimates. Table 2.11 show that error

measures are between 23 to 97 per cent lower when imposing a free constant. The

more evident case is OLS Fama-French while the less evident is OLS Carhart model.
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Table 2.10: Cross-sectional estimation, Carhart model

Ordinary Least Squares (OLS)
Equation Description const. rmrf smb hml umd

(1.3.2) λ without a constant 0.775 0.274 0.600 3.279
(1.2.2) factor mean 0.709 0.278 0.463 0.693
(1.3.2) λ with a constant 1.362 −0.564 0.238 0.540 1.402
(1.3.4) se, i.i.d., no Shanken 0.185 0.120 0.129 0.671
(1.3.12) se, i.i.d., Shanken 0.187 0.123 0.133 0.900
(1.2.5) se, GMM, 0 lags 0.186 0.128 0.131 1.342
(1.2.5) se, GMM, 12 lags 0.192 0.126 0.143 1.526

Generalized Least Squares (GLS)
(1.3.2) λ without a constant 0.788 0.265 0.497 1.886
(1.2.2) factor mean 0.709 0.278 0.463 0.693
(1.3.2) λ with a constant 1.148 −0.360 0.275 0.475 0.855
(1.3.4) se, i.i.d., no Shanken 0.182 0.117 0.126 0.387
(1.3.12) se, i.i.d., Shanken 0.183 0.118 0.127 0.438
(1.2.5) se, GMM, 0 lags 0.184 0.115 0.128 0.760
(1.2.5) se, GMM, 12 lags 0.189 0.121 0.149 0.964

Values statistically different from zero in bold.

Table 2.11: Cross-sectional error measures
Procedure rmse mav

Fama-French (Figure 2.5)
OLS without constant 0.1938 0.1401
OLS with constant 0.0979 0.0715
GLS without constant 0.2233 0.1318
GLS with constant 0.1176 0.0733

Carhart (Figure 2.6)
OLS without constant 0.1143 0.0860
OLS with constant 0.0892 0.0699
GLS without constant 0.1394 0.0868
GLS with constant 0.1068 0.0648
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Figure 2.5: Cross-section Fama-French model actual versus predicted returns

On the other hand, it is clear that Carhart model is associated with lower error

measures in all cases, even though we add a fourth factor. Anyway, we do a formal

test in order to clarify this subject in Table 2.12, it should be not a surprise that they

lead to a rejection of Fama-French model when confronted to Carhart.

Another part of the story is the much better fit of the 11 and 12 portfolios. The 11

portfolio in Figure 2.5 had a large beta b̂i = 1.307. By fitting a huge negative market

risk premium (−1.1713 for OLS and −0.8071 for GLS) but making up for it with a

huge positive constant for the other assets, (1.9660 for OLS and 1.5832 for GLS), the
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regression can fit this observation better, but not very credible.
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Figure 2.6: Cross-section Carhart model actual versus predicted returns

Tests statistics

It is not convenient to use a measure like a cross-sectional R2 (average returns on

predicted average returns) because can be a dangerous statistic. The cross-sectional

R2 rises automatically as we add factors, besides it depends a lot on the estimation

method. R2 is only well-defined for an OLS cross-sectional regression of average

returns on betas with a free intercept. For any other estimation technique, various
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Table 2.12: Cross sectional estimation, test statistics

Fama-French model*
fixed beta 0 lags 12 lags Shanken

OLS χ2 72.8960 78.4661 93.6301 70.9358
p-value × 1.0e-006 0.2299 0.0289 0.0001 0.4708

GLS χ2 72.8960 78.2119 94.9172 70.7715
p-value × 1.0e-006 0.2299 0.0318 0.00001 0.4999

Carhart model**
OLS χ2 26.0161 14.1000 13.1512 14.7668
p-value 0.2058 0.8653 0.9032 0.8345
GLS χ2 38.0466 28.4584 15.4205 23.8316
p-value 0.0127 0.1276 0.8013 0.3013

* Fama-French: 22 df, 5% and 1% critical values: 33.9244 and 40.2894.
** Carhart: 21 df, 5% and 1% critical values: 32.6706 and 38.9322.

ways of computing R2 can give wildly different results. These criticisms are of course

solved by statistical measures; test statistics based on α′V −1α which pricing errors

are invariant to portfolio formation and take account of degrees of freedom. These

tests are those presented in equations (1.3.6), (1.3.16) and (1.3.11).

Table 2.12 illustrate that the Fama-French model is rejected while Carhart is not16.

Ferson and Harvey [37] also reject that a conditional version of the Fama-French three-

factor model captures all the return predictability for these test portfolios. Now we

can say with certain that adding momentum does help the model to price the average

returns of portfolios at least in this 71 years sample using a cross-sectional estimation.

Our next task in this work is to repeat this exercise using Fama-MacBeth procedure

and GMM and see if these results are consistent with changes on the estimation

16Small p-values suggest that the null hypothesis is unlikely to be true. The smaller it is, the
more convincing is the rejection of the null hypothesis. It indicates the strength of evidence for say,
rejecting the null hypothesis H0, rather than simply concluding reject H0 or do not reject H0.
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method.

It is interesting to check again that Shanken correction does not make much

difference for this kind of tests for the Fama-French model, on the other hand does

make difference when testing the Carhart model. This finding is consistent with

Tables 2.9 and 2.10.

2.3.3 Fama-MacBeth

The main results of this subsection 2.3.3 are summarized in Tables 2.13 and 2.14,

which show the estimators and the evaluation results. Our results are consistent to

those on Lettau and Ludvigson [71], who follow a similar approach that allow factor

risk premia and betas to vary over time, and find statistically insignificant smb factor

over the 1965-1998 period.

In this section, we show that, when the right-hand variables do not vary over

time, Fama-MacBeth is numerically equivalent to pooled time-series, cross-section

OLS with standard errors corrected for cross-sectional correlation, and also to a single

cross-sectional regression on time-series averages with standard errors corrected for

cross-sectional correlations.

The Fama-MacBeth estimates and standard errors are exactly the same as OLS

cross-sectional regression estimates (1.3.2) and non-Shanken corrected i.i.d. standard

errors on (1.3.4). It turns our that the Fama-MacBeth procedure is another way of

calculating the standard errors, corrected for cross-sectional correlation. Furthermore,

GLS Fama-MacBeth is exactly the same as GLS cross-sectional regression (1.3.2).

Also see Tables 2.9 and 2.10 from cross-sectional regressions.

Again, as in the cross-sectional regressions, we reject the Fama-French model and
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Table 2.13: Fama-MacBeth estimators and standard errors

OLS (Equation 1.4.1)
Fama-French Carhart

rmrf smb hml rmrf smb hml umd
λFMB 0.696 0.171 0.454 0.775 0.274 0.600 3.279

FMB, se 0.184 0.122 0.127 0.185 0.120 0.129 0.671
GMM, FMB, se 0.181 0.120 0.150 0.183 0.121 0.155 0.646

GLS (Equation 1.4.1)
λFMB 0.736 0.269 0.449 0.788 0.265 0.497 1.886

FMB, se 0.182 0.117 0.126 0.183 0.117 0.126 0.387
Values statistically different from zero in bold.

Table 2.14: Test statistics, Fama-MacBeth
Critical values

Model Fama-MacBeth χ2 statistic p-value 5% 1%
Fama-French 67.1507 0.0002 33.9244 40.2894

Carhart 36.4203 0.0196 32.6706 38.9322
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do not reject the Carhart model, at least with α = 0.05, following equation 1.4.2.

2.4 Empirical results: Generalized Method of Mo-

ments / Stochastic Discount Factor

Remember first-stage estimates imposes no serial correlation and regression errors in-

dependent of right-hand variables. Second-stage estimators are calculated using two

prespecified weighting matrixes as we detailed in sections 1.5.2 and 1.5.3: the second

moment ET (Ref ′) and the covariance ET (Ref̃ ′); and finally using the optimal weight-

ing matrix estimated by picking b and S simultaneously (see section 1.5.4). When

using prespecified weighting matrix we consider zero (correcting only for conditional

heteroskedasticity) and twelve lags on S (correcting for conditional heteroskedasticity

and for high-order autocorrelation). Hence, second-stage GMM/SDF estimates, as

well as standard errors, depend on which spectral density weighting matrix is used as

weighting matrix.

2.4.1 Second moment matrix as the weighting matrix in second-

stage estimators: GMMA

Hansen and Jagannathan [49] propose the use of the second-moment matrix of the

payoffs. They point out that this matrix may be of interest because the minimized

GMM loss function can be interpreted as the distance between the estimated SDF

and the SDF that prices all assets (the true one). Another good characteristic of this

weighting matrix is that it is invariant to the initial choice of assets.
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Table 2.15: Fama-French: GMMA estimates.

Estimates of b rmrf smb hml
First-stage 0.0202 0.0006 0.0283

0 lag se 0.0072 0.0101 0.0091
t-statistic 2.7965 0.0584 3.1254
12 lag se 0.0082 0.0100 0.0117
t-statistic 2.4433 0.0590 2.4153

Second-stage, 0 lag 0.0192 0.0111 0.0258
se 0.0068 0.0090 0.0088

t-statistic 2.8285 1.2370 2.9461

Second-stage, 12 lag 0.0219 0.0107 0.0313
se 0.0071 0.0069 0.0079

t-statistic 3.0976 1.5365 3.9467
Values statistically different from zero in bold.

We present the results of estimating b in first- and second-stage according to equa-

tion (1.5.2), and its standard errors as indicated on equation (1.5.3). In particular, the

results for Fama-French and Carhart model are in Tables 2.15 and 2.16 respectively.

Also, the corresponding error measures are on Table 2.21.

Estimates b give some relative sense of how important each factor is in the discount

factor. We can see that the estimates are reasonable stable across first- and second-

stage at least in the Fama-French model on Table 2.15. The b t-statistic also gives a

clue about which factor could be dropped, probably the smb factor can be dropped

with little effect on the pricing of the portfolios, since it has low t-statistic, especially

in the first-stage. In section 2.5 we evaluate this alternative, and the results are so

interesting that we continue the analysis in the next chapter.

Note the contrast between the b t-statistic and the λ t-statistic. In the time-series
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Table 2.16: Carhart: GMMA estimates.

Estimates of b rmrf smb hml umd
First-stage 0.0517 0.0214 0.1116 0.1849

0 lag se 0.0130 0.0212 0.0281 0.0660
t-statistic 3.9905 1.0092 3.9709 2.8039
12 lag se 0.0126 0.0171 0.0332 0.0747
t-statistic 4.0996 1.2502 3.3625 2.4751

Second-stage, 0 lag 0.0463 0.0127 0.0797 0.1567
se 0.0092 0.0141 0.0172 0.0298

t-statistic 5.0570 0.8972 4.6365 5.2554

Second-stage, 12 lag 0.0526 0.0275 0.0656 0.1734
se 0.0084 0.0126 0.0176 0.0250

t-statistic 6.2991 2.1925 3.7320 6.9233
Values statistically different from zero in bold.

regression (on Table 2.8), we found that smb was marginally significant. Thus, this

factor is priced though it does not help to price other securities17.

On the other hand, Table 2.16 show an interesting result in favor of Carhart model

compared with Fama-French. In particular, momentum is not only highly significant,

it also increases the significance level of market, size and value factors, in such way

that makes smb different from zero on second stage estimate with 12 lags.

Table 2.17 show that the Fama-French model is rejected at a huge significance

level following equation 1.5.5. There is not much difference according to how it

17bj asks whether factor j helps to price assets given the other factors. bj gives the multiple
regression coefficient of m on fj given other factors.

λj asks wether factor j is priced, or whether its factor-mimicking portfolio carries a positive risk
premium. λj gives the single regression coefficient of m on fj .

Therefore, when factors are correlated, one should test bj = 0 to see whether to include a factor
j given other factors rather than test λj = 0.
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Table 2.17: Test of overidentification, GMMA.
First-stage

Fama-French* Carhart**
0 lags 12 lags 0 lags 12 lags

χ2 statistic 79.3192 95.2363 19.7046 21.0869
p-value 0.0 0.0 0.5400 0.4536

Second-stage
χ2 statistic 79.3192 95.2363 19.7046 21.0869

p-value 0.0 0.0 0.5400 0.4536

* Fama-French: 22 df, 5% and 1% critical values: 33.9244 and 40.2894.
** Carhart: 21 df, 5% and 1% critical values: 32.6706 and 38.9322.

is calculated. On the other hand, as expected, Carhart model is not rejected, the

pricing errors are jointly equal to zero in all cases. Note that the values are the same

for first and second-stage, this interesting result was already pointed out in section

1.5.2.

Now, we proceed to make the usual actual versus predicted plots in Figures 2.7

and 2.8 for the Fama-French and Carhart model respectively. Here we did it by

plotting E (Re) versus E (Ref ′) b. The first-stage GMMA on the upper panels looks

just about like the OLS cross-sectional regression, and the second-stage (lower panels)

looks about like GLS cross-sectional regressions. The second-stage using 12 lags

shows a pattern which apparently happens often here (see Cochrane [25, ch. 15] for

a discussion). Second-stage GMMA is paying attention to portfolios S−
1
2 Re, and in

doing so is not doing a very good job on Re itself. In other words, second-stage favor

the estimator efficiency by allowing some pricing error.

Note that Fama-French model, estimated via GMMA still have difficulties at pric-

ing portfolios 11 and 12, so we may think it is a matter of model and not of method.
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Figure 2.7: GMMA actual versus predicted returns, Fama-French model

In particular, portfolio 11 is the most poorly priced, suggesting that the missing ele-

ment in Fama-French model and in less extent in Carhart model may be an account of

the cost of short-selling or the thinness of the market, see D’Avolio [27], and Lamont

and Thaler [70].

It is important to notice that using 0 lags versus 12 lags made little difference to

the standard errors, as we expect since there is little autocorrelation in these returns.

But it makes a big difference to the second-stage estimate. So, little variations in S

matrices make little difference to standard errors, where S enters in the numerator,
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but can make big differences to second-stage estimates, which use S−1 to weight mo-

ments. The inverse is much more sensitive to small perturbations. This is another

reason to be very careful when doing second-stage or efficient GMM, and to think

carefully about prespecified weighting matrices, or other ways of making sure that

weighting matrix is not focusing on garbage.

The Fama-French GMMA plots in Figure 2.7 are similar, but slightly different

from the OLS and GLS cross-sectional regressions. That is because weighting by

Σ−1 is not the same as weighting by S−1, though it is close. The differences are

not conclusive since the they are not that big. However, we develop the comparison

between GMM and cross-sectional methods in the next chapter, in which we compare

a number of estimators18.

As shown in Figure 2.8 for the Carhart model, first-stage GMMA considerably

improves valuation of 11 and 12 portfolios. Actually this is one of the best fit plots

that we get, with a rmse value of 0.0896 for the first-stage. Now, using 0 and 12 lags

in the second-stage, does makes much more difference compared with first-stage. As

we can see in the lower panels, inadequate weighting matrix can lead to large pricing

errors, in particular about 3 times more than first-stage.

It is clear that second-stage estimators lead to bigger rmse and mav errors than

Fama-French, see Table 2.21. Even though, the previous statistical test do not reject

the Carhart model in all cases including second-stage. The reason is that S matrix in

equation (1.5.2) is too big for weighting moments and reduces b̂2, which reduces the

predicted value E (Ref ′) b, so the model underestimates the actual expected returns.

We should be cautious in the sense that JT test may improve because a big S matrix

18The main result of chapter 3 about the GMM and cross-sectional methods in comparing pricing
errors is that, in general, GMM lead to lower pricing errors than cross-sectional.
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Figure 2.8: GMMA actual versus predicted returns, Carhart model

rather than a low pricing errors.

2.4.2 Covariance as the weighting matrix in second-stage es-

timators: GMMB

Table 2.18 shows the result of Fama-French model estimators (equation 1.5.6) and its

standard errors (equation 1.5.7). The first-stage GMMB estimate from a regression of

average excess returns on covariances yield almost exactly the same results as the first-

stage from excess returns on second moments GMMA (̂b = 0.0202; 0.0006; 0.0283).
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Table 2.18: Fama-French: GMMB estimates

b Estimates E (f) Estimates
rmrf smb hml rmrf smb hml

First-stage
(
b̂1

)
0.0208 0.0006 0.0287 0.7096 0.2780 0.4637

se, with no correction
0 lags 0.0075 0.0103 0.0094

t-statistic 2.7863 0.0599 3.0626
12 lags 0.0086 0.0102 0.0122

t-statistic 2.4257 0.0606 2.3586
correct se

0 lags 0.0075 0.0103 0.0094 0.1820 0.1166 0.1243
t-statistic 2.7685 0.0599 3.0511 3. 898 9 2. 384 2 3. 730 5
12 lags 0.0086 0.0102 0.0122 0.1843 0.1224 0.1408

t-statistic 2.4200 0.0606 2.3514 3. 850 2 2. 271 2 3. 293 3
Second-stage

0 lag estimator 0.0176 0.0108 0.0248 0.5657 0.2638 0.3472
se 0.0071 0.0092 0.0091 0.1697 0.1064 0.1148

t-statistic 2.4943 1.1701 2.7314 3.3345 2.4803 3.0240

12 lag estimator 0.0200 0.0104 0.0303 0.4398 0.2254 0.1997
se 0.0074 0.0071 0.0082 0.1425 0.0805 0.0951

t-statistic 2.7122 1.4560 3.6747 3.0873 2.8013 2.1009
Values statistically different from zero in bold.
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Following the econometric discussion in section 1.5.3, in Table 2.18, we refer to

the standard error with no correction as ignoring that Ef is actually estimated,

that is, using d = cov (Ref ′). Corrected standard errors are those estimated by

(1.5.7). Because there are little autocorrelation, both versions leads to very similar

results. However, even though the empirical results show no big differences, we have

to emphasize that we do have to correct the standard errors as usual.

Note that varying from second moments (Table 2.15) to covariance matrix as

weighting matrix (Table 2.18) does not have a big impact on estimates and standard

errors. There is no reason to expect a big difference, specially when estimating a single

portfolio formation like the 25 Fama-French portfolios. On the next chapters, we

extend the comparison between GMMA and GMMB in order to collect more evidence

about the implications of both formulations.

It is important to compare these results of Table 2.19 with the second moment

matrix of returns and factors (Table 2.16). First, independently of the weighting

matrix, smb is statistically equal to zero in most cases. Second, independently of the

standard error used t-statistics are practically the same at least for the first-stage

GMMB estimates.

Now go on the second-stage GMMB estimates. Estimates are estimated from the

minimization of (1.5.8). Remember that the mean factor ET (f) is 0.7096; 0.2780; 0.4637

and now the estimated values E (f) are different in order to do better on the other

moments. Standard errors are calculated using (1.5.3).

Table 2.20 show that one more time, we cannot reject Carhart model, and Fama-

French show the usual rejection according to equation 1.5.5.
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Table 2.19: Carhart: GMMB estimates

b Estimates E (f) Estimates
rmrf smb hml umd rmrf smb hml umd

First-stage
(
b̂1

)
0.062 0.025 0.133 0.216 0.709 0.278 0.463 0.693

se, with no correction
0 lags 0.018 0.024 0.038 0.087

t-statistic 3.475 1.019 3.501 2.484
12 lags 0.018 0.020 0.046 0.103

t-statistic 3.400 1.228 2.880 2.093
correct se

0 lags 0.018 0.024 0.039 0.088 0.182 0.116 0.124 0.159
t-statistic 3.388 1.023 3.416 2.437 3. 898 2. 384 3. 730 4. 352
12 lags 0.018 0.020 0.047 0.105 0.184 0.122 0.140 0.144

t-statistic 3.301 1.226 2.824 2.046 3. 850 2. 271 3. 293 4. 808
Second-stage

0 lag estimator 0.051 0.015 0.085 0.159 0.686 0.315 0.475 0.733
se 0.012 0.016 0.023 0.043 0.162 0.101 0.110 0.139

t-statistic 4.052 0.919 3.609 3.675 4.223 3.116 4.286 5.255

12 lag estimator 0.059 0.032 0.071 0.184 0.686 0.275 0.524 0.719
se 0.011 0.015 0.023 0.037 0.151 0.097 0.107 0.096

t-statistic 5.137 2.123 3.090 4.935 4.539 2.838 4.867 7.482
Values statistically different from zero in bold.

92



2.4 – Empirical results: GMM/SDF

Table 2.20: Test of overidentification, GMMB

First-stage
Fama-French* Carhart**
0 lags 12 lags 0 lags 12 lags

χ2 statistic 78.4661 93.6301 19.8431 22.6294
p-value 0.0 0.0 0.5312 0.3641

Second-stage
χ2 statistic 78.6093 93.5595 19.7514 22.4447

p-value 0.0 0.0 0.5371 0.3743

* Fama-French: 22 df, 5% and 1% critical values: 33.9244 and 40.2894.
** Carhart: 21 df, 5% and 1% critical values: 32.6706 and 38.9322.

Table 2.21: GMMA and GMMB error measures
rmse mav

Procedure GMMA GMMB GMMA GMMB

Fama-French model
First-stage 0.1885 0.1831 0.1363 0.1251
Second-stage 0 0.2175 0.1995 0.1273 0.1408
Second-stage 12 0.3128 0.1984 0.2231 0.1375

Carhart model
First-stage 0.0896 0.1061 0.0705 0.0741
Second-stage 0 0.3320 0.3050 0.2971 0.2690
Second-stage 12 0.3085 0.3065 0.2529 0.2703
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Figure 2.9: GMMB actual versus predicted returns, Fama-French model

In general, Figures 2.9 and 2.10 look very much like the plots based on second mo-

ments above. It is interesting to highlight that the second-stage GMMB with 12 lags

looks decidedly better, so there is some indication that the covariance based estimate

is a little more stable in the second-stage where we apply strong weightings. Even

though, we must keep in mind that if we choose a too long value of lags, together with

lack of autocorrelation, the performance of the estimate and test deteriorates. The

optimum value of lags depends on how much persistence or low-frequency movements

there is in a particular application versus accuracy of the estimate.
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Figure 2.10: GMMB actual versus predicted returns, Carhart model

Based on error measures (rmse and mav), according to Table 2.21, GMMA second

moment estimators presented on section 2.4.1 leads to a marginal better fit than

GMMB covariances estimators at least for second-stage estimators. Once again, we

get a big S matrix which leads to a false sense of improvement in JT test in the

way that pricing errors are actually bigger than Fama-French. Far from being a JT

comparison among models, we just want to clarify why we get a better statistic with

bigger pricing errors.
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Table 2.22: GMMC estimators, Fama-French model

b Estimator E (f) Estimator
rmrf smb hml rmrf smb hml

Estimator 0.0708 −0.0110 0.1007 0.8384 0.2983 0.4623
se 0.0137 0.0192 0.0226 0.1821 0.1166 0.1243

t-statistic 5.1535 −0.5743 4.4580 4.6046 2.5590 3.7189
Values statistically different from zero in bold.

2.4.3 Efficient GMM: GMMC

It seems interesting to try second-stage (efficient GMMC) with the estimated spectral

density matrix, we did it by picking b and S simultaneously as explained in section

1.5.4. The estimates and tests are done according to (1.5.9) and the corresponding

Tables are 2.22 and 2.23.

Clearly, estimators are very different from others. There is no sense of improve-

ment, so probably at estimating S and b at the same time, we are not making any

progress on lowering the pricing errors as explained before. Also, GMMC standard

errors in Fama-French model are two times bigger than in GMMB Cochrane [25] spec-

ification (section 2.4.2), where we take ET (Ref̃ ′) as the weighting matrix in second-

stage estimators.

Next, we review the case of the Carhart model on GMMC (Table 2.23). It seems

that in this apparently bad specification, Carhart model is doing better than Fama-

French. Even though there is no sense of improvement by estimating b and S simul-

taneously. We already knew this possibility from the methodology in section 1.5.4.

Note that GMMC standard errors are more than five times bigger than in GMMB

Cochrane [25] specification, see Tables 2.18 and 2.19.
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Table 2.23: GMMC estimators, Carhart model

b Estimator E (f) Estimator
rmrf smb hml umd rmrf smb hml umd

Estimator 0.0569 0.0659 0.0997 0.4862 0.6231 0.2239 0.4225 0.8680
se 0.0445 0.0794 0.1057 0.3088 0.1820 0.1166 0.1243 0.1594

t-statistic 1.2798 0.8309 0.9433 1.5745 3.4231 1.9208 3.3978 5.4442
Values statistically different from zero in bold.

The χ2 test on Table 2.24 give the usual rejections for Fama-French model, but

now with a higher p-value. The calculations are following equation 1.5.5.

As expected, we reach a new minimum JT value on GMMC specification because

it has more free parameters than GMMB specification, where we have a fixed S. This

leads to a lower TJT test statistic and a higher p-value, suggesting that the null

hypothesis is more likely to be true. This new TJT value is not low enough in order

to not reject Fama-French model, on the other hand, Carhart model is not rejected

(again) by the data.

The previous are unusual results. First, GMMC blows up standard errors of

estimates, see Tables 2.22 and 2.23. Second, higher p-values on tests of overidentifying

restrictions. Usual plots will help on clarifying what is going on.

First-stage GMMA and GMMB plots are taken from Figures 2.7 and 2.9, we include

them again in order to facilitate their comparisons. The second-stage plots on the

lower panels (GMMC) are the new plots.

The fist impression is that error measures are extremely big. Now look at the

Carhart model plot in Figure 2.12 before concluding on GMMC results.

Remember we have JT ≡ min
{b,Ef}

[
gT (b, Ef)′ S−1 (b, Ef) gT (b, Ef)

]
. The models

improve TJT statistic because it blows up the estimates of S, rather than by making
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Table 2.24: Tests of overidentification, GMMC

Cochrane [25]: JT ≡ min
{b,Ef}

[
gT (b, Ef)′ S−1gT (b, Ef)

]

Fama-French* Carhart**
JT 0.0923 0.0263

TJT ∼ χ2 statistic 78.6093 22.4447
p-value 0.0 0.3743

Efficient: JT ≡ min
{b,Ef}

[
gT (b, Ef)′ S−1 (b, Ef) gT (b, Ef)

]

Fama-French* Carhart**
JT 0.0781 0.0233

TJT ∼ χ2 statistic 66.5440 19.8527
p-value 2.2871e− 006 0.5306

* Fama-French: 22 df, 5% and 1% critical values: 33.9244 and 40.2894.
** Carhart: 21 df, 5% and 1% critical values: 32.6706 and 38.9322.

any progress in lowering the pricing errors. Thus, results on Table 2.24 represent a

false sense of improvement. Estimators place too much weight on portfolios that are

economically uninteresting.

The objective of using the efficient matrix, given by the spectral density of the

sample moments computed in the first stage of GMM, is to maximize the asymptotic

information in the sample about a model. The danger of using such a matrix is that it

may blow up, as we can see, standard errors rather than improve pricing errors. The

efficient matrix will focus on linear combinations of returns that have low variance.

Therefore, it may ignore the value premium and the size effect if they are hard to

price in terms of variability. With a prespecified weighting matrix, we are giving

up asymptotic efficiency but still obtaining consistent and more robust estimations.

Nevertheless, we compute the spectral density matrix in order to have the correct

variances of the estimates and the moments.
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Figure 2.11: GMMC actual versus predicted returns, Fama-French model

2.5 Can we drop smb factor?

It is known that size effect disappeared around the mid 1980’s (see Banz [6]), and

our results confirm in some way this popular belief. In Figure 2.1, we present a plot

of average returns versus market beta for the 25 Fama-French portfolios and it was

clear that size effect was not so evident, or at least not as much as the value premium.

Cochrane [25] advocates that it is likely that we can get similar results with book-

to-market effects alone. Furthermore, most of the empirical results from section 2.4

(GMM/SDF) suggest that we could drop smb factor. Hence, we have theoretical
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Figure 2.12: GMMC actual versus predicted returns, Carhart model

and empirical reasons in order to think that a reasonable specification that could be

superior to Fama-French and Carhart model is a linear three factor model: rmrf, hml

and umd, that is Carhart model without size factor.

In the next chapter we will compare the performance of the Carhart model without

size factor, and we will denote it by RUH model, because of the included factors (r

for excess market return, u for momentum and h for value factors).

Let us briefly review the results from estimating this proposed model in Table 2.25.

When testing the model according to the cross-sectional estimation via OLS and GLS
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Table 2.25: Pricing errors by method and model

Root mean square error (rmse)
Estimation method Fama-French

rmrf, smb, hml
Proposed model

rmrf, hml, umd
Carhart

rmrf, smb, hml, umd

Time-series 0.2171 0.1799 0.1669
Cross-sectional - OLS without constant 0.1938 0.1489 0.1143
Cross-sectional - GLS without constant 0.2233 0.1622 0.1394

GMMA: First-stage 0.1885 0.1250 0.0896
GMMB: First-stage 0.1831 0.1407 0.1061

GMMC 2.354 4.571 3.696
Pricing errors statistically equal to zero in bold.

procedure, we cannot reject the null hypothesis that pricing errors are equal to zero,

even though rmse is bigger than Carhart model but smaller than Fama-French. All

estimators are statistically different from zero when we use a prespecified weighting

matrix on GMM procedure, and pricing errors are equal to zero except when we

impose a 12 lag on second-stage estimators.

In general, statistical test and error measures are slightly worse than Carhart

model, but decidedly better than Fama-French. One could argue that in someway

the new proposed model outperform Carhart model since it has three instead of four

factors. Furthermore, their pricing errors are statistically equal to zero like the four

factor model.

Here we summarize the root mean square errors produced by different estimation

methods. Note that the proposed model and Carhart model are not rejected by

their respective test statistics under the same estimation criteria. Even though the

magnitude is bigger on the proposed three factor model.
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2.6 Conclusions

For Fama-French and Carhart asset pricing models, we apply apparently different

approaches for estimation and evaluation such as times-series, cross-sectional, Fama-

MacBeth and GMM; these methods are actually the ones used in empirical practice.

However, at the end, all these approaches do the same thing: they pick free parameters

of the model to make it fit best, which usually means to minimize pricing errors; and

they evaluate the model by examining how big those pricing errors are.

We find that GMM first-stage estimates perform better in terms of rmse, mav

and statistical tests than second-stage estimates, because it only focus on minimizing

the pricing errors. Also, efficient GMM estimates (GMMC) perform worst than the

second-stage estimators (GMMA and GMMB) since an efficient weighting matrix focus

on economically uninteresting moments. On the other hand, Carhart model is able

to price the 25 test portfolios while Fama-French model fails on specific ones. Finally,

according to our findings, we propose a slightly different specification that works

somewhat better than Fama-French and Carhart models on explaining cross-sectional

returns.

Extensions should go over the economic interpretation of the smb, hml and umd

factors. Among the many competing explanations behind the success of these models

is the one based on time-varying investment opportunities. Specifically, Fama and

French [30] suggest that hml and smb might proxy for state variables that describe

time variation in the investment opportunity set. This is done by relating the Fama-

French factors to macroeconomic variables and business cycle fluctuations. Liew

and Vassalou [74], for instance, show that hml and smb help forecast future rates

of economic growth, and both Lettau and Ludvigson [71] and Vassalou [99] show
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that accounting for macroeconomic risk reduces the information content of hml and

smb. On the other hand, authors such as Petkova [87] argue that changes in financial

investment opportunities are not necessarily exclusively related to news about future

macro variables; furthermore, Campbell [16] points out that the factors in the model

should be related to innovations in state variables that forecast future investment

opportunities.

¥
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2.7 Appendix

2.7.1 Time-series

Table 2.26: Fama-French and Carhart standard errors se(α̂i)

Fama-French Carhart
OLS

low 2 3 4 high low 2 3 4 high
small 0.253 0.146 0.105 0.078 0.088 0.259 0.149 0.108 0.081 0.090
2 0.091 0.068 0.064 0.055 0.065 0.093 0.069 0.066 0.057 0.067
3 0.070 0.064 0.063 0.062 0.072 0.071 0.066 0.065 0.064 0.073
4 0.058 0.061 0.065 0.069 0.085 0.060 0.063 0.067 0.070 0.087
big 0.041 0.050 0.061 0.064 0.107 0.042 0.051 0.063 0.065 0.110

GMM
small 0.203 0.118 0.093 0.072 0.076 0.228 0.157 0.098 0.071 0.087
2 0.080 0.063 0.057 0.051 0.063 0.091 0.065 0.058 0.052 0.067
3 0.064 0.062 0.062 0.060 0.068 0.067 0.064 0.062 0.064 0.070
4 0.056 0.058 0.060 0.066 0.082 0.058 0.060 0.068 0.072 0.081
big 0.041 0.050 0.061 0.063 0.109 0.044 0.052 0.064 0.061 0.116

GMM 12 Newey-West lags
small 0.177 0.121 0.082 0.075 0.070 0.173 0.109 0.079 0.068 0.079
2 0.078 0.074 0.055 0.052 0.061 0.076 0.067 0.060 0.048 0.065
3 0.061 0.057 0.059 0.055 0.066 0.060 0.059 0.056 0.059 0.068
4 0.069 0.073 0.062 0.066 0.087 0.065 0.064 0.061 0.076 0.081
big 0.045 0.052 0.067 0.055 0.118 0.043 0.050 0.061 0.048 0.122
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Table 2.27: Fama-French and Carhart standard errors se(̂bi)

Fama-French Carhart
OLS

low 2 3 4 high low 2 3 4 high
small 0.051 0.029 0.021 0.016 0.018 0.052 0.030 0.022 0.016 0.018
2 0.018 0.014 0.013 0.011 0.013 0.019 0.014 0.013 0.011 0.013
3 0.014 0.013 0.013 0.013 0.014 0.014 0.013 0.013 0.013 0.015
4 0.012 0.012 0.013 0.014 0.017 0.012 0.013 0.013 0.014 0.017
big 0.008 0.010 0.012 0.013 0.022 0.008 0.010 0.013 0.013 0.022

GMM
small 0.170 0.097 0.052 0.025 0.031 0.143 0.072 0.050 0.024 0.031
2 0.039 0.019 0.017 0.016 0.018 0.037 0.018 0.017 0.017 0.019
3 0.023 0.021 0.030 0.016 0.024 0.019 0.019 0.029 0.016 0.020
4 0.019 0.027 0.025 0.029 0.026 0.017 0.027 0.020 0.023 0.023
big 0.010 0.020 0.021 0.024 0.046 0.010 0.019 0.021 0.023 0.041

GMM 12 Newey-West lags
small 0.113 0.072 0.055 0.020 0.038 0.094 0.060 0.054 0.020 0.040
2 0.040 0.022 0.021 0.018 0.025 0.036 0.019 0.023 0.019 0.026
3 0.031 0.026 0.031 0.016 0.027 0.026 0.023 0.031 0.014 0.021
4 0.013 0.028 0.019 0.027 0.029 0.012 0.027 0.018 0.020 0.023
big 0.011 0.025 0.031 0.027 0.034 0.011 0.025 0.029 0.025 0.030
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Table 2.28: Fama-French and Carhart standard errors se(ŝi)

Fama-French Carhart
OLS

low 2 3 4 high low 2 3 4 high
small 0.078 0.045 0.033 0.024 0.027 0.078 0.045 0.033 0.024 0.027
2 0.028 0.021 0.020 0.017 0.020 0.028 0.021 0.020 0.017 0.020
3 0.022 0.020 0.019 0.019 0.022 0.021 0.020 0.019 0.019 0.022
4 0.018 0.019 0.020 0.021 0.026 0.018 0.019 0.020 0.021 0.026
big 0.013 0.015 0.019 0.020 0.033 0.013 0.015 0.019 0.020 0.033

GMM
small 0.208 0.117 0.099 0.110 0.092 0.213 0.115 0.098 0.112 0.091
2 0.065 0.081 0.090 0.053 0.049 0.063 0.082 0.091 0.053 0.048
3 0.049 0.038 0.036 0.051 0.046 0.050 0.038 0.036 0.052 0.043
4 0.050 0.033 0.047 0.040 0.046 0.051 0.033 0.046 0.038 0.044
big 0.025 0.026 0.033 0.036 0.079 0.024 0.027 0.033 0.036 0.077

GMM 12 Newey-West lags
small 0.270 0.142 0.092 0.122 0.113 0.275 0.141 0.092 0.123 0.110
2 0.061 0.086 0.097 0.062 0.042 0.057 0.084 0.098 0.064 0.041
3 0.046 0.058 0.059 0.070 0.050 0.048 0.061 0.058 0.071 0.046
4 0.058 0.050 0.073 0.030 0.045 0.058 0.049 0.073 0.030 0.040
big 0.031 0.042 0.033 0.042 0.092 0.030 0.042 0.033 0.041 0.093
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Table 2.29: Fama-French and Carhart standard errors se(ĥi)

Fama-French Carhart
OLS

low 2 3 4 high low 2 3 4 high
small 0.070 0.040 0.029 0.022 0.024 0.074 0.043 0.031 0.023 0.026
2 0.025 0.019 0.018 0.015 0.018 0.027 0.020 0.019 0.016 0.019
3 0.019 0.018 0.017 0.017 0.020 0.020 0.019 0.019 0.018 0.021
4 0.016 0.017 0.018 0.019 0.024 0.017 0.018 0.019 0.020 0.025
big 0.011 0.014 0.017 0.018 0.030 0.012 0.015 0.018 0.019 0.031

GMM
small 0.318 0.173 0.078 0.038 0.068 0.250 0.116 0.069 0.041 0.056
2 0.065 0.036 0.036 0.029 0.032 0.051 0.038 0.038 0.028 0.033
3 0.045 0.037 0.033 0.031 0.048 0.041 0.032 0.032 0.031 0.037
4 0.039 0.034 0.052 0.053 0.040 0.033 0.034 0.039 0.041 0.036
big 0.016 0.026 0.029 0.029 0.080 0.016 0.026 0.026 0.029 0.066

GMM 12 Newey-West lags
small 0.276 0.070 0.062 0.039 0.069 0.092 0.096 0.040 0.023 0.046
2 0.069 0.056 0.058 0.043 0.028 0.057 0.027 0.030 0.025 0.017
3 0.071 0.058 0.056 0.055 0.058 0.033 0.039 0.035 0.033 0.031
4 0.033 0.057 0.063 0.075 0.058 0.022 0.032 0.041 0.042 0.028
big 0.024 0.047 0.046 0.037 0.068 0.018 0.027 0.032 0.021 0.031
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Table 2.30: Carhart standard errors se(ûi)

OLS
low 2 3 4 high

small 0.060 0.034 0.025 0.019 0.021
2 0.022 0.016 0.015 0.013 0.015
3 0.016 0.015 0.015 0.015 0.017
4 0.014 0.015 0.016 0.016 0.020
big 0.010 0.012 0.014 0.015 0.025

GMM
small 0.186 0.163 0.050 0.024 0.042
2 0.057 0.021 0.022 0.018 0.021
3 0.025 0.031 0.028 0.025 0.027
4 0.029 0.022 0.047 0.037 0.025
big 0.013 0.020 0.027 0.018 0.047

GMM 12 Newey-West lags
small 0.092 0.096 0.040 0.023 0.046
2 0.057 0.027 0.030 0.025 0.017
3 0.033 0.039 0.035 0.033 0.031
4 0.022 0.032 0.041 0.042 0.028
big 0.018 0.027 0.032 0.021 0.031
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Table 2.31: Fama-French and Carhart OLS t(α̂i)

Fama-French model Carhart model
OLS

low 2 3 4 high low 2 3 4 high
small −3.4 −2.8 −0.4 1.5 0.6 −2.5 −1.7 0.2 1.9 1.7
2 −2.5 −0.4 1.1 1.5 −0.2 −2.1 0.7 1.2 1.2 0.3
3 −2.1 1.3 0.3 1.3 −1.2 −0.8 0.9 0.6 1.0 0.1
4 1.2 −0.8 1.4 −0.1 −2.4 0.8 −0.3 1.6 1.0 −1.1
big 1.8 0.4 0.6 −2.1 −1.7 2.4 0.6 1.0 −0.8 −0.9

GMM
small −4.2 −3.5 −0.4 1.7 0.7 −2.9 −1.6 0.2 2.2 1.7
2 −2.9 −0.5 1.2 1.6 −0.2 −2.2 0.7 1.4 1.3 0.3
3 −2.3 1.3 0.3 1.3 −1.2 −0.8 1.0 0.7 1.0 0.1
4 1.3 −0.9 1.5 −0.2 −2.5 0.8 −0.3 1.6 1.0 −1.2
big 1.9 0.4 0.6 −2.1 −1.7 2.3 0.6 1.0 −0.9 −0.8

GMM 12 Newey-West lags
small −4.8 −3.4 −0.5 1.6 0.7 −3.8 −2.4 0.3 2.3 1.9
2 −2.9 −0.4 1.3 1.5 −0.2 −2.7 0.7 1.4 1.4 0.3
3 −2.4 1.4 0.3 1.4 −1.3 −0.9 1.0 0.8 1.1 0.1
4 1.0 −0.7 1.4 −0.2 −2.4 0.7 −0.3 1.8 0.9 −1.2
big 1.7 0.4 0.5 −2.4 −1.5 2.4 0.6 1.0 −1.1 −0.8

Values statistically different from zero in bold.

109



2.7 – Appendix

2.7.2 Cross-sectional

Derivation: λ̂ in generalized least squares procedure

Let A = I + β′Σ−1βΣ−1
f .

Hence,

λ̂ =
[
β′

(
βΣ−1

f β′ + Σ
)−1

β
]−1

A−1Aβ′
(
βΣ−1

f β′ + Σ
)−1

ET (Re) ,

λ̂ =
[
Aβ′

(
βΣ−1

f β′ + Σ
)−1

β
]−1

Aβ′
(
βΣ−1

f β′ + Σ
)−1

ET (Re) .

Now

Aβ′ =
(
I + β′Σ−1βΣ−1

f

)
β′

Aβ′ = β′
(
I + Σ−1βΣ−1

f β′
)

Aβ′ = β′Σ−1
(
Σ + βΣ−1

f β′
)
.

So, λ̂ = (β′Σ−1β)
−1

β′Σ−1ET (Re) .
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Figure 2.13: Average returns for 25 size-momentum portfolios.
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Chapter 3

Evaluating alternative methods for
testing asset pricing models with
historical data

§ †
We follow the correct Jagannathan and Wang [58] framework for comparing the

estimates and specification tests of the classical Beta and stochastic discount fac-

tor/generalized method of moments (SDF/GMM) methods. We extend previous

studies by considering single and multifactor models, and by taking into account

some of the prescriptions for improving empirical tests suggested by Lewellen, Nagel

and Shanken [72]. For this purpose, we use a broad cross-section N and a multiple-

length T of US test portfolios for the CAPM, Fama-French and an alternative three-

factor model based on market, value and momentum called RUH. Our results reveal

§A paper-version of this chapter is currently being written jointly with Gonzalo Rubio (Univer-
sidad Cardenal Herrera CEU).

†An earlier version of this work was presented at the Brown Bag Seminar (University of the
Basque Country, June 2007); XV AEFIN Finance Forum (Universitat de les Illes Balears, November
2007); and at the Advanced Finance Research Seminar II (Manchester Business School, March 2008).
I would like to thank Rosa Rodŕıguez (Universidad Carlos III de Madrid) for helpful comments as
discussant, and to an anonymous Journal of Empirical Finance referee. Mart́ın Lozano gratefully
acknowledges financial assistance from the Consolidate Research Team 9/UPV-00038.321-15094 of
the University of the Basque Country (Euskal Herriko Unibertsitatea).
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3.1 – Introduction

that SDF/GMM first-stage estimators lead to lower pricing errors than OLS, while

SDF/GMM second-stage estimators display higher pricing errors than the classical

Beta GLS method. While Jagannathan and Wang [58], and Cochrane [25] conclude

that there are no differences when estimating and testing by the Beta and SDF/GMM

methods for the CAPM, we show that their conclusion can not be extensible for mul-

tifactor models. The Beta method (OLS and GLS) seem to dominate the SDF/GMM

(first and second-stage) procedure in terms of estimators’ properties. These results

are consistent across benchmark portfolios and sample periods.

3.1 Introduction

Explaining cross-sectional differences in asset expected returns is one of the great

challenges of modern finance 1. Although early empirical tests have largely found sub-

stantial empirical support for the traditional Capital Asset Pricing Model 2(CAPM)

posterior well known papers by Shanken [91], MacKinley and Richardson [80], and

Fama and French [29] among many others show that the usual proxies for the market

portfolios are not mean-variance efficient.

The new evidence tends to find that not only the market but other aggregate risk

factors seem to be important in describing the cross-sectional variation of average

returns. In a very important contribution, Fama and French [30] introduce a three-

factor model by adding a market capitalization (size) and a book-to-market (value)

factor to the CAPM excess market factor return. Furthermore, Carhart [18] proposes

1See Daniel and Titman [26] for a discussion.
2For a detailed theoretical exposition of the CAPM see Sharpe [95] and Lintner [75]. See Black

[8] for the zero-beta CAPM.
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a four-factor model by appending the three Fama and French factors with a momen-

tum factor after the study by Jegadeesh and Titman [59] on returns to momentum

strategies3.

In this paper, we argue that another plausible possibility is a three factor model

combining market, momentum and value (RUH hereafter). In fact, this model outper-

forms other specifications in numerous tests on different samples and portfolios that

we use in this paper. In any case, of course, the three models analyzed here (CAPM,

Fama-French and RUH) all link excess stock returns to the returns of orthogonal

factor-mimicking portfolios (or simply factors). Moreover, it should be recognized

that the existing empirical studies that analyze the single-factor or multifactor mod-

els are far from decisive on the added value of specific multiple factors. In fact,

Lewellen, Nagel and Shanken [72] provide an interesting empirical exercise showing

how asset pricing tests are often highly misleading. They demonstrate that if the set

of test assets has returns with a strong factor structure, like size or book-to-market

sorted portfolios, almost any proposed factor weakly correlated with the Fama-French

factors is likely to produce betas that line up with average returns generating a high

cross-sectional R2.

These risk-return models have been extensively tested in the finance literature by

the regression based traditional method or Beta method, in which a cross-sectional re-

gression model is proposed for average stock returns, and the theoretical implications

3The main difference among the various models lies in the way they determine the important
factors. There are, broadly speaking, two main approaches to the issue of factor selection. Some
models specify factors based on equilibrium arguments. The most important factor of this type is
the return on the market portfolio, which is based on the Capital Asset Pricing Model first derived
by Sharpe [95]. Other models specify factors based on economic intuition. Examples of such factors
are term premium, default premium, the growth rate of industrial production, and inflation as
suggested by Chen, Roll and Ross [21], and the size and book-to-market factors as proposed by
Fama and French [29]. See Skoulakis [96] for a discussion
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are tested as hypothesis on the parameters of the regression model.

However, it is well known that linear asset pricing models such as CAPM or

Fama-French, and many others, including nonlinear specifications, can be unified

in a stochastic discount factor (SDF) framework. This involves estimating the asset

pricing model using its SDF representation and, in most cases, the generalized method

of moments (GMM). The SDF method has become extremely popular in the recent

finance literature. As Kan and Zhou [68] argue, although both the Beta and the SDF

methods are used by many researchers in many different contexts, usually only one of

them is used in a given application. It is therefore important to know which of the two

methods may be better in some well defined statistical sense. In addition, as suggested

by Jagannathan and Wang [58], the comparison can be so important that it might

change the course of our empirical research on asset pricing models. For example,

if the traditional method performs better in linear models, it is natural to speculate

that it can also perform better in situations that involve nonlinear models. This

is relevant because many nonlinear SDF cases are often linearized, like the famous

papers by Campbell [16] or Cochrane [24] to cite just a few, and we could therefore

study them by the traditional Beta method.

The comparison of the two methods (Beta and SDF) is not an easy matter even for

linear models, since the parameters of interest are different under the two setups. The

Beta method is formulated to analyze the factor risk premia, and these are the primary

parameter of interest. In contrast, the SDF representation is formulated to analyze

the parameters that enter into the imposed stochastic discount factor. The first formal

comparison between the two methods is performed by Kan and Zhou [68]. They argue

that the SDF is inferior to the traditional maximum likelihood approach, even in a
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simple test of the CAPM, as long as returns are identical and independent normally

distributed random variables. Jagannathan and Wang [58], in a very influential paper,

show that Kan and Zhou’s conclusions in [68] are incorrect. These authors fail to

explicitly incorporate the transformation between the risk premium parameters in

the two methods, and they ignore the information about the mean and the variance

of the factor while estimating the risk premium. Once this is done, Jagannathan

and Wang [58] analytically show that the SDF method is as asymptotically efficient

as the Beta method. Moreover, they also demonstrate that the SDF method has

the same power as the Beta method.4 Cochrane [25] also show that using 10 size-

sorted portfolios, a given sample period and the simple CAPM case, the two methods

produce basically the same standard errors, t-statistics, and statistics that the pricing

errors are jointly zero.

The Jagannathan and Wang [58] CAPM empirical results are based on a set of

simulations. In particular, they assume that the returns of 10 size-sorted portfolios

and the market factor are drawn from a multivariate normal distribution, considering

four different time horizons. In this paper, we follow the correct [58] framework

for comparing the estimates and specification tests of the classical Beta and SDF

methods, using historical data instead of simulations.

Furthermore, and contrary to Cochrane [25], we test not only the single factor

model but also the Fama-French and the RUH models with a diverse number of

test assets and time periods in order to address the tight factor structure problem

advocated by Lewellen, Nagel and Shanken [72]. In fact, the contribution of this

paper is the performance of a comprehensive extension of the analysis reported by

4Recent works such as Grauer and Janmaat [42] examine power tests for competing Beta pricing
models.
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Cochrane [25]. From our point of view this covers an important gap in the empirical

asset pricing literature. The closest paper is probably due to Shanken and Zhou [94].

However, although the objective of the paper is similar, they report empirical results

based only on simulations rather than on real data sets.

Specifically, we use six families of N test portfolios: 5 and 10 formed on ME (size);

5 and 10 formed on BE/ME (value); 6, 25 and 100 formed by the intersections of ME

and BE/ME (Fama-French portfolios); 6 and 25 formed on ME and MOM (size and

momentum); 5, 17 and 30 industry portfolios; and an extended test assets case in

which we simultaneously combine the 25 FF portfolios and 17 industry portfolios. In

this way, we can be confident that our results are not driven by the factor structure

argument of Lewellen, Nagel and Shanken [72]. We also conduct our analysis using 6

time horizons T of US tests portfolios: 60, 120, 240, 360, 480 (all of them to cover the

post-1963 data) and 948 monthly observations (the longest time-series used in this

paper which goes from January 1927 to December 2005). The chosen time horizons

are similar to those on related works such as Shanken and Zhou [94] and Grauer and

Janmaat [42], just to mention a few.

Moreover, we calculate three kinds of the Beta model estimators: OLS, GLS and

WLS. And five SDF estimators: first and second-stage returns on second moments

GMMA, following Hansen and Jagannathan [49]; first and second-stage returns on

covariances GMMB, following Cochrane [25]; and the continuous updating estimate

GMMC following Hansen, Heaton and Yaron [47]. We are therefore interested on

evaluating how (and if) the Jagannathan and Wang [58] and Cochrane [25] results

change in this richer framework.

Our results provide new evidence about finite-sample setups in which SDF/GMM
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formulation lead to almost the same results as the Beta method and also others in

which there are significant discrepancies. These differences emerge even in linear

models. Therefore, it may not be necessary to have a hard set up such as highly

nonlinearity in order to anticipate differences between the two methods. In particular,

our evidence reveals that SDF/GMM first-stage estimators lead to lower pricing errors

than OLS, while SDF/GMM second-stage estimators display higher pricing errors

than the classical Beta GLS method. Moreover, the Beta method (OLS and GLS)

seem to dominate the SDF/GMM (first and second-stage) procedure in terms of

estimators’ properties. These results are consistent across benchmark portfolios and

sample periods.

This paper is organized as follows. Section 3.2 briefly reviews the econometrics

of estimating and evaluating asset pricing models. A full description of the data

employed in the paper is presented in Section 3.3. Section 3.4 discusses the empirical

results and a detailed analysis of different comparisons, while Section 3.5 concludes.

3.2 Description of the Beta and SDF/GMM meth-

ods

There is a large literature on econometric techniques to estimate and evaluate asset

pricing models. As pointed out by Cochrane [25], each technique looks for answers on

the same questions: how to estimate parameters, how to calculate standard errors of

the estimated parameters, how to calculate standard errors of the pricing errors, and

how to test the model. For a full description of the econometrics used in this paper,

see sections 1.3 and 1.5. We now briefly describe the Beta and the SDF procedures.
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3.2.1 The Beta method

We want to fit the following simple regression model E (Rei) = β′iλ + αi. As we

explain in section 1.3, the idea is of course to learn why average returns vary across

assets.

In this chapter, this is done by running an OLS, WLS and GLS cross-sectional

regressions of average returns on the betas. Since betas are estimated in a time-

series regression, we correct asymptotic standard errors by applying the Shanken [92]

multiplicative correction (see section 1.3.3). We finally test whether all pricing errors

are jointly zero with the asymptotic OLS, WLS and GLS test of pricing errors.

The GLS regression should give more precise estimates of the parameters and

improve their efficiency. However, as Cochrane [25] points out, the variance-covariance

matrix may be hard to estimate and invert when the cross-section N is large. This

suggests that we may prefer the robustness of OLS over the (asymptotic) advantages

of GLS. In any case, it is always true that the GLS regression pays more attention to

the statistically more informative test assets, as we show on previous chapter.

3.2.2 The SDF method

The use of the SDF method for econometric evaluation of asset pricing models has

become common in the recent empirical literature. As we explain in section 1.5, the

first order pricing equation from the intertemporal optimization of the representative

agent can be written as
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pt = Et (mt+1xt+1) ,

mt+1 = f (data, parameters) ,

where pt is the price of any stock, mt+1 is the SDF which is the intertemporal marginal

rate of substitution of consumption, xt+1 is the future payoff of the stock and E is

the conditional expectation operator. An asset pricing model identifies a particular

SDF (a proxy for the marginal rate of substitution of aggregate consumption) that

is a function of observable variables and the model parameters. The SDF method

involves estimating the asset pricing model using its SDF representation and the

GMM procedure.

The development of the GMM by Hansen [46] has had a major impact on em-

pirical research in finance because it allows for conditional heteroskedasticity, serial

correlation and non-normal distributions. See Jagannathan, Skoulakis and Wang [54]

for an excellent review of GMM methodology in finance. In this section 3.2.2, we

review the estimation and testing of linear discount factor models expressed as,

p = E (mx) ,

m = b′f,

This pricing expressions lead naturally to the GMM when testing asset pricing

models, where the pricing errors are precisely the moments used in the estimation.
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First and second-stage GMM estimators

The idea is to choose b to make the pricing errors gT (b) as small as possible, by

minimizing the quadratic form in equation 1.5.1.

When imposing W = I, GMM treats all test assets symmetrically, and we just

minimize the sum of squared pricing errors. The result of making such simplification

is what we call first-stage estimators. This estimator is consistent and asymptotically

normal.

The second-stage estimate makes a formal statistical choice of the weighting ma-

trix W . Since returns are correlated, the usual procedure chooses the variance-

covariance matrix, so that the matrix pays more attention to linear combinations

of moments for which the available data is more informative. Hansen [46] shows for-

mally that the choice W = S−1, where S ≡ ∑∞
j=−∞ E

(
utu

′
t−j

)
, is the statistically

optimal weighting matrix, meaning that it produces estimates with lowest asymptotic

variance.

Hansen and Jagannathan [49]: GMMA estimators

Another example of prespecified economically interesting weighting matrix is the sec-

ond moment matrix of returns and factors, advocated by Hansen and Jagannathan

[49]. They also introduce the Hansen-Jagannathan distance, which measure specifica-

tion errors of SDF models by least squares distances between an SDF model and the

set of admissible SDFs that can correctly price a set of test assets. In recent works

such as Li, Xu and Zhang [73] the Hansen-Jagannathan distance is used in order to

evaluate asset pricing models.

Hence, for this subsection we will refer to S as the second moment matrix E (xx′) =
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3.2 – Description of the Beta and SDF/GMM methods

cov (x) + E (x) E (x)′ . The complete derivation of GMMA estimates are in section

1.5.2, in particular in equation 1.5.2, and their respective standard errors are repre-

sented in equation 1.5.3.

The GMMA estimate is a cross-sectional regression of mean excess return on sec-

ond moment matrix with factors. The model test is a quadratic form in the vector of

pricing errors, see equation 1.5.5. Note that there are two ways to get a small value

of the J test statistic. First and desirable, we can generate small pricing errors with

a high degree of precision or, and this is not desirable, we can generate large pricing

errors with even higher standard errors of those errors. Thus, in this paper we would

care not only on specifications test results but also on the pricing errors in order to

avoid this trap.

Cochrane [25]: GMMB estimators

Alternatively, we can run a cross-sectional regression of mean excess returns on co-

variances by choosing the normalization a = 1 + b′E (f) rather than a = 1. Then,

the model is m = 1− b′ [f − E (f)] with mean E (m) = 1. The pricing errors are

gT (b) = ET (mRe) = ET (Re)− ET (Ref̃ ′)b,

where we denote f̃ ′ ≡ f − E (f) . We have

d = ∂gT (b)
∂b′ = E(Ref̃ ′),

which now denotes the covariance matrix of returns and factors. We must bear in

mind that the mean of the factor is estimated in GMMB (as well as b), and the

distribution theory should recognize sampling variation induced by this fact as we
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3.2 – Description of the Beta and SDF/GMM methods

usually do in the cross-sectional regressions. Second-stage estimators comes from the

minimization of equation 1.5.8.

Hansen, Heaton and Yaron [47]: GMMC (continuous updating) estimators

Another possibility is estimating the spectral density matrix or, in other words, use the

optimal weighting matrix instead of taking the prespecified weighting matrix on the

second-stage estimators, as we advocate in GMMA and GMMB. The iterated GMMC

estimator using the optimal weighting matrix may present two related problems as

we empirically show on the previous chapter. First, if the variance-covariance matrix

for the iterated GMMC estimator is poorly measured, then the estimator will put too

much weight on moments that spuriously appear to be measured precisely. Moreover,

the iterated estimator may place too much weight on test assets that are economically

uninteresting, in the sense of being extreme short and long positions in some of the

stocks.

Furthermore, the fact that the S matrix changes with the model, may improve the

JT statistic because it blows up the estimate of S, rather than by lowering the pricing

errors. As Cochrane [25] emphasizes we should not compare formally JT tests across

models. This is one of the reasons why it is recommended to use a common weighting

matrix for comparing models like those discussed above. There are several alternatives

to the second-stage procedure. We will use the continuous updating estimator which

states that it is not true that S must be held fixed as one searches for b. Instead, one

can use a new S(b) for each value of b, and estimate b by using equation 1.5.9. The

estimates produced by this simultaneous search will not be numerically the same in

a finite sample as the two-step or iterated estimates.
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To wrap up, we will have three econometric specifications in the Beta method:

OLS, GLS and WLS. And five in the SDF/GMM method: First and second stages of

GMMA, GMMB, and the continuous updating GMMC. When estimating, we collect

the central parameter (λ for Beta method and b for SDF method), standard errors

and bias from the factor mean. On the other hand, when testing, we collect the

pricing error and the p-value of the model specification test.

3.3 Data

Three single (size, value, and industry), two double-sorted (size-value and size-momentum),

and one combined (size-value plus industry) test portfolios are taken from the data

library of Kenneth French because of familiarity and availability to the general read-

ership.

In sum, we take five types of N test portfolios: 5 and 10 formed on ME; 5 and

10 formed on BE/ME; 6, 25 and 100 formed by the intersections of ME and BE/ME

(Fama-French portfolios); 6 and 25 formed on ME and MOM; and 5, 17 and 30

industry portfolios. Lewellen, Nagel and Shanken [72] suggest that one could expand

the set of test portfolios to price all of them at the same time. In this paper, besides

the previous five types of test assets, we use an extended set formed by 25 Fama-

French portfolios plus 17 industry portfolios, resulting in a total of 42 test portfolios.

Note that we take at least two different values of N within each test assets in order to

provide the robustness checks. Other recent works such as Li, Xu and Zhang [73] also

recommend considering other portfolio formations, since models may tend to have

small pricing errors for the traditional test assets by construction.

From our point of view this wide set of test portfolios offers new insights in the
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empirical asset pricing literature since, as pointed out by Lewellen, Nagel and Shanken

[72], empirical tests frequently focus on certain assets as the 10 size-sorted or 25

Fama-French portfolios. In fact, to the best of our knowledge, the closest empirical

study which use a wide set of test portfolios is Shanken and Zhou [94] although their

objective was somewhat different as ours.

Aggregate risk factors are also taken from Kenneth French homepage. In the

CAPM, the only relevant factor is the excess market return. The Fama-French model

introduces two additional factors, the small minus big (SMB) portfolio and the high

minus low (HML) portfolio. The RUH model, introduced in the previous chapter,

contains the excess market return, the up minus down (UMD) portfolio and the

HML factor. These additional factors are intended to capture common non-market

risk factors that are related to size, value and momentum.

We conduct our analysis using six values for the time length monthly observa-

tions T : 60 (January 2001-December 2005), 240 (January 1986-December 2005); 360

(January 1976-December 2005); 480 (January 1966-December 2005) and 948 (Jan-

uary 1927-December 2005). The choice for a monthly interval reflects the trade-off

between the sampling error of a sufficiently large sample, and a realistic evaluation

horizon. Increasing the return interval (e.g. yearly) would lead to a small data set,

while decreasing it (e.g. daily) to an unrealistically short evaluation horizon. Further,

the use of high-frequency data introduces well known microstructure problems which

may distort the empirical results. Therefore, we adhere to the common approach of

using monthly returns.

Taking into account the three models, thirteen test portfolios, six time periods and

eight econometric specifications, we end up with 1636 and 2730 observations of λ and
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b estimators with their corresponding standard errors and bias from the factor mean.

On the other hand, we have 702 Beta and 1170 SDF observations of pricing errors

with their corresponding p-values of the model specification test JT
5. This amount

of results is a considerable expansion to similar previous works like Cochrane [25]

or Shanken and Zhou [94], and thus we are clearly able to broaden the comparisons

between the two methods.

It is worthwhile to emphasize that our results comes from historical data while

results on Jagannathan and Wang [58], and Kan and Zhou [66, 68] are based on

simulations, and those were calibrated using the 10 size-sorted portfolios.

3.4 Empirical results

In this section, we first analyze the simple and well documented case of the evaluation

of the CAPM, using monthly data from January 1927 to December 2005, and ten size-

sorted portfolios for the US. Then, we move towards a more complex and interesting

setup in which we first analyze specification tests and then the estimators’ properties.

3.4.1 A classical and simple setup: CAPM with size-sorted

portfolios

In this initial testing we follow the framework presented by Cochrane [25]. Indeed, we

will show that the SDF estimates, standard errors, and χ2 statistics are very close to

time-series and cross-sectional regression estimates. It is important to carry out this

5Note that the number of outcomes from the Beta method is always less than from the SDF
procedure. This is because we have three specifications for Beta, and five for the SDF. However,
most of the comparisons conducted are based on similar numbers of observations.
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analysis to better understand further and more complex settings in which differences

among methods will come out.

We argue that the results of this section 3.4.1 may lead to conclude that both

methodologies are quite similar. There are numerous examples in which researchers

refer to these similarities based on works such as Jagannathan and Wang [58]. For

example, see Wang and Zhang [102], Jagannathan, Skoulakis and Wang [55], Vassalou,

Li and Xing [100], Cochrane [23, 25], Smith and Wickens [97], Nieto and Rodŕıguez

[85], Balvers and Huang [5], Brandt and Chapman [10], Cai and Hong [15], and Ferson

[35], just to mention a few.

However, such similarities are driven by using a set of test portfolios with low

dispersion. As far as the right hand variables have low standard deviation, virtually

any statistical method would lead to similar results when trying to explain them. This

is well explained in Lewellen, Nagel, and Shanken [72], they show that it is difficult to

differentiate models that have been developed to explain the cross-sectional returns

of the 25 size and book-to-market portfolios using traditional methods, because these

models tend to have small pricing errors for the test assets by construction.

The time-series approach implies that all alpha estimates should be zero in equa-

tion 1.2.1. The time-series framework estimates the factor risk premium from the

sample mean of the factor ignoring any information of the other assets. In other

words, this specification sends the expected return-beta line through the market re-

turn. The OLS cross-sectional regression from the Beta method minimizes the sum of

squared pricing errors. This implies that there is the possibility of some market pric-

ing error in order to obtain a better fit in other test assets. The GLS cross-sectional
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regression from the Beta method weights pricing errors by the residual variance-

covariance matrix. Thus, when the market factor is a return and is included in the

test portfolios, it turns out that the GLS procedure reduces to the time-series re-

gression. On the other hand, if the market portfolio is not one of the test assets, as

in most empirical analysis, the GLS cross-sectional regression is not identical to the

time-series regression.
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Figure 3.1: CAPM in size portfolios, time-series and Beta method comparison.

Figure 3.1 displays the results from the time-series regression, and the OLS cross-

sectional regression compared to a full GLS regression and a WLS case. In none of
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these cases, the market return (red circle) is taken as one of the test portfolios, so

the time-series and GLS regressions are not identical. D1 contains the smallest firms,

while D0 is formed from the largest stocks. The positive D1 pricing error is the size

effect anomaly.

Figure 3.1 illustrates the difference between the time-series and cross-sectional

regressions in evaluating the CAPM on monthly size-sorted portfolios. Since the

time-series approach estimates the factor risk premium from the sample average of

the factor, the regression draws the expected return-beta line across assets by making

it fit precisely on two points, the market return (red circle) and the risk-free rate. On

the other hand, in the cross-sectional regressions, the market portfolio is priced with

error to reduce the pricing errors of other test assets.

It is interesting to point out that the GLS is practically the same as the time-series

case. This makes sense, since the GLS cross-sectional procedure, when the market

portfolio is included as a test asset, pays especial attention to fit the market line

since the market return has no residual variance. Recall that the GLS cross-sectional

expressions weight the various test portfolios by the inverse of the variance-covariance

matrix of residuals. As long as the size-sorted portfolios span the market portfolio,

the GLS cross-sectional regression and the time-series approach will generate very

similar results. Finally, as expected given this reasoning, the WLS regression does

not generate results as close as the time-series methodology as the ones found under

the GLS procedure.

Figure 3.2 illustrates the GMMA estimates with the same data as in Figure 3.1.

The horizontal axis is the second moment of returns and factors rather than beta,

and the vertical axis is the excess return as in Figure 3.1. The expressions used to
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Figure 3.2: CAPM in size portfolios, GMMA estimate.

obtain the results come from section 1.5.2.

The first-stage estimate (Figure 3.2, upper line, GMM1
A) is an OLS cross-sectional

regression of average returns on second moments. As expected, it generates pricing

errors basically equal to those of the cross-sectional OLS in Figure 3.1. In particular,

the OLS pricing error is 0.057 with a p-value of 0.92, while the GMM1
A error is 0.056

with a p-value of 0.89. On the other hand, the second-stage estimate (lower line,

GMM2
A) minimizes pricing errors weighted by the spectral density matrix which is of

course different from the variance-covariance matrix of residuals. This explains why
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the line is quite far away from the market portfolio. In any case, both approaches

generate very similar results with large pricing for the smallest and largest firms.
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Figure 3.3: CAPM in size portfolios. Actual versus predicted returns. Beta method.

Figures 3.3 and 3.4 show the scatter plots of actual versus predicted expected

returns. The vertical distance from a point to the sloped line reveals the residual;

this is to say, the difference of the actual and the predicted value. Note that in both

figures, the CAPM does a relatively good job at explaining the 0.6 per cent monthly

return spread of the size-sorted portfolios. This was expected since the pricing errors

of both methods are very similar.

132



3.4 – Empirical results

Figure 3.3 makes it clear that a free constant (right panels) allows the model to

explain better the cross-sectional variation of expected returns, even for the smallest

and biggest portfolios. However, they obtain a considerable alpha, leading to econom-

ically misleading estimates. Thus, the relevant plots are the ones without constant

(left panels).
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Figure 3.4: CAPM in size portfolios. Actual versus predicted returns. GMMA

method.

Figure 3.3 and 3.4 also illustrate the performance of GLS and second-stage GMM2
A

methods. Their pricing errors are 0.103 and 0.058 respectively; again in this case, the
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SDF leads to lower pricing errors than the Beta method. Nevertheless, the p-values

are the same as the p-values from OLS and first-stage GMM1
A methods because the

higher pricing errors (0.103 and 0.058 vs. 0.057 and 0.056) are compensated with the

weighting matrix Σ−1 and S−1 in the test statistic.

In general, as in Cochrane [25], these results about pricing errors and p-values

do not suggest any strong reason to prefer any particular method. The high and

similar p-values of the Beta (0.92) and SDF (0.89) methods imply that pricing errors

are statistically equal to zero in all cases. Furthermore, OLS, and GMMA (first and

second-stages), have strikingly similar pricing errors, all of them between 0.056 and

0.058. The GLS method lead to twice as big pricing errors than the other methods,

nevertheless GLS is not intended to minimize the pricing errors as OLS does.

We now turn from the pricing error and specification tests to the estimators’

comparison, following what Jagannathan and Wang [58] called the correct framework

for making comparisons between alternative estimates. They argue that b estimates

are not directly comparable to the risk premium estimates, thus we have to calculate:

b =
E (Rem)

E (Rem2)
.

According to our dataset, we have E (Rem) = 0.6434% and σ (Rem) = 5.4816%,

so 100 × b = 100(0.6434)/ (0.64342 + 5.48162) = 2. 112 1. In the original work of

Cochrane [25] this value is 2.17, and In Jagannathan and Wang [58], they set larger

risk premiums. So, the market risk premium in the Beta method is λ = ET (Rem) =

0.64 and b = 2. 11 for the GMMA method. Their corresponding OLS, GLS, first- and

second-stage GMMA estimators are λ̂OLS = 0.74∗∗∗
15%(0.19)

, λ̂GLS = 0.67∗∗∗
4%(0.18)

, b̂1 = 2.43∗∗∗
15%(0.59)

,

b̂2 = 2.39∗∗∗
13%(0.58)

, where the percent values in brackets represent biases relative to the
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realized risk premium, while in parenthesis we report their corresponding standard

errors. Note that, as in Jagannathan and Wang [58], we do not set the values of

E (Rem) and λ to be equal, therefore, we do not impose the restriction that the factor

is the return on a portfolio of tradable assets.

These parameters are the slopes of the lines in the Figures 3.1 and 3.2, the market

price of risk λ in the Beta model and the relationship between mean returns and

second moments b in the SDF method. By including their percentage biases we

aim to follow Lewellen, Nagel and Shanken [72] recommendation about taking the

magnitude of the cross-sectional slopes seriously. Thus, we are not only interested on

evaluating the model’s goodness of fit, but also on whether the estimated slopes are

reasonable close to λ = ET (Rem) = 0.64 and b = 2. 11. It is worthwhile to highlight

that in this case the GLS and the second-stage do improve efficiency by giving more

precise estimates (measured by the percentage bias relative to the risk premium):

from 15% to 4% in the case of Beta method and from 15% to 13% in the case of SDF.

Note that this simple and classic setup is associated with the fact that Σ and

S are not hard to estimate and invert. Thus, the methods are expected to do very

well, as in fact do. Unfortunately, however, we will show in the next subsection 3.4.2

that this well behaved result is extremely sensible to changes in time length T and/or

cross-section N . If we use the double-sorted portfolios (e.g. 25 size-momentum),

instead of 10 size portfolios, the 0.6% monthly return spread turns out to be three

times higher. In this alternative setting the CAPM is easily rejected.

A fair comparison within methods of the last four estimates should be λ̂OLS versus

b̂1 (both estimates are weighted by I) and λ̂GLS versus b̂2 (weighting by Σ−1 is not the

same as weighting by S−1, though it is sufficiently close). Looking at the percentage
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biases, we do not see large differences; they all go from 4% to 15%. On the other hand,

standard errors are somewhat higher for the SDF method, even though, this difference

is not significant in the sense that the estimates are still statistically different from

zero at the highest significance level (by looking at the t-statistics). In general, the

numerical values of b are higher than λ. Then, standard errors will also be higher;

this is the reason of stressing the importance of not only comparing the standard

errors within methods, but also to take into account the t-statistics.

In sum, the results from testing and estimating the CAPM in this classic setup,

illustrate that the differences between the Beta and the SDF method are almost

irrelevant. However, the key point is that we will show how the differences become

significant in a more complex setup.

3.4.2 A full comparison: pricing errors and specification tests

Let us begin comparing the pricing errors of Beta (OLS and GLS) versus GMMA

first and second-stage methods for CAPM, Fama-French and RUH models and the

test portfolios described on section 3.3; that is 360 pricing error observations for each

method. We show each estimation on the appendix, specifically in sections 3.6.8, 3.6.9

and 3.6.10 for CAPM, Fama-French and RUH models respectively. Each of these

sections contains several panels which correspond to the different test portfolios, in

this section 3.4.2 we will show frequency tables which summarize the results.

Here, we are concerned with two key issues. The first one regarding which method

leads to lower pricing errors, while the second one analyzes how well does that method
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performs in testing the three models. Our findings reveal that Hansen and Jag-

ganathan [49] first-stage GMMA produce the lowest pricing errors; and that multi-

factor models, particularly the RUH specification is more likely to successfully price

the test portfolios returns.

Which method leads to lower pricing errors?

By construction, we know that OLS and first-stage GMM should lead to smaller

pricing errors than GLS and second-stage GMM respectively. We also know that

OLS and first-stage GMM are in general more robust but have less asymptotical

statistical advantages than GLS and second-stage GMM. So, in this subsection we

are interested in analyzing which method leads to lower pricing errors by confronting

first OLS and first-stage GMM1
A and, secondly, by making comparisons between GLS

and the second-stage GMM2
A.

Regarding the first issue, Shanken and Zhou [94] show that first-stage does it

better in Beta representation models. However, they do not analyze SDF models.

Furthermore, in Shanken and Zhou [94] there is no conclusive answer for the second

stage estimators in this sense. On the other hand, there are other type of works

which focus exclusively on SDF models such as Farnsworth, Ferson, Jackson and

Todd [33], who find that measures of performance are not highly sensitive to the SDF

representation. Thus, we consider that analyzing which method leads to lower pricing

errors by confronting first OLS and first-stage GMM1
A represent an issue that has been

not fully explored yet. Our results show that, in terms of achieving lower pricing

errors, first-stage GMM1
A does it better than OLS, and GLS outperform GMM2

A.

Table 3.1 summarize the results of comparing Beta versus GMM/SDF pricing
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Table 3.1: Comparison of pricing errors

The numbers denote the frequency in which Beta method (OLS or GLS) leads to higher pricing
errors compared with SDF/GMMA method (first and second stage). For example, 0.83 means that
83 percent of the times, the Beta method present a higher pricing error relative to the SDF/GMMA
method. We employ four time-periods, T=240, 360, 480, and 948. Size includes 5 and 10 size-
sorted portfolios; Value has 5 and 10 BE/ME-sorted assets; Size and Value are the 6, 25 and 100
Fama-French portfolios; Size and Momentum includes 6 and 25 portfolios formed on ME and MOM;
Industry incorporates 5, 17 and 30 industry-sorted assets, and Size, Value and Industry has the 25
Fama-French extended with 17 industry portfolios. Pricing errors are those from the estimation of
CAPM, Fama-French and RUH models.

Portfolio Classification OLS vs. GMM1
A GLS vs. GMM2

A

Size (ME) 0.83 0.33
Value (BE/ME) 0.71 0.42
Size and Value (ME & BE/ME) 1.00 0.33
Size and Momentum (ME & MOM) 0.83 0.21
Industry 0.89 0.17
Size, Value and Industry 1.00 0.11

errors, using four time periods from T=240 to T=948. Our results suggest that first-

stage GMM1
A dominates OLS, while GLS dominates second-stage GMM2

A at mini-

mizing pricing errors, and this result is consistent across test portfolios and sample

periods.6

The OLS and first-stage GMM1
A estimators are intended to minimize the root

mean square errors since there is no weighting matrix, but first-stage estimators do it

better than OLS. This result is consistent with the findings reported by Shanken and

Zhou [94] on Beta models. Second column in Table 3.1 tells us a different story. In

6The tables used for constructing Table 3.1 are in sections 3.6.8, 3.6.9 and 3.6.10 for CAPM,
Fama-French and RUH models respectively.

138



3.4 – Empirical results

this case, Beta method does it better in achieving lower pricing errors than second-

stage GMM2
A estimators, even though these methods do not have the pure objective

of minimizing the sum of square errors, as first-stage GMM1
A and OLS do.

Testing the alternative pricing model specifications

According to Table 3.1, first-stage GMM1
A does good job at minimizing squared pric-

ing errors. Hence, we can now look at their corresponding test statistics with more

confidence. A new question that arises is how different are the specification tests

results from first-stage GMM1
A when applied to three models, four values of T , and

six families of test portfolios N . In order to summarize the results, let us focus on

the p-values and group them in quartiles by test portfolios and by models in Table

3.2.

Our test results are summarized in Table 3.2. Each panel represents a particu-

lar asset pricing model: CAPM (upper), Fama-French (middle) and RUH (lower).

Columns from left to right in each panel are families of N tests portfolios formed by

ME, BE/ME, ME & BE/ME, Industry, and the extended set of ME & BE/ME (or

Fama-French portfolios) plus Industry respectively. It should be recalled that each

column is formed by at least two different values of N and four time-lengths. Rows

are the probability intervals of not rejecting the null. Therefore, a column with larger

proportion of the last interval 76-100 implies that the null will not be rejected in most

cases for that model and test portfolio.

Section 3.4.1 above shows that, under an ad-hoc setup, we were unable of rejecting

the CAPM. This result is certainly not robust as we already know from many other

existing studies. Indeed, Table 3.2 shows the CAPM is rejected for all test portfolios
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Table 3.2: Probability intervals of not rejecting the null hypothesis GMM1
A, by tests

assets.

The numbers denote the frequency in which each p-value falls into each probability interval. The
probability intervals are given in the first column for the three alternative panels which correspond to
the CAPM, the three-factor Fama-French model, and the three-factor model with the excess market
return, the momentum factor and the value factor (RUH). High frequencies in the first interval (0-
25) and low frequencies in the last interval (76-100) means that the model has a bad performance in
terms of pricing errors obtained under the GMM1

A method. We employ four time-periods, T = 240,
360, 480, and 948. Size includes 5 and 10 size-sorted portfolios; Value has 5 and 10 BE/ME-sorted
assets; Size and Value are the 6, 25 and 100 Fama-French portfolios; Size and Momentum includes
6 and 25 portfolios formed on ME and MOM; Industry incorporates 5, 17 and 30 industry-sorted
assets, and Size, Value and Industry has the 25 Fama-French extended with 17 industry portfolios.

25 ME&BE/ME
1 - p-value ME BE/ME ME&BE/ME ME&MOM Industry + 17 Industry

Panel A: CAPM
0-25 0.42 0.42 1.00 1.00 0.25 1.00
26-50 0.17 0.25 0.00 0.00 0.42 0.00
51-75 0.25 0.17 0.00 0.00 0.25 0.00
76-100 0.17 0.17 0.00 0.00 0.08 0.00

Panel B: Fama-French
0-25 0.33 0.08 1.00 1.00 0.08 1.00
26-50 0.25 0.00 0.00 0.00 0.42 0.00
51-75 0.17 0.25 0.00 0.00 0.25 0.00
76-100 0.25 0.67 0.00 0.00 0.25 0.00

Panel C: RUH
0-25 0.08 0.00 0.50 1.00 0.00 1.00
26-50 0.00 0.08 0.08 0.00 0.17 0.00
51-75 0.25 0.17 0.17 0.00 0.42 0.00
76-100 0.67 0.75 0.25 0.00 0.42 0.00
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more often than any other competing model. In particular, for the ME & BE/ME (or

Fama-French portfolios), the size and momentum, and the combined Fama-French

portfolios plus Industry, the rejection of the CAPM is absolute in the sense that all

their tests have p-values between 0 and 25 percent. It should now be clear that the

results on section 3.4.1 are not representative at all, because they are only 17% of our

observations when testing the single-factor model with size-sorted portfolios.

The Fama-French model is originally suggested to explain the pricing errors of the

CAPM. It is therefore interesting to compare this model with the CAPM. In particu-

lar, Table 3.2 provides evidence favorable to multifactor models since the probability

of not rejecting the null substantially improves in the Fama-French and RUH specifi-

cations. Most notably, the number of cases in which the probability that the pricing

errors are zero on the highest p-value interval using the BE/ME portfolios goes from

17% for the CAPM to 67% and 75% for the Fama-French and RUH models. As in the

CAPM, the Fama-French model is not able to price the same families of portfolios.

Although the pricing errors are in fact lower, they are not enough for getting at least

a portion of the 26-50 interval. Only the RUH specification is capable of successfully

pricing the Fama-French portfolios in 25% of the cases, and also reduces to 50% the

cases in which the model can not price these portfolios at all.

Generally speaking, this evidence suggests that multiple factors (as the Fama-

French model), and more precisely multiple and adequate factors (as the RUH spec-

ification) help rather than hurt for all these test portfolios’ valuations. The RUH

model performance is particular remarkable since there is no track of this specifica-

tion in previous literature. The probability of not rejecting the null is higher for every

test portfolio and model tested under the RUH specification.
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Table 3.2 also suggest that the specification testing results depend on the test

portfolios employed. It seems that portfolios’ characteristics are driving the rejection

of the null hypothesis. In particular, the dispersion of average returns across portfolios

seems to be positively correlated with the pricing success of any given model. Returns

on portfolios formed by ME has a cross-sectional standard deviation of 12%, 16% for

BE/ME and Industry portfolios, 22% for the combined Fama-French plus Industry,

27% for ME & BE/ME, and 45% for ME & MOM. It turns out that the hardest

test portfolio to value is precisely the ones with higher dispersion. It is also true

that double-sorted and combined portfolios are harder to price because they have

significant higher dispersion than single-sorted portfolios.

The industry classification is a special case because is not motivated by known

patterns in historical return series. Additionally, these portfolios are independent of

financial ratios such as BE/ME. Hence, it is surprising to observe that their results

are not particularly different from the other test portfolios. One may argue that their

relatively low dispersion on average returns explain these similarities.

One may always think that the results reported in Table 3.2 are being drive by

some particular characteristics of the historical data on a given time-period. Thus, we

perform a robustness check by changing the perspective view over the same results.

In Table 3.3, we now control for the sample period rather than controlling for the

test portfolios as we did on Table 3.2. Then, the columns in Table 3.3 now represent

time periods (instead of portfolios), and panels and intervals are exactly the same as

in Table 3.2. Recall the full results are on sections 3.6.8, 3.6.9 and 3.6.10 for CAPM,

Fama-French and RUH models respectively.

This strategy allows us to analyze whether the evidence in favor of multifactor
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Table 3.3: Probability intervals of not rejecting the null hypothesis GMM1
A, by time

length.

The numbers denote the frequency in which each p-value falls into each probability interval. The
probability intervals are given in the first column for the four alternative time periods (T=240, 360,
480, and 948) and the three panels which correspond to the CAPM, the three-factor Fama-French
model, and the three-factor model with the excess market return, the momentum factor and the
value factor (RUH). High frequencies in the first interval (0-25) and low frequencies in the last
interval (76-100) means that the model has a bad performance in terms of pricing errors obtained
under the GMM1

A method.

1 - p-value T = 240 T =360 T = 480 T = 948
Panel A: CAPM

0-25 0.44 0.56 0.56 0.56
26-50 0.33 0.22 0.11 0.22
51-75 0.11 0.22 0.33 0.00
76-100 0.11 0.00 0.00 0.22

Panel B: Fama-French
0-25 0.44 0.33 0.33 0.44
26-50 0.22 0.11 0.11 0.11
51-75 0.00 0.11 0.22 0.33
76-100 0.33 0.44 0.33 0.11

Panel C: RUH
0-25 0.22 0.22 0.11 0.44
26-50 0.00 0.00 0.11 0.11
51-75 0.22 0.22 0.33 0.11
76-100 0.56 0.56 0.44 0.33
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models reported before is independent of the time length. In this regard, it should be

pointed out that some studies suggest that the choice of the sample period and size

segment are important for judging the empirical validity of the CAPM.

For example, Loughran [77] shows that a substantial portion of the BE/ME effect

is driven by the low returns of small newly-listed growth stocks. Further, Ang and

Chen [3] estimate conditional factor models and show that the BE/ME effect disap-

pears in the pre-1963 period. However, these studies do not consider the combined

effect of the benchmark set and the sample period as we do. Also, these studies focus

on the CAPM and do not directly address the issue of the added value of multiple

factors. Contrary to these studies, our evidence suggest that the choice of the sample

period is not relevant for evaluating the empirical validity of the CAPM and multifac-

tor models, at least in tests of overidentifying restrictions. Even though, we find that

the pricing errors diminish for larger time horizons. Our results are also consistent

with those on Shanken and Zhou [94].

In general, Tables 3.2 and 3.3 show that RUH model outperforms Fama-French and

CAPM models. Again, we can see that adding momentum and value to the CAPM

does help explaining the cross-sectional variation of asset returns, and it does for

every T value at different magnitudes. On the other hand, there is no clear pattern

between the length of the sample period and the rejection of the null hypothesis.

While for Fama-French, and especially for RUH, the possibility of rejecting the model

is lower when T is different from 948, the opposite seems to hold true for the CAPM.

To conclude, multiple factors improve the empirical fit relative to the single-factor

CAPM for all test portfolios and sample periods.
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3.4.3 A full comparison: estimators’ properties

We now turn from tests and pricing errors to evaluate the estimators’ properties.

Remember we are dealing with historical data. We understand that an estimator has

desirable properties if it has the following three conditions (i) it has low standard

error, (ii) it is statistically different from zero, and (iii) it has low bias (measured

as the percentage error) relative to the observable factor. In this subsection, tables

summarize the results on sections 3.6.1 to 3.6.7.

We are now concerned with the following two questions: First, which method

leads to better estimators’ properties within methods (OLS versus GLS, and first

versus second-stage GMMA)? And second, which method leads to better estimators’

properties intra methods (OLS versus first-stage GMM1
A, and GLS versus second-stage

GMM2
A)? We will answer these questions by aggregating by models, test portfolios

and sample periods. Then, we are actually comparing 2184 estimators with their

corresponding standard errors, t-statistics and percentage bias. Our results suggest

that, in general, the Beta method leads to better properties than SDF.

Due to the large number of λ and b estimates, it is useful to classify their properties

into three categories, in a similar way as we did before. For this purpose, we define the

category A in the following Tables for those estimators who are less than 50 percent

biased from the observable risk factor and are statistically different from zero. The

category B corresponds to those estimators with biases between 51 percent and 100

percent whether or not they are statistically different from zero. Finally, the category

C is for estimates with 101 percent to 1000 percent biases whether or not they are

statistically different from zero. Few observations with a bias even higher than 1000

percent are dropped out from the analysis; it is worthwhile to mention that 95 percent
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of these dropped values correspond to SDF estimators.

Naturally, the category A represents the best properties. By restricting to be

statistically different to zero we guarantee that the standard error is relatively small,

and the bias condition assures that the estimate is reasonable as Lewellen, Nagel

and Shanken [72] emphasize. In the category B, we are not interested on the size of

the standard error; the only condition is the bias interval. Thus, the unreasonable

estimates will fall into this category. The category C represents obviously the worst

properties because their bias is extremely high; these estimators become not only

unreasonable but also unreliable.

The full results of Tables 3.4, 3.5 and 3.6 are on sections 3.6.1 to 3.6.7.

Table 3.4 shows that GLS leads to better properties than OLS, except for the

industry portfolios in which the category A goes from 48% in OLS to 41% in GLS.

The rest of portfolios increase the proportion of category A between 4 to 10 percentage

points. Thus, in general, GLS is actually doing its job at providing better properties

by giving up some pricing errors. Furthermore, the category C is actually smaller

for the GLS, strengthening the fact that GLS has better properties than OLS. This

is true for all portfolios except again for the industry classification in which the red

area goes from 27% in OLS to 32% in GLS. The rest show a decrease from 0 to 26

percentage points.

On the other hand, the results on Table 3.4 regarding the second-stage GMM2
A

relative to the first-stage GMM1
A estimators are less clear in achieving better prop-

erties. Thus, the second-stage estimators obtain better properties, except for the

double-sorted portfolios in which the category A decreases from 27% (Fama-French)

and 40% (size-momentum) in first-stage to 18% and 17% respectively in second-stage.
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Table 3.4: Properties of Estimators

The numbers denote the frequency in which each estimator falls into each category. We consider
all three models simultaneously, the CAPM, the Fama-French-three factor model, and the three-
factor model with excess market return, the momentum factor and the value factor (RUH). Category
A is for those estimators which are less than 50 percent biased from the realized factor, and are
statistically different from zero; Category B corresponds to estimators with biases between 51 and
100 percent, and Category C for estimates with 101 to 1000 percent biases. We employ six time-
periods, T=60, 120, 240, 360, 480, and 948. Size includes 5 and 10 size-sorted portfolios; Value has
5 and 10 BE/ME-sorted assets; Size and Value are the 6, 25 and 100 Fama-French portfolios; Size
and Momentum includes 6 and 25 portfolios formed on ME and MOM; Industry incorporates 5, 17
and 30 industry-sorted assets, and Size, Value and Industry has the 25 Fama-French extended with
17 industry portfolios.

25 ME&BE/ME
1 - p-value ME BE/ME ME&BE/ME ME&MOM Industry + 17 Industry

Panel A: Beta method OLS
C 0.30 0.16 0.14 0.30 0.27 0.12
B 0.28 0.35 0.13 0.20 0.25 0.21
A 0.42 0.49 0.72 0.51 0.48 0.67

Panel B: Beta method GLS
C 0.18 0.13 0.09 0.04 0.32 0.12
B 0.35 0.35 0.09 0.27 0.27 0.12
A 0.47 0.53 0.82 0.69 0.41 0.76

Panel C: SDF/GMM method GMM1
A

C 0.41 0.24 0.50 0.32 0.32 0.50
B 0.39 0.44 0.23 0.28 0.40 0.21
A 0.20 0.33 0.27 0.40 0.28 0.29

Panel D: SDF/GMM method GMM2
A

C 0.40 0.23 0.71 0.59 0.31 0.80
B 0.35 0.43 0.11 0.23 0.40 0.12
A 0.26 0.35 0.18 0.17 0.29 0.08
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The combined portfolios also show worst properties in second-stage estimators. The

rest have a modest improvement between 1 and 6 percentage points. The category C

in second-stage is lower than in first-stage, except again for the double sorted portfo-

lios which goes from 50% (Fama-French) and 32% (size-momentum) to 71% and 59%

in second-stage. The rest of them have a tiny improvement of 1 percentage point

each.

To summarize, GLS and second-stage GMM2
A estimators tend to present better

properties than OLS and first-stage GMM1
A. But clearly the difference is most no-

tably when comparing the Beta rather than the SDF method. In this comparison, it

is interesting to point out the role of the double-sorted portfolios. Note that the Beta

method can achieve better estimators’ properties even in portfolios with high dis-

persion, while the SDF method cannot. This is consistent with the idea that GMM

has difficulties in small samples. In our case this difficulty is associated with the

higher dispersion in the portfolios’ expected returns. In other words, GMM seems

to have difficulties in pricing assets when changing from single-sorted to double and

combined-sorted portfolios.

Regarding the second question, which method leads to better estimators’ prop-

erties intra methods (OLS versus first-stage GMM1
A, and GLS versus second-stage

GMM2
A)? The Beta method dominates SDF in terms of estimators’ properties. The

category A consistently becomes larger from first-stage GMM1
A to OLS and from

second-stage GMM2
A to GLS. In particular, the increases go from 11 (size-momentum

portfolios) to 45 (Fama-French portfolios) percentage points. On the other hand,

there is also a substantial decrease of the category C between 10 (value portfolios) to

62 (Fama-French portfolios) percentage points; in this case the only exception is the
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industry portfolios which slightly increases the red area from 31% (second-stage) to

32% (GLS).

Jagannathan and Wang [58] show that asymptotically no method dominates in

terms of estimators’ properties, but their findings was supported on the analysis of

the single factor model under artificial data. So far however, we report evidence

showing that the Beta method dominates the SDF framework. Now, we would like

to split the data on Table 3.4 in order to analyze differences among the single and

multifactor models. Once we do that, we could further compare our results with those

on Jagannathan and Wang [58].

Our next task in Table 3.5 is therefore to compare the estimators’ properties

across models. Given that the Beta method dominates SDF, then, the next question

is whether this evidence is consistent for each model and for all methods. For this

purpose, we use an even broader set of estimators than before: we now calculate three

kinds of estimators in a Beta formulation: OLS, GLS and WLS; and five estimators

in a SDF formulation: returns on second moments GMMA; returns on covariances

GMMB; and the continuous updating GMMC. These estimations were obtained by

taking our full sample on T and N . We finally end up with about 1636 lambda and

2730 b estimators.

The evidence is summarized in Table 3.5. Each panel represents the alternative

factor models, while columns are λ and b estimates’ properties. In each column we

report the frequency of each category by factor (market, size, value and momentum).

We drop some estimators with more than 1,000 percent bias from the factor mean. As

before, it is worthwhile to point out that 95 percent of the 151 total dropped values

correspond to the SDF. This already suggests which method is more likely to deliver
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Table 3.5: Properties of Estimators. Beta Method: OLS, WLS, and GLS; SDF/GMM
Method: First- and Second-Stage GMMA, First- and Second-Stage GMMB, and
GMMC. Full-Time Period Data.

The numbers denote the frequency in which each estimator falls into each category. We consider all
three models, the CAPM, the FF-three factor model, and the three-factor model with excess market
return, the momentum factor and the value factor (RUH). Category A is for those estimators which
are less than 50 percent biased from the realized factor, and are statistically different from zero;
Category B corresponds to estimators with biases between 51 and 100 percent, and Category C
for estimates with 101 to 1000 percent biases. We employ six time-periods, T = 60, 120, 240,
360, 480, and 948, and all N portfolios: Size includes 5 and 10 size-sorted portfolios; Value has 5
and 10 BE/ME-sorted assets; Size and Value are the 6, 25 and 100 Fama-French portfolios; Size
and Momentum includes 6 and 25 portfolios formed on ME and MOM; Industry incorporates 5,
17 and 30 industry-sorted assets, and Size, Value and Industry has the 25 Fama-French extended
with 17 industry portfolios. The estimators are obtained using OLS, WLS, and GLS for the Beta
method, and First- and Second-Stage GMMA, First- and Second-Stage GMMB, and GMMC for the
SDF/GMM method.

Risk Premia (first column: λ; second column: b coefficient)
Category Market Size Value Momentum

Panel A: CAPM
C 0.08 ; 0.17 - - -
B 0.09 ; 0.10 - - -
A 0.83 ; 0.73 - - -

Panel B: Fama-French
C 0.01 ; 0.28 0.33 ; 0.50 0.24 ; 0.44 -
B 0.20 ; 0.48 0.36 ; 0.30 0.35 ; 0.37 -
A 0.79 ; 0.24 0.31 ; 0.20 0.41 ; 0.19 -

Panel C: RUH
C 0.04 ; 0.54 - 0.47 ; 0.62 0.28 ; 0.50
B 0.15 ; 0.33 - 0.28 ; 0.25 0.30 ; 0.37
A 0.81 ; 0.12 - 0.25 ; 0.13 0.42 ; 0.12

150



3.4 – Empirical results

an estimator with worst properties.

Let us focus on the first panel (CAPM) of Table 3.5. As in Jagannathan and

Wang [58] and Cochrane [25], we find that the λ and b associated with the market

factor have almost identical properties in both methods, even in a more complex

setup than the simple CAPM with 10 size-sorted portfolios. In particular, we find

that the probability of having good properties is 83% and 73% for the Beta and SDF

respectively. This result is remarkable because it is actually what Jagannathan and

Wang [58] show in their empirical results with simulated data, and we find exactly

the same results using historical data.

Now, let us analyze the λ and b associated with the market factor in the rest of the

models. We argue that we are actually assessing a gap in the previous literature by

extending the current well known result in the first panel of Table 3.5 to the second

and third panels under multifactor models. The evidence is represented by the first

two pairs of columns for the Fama-French and RUH specifications. The results are

stunning; the λ from the Beta method has much better properties than the b from

SDF method. In particular, the category A is 79% versus 24% for the Fama-French

model and 81% versus 12% for the RUH. It seems clear then that we can not say that

Beta and SDF methods lead to the same estimators’ properties.

In any case, why does the λ and b estimates associated with the market factor

have so similar properties in the CAPM and so different in multifactor models? One

plausible answer is that b gives a multiple regression coefficient of m on the factor

given the other factors; while λ gives the single regression coefficient. In the CAPM

model of course, there is no difference between single or multiple regression coefficient

since there is only one factor. So, λ and b behave in a very similar way as long as both
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report single regression coefficients, but things change when adding more factors.

The size factor from Fama-French model and the momentum factor from RUH

model in Tables 3.5 and 3.6 are priced and help pricing assets given the other factors

in a similar magnitude. That is, even though we find that Beta method lead to better

estimators’ properties than SDF, the difference is not as large as when comparing the

market factor in the Fama-French and RUH models.

The results regarding the λ and b associated with the value factor in Tables 3.5 and

3.6 are practically the same among multifactor models. On the other, once again, the

Beta method does achieve better properties than the SDF procedure. In the Fama-

French model, the category A is almost twice for λ (43% versus 23%), and the RUH

specification shows a similar pattern (35% versus 16%).

As Amsler and Schmidt [2] and Shanken and Zhou [94], we find that when T

is small (say 60 or 120), these estimators can be very volatile across different test

portfolios. Thus, in Table 3.6 we exclude time lengths equal to 60, 120 and 240.

When taking away the three smaller sample periods, we are actually dropping off

the estimators with higher bias and standard errors, and then our conclusions about

Figure 3.5 strengthen.

It is notably how well the methods can achieve desirable estimators’ properties,

especially when estimating the CAPM, independently of the test portfolio. Moreover,

the differences between Beta and SDF are still very low: 10 percentage points in Table

3.5 and 9 percentage points in Table 3.6.

The properties regarding the multifactor models get better when dropping out the

smallest time-periods. The category A is now consistently larger and the category

C smaller than in Table 3.5. Note that Fama-French model outperforms the others
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Table 3.6: Properties of Estimators. Beta Method: OLS, WLS, and GLS; SDF/GMM
Method: First- and Second-Stage GMMA, First- and Second-Stage GMMB, and
GMMC. Reduced-Time Period Data.

The numbers denote the frequency in which each estimator falls into each category. We consider all
three models, the CAPM, the FF-three factor model, and the three-factor model with excess market
return, the momentum factor and the value factor (RUH). Category A is for those estimators which
are less than 50 percent biased from the realized factor, and are statistically different from zero;
Category B corresponds to estimators with biases between 51 and 100 percent, and Category C for
estimates with 101 to 1000 percent biases. We employ three time-periods, T=360, 480, and 948, and
all N portfolios: Size includes 5 and 10 size-sorted portfolios; Value has 5 and 10 BE/ME-sorted
assets; Size and Value are the 6, 25 and 100 Fama-French portfolios; Size and Momentum includes
6 and 25 portfolios formed on ME and MOM; Industry incorporates 5, 17 and 30 industry-sorted
assets, and Size, Value and Industry has the 25 Fama-French extended with 17 industry portfolios.
The estimators are obtained using OLS, WLS, and GLS for the Beta method, and First- and Second-
Stage GMMA, First- and Second-Stage GMMB, and GMMC for the SDF/GMM method.

Risk Premia (first column: λ; second column: b coefficient)
Category Market Size Value Momentum

Panel A: CAPM
C 0.00 ; 0.05 - - -
B 0.00 ; 0.04 - - -
A 1.00 ; 0.91 - - -

Panel B: Fama-French
C 0.00 ; 0.12 0.31 ; 0.42 0.29 ; 0.35 -
B 0.02 ; 0.51 0.31 ; 0.34 0.28 ; 0.42 -
A 0.98 ; 0.37 0.38 ; 0.24 0.43 ; 0.23 -

Panel C: RUH
C 0.00 ; 0.35 - 0.34 ; 0.53 0.27 ; 0.41
B 0.01 ; 0.46 - 0.31 ; 0.31 0.21 ; 0.42
A 0.99 ; 0.19 - 0.35 ; 0.16 0.52 ; 0.17
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in terms of estimators’ properties, while the RUH model does better than the others

in achieving lower pricing errors. Also, λ and b for the size factor are the estimators

with worst properties in the Fama-French model, while λ and b of the momentum

factor are the estimators with worst properties in the RUH model.

Finally, our evidence shows that the generality of SDF method comes at a cost

of slightly misleading standard errors, especially in the second-stage (see Table 3.4

again) and the continuous updating estimators. In particular, standard errors are

always larger for the SDF method. Also, using a long sample period always helps

improving the estimators’ properties (see Tables 3.5 and 3.6), lower the pricing errors,

but not necessarily improve the tests results (see Table 3.3).

3.5 Conclusions

Our objective is to contribute to the current knowledge about the differences between

Beta and SDF methods when estimating factor pricing models. It is well known that

no differences arise in simple setups as we show in section 3.4.1, but there is a gap of

empirical evidence regarding the conditions and consequences of using more complex

setups. It is also well known that GMM has difficulties in finite samples, when dealing

with extreme nonlinearities; nonetheless we find that their difficulties can arise even

in linear models.

We find that Hansen and Jagannathan [49] first-stage GMM1
A achieve lower pricing

errors than OLS Beta method for all test portfolios and time-lengths. On the other

hand, their specifications tests show evidence in favor of multifactor models such

as RUH because the likeliness of not rejecting the null is greater than in Fama-

French and CAPM models. We also find that double-sorted portfolios are hardest to
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price compared with single-sorted portfolios, and this difference is correlated with the

higher dispersion on the test portfolios’ average returns.

Theory indicates that GLS should lead to better estimators’ properties than OLS,

and this should also apply to second and first-stage GMM estimators. Our results

suggest that the Beta method actually do better than the SDF method. Moreover,

when pricing double-sorted portfolios, the properties on second-stage are actually

worse than in first-stage.

We are capable to reproduce Jagannathan and Wang [58] results for the CAPM

even in a finite-sample framework, which reinforce the strength of the fact that there

is no difference between Beta and SDF methods when comparing λ and b properties

under the simple CAPM. Our main and original contribution relies on extending the

comparison for the Fama-French and the RUH specifications. Our results imply that

differences between the performance of the methods arises in more complex setups

such as the ones suggested by Lewellen, Nagel and Shanken [72]. In particular λ from

the Beta method has better properties in multifactor models such as Fama-French

and RUH than b from the SDF method across tests portfolios and sample periods.

We are also capable to reproduce most of the results on Shanken and Zhou [94],

which analyze models under the Beta representation. Our contribution here is to

extend the analysis to SDF methods as well. In particular, we demonstrate that

first-stage GMM estimators are in general superior than Beta estimators in order

to achieve lower pricing errors. One practical implication for this finding is that a

good asset pricing model for evaluating performance of managed funds should have

small pricing errors. Therefore, fund managers are more likely to accurately evaluate

mutual funds and hedge funds, by implementing SDF rather than Beta methods.7

7See Wang and Zhang [102] for a brief discussion, and for the implications of using SDF asset
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Our results confirm that multi-factor models perform best in our model compar-

ison tests than the single-factor model. This result has been documented in similar

and very recent works such as in Kan and Robotti and Shanken [65]; in particular,

they find that the CAPM and the unconditional consumption CAPM are frequently

dominated by other models like the intertemporal CAPM of Petkova [87], the condi-

tional CAPM of Jagannathan and Wang [56], and the Fama and French [30] models.

Further work may address the implications for using simulated data (e.g. from

multivariate normal and t distributions). This benefits the analysis in terms of pro-

viding size and power tests, and also may go deeper into the analysis of estimators’

properties.

¥

pricing models over contingent claims. Also, see Ferson and Siegel [39] for an interesting hedge fund
example.
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3.6 Appendix of Tables

3.6.1 Market risk premium in CAPM model

The following five panels report the estimate values, the bias from the risk pre-

mium in percent values, the standard error in parenthesis, and t-statistics. Each

panel corresponds to a one set of test portfolios. T is 60 (January 2001 - Decem-

ber 2005), 120, 240, 360, 480 and 948 (January 1927 - December 2005) monthly

observations. The two-pass (Fama-MacBeth) cross-sectional estimate is the slope

coefficient λ in E (Re) = βλ calculated by OLS, GLS and WLS. Next, we turn

from beta representation to a discount factor formulation for GMM approach. The

GMMA and GMMB first and second-stage estimates are the parameters 100 × b in

E (Re) = E (Ref ′) b (returns on second moments, following Hansen and Jagannathan

[49]) and E (Re) = E
(
Ref̃ ′

)
b (returns on covariances, following Cochrane [25])

respectively. The GMMC is the continuous updating estimate (following Hansen,

Heaton and Yaron [47]).
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Panel A. N Portfolios formed on ME

T = 60 T = 120 T = 240 T = 360 T = 480 T = 948

λ = Ef 0.13 0.56 0.64 0.62 0.44 0.64

b = λ
E(Rem2)

0.66 2.52 3.15 3.11 2.11 2.11

N = 5

Beta: λ̂OLS 0.68
415%(0.61)

0.75∗∗
34%(0.47)

0.70∗∗∗
8%(0.31)

0.77∗∗∗
24%(0.25)

0.56∗∗∗
29%(0.22)

0.73∗∗∗
14%(0.19)

Beta: λ̂GLS 0.11
−19%(0.57)

0.62∗
11%(0.43)

0.69∗∗∗
8%(0.29)

0.67∗∗∗
8%(0.23)

0.47∗∗∗
9%(0.21)

0.67∗∗∗
4%(0.18)

Beta: λ̂WLS 0.14
5%(0.58)

0.63∗
13%(0.43)

0.70∗∗∗
9%(0.29)

0.69∗∗∗
11%(0.24)

0.49∗∗∗
13%(0.21)

0.67∗∗∗
5%(0.18)

GMMA: b̂1 3.46
422%(3.26)

3.40∗
35%(2.31)

3.43∗∗
9%(1.77)

3.84∗∗∗
23%(1.41)

2.71∗∗∗
29%(1.13)

2.40∗∗∗
14%(0.59)

GMMA: b̂2 1.18
78%(3.12)

3.25∗∗
29%(2.11)

3.71∗∗∗
17%(1.62)

3.29∗∗∗
6%(1.30)

2.31∗∗∗
10%(1.05)

2.30∗∗∗
9%(0.59)

GMMB: b̂1 3.47
424%(3.35)

3.46∗
37%(2.44)

3.50∗∗
11%(1.89)

3.93∗∗∗
26%(1.51)

2.74∗∗∗
30%(1.17)

2.44∗∗∗
15%(0.62)

GMMB: b̂2 0.74
11%(3.15)

2.95∗
17%(2.23)

3.64∗∗
15%(1.73)

3.30∗∗∗
6%(1.38)

2.31∗∗
9%(1.09)

2.33∗∗∗
10%(0.61)

GMMC: b̂ 2.03
206%(3.29)

2.92∗
16%(2.39)

3.70∗∗
17%(1.91)

3.33∗∗∗
7%(1.47)

2.32∗∗
10%(1.15)

2.33∗∗∗
10%(0.62)

N = 10

Beta: λ̂OLS 0.74∗
456%(0.62)

0.78∗∗
40%(0.47)

0.71∗∗∗
11%(0.31)

0.78∗∗∗
26%(0.25)

0.57∗∗∗
31%(0.22)

0.74∗∗∗
15%(0.19)

Beta: λ̂GLS 0.12
−7%(0.57)

0.62∗∗
12%(0.43)

0.70∗∗∗
9%(0.29)

0.68∗∗∗
9%(0.23)

0.48∗∗∗
10%(0.21)

0.67∗∗∗
4%(0.18)

Beta: λ̂WLS 0.39
195%(0.58)

0.71∗∗
27%(0.43)

0.73∗∗∗
14%(0.29)

0.73∗∗∗
18%(0.23)

0.53∗∗∗
21%(0.21)

0.69∗∗∗
8%(0.18)

GMMA: b̂1 3.74∗
464%(3.30)

3.53∗∗
40%(2.34)

3.50∗∗∗
11%(1.79)

3.91∗∗∗
26%(1.42)

2.76∗∗∗
31%(1.13)

2.43∗∗∗
15%(0.59)

GMMA: b̂2 1.53
131%(3.13)

3.80∗∗
51%(2.09)

3.83∗∗∗
21%(1.61)

3.43∗∗∗
10%(1.29)

2.38∗∗∗
13%(1.05)

2.39∗∗∗
13%(0.58)

GMMB: b̂1 3.75∗
466%(3.40)

3.60∗∗
43%(2.48)

3.58∗∗∗
14%(1.91)

4.01∗∗∗
29%(1.53)

2.79∗∗∗
32%(1.18)

2.46∗∗∗
17%(0.62)

GMMB: b̂2 0.27
−60%(3.14)

3.05∗
21%(2.22)

3.46∗∗∗
10%(1.72)

3.28∗∗∗
5%(1.38)

2.33∗∗∗
10%(1.09)

2.41∗∗∗
14%(0.61)

GMMC: b̂ −1.19
−280%(3.04)

3.93∗∗
56%(2.54)

4.10∗∗∗
30%(1.98)

3.49∗∗∗
12%(1.49)

2.37∗∗∗
12%(1.16)

2.42∗∗∗
15%(0.62)
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Panel B. N Portfolios formed on BE/ME

T = 60 T = 120 T = 240 T = 360 T = 480 T = 948

λ = Ef 0.13 0.56 0.64 0.62 0.44 0.64

b = λ
E(Rem2)

0.66 2.52 3.15 3.11 2.11 2.11

N = 5

Beta: λ̂OLS 0.39
194%(0.60)

0.82∗∗
48%(0.45)

0.83∗∗∗
29%(0.30)

0.80∗∗∗
29%(0.24)

0.60∗∗∗
37%(0.21)

0.73∗∗∗
13%(0.18)

Beta: λ̂GLS 0.06
−58%(0.58)

0.58∗
5%(0.43)

0.70∗∗∗
9%(0.29)

0.67∗∗∗
7%(0.24)

0.49∗∗∗
11%(0.21)

0.66∗∗∗
3%(0.18)

Beta: λ̂WLS 0.18
35%(0.58)

0.66∗
19%(0.43)

0.76∗∗∗
18%(0.29)

0.72∗∗∗
16%(0.24)

0.53∗∗∗
21%(0.21)

0.68∗∗∗
5%(0.18)

GMMA: b̂1 1.98
199%(3.11)

3.74∗∗
48%(2.23)

4.05∗∗∗
28%(1.74)

4.01∗∗∗
29%(1.34)

2.89∗∗∗
37%(1.08)

2.38∗∗∗
13%(0.59)

GMMA: b̂2 0.54
−19%(3.03)

2.72∗
8%(2.13)

3.64∗∗∗
15%(1.67)

3.34∗∗∗
7%(1.30)

2.59∗∗∗
23%(1.06)

2.35∗∗∗
11%(0.58)

GMMB: b̂1 1.98
199%(3.15)

3.81∗∗
51%(2.38)

4.16∗∗∗
32%(1.88)

4.10∗∗∗
32%(1.45)

2.92∗∗∗
38%(1.12)

2.42∗∗∗
15%(0.61)

GMMB: b̂2 0.43
−35%(3.04)

2.60
3%(2.25)

3.58∗∗
13%(1.79)

3.17∗∗∗
2%(1.39)

2.48∗∗∗
18%(1.10)

2.37∗∗∗
12%(0.60)

GMMC: b̂ 2.55
285%(3.25)

3.07∗
22%(2.32)

3.91∗∗
24%(1.86)

3.61∗∗∗
16%(1.42)

2.53∗∗∗
20%(1.11)

2.39∗∗∗
13%(0.61)

N = 10

Beta: λ̂OLS 0.42
219%(0.60)

0.84∗∗∗
51%(0.45)

0.83∗∗∗
30%(0.30)

0.82∗∗∗
31%(0.24)

0.61∗∗∗
39%(0.21)

0.72∗∗∗
13%(0.18)

Beta: λ̂GLS 0.06
−52%(0.57)

0.59∗∗
6%(0.43)

0.70∗∗∗
10%(0.29)

0.66∗∗∗
7%(0.24)

0.49∗∗∗
11%(0.21)

0.67∗∗∗
4%(0.18)

Beta: λ̂WLS 0.31
132%(0.58)

0.76∗∗
36%(0.43)

0.79∗∗∗
23%(0.29)

0.76∗∗∗
22%(0.24)

0.56∗∗∗
27%(0.21)

0.69∗∗∗
8%(0.18)

GMMA: b̂1 2.15
224%(3.15)

3.82∗∗
51%(2.25)

4.10∗∗∗
30%(1.76)

4.07∗∗∗
31%(1.35)

2.93∗∗∗
39%(1.08)

2.38∗∗∗
12%(0.58)

GMMA: b̂2 0.68
2%(3.03)

2.80∗
11%(2.13)

3.79∗∗∗
20%(1.65)

3.46∗∗∗
11%(1.29)

2.58∗∗∗
22%(1.06)

2.22∗∗∗
5%(0.57)

GMMB: b̂1 2.15
224%(3.19)

3.89∗∗
54%(2.40)

4.20∗∗∗
33%(1.90)

4.17∗∗∗
34%(1.46)

2.96∗∗∗
40%(1.13)

2.41∗∗∗
14%(0.61)

GMMB: b̂2 0.52
−21%(3.04)

2.58∗
2%(2.25)

3.69∗∗∗
17%(1.78)

3.27∗∗∗
5%(1.38)

2.47∗∗∗
17%(1.10)

2.19∗∗∗
4%(0.59)

GMMC: b̂ 3.11
370%(3.34)

2.88∗
14%(2.32)

3.96∗∗∗
26%(1.88)

3.68∗∗∗
18%(1.43)

2.52∗∗∗
19%(1.11)

2.26∗∗∗
7%(0.61)
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Panel C. N Portfolios formed by the intersections of ME and

BE/ME

T = 60 T = 120 T = 240 T = 360 T = 480 T = 948

λ = Ef 0.13 0.56 0.64 0.62 0.44 0.64

b = λ

E
(

Rem2
) 0.66 2.52 3.15 3.11 2.11 2.11

N = 6

Beta: λ̂OLS 0.55
315%(0.61)

0.74∗∗
33%(0.46)

0.72∗∗∗
12%(0.30)

0.79∗∗∗
27%(0.24)

0.60∗∗∗
37%(0.22)

0.75∗∗∗
17%(0.19)

Beta: λ̂GLS 0.05
−59%(0.57)

0.56∗
1%(0.43)

0.63∗∗∗
−2%(0.29)

0.61∗∗∗
−2%(0.23)

0.45∗∗∗
2%(0.21)

0.65∗∗∗
1%(0.18)

Beta: λ̂WLS 0.15
15%(0.58)

0.65∗∗
17%(0.43)

0.73∗∗∗
14%(0.29)

0.72∗∗∗
16%(0.24)

0.53∗∗∗
22%(0.21)

0.69∗∗∗
7%(0.18)

GMMA: b̂1 2.80
322%(3.21)

3.39∗∗
35%(2.26)

3.57∗∗∗
13%(1.77)

3.97∗∗∗
28%(1.40)

2.89∗∗∗
37%(1.12)

2.46∗∗∗
17%(0.59)

GMMA: b̂2 0.77
16%(3.07)

3.42∗∗
35%(2.11)

2.98∗∗
−6%(1.64)

2.92∗∗∗
−6%(1.31)

2.34∗∗∗
11%(1.06)

2.21∗∗∗
4%(0.58)

GMMB: b̂1 2.80
322%(3.27)

3.44∗
36%(2.39)

3.63∗∗
15%(1.88)

4.06∗∗∗
30%(1.50)

2.92∗∗∗
39%(1.16)

2.50∗∗∗
18%(0.62)

GMMB: b̂2 0.41
−38%(3.09)

2.24
−11%(2.22)

2.07∗
−34%(1.73)

2.12∗∗
−32%(1.39)

1.90∗∗
−10%(1.10)

2.09∗∗∗
−1%(0.60)

GMMC: b̂ 4.82∗
627%(3.63)

6.32∗∗∗
151%(2.84)

5.13∗∗∗
63%(2.13)

4.37∗∗∗
40%(1.57)

2.75∗∗∗
30%(1.16)

2.26∗∗∗
7%(0.61)

N = 25

Beta: λ̂OLS 0.71∗
436%(0.62)

0.81∗∗
45%(0.47)

0.75∗∗∗
17%(0.31)

0.83∗∗∗
34%(0.25)

0.62∗∗∗
42%(0.22)

0.74∗∗∗
14%(0.19)

Beta: λ̂GLS 0.11
−15%(0.57)

0.67∗∗
21%(0.43)

0.69∗∗∗
8%(0.29)

0.65∗∗∗
4%(0.23)

0.46∗∗∗
6%(0.21)

0.67∗∗∗
4%(0.18)

Beta: λ̂WLS 0.54
307%(0.58)

0.85∗∗∗
53%(0.43)

0.81∗∗∗
27%(0.29)

0.84∗∗∗
35%(0.23)

0.62∗∗∗
41%(0.21)

0.73∗∗∗
14%(0.18)

GMMA: b̂1 3.61∗
445%(3.32)

3.70∗∗
47%(2.35)

3.71∗∗∗
17%(1.82)

4.17∗∗∗
34%(1.44)

3.00∗∗∗
42%(1.14)

2.42∗∗∗
14%(0.60)

GMMA: b̂2 4.72∗∗
613%(2.99)

7.13∗∗∗
183%(2.02)

6.76∗∗∗
114%(1.56)

4.93∗∗∗
58%(1.25)

3.48∗∗∗
65%(1.04)

2.37∗∗∗
12%(0.55)

GMMB: b̂1 3.62
446%(3.42)

3.75∗∗
49%(2.50)

3.78∗∗∗
20%(1.94)

4.26∗∗∗
37%(1.56)

3.03∗∗∗
44%(1.19)

2.45∗∗∗
16%(0.62)

GMMB: b̂2 1.27
91%(3.06)

3.18∗∗
26%(2.20)

3.03∗∗∗
−4%(1.70)

2.75∗∗∗
−12%(1.35)

2.36∗∗∗
12%(1.09)

2.08∗∗∗
−2%(0.57)

GMMC: b̂ × × × 7.72∗∗∗
148%(2.00)

3.40∗∗∗
61%(1.23)

2.38∗∗∗
13%(0.63)

N = 100

Beta: λ̂OLS 0.83∗∗∗
49%(0.47)

0.76∗∗∗
19%(0.31)

0.85∗∗∗
37%(0.25)

0.63∗∗∗
45%(0.22)

0.80∗∗∗
24%(0.19)

Beta: λ̂GLS 0.65∗∗
16%(0.42)

0.68∗∗∗
7%(0.29)

0.65∗∗∗
5%(0.23)

0.47∗∗∗
7%(0.21)

0.69∗∗∗
7%(0.18)

Beta: λ̂WLS 0.91∗∗∗
63%(0.43)

0.82∗∗∗
28%(0.29)

0.87∗∗∗
40%(0.23)

0.63∗∗∗
45%(0.21)

0.76∗∗∗
18%(0.18)

GMMA: b̂1 3.80∗∗
51%(2.36)

3.77∗∗∗
20%(1.83)

4.26∗∗∗
37%(1.45)

3.06∗∗∗
45%(1.15)

2.62∗∗∗
24%(0.60)

GMMA: b̂2 × 12.75∗∗∗
304%(1.41)

8.69∗∗∗
179%(1.16)

5.16∗∗∗
144%(1.01)

2.92∗∗∗
38%(0.44)

GMMB: b̂1 3.85∗∗
53%(2.52)

3.84∗∗∗
22%(1.96)

4.35∗∗∗
40%(1.57)

3.09∗∗∗
46%(1.20)

2.66∗∗∗
26%(0.63)

GMMB: b̂2 2.75∗∗
9%(2.07)

3.45∗∗∗
9%(1.62)

3.35∗∗∗
8%(1.29)

2.43∗∗∗
15%(1.06)

2.51∗∗∗
19%(0.47)

GMMC: b̂ 4.36∗∗
73%(2.67)

−0.78
−125%(1.47)

× 15.97∗∗∗
657%(2.43)

2.52∗∗∗
19%(0.63)
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Panel D. N Portfolios formed on ME and MOM

T = 60 T = 120 T = 240 T = 360 T = 480 T = 948

λ = Ef 0.13 0.56 0.64 0.62 0.44 0.64

b = λ
E(Rem2)

0.66 2.52 3.15 3.11 2.11 2.11

N = 6

Beta: λ̂OLS 0.51
283%(0.60)

0.65∗
17%(0.46)

0.66∗∗∗
2%(0.30)

0.73∗∗∗
17%(0.24)

0.52∗∗∗
18%(0.22)

0.65∗∗∗
2%(0.19)

Beta: λ̂GLS 0.13
−4%(0.57)

0.57∗
3%(0.43)

0.66∗∗∗
2%(0.29)

0.64∗∗∗
3%(0.24)

0.46∗∗∗
6%(0.21)

0.70∗∗∗
9%(0.18)

Beta: λ̂WLS 0.29
117%(0.58)

0.74∗∗
33%(0.44)

0.75∗∗∗
17%(0.30)

0.75∗∗∗
21%(0.24)

0.53∗∗∗
22%(0.21)

0.69∗∗∗
8%(0.18)

GMMA: b̂1 2.58
289%(3.16)

2.99∗
19%(2.23)

3.26∗∗
3%(1.72)

3.67∗∗∗
18%(1.37)

2.51∗∗∗
19%(1.10)

2.16∗∗∗
2%(0.59)

GMMA: b̂2 1.63
145%(3.06)

3.38∗∗
34%(2.10)

4.54∗∗∗
44%(1.57)

4.30∗∗∗
38%(1.27)

2.84∗∗∗
35%(1.05)

1.96∗∗∗
−7%(0.58)

GMMB: b̂1 2.58
289%(3.21)

3.02∗
20%(2.34)

3.31∗∗
5%(1.82)

3.73∗∗∗
20%(1.46)

2.52∗∗∗
19%(1.14)

2.18∗∗∗
3%(0.61)

GMMB: b̂2 1.07
62%(3.09)

2.57∗
2%(2.21)

3.11∗∗
−2%(1.68)

2.85∗∗∗
−8%(1.36)

2.04∗∗
−3%(1.08)

1.65∗∗∗
−22%(0.60)

GMMC: b̂ 8.88∗∗∗
1241%(4.14)

3.29∗
30%(2.39)

3.80∗∗∗
20%(1.88)

6.06∗∗∗
95%(1.71)

3.08∗∗∗
46%(1.17)

1.54∗∗∗
−27%(0.60)

N = 25

Beta: λ̂OLS 0.60
353%(0.61)

0.68∗∗
23%(0.47)

0.67∗∗∗
5%(0.31)

0.76∗∗∗
23%(0.25)

0.54∗∗∗
24%(0.22)

0.69∗∗∗
7%(0.19)

Beta: λ̂GLS 0.18
39%(0.57)

0.51∗
−8%(0.43)

0.66∗∗∗
3%(0.29)

0.65∗∗∗
4%(0.24)

0.49∗∗∗
13%(0.21)

0.68∗∗∗
6%(0.18)

Beta: λ̂WLS 0.65∗
395%(0.58)

0.83∗∗∗
49%(0.43)

0.78∗∗∗
22%(0.29)

0.83∗∗∗
33%(0.23)

0.59∗∗∗
36%(0.21)

0.73∗∗∗
14%(0.18)

GMMA: b̂1 3.05
361%(3.20)

3.14∗∗
25%(2.28)

3.36∗∗∗
6%(1.76)

3.84∗∗∗
23%(1.40)

2.63∗∗∗
25%(1.12)

2.27∗∗∗
8%(0.59)

GMMA: b̂2 7.21∗∗∗
988%(2.91)

5.71∗∗∗
126%(2.05)

6.81∗∗∗
116%(1.52)

6.47∗∗∗
108%(1.23)

3.92∗∗∗
86%(1.04)

2.58∗∗∗
22%(0.56)

GMMB: b̂1 3.05
361%(3.27)

3.16∗
25%(2.40)

3.40∗∗∗
8%(1.86)

3.90∗∗∗
25%(1.50)

2.64∗∗∗
25%(1.16)

2.29∗∗∗
9%(0.62)

GMMB: b̂2 2.58
289%(3.03)

2.73∗
8%(2.19)

3.20∗∗∗
1%(1.65)

3.12∗∗∗
0%(1.34)

2.34∗∗∗
11%(1.08)

2.06∗∗∗
−2%(0.58)

GMMC: b̂ −4.48
−776%(3.06)

21.42∗∗∗
749%(5.69)

32.10∗∗∗
917%(6.98)

28.50∗∗∗
815%(4.75)

7.83∗∗∗
271%(1.54)

2.40∗∗∗
13%(0.62)
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Panel E. N Industry Portfolios

T = 60 T = 120 T = 240 T = 360 T = 480 T = 948

λ = Ef 0.13 0.56 0.64 0.62 0.44 0.64

b = λ
E(Rem2)

0.66 2.52 3.15 3.11 2.11 2.11

N = 5

Beta: λ̂OLS 0.02
−83%(0.58)

0.60∗
8%(0.43)

0.72∗∗∗
13%(0.29)

0.71∗∗∗
14%(0.24)

0.52∗∗∗
19%(0.21)

0.71∗∗∗
11%(0.18)

Beta: λ̂GLS 0.13
−5%(0.57)

0.61∗
10%(0.43)

0.70∗∗∗
9%(0.29)

0.69∗∗∗
11%(0.23)

0.50∗∗∗
14%(0.21)

0.69∗∗∗
8%(0.18)

Beta: λ̂WLS 0.18
32%(0.59)

0.67∗
19%(0.44)

0.75∗∗∗
17%(0.30)

0.73∗∗∗
18%(0.24)

0.52∗∗∗
20%(0.21)

0.69∗∗∗
8%(0.18)

GMMA: b̂1 0.12
−82%(2.94)

2.75∗
9%(2.08)

3.58∗∗∗
13%(1.65)

3.56∗∗∗
14%(1.30)

2.51∗∗∗
19%(1.06)

2.34∗∗∗
11%(0.60)

GMMA: b̂2 0.71
8%(2.93)

2.88∗
14%(2.07)

3.41∗∗
8%(1.64)

3.42∗∗∗
10%(1.29)

2.44∗∗∗
16%(1.05)

2.19∗∗∗
4%(0.59)

GMMB: b̂1 0.12
−83%(2.94)

2.78∗
10%(2.17)

3.65∗∗
16%(1.77)

3.64∗∗∗
17%(1.39)

2.54∗∗∗
20%(1.10)

2.37∗∗∗
12%(0.63)

GMMB: b̂2 0.59
−12%(2.93)

2.79∗
11%(2.17)

3.35∗∗
6%(1.75)

3.44∗∗∗
11%(1.38)

2.45∗∗∗
16%(1.09)

2.20∗∗∗
4%(0.62)

GMMC: b̂ 1.78
169%(3.04)

3.04∗
20%(2.20)

3.63∗∗
15%(1.77)

3.56∗∗∗
14%(1.39)

2.48∗∗∗
17%(1.09)

2.24∗∗∗
6%(0.62)

N = 17

Beta: λ̂OLS 0.39
195%(0.60)

0.63∗∗
14%(0.45)

0.68∗∗∗
6%(0.30)

0.65∗∗∗
5%(0.24)

0.49∗∗∗
12%(0.21)

0.68∗∗∗
6%(0.18)

Beta: λ̂GLS 0.16
23%(0.57)

0.58∗∗
5%(0.43)

0.70∗∗∗
9%(0.29)

0.70∗∗∗
13%(0.23)

0.51∗∗∗
18%(0.21)

0.72∗∗∗
11%(0.18)

Beta: λ̂WLS 0.30
124%(0.58)

0.55∗
−2%(0.43)

0.65∗∗∗
2%(0.29)

0.66∗∗∗
5%(0.24)

0.47∗∗∗
9%(0.21)

0.69∗∗∗
7%(0.18)

GMMA: b̂1 1.99
201%(3.13)

2.90∗
15%(2.19)

3.37∗∗∗
7%(1.73)

3.29∗∗∗
6%(1.35)

2.36∗∗∗
12%(1.08)

2.24∗∗∗
6%(0.59)

GMMA: b̂2 1.63
146%(3.00)

3.35∗∗
33%(2.06)

3.86∗∗∗
22%(1.59)

3.66∗∗∗
17%(1.27)

2.65∗∗∗
25%(1.04)

2.16∗∗∗
2%(0.58)

GMMB: b̂1 1.99
200%(3.17)

2.93∗
16%(2.29)

3.43∗∗∗
9%(1.84)

3.35∗∗∗
8%(1.43)

2.38∗∗∗
13%(1.12)

2.27∗∗∗
7%(0.62)

GMMB: b̂2 0.90
36%(3.03)

2.56∗
1%(2.16)

3.50∗∗∗
11%(1.70)

3.40∗∗∗
9%(1.35)

2.50∗∗∗
18%(1.08)

2.12∗∗∗
0%(0.60)

GMMC: b̂ −1.02
−254%(2.98)

1.95
−23%(2.20)

3.73∗∗∗
18%(1.88)

3.64∗∗∗
17%(1.45)

2.53∗∗∗
20%(1.12)

2.19∗∗∗
4%(0.62)

N = 30

Beta: λ̂OLS 0.42
219%(0.59)

0.72∗∗
29%(0.45)

0.73∗∗∗
13%(0.30)

0.70∗∗∗
13%(0.24)

0.53∗∗∗
20%(0.21)

0.71∗∗∗
10%(0.18)

Beta: λ̂GLS 0.09
−34%(0.57)

0.63∗∗
13%(0.43)

0.73∗∗∗
13%(0.29)

0.73∗∗∗
18%(0.24)

0.53∗∗∗
22%(0.21)

0.74∗∗∗
14%(0.18)

Beta: λ̂WLS 0.38
190%(0.58)

0.67∗∗
20%(0.43)

0.71∗∗∗
11%(0.29)

0.71∗∗∗
14%(0.24)

0.51∗∗∗
17%(0.21)

0.70∗∗∗
8%(0.18)

GMMA: b̂1 2.17
227%(3.12)

3.30∗∗
31%(2.19)

3.59∗∗∗
14%(1.75)

3.53∗∗∗
13%(1.36)

2.54∗∗∗
21%(1.09)

2.33∗∗∗
10%(0.60)

GMMA: b̂2 2.62
296%(3.00)

4.79∗∗∗
90%(2.03)

4.58∗∗∗
45%(1.57)

4.31∗∗∗
38%(1.26)

2.84∗∗∗
34%(1.04)

2.09∗∗∗
−1%(0.58)

GMMB: b̂1 2.15
225%(3.16)

3.32∗∗
32%(2.31)

3.66∗∗∗
16%(1.87)

3.60∗∗∗
16%(1.45)

2.57∗∗∗
22%(1.13)

2.36∗∗∗
12%(0.63)

GMMB: b̂2 0.90
36%(3.03)

3.15∗∗
25%(2.17)

3.77∗∗∗
20%(1.70)

3.78∗∗∗
21%(1.35)

2.59∗∗∗
23%(1.08)

1.97∗∗∗
−7%(0.60)

GMMC: b̂ 1.78
169%(3.16)

2.74∗
9%(2.26)

4.31∗∗∗
37%(1.96)

3.90∗∗∗
25%(1.47)

2.75∗∗∗
30%(1.14)

2.02∗∗∗
−5%(0.62)
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3.6.2 Market risk premium in Fama-French model

The following five panels report the estimate values, the bias from the risk pre-

mium in percent values, the standard error in parenthesis, and t-statistics. Each

panel corresponds to a one set of test portfolios. T is 60 (January 2001 - Decem-

ber 2005), 120, 240, 360, 480 and 948 (January 1927 - December 2005) monthly

observations. The two-pass (Fama-MacBeth) cross-sectional estimate is the slope

coefficient λ in E (Re) = βλ calculated by OLS, GLS and WLS. Next, we turn

from beta representation to a discount factor formulation for GMM approach. The

GMMA and GMMB first and second-stage estimates are the parameters 100 × b in

E (Re) = E (Ref ′) b (returns on second moments, following Hansen and Jagannathan

[49]) and E (Re) = E
(
Ref̃ ′

)
b (returns on covariances, following Cochrane [25])

respectively. The GMMC is the continuous updating estimate (following Hansen,

Heaton and Yaron [47]).
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Panel A. N Portfolios formed on ME

T = 60 T = 120 T = 240 T = 360 T = 480 T = 948

λ = Ef 0.13 0.56 0.64 0.62 0.44 0.64

b = λ
E(Rem2)

0.66 2.52 3.15 3.11 2.11 2.11

N = 5

Beta: λ̂OLS 0.06
−57%(0.58)

0.66∗
19%(0.43)

0.69∗∗
7%(0.29)

0.66∗∗
6%(0.23)

0.46∗∗
6%(0.21)

0.68∗∗∗
6%(0.18)

Beta: λ̂GLS 0.10
−27%(0.57)

0.62∗
11%(0.43)

0.67∗∗
4%(0.29)

0.65∗∗
5%(0.23)

0.46∗∗
5%(0.21)

0.67∗∗∗
4%(0.18)

Beta: λ̂WLS 0.08
−38%(0.57)

0.62∗
12%(0.43)

0.67∗∗
5%(0.29)

0.66∗∗
5%(0.23)

0.46∗∗
5%(0.21)

0.67∗∗∗
4%(0.18)

GMMA: b̂1 × −0.33
−113%(4.98)

4.65
47%(4.18)

4.87∗
56%(3.29)

3.97∗
88%(2.74)

2.09∗∗
−1%(0.76)

GMMA: b̂2 × 5.51
119%(4.16)

7.78∗∗
147%(3.57)

5.84∗∗
88%(2.87)

4.12∗
95%(2.40)

1.97∗∗
−7%(0.73)

GMMB: b̂1 × −0.94
−137%(4.95)

4.39
39%(4.84)

5.15
65%(3.97)

4.19
98%(3.16)

2.12∗∗
0%(0.77)

GMMB: b̂2 × 4.39
74%(4.36)

8.00∗∗
154%(4.22)

6.32∗
103%(3.48)

4.32∗
105%(2.75)

2.00∗∗
−5%(0.74)

GMMC: b̂ × 7.30
189%(5.44)

9.41∗
198%(6.00)

6.49∗
108%(4.16)

4.48∗
112%(3.20)

2.01∗∗
−5%(0.76)

N = 10

Beta: λ̂OLS 0.07
−45%(0.58)

0.66∗∗
19%(0.43)

0.68∗∗∗
6%(0.29)

0.66∗∗∗
7%(0.23)

0.47∗∗∗
8%(0.21)

0.67∗∗∗
4%(0.18)

Beta: λ̂GLS 0.12
−12%(0.57)

0.60∗
8%(0.43)

0.69∗∗∗
7%(0.29)

0.67∗∗∗
8%(0.23)

0.47∗∗∗
8%(0.21)

0.67∗∗∗
4%(0.18)

Beta: λ̂WLS 0.08
−36%(0.57)

0.59∗
7%(0.43)

0.68∗∗∗
5%(0.29)

0.66∗∗∗
6%(0.23)

0.47∗∗∗
7%(0.21)

0.67∗∗∗
3%(0.18)

GMMA: b̂1 × 1.88
−25%(3.82)

5.60∗∗∗
78%(2.60)

4.84∗∗∗
56%(2.17)

3.40∗∗∗
61%(1.75)

1.88∗∗∗
−11%(0.71)

GMMA: b̂2 × 7.58∗∗∗
201%(3.05)

6.58∗∗∗
109%(2.30)

4.82∗∗∗
55%(1.97)

3.14∗∗∗
49%(1.60)

1.96∗∗∗
−7%(0.68)

GMMB: b̂1 6.64
903%(6.26)

0.97
−62%(4.14)

5.52∗∗
75%(3.05)

4.99∗∗∗
60%(2.56)

3.47∗∗
65%(1.93)

1.92∗∗∗
−9%(0.73)

GMMB: b̂2 × 6.26∗∗
148%(3.39)

5.79∗∗∗
84%(2.67)

4.38∗∗∗
41%(2.29)

2.99∗∗
42%(1.76)

1.99∗∗∗
−6%(0.70)

GMMC: b̂ × 10.41∗∗∗
313%(5.49)

7.92∗∗∗
151%(3.46)

5.08∗∗∗
63%(2.59)

3.29∗∗
56%(1.93)

2.01∗∗∗
−5%(0.73)

164



3.6 – Appendix of Tables

Panel B. N Portfolios formed on BE/ME

T = 60 T = 120 T = 240 T = 360 T = 480 T = 948

λ = Ef 0.13 0.56 0.64 0.62 0.44 0.64

b = λ
E(Rem2)

0.66 2.52 3.15 3.11 2.11 2.11

N = 5

Beta: λ̂OLS 0.08
−43%(0.58)

0.50
−10%(0.49)

0.69∗∗
7%(0.31)

0.69∗∗
10%(0.24)

0.48∗∗
11%(0.21)

0.66∗∗∗
2%(0.18)

Beta: λ̂GLS 0.07
−44%(0.58)

0.55
−1%(0.47)

0.66∗∗
3%(0.31)

0.69∗∗
10%(0.24)

0.48∗∗
10%(0.21)

0.66∗∗∗
2%(0.18)

Beta: λ̂WLS 0.07
−47%(0.58)

0.50
−9%(0.52)

0.69∗∗
7%(0.31)

0.68∗∗
10%(0.24)

0.49∗∗
12%(0.21)

0.66∗∗∗
2%(0.18)

GMMA: b̂1 0.84
27%(3.82)

4.99∗∗
98%(2.52)

4.99∗∗
58%(2.00)

4.59∗∗
47%(1.96)

3.13∗∗
49%(1.62)

2.05∗∗
−3%(0.79)

GMMA: b̂2 1.05
59%(3.79)

4.89∗∗
94%(2.47)

5.37∗∗
70%(1.90)

4.49∗∗
44%(1.82)

3.54∗∗
68%(1.55)

1.97∗∗
−7%(0.78)

GMMB: b̂1 0.99
50%(4.45)

5.21∗
106%(2.78)

5.25∗∗
66%(2.23)

4.96∗∗
59%(2.17)

3.29∗∗
56%(1.72)

2.09∗∗
−1%(0.81)

GMMB: b̂2 1.19
80%(4.42)

5.12∗
103%(2.74)

5.62∗∗
78%(2.14)

4.85∗∗
56%(2.03)

3.70∗∗
75%(1.65)

2.01∗∗
−5%(0.80)

GMMC: b̂ 1.19
79%(4.47)

5.17∗
105%(2.85)

5.63∗∗
78%(2.28)

4.85∗∗
56%(2.18)

3.71∗∗
76%(1.72)

2.01∗∗
−5%(0.81)

N = 10

Beta: λ̂OLS 0.09
−33%(0.58)

0.56∗
1%(0.46)

0.68∗∗∗
5%(0.30)

0.65∗∗∗
5%(0.24)

0.48∗∗∗
10%(0.21)

0.66∗∗∗
2%(0.18)

Beta: λ̂GLS 0.07
−44%(0.58)

0.56∗
0%(0.45)

0.65∗∗∗
2%(0.30)

0.65∗∗∗
5%(0.24)

0.48∗∗∗
10%(0.21)

0.66∗∗∗
3%(0.18)

Beta: λ̂WLS 0.09
−34%(0.58)

0.57∗
2%(0.46)

0.67∗∗∗
4%(0.30)

0.65∗∗∗
5%(0.24)

0.48∗∗∗
10%(0.21)

0.66∗∗∗
3%(0.18)

GMMA: b̂1 0.60
−10%(3.75)

4.86∗∗
93%(2.58)

5.03∗∗∗
60%(1.92)

5.06∗∗∗
63%(1.71)

3.22∗∗∗
53%(1.54)

2.18∗∗∗
3%(0.75)

GMMA: b̂2 −0.63
−195%(3.40)

5.26∗∗∗
108%(2.49)

5.60∗∗∗
77%(1.83)

5.27∗∗∗
69%(1.60)

3.47∗∗∗
65%(1.45)

2.10∗∗∗
−1%(0.73)

GMMB: b̂1 0.79
20%(4.37)

5.12∗∗
103%(2.85)

5.28∗∗∗
67%(2.16)

5.43∗∗∗
74%(1.92)

3.37∗∗∗
60%(1.64)

2.22∗∗∗
5%(0.78)

GMMB: b̂2 −0.85
−228%(3.92)

5.31∗∗∗
111%(2.79)

5.79∗∗∗
84%(2.08)

5.59∗∗∗
80%(1.81)

3.62∗∗∗
71%(1.54)

2.10∗∗∗
−1%(0.76)

GMMC: b̂ −1.06
−261%(4.42)

5.57∗∗
121%(2.95)

5.91∗∗∗
87%(2.16)

5.65∗∗∗
82%(1.93)

3.60∗∗∗
71%(1.64)

2.19∗∗∗
4%(0.78)
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Panel C. N Portfolios formed by the intersections of ME and

BE/ME

T = 60 T = 120 T = 240 T = 360 T = 480 T = 948

λ = Ef 0.13 0.56 0.64 0.62 0.44 0.64

b = λ

E
(

Rem2
) 0.66 2.52 3.15 3.11 2.11 2.11

N = 6

Beta: λ̂OLS −0.05
−138%(0.58)

0.46
−17%(0.43)

0.61∗∗
−5%(0.29)

0.60∗∗∗
−4%(0.23)

0.43∗∗
−1%(0.21)

0.62∗∗∗
−4%(0.18)

Beta: λ̂GLS 0.06
−57%(0.57)

0.57∗
3%(0.43)

0.64∗∗
−1%(0.29)

0.62∗∗∗
−1%(0.23)

0.45∗∗
3%(0.21)

0.65∗∗∗
1%(0.18)

Beta: λ̂WLS 0.06
−54%(0.57)

0.58∗
5%(0.43)

0.66∗∗
3%(0.29)

0.63∗∗∗
1%(0.23)

0.46∗∗
5%(0.21)

0.65∗∗∗
1%(0.18)

GMMA: b̂1 1.06
60%(3.53)

5.19∗∗
106%(2.55)

5.36∗∗∗
70%(1.94)

5.20∗∗∗
67%(1.52)

3.59∗∗∗
70%(1.16)

1.48∗∗
−30%(0.65)

GMMA: b̂2 1.62
144%(3.30)

6.37∗∗∗
153%(2.50)

5.00∗∗∗
59%(1.92)

5.15∗∗∗
66%(1.51)

3.69∗∗∗
75%(1.15)

1.29∗∗
−39%(0.65)

GMMB: b̂1 1.27
91%(4.22)

5.59∗∗
122%(3.01)

5.69∗∗∗
80%(2.24)

5.65∗∗∗
81%(1.79)

3.79∗∗∗
80%(1.27)

1.51∗∗
−28%(0.67)

GMMB: b̂2 0.96
45%(3.97)

4.81∗
91%(2.96)

3.87∗∗
23%(2.19)

4.57∗∗∗
47%(1.77)

3.53∗∗∗
67%(1.27)

1.26∗∗
−40%(0.67)

GMMC: b̂ 0.85
29%(4.49)

18.01∗∗∗
614%(6.05)

6.77∗∗∗
114%(2.33)

5.90∗∗∗
90%(1.84)

3.86∗∗∗
83%(1.30)

1.41∗∗
−33%(0.67)

N = 25

Beta: λ̂OLS −0.05
−135%(0.58)

0.38
−31%(0.43)

0.58∗∗∗
−9%(0.29)

0.58∗∗∗
−6%(0.24)

0.41∗∗∗
−7%(0.21)

0.63∗∗∗
−2%(0.18)

Beta: λ̂GLS 0.11
−14%(0.57)

0.68∗∗
22%(0.43)

0.70∗∗∗
9%(0.29)

0.65∗∗∗
4%(0.23)

0.46∗∗∗
6%(0.21)

0.67∗∗∗
3%(0.18)

Beta: λ̂WLS 0.07
−50%(0.57)

0.55∗
−2%(0.43)

0.65∗∗∗
2%(0.29)

0.62∗∗∗
−1%(0.23)

0.44∗∗∗
0%(0.21)

0.66∗∗∗
2%(0.18)

GMMA: b̂1 0.79
19%(3.59)

4.90∗∗∗
94%(2.60)

5.29∗∗∗
68%(1.98)

5.15∗∗∗
65%(1.55)

3.54∗∗∗
68%(1.19)

1.69∗∗∗
−20%(0.67)

GMMA: b̂2 5.00∗∗∗
655%(2.72)

11.67∗∗∗
363%(2.28)

10.45∗∗∗
231%(1.75)

7.35∗∗∗
136%(1.39)

4.94∗∗∗
134%(1.12)

1.57∗∗∗
−26%(0.64)

GMMB: b̂1 1.04
57%(4.29)

5.31∗∗∗
111%(3.06)

5.61∗∗∗
78%(2.29)

5.60∗∗∗
80%(1.83)

3.74∗∗∗
77%(1.31)

1.74∗∗∗
−18%(0.69)

GMMB: b̂2 2.41
264%(3.39)

6.11∗∗∗
142%(2.85)

5.37∗∗∗
70%(2.11)

5.15∗∗∗
65%(1.67)

4.14∗∗∗
96%(1.24)

1.41∗∗∗
−33%(0.67)

GMMC: b̂ × × 32.13∗∗∗
918%(6.36)

13.60∗∗∗
337%(2.69)

6.27∗∗∗
197%(1.50)

4.64∗∗∗
120%(1.02)

N = 100

Beta: λ̂OLS 0.34
−38%(0.44)

0.56∗∗∗
−12%(0.29)

0.58∗∗∗
−8%(0.24)

0.40∗∗∗
−9%(0.21)

0.65∗∗∗
2%(0.18)

Beta: λ̂GLS 0.65∗∗
16%(0.42)

0.68∗∗∗
7%(0.29)

0.65∗∗∗
5%(0.23)

0.47∗∗∗
7%(0.21)

0.69∗∗∗
7%(0.18)

Beta: λ̂WLS 0.50∗
−11%(0.43)

0.63∗∗∗
−3%(0.29)

0.60∗∗∗
−3%(0.23)

0.42∗∗∗
−4%(0.21)

0.67∗∗∗
4%(0.18)

GMMA: b̂1 4.68∗∗∗
85%(2.65)

5.12∗∗∗
62%(2.00)

5.03∗∗∗
62%(1.58)

3.38∗∗∗
60%(1.21)

1.62∗∗∗
−23%(0.70)

GMMA: b̂2 21.07∗∗∗
735%(1.51)

15.65∗∗∗
396%(1.49)

10.20∗∗∗
228%(1.26)

5.78∗∗∗
174%(1.07)

1.63∗∗∗
−23%(0.59)

GMMB: b̂1 5.06∗∗
101%(3.10)

5.41∗∗∗
72%(2.30)

5.47∗∗∗
76%(1.85)

3.58∗∗∗
69%(1.32)

1.66∗∗∗
−21%(0.72)

GMMB: b̂2 5.84∗∗∗
132%(2.15)

4.87∗∗∗
54%(1.87)

4.88∗∗∗
57%(1.53)

3.47∗∗∗
64%(1.19)

1.44∗∗∗
−32%(0.61)

GMMC: b̂ −7.34
−391%(3.03)

× 2.14
−31%(2.27)

12.44∗∗∗
490%(2.32)

2.79∗∗∗
32%(0.77)
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Panel D. N Portfolios formed on ME MOM

T = 60 T = 120 T = 240 T = 360 T = 480 T = 948

λ = Ef 0.13 0.56 0.64 0.62 0.44 0.64

b = λ
E(Rem2)

0.66 2.52 3.15 3.11 2.11 2.11

N = 6

Beta: λ̂OLS 0.17
29%(0.58)

0.50
−11%(0.44)

0.71∗∗∗
11%(0.29)

0.69∗∗∗
11%(0.24)

0.56∗∗∗
28%(0.21)

0.84∗∗∗
31%(0.18)

Beta: λ̂GLS 0.12
−11%(0.58)

0.55∗
−2%(0.43)

0.64∗∗
0%(0.29)

0.62∗∗∗
−1%(0.24)

0.45∗∗
2%(0.21)

0.72∗∗∗
11%(0.18)

Beta: λ̂WLS 0.16
18%(0.58)

0.66∗
19%(0.45)

0.80∗∗∗
25%(0.30)

0.76∗∗∗
22%(0.24)

0.58∗∗∗
33%(0.21)

0.85∗∗∗
32%(0.18)

GMMA: b̂1 1.58
139%(4.05)

2.63
4%(2.92)

2.75∗
−13%(2.17)

2.94∗∗
−5%(1.72)

−0.63
−130%(1.77)

3.88∗∗∗
84%(1.05)

GMMA: b̂2 −0.91
−237%(3.54)

5.64∗∗
124%(2.66)

6.84∗∗∗
117%(2.03)

6.38∗∗∗
105%(1.61)

4.01∗∗∗
90%(1.44)

4.15∗∗∗
96%(1.02)

GMMB: b̂1 1.82
174%(4.84)

1.55
−39%(3.18)

1.04
−67%(2.27)

0.75
−76%(1.96)

−1.90
−190%(2.05)

3.83∗∗∗
81%(1.07)

GMMB: b̂2 −1.91
−388%(4.07)

4.34∗
72%(2.85)

3.93∗∗
25%(2.05)

3.67∗∗
18%(1.72)

3.21∗∗
52%(1.57)

3.96∗∗∗
87%(1.04)

GMMC: b̂ −4.12
−722%(5.24)

11.50∗∗
356%(6.01)

× × × ×

N = 25

Beta: λ̂OLS 0.20
54%(0.58)

0.28
−50%(0.46)

0.57∗∗∗
−12%(0.30)

0.57∗∗∗
−8%(0.24)

0.46∗∗∗
6%(0.21)

0.71∗∗∗
10%(0.18)

Beta: λ̂GLS 0.19
40%(0.57)

0.50∗
−10%(0.43)

0.64∗∗∗
0%(0.29)

0.62∗∗∗
−1%(0.24)

0.47∗∗∗
8%(0.21)

0.67∗∗∗
4%(0.18)

Beta: λ̂WLS 0.19
44%(0.58)

0.55∗
−1%(0.44)

0.75∗∗∗
16%(0.29)

0.70∗∗∗
13%(0.24)

0.56∗∗∗
28%(0.21)

0.83∗∗∗
29%(0.18)

GMMA: b̂1 2.44
268%(4.06)

3.60∗
43%(2.83)

4.23∗∗∗
34%(2.14)

4.26∗∗∗
37%(1.67)

1.62∗
−23%(1.31)

2.41∗∗∗
14%(0.97)

GMMA: b̂2 4.19∗∗
532%(2.78)

6.99∗∗∗
177%(2.43)

11.09∗∗∗
251%(1.87)

9.91∗∗∗
218%(1.49)

4.48∗∗∗
112%(1.21)

2.43∗∗∗
15%(0.84)

GMMB: b̂1 2.86
332%(5.01)

3.31
31%(3.17)

3.56∗∗
13%(2.28)

3.44∗∗∗
10%(1.82)

0.75
−64%(1.40)

2.45∗∗∗
16%(0.99)

GMMB: b̂2 1.20
81%(3.47)

2.59
3%(2.78)

4.71∗∗∗
49%(2.15)

4.80∗∗∗
54%(1.72)

2.46∗∗∗
17%(1.28)

2.00∗∗∗
−5%(0.85)

GMMC: b̂ 5.79
774%(12.95)

19.04∗∗∗
655%(5.75)

25.14∗∗∗
697%(9.37)

× × ×
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Panel E. N Industry Portfolios

T = 60 T = 120 T = 240 T = 360 T = 480 T = 948

λ = Ef 0.13 0.56 0.64 0.62 0.44 0.64

b = λ
E(Rem2)

0.66 2.52 3.15 3.11 2.11 2.11

N = 5

Beta: λ̂OLS 0.10
−24%(0.58)

0.56
1%(0.43)

0.63∗∗
−2%(0.29)

0.66∗∗
6%(0.24)

0.49∗∗
12%(0.21)

0.71∗∗∗
10%(0.18)

Beta: λ̂GLS 0.12
−13%(0.57)

0.60
7%(0.43)

0.65∗∗
1%(0.29)

0.65∗∗
5%(0.24)

0.48∗∗
10%(0.21)

0.69∗∗∗
7%(0.18)

Beta: λ̂WLS 0.11
−19%(0.58)

0.58
4%(0.44)

0.64∗∗
−1%(0.30)

0.66∗∗
6%(0.24)

0.49∗∗
12%(0.21)

0.70∗∗∗
8%(0.18)

GMMA: b̂1 1.81
173%(3.81)

4.34∗
72%(2.67)

4.15∗∗
32%(1.91)

4.92∗∗∗
58%(1.65)

3.99∗∗
89%(1.66)

4.42∗∗∗
109%(1.43)

GMMA: b̂2 2.34
253%(3.64)

4.78∗
90%(2.64)

4.43∗∗
40%(1.87)

4.79∗∗∗
54%(1.61)

3.62∗∗
71%(1.52)

3.64∗∗∗
72%(1.17)

GMMB: b̂1 2.15
225%(4.57)

4.41∗
75%(2.99)

4.21∗∗
33%(2.07)

4.99∗∗
60%(1.76)

4.01∗∗
90%(1.71)

4.43∗∗∗
110%(1.43)

GMMB: b̂2 2.71
309%(4.38)

4.87∗
93%(2.96)

4.43∗∗
40%(2.04)

4.86∗∗
56%(1.73)

3.63∗∗
72%(1.57)

3.65∗∗∗
73%(1.18)

GMMC: b̂ 2.76
316%(4.66)

4.97∗
97%(3.07)

4.48∗∗
42%(2.08)

4.87∗∗
56%(1.75)

3.66∗∗
74%(1.68)

3.77∗∗
78%(1.36)

N = 17

Beta: λ̂OLS 0.06
−52%(0.58)

0.55∗
−1%(0.44)

0.66∗∗∗
3%(0.29)

0.65∗∗∗
5%(0.24)

0.50∗∗∗
15%(0.21)

0.72∗∗∗
12%(0.18)

Beta: λ̂GLS 0.16
19%(0.57)

0.56∗
1%(0.43)

0.68∗∗∗
7%(0.29)

0.70∗∗∗
12%(0.23)

0.51∗∗∗
17%(0.21)

0.72∗∗∗
12%(0.18)

Beta: λ̂WLS 0.10
−23%(0.58)

0.49∗
−12%(0.43)

0.64∗∗∗
0%(0.29)

0.66∗∗∗
7%(0.24)

0.49∗∗∗
12%(0.21)

0.72∗∗∗
11%(0.18)

GMMA: b̂1 1.99
200%(3.79)

3.97
58%(2.59)

4.35∗∗∗
38%(1.94)

4.83∗∗∗
55%(1.57)

3.61∗∗∗
71%(1.28)

3.25∗∗∗
54%(0.75)

GMMA: b̂2 3.94∗
495%(3.12)

4.82∗∗∗
91%(2.44)

4.46∗∗∗
41%(1.75)

4.71∗∗∗
51%(1.39)

3.41∗∗∗
61%(1.19)

3.08∗∗∗
46%(0.72)

GMMB: b̂1 2.54
284%(4.52)

4.02∗∗
59%(2.83)

4.43∗∗∗
41%(2.12)

4.88∗∗∗
57%(1.71)

3.62∗∗∗
72%(1.34)

3.29∗∗∗
56%(0.78)

GMMB: b̂2 1.91
189%(3.80)

3.55∗
41%(2.67)

4.22∗∗∗
34%(1.92)

4.40∗∗∗
41%(1.52)

3.19∗∗∗
51%(1.25)

3.06∗∗∗
45%(0.74)

GMMC: b̂ 15.13∗∗
2184%(9.72)

4.45∗∗
76%(3.04)

4.54∗∗∗
44%(2.14)

4.59∗∗∗
47%(1.69)

3.42∗∗∗
62%(1.34)

3.18∗∗∗
50%(0.77)

N = 30

Beta: λ̂OLS 0.06
−55%(0.58)

0.57∗∗
2%(0.43)

0.69∗∗∗
8%(0.29)

0.73∗∗∗
17%(0.24)

0.56∗∗∗
29%(0.21)

0.77∗∗∗
20%(0.18)

Beta: λ̂GLS 0.07
−44%(0.57)

0.62∗∗
11%(0.43)

0.72∗∗∗
11%(0.29)

0.73∗∗∗
17%(0.24)

0.53∗∗∗
22%(0.21)

0.74∗∗∗
15%(0.18)

Beta: λ̂WLS 0.12
−10%(0.58)

0.59∗∗
6%(0.43)

0.69∗∗∗
8%(0.29)

0.73∗∗∗
17%(0.24)

0.55∗∗∗
25%(0.21)

0.75∗∗∗
16%(0.18)

GMMA: b̂1 1.72
160%(3.29)

4.69∗∗∗
86%(2.66)

4.68∗∗∗
48%(2.01)

5.06∗∗∗
63%(1.59)

3.85∗∗∗
82%(1.27)

3.28∗∗∗
55%(0.75)

GMMA: b̂2 3.80∗∗
474%(2.57)

6.21∗∗∗
146%(2.33)

4.75∗∗∗
51%(1.73)

5.14∗∗∗
65%(1.38)

3.52∗∗∗
67%(1.15)

3.16∗∗∗
50%(0.72)

GMMB: b̂1 2.48
274%(4.07)

4.79∗∗
90%(2.99)

4.77∗∗∗
51%(2.21)

5.11∗∗∗
64%(1.74)

3.86∗∗∗
83%(1.34)

3.33∗∗∗
57%(0.78)

GMMB: b̂2 0.67
1%(3.32)

3.52∗∗
40%(2.67)

3.82∗∗∗
21%(1.91)

4.47∗∗∗
44%(1.51)

3.17∗∗∗
50%(1.21)

3.05∗∗∗
45%(0.74)

GMMC: b̂ −0.70
−206%(4.51)

4.95∗∗
96%(3.49)

4.59∗∗∗
45%(2.21)

4.63∗∗∗
49%(1.73)

3.15∗∗∗
49%(1.33)

3.33∗∗∗
58%(0.78)

168



3.6 – Appendix of Tables

3.6.3 Size risk premium in Fama-French model

The following five panels report the estimate values, the bias from the risk pre-

mium in percent values, the standard error in parenthesis, and t-statistics. Each

panel corresponds to a one set of test portfolios. T is 60 (January 2001 - Decem-

ber 2005), 120, 240, 360, 480 and 948 (January 1927 - December 2005) monthly

observations. The two-pass (Fama-MacBeth) cross-sectional estimate is the slope

coefficient λ in E (Re) = βλ calculated by OLS, GLS and WLS. Next, we turn

from beta representation to a discount factor formulation for GMM approach. The

GMMA and GMMB first and second-stage estimates are the parameters 100 × b in

E (Re) = E (Ref ′) b (returns on second moments, following Hansen and Jagannathan

[49]) and E (Re) = E
(
Ref̃ ′

)
b (returns on covariances, following Cochrane [25])

respectively. The GMMC is the continuous updating estimate (following Hansen,

Heaton and Yaron [47]).
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Panel A. N Portfolios formed on ME

T = 60 T = 120 T = 240 T = 360 T = 480 T = 948

λ = Ef 0.80 0.29 0.06 0.29 0.25 0.25

b = λ
E(Rem2)

8.14 1.50 0.49 2.77 2.24 2.16

N = 5

Beta: λ̂OLS 0.44
−44%(0.49)

0.62
117%(0.48)

0.06
−2%(0.33)

0.23
−21%(0.24)

0.16
−36%(0.22)

0.27
10%(0.22)

Beta: λ̂GLS 0.49
−39%(0.45)

0.35
23%(0.46)

−0.14
−341%(0.31)

0.17
−41%(0.22)

0.14
−41%(0.20)

0.23
−8%(0.19)

Beta: λ̂WLS 0.37
−53%(0.55)

0.55
93%(0.45)

−0.02
−132%(0.29)

0.21
−28%(0.21)

0.15
−38%(0.19)

0.28
15%(0.22)

GMMA: b̂1 5.30
−35%(7.12)

−0.07
−105%(3.68)

0.84
74%(3.21)

2.71
−2%(2.05)

1.77
−21%(1.49)

1.33
−39%(2.11)

GMMA: b̂2 6.73
−17%(6.65)

4.59∗
205%(3.04)

2.54
424%(2.99)

3.02∗
9%(1.99)

1.67
−26%(1.48)

0.80
−63%(1.82)

GMMB: b̂1 7.99
−2%(8.95)

−0.53
−135%(3.71)

0.55
14%(3.45)

2.88
4%(2.35)

1.88
−16%(1.61)

1.35
−37%(2.13)

GMMB: b̂2 8.52
5%(8.32)

3.96
163%(3.17)

2.54
425%(3.20)

3.28∗
18%(2.26)

1.76
−21%(1.60)

0.83
−62%(1.84)

GMMC: b̂ 7.07
−13%(10.38)

0.66
−56%(4.07)

2.11
336%(4.32)

3.21
16%(2.51)

1.75
−22%(1.64)

0.78
−64%(2.12)

N = 10

Beta: λ̂OLS 0.54∗
−32%(0.46)

0.52∗
80%(0.45)

0.02
−68%(0.26)

0.24∗
−17%(0.20)

0.20∗
−20%(0.17)

0.14
−42%(0.14)

Beta: λ̂GLS 0.74∗∗
−7%(0.42)

0.17
−41%(0.42)

−0.03
−144%(0.24)

0.26∗
−11%(0.18)

0.22∗
−9%(0.16)

0.20∗∗
−18%(0.13)

Beta: λ̂WLS 0.41
−48%(0.44)

0.32
10%(0.42)

−0.04
−167%(0.24)

0.22∗
−23%(0.18)

0.19∗
−22%(0.16)

0.19∗
−22%(0.14)

GMMA: b̂1 5.14
−37%(7.00)

1.38
−9%(2.98)

1.68
247%(2.46)

2.78∗∗
0%(1.84)

1.77∗
−21%(1.45)

0.01
−99%(1.23)

GMMA: b̂2 6.13∗
−25%(4.97)

4.85∗∗
222%(2.59)

1.77
265%(2.37)

2.85∗∗
3%(1.83)

1.86∗
−17%(1.44)

0.40
−82%(1.11)

GMMB: b̂1 8.74∗
7%(7.73)

0.57
−62%(3.23)

1.43
195%(2.61)

2.86∗
3%(2.02)

1.83∗
−18%(1.53)

0.02
−99%(1.26)

GMMB: b̂2 9.05∗∗
11%(6.05)

3.67∗
144%(2.74)

1.22
151%(2.53)

2.62∗
−5%(2.01)

1.86∗
−17%(1.51)

0.41
−81%(1.14)

GMMC: b̂ −12.02
−248%(28.74)

7.02∗∗
366%(4.26)

2.04
321%(3.01)

3.04∗∗
10%(2.05)

1.92∗
−14%(1.52)

0.35
−84%(1.25)
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Panel B. N Portfolios formed on BE/ME

T = 60 T = 120 T = 240 T = 360 T = 480 T = 948

λ = Ef 0.80 0.29 0.06 0.29 0.25 0.25

b = λ
E(Rem2)

8.14 1.50 0.49 2.77 2.24 2.16

N = 5

Beta: λ̂OLS 0.85
6%(0.79)

−0.91
−418%(2.49)

−0.08
−241%(1.48)

0.52
79%(0.85)

0.33
35%(0.53)

0.06
−75%(0.33)

Beta: λ̂GLS 0.73
−9%(0.71)

−0.32
−211%(2.11)

−0.43
−811%(1.30)

0.55
92%(0.78)

0.22
−12%(0.51)

0.08
−69%(0.33)

Beta: λ̂WLS 0.83
5%(0.83)

−0.89
−410%(3.00)

−0.13
−312%(1.44)

0.52
81%(0.69)

0.32
30%(0.43)

0.05
−78%(0.27)

GMMA: b̂1 9.60
18%(7.10)

−3.12
−307%(14.43)

0.13
−73%(12.39)

5.51
99%(7.84)

3.06
37%(4.71)

−0.74
−134%(3.02)

GMMA: b̂2 8.95
10%(6.77)

1.03
−32%(12.28)

−2.08
−528%(11.07)

5.80
110%(7.07)

2.18
−3%(4.55)

−0.44
−120%(2.99)

GMMB: b̂1 11.07
36%(8.98)

−3.94
−362%(15.35)

0.08
−84%(13.01)

5.95
115%(8.59)

3.19
43%(4.94)

−0.75
−135%(3.07)

GMMB: b̂2 10.24
26%(8.60)

0.89
−41%(12.83)

−2.24
−562%(11.62)

6.27
126%(7.75)

2.26
1%(4.78)

−0.46
−121%(3.04)

GMMC: b̂ 10.46
28%(9.04)

−0.18
−112%(15.02)

0.07
−85%(13.08)

6.28
127%(8.59)

2.32
4%(4.96)

−0.46
−122%(3.06)

N = 10

Beta: λ̂OLS 0.87
10%(0.80)

−0.38
−233%(1.90)

−0.23
−479%(0.97)

0.14
−52%(0.60)

0.28
12%(0.46)

0.00
−99%(0.27)

Beta: λ̂GLS 0.57
−28%(0.64)

−0.35
−223%(1.53)

× 0.06
−79%(0.54)

0.21
−14%(0.43)

−0.04
−118%(0.27)

Beta: λ̂WLS 0.83
5%(0.75)

−0.40
−239%(1.71)

−0.38
−732%(0.85)

0.12
−58%(0.49)

0.29
18%(0.36)

0.03
−89%(0.22)

GMMA: b̂1 10.11∗
24%(7.55)

−0.31
−120%(11.54)

−1.13
−332%(8.45)

1.97
−29%(5.69)

2.51
12%(4.16)

−1.30
−160%(2.60)

GMMA: b̂2 9.31∗∗
14%(5.76)

0.57
−62%(9.03)

−4.02
−929%(7.31)

1.65
−41%(5.08)

2.18
−3%(3.80)

−1.75
−181%(2.52)

GMMB: b̂1 11.31∗
39%(9.42)

−0.85
−157%(12.21)

−1.21
−350%(8.85)

2.08
−25%(6.12)

2.62
17%(4.36)

−1.32
−161%(2.64)

GMMB: b̂2 9.70∗
19%(7.37)

0.03
−98%(9.54)

−4.29
−984%(7.65)

1.61
−41%(5.47)

2.26
1%(3.99)

−1.81
−184%(2.57)

GMMC: b̂ 11.42∗
40%(9.53)

0.57
−62%(12.23)

−4.26
−978%(9.40)

1.65
−40%(6.16)

2.45
10%(4.37)

−1.96
−191%(2.67)
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Panel C. N Portfolios formed by the intersections of ME and

BE/ME

T = 60 T = 120 T = 240 T = 360 T = 480 T = 948

λ = Ef 0.80 0.29 0.06 0.29 0.25 0.25

b = λ

E
(

Rem2
) 8.14 1.50 0.49 2.77 2.24 2.16

N = 6

Beta: λ̂OLS 0.80∗∗
1%(0.39)

0.23
−18%(0.40)

0.02
−69%(0.23)

0.26∗
−11%(0.17)

0.22∗
−11%(0.15)

0.23∗∗
−8%(0.11)

Beta: λ̂GLS 0.80∗∗
0%(0.39)

0.29
0%(0.40)

0.06
0%(0.23)

0.29∗∗
0%(0.17)

0.25∗
0%(0.15)

0.25∗∗
0%(0.11)

Beta: λ̂WLS 0.79∗∗
−1%(0.40)

0.23
−20%(0.40)

0.02
−75%(0.23)

0.26∗
−9%(0.17)

0.22∗
−9%(0.15)

0.22∗∗
−9%(0.11)

GMMA: b̂1 9.47∗∗∗
16%(3.93)

3.97∗
163%(2.46)

2.00
312%(2.14)

3.73∗∗
35%(1.79)

2.39∗∗
7%(1.45)

0.93
−57%(0.92)

GMMA: b̂2 11.44∗∗∗
41%(3.68)

4.64∗∗
208%(2.45)

1.39
186%(2.14)

3.80∗∗
37%(1.79)

2.81∗∗
25%(1.44)

1.27∗
−41%(0.92)

GMMB: b̂1 11.11∗∗
36%(5.57)

4.22∗
180%(2.80)

2.08
329%(2.31)

4.02∗∗
45%(2.01)

2.51∗
12%(1.55)

0.95
−56%(0.94)

GMMB: b̂2 11.68∗∗
43%(5.33)

3.56∗
136%(2.79)

1.01
107%(2.29)

3.41∗∗
23%(2.00)

2.72∗∗
22%(1.54)

1.26∗
−42%(0.94)

GMMC: b̂ 13.75∗∗
69%(6.04)

× −0.29
−160%(2.66)

4.22∗∗
52%(2.07)

3.09∗∗
38%(1.57)

1.22∗
−44%(0.93)

N = 25

Beta: λ̂OLS 0.91∗∗∗
14%(0.40)

0.41
42%(0.40)

0.08
39%(0.23)

0.28∗∗
−2%(0.17)

0.24∗∗
−3%(0.15)

0.11
−54%(0.12)

Beta: λ̂GLS 0.85∗∗∗
7%(0.39)

0.26
−8%(0.40)

0.07
9%(0.23)

0.29∗∗
1%(0.17)

0.25∗∗
1%(0.15)

0.24∗∗∗
−2%(0.11)

Beta: λ̂WLS 0.86∗∗∗
8%(0.40)

0.34
17%(0.40)

0.09
47%(0.23)

0.31∗∗∗
7%(0.17)

0.25∗∗
3%(0.15)

0.23∗∗∗
−8%(0.11)

GMMA: b̂1 10.71∗∗∗
32%(3.93)

5.22∗∗∗
247%(2.47)

2.69∗
455%(2.17)

4.11∗∗∗
48%(1.81)

2.73∗∗∗
22%(1.48)

−0.20
−109%(0.97)

GMMA: b̂2 19.05∗∗∗
134%(3.04)

9.45∗∗∗
528%(2.23)

4.60∗∗∗
848%(2.00)

5.40∗∗∗
95%(1.71)

3.26∗∗∗
46%(1.41)

1.11∗
−49%(0.88)

GMMB: b̂1 12.38∗∗∗
52%(5.81)

5.52∗∗∗
266%(2.89)

2.79∗
475%(2.35)

4.40∗∗∗
59%(2.04)

2.85∗∗∗
28%(1.58)

−0.20
−109%(0.99)

GMMB: b̂2 13.06∗∗∗
60%(4.94)

5.10∗∗∗
239%(2.69)

2.32∗
379%(2.18)

3.81∗∗∗
38%(1.94)

2.79∗∗∗
25%(1.52)

1.06∗
−51%(0.90)

GMMC: b̂ 70.04∗∗∗
760%(25.20)

−4.19
−378%(9.79)

× −6.67
−341%(3.96)

1.18
−47%(1.94)

1.02
−53%(1.57)

N = 100

Beta: λ̂OLS 0.51∗
77%(0.41)

0.14
139%(0.23)

0.32∗∗∗
12%(0.18)

0.27∗∗∗
9%(0.16)

0.19∗∗
−22%(0.12)

Beta: λ̂GLS 0.32
13%(0.40)

0.10
62%(0.23)

0.32∗∗∗
12%(0.17)

0.27∗∗∗
11%(0.15)

0.23∗∗∗
−5%(0.11)

Beta: λ̂WLS 0.43∗
50%(0.40)

0.14
132%(0.23)

0.34∗∗∗
17%(0.17)

0.29∗∗∗
16%(0.15)

0.24∗∗∗
−2%(0.11)

GMMA: b̂1 5.93∗∗∗
294%(2.46)

3.23∗∗
565%(2.17)

4.52∗∗∗
63%(1.82)

3.01∗∗∗
35%(1.49)

0.50
−77%(0.93)

GMMA: b̂2 × × 7.97∗∗∗
188%(1.55)

4.54∗∗∗
103%(1.34)

1.29∗∗∗
−40%(0.71)

GMMB: b̂1 6.18∗∗∗
310%(2.92)

3.30∗∗
580%(2.36)

4.80∗∗∗
73%(2.06)

3.12∗∗∗
39%(1.59)

0.51
−76%(0.95)

GMMB: b̂2 6.70∗∗∗
345%(2.28)

2.89∗∗
495%(1.99)

4.48∗∗∗
62%(1.77)

3.09∗∗∗
38%(1.44)

1.22∗∗∗
−43%(0.72)

GMMC: b̂ −1.03
−169%(3.57)

× 5.97∗∗∗
116%(3.43)

9.83∗∗∗
340%(2.39)

0.72
−66%(0.99)
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Panel D. N Portfolios formed on ME MOM

T = 60 T = 120 T = 240 T = 360 T = 480 T = 948

λ = Ef 0.80 0.29 0.06 0.29 0.25 0.25

b = λ
E(Rem2)

8.14 1.50 0.49 2.77 2.24 2.16

N = 6

Beta: λ̂OLS 0.90∗∗
13%(0.44)

0.71∗∗
147%(0.43)

0.24
305%(0.24)

0.47∗∗∗
62%(0.18)

0.48∗∗∗
94%(0.17)

0.71∗∗∗
188%(0.14)

Beta: λ̂GLS 1.05∗∗∗
32%(0.41)

0.55∗
91%(0.41)

0.25
319%(0.24)

0.47∗∗∗
62%(0.18)

0.40∗∗∗
64%(0.16)

0.43∗∗∗
73%(0.12)

Beta: λ̂WLS 1.03∗∗∗
30%(0.43)

0.80∗∗
180%(0.43)

0.44∗∗
637%(0.25)

0.63∗∗∗
120%(0.19)

0.61∗∗∗
149%(0.17)

0.72∗∗∗
194%(0.13)

GMMA: b̂1 9.89∗∗
21%(4.38)

4.51∗∗
200%(2.59)

0.48
0%(2.36)

3.50∗∗
26%(1.84)

1.64
−27%(1.76)

5.85∗∗
171%(2.49)

GMMA: b̂2 13.60∗∗∗
67%(3.98)

7.03∗∗∗
367%(2.47)

3.95∗∗
714%(2.28)

7.34∗∗∗
165%(1.76)

4.03∗∗∗
80%(1.70)

0.40
−81%(1.90)

GMMB: b̂1 11.58∗∗
42%(5.91)

3.32
121%(2.86)

−1.35
−378%(2.42)

1.71
−38%(2.03)

1.09
−51%(1.93)

5.77∗∗∗
167%(2.42)

GMMB: b̂2 13.10∗∗
61%(5.77)

5.74∗∗
281%(2.76)

1.66
243%(2.37)

4.21∗∗
52%(1.99)

2.19
−2%(1.88)

0.58
−73%(1.87)

GMMC: b̂ 20.06∗∗∗
146%(6.43)

−2.18
−245%(4.59)

× × × ×

N = 25

Beta: λ̂OLS 0.92∗∗∗
15%(0.46)

0.82∗∗∗
185%(0.44)

0.25
322%(0.25)

0.45∗∗∗
56%(0.18)

0.40∗∗∗
64%(0.16)

0.87∗∗∗
252%(0.15)

Beta: λ̂GLS 0.94∗∗∗
19%(0.40)

0.44∗
54%(0.41)

0.19
215%(0.23)

0.38∗∗∗
32%(0.18)

0.32∗∗∗
30%(0.16)

0.34∗∗∗
38%(0.12)

Beta: λ̂WLS 0.95∗∗∗
19%(0.41)

0.80∗∗∗
178%(0.41)

0.38∗∗
544%(0.24)

0.59∗∗∗
106%(0.18)

0.54∗∗∗
118%(0.16)

0.73∗∗∗
195%(0.12)

GMMA: b̂1 10.18∗∗∗
25%(4.61)

7.27∗∗∗
383%(2.65)

3.30∗∗
581%(2.47)

5.42∗∗∗
95%(1.93)

2.91∗∗∗
30%(1.50)

7.40∗∗∗
243%(2.24)

GMMA: b̂2 19.70∗∗∗
142%(3.27)

12.93∗∗∗
759%(2.08)

× 10.28∗∗∗
271%(1.71)

4.80∗∗∗
115%(1.43)

0.59
−73%(1.43)

GMMB: b̂1 12.00∗∗∗
47%(6.32)

6.93∗∗∗
361%(3.08)

2.39
394%(2.54)

4.57∗∗∗
65%(2.06)

2.51∗∗
12%(1.59)

7.47∗∗∗
246%(2.26)

GMMB: b̂2 16.53∗∗∗
103%(5.00)

7.19∗∗∗
378%(2.68)

3.33∗∗
587%(2.30)

6.41∗∗∗
131%(1.91)

2.79∗∗∗
25%(1.50)

0.37
−83%(1.44)

GMMC: b̂ 63.97∗∗∗
686%(17.11)

−6.74
−548%(5.27)

× × × ×
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Panel E. N Industry Portfolios

T = 60 T = 120 T = 240 T = 360 T = 480 T = 948

λ = Ef 0.80 0.29 0.06 0.29 0.25 0.25

b = λ

E
(

Rem2
) 8.14 1.50 0.49 2.77 2.24 2.16

N = 5

Beta: λ̂OLS 0.82
3%(0.76)

−0.61
−314%(1.09)

× −0.65
−325%(0.62)

−0.55
−322%(0.50)

−0.81
−430%(0.58)

Beta: λ̂GLS 0.80
1%(0.76)

−0.14
−149%(0.96)

× −0.59
−305%(0.60)

−0.43
−276%(0.45)

−0.47
−292%(0.49)

Beta: λ̂WLS 0.75
−6%(0.73)

−0.12
−141%(0.89)

× −0.62
−315%(0.57)

−0.44
−277%(0.42)

−0.45
−282%(0.43)

GMMA: b̂1 9.36
15%(7.42)

−2.73
−281%(7.95)

× −7.46
−369%(7.40)

−6.43
−387%(5.25)

−9.34
−533%(6.10)

GMMA: b̂2 9.19
13%(7.42)

1.11
−26%(6.81)

× −6.64
−340%(7.05)

−5.05
−326%(4.58)

−5.72
−365%(5.17)

GMMB: b̂1 10.99
35%(9.83)

−3.06
−303%(8.17)

× −7.57
−373%(7.33)

−6.47
−389%(5.25)

−9.40
−536%(6.09)

GMMB: b̂2 10.40
28%(9.80)

0.83
−45%(7.04)

× −6.76
−344%(7.00)

−5.08
−327%(4.58)

−5.77
−367%(5.16)

GMMC: b̂ 11.24
38%(10.04)

0.45
−70%(8.02)

× −6.80
−345%(7.24)

−5.16
−331%(5.14)

−6.34
−394%(5.83)

N = 17

Beta: λ̂OLS 0.58∗
−27%(0.53)

−0.38
−231%(0.67)

× −0.59
−304%(0.33)

−0.35
−241%(0.26)

−0.23
−193%(0.18)

Beta: λ̂GLS 0.50
−38%(0.47)

−0.83
−388%(0.56)

× −0.38
−233%(0.27)

−0.24
−197%(0.23)

−0.18
−171%(0.17)

Beta: λ̂WLS 0.59∗
−26%(0.48)

−0.68
−339%(0.54)

× −0.64
−324%(0.26)

−0.40
−263%(0.23)

−0.27
−208%(0.17)

GMMA: b̂1 7.88∗∗
−3%(5.65)

−1.26
−184%(4.31)

× −6.51
−335%(3.72)

−4.35
−295%(2.66)

−3.63
−268%(1.78)

GMMA: b̂2 12.40∗∗∗
52%(4.55)

−5.11
−439%(3.64)

× −5.20
−288%(3.07)

−3.90
−275%(2.32)

−3.06
−242%(1.64)

GMMB: b̂1 8.11∗
0%(7.28)

−1.79
−219%(4.35)

× −6.90
−349%(3.74)

−4.51
−302%(2.67)

−3.67
−270%(1.80)

GMMB: b̂2 6.45
−21%(6.09)

−5.85
−489%(3.63)

× −5.60
−302%(3.09)

−4.01
−280%(2.33)

−3.09
−243%(1.65)

GMMC: b̂ −7.06
−187%(16.68)

−8.09
−638%(4.63)

× −6.56
−337%(3.76)

−4.51
−302%(2.69)

−3.35
−255%(1.79)

N = 30

Beta: λ̂OLS 0.76∗∗
−5%(0.55)

0.10
−65%(0.63)

−0.45
−851%(0.39)

−0.56
−295%(0.30)

−0.30
−223%(0.22)

−0.06
−126%(0.16)

Beta: λ̂GLS 0.81∗∗∗
2%(0.45)

−0.54
−289%(0.48)

−0.37
−713%(0.30)

−0.26
−190%(0.22)

−0.17
−168%(0.19)

−0.15
−161%(0.15)

Beta: λ̂WLS 0.91∗∗∗
15%(0.48)

−0.43
−249%(0.50)

−0.53
−992%(0.29)

−0.51
−277%(0.23)

−0.28
−216%(0.20)

−0.18
−172%(0.15)

GMMA: b̂1 10.30∗∗
26%(6.34)

3.12
107%(4.04)

−3.67
−858%(3.77)

−6.43
−332%(3.41)

−3.94
−276%(2.26)

−2.04
−194%(1.61)

GMMA: b̂2 17.25∗∗∗
112%(3.73)

0.93
−38%(3.15)

−4.07
−940%(2.89)

−3.74
−235%(2.51)

−2.88
−229%(1.93)

−2.95
−237%(1.44)

GMMB: b̂1 10.38∗
28%(8.78)

1.97
31%(4.20)

−4.04
−932%(3.88)

−6.86
−348%(3.45)

−4.18
−287%(2.29)

−2.09
−197%(1.62)

GMMB: b̂2 10.23∗∗∗
26%(5.72)

−2.16
−244%(3.29)

× −4.23
−253%(2.54)

−3.06
−237%(1.95)

−2.96
−237%(1.45)

GMMC: b̂ 12.88∗
58%(10.00)

−9.35
−721%(5.34)

× −5.50
−299%(3.43)

−3.47
−255%(2.28)

−3.78
−275%(1.74)
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3.6.4 Value risk premium in Fama-French model

The following five panels report the estimate values, the bias from the risk pre-

mium in percent values, the standard error in parenthesis, and t-statistics. Each

panel corresponds to a one set of test portfolios. T is 60 (January 2001 - Decem-

ber 2005), 120, 240, 360, 480 and 948 (January 1927 - December 2005) monthly

observations. The two-pass (Fama-MacBeth) cross-sectional estimate is the slope

coefficient λ in E (Re) = βλ calculated by OLS, GLS and WLS. Next, we turn

from beta representation to a discount factor formulation for GMM approach. The

GMMA and GMMB first and second-stage estimates are the parameters 100 × b in

E (Re) = E (Ref ′) b (returns on second moments, following Hansen and Jagannathan

[49]) and E (Re) = E
(
Ref̃ ′

)
b (returns on covariances, following Cochrane [25])

respectively. The GMMC is the continuous updating estimate (following Hansen,

Heaton and Yaron [47]).
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Panel A. N Portfolios formed on ME

T = 60 T = 120 T = 240 T = 360 T = 480 T = 948

λ = Ef 0.78 0.46 0.34 0.43 0.43 0.41

b = λ
E(Rem2)

7.50 2.90 3.26 4.44 4.70 3.10

N = 5

Beta: λ̂OLS 2.10∗∗
168%(1.01)

−1.22
−366%(1.05)

−0.04
−112%(1.07)

0.23
−46%(0.92)

0.46
7%(0.84)

−0.00
−101%(0.58)

Beta: λ̂GLS 1.73∗∗
121%(0.89)

−0.24
−152%(0.92)

0.80
135%(0.97)

0.52
22%(0.81)

0.52
20%(0.71)

0.16
−62%(0.47)

Beta: λ̂WLS 1.99∗
154%(1.25)

−0.93
−303%(0.77)

0.26
−25%(0.76)

0.32
−26%(0.66)

0.48
11%(0.62)

−0.00
−101%(0.59)

GMMA: b̂1 25.84∗∗
245%(9.23)

−7.37
−354%(11.56)

4.22
29%(13.10)

6.72
51%(10.95)

8.02
71%(10.02)

−0.82
−126%(4.42)

GMMA: b̂2 23.09∗∗
208%(8.79)

7.38
155%(9.41)

14.27
337%(11.10)

10.01
125%(9.48)

8.48
80%(8.70)

0.43
−86%(3.64)

GMMB: b̂1 28.95∗∗
286%(14.41)

−8.78
−403%(11.11)

2.86
−12%(14.43)

6.98
57%(12.44)

8.41
79%(11.17)

−0.85
−127%(4.48)

GMMB: b̂2 28.69∗∗
283%(13.30)

4.67
61%(9.58)

14.10
332%(12.40)

10.72
141%(10.84)

8.81
88%(9.66)

0.41
−87%(3.70)

GMMC: b̂ 35.79∗∗
377%(17.20)

11.57
300%(11.91)

18.33
462%(17.64)

11.25
153%(13.02)

9.44
101%(11.31)

0.44
−86%(4.44)

N = 10

Beta: λ̂OLS 1.76∗∗∗
125%(0.74)

−0.81
−276%(0.85)

0.22
−35%(0.54)

0.19
−57%(0.51)

0.26
−40%(0.43)

0.36
−12%(0.33)

Beta: λ̂GLS 0.94∗∗
20%(0.63)

0.44
−4%(0.62)

0.30
−12%(0.43)

0.04
−90%(0.43)

0.14
−66%(0.38)

0.23
−45%(0.25)

Beta: λ̂WLS 1.86∗∗∗
137%(0.72)

−0.07
−115%(0.53)

0.36
6%(0.37)

0.25
−41%(0.35)

0.28
−34%(0.32)

0.26
−37%(0.28)

GMMA: b̂1 28.93∗∗∗
286%(7.83)

−1.59
−155%(8.16)

7.62∗
134%(6.50)

6.64
49%(6.18)

5.72
22%(5.42)

2.11
−32%(2.25)

GMMA: b̂2 27.50∗∗∗
267%(7.46)

10.84∗∗
274%(5.86)

9.70∗∗
197%(5.34)

6.45∗
45%(5.43)

4.73
1%(4.90)

1.42
−54%(1.78)

GMMB: b̂1 24.61∗∗∗
228%(11.01)

−4.25
−247%(8.80)

6.57
101%(7.41)

6.38
44%(6.96)

5.65
20%(5.83)

2.14
−31%(2.31)

GMMB: b̂2 20.63∗∗∗
175%(10.16)

7.63∗
164%(6.45)

7.67∗
135%(5.98)

4.84
9%(6.02)

4.03
−14%(5.25)

1.43
−54%(1.83)

GMMC: b̂ × 20.42∗∗
605%(10.91)

12.91∗∗
295%(8.31)

7.10
60%(7.03)

5.19
10%(5.83)

1.47
−53%(2.32)
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Panel B. N Portfolios formed on BE/ME

T = 60 T = 120 T = 240 T = 360 T = 480 T = 948

λ = Ef 0.78 0.46 0.34 0.43 0.43 0.41

b = λ
E(Rem2)

7.50 2.90 3.26 4.44 4.70 3.10

N = 5

Beta: λ̂OLS 0.56
−28%(0.48)

0.52
13%(0.84)

0.16
−54%(0.44)

0.19
−55%(0.27)

0.24
−43%(0.20)

0.31∗∗
−24%(0.15)

Beta: λ̂GLS 0.60
−23%(0.46)

0.34
−27%(0.73)

0.25
−28%(0.40)

0.18
−57%(0.26)

0.28∗
−35%(0.19)

0.31∗∗
−25%(0.15)

Beta: λ̂WLS 0.58
−25%(0.50)

0.51
12%(0.97)

0.16
−53%(0.42)

0.19
−55%(0.24)

0.24
−44%(0.18)

0.31∗∗
−23%(0.14)

GMMA: b̂1 7.71∗
3%(4.91)

4.49
55%(4.22)

4.88∗
50%(3.08)

7.00∗∗∗
58%(1.89)

5.56∗∗∗
18%(1.74)

1.75∗
−44%(1.12)

GMMA: b̂2 8.30∗
11%(4.57)

5.41
87%(4.05)

4.69∗
44%(3.00)

7.00∗∗∗
58%(1.89)

5.81∗∗∗
24%(1.71)

1.66∗
−47%(1.11)

GMMB: b̂1 8.94∗
19%(6.19)

4.52
56%(4.75)

5.12∗
57%(3.37)

7.56∗∗∗
70%(2.22)

5.82∗∗∗
24%(1.90)

1.78∗
−43%(1.14)

GMMB: b̂2 9.55∗
27%(5.86)

5.60
93%(4.53)

4.90∗
50%(3.28)

7.56∗∗∗
70%(2.22)

6.07∗∗∗
29%(1.87)

1.69∗
−46%(1.13)

GMMC: b̂ 9.64∗
29%(6.24)

5.44
88%(4.75)

5.33∗
63%(3.39)

7.57∗∗∗
70%(2.23)

6.11∗∗∗
30%(1.90)

1.70∗
−45%(1.14)

N = 10

Beta: λ̂OLS 0.51
−35%(0.48)

0.34
−26%(0.73)

0.18
−46%(0.35)

0.29∗
−33%(0.23)

0.25∗
−42%(0.19)

0.30∗∗∗
−27%(0.14)

Beta: λ̂GLS 0.57∗
−26%(0.44)

0.35
−24%(0.61)

0.28
−19%(0.32)

0.30∗
−31%(0.22)

0.27∗∗
−37%(0.18)

0.33∗∗∗
−19%(0.14)

Beta: λ̂WLS 0.52
−34%(0.48)

0.33
−27%(0.66)

0.21
−39%(0.31)

0.29∗
−33%(0.21)

0.25∗∗
−42%(0.17)

0.30∗∗∗
−28%(0.13)

GMMA: b̂1 7.13∗
−5%(5.20)

4.89∗
69%(3.53)

4.58∗∗
40%(2.69)

6.98∗∗∗
57%(1.91)

5.51∗∗∗
17%(1.75)

1.67∗∗
−46%(1.12)

GMMA: b̂2 7.89∗∗
5%(4.35)

5.59∗∗
93%(3.37)

4.32∗∗
32%(2.63)

7.01∗∗∗
58%(1.89)

5.66∗∗∗
21%(1.72)

1.74∗∗
−44%(1.10)

GMMB: b̂1 8.29∗
11%(6.41)

5.04∗
74%(3.98)

4.79∗∗
47%(2.94)

7.48∗∗∗
68%(2.21)

5.76∗∗∗
23%(1.90)

1.70∗∗
−45%(1.14)

GMMB: b̂2 8.49∗∗
13%(5.55)

5.49∗∗
90%(3.79)

4.44∗∗
36%(2.86)

7.43∗∗∗
67%(2.19)

5.89∗∗∗
25%(1.87)

1.74∗∗
−44%(1.12)

GMMC: b̂ 9.26∗
24%(6.59)

5.83∗∗
101%(4.05)

4.49∗∗
38%(3.05)

7.50∗∗∗
69%(2.22)

5.91∗∗∗
26%(1.91)

1.81∗∗
−42%(1.14)
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Panel C. N Portfolios formed by the intersections of ME and

BE/ME

T = 60 T = 120 T = 240 T = 360 T = 480 T = 948

λ = Ef 0.78 0.46 0.34 0.43 0.43 0.41

b = λ

E
(

Rem2
) 7.50 2.90 3.26 4.44 4.70 3.10

N = 6

Beta: λ̂OLS 0.82∗∗
4%(0.40)

0.49∗
7%(0.36)

0.36∗∗
5%(0.21)

0.45∗∗∗
5%(0.16)

0.43∗∗∗
1%(0.14)

0.40∗∗∗
−1%(0.12)

Beta: λ̂GLS 0.78∗∗
0%(0.40)

0.46∗
0%(0.36)

0.34∗∗
0%(0.21)

0.43∗∗∗
0%(0.16)

0.43∗∗∗
0%(0.14)

0.41∗∗∗
0%(0.12)

Beta: λ̂WLS 0.78∗∗
−1%(0.42)

0.45∗
−1%(0.37)

0.36∗∗
5%(0.22)

0.45∗∗∗
6%(0.17)

0.45∗∗∗
4%(0.14)

0.39∗∗∗
−4%(0.12)

GMMA: b̂1 10.02∗∗∗
34%(4.07)

8.60∗∗∗
197%(2.90)

7.92∗∗∗
143%(2.30)

9.31∗∗∗
110%(1.77)

7.66∗∗∗
63%(1.48)

2.48∗∗∗
−20%(0.83)

GMMA: b̂2 11.92∗∗∗
59%(3.89)

10.91∗∗∗
277%(2.85)

8.66∗∗∗
165%(2.29)

9.90∗∗∗
123%(1.76)

8.45∗∗∗
80%(1.46)

2.21∗∗∗
−29%(0.82)

GMMB: b̂1 11.74∗∗
57%(5.78)

9.16∗∗∗
216%(3.61)

8.31∗∗∗
155%(2.70)

10.03∗∗∗
126%(2.19)

8.03∗∗∗
71%(1.70)

2.53∗∗∗
−19%(0.86)

GMMB: b̂2 12.27∗∗
64%(5.60)

8.77∗∗∗
203%(3.60)

7.29∗∗∗
123%(2.68)

9.31∗∗∗
110%(2.18)

8.21∗∗∗
75%(1.69)

2.19∗∗∗
−30%(0.85)

GMMC: b̂ 13.78∗∗
84%(6.31)

27.46∗∗∗
848%(8.33)

10.54∗∗∗
223%(2.90)

11.04∗∗∗
149%(2.27)

9.03∗∗∗
92%(1.74)

2.26∗∗∗
−27%(0.85)

N = 25

Beta: λ̂OLS 0.81∗∗∗
4%(0.42)

0.51∗∗
12%(0.37)

0.37∗∗∗
9%(0.21)

0.47∗∗∗
9%(0.17)

0.47∗∗∗
10%(0.14)

0.44∗∗∗
7%(0.12)

Beta: λ̂GLS 0.76∗∗∗
−2%(0.40)

0.45∗
−3%(0.36)

0.34∗∗
−2%(0.21)

0.43∗∗∗
1%(0.16)

0.44∗∗∗
2%(0.14)

0.39∗∗∗
−6%(0.12)

Beta: λ̂WLS 0.67∗∗
−15%(0.41)

0.34
−27%(0.37)

0.27∗
−21%(0.21)

0.41∗∗∗
−4%(0.17)

0.44∗∗∗
2%(0.14)

0.37∗∗∗
−10%(0.12)

GMMA: b̂1 10.21∗∗∗
36%(4.06)

9.29∗∗∗
221%(2.93)

8.37∗∗∗
156%(2.39)

9.63∗∗∗
117%(1.85)

8.18∗∗∗
74%(1.53)

2.79∗∗∗
−10%(0.88)

GMMA: b̂2 19.87∗∗∗
165%(2.95)

19.17∗∗∗
562%(2.36)

15.91∗∗∗
387%(2.04)

13.21∗∗∗
198%(1.67)

10.55∗∗∗
125%(1.44)

2.07∗∗∗
−33%(0.85)

GMMB: b̂1 11.80∗∗∗
57%(5.85)

9.85∗∗∗
240%(3.73)

8.73∗∗∗
168%(2.82)

10.34∗∗∗
133%(2.30)

8.57∗∗∗
82%(1.77)

2.81∗∗∗
−9%(0.91)

GMMB: b̂2 15.91∗∗∗
112%(4.72)

11.09∗∗∗
283%(3.39)

9.62∗∗∗
195%(2.58)

10.28∗∗∗
131%(2.13)

9.11∗∗∗
94%(1.70)

1.97∗∗∗
−36%(0.87)

GMMC: b̂ 70.51∗∗∗
841%(27.38)

× × 22.05∗∗∗
397%(4.01)

14.01∗∗∗
198%(2.19)

8.15∗∗∗
163%(1.53)

N = 100

Beta: λ̂OLS 0.50∗∗
10%(0.38)

0.35∗∗
4%(0.22)

0.46∗∗∗
6%(0.17)

0.45∗∗∗
5%(0.14)

0.46∗∗∗
11%(0.13)

Beta: λ̂GLS 0.38∗
−16%(0.36)

0.26∗
−24%(0.21)

0.39∗∗∗
−9%(0.16)

0.42∗∗∗
−3%(0.14)

0.42∗∗∗
2%(0.12)

Beta: λ̂WLS 0.36
−22%(0.36)

0.29∗∗
−16%(0.21)

0.44∗∗∗
2%(0.17)

0.43∗∗∗
1%(0.14)

0.38∗∗∗
−8%(0.12)

GMMA: b̂1 9.57∗∗∗
230%(3.01)

8.41∗∗∗
158%(2.44)

9.65∗∗∗
117%(1.89)

7.99∗∗∗
70%(1.56)

2.88∗∗∗
−7%(0.86)

GMMA: b̂2 × 21.71∗∗∗
565%(1.77)

17.14∗∗∗
286%(1.46)

12.97∗∗∗
176%(1.35)

2.40∗∗∗
−23%(0.80)

GMMB: b̂1 9.99∗∗∗
245%(3.84)

8.67∗∗∗
166%(2.88)

10.28∗∗∗
131%(2.35)

8.28∗∗∗
76%(1.79)

2.91∗∗∗
−6%(0.89)

GMMB: b̂2 11.09∗∗∗
283%(2.58)

8.17∗∗∗
150%(2.33)

9.76∗∗∗
120%(1.92)

8.24∗∗∗
75%(1.61)

2.28∗∗∗
−27%(0.82)

GMMC: b̂ −15.19
−624%(4.23)

× 26.00∗∗∗
485%(4.01)

22.74∗∗∗
384%(3.17)

2.60∗∗∗
−16%(0.95)
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Panel D. N Portfolios formed on ME MOM

T = 60 T = 120 T = 240 T = 360 T = 480 T = 948

λ = Ef 0.78 0.46 0.34 0.43 0.43 0.41

b = λ
E(Rem2)

7.50 2.90 3.26 4.44 4.70 3.10

N = 6

Beta: λ̂OLS 0.63
−19%(0.73)

−0.48
−204%(0.54)

−0.81
−336%(0.37)

−0.83
−294%(0.35)

−1.33
−410%(0.38)

−1.76
−530%(0.34)

Beta: λ̂GLS 0.53
−32%(0.56)

0.31
−33%(0.44)

0.13
−61%(0.29)

0.29
−33%(0.25)

0.18
−59%(0.22)

−0.32
−178%(0.22)

Beta: λ̂WLS 0.55
−30%(0.53)

−0.39
−184%(0.50)

−0.67
−296%(0.32)

−0.59
−238%(0.28)

−0.86
−301%(0.24)

−1.36
−431%(0.20)

GMMA: b̂1 8.90∗
19%(6.81)

3.46
19%(4.29)

−1.08
−133%(4.33)

1.52
−66%(3.61)

−10.37
−321%(4.77)

−15.40
−596%(5.27)

GMMA: b̂2 7.57∗
1%(5.23)

9.34∗∗∗
222%(3.79)

7.39∗∗
126%(4.00)

10.93∗∗∗
146%(3.13)

4.98∗
6%(3.45)

1.86
−40%(3.07)

GMMB: b̂1 10.28
37%(8.78)

−0.21
−107%(5.06)

−7.74
−337%(4.82)

−7.69
−273%(4.58)

−15.75
−435%(5.75)

−15.30
−593%(5.09)

GMMB: b̂2 6.20
−17%(6.68)

6.65∗
130%(4.23)

0.72
−78%(4.21)

3.14
−29%(3.69)

2.63
−44%(3.97)

0.95
−69%(3.03)

GMMC: b̂ 8.16
9%(8.84)

20.95∗∗
624%(11.14)

× × × ×

N = 25

Beta: λ̂OLS 0.84∗
7%(0.66)

0.19
−59%(0.41)

−0.05
−116%(0.27)

−0.01
−102%(0.24)

−0.42
−198%(0.23)

−1.27
−410%(0.27)

Beta: λ̂GLS 0.60∗
−24%(0.46)

0.31
−32%(0.40)

0.40∗∗
17%(0.26)

0.59∗∗∗
38%(0.22)

0.34∗∗∗
−22%(0.19)

0.21∗
−49%(0.18)

Beta: λ̂WLS 0.89∗∗∗
14%(0.45)

−0.06
−112%(0.40)

−0.32
−193%(0.24)

−0.21
−148%(0.20)

−0.46
−208%(0.17)

−1.10
−369%(0.15)

GMMA: b̂1 11.42∗∗∗
52%(6.10)

8.72∗∗∗
201%(3.55)

6.38∗∗
95%(3.76)

8.58∗∗∗
93%(2.86)

1.04
−78%(2.51)

−10.85
−450%(3.54)

GMMA: b̂2 17.20∗∗∗
129%(3.15)

15.93∗∗∗
450%(2.83)

18.77∗∗∗
475%(3.02)

21.37∗∗∗
381%(2.30)

9.00∗∗∗
92%(2.15)

3.32∗∗
7%(2.12)

GMMB: b̂1 13.22∗∗
76%(8.39)

7.23∗∗
150%(4.26)

3.02
−8%(3.95)

3.91∗
−12%(3.22)

−3.43
−173%(2.89)

−11.23
−462%(3.60)

GMMB: b̂2 15.88∗∗∗
112%(4.57)

7.07∗∗∗
144%(3.68)

6.92∗∗∗
112%(3.59)

10.09∗∗∗
127%(2.88)

3.05∗
−35%(2.39)

2.59∗
−17%(2.15)

GMMC: b̂ 44.15∗∗∗
489%(19.71)

5.15
78%(7.48)

× × × ×
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Panel E. N Industry Portfolios

T = 60 T = 120 T = 240 T = 360 T = 480 T = 948

λ = Ef 0.78 0.46 0.34 0.43 0.43 0.41

b = λ

E
(

Rem2
) 7.50 2.90 3.26 4.44 4.70 3.10

N = 5

Beta: λ̂OLS 0.79∗
1%(0.52)

0.22
−51%(0.42)

0.06
−82%(0.27)

0.04
−90%(0.23)

0.01
−97%(0.21)

−0.08
−121%(0.18)

Beta: λ̂GLS 0.79∗
1%(0.52)

0.21
−55%(0.42)

0.06
−84%(0.26)

0.04
−90%(0.23)

0%
−100%(0.21)

−0.10
−125%(0.17)

Beta: λ̂WLS 0.79∗
1%(0.48)

0.23
−49%(0.41)

0.08
−76%(0.26)

0.04
−91%(0.23)

0.01
−98%(0.20)

−0.09
−121%(0.17)

GMMA: b̂1 10.18∗∗
36%(5.36)

2.72
−6%(5.92)

−1.26
−139%(5.36)

1.04
−77%(4.08)

0.70
−85%(2.96)

−1.27
−141%(1.77)

GMMA: b̂2 10.73∗∗
43%(5.12)

5.07
75%(5.42)

0.12
−96%(5.23)

1.18
−73%(4.05)

0.62
−87%(2.95)

−1.61
−152%(1.75)

GMMB: b̂1 12.02∗
60%(7.38)

2.60
−10%(6.34)

−1.35
−141%(5.43)

1.04
−76%(4.18)

0.69
−85%(2.98)

−1.28
−141%(1.77)

GMMB: b̂2 12.42∗
66%(7.11)

4.97
72%(5.86)

−0.12
−104%(5.32)

1.18
−73%(4.14)

0.61
−87%(2.98)

−1.62
−152%(1.74)

GMMC: b̂ 12.70∗
69%(7.52)

4.87
68%(6.14)

−0.35
−111%(5.27)

1.19
−73%(4.10)

0.65
−86%(2.88)

−1.56
−150%(1.62)

N = 17

Beta: λ̂OLS 0.81∗∗
4%(0.52)

0.12
−73%(0.42)

0.04
−88%(0.26)

0.04
−92%(0.22)

−0.02
−106%(0.18)

−0.03
−108%(0.16)

Beta: λ̂GLS 0.35
−55%(0.45)

0.14
−70%(0.39)

−0.03
−108%(0.23)

−0.07
−117%(0.20)

−0.12
−127%(0.17)

−0.06
−114%(0.15)

Beta: λ̂WLS 0.75∗∗
−5%(0.46)

0.21
−54%(0.39)

0.07
−81%(0.24)

0.02
−96%(0.20)

0.03
−94%(0.17)

0.01
−99%(0.16)

GMMA: b̂1 10.57∗∗∗
41%(5.52)

2.80
−3%(4.35)

0.92
−72%(3.99)

1.48
−67%(3.62)

0.85
−82%(2.61)

−0.97
−131%(1.30)

GMMA: b̂2 14.85∗∗∗
98%(4.11)

1.80
−38%(3.90)

−0.56
−117%(3.36)

0.57
−87%(2.96)

−0.41
−109%(2.35)

−1.29
−142%(1.23)

GMMB: b̂1 11.92∗∗
59%(7.32)

2.40
−17%(4.59)

0.75
−77%(4.11)

1.15
−74%(3.71)

0.63
−87%(2.63)

−1.01
−133%(1.30)

GMMB: b̂2 9.90∗∗
32%(5.72)

−0.12
−104%(4.06)

−1.03
−131%(3.45)

−0.19
−104%(3.02)

−0.85
−118%(2.36)

−1.32
−143%(1.23)

GMMC: b̂ 56.16∗∗∗
649%(19.29)

−0.79
−127%(5.38)

−1.32
−140%(4.38)

−0.99
−122%(3.63)

−1.14
−124%(2.62)

−1.33
−143%(1.31)

N = 30

Beta: λ̂OLS 0.90∗∗
15%(0.53)

0.19
−59%(0.41)

0.06
−82%(0.25)

−0.02
−105%(0.21)

−0.04
−110%(0.18)

−0.19
−147%(0.18)

Beta: λ̂GLS 0.46∗
−41%(0.43)

0.08
−82%(0.38)

−0.06
−119%(0.23)

−0.08
−118%(0.19)

−0.10
−123%(0.16)

−0.10
−125%(0.15)

Beta: λ̂WLS 0.62∗∗
−20%(0.44)

0.10
−79%(0.39)

−0.02
−107%(0.23)

−0.09
−120%(0.19)

−0.08
−118%(0.17)

−0.13
−131%(0.16)

GMMA: b̂1 11.59∗∗∗
55%(4.92)

6.27∗∗
116%(3.82)

2.25
−31%(3.69)

1.09
−76%(3.43)

1.04
−78%(2.56)

−2.28
−174%(1.50)

GMMA: b̂2 16.22∗∗∗
116%(3.09)

7.15∗∗∗
147%(3.29)

0.67
−79%(3.04)

1.39
−69%(2.70)

0.56
−88%(2.20)

−2.09
−167%(1.22)

GMMB: b̂1 13.25∗∗∗
77%(7.12)

5.42∗
87%(4.28)

1.94
−41%(3.85)

0.70
−84%(3.51)

0.68
−86%(2.58)

−2.39
−177%(1.50)

GMMB: b̂2 12.01∗∗∗
60%(4.68)

2.18
−25%(3.73)

−0.57
−117%(3.15)

0.11
−98%(2.77)

−0.17
−104%(2.23)

−2.14
−169%(1.23)

GMMC: b̂ 15.88∗∗∗
112%(8.86)

−12.40
−528%(6.42)

0.00
−100%(3.92)

−0.40
−109%(3.43)

−1.17
−125%(2.54)

−2.72
−188%(1.59)
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3.6.5 Market risk premium in RUH model

The following five panels report the estimate values, the bias from the risk pre-

mium in percent values, the standard error in parenthesis, and t-statistics. Each

panel corresponds to a one set of test portfolios. T is 60 (January 2001 - Decem-

ber 2005), 120, 240, 360, 480 and 948 (January 1927 - December 2005) monthly

observations. The two-pass (Fama-MacBeth) cross-sectional estimate is the slope

coefficient λ in E (Re) = βλ calculated by OLS, GLS and WLS. Next, we turn

from beta representation to a discount factor formulation for GMM approach. The

GMMA and GMMB first and second-stage estimates are the parameters 100 × b in

E (Re) = E (Ref ′) b (returns on second moments, following Hansen and Jagannathan

[49]) and E (Re) = E
(
Ref̃ ′

)
b (returns on covariances, following Cochrane [25])

respectively. The GMMC is the continuous updating estimate (following Hansen,

Heaton and Yaron [47]).
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Panel A. N Portfolios formed on ME

T = 60 T = 120 T = 240 T = 360 T = 480 T = 948

λ = Ef 0.13 0.56 0.64 0.62 0.44 0.64

b = λ
E(Rem2)

0.66 2.52 3.15 3.11 2.11 2.11

N = 5

Beta: λ̂OLS 0.11
−20%(0.58)

0.61
9%(0.44)

0.70∗∗
8%(0.30)

0.70∗∗∗
13%(0.24)

0.59∗∗
34%(0.24)

0.67∗∗∗
4%(0.18)

Beta: λ̂GLS 0.07
−44%(0.57)

0.68∗
22%(0.43)

0.70∗∗
10%(0.29)

0.68∗∗
9%(0.23)

0.48∗∗
10%(0.21)

0.67∗∗∗
4%(0.18)

Beta: λ̂WLS 0.04
−68%(0.59)

0.64∗
16%(0.43)

0.70∗∗
9%(0.29)

0.69∗∗
11%(0.24)

0.52∗∗
19%(0.25)

0.67∗∗∗
4%(0.18)

GMMA: b̂1 5.45
723%(11.51)

8.18∗
224%(5.63)

7.06∗∗
124%(3.30)

5.98∗
92%(4.10)

7.78
269%(7.16)

3.32∗
57%(1.85)

GMMA: b̂2 1.33
101%(8.76)

9.51∗
277%(5.06)

7.04∗∗
123%(3.24)

5.18∗
66%(3.45)

4.65
120%(4.94)

3.25∗∗
54%(1.58)

GMMB: b̂1 7.11
973%(17.01)

8.49
237%(8.08)

8.45∗
168%(4.73)

7.01
125%(5.45)

5.01
137%(5.33)

3.77∗
79%(2.57)

GMMB: b̂2 1.19
79%(12.39)

11.15∗
342%(7.02)

8.28∗
163%(4.62)

6.00
93%(4.84)

4.99
137%(5.29)

3.67∗
74%(2.18)

GMMC: b̂ 2.31
249%(14.95)

13.02
416%(10.39)

8.68∗
175%(4.73)

6.33
103%(4.93)

× 3.68∗
74%(2.53)

N = 10

Beta: λ̂OLS 0.18
34%(0.59)

0.60∗
8%(0.44)

0.69∗∗∗
8%(0.30)

0.71∗∗∗
15%(0.24)

0.59∗∗∗
34%(0.23)

0.67∗∗∗
4%(0.18)

Beta: λ̂GLS 0.11
−20%(0.57)

0.67∗∗
20%(0.43)

0.71∗∗∗
10%(0.29)

0.68∗∗∗
10%(0.23)

0.48∗∗∗
10%(0.21)

0.66∗∗∗
3%(0.18)

Beta: λ̂WLS 0.06
−55%(0.59)

0.64∗∗
15%(0.43)

0.70∗∗∗
9%(0.29)

0.70∗∗∗
12%(0.24)

0.53∗∗∗
22%(0.21)

0.66∗∗∗
3%(0.18)

GMMA: b̂1 2.36
256%(8.20)

7.65∗∗∗
204%(3.80)

6.24∗∗∗
98%(2.58)

4.42∗∗
42%(2.37)

4.16∗∗∗
97%(2.15)

2.12∗∗∗
0%(0.99)

GMMA: b̂2 × 7.98∗∗∗
216%(2.88)

6.02∗∗∗
91%(2.26)

4.25∗∗∗
36%(1.99)

3.52∗∗
67%(2.01)

2.24∗∗∗
6%(0.87)

GMMB: b̂1 1.02
54%(11.07)

7.96∗∗
215%(5.22)

6.91∗∗∗
119%(3.29)

4.93∗∗
58%(2.88)

2.90
38%(2.68)

2.12∗∗
0%(1.12)

GMMB: b̂2 × 8.88∗∗∗
252%(3.87)

6.15∗∗∗
95%(2.89)

4.51∗∗
45%(2.52)

3.60∗∗
71%(2.23)

2.24∗∗∗
6%(0.98)

GMMC: b̂ × 9.74∗∗
286%(5.69)

7.34∗∗∗
133%(3.37)

4.94∗∗
59%(2.77)

4.57∗∗
116%(2.73)

2.26∗∗∗
7%(1.12)
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Panel B. N Portfolios formed on BE/ME

T = 60 T = 120 T = 240 T = 360 T = 480 T = 948

λ = Ef 0.13 0.56 0.64 0.62 0.44 0.64

b = λ
E(Rem2)

0.66 2.52 3.15 3.11 2.11 2.11

N = 5

Beta: λ̂OLS 0.07
−44%(0.58)

0.81
45%(0.85)

0.64∗∗
0%(0.31)

0.64∗∗
3%(0.24)

0.45∗∗
3%(0.21)

0.67∗∗∗
4%(0.18)

Beta: λ̂GLS 0.06
−53%(0.58)

0.78
39%(0.74)

0.65∗∗
1%(0.31)

0.66∗∗
5%(0.24)

0.47∗∗
7%(0.21)

0.67∗∗∗
5%(0.18)

Beta: λ̂WLS 0.06
−55%(0.58)

0.80
43%(0.86)

0.64∗∗
0%(0.31)

0.65∗∗
4%(0.24)

0.46∗∗
4%(0.21)

0.67∗∗∗
4%(0.18)

GMMA: b̂1 × 16.97
573%(27.03)

1.43
−55%(14.56)

5.38∗∗∗
73%(1.54)

3.05
45%(2.24)

2.69∗
28%(1.44)

GMMA: b̂2 × 17.05
576%(25.32)

2.87
−9%(11.66)

5.47∗∗∗
76%(1.52)

3.97∗∗
88%(1.92)

2.83∗∗
34%(1.40)

GMMB: b̂1 × 26.50
951%(72.71)

0.56
−82%(14.81)

5.73∗∗
84%(2.10)

2.60
23%(2.97)

2.82∗
33%(1.72)

GMMB: b̂2 × 26.83
964%(70.17)

1.88
−40%(12.12)

6.02∗∗∗
93%(2.04)

3.96∗
88%(2.43)

3.00∗
42%(1.68)

GMMC: b̂ × × 0.27
−91%(15.54)

5.98∗∗
92%(2.20)

3.43
63%(2.71)

3.11∗
47%(1.76)

N = 10

Beta: λ̂OLS 0.09
−32%(0.58)

0.59∗
6%(0.43)

0.67∗∗∗
4%(0.29)

0.63∗∗∗
2%(0.24)

0.45∗∗∗
3%(0.21)

0.69∗∗∗
8%(0.18)

Beta: λ̂GLS 0.06
−55%(0.57)

0.58∗
3%(0.43)

0.68∗∗∗
5%(0.29)

0.64∗∗∗
2%(0.24)

0.47∗∗∗
6%(0.21)

0.69∗∗∗
8%(0.18)

Beta: λ̂WLS 0.07
−48%(0.58)

0.59∗
6%(0.43)

0.67∗∗∗
5%(0.29)

0.63∗∗∗
1%(0.24)

0.45∗∗∗
4%(0.21)

0.69∗∗∗
8%(0.18)

GMMA: b̂1 6.39
864%(10.06)

5.94∗∗
135%(3.58)

3.84∗∗
22%(2.40)

5.31∗∗∗
71%(1.46)

3.21∗∗∗
52%(1.37)

3.86∗∗∗
83%(1.44)

GMMA: b̂2 2.77
318%(7.14)

6.90∗∗∗
173%(3.46)

4.06∗∗
29%(2.30)

5.29∗∗∗
70%(1.42)

3.44∗∗∗
63%(1.32)

3.75∗∗∗
77%(1.24)

GMMB: b̂1 6.91
942%(11.02)

5.95∗
136%(4.39)

3.64∗
15%(2.64)

5.50∗∗∗
77%(1.75)

3.05∗∗∗
45%(1.55)

3.89∗∗∗
84%(1.79)

GMMB: b̂2 2.22
235%(7.83)

6.59∗∗
161%(4.31)

3.82∗∗
21%(2.51)

5.33∗∗∗
71%(1.67)

3.36∗∗∗
59%(1.47)

3.47∗∗∗
64%(1.56)

GMMC: b̂ −2.40
−463%(8.81)

6.69∗∗
165%(4.51)

3.68∗
17%(2.66)

5.36∗∗∗
72%(1.72)

3.24∗∗∗
53%(1.55)

12.25∗∗
480%(7.28)
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Panel C. N Portfolios formed by the intersections of ME and

BE/ME

T = 60 T = 120 T = 240 T = 360 T = 480 T = 948

λ = Ef 0.13 0.56 0.64 0.62 0.44 0.64

b = λ

E
(

Rem2
) 0.66 2.52 3.15 3.11 2.11 2.11

N = 6

Beta: λ̂OLS 0.40
203%(0.59)

0.68∗
22%(0.49)

0.70∗∗
8%(0.32)

0.66∗∗∗
6%(0.24)

0.67∗∗∗
54%(0.28)

0.70∗∗∗
8%(0.18)

Beta: λ̂GLS 0.11
−16%(0.58)

0.72∗∗
29%(0.43)

0.76∗∗∗
18%(0.29)

0.72∗∗∗
15%(0.24)

0.56∗∗∗
29%(0.22)

0.72∗∗∗
13%(0.18)

Beta: λ̂WLS 0.07
−50%(0.58)

0.72∗
29%(0.44)

0.74∗∗∗
16%(0.30)

0.71∗∗∗
14%(0.24)

0.55∗∗∗
27%(0.22)

0.67∗∗∗
4%(0.18)

GMMA: b̂1 2.68
304%(9.14)

12.28∗∗∗
387%(5.05)

8.18∗∗
159%(3.73)

5.81∗∗∗
87%(2.41)

8.46∗∗
301%(4.45)

3.66∗∗∗
73%(1.33)

GMMA: b̂2 × 13.01∗∗∗
416%(2.92)

8.99∗∗∗
185%(3.07)

6.50∗∗∗
109%(2.22)

7.50∗∗∗
255%(3.10)

5.12∗∗∗
142%(1.00)

GMMB: b̂1 × 16.58∗∗
557%(8.76)

10.94∗∗
247%(6.50)

8.01∗∗
157%(4.11)

12.13∗∗
475%(6.80)

3.00∗∗
42%(1.83)

GMMB: b̂2 × 17.62∗∗∗
599%(5.45)

12.17∗∗
286%(5.24)

9.31∗∗∗
199%(3.58)

10.52∗∗
398%(5.85)

5.63∗∗∗
167%(1.26)

GMMC: b̂ × 18.36∗∗
628%(9.29)

12.79∗∗
305%(7.38)

9.90∗∗
218%(5.80)

13.61∗∗
545%(8.26)

9.13∗
332%(5.82)

N = 25

Beta: λ̂OLS 0.50
278%(0.61)

0.79∗∗
42%(0.51)

0.76∗∗∗
18%(0.34)

0.72∗∗∗
16%(0.26)

0.65∗∗∗
49%(0.24)

0.68∗∗∗
6%(0.18)

Beta: λ̂GLS 0.14
4%(0.57)

0.72∗∗
30%(0.43)

0.76∗∗∗
18%(0.29)

0.69∗∗∗
11%(0.24)

0.51∗∗∗
16%(0.21)

0.70∗∗∗
8%(0.18)

Beta: λ̂WLS 0.31
136%(0.58)

0.76∗∗∗
36%(0.43)

0.76∗∗∗
19%(0.29)

0.74∗∗∗
19%(0.24)

0.59∗∗∗
35%(0.21)

0.71∗∗∗
10%(0.18)

GMMA: b̂1 3.04
358%(5.05)

12.23∗∗∗
385%(4.13)

8.41∗∗∗
167%(3.41)

6.31∗∗∗
103%(2.44)

7.48∗∗∗
254%(2.66)

3.75∗∗∗
77%(0.91)

GMMA: b̂2 × 14.12∗∗∗
460%(2.36)

10.75∗∗∗
241%(2.14)

7.71∗∗∗
148%(1.86)

6.61∗∗∗
213%(1.75)

4.57∗∗∗
116%(0.73)

GMMB: b̂1 4.35
557%(5.75)

15.29∗∗∗
506%(6.18)

10.73∗∗∗
240%(5.16)

8.43∗∗∗
171%(3.86)

8.72∗∗∗
313%(2.95)

3.55∗∗∗
68%(1.09)

GMMB: b̂2 7.21∗∗
989%(4.76)

15.86∗∗∗
529%(3.89)

11.46∗∗∗
263%(3.22)

8.11∗∗∗
161%(2.68)

7.12∗∗∗
237%(2.15)

4.40∗∗∗
108%(0.89)

GMMC: b̂ × 25.01∗∗∗
892%(10.28)

18.43∗∗∗
484%(8.44)

14.61∗∗∗
369%(5.92)

9.88∗∗∗
368%(4.49)

7.42
251%(7.17)

N = 100

Beta: λ̂OLS 0.85∗∗∗
53%(0.49)

0.77∗∗∗
21%(0.32)

0.78∗∗∗
25%(0.26)

0.63∗∗∗
44%(0.23)

0.71∗∗∗
11%(0.19)

Beta: λ̂GLS 0.65∗∗
17%(0.42)

0.69∗∗∗
8%(0.29)

0.66∗∗∗
6%(0.23)

0.48∗∗∗
10%(0.21)

0.70∗∗∗
9%(0.18)

Beta: λ̂WLS 0.82∗∗∗
47%(0.43)

0.78∗∗∗
21%(0.29)

0.78∗∗∗
25%(0.23)

0.60∗∗∗
38%(0.21)

0.72∗∗∗
11%(0.18)

GMMA: b̂1 10.11∗∗∗
301%(3.14)

7.37∗∗∗
134%(2.64)

6.38∗∗∗
105%(2.09)

6.21∗∗∗
194%(1.68)

3.04∗∗∗
44%(0.84)

GMMA: b̂2 14.22∗∗∗
464%(1.04)

14.43∗∗∗
357%(1.25)

11.99∗∗∗
285%(1.21)

8.35∗∗∗
295%(1.12)

3.79∗∗∗
80%(0.61)

GMMB: b̂1 11.43∗∗∗
353%(4.45)

8.42∗∗∗
167%(3.45)

7.76∗∗∗
149%(2.81)

6.83∗∗∗
224%(1.95)

3.00∗∗∗
42%(0.93)

GMMB: b̂2 −3.17
−226%(1.46)

8.48∗∗∗
169%(1.85)

5.90∗∗∗
90%(1.71)

4.94∗∗∗
134%(1.42)

3.24∗∗∗
54%(0.70)

GMMC: b̂ × × 30.10∗∗∗
867%(7.56)

18.72
787%(17.99)

5.17∗∗∗
145%(2.31)
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Panel D. N Portfolios formed on ME MOM

T = 60 T = 120 T = 240 T = 360 T = 480 T = 948

λ = Ef 0.13 0.56 0.64 0.62 0.44 0.64

b = λ
E(Rem2)

0.66 2.52 3.15 3.11 2.11 2.11

N = 6

Beta: λ̂OLS 0.39
195%(0.59)

0.82∗∗
48%(0.45)

0.78∗∗∗
22%(0.30)

0.80∗∗∗
29%(0.24)

0.61∗∗∗
39%(0.22)

0.69∗∗∗
8%(0.18)

Beta: λ̂GLS 0.13
−1%(0.57)

0.57∗
2%(0.43)

0.65∗∗
1%(0.29)

0.63∗∗∗
1%(0.24)

0.45∗∗
4%(0.21)

0.66∗∗∗
3%(0.18)

Beta: λ̂WLS 0.15
13%(0.58)

0.70∗
26%(0.43)

0.76∗∗∗
19%(0.29)

0.74∗∗∗
18%(0.24)

0.54∗∗∗
23%(0.21)

0.66∗∗∗
3%(0.18)

GMMA: b̂1 5.06
663%(5.68)

5.42∗∗
115%(2.84)

5.61∗∗∗
78%(2.27)

5.09∗∗∗
63%(1.76)

4.79∗∗∗
127%(1.48)

2.88∗∗∗
36%(0.70)

GMMA: b̂2 0.80
21%(5.38)

6.64∗∗∗
163%(2.70)

6.67∗∗∗
112%(2.19)

6.03∗∗∗
94%(1.71)

5.60∗∗∗
165%(1.43)

2.79∗∗∗
32%(0.67)

GMMB: b̂1 6.99
955%(7.79)

5.50∗
118%(3.38)

5.77∗∗
83%(2.72)

4.82∗∗
55%(2.07)

4.47∗∗∗
112%(1.70)

3.22∗∗∗
53%(0.80)

GMMB: b̂2 0.44
−34%(6.71)

5.85∗∗
132%(3.21)

4.34∗∗
38%(2.62)

3.55∗∗
14%(2.00)

3.84∗∗
82%(1.66)

2.92∗∗∗
38%(0.78)

GMMC: b̂ × 10.90∗∗
332%(4.65)

8.89∗∗∗
182%(3.45)

24.64∗∗∗
692%(6.48)

17.02∗∗∗
706%(3.68)

3.04∗∗∗
44%(0.82)

N = 25

Beta: λ̂OLS 0.50
281%(0.60)

0.91∗∗∗
63%(0.47)

0.82∗∗∗
28%(0.31)

0.84∗∗∗
35%(0.25)

0.63∗∗∗
45%(0.22)

0.63∗∗∗
−1%(0.18)

Beta: λ̂GLS 0.20
50%(0.57)

0.53∗
−5%(0.43)

0.65∗∗∗
2%(0.29)

0.63∗∗∗
2%(0.24)

0.49∗∗∗
12%(0.21)

0.63∗∗∗
−2%(0.18)

Beta: λ̂WLS 0.36
174%(0.58)

0.81∗∗∗
45%(0.43)

0.78∗∗∗
21%(0.29)

0.79∗∗∗
27%(0.23)

0.58∗∗∗
32%(0.21)

0.62∗∗∗
−3%(0.18)

GMMA: b̂1 5.77∗
770%(5.08)

7.30∗∗∗
189%(2.82)

6.22∗∗∗
97%(2.42)

6.23∗∗∗
100%(1.85)

5.44∗∗∗
158%(1.50)

2.66∗∗∗
26%(0.73)

GMMA: b̂2 × 11.86∗∗∗
370%(2.38)

12.35∗∗∗
292%(1.80)

11.10∗∗∗
257%(1.44)

8.88∗∗∗
321%(1.22)

3.27∗∗∗
55%(0.66)

GMMB: b̂1 × 7.65∗∗∗
203%(3.55)

6.63∗∗∗
110%(2.97)

6.63∗∗∗
113%(2.30)

5.78∗∗∗
174%(1.82)

3.03∗∗∗
43%(0.86)

GMMB: b̂2 6.88∗∗
938%(4.34)

6.72∗∗∗
166%(3.15)

7.04∗∗∗
123%(2.39)

7.43∗∗∗
139%(1.92)

6.64∗∗∗
215%(1.56)

3.38∗∗∗
60%(0.79)

GMMC: b̂ × 23.59∗∗∗
835%(7.06)

31.92∗∗∗
912%(8.12)

× × 4.21∗∗∗
99%(0.93)
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Panel E. N Industry Portfolios

T = 60 T = 120 T = 240 T = 360 T = 480 T = 948

λ = Ef 0.13 0.56 0.64 0.62 0.44 0.64

b = λ

E
(

Rem2
) 0.66 2.52 3.15 3.11 2.11 2.11

N = 5

Beta: λ̂OLS 0.03
−80%(0.58)

0.76∗
37%(0.50)

0.79∗∗
23%(0.30)

0.76∗∗∗
21%(0.25)

0.55∗∗
25%(0.21)

0.76∗∗∗
17%(0.18)

Beta: λ̂GLS 0.06
−58%(0.58)

0.80∗
43%(0.49)

0.79∗∗
24%(0.30)

0.72∗∗∗
15%(0.24)

0.52∗∗
19%(0.21)

0.72∗∗∗
11%(0.18)

Beta: λ̂WLS 0.05
−61%(0.59)

0.79∗
42%(0.51)

0.79∗∗
23%(0.31)

0.72∗∗∗
16%(0.25)

0.53∗∗
20%(0.21)

0.72∗∗∗
12%(0.18)

GMMA: b̂1 × 8.21
226%(7.01)

5.71∗∗
81%(2.77)

4.43∗∗
42%(1.73)

3.57∗∗
69%(1.55)

4.34∗∗∗
105%(1.20)

GMMA: b̂2 −4.43
−768%(11.31)

8.97
256%(6.67)

5.81∗∗
84%(2.72)

4.36∗∗
40%(1.71)

3.16∗∗
50%(1.46)

3.75∗∗∗
77%(1.07)

GMMB: b̂1 × 9.57
280%(10.42)

6.56∗
108%(3.79)

4.94∗∗
59%(2.12)

3.86∗∗
83%(1.87)

4.67∗∗∗
121%(1.51)

GMMB: b̂2 −4.30
−749%(13.76)

10.47
315%(10.09)

6.62∗
110%(3.70)

4.69∗∗
51%(2.08)

3.31∗∗
57%(1.72)

3.93∗∗∗
86%(1.35)

GMMC: b̂ × 11.48
355%(12.33)

6.72∗
113%(3.79)

4.74∗∗
52%(1.98)

3.39∗∗
60%(1.74)

4.09∗∗
94%(1.45)

N = 17

Beta: λ̂OLS 0.25
90%(0.59)

0.64∗∗
15%(0.45)

0.73∗∗∗
14%(0.30)

0.69∗∗∗
11%(0.24)

0.53∗∗∗
21%(0.21)

0.72∗∗∗
12%(0.18)

Beta: λ̂GLS 0.20
50%(0.57)

0.62∗∗
12%(0.43)

0.72∗∗∗
13%(0.29)

0.72∗∗∗
16%(0.24)

0.52∗∗∗
20%(0.21)

0.73∗∗∗
13%(0.18)

Beta: λ̂WLS 0.22
67%(0.58)

0.56∗
0%(0.44)

0.68∗∗∗
5%(0.29)

0.69∗∗∗
11%(0.24)

0.50∗∗∗
15%(0.21)

0.72∗∗∗
12%(0.18)

GMMA: b̂1 × 6.89∗∗∗
173%(3.27)

5.66∗∗∗
79%(2.48)

4.69∗∗∗
51%(1.75)

3.85∗∗∗
83%(1.50)

3.52∗∗∗
67%(0.85)

GMMA: b̂2 × 7.84∗∗∗
211%(2.62)

5.42∗∗∗
72%(1.93)

4.46∗∗∗
43%(1.52)

2.89∗∗∗
37%(1.34)

3.06∗∗∗
45%(0.80)

GMMB: b̂1 × 7.25∗∗
188%(4.14)

6.24∗∗∗
98%(3.08)

5.18∗∗∗
66%(2.13)

4.03∗∗∗
91%(1.76)

3.58∗∗∗
69%(1.00)

GMMB: b̂2 × 6.46∗∗∗
156%(3.36)

5.19∗∗∗
65%(2.38)

4.23∗∗∗
36%(1.82)

2.42∗∗
15%(1.53)

2.92∗∗∗
38%(0.92)

GMMC: b̂ × 7.17∗∗
184%(4.17)

5.73∗∗∗
82%(2.88)

4.43∗∗∗
42%(1.94)

3.02∗∗∗
43%(1.58)

3.28∗∗∗
55%(0.98)

N = 30

Beta: λ̂OLS 0.24
80%(0.59)

0.80∗∗∗
43%(0.45)

0.75∗∗∗
17%(0.30)

0.70∗∗∗
13%(0.24)

0.55∗∗∗
27%(0.21)

0.76∗∗∗
19%(0.18)

Beta: λ̂GLS 0.09
−34%(0.57)

0.65∗∗
17%(0.43)

0.73∗∗∗
13%(0.29)

0.75∗∗∗
20%(0.24)

0.55∗∗∗
25%(0.21)

0.75∗∗∗
17%(0.18)

Beta: λ̂WLS 0.27
105%(0.58)

0.70∗∗
26%(0.44)

0.72∗∗∗
12%(0.29)

0.72∗∗∗
16%(0.24)

0.54∗∗∗
23%(0.21)

0.74∗∗∗
15%(0.18)

GMMA: b̂1 6.66∗
905%(5.56)

9.26∗∗∗
267%(3.52)

5.66∗∗∗
80%(2.54)

4.62∗∗∗
48%(1.74)

4.06∗∗∗
93%(1.52)

4.21∗∗∗
99%(0.90)

GMMA: b̂2 × 9.49∗∗∗
276%(2.08)

6.19∗∗∗
96%(1.86)

5.58∗∗∗
79%(1.46)

4.02∗∗∗
90%(1.34)

3.55∗∗∗
68%(0.79)

GMMB: b̂1 × 10.50∗∗∗
316%(4.90)

6.20∗∗∗
97%(3.11)

4.97∗∗∗
60%(2.06)

4.20∗∗∗
99%(1.77)

4.26∗∗∗
101%(1.06)

GMMB: b̂2 6.36∗∗
860%(4.66)

8.59∗∗∗
241%(2.91)

5.00∗∗∗
59%(2.29)

4.99∗∗∗
60%(1.75)

3.32∗∗∗
57%(1.54)

3.09∗∗∗
46%(0.93)

GMMC: b̂ 4.51
581%(6.78)

11.58∗∗∗
359%(5.63)

6.16∗∗∗
95%(2.98)

6.00∗∗∗
93%(2.34)

3.84∗∗∗
82%(1.71)

4.01∗∗∗
90%(1.06)
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3.6.6 Momentum risk premium in RUH model

The following five panels report the estimate values, the bias from the risk pre-

mium in percent values, the standard error in parenthesis, and t-statistics. Each

panel corresponds to a one set of test portfolios. T is 60 (January 2001 - Decem-

ber 2005), 120, 240, 360, 480 and 948 (January 1927 - December 2005) monthly

observations. The two-pass (Fama-MacBeth) cross-sectional estimate is the slope

coefficient λ in E (Re) = βλ calculated by OLS, GLS and WLS. Next, we turn

from beta representation to a discount factor formulation for GMM approach. The

GMMA and GMMB first and second-stage estimates are the parameters 100 × b in

E (Re) = E (Ref ′) b (returns on second moments, following Hansen and Jagannathan

[49]) and E (Re) = E
(
Ref̃ ′

)
b (returns on covariances, following Cochrane [25])

respectively. The GMMC is the continuous updating estimate (following Hansen,

Heaton and Yaron [47]).
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Panel A. N Portfolios formed on ME

T = 60 T = 120 T = 240 T = 360 T = 480 T = 948

λ = Ef 0.34 0.86 0.84 0.89 0.85 0.76

b = λ
E(Rem2)

0.86 2.56 3.99 4.85 4.75 3.37

N = 5

Beta: λ̂OLS 0.59
72%(2.86)

3.60
316%(3.06)

2.74
225%(2.00)

2.94
229%(2.32)

3.16
274%(4.09)

1.22
59%(1.91)

Beta: λ̂GLS 0.11
−68%(2.00)

4.83∗
458%(2.88)

2.41
187%(1.87)

2.00
123%(1.77)

1.64
95%(3.05)

1.16
52%(1.63)

Beta: λ̂WLS 0.68
99%(3.98)

3.04
251%(3.45)

2.44
190%(3.00)

3.45∗
285%(2.33)

5.67
571%(11.98)

1.14
49%(2.28)

GMMA: b̂1 × 12.12∗
374%(6.45)

12.56∗
215%(6.82)

15.04∗
210%(10.29)

28.93
509%(51.16)

8.69
158%(9.94)

GMMA: b̂2 × 13.48∗∗
427%(6.13)

11.77∗
195%(6.73)

11.19
131%(8.65)

8.02
69%(30.16)

8.23
144%(8.18)

GMMB: b̂1 × 12.69
396%(9.57)

14.84∗
272%(9.11)

17.66
264%(13.84)

19.19
304%(33.14)

9.88
193%(12.57)

GMMB: b̂2 × 16.29∗∗
537%(8.31)

13.86∗
248%(9.02)

12.76
163%(11.87)

6.40
35%(26.32)

9.28
175%(10.32)

GMMC: b̂ × 18.17∗
610%(11.91)

14.74∗
270%(9.10)

14.67
202%(12.34)

× 9.33
177%(12.38)

N = 10

Beta: λ̂OLS −0.85
−350%(2.02)

3.54∗∗
310%(1.94)

2.03∗∗
141%(1.39)

2.22∗∗
148%(1.37)

1.49
76%(1.67)

−0.13
−118%(0.75)

Beta: λ̂GLS 0.61
77%(1.28)

3.75∗∗∗
334%(1.53)

1.67∗∗
98%(0.98)

1.68∗∗∗
87%(0.79)

0.54
−36%(0.99)

−0.05
−106%(0.61)

Beta: λ̂WLS 0.12
−65%(2.30)

3.55∗∗∗
311%(1.82)

2.06∗
145%(1.46)

2.65∗∗∗
197%(1.10)

1.62
91%(2.43)

0.35
−54%(1.06)

GMMA: b̂1 × 11.92∗∗∗
366%(4.55)

10.65∗∗∗
167%(5.62)

11.69∗∗
141%(7.10)

14.85
213%(15.86)

1.69
−50%(4.39)

GMMA: b̂2 −6.93
−902%(4.31)

11.37∗∗∗
345%(3.48)

8.42∗∗∗
111%(3.70)

8.89∗∗∗
83%(3.77)

4.45
−6%(5.96)

1.68
−50%(3.47)

GMMB: b̂1 × 12.40∗∗∗
385%(5.70)

11.00∗∗
176%(6.28)

12.94∗∗
167%(8.63)

8.80
85%(9.95)

1.20
−64%(4.68)

GMMB: b̂2 −1.32
−253%(6.33)

12.99∗∗∗
408%(4.53)

8.54∗∗
114%(4.62)

9.40∗∗∗
94%(4.86)

3.61
−24%(6.17)

1.26
−63%(3.69)

GMMC: b̂ × 14.33∗∗∗
460%(6.00)

11.28∗∗
183%(6.32)

11.48∗∗
137%(8.04)

9.26
95%(9.57)

1.24
−63%(4.68)
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Panel B. N Portfolios formed on BE/ME

T = 60 T = 120 T = 240 T = 360 T = 480 T = 948

λ = Ef 0.34 0.86 0.84 0.89 0.85 0.76

b = λ
E(Rem2)

0.86 2.56 3.99 4.85 4.75 3.37

N = 5

Beta: λ̂OLS 3.45
908%(3.85)

× −4.24
−605%(10.56)

−0.06
−106%(2.03)

−1.61
−290%(2.47)

0.33
−56%(1.14)

Beta: λ̂GLS 1.80
427%(3.02)

9.43
990%(26.81)

−4.01
−577%(8.98)

0.54
−39%(1.86)

−0.55
−165%(1.95)

0.50
−35%(1.10)

Beta: λ̂WLS 3.41
898%(3.83)

× −4.40
−623%(10.14)

0.07
−92%(1.98)

−1.61
−290%(2.57)

0.40
−47%(1.28)

GMMA: b̂1 × 25.46
895%(56.97)

−21.17
−631%(83.59)

1.22
−75%(10.87)

−6.66
−240%(15.76)

3.62
7%(5.94)

GMMA: b̂2 × 25.86
911%(53.47)

−13.23
−432%(66.87)

3.84
−21%(10.09)

−0.05
−101%(13.14)

4.20
25%(5.82)

GMMB: b̂1 × × −20.99
−627%(64.08)

0.30
−94%(12.40)

−8.92
−288%(16.69)

3.66
8%(6.61)

GMMB: b̂2 × × −15.51
−489%(52.51)

3.77
−22%(11.33)

−1.18
−125%(13.39)

4.38
30%(6.45)

GMMC: b̂ × × −22.69
−669%(67.34)

3.49
−28%(12.30)

−4.69
−199%(15.07)

4.82
43%(6.80)

N = 10

Beta: λ̂OLS 1.26
267%(1.86)

0.09
−89%(1.63)

−1.52
−281%(1.52)

−0.62
−169%(1.06)

−1.12
−233%(1.01)

1.08
42%(1.07)

Beta: λ̂GLS 0.07
−79%(1.49)

0.24
−73%(1.62)

−1.41
−268%(1.35)

−0.83
−193%(0.97)

−0.91
−208%(0.94)

1.07
39%(0.96)

Beta: λ̂WLS 0.85
148%(1.58)

0.12
−86%(1.84)

−1.39
−266%(1.54)

−0.77
−187%(1.06)

−1.02
−221%(1.11)

0.93
22%(1.05)

GMMA: b̂1 3.77
336%(12.43)

2.31
−10%(5.30)

−6.63
−266%(8.60)

−2.45
−151%(6.31)

−5.21
−210%(6.72)

8.98∗
166%(6.63)

GMMA: b̂2 −0.28
−132%(8.48)

3.07
20%(5.23)

−6.41
−261%(8.01)

−3.90
−180%(5.78)

−4.46
−194%(6.53)

9.76∗∗
189%(5.38)

GMMB: b̂1 4.08
372%(13.46)

1.60
−38%(5.92)

−7.02
−276%(7.98)

−2.96
−161%(6.43)

−5.96
−226%(6.63)

8.11
140%(7.39)

GMMB: b̂2 −0.60
−170%(9.19)

2.15
−16%(5.87)

−6.85
−272%(7.41)

−4.48
−192%(5.81)

−4.83
−202%(6.29)

7.43∗
120%(6.25)

GMMC: b̂ −7.13
−925%(9.84)

1.79
−30%(6.02)

−7.78
−295%(8.10)

−4.83
−200%(6.70)

−5.78
−222%(6.63)

×

189



3.6 – Appendix of Tables

Panel C. N Portfolios formed by the intersections of ME and

BE/ME

T = 60 T = 120 T = 240 T = 360 T = 480 T = 948

λ = Ef 0.34 0.86 0.84 0.89 0.85 0.76

b = λ

E
(

Rem2
) 0.86 2.56 3.99 4.85 4.75 3.37

N = 6

Beta: λ̂OLS 0.84
147%(1.88)

6.06∗
601%(3.85)

5.05∗∗
501%(2.95)

4.97∗∗
456%(2.75)

8.27∗∗
878%(4.26)

0.44
−43%(1.31)

Beta: λ̂GLS 2.76∗∗
706%(1.54)

5.57∗∗∗
544%(1.89)

5.51∗∗∗
555%(1.65)

7.13∗∗∗
697%(2.64)

7.34∗∗
768%(3.66)

2.48∗∗∗
224%(0.88)

Beta: λ̂WLS 0.17
−51%(2.65)

5.83∗∗
575%(3.13)

4.75∗∗
465%(2.81)

4.45∗∗∗
398%(1.59)

4.15
391%(3.64)

−0.26
−134%(1.32)

GMMA: b̂1 −3.36
−489%(12.47)

16.41∗∗
541%(7.84)

20.18∗∗
406%(10.62)

21.99∗∗
353%(11.88)

39.56∗
733%(25.18)

7.90∗
134%(6.02)

GMMA: b̂2 × 16.22∗∗∗
534%(4.13)

21.84∗∗∗
448%(6.23)

29.05∗∗∗
499%(7.41)

31.98∗∗
574%(15.34)

16.34∗∗∗
384%(3.76)

GMMB: b̂1 3.60
317%(11.99)

22.09∗∗
764%(13.11)

26.73∗
571%(18.54)

29.56∗
509%(21.13)

51.11∗
977%(32.97)

4.53
34%(7.33)

GMMB: b̂2 × 21.94∗∗∗
758%(7.46)

29.54∗∗∗
641%(11.48)

41.13∗∗∗
748%(14.31)

43.19∗
810%(29.90)

16.47∗∗∗
388%(4.21)

GMMC: b̂ × 23.17∗∗
806%(13.73)

31.67∗
695%(21.34)

49.00∗
910%(33.80)

× ×

N = 25

Beta: λ̂OLS −0.23
−167%(1.19)

4.88∗∗∗
464%(2.02)

4.22∗∗∗
402%(1.46)

4.20∗∗∗
370%(1.74)

3.88∗∗∗
359%(1.09)

0.91∗∗
19%(0.63)

Beta: λ̂GLS 1.34∗∗
292%(0.93)

2.81∗∗∗
225%(0.83)

3.77∗∗∗
349%(0.68)

3.17∗∗∗
255%(0.68)

2.85∗∗∗
237%(0.68)

1.27∗∗∗
66%(0.37)

Beta: λ̂WLS −0.01
−103%(1.02)

4.00∗∗∗
362%(1.39)

3.58∗∗∗
326%(1.22)

3.64∗∗∗
307%(0.86)

2.22∗∗∗
163%(1.09)

0.71∗∗∗
−8%(0.41)

GMMA: b̂1 −3.74
−532%(4.95)

15.04∗∗∗
488%(4.62)

18.48∗∗∗
364%(5.70)

20.19∗∗∗
316%(9.00)

25.55∗∗∗
438%(9.27)

9.07∗∗∗
169%(3.58)

GMMA: b̂2 −1.94
−325%(3.66)

14.60∗∗∗
471%(1.96)

19.31∗∗∗
384%(2.53)

18.20∗∗∗
275%(3.06)

16.96∗∗∗
257%(3.85)

11.42∗∗∗
238%(2.04)

GMMB: b̂1 −2.28
−364%(5.83)

18.19∗∗∗
611%(6.42)

22.55∗∗∗
466%(8.66)

25.20∗∗∗
419%(14.34)

24.65∗∗∗
419%(8.27)

7.46∗∗∗
121%(3.92)

GMMB: b̂2 4.45
415%(4.34)

17.25∗∗∗
575%(3.21)

22.83∗∗∗
473%(4.08)

20.23∗∗∗
317%(4.74)

17.53∗∗∗
269%(4.90)

9.85∗∗∗
192%(2.37)

GMMC: b̂ × × 41.63∗∗∗
944%(14.61)

40.14∗∗∗
727%(21.53)

44.70∗∗∗
842%(14.31)

×

N = 100

Beta: λ̂OLS 2.61∗∗∗
202%(0.87)

2.04∗∗∗
143%(0.55)

2.43∗∗∗
172%(0.68)

1.91∗∗∗
126%(0.42)

0.43∗
−43%(0.40)

Beta: λ̂GLS 0.67∗
−23%(0.53)

1.34∗∗∗
60%(0.35)

0.81∗∗∗
−10%(0.30)

1.00∗∗∗
18%(0.30)

0.63∗∗∗
−18%(0.24)

Beta: λ̂WLS 2.35∗∗∗
172%(0.66)

1.71∗∗∗
103%(0.42)

2.18∗∗∗
144%(0.36)

1.59∗∗∗
89%(0.37)

0.41∗∗∗
−46%(0.24)

GMMA: b̂1 9.77∗∗∗
282%(2.31)

10.90∗∗∗
173%(2.54)

13.76∗∗∗
184%(3.06)

13.81∗∗∗
191%(2.45)

5.74∗∗∗
70%(2.12)

GMMA: b̂2 15.65∗∗∗
512%(0.48)

13.44∗∗∗
237%(0.95)

13.06∗∗∗
169%(1.27)

14.02∗∗∗
195%(1.40)

7.72∗∗∗
129%(1.10)

GMMB: b̂1 10.42∗∗∗
307%(3.66)

11.38∗∗∗
185%(3.61)

14.85∗∗∗
206%(4.11)

12.63∗∗∗
166%(3.00)

4.86∗∗∗
44%(2.21)

GMMB: b̂2 −3.75
−247%(0.96)

8.60∗∗∗
116%(1.51)

4.13∗∗∗
−15%(1.75)

7.63∗∗∗
61%(1.74)

5.31∗∗∗
57%(1.24)

GMMC: b̂ × × 24.09∗∗∗
397%(11.76)

× 22.49∗∗∗
566%(11.01)
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Panel D. N Portfolios formed on ME MOM

T = 60 T = 120 T = 240 T = 360 T = 480 T = 948

λ = Ef 0.34 0.86 0.84 0.89 0.85 0.76

b = λ
E(Rem2)

0.86 2.56 3.99 4.85 4.75 3.37

N = 6

Beta: λ̂OLS 0.14
−58%(0.81)

0.88∗∗
1%(0.52)

0.81∗∗∗
−4%(0.29)

0.87∗∗∗
−3%(0.22)

0.82∗∗∗
−3%(0.19)

0.75∗∗∗
−2%(0.15)

Beta: λ̂GLS 0.34
0%(0.80)

0.86∗∗
0%(0.52)

0.84∗∗∗
0%(0.29)

0.89∗∗∗
0%(0.22)

0.85∗∗∗
0%(0.19)

0.76∗∗∗
0%(0.15)

Beta: λ̂WLS 0.03
−92%(0.85)

0.58
−33%(0.55)

0.50∗∗
−40%(0.31)

0.55∗∗∗
−38%(0.23)

0.54∗∗∗
−36%(0.20)

0.58∗∗∗
−23%(0.16)

GMMA: b̂1 × 3.60∗∗
41%(1.90)

4.46∗∗∗
12%(1.78)

4.90∗∗∗
1%(1.51)

5.32∗∗∗
12%(1.37)

6.56∗∗∗
94%(1.01)

GMMA: b̂2 −1.34
−255%(3.80)

4.93∗∗∗
93%(1.78)

5.21∗∗∗
31%(1.73)

6.06∗∗∗
25%(1.47)

6.37∗∗∗
34%(1.33)

6.57∗∗∗
95%(0.97)

GMMB: b̂1 × 3.74∗∗
46%(2.23)

4.74∗∗
19%(2.12)

5.10∗∗∗
5%(1.79)

5.48∗∗∗
15%(1.62)

7.20∗∗∗
113%(1.28)

GMMB: b̂2 0.12
−86%(4.91)

4.45∗∗
74%(2.12)

3.66∗∗
−8%(2.06)

4.22∗∗∗
−13%(1.74)

5.00∗∗∗
5%(1.57)

6.69∗∗∗
98%(1.22)

GMMC: b̂ × 0.37
−86%(2.67)

7.75∗∗∗
95%(2.72)

−0.37
−108%(4.07)

2.39
−50%(3.18)

7.74∗∗∗
129%(1.34)

N = 25

Beta: λ̂OLS 0.17
−50%(0.82)

1.02∗∗∗
18%(0.53)

0.92∗∗∗
9%(0.30)

0.98∗∗∗
9%(0.23)

0.96∗∗∗
13%(0.19)

0.89∗∗∗
17%(0.16)

Beta: λ̂GLS 0.39
13%(0.80)

0.82∗∗
−5%(0.52)

0.86∗∗∗
2%(0.29)

0.93∗∗∗
4%(0.22)

0.92∗∗∗
9%(0.19)

0.84∗∗∗
10%(0.16)

Beta: λ̂WLS 0.04
−88%(0.83)

0.76∗∗
−13%(0.54)

0.69∗∗∗
−18%(0.30)

0.74∗∗∗
−17%(0.23)

0.74∗∗∗
−12%(0.20)

0.79∗∗∗
4%(0.16)

GMMA: b̂1 −6.63
−868%(4.04)

4.40∗∗∗
72%(1.99)

5.03∗∗∗
26%(1.89)

5.60∗∗∗
15%(1.63)

6.18∗∗∗
30%(1.45)

7.76∗∗∗
130%(1.01)

GMMA: b̂2 −1.94
−325%(2.43)

8.42∗∗∗
229%(1.57)

10.00∗∗∗
151%(1.45)

9.75∗∗∗
101%(1.31)

9.48∗∗∗
100%(1.19)

7.99∗∗∗
137%(0.91)

GMMB: b̂1 −6.94
−904%(5.44)

4.68∗∗∗
83%(2.45)

5.45∗∗∗
37%(2.32)

6.14∗∗∗
27%(2.06)

6.74∗∗∗
42%(1.83)

8.75∗∗∗
159%(1.34)

GMMB: b̂2 6.72∗∗∗
678%(3.07)

5.09∗∗∗
99%(2.07)

5.95∗∗∗
49%(1.92)

6.44∗∗∗
33%(1.73)

7.00∗∗∗
47%(1.56)

8.09∗∗∗
140%(1.20)

GMMC: b̂ × 2.28
−11%(3.01)

10.22∗∗
156%(7.21)

16.01∗∗∗
230%(8.72)

14.69∗∗∗
209%(5.07)

10.50∗∗∗
211%(1.48)
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Panel E. N Industry Portfolios

T = 60 T = 120 T = 240 T = 360 T = 480 T = 948

λ = Ef 0.34 0.86 0.84 0.89 0.85 0.76

b = λ
E(Rem2)

0.86 2.56 3.99 4.85 4.75 3.37

N = 5

Beta: λ̂OLS −2.21
−746%(3.50)

2.62
203%(4.18)

2.04
142%(1.57)

1.31
47%(1.30)

1.11
31%(0.94)

1.29∗
69%(0.83)

Beta: λ̂GLS −1.79
−625%(3.24)

3.13
262%(4.10)

2.08∗
148%(1.44)

0.86
−4%(1.12)

0.75
−11%(0.81)

0.83
8%(0.71)

Beta: λ̂WLS −1.56
−556%(2.86)

3.11
260%(4.14)

2.02∗
141%(1.40)

0.81
−9%(1.10)

0.73
−14%(0.78)

0.79
4%(0.63)

GMMA: b̂1 × 8.63
238%(14.80)

9.49
138%(8.17)

7.07
46%(7.59)

6.57
38%(5.83)

7.81∗
131%(4.75)

GMMA: b̂2 × 10.06
293%(14.15)

9.10
128%(7.30)

4.37
−10%(6.57)

4.27
−10%(4.97)

5.57
65%(4.35)

GMMB: b̂1 × 9.99
291%(19.65)

10.89
173%(10.56)

7.74
60%(8.97)

7.01
48%(6.69)

8.15∗
141%(5.48)

GMMB: b̂2 × 11.48
349%(19.06)

10.32
159%(9.42)

4.49
−7%(7.62)

4.35
−8%(5.64)

5.60
66%(5.02)

GMMC: b̂ × 13.45
426%(23.34)

10.67
168%(10.49)

5.13
6%(8.07)

4.77
1%(6.09)

6.33
88%(5.18)

N = 17

Beta: λ̂OLS 1.56∗
355%(1.34)

1.27
46%(1.20)

1.41∗∗∗
68%(0.80)

1.25∗∗
40%(0.71)

1.04∗∗
23%(0.69)

0.63∗
−17%(0.51)

Beta: λ̂GLS 2.74∗∗∗
702%(1.10)

1.00
15%(0.95)

0.74∗
−12%(0.64)

0.69∗
−23%(0.54)

0.30
−65%(0.53)

0.22
−72%(0.42)

Beta: λ̂WLS 1.41∗
314%(1.12)

1.05
22%(1.01)

1.18∗∗∗
40%(0.63)

1.21∗∗∗
36%(0.56)

0.88∗∗
4%(0.53)

0.56∗
−27%(0.44)

GMMA: b̂1 5.88
580%(10.02)

5.51∗∗
115%(3.83)

7.43∗∗∗
86%(3.95)

7.48∗∗∗
54%(3.91)

6.89∗∗
45%(3.95)

5.27∗∗∗
56%(2.92)

GMMA: b̂2 × 4.24∗∗
66%(2.93)

3.66∗
−8%(3.03)

3.34∗
−31%(2.91)

1.72
−64%(3.06)

2.58
−23%(2.52)

GMMB: b̂1 7.31
746%(10.89)

5.41∗
111%(4.55)

7.82∗∗
96%(4.75)

7.53∗∗
55%(4.69)

6.69∗∗
41%(4.56)

4.71∗∗
40%(3.19)

GMMB: b̂2 × 2.85
12%(3.44)

3.03
−24%(3.53)

2.39
−51%(3.33)

0.31
−94%(3.34)

1.81
−46%(2.70)

GMMC: b̂ × 4.88∗
91%(4.53)

5.37∗
35%(4.39)

4.57
−6%(4.28)

2.91
−39%(4.17)

3.29
−3%(3.09)

N = 30

Beta: λ̂OLS 1.12∗
228%(1.04)

2.64∗∗∗
206%(1.38)

1.38∗∗∗
65%(0.76)

0.89∗∗
−1%(0.61)

1.02∗∗
21%(0.62)

0.97∗∗∗
26%(0.49)

Beta: λ̂GLS 0.97∗
185%(0.86)

0.61
−29%(0.70)

−0.01
−101%(0.49)

0.40
−55%(0.43)

0.31
−63%(0.44)

0.23
−70%(0.39)

Beta: λ̂WLS 0.65
92%(0.94)

1.53∗∗∗
77%(0.88)

0.89∗∗
6%(0.53)

0.98∗∗∗
9%(0.45)

0.83∗∗∗
−2%(0.43)

0.57∗∗
−25%(0.38)

GMMA: b̂1 2.25
160%(5.93)

9.37∗∗∗
266%(3.90)

7.44∗∗∗
87%(3.64)

5.76∗∗∗
19%(3.36)

7.13∗∗∗
50%(3.71)

7.24∗∗∗
115%(3.18)

GMMA: b̂2 7.10∗∗∗
722%(3.73)

5.78∗∗∗
126%(1.93)

3.72∗∗
−7%(2.45)

5.41∗∗∗
11%(2.42)

4.63∗∗∗
−2%(2.68)

3.94∗∗
17%(2.60)

GMMB: b̂1 3.49
304%(6.82)

10.30∗∗∗
303%(5.24)

7.66∗∗∗
92%(4.34)

5.39∗∗
11%(3.85)

6.63∗∗
40%(4.19)

6.31∗∗∗
87%(3.42)

GMMB: b̂2 5.07∗
487%(4.38)

4.80∗∗∗
88%(2.51)

1.77
−56%(2.85)

3.51∗
−28%(2.80)

2.47
−48%(3.03)

1.78
−47%(2.81)

GMMC: b̂ 1.44
67%(6.63)

8.71∗∗
241%(5.83)

4.79∗
20%(4.08)

8.32∗∗∗
72%(4.43)

5.18∗
9%(4.04)

6.12∗∗∗
81%(3.33)
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3.6.7 Value risk premium in RUH model

The following five panels report the estimate values, the bias from the risk pre-

mium in percent values, the standard error in parenthesis, and t-statistics. Each

panel corresponds to a one set of test portfolios. T is 60 (January 2001 - Decem-

ber 2005), 120, 240, 360, 480 and 948 (January 1927 - December 2005) monthly

observations. The two-pass (Fama-MacBeth) cross-sectional estimate is the slope

coefficient λ in E (Re) = βλ calculated by OLS, GLS and WLS. Next, we turn

from beta representation to a discount factor formulation for GMM approach. The

GMMA and GMMB first and second-stage estimates are the parameters 100 × b in

E (Re) = E (Ref ′) b (returns on second moments, following Hansen and Jagannathan

[49]) and E (Re) = E
(
Ref̃ ′

)
b (returns on covariances, following Cochrane [25])

respectively. The GMMC is the continuous updating estimate (following Hansen,

Heaton and Yaron [47]).
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Panel A. N Portfolios formed on ME

T = 60 T = 120 T = 240 T = 360 T = 480 T = 948

λ = Ef 0.78 0.46 0.34 0.43 0.43 0.41

b = λ
E(Rem2)

7.50 2.90 3.26 4.44 4.70 3.10

N = 5

Beta: λ̂OLS 3.58∗
358%(2.26)

−0.30
−165%(0.89)

0.28
−17%(0.78)

0.31
−27%(0.90)

−0.27
−164%(1.22)

0.70
71%(0.55)

Beta: λ̂GLS 2.05∗∗
163%(0.91)

−0.29
−163%(0.96)

0.23
−32%(0.72)

0.24
−43%(0.80)

0.44
3%(0.76)

0.67∗
64%(0.48)

Beta: λ̂WLS 3.78∗∗
383%(1.31)

−0.16
−136%(1.29)

0.29
−16%(0.88)

0.33
−22%(1.57)

1.18
175%(2.16)

0.69∗
68%(0.41)

GMMA: b̂1 42.12∗
462%(23.25)

5.30
83%(10.78)

8.71
167%(10.16)

10.21
130%(13.62)

14.25
203%(18.46)

8.17
163%(7.45)

GMMA: b̂2 34.16∗∗∗
356%(11.19)

6.87
137%(9.95)

8.51
161%(10.11)

8.18
84%(11.75)

8.70
85%(15.83)

7.76
150%(6.26)

GMMB: b̂1 59.19
690%(47.46)

4.54
57%(13.09)

10.29
215%(12.95)

11.04
149%(16.59)

3.25
−31%(18.45)

9.28
199%(9.63)

GMMB: b̂2 42.24∗∗
463%(21.80)

7.29
152%(11.94)

9.74
199%(12.83)

9.11
105%(15.21)

9.45
101%(14.85)

8.76
182%(8.05)

GMMC: b̂ 47.51
534%(40.64)

10.17
251%(17.09)

10.55
223%(12.94)

9.90
123%(14.94)

× 8.80
183%(9.49)

N = 10

Beta: λ̂OLS 2.85∗∗∗
265%(1.48)

−0.39
−185%(0.79)

0.09
−73%(0.61)

−0.11
−126%(0.55)

−0.46
−208%(0.80)

0.42∗
3%(0.37)

Beta: λ̂GLS 1.16∗∗
49%(0.64)

−0.23
−150%(0.66)

0.05
−84%(0.42)

−0.10
−123%(0.43)

0.14
−67%(0.39)

0.35∗
−14%(0.27)

Beta: λ̂WLS 3.55∗∗∗
354%(1.00)

−0.09
−119%(0.66)

0.15
−56%(0.40)

−0.10
−124%(0.50)

0.04
−91%(0.50)

0.54∗∗∗
32%(0.26)

GMMA: b̂1 42.62∗∗∗
469%(19.54)

4.32
49%(8.37)

6.64
103%(7.50)

4.45
0%(7.08)

2.73
−42%(8.60)

3.48
12%(3.99)

GMMA: b̂2 30.76∗∗∗
310%(10.56)

5.05∗
75%(4.47)

6.53∗∗
100%(4.31)

4.70
6%(5.09)

5.28
12%(5.52)

3.10
0%(3.05)

GMMB: b̂1 53.80∗∗
618%(35.46)

3.60
24%(9.91)

6.91
112%(8.71)

4.33
−3%(8.30)

−1.90
−140%(11.03)

3.16
2%(4.37)

GMMB: b̂2 2.72
−64%(17.38)

5.24
81%(5.48)

6.34∗
94%(5.19)

4.50
1%(6.11)

4.82
2%(5.89)

2.82
−9%(3.30)

GMMC: b̂ × 5.60
94%(10.91)

7.29
123%(8.87)

5.30
19%(7.93)

6.97
48%(11.11)

2.79
−10%(4.36)
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Panel B. N Portfolios formed on BE/ME

T = 60 T = 120 T = 240 T = 360 T = 480 T = 948

λ = Ef 0.78 0.46 0.34 0.43 0.43 0.41

b = λ
E(Rem2)

7.50 2.90 3.26 4.44 4.70 3.10

N = 5

Beta: λ̂OLS 1.08∗
38%(0.58)

0.76
66%(1.39)

−0.02
−106%(0.53)

0.34∗∗
−20%(0.18)

0.29∗
−32%(0.16)

0.31∗∗
−25%(0.13)

Beta: λ̂GLS 0.86∗
10%(0.50)

0.68
48%(1.12)

−0.01
−103%(0.48)

0.34∗∗
−21%(0.18)

0.32∗∗
−26%(0.16)

0.32∗∗
−22%(0.13)

Beta: λ̂WLS 1.10∗∗
41%(0.54)

0.75
63%(1.45)

−0.03
−108%(0.50)

0.33∗
−23%(0.18)

0.28∗
−34%(0.16)

0.32∗∗
−23%(0.13)

GMMA: b̂1 1.53
−80%(13.62)

16.04
454%(24.33)

−1.53
−147%(27.31)

7.20∗∗
62%(2.72)

4.32
−8%(4.39)

3.24
4%(2.92)

GMMA: b̂2 2.80
−63%(13.33)

16.24
461%(22.76)

1.34
−59%(21.29)

7.61∗∗
71%(2.63)

6.21∗
32%(3.69)

3.56
15%(2.85)

GMMB: b̂1 1.60
−79%(14.88)

25.08
766%(66.94)

−2.36
−172%(24.85)

7.53∗∗
70%(3.87)

3.47
−26%(5.65)

3.35
8%(3.36)

GMMB: b̂2 3.22
−57%(14.59)

25.61
784%(64.56)

−0.01
−100%(19.85)

8.35∗∗
88%(3.66)

6.15
31%(4.54)

3.75
21%(3.27)

GMMC: b̂ −1.47
−120%(17.06)

28.89
897%(77.99)

−2.62
−180%(26.09)

8.18∗∗
84%(3.77)

5.09
8%(5.09)

3.95
27%(3.43)

N = 10

Beta: λ̂OLS 0.81∗∗
3%(0.46)

0.30
−34%(0.41)

0.09
−74%(0.24)

0.35∗∗∗
−19%(0.18)

0.31∗∗∗
−28%(0.15)

0.32∗∗∗
−23%(0.13)

Beta: λ̂GLS 0.65∗∗
−17%(0.43)

0.34
−25%(0.41)

0.09
−73%(0.24)

0.32∗∗
−25%(0.18)

0.31∗∗∗
−29%(0.15)

0.34∗∗∗
−18%(0.13)

Beta: λ̂WLS 0.83∗∗
6%(0.44)

0.30
−34%(0.39)

0.09
−74%(0.23)

0.33∗∗
−23%(0.18)

0.30∗∗∗
−30%(0.15)

0.32∗∗∗
−22%(0.13)

GMMA: b̂1 7.31
−2%(9.12)

5.87∗∗
103%(3.71)

2.75
−16%(3.95)

6.68∗∗∗
50%(2.27)

4.71∗∗∗
0%(2.36)

5.67∗∗∗
83%(2.97)

GMMA: b̂2 11.22∗∗
50%(6.78)

6.91∗∗∗
139%(3.61)

3.23
−1%(3.61)

6.36∗∗∗
43%(2.17)

5.03∗∗∗
7%(2.27)

5.74∗∗∗
85%(2.54)

GMMB: b̂1 7.82
4%(10.19)

5.94∗
105%(4.51)

2.50
−23%(4.15)

6.86∗∗∗
55%(2.72)

4.42∗∗
−6%(2.68)

5.38∗∗
73%(3.51)

GMMB: b̂2 11.09∗
48%(7.89)

6.65∗∗
130%(4.44)

2.96
−9%(3.77)

6.35∗∗∗
43%(2.55)

4.91∗∗∗
4%(2.52)

4.88∗∗
57%(3.08)

GMMC: b̂ 15.20∗∗
103%(9.62)

6.72∗∗
132%(4.60)

2.77
−15%(4.23)

6.36∗∗∗
43%(2.78)

4.70∗∗
0%(2.67)

20.62∗
565%(14.61)
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Panel C. N Portfolios formed by the intersections of ME and

BE/ME

T = 60 T = 120 T = 240 T = 360 T = 480 T = 948

λ = Ef 0.78 0.46 0.34 0.43 0.43 0.41

b = λ

E
(

Rem2
) 7.50 2.90 3.26 4.44 4.70 3.10

N = 6

Beta: λ̂OLS 0.66∗
−16%(0.40)

0.47
2%(0.39)

0.38∗∗
12%(0.23)

0.45∗∗∗
6%(0.17)

0.35∗∗
−18%(0.17)

0.40∗∗∗
−3%(0.12)

Beta: λ̂GLS 0.78∗∗
0%(0.40)

0.46∗
0%(0.36)

0.34∗∗
0%(0.21)

0.43∗∗∗
0%(0.16)

0.43∗∗∗
0%(0.14)

0.41∗∗∗
0%(0.12)

Beta: λ̂WLS 0.69∗
−12%(0.45)

0.37
−20%(0.45)

0.27
−22%(0.28)

0.29∗
−32%(0.20)

0.31∗∗
−28%(0.18)

0.28∗∗
−31%(0.13)

GMMA: b̂1 13.32
78%(11.32)

11.45∗∗∗
295%(3.70)

10.77∗∗∗
230%(3.50)

11.16∗∗∗
151%(3.13)

14.05∗∗∗
199%(5.51)

5.64∗∗
82%(2.71)

GMMA: b̂2 −2.27
−130%(7.81)

12.59∗∗∗
335%(3.13)

11.62∗∗∗
256%(3.27)

11.65∗∗∗
162%(2.82)

12.74∗∗∗
171%(5.05)

9.15∗∗∗
195%(1.75)

GMMB: b̂1 7.57
1%(10.83)

15.45∗∗
433%(6.68)

14.37∗∗∗
340%(6.11)

15.22∗∗∗
243%(5.96)

19.95∗∗
325%(10.00)

4.43∗
43%(3.48)

GMMB: b̂2 −1.45
−119%(8.45)

17.04∗∗∗
489%(5.63)

15.79∗∗∗
384%(5.71)

16.73∗∗∗
277%(5.03)

17.85∗∗
280%(9.68)

9.92∗∗∗
220%(2.16)

GMMC: b̂ −4.91
−166%(22.43)

17.78∗∗∗
514%(7.14)

16.45∗∗
404%(7.00)

17.87∗∗
302%(8.81)

23.25∗∗
395%(12.34)

16.37∗
427%(12.15)

N = 25

Beta: λ̂OLS 0.60∗∗
−24%(0.42)

0.41
−10%(0.42)

0.40∗∗
17%(0.25)

0.51∗∗∗
19%(0.17)

0.41∗∗∗
−4%(0.16)

0.46∗∗∗
13%(0.12)

Beta: λ̂GLS 0.78∗∗∗
−1%(0.40)

0.50∗∗
9%(0.36)

0.40∗∗∗
16%(0.21)

0.46∗∗∗
8%(0.16)

0.46∗∗∗
7%(0.14)

0.41∗∗∗
−1%(0.12)

Beta: λ̂WLS 0.70∗∗
−11%(0.42)

0.38
−18%(0.39)

0.32∗∗
−6%(0.23)

0.40∗∗∗
−7%(0.18)

0.34∗∗∗
−22%(0.15)

0.37∗∗∗
−9%(0.13)

GMMA: b̂1 13.64∗∗∗
82%(6.23)

11.26∗∗∗
289%(3.57)

11.01∗∗∗
238%(3.69)

11.86∗∗∗
167%(2.95)

12.39∗∗∗
164%(3.16)

6.71∗∗∗
116%(1.77)

GMMA: b̂2 23.79∗∗∗
217%(4.21)

17.65∗∗∗
509%(2.36)

17.25∗∗∗
429%(2.42)

15.43∗∗∗
247%(2.36)

12.05∗∗∗
156%(2.68)

7.47∗∗∗
141%(1.23)

GMMB: b̂1 12.00∗∗
60%(7.44)

13.95∗∗∗
382%(5.69)

13.89∗∗∗
326%(5.40)

15.39∗∗∗
246%(4.85)

14.18∗∗∗
202%(3.79)

6.27∗∗∗
102%(2.11)

GMMB: b̂2 8.22∗∗
10%(5.74)

20.57∗∗∗
610%(4.05)

20.34∗∗∗
523%(3.78)

17.19∗∗∗
287%(3.66)

13.50∗∗∗
187%(3.30)

7.14∗∗∗
130%(1.47)

GMMC: b̂ × × 33.61∗∗∗
930%(10.11)

30.74∗∗∗
592%(7.92)

14.99∗∗∗
219%(6.18)

10.90
251%(16.23)

N = 100

Beta: λ̂OLS 0.24
−48%(0.42)

0.29∗
−15%(0.25)

0.41∗∗∗
−5%(0.18)

0.37∗∗∗
−13%(0.16)

0.52∗∗∗
26%(0.12)

Beta: λ̂GLS 0.38∗
−16%(0.36)

0.26∗
−24%(0.21)

0.39∗∗∗
−8%(0.16)

0.42∗∗∗
−2%(0.14)

0.43∗∗∗
4%(0.12)

Beta: λ̂WLS 0.20
−56%(0.37)

0.20
−42%(0.21)

0.33∗∗∗
−23%(0.17)

0.33∗∗∗
−23%(0.14)

0.44∗∗∗
6%(0.12)

GMMA: b̂1 8.81∗∗∗
204%(3.63)

8.89∗∗∗
172%(3.12)

10.36∗∗∗
133%(2.58)

9.85∗∗∗
110%(2.36)

5.77∗∗∗
86%(1.29)

GMMA: b̂2 20.66∗∗∗
613%(0.92)

19.07∗∗∗
484%(1.35)

17.69∗∗∗
298%(1.54)

15.75∗∗∗
235%(1.54)

6.80∗∗∗
119%(0.94)

GMMB: b̂1 9.76∗∗∗
237%(5.04)

9.92∗∗∗
204%(4.08)

12.05∗∗∗
171%(3.52)

10.59∗∗∗
125%(2.90)

5.52∗∗∗
78%(1.52)

GMMB: b̂2 −6.96
−340%(1.53)

9.90∗∗∗
203%(2.09)

7.22∗∗∗
63%(2.24)

8.30∗∗∗
77%(2.02)

5.65∗∗∗
82%(1.09)

GMMC: b̂ × 28.64
778%(28.25)

× 44.24∗
841%(39.12)

8.24∗∗∗
165%(3.60)
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Panel D. N Portfolios formed on ME MOM

T = 60 T = 120 T = 240 T = 360 T = 480 T = 948

λ = Ef 0.78 0.46 0.34 0.43 0.43 0.41

b = λ
E(Rem2)

7.50 2.90 3.26 4.44 4.70 3.10

N = 6

Beta: λ̂OLS 2.66∗∗
240%(1.43)

−0.39
−185%(0.61)

−0.05
−115%(0.41)

−0.17
−139%(0.35)

0.03
−92%(0.27)

0.72∗∗
75%(0.37)

Beta: λ̂GLS 0.75∗
−4%(0.60)

0.26
−43%(0.44)

0.14
−58%(0.29)

0.30
−30%(0.25)

0.37∗
−15%(0.23)

0.71∗∗∗
72%(0.24)

Beta: λ̂WLS 2.74∗∗
251%(1.29)

−0.42
−190%(0.51)

−0.27
−179%(0.33)

−0.36
−185%(0.31)

−0.25
−158%(0.33)

0.73∗∗∗
78%(0.27)

GMMA: b̂1 40.21∗
436%(26.57)

1.78
−39%(4.71)

4.54
39%(4.67)

4.33
−2%(4.22)

6.41∗∗
36%(3.41)

7.63∗∗∗
146%(2.59)

GMMA: b̂2 11.90
59%(11.67)

4.85∗
67%(3.35)

4.98∗
53%(3.54)

7.36∗∗
66%(3.13)

8.89∗∗∗
89%(2.95)

7.48∗∗∗
141%(1.90)

GMMB: b̂1 45.73
510%(37.55)

1.35
−53%(5.19)

4.01
23%(5.16)

2.36
−47%(4.73)

4.11
−13%(3.88)

8.21∗∗∗
164%(3.01)

GMMB: b̂2 5.22
−30%(15.18)

3.66
26%(3.76)

1.23
−62%(3.94)

2.06
−54%(3.53)

4.27∗
−9%(3.35)

7.42∗∗∗
139%(2.23)

GMMC: b̂ 6.14
−18%(35.33)

19.69∗∗
580%(9.67)

5.01
53%(6.02)

× × 9.73∗∗∗
213%(3.15)

N = 25

Beta: λ̂OLS 2.03∗∗∗
160%(0.77)

−0.12
−126%(0.48)

0.05
−85%(0.32)

0.17
−60%(0.26)

0.29∗∗
−32%(0.21)

1.02∗∗∗
149%(0.29)

Beta: λ̂GLS 0.66∗∗
−15%(0.46)

0.31
−34%(0.40)

0.40∗∗
18%(0.26)

0.60∗∗∗
41%(0.22)

0.46∗∗∗
7%(0.19)

0.87∗∗∗
113%(0.20)

Beta: λ̂WLS 1.97∗∗∗
152%(0.54)

0.01
−98%(0.39)

0.01
−97%(0.24)

0.10
−77%(0.20)

0.24∗
−45%(0.18)

0.92∗∗∗
125%(0.18)

GMMA: b̂1 30.91∗∗∗
312%(11.62)

4.78∗
65%(3.89)

5.74∗∗
76%(3.68)

7.73∗∗∗
74%(3.20)

8.29∗∗∗
76%(2.77)

10.15∗∗∗
227%(2.05)

GMMA: b̂2 32.21∗∗∗
330%(5.35)

11.90∗∗∗
311%(2.61)

15.73∗∗∗
382%(2.53)

18.37∗∗∗
314%(2.14)

15.31∗∗∗
226%(2.12)

9.58∗∗∗
209%(1.53)

GMMB: b̂1 34.88∗∗∗
365%(17.75)

4.56
57%(4.62)

5.67∗
74%(4.32)

7.35∗∗∗
65%(3.93)

8.05∗∗∗
71%(3.38)

11.39∗∗∗
267%(2.48)

GMMB: b̂2 −11.79
−257%(8.42)

6.16∗∗∗
113%(3.36)

8.28∗∗∗
154%(3.27)

1.00∗∗∗
175%(2.92)

10.53∗∗∗
124%(2.72)

9.77∗∗∗
215%(1.87)

GMMC: b̂ × 10.47∗∗
262%(6.36)

× × × 11.56∗∗∗
273%(2.71)

197



3.6 – Appendix of Tables

Panel E. N Industry Portfolios

T = 60 T = 120 T = 240 T = 360 T = 480 T = 948

λ = Ef 0.78 0.46 0.34 0.43 0.43 0.41

b = λ
E(Rem2)

7.50 2.90 3.26 4.44 4.70 3.10

N = 5

Beta: λ̂OLS 1.61∗
106%(1.06)

−0.00
−101%(0.52)

−0.12
−136%(0.28)

−0.10
−124%(0.27)

−0.09
−120%(0.21)

−0.16
−140%(0.18)

Beta: λ̂GLS 1.49∗
91%(0.98)

−0.03
−107%(0.53)

−0.11
−131%(0.28)

−0.06
−113%(0.26)

−0.08
−119%(0.20)

−0.14
−135%(0.17)

Beta: λ̂WLS 1.42∗
82%(0.92)

−0.04
−109%(0.53)

−0.11
−133%(0.30)

−0.03
−107%(0.27)

−0.06
−113%(0.21)

−0.13
−131%(0.17)

GMMA: b̂1 32.59
335%(23.76)

5.95
105%(5.60)

3.99
22%(3.58)

3.19
−28%(2.75)

2.47
−47%(2.87)

1.51
−51%(2.62)

GMMA: b̂2 29.38
292%(22.68)

6.53
126%(5.34)

4.02
23%(3.45)

3.12
−30%(2.75)

1.83
−61%(2.75)

0.50
−84%(2.45)

GMMB: b̂1 38.92
419%(33.84)

6.95
140%(8.05)

4.59
41%(4.52)

3.55
−20%(3.20)

2.64
−44%(3.22)

1.45
−53%(2.85)

GMMB: b̂2 31.96
326%(31.95)

7.62
163%(7.80)

4.57
40%(4.33)

3.33
−25%(3.19)

1.87
−60%(3.06)

0.38
−88%(2.67)

GMMC: b̂ × 8.40
190%(9.69)

4.67
43%(4.49)

3.45
−22%(3.03)

2.01
−57%(3.02)

0.66
−79%(2.68)

N = 17

Beta: λ̂OLS 0.66∗
−15%(0.50)

0.13
−73%(0.43)

0.01
−97%(0.26)

0.05
−88%(0.22)

0.00
−100%(0.19)

0.01
−97%(0.17)

Beta: λ̂GLS 0.33
−58%(0.47)

0.13
−71%(0.39)

−0.03
−109%(0.23)

−0.03
−108%(0.20)

−0.10
−122%(0.17)

−0.04
−109%(0.16)

Beta: λ̂WLS 0.65∗
−16%(0.49)

0.24
−49%(0.39)

0.11
−67%(0.24)

0.09
−79%(0.20)

0.07
−83%(0.17)

0.03
−91%(0.16)

GMMA: b̂1 5.27
−30%(9.06)

5.67∗∗
96%(3.64)

4.83∗∗
48%(3.05)

4.93∗∗∗
11%(2.59)

3.70∗∗
−21%(2.64)

1.80
−42%(2.15)

GMMA: b̂2 −3.91
−152%(6.47)

6.74∗∗∗
133%(2.59)

3.33∗∗
2%(2.33)

3.17∗∗
−29%(2.21)

0.91
−81%(2.31)

0.32
−90%(1.85)

GMMB: b̂1 4.02
−46%(9.64)

5.93∗∗
105%(4.40)

5.28∗∗
62%(3.64)

5.31∗∗
20%(3.06)

3.66∗
−22%(2.97)

1.37
−56%(2.30)

GMMB: b̂2 −5.93
−179%(6.78)

5.50∗∗
90%(3.29)

2.96∗
−9%(2.74)

2.62
−41%(2.56)

0.02
−100%(2.51)

−0.21
−107%(1.95)

GMMC: b̂ −4.15
−155%(14.15)

6.33∗∗
118%(4.43)

3.69∗
13%(3.41)

2.77
−38%(2.85)

1.05
−78%(2.75)

0.36
−88%(2.25)

N = 30

Beta: λ̂OLS 0.88∗∗
13%(0.52)

0.12
−73%(0.43)

−0.02
−106%(0.25)

0.01
−97%(0.21)

0.01
−99%(0.18)

−0.14
−134%(0.19)

Beta: λ̂GLS 0.41
−48%(0.43)

0.10
−77%(0.38)

−0.05
−116%(0.23)

−0.03
−108%(0.19)

−0.06
−114%(0.17)

−0.08
−119%(0.16)

Beta: λ̂WLS 0.54∗
−31%(0.45)

0.06
−87%(0.39)

−0.04
−111%(0.23)

−0.03
−106%(0.19)

−0.01
−102%(0.17)

−0.12
−130%(0.16)

GMMA: b̂1 10.79∗∗∗
44%(5.93)

7.47∗∗∗
158%(4.05)

4.59∗∗
41%(3.12)

4.34∗∗
−2%(2.57)

4.02∗∗
−14%(2.61)

1.61
−48%(2.42)

GMMA: b̂2 14.45∗∗∗
93%(3.76)

10.04∗∗∗
247%(2.12)

5.35∗∗∗
64%(2.19)

5.81∗∗∗
31%(2.05)

4.22∗∗∗
−10%(2.14)

0.96
−69%(1.85)

GMMB: b̂1 9.95∗∗
33%(6.94)

8.39∗∗
190%(5.33)

4.93∗∗
51%(3.69)

4.42∗∗
0%(2.96)

3.83∗
−19%(2.93)

0.83
−73%(2.53)

GMMB: b̂2 8.42∗∗∗
12%(4.89)

9.10∗∗∗
214%(2.96)

3.88∗∗
19%(2.62)

4.57∗∗∗
3%(2.43)

2.71∗
−42%(2.43)

−0.47
−115%(1.99)

GMMC: b̂ 13.58∗∗∗
81%(7.53)

13.36∗∗∗
361%(5.91)

6.08∗∗∗
86%(3.53)

7.17∗∗∗
61%(3.33)

3.27∗
−30%(2.84)

1.84
−41%(2.46)
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3.6.8 Specification tests in CAPM model

The following five panels report the root mean square error and %p-value of the

model specification tests. Each panel corresponds to a one set of test portfolios. T

is 60 (January 2001 - December 2005), 120, 240, 360, 480 and 948 (January 1927

- December 2005) monthly observations. The time-series test is the Gibbons-Ross-

Shanken [41] (GRS) F test. The two-pass (Fama-MacBeth) cross-sectional test are

asymptotic χ2 tests of the hypothesis that all pricing errors are zero under the null that

the model is true by dividing them by their variance-covariance matrix; for these three

tests, we use the well known Shanken correction, that is why %p-value for OLS and

GLS are not exactly the same. Next, we turn from beta representation to a discount

factor formulation for GMM approach; thus, the rest are χ2 tests based on Hansen

[46] tests for the overindentifying restrictions (or J tests). The GMMA formulation is

E (Re) = E (Ref ′) b (returns on second moments, following Hansen and Jagannathan

[49]), in this case the statistic for first and second-stage turns out to be the same

(see section 1.5.2 for a discussion), then %p-value for second-stage is represented by

X. GMMB formulation is E (Re) = E
(
Ref̃ ′

)
b (returns on covariances, following

Cochrane [25]). The GMMC is the continuous updating estimate (following Hansen,

Heaton and Yaron [47]).
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Panel A. N Portfolios formed on ME

Method T = 60 T = 120 T = 240 T = 360 T = 480 T = 948

N = 5

TS: GRS 0.753
3%

0.275
6%

0.076
2%

0.177
1%

0.153
1%

0.116
16%

Beta: OLSShanken 0.466
1%

0.189
18%

0.051
39%

0.084
62%

0.069
63%

0.045
79%

Beta: GLSShanken 0.774
1%

0.231
18%

0.051
39%

0.136
62%

0.117
63%

0.089
79%

Beta: WLSShanken 0.747
0%

0.227
55%

0.051
91%

0.119
15%

0.102
15%

0.084
27%

GMMA: Fist-stage 0.463
1%

0.185
15%

0.050
36%

0.082
58%

0.068
61%

0.045
77%

GMMA: Second-stage 0.671
X

0.188
X

0.077
X

0.143
X

0.113
X

0.058
X

GMMB: Fist-stage 0.425
1%

0.172
15%

0.047
35%

0.077
59%

0.063
62%

0.041
77%

GMMB: Second-stage 0.742
1%

0.221
15%

0.058
35%

0.156
59%

0.119
62%

0.061
77%

GMMC 0.561
1%

0.226
15%

0.065
35%

0.150
59%

0.118
62%

0.061
77%

N = 10

TS: GRS 0.806
0%

0.307
5%

0.107
1%

0.192
0%

0.163
1%

0.131
42%

Beta: OLSShanken 0.480
0%

0.204
9%

0.078
12%

0.085
32%

0.068
59%

0.057
92%

Beta: GLSShanken 0.814
0%

0.259
8%

0.080
12%

0.143
32%

0.122
59%

0.103
92%

Beta: WLSShanken 0.607
0%

0.216
58%

0.080
90%

0.100
36%

0.084
48%

0.079
67%

GMMA: Fist-stage 0.478
0%

0.200
8%

0.077
13%

0.083
31%

0.068
57%

0.056
89%

GMMA: Second-stage 0.668
X

0.209
X

0.103
X

0.132
X

0.110
X

0.058
X

SDF: GMMB
1,0 0.458

0%
0.194

8%
0.075
13%

0.081
31%

0.065
57%

0.055
88%

SDF: GMMB
2,0 0.877

0%
0.239

8%
0.083
13%

0.173
31%

0.125
57%

0.061
88%

SDF: GMMC 1.151
0%

0.216
8%

0.132
13%

0.138
31%

0.118
57%

0.060
89%

200



3.6 – Appendix of Tables

Panel B. N Portfolios formed on BE/ME

Methods T = 60 T = 120 T = 240 T = 360 T = 480 T = 948

N = 5

TS: GRS 0.411
27%

0.322
61%

0.230
29%

0.278
2%

0.244
1%

0.121
40%

Beta: OLSShanken 0.340
22%

0.232
47%

0.158
34%

0.221
2%

0.191
2%

0.080
50%

Beta: GLSShanken 0.453
22%

0.307
46%

0.194
34%

0.255
2%

0.218
2%

0.105
50%

Beta: WLSShanken 0.389
0%

0.268
5%

0.169
5%

0.233
0%

0.201
0%

0.096
10%

GMMA: Fist-stage 0.340
29%

0.227
53%

0.154
39%

0.216
2%

0.188
1%

0.078
45%

GMMA: Second-stage 0.424
X

0.296
X

0.172
X

0.250
X

0.197
X

0.079
X

GMMB: Fist-stage 0.311
29%

0.212
54%

0.144
40%

0.202
2%

0.174
1%

0.073
45%

GMMB: Second-stage 0.436
29%

0.319
54%

0.189
40%

0.279
2%

0.209
1%

0.082
45%

GMMC 0.357
27%

0.269
51%

0.165
39%

0.240
2%

0.206
1%

0.081
45%

N = 10

TS: GRS 0.424
71%

0.325
86%

0.232
69%

0.285
16%

0.248
12%

0.122
12%

Beta: OLSShanken 0.334
61%

0.222
79%

0.152
78%

0.221
15%

0.189
18%

0.083
15%

Beta: GLSShanken 0.465
60%

0.303
79%

0.192
78%

0.262
14%

0.221
18%

0.104
14%

Beta: WLSShanken 0.349
2%

0.233
27%

0.156
21%

0.227
0%

0.195
0%

0.090
20%

GMMA: Fist-stage 0.333
72%

0.217
79%

0.148
79%

0.216
16%

0.186
16%

0.082
13%

GMMA: Second-stage 0.423
X

0.287
X

0.158
X

0.245
X

0.199
X

0.098
X

GMMB: Fist-stage 0.318
72%

0.211
80%

0.144
79%

0.211
17%

0.180
16%

0.079
13%

GMMB: Second-stage 0.441
72%

0.325
80%

0.178
79%

0.276
17%

0.212
16%

0.111
13%

GMMC 0.377
70%

0.288
79%

0.159
79%

0.240
16%

0.208
16%

0.097
13%
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Panel C. N Portfolios formed by the intersections of ME and

BE/ME

Method T = 60 T = 120 T = 240 T = 360 T = 480 T = 948

N = 6

TS: GRS 0.713
2%

0.463
0%

0.323
0%

0.375
0%

0.326
0%

0.200
0%

Beta: OLSShanken 0.573
1%

0.428
0%

0.314
0%

0.333
0%

0.279
0%

0.155
0%

Beta: GLSShanken 0.763
1%

0.461
0%

0.326
0%

0.380
0%

0.321
0%

0.194
0%

Beta: WLSShanken 0.701
0%

0.437
2%

0.314
1%

0.341
0%

0.287
0%

0.171
1%

GMMA: Fist-stage 0.571
2%

0.420
0%

0.307
0%

0.324
0%

0.275
0%

0.153
0%

GMMA: Second-stage 0.701
X

0.420
X

0.328
X

0.389
X

0.300
X

0.178
X

GMMB: Fist-stage 0.530
2%

0.396
0%

0.290
0%

0.308
0%

0.258
0%

0.144
0%

GMMB: Second-stage 0.746
2%

0.494
0%

0.438
0%

0.508
0%

0.354
0%

0.212
0%

GMMC 0.708
1%

0.723
0%

0.425
0%

0.341
0%

0.283
0%

0.178
0%

N = 25

TS: GRS 0.854
11%

0.545
0%

0.370
0%

0.413
0%

0.361
0%

0.257
0%

Beta: OLSShanken 0.599
0%

0.486
0%

0.354
0%

0.352
0%

0.303
0%

0.231
0%

Beta: GLSShanken 0.869
0%

0.503
0%

0.358
0%

0.401
0%

0.347
0%

0.246
0%

Beta: WLSShanken 0.626
0%

0.487
1%

0.359
0%

0.352
0%

0.303
0%

0.231
0%

GMMA: Fist-stage 0.597
0%

0.476
0%

0.345
0%

0.343
0%

0.299
0%

0.227
0%

GMMA: Second-stage 0.640
X

0.880
X

0.712
X

0.377
X

0.317
X

0.228
X

GMMB: Fist-stage 0.588
0%

0.476
0%

0.347
0%

0.345
0%

0.297
0%

0.226
0%

GMMB: Second-stage 0.774
0%

0.501
0%

0.384
0%

0.466
0%

0.337
0%

0.269
0%

GMMC 3.452
0%

4.891
0%

7.741
0%

0.744
0%

0.314
0%

0.233
0%

N = 100

TS: GRS 0.605
35%

0.402
0%

0.440
0%

0.385
0%

0.306
0%

Beta: OLSShanken 0.543
0%

0.384
0%

0.372
0%

0.322
0%

0.245
0%

Beta: GLSShanken 0.571
0%

0.392
0%

0.425
0%

0.368
0%

0.276
0%

Beta: WLSShanken 0.548
0%

0.389
0%

0.372
0%

0.322
0%

0.249
0%

GMMA: Fist-stage 0.531
0%

0.374
0%

0.362
0%

0.318
0%

0.241
0%

GMMA: Second-stage 5.258
X

1.873
X

0.989
X

0.568
X

0.265
X

GMMB: Fist-stage 0.540
0%

0.382
0%

0.370
0%

0.320
0%

0.244
0%

GMMB: Second-stage 0.594
0%

0.392
0%

0.425
0%

0.354
0%

0.251
0%

GMMC 0.562
0%

1.004
0%

11.143
0%

2.695
0%

0.250
0%
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Panel D. N Portfolios formed on ME MOM

Methods T = 60 T = 120 T = 240 T = 360 T = 480 T = 948

N = 6

TS: GRS 0.733
3%

0.500
2%

0.421
0%

0.434
0%

0.411
0%

0.410
0%

Beta: OLSShanken 0.583
0%

0.490
0%

0.420
0%

0.420
0%

0.402
0%

0.410
0%

Beta: GLSShanken 0.737
0%

0.497
0%

0.420
0%

0.430
0%

0.406
0%

0.414
0%

Beta: WLSShanken 0.638
0%

0.499
5%

0.432
0%

0.420
0%

0.402
0%

0.413
0%

GMMA: Fist-stage 0.581
1%

0.482
0%

0.412
0%

0.410
0%

0.398
0%

0.404
0%

GMMA: Second-stage 0.622
X

0.490
X

0.492
X

0.431
X

0.405
X

0.411
X

GMMB: Fist-stage 0.539
1%

0.454
0%

0.389
0%

0.389
0%

0.372
0%

0.380
0%

GMMB: Second-stage 0.681
1%

0.500
0%

0.422
0%

0.457
0%

0.416
0%

0.451
0%

GMMC 1.551
2%

0.496
0%

0.433
0%

0.628
0%

0.422
0%

0.469
0%

N = 25

TS: GRS 0.936
9%

0.603
1%

0.472
0%

0.491
0%

0.462
0%

0.485
0%

Beta: OLSShanken 0.741
0%

0.589
0%

0.470
0%

0.468
0%

0.447
0%

0.481
0%

Beta: GLSShanken 0.899
0%

0.614
0%

0.470
0%

0.484
0%

0.450
0%

0.481
0%

Beta: WLSShanken 0.744
0%

0.608
0%

0.484
0%

0.473
0%

0.451
0%

0.484
0%

GMMA: Fist-stage 0.738
0%

0.578
0%

0.460
0%

0.457
0%

0.442
0%

0.474
0%

GMMA: Second-stage 1.244
X

0.828
X

0.863
X

0.720
X

0.531
X

0.488
X

GMMB: Fist-stage 0.727
0%

0.577
0%

0.461
0%

0.459
0%

0.439
0%

0.472
0%

GMMB: Second-stage 0.753
0%

0.597
0%

0.472
0%

0.496
0%

0.453
0%

0.489
0%

GMMC 1.997
0%

3.943
0%

5.573
0%

4.733
0%

1.225
0%

0.484
0%
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Panel E. N Industry Portfolios

Method T = 60 T = 120 T = 240 T = 360 T = 480 T = 948

N = 5

TS: GRS 0.436
35%

0.295
60%

0.227
23%

0.164
15%

0.123
11%

0.122
1%

Beta: OLSShanken 0.422
17%

0.292
56%

0.212
37%

0.139
61%

0.093
75%

0.103
23%

Beta: GLSShanken 0.434
17%

0.292
56%

0.214
37%

0.141
61%

0.095
75%

0.104
23%

Beta: WLSShanken 0.448
6%

0.298
24%

0.214
17%

0.141
32%

0.093
62%

0.104
20%

GMMA: Fist-stage 0.422
17%

0.287
58%

0.208
41%

0.136
65%

0.092
76%

0.101
21%

GMMA: Second-stage 0.438
X

0.289
X

0.210
X

0.139
X

0.093
X

0.110
X

GMMB: Fist-stage 0.385
17%

0.266
58%

0.194
41%

0.127
65%

0.085
76%

0.094
22%

GMMB: Second-stage 0.432
17%

0.292
58%

0.220
41%

0.144
65%

0.095
76%

0.115
22%

GMMC 0.534
19%

0.297
58%

0.213
41%

0.140
64%

0.094
76%

0.109
21%

N = 17

TS: GRS 0.639
51%

0.360
63%

0.255
52%

0.232
10%

0.176
4%

0.124
1%

Beta: OLSShanken 0.581
12%

0.353
41%

0.252
68%

0.230
45%

0.169
40%

0.117
45%

Beta: GLSShanken 0.627
12%

0.356
41%

0.253
68%

0.234
46%

0.171
40%

0.123
45%

Beta: WLSShanken 0.589
8%

0.362
44%

0.254
21%

0.230
4%

0.170
16%

0.118
24%

GMMA: Fist-stage 0.580
10%

0.348
32%

0.247
63%

0.225
42%

0.167
35%

0.116
41%

GMMA: Second-stage 0.584
X

0.359
X

0.265
X

0.236
X

0.178
X

0.118
X

GMMB: Fist-stage 0.565
10%

0.343
32%

0.245
63%

0.223
42%

0.164
35%

0.114
42%

GMMB: Second-stage 0.621
10%

0.361
32%

0.253
63%

0.230
42%

0.171
35%

0.126
42%

GMMC 0.844
12%

0.402
33%

0.259
63%

0.236
42%

0.172
35%

0.119
41%

N = 30

TS: GRS 0.808
73%

0.593
71%

0.312
58%

0.248
19%

0.222
19%

0.189
1%

Beta: OLSShanken 0.754
2%

0.575
36%

0.301
63%

0.234
53%

0.202
63%

0.177
19%

Beta: GLSShanken 0.825
2%

0.581
36%

0.301
63%

0.236
54%

0.202
63%

0.179
19%

Beta: WLSShanken 0.755
15%

0.577
66%

0.301
54%

0.234
23%

0.203
37%

0.177
4%

GMMA: Fist-stage 0.752
2%

0.565
30%

0.294
57%

0.229
44%

0.200
60%

0.174
12%

GMMA: Second-stage 0.757
X

0.637
X

0.352
X

0.276
X

0.209
X

0.189
X

GMMB: Fist-stage 0.742
2%

0.566
27%

0.296
55%

0.230
42%

0.199
59%

0.174
12%

GMMB: Second-stage 0.793
2%

0.577
27%

0.302
55%

0.237
42%

0.202
59%

0.212
12%

GMMC 0.762
2%

0.586
28%

0.326
56%

0.241
42%

0.206
59%

0.205
12%
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3.6.9 Specification tests in Fama-French model

The following five panels report the root mean square error and %p-value of the

model specification tests. Each panel corresponds to a one set of test portfolios. T

is 60 (January 2001 - December 2005), 120, 240, 360, 480 and 948 (January 1927

- December 2005) monthly observations. The time-series test is the Gibbons-Ross-

Shanken [41] (GRS) F test. The two-pass (Fama-MacBeth) cross-sectional test are

asymptotic χ2 tests of the hypothesis that all pricing errors are zero under the null that

the model is true by dividing them by their variance-covariance matrix; for these three

tests, we use the well known Shanken correction, that is why %p-value for OLS and

GLS are not exactly the same. Next, we turn from beta representation to a discount

factor formulation for GMM approach; thus, the rest are χ2 tests based on Hansen

[46] tests for the overindentifying restrictions (or J tests). The GMMA formulation is

E (Re) = E (Ref ′) b (returns on second moments, following Hansen and Jagannathan

[49]), in this case the statistic for first and second-stage turns out to be the same

(see section 1.5.2 for a discussion), then %p-value for second-stage is represented by

X. GMMB formulation is E (Re) = E
(
Ref̃ ′

)
b (returns on covariances, following

Cochrane [25]). The GMMC is the continuous updating estimate (following Hansen,

Heaton and Yaron [47]).
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Panel A. N Portfolios formed on ME

Method T = 60 T = 120 T = 240 T = 360 T = 480 T = 948

N = 5

TS: GRS 0.139
52%

0.178
5%

0.065
1%

0.050
0%

0.046
0%

0.086
0%

Beta: OLSShanken 0.121
42%

0.106
7%

0.050
25%

0.015
82%

0.010
80%

0.012
69%

Beta: GLSShanken 0.125
37%

0.135
5%

0.064
29%

0.019
83%

0.010
80%

0.015
69%

Beta: WLSShanken 0.134
47%

0.110
11%

0.054
28%

0.016
83%

0.010
90%

0.014
65%

GMMA: Fist-stage 0.092
49%

0.110
7%

0.048
32%

0.014
84%

0.009
82%

0.012
65%

GMMA: Second-stage 0.323
X

0.286
X

0.065
X

0.020
X

0.012
X

0.014
X

GMMB: Fist-stage 0.096
42%

0.084
4%

0.040
26%

0.012
83%

0.008
82%

0.009
65%

GMMB: Second-stage 0.369
42%

0.228
4%

0.064
26%

0.021
83%

0.013
82%

0.014
65%

GMMC 0.399
47%

0.605
8%

0.142
45%

0.021
85%

0.016
83%

0.015
65%

N = 10

TS: GRS 0.277
4%

0.193
8%

0.079
1%

0.054
0%

0.046
3%

0.086
0%

Beta: OLSShanken 0.269
0%

0.151
8%

0.073
10%

0.036
29%

0.025
60%

0.023
91%

Beta: GLSShanken 0.275
0%

0.199
9%

0.075
11%

0.037
28%

0.026
59%

0.025
91%

Beta: WLSShanken 0.276
16%

0.169
6%

0.076
44%

0.037
85%

0.025
94%

0.025
94%

GMMA: Fist-stage 0.203
9%

0.152
11%

0.069
12%

0.034
28%

0.024
57%

0.022
88%

GMMA: Second-stage 1.471
X

0.380
X

0.090
X

0.036
X

0.026
X

0.030
X

GMMB: Fist-stage 0.236
0%

0.133
4%

0.064
10%

0.032
28%

0.022
58%

0.020
88%

GMMB: Second-stage 1.012
0%

0.259
5%

0.094
10%

0.053
28%

0.027
58%

0.028
88%

GMMC 3.730
23%

0.273
20%

0.093
12%

0.041
28%

0.026
57%

0.031
88%
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Panel B. N Portfolios formed on BE/ME

Method T = 60 T = 120 T = 240 T = 360 T = 480 T = 948

N = 5

TS: GRS 0.162
73%

0.151
8%

0.095
6%

0.072
6%

0.072
3%

0.072
1%

Beta: OLSShanken 0.030
88%

0.044
71%

0.025
79%

0.005
98%

0.025
61%

0.014
69%

Beta: GLSShanken 0.032
87%

0.046
70%

0.027
80%

0.006
98%

0.027
61%

0.014
69%

Beta: WLSShanken 0.030
88%

0.044
75%

0.025
78%

0.005
98%

0.025
60%

0.014
78%

GMMA: Fist-stage 0.025
88%

0.042
73%

0.024
80%

0.005
98%

0.024
63%

0.014
69%

GMMA: Second-stage 0.031
X

0.044
X

0.051
X

0.012
X

0.043
X

0.018
X

GMMB: Fist-stage 0.023
88%

0.035
73%

0.020
80%

0.004
98%

0.020
63%

0.011
69%

GMMB: Second-stage 0.038
88%

0.047
73%

0.050
80%

0.013
98%

0.043
63%

0.019
69%

GMMC 0.037
88%

0.046
72%

0.065
79%

0.013
98%

0.046
63%

0.018
69%

N = 10

TS: GRS 0.201
65%

0.174
18%

0.108
8%

0.080
11%

0.077
9%

0.110
0%

Beta: OLSShanken 0.076
93%

0.067
93%

0.039
98%

0.028
96%

0.030
98%

0.050
16%

Beta: GLSShanken 0.085
93%

0.067
93%

0.043
98%

0.029
96%

0.031
98%

0.052
16%

Beta: WLSShanken 0.077
98%

0.067
96%

0.041
99%

0.028
98%

0.031
97%

0.051
29%

GMMA: Fist-stage 0.066
94%

0.064
92%

0.037
98%

0.026
96%

0.029
98%

0.050
12%

GMMA: Second-stage 0.282
X

0.090
X

0.081
X

0.039
X

0.043
X

0.077
X

GMMB: Fist-stage 0.067
94%

0.059
92%

0.034
98%

0.025
96%

0.027
98%

0.044
13%

GMMB: Second-stage 0.375
94%

0.073
92%

0.073
98%

0.034
96%

0.042
98%

0.089
13%

GMMC 0.368
95%

0.095
92%

0.089
98%

0.040
96%

0.045
98%

0.070
12%
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Panel C. N Portfolios formed by the intersections of ME and

BE/ME

Method T = 60 T = 120 T = 240 T = 360 T = 480 T = 948

N = 6

TS: GRS 0.225
48%

0.240
0%

0.173
0%

0.144
0%

0.117
0%

0.095
0%

Beta: OLSShanken 0.143
23%

0.212
0%

0.165
0%

0.139
0%

0.115
0%

0.087
0%

Beta: GLSShanken 0.173
22%

0.247
0%

0.172
0%

0.143
0%

0.119
0%

0.097
0%

Beta: WLSShanken 0.173
7%

0.239
0%

0.174
0%

0.144
0%

0.120
0%

0.092
0%

GMMA: Fist-stage 0.121
13%

0.195
0%

0.155
0%

0.128
0%

0.108
0%

0.085
0%

GMMA: Second-stage 0.252
X

0.248
X

0.231
X

0.134
X

0.114
X

0.101
X

GMMB: Fist-stage 0.117
11%

0.173
0%

0.135
0%

0.114
0%

0.094
0%

0.071
0%

GMMB: Second-stage 0.151
11%

0.287
0%

0.400
0%

0.253
0%

0.124
0%

0.122
0%

GMMC 0.180
11%

3.985
0%

0.288
0%

0.144
0%

0.121
0%

0.093
0%

N = 25

TS: GRS 0.291
36%

0.297
0%

0.213
0%

0.172
0%

0.144
0%

0.220
0%

Beta: OLSShanken 0.263
0%

0.275
0%

0.209
0%

0.168
0%

0.141
0%

0.193
0%

Beta: GLSShanken 0.290
0%

0.354
0%

0.231
0%

0.180
0%

0.152
0%

0.225
0%

Beta: WLSShanken 0.273
10%

0.292
0%

0.218
0%

0.173
0%

0.145
0%

0.214
0%

GMMA: Fist-stage 0.220
3%

0.252
0%

0.196
0%

0.154
0%

0.133
0%

0.189
0%

GMMA: Second-stage 1.362
X

1.149
X

0.791
X

0.408
X

0.295
X

0.210
X

GMMB: Fist-stage 0.249
0%

0.260
0%

0.198
0%

0.159
0%

0.133
0%

0.182
0%

GMMB: Second-stage 0.332
0%

0.298
0%

0.263
0%

0.220
0%

0.151
0%

0.206
0%

GMMC 5.863
3%

4.203
0%

2.647
0%

0.832
0%

0.278
0%

1.822
0%

N = 100

TS: GRS 0.380
55%

0.269
0%

0.210
0%

0.189
0%

0.200
0%

Beta: OLSShanken 0.354
0%

0.263
0%

0.208
0%

0.187
0%

0.198
0%

Beta: GLSShanken 0.404
0%

0.275
0%

0.217
0%

0.198
0%

0.205
0%

Beta: WLSShanken 0.365
0%

0.268
0%

0.210
0%

0.190
0%

0.202
1%

GMMA: Fist-stage 0.324
0%

0.247
0%

0.190
0%

0.177
0%

0.193
0%

GMMA: Second-stage 3.177
X

1.743
X

0.989
X

0.516
X

0.210
X

GMMB: Fist-stage 0.349
0%

0.260
0%

0.205
0%

0.185
0%

0.195
0%

GMMB: Second-stage 0.377
0%

0.287
0%

0.242
0%

0.189
0%

0.205
0%

GMMC 1.990
0%

6.682
0%

1.824
0%

1.822
0%

0.446
0%
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Panel D. N Portfolios formed on ME and MOM

Method T = 60 T = 120 T = 240 T = 360 T = 480 T = 948

N = 6

TS: GRS 0.184
20%

0.501
3%

0.459
0%

0.434
0%

0.444
0%

0.463
0%

Beta: OLSShanken 0.144
11%

0.411
1%

0.408
0%

0.388
0%

0.349
0%

0.218
0%

Beta: GLSShanken 0.161
11%

0.482
1%

0.454
0%

0.434
0%

0.434
0%

0.352
0%

Beta: WLSShanken 0.166
70%

0.479
1%

0.463
0%

0.432
0%

0.400
0%

0.259
0%

GMMA: Fist-stage 0.123
6%

0.399
1%

0.409
0%

0.386
0%

0.370
0%

0.224
0%

GMMA: Second-stage 0.221
X

0.535
X

0.659
X

0.582
X

0.591
X

1.031
X

GMMB: Fist-stage 0.118
6%

0.336
0%

0.333
0%

0.317
0%

0.285
0%

0.178
0%

GMMB: Second-stage 0.421
5%

0.452
0%

0.461
0%

0.410
0%

0.451
0%

0.892
0%

GMMC 0.571
7%

1.320
6%

× 264.398
0%

× ×
N = 25

TS: GRS 0.352
28%

0.568
3%

0.489
0%

0.461
0%

0.472
0%

0.512
0%

Beta: OLSShanken 0.312
0%

0.481
0%

0.463
0%

0.442
0%

0.430
0%

0.352
0%

Beta: GLSShanken 0.327
0%

0.527
0%

0.507
0%

0.481
0%

0.478
0%

0.489
0%

Beta: WLSShanken 0.313
14%

0.532
0%

0.502
0%

0.472
0%

0.460
0%

0.372
0%

GMMA: Fist-stage 0.258
3%

0.445
0%

0.443
0%

0.414
0%

0.427
0%

0.356
0%

GMMA: Second-stage 1.108
X

0.848
X

1.014
X

0.940
X

0.617
X

0.695
X

GMMB: Fist-stage 0.295
0%

0.454
0%

0.437
0%

0.418
0%

0.406
0%

0.332
0%

GMMB: Second-stage 0.416
0%

0.501
0%

0.466
0%

0.448
0%

0.444
0%

0.541
0%

GMMC 3.244
11%

2.489
1%

3.349
2%

4.324
0%

× ×
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Panel E. N Industry Portfolios

Method T = 60 T = 120 T = 240 T = 360 T = 480 T = 948

N = 5

TS: GRS 0.082
99%

0.212
63%

0.222
9%

0.197
6%

0.214
0%

0.178
0%

Beta: OLSShanken 0.075
74%

0.110
55%

0.067
48%

0.018
94%

0.026
86%

0.052
40%

Beta: GLSShanken 0.076
74%

0.127
55%

0.070
47%

0.022
94%

0.033
86%

0.061
38%

Beta: WLSShanken 0.077
76%

0.131
52%

0.074
41%

0.019
92%

0.030
81%

0.060
28%

GMMA: Fist-stage 0.063
74%

0.107
57%

0.066
45%

0.018
93%

0.025
86%

0.052
45%

GMMA: Second-stage 0.088
X

0.128
X

0.074
X

0.023
X

0.035
X

0.064
X

GMMB: Fist-stage 0.059
74%

0.087
55%

0.053
45%

0.014
93%

0.020
86%

0.041
45%

GMMB: Second-stage 0.096
74%

0.134
55%

0.073
45%

0.024
93%

0.035
86%

0.066
45%

GMMC 0.112
74%

0.128
55%

0.072
44%

0.023
93%

0.034
86%

0.062
41%

N = 17

TS: GRS 0.340
55%

0.427
13%

0.302
3%

0.301
0%

0.251
0%

0.159
0%

Beta: OLSShanken 0.315
21%

0.286
52%

0.164
94%

0.145
65%

0.134
45%

0.088
71%

Beta: GLSShanken 0.389
15%

0.304
55%

0.170
94%

0.159
63%

0.138
44%

0.089
71%

Beta: WLSShanken 0.317
91%

0.301
81%

0.172
97%

0.146
74%

0.135
57%

0.089
71%

GMMA: Fist-stage 0.270
10%

0.277
41%

0.159
92%

0.143
58%

0.133
40%

0.087
73%

GMMA: Second-stage 0.597
X

0.326
X

0.170
X

0.163
X

0.140
X

0.093
X

GMMB: Fist-stage 0.290
4%

0.263
44%

0.151
93%

0.134
58%

0.124
41%

0.081
73%

GMMB: Second-stage 0.355
4%

0.322
44%

0.174
93%

0.156
58%

0.139
41%

0.100
73%

GMMC 1.765
22%

0.360
46%

0.182
94%

0.165
60%

0.143
42%

0.094
72%

N = 30

TS: GRS 0.453
80%

0.550
19%

0.321
8%

0.300
0%

0.262
0%

0.221
0%

Beta: OLSShanken 0.447
14%

0.516
40%

0.249
71%

0.165
68%

0.175
68%

0.157
37%

Beta: GLSShanken 0.513
9%

0.546
40%

0.254
70%

0.179
64%

0.181
66%

0.163
37%

Beta: WLSShanken 0.470
97%

0.540
79%

0.255
93%

0.166
88%

0.177
70%

0.163
32%

GMMA: Fist-stage 0.372
23%

0.486
20%

0.241
61%

0.162
57%

0.174
59%

0.156
35%

GMMA: Second-stage 0.777
X

0.532
X

0.257
X

0.203
X

0.177
X

0.185
X

GMMB: Fist-stage 0.426
2%

0.492
22%

0.238
63%

0.157
55%

0.167
60%

0.150
36%

GMMB: Second-stage 0.570
2%

0.562
23%

0.269
63%

0.179
55%

0.184
61%

0.210
36%

GMMC 0.830
11%

1.212
37%

0.260
60%

0.174
53%

0.184
62%

0.222
39%
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3.6.10 Specification tests in RUH model

The following five panels report the root mean square error and %p-value of the

model specification tests. Each panel corresponds to a one set of test portfolios. T

is 60 (January 2001 - December 2005), 120, 240, 360, 480 and 948 (January 1927

- December 2005) monthly observations. The time-series test is the Gibbons-Ross-

Shanken [41] (GRS) F test. The two-pass (Fama-MacBeth) cross-sectional test are

asymptotic χ2 tests of the hypothesis that all pricing errors are zero under the null that

the model is true by dividing them by their variance-covariance matrix; for these three

tests, we use the well known Shanken correction, that is why %p-value for OLS and

GLS are not exactly the same. Next, we turn from beta representation to a discount

factor formulation for GMM approach; thus, the rest are χ2 tests based on Hansen

[46] tests for the overindentifying restrictions (or J tests). The GMMA formulation is

E (Re) = E (Ref ′) b (returns on second moments, following Hansen and Jagannathan

[49]), in this case the statistic for first and second-stage turns out to be the same

(see section 1.5.2 for a discussion), then %p-value for second-stage is represented by

X. GMMB formulation is E (Re) = E
(
Ref̃ ′

)
b (returns on covariances, following

Cochrane [25]). The GMMC is the continuous updating estimate (following Hansen,

Heaton and Yaron [47]).
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Panel A. N Portfolios formed on ME

Method T = 60 T = 120 T = 240 T = 360 T = 480 T = 948

N = 5

TS: GRS 0.605
16%

0.368
16%

0.115
9%

0.178
3%

0.155
1%

0.084
8%

Beta: OLSShanken 0.104
48%

0.073
75%

0.021
73%

0.026
73%

0.059
62%

0.002
99%

Beta: GLSShanken 0.354
27%

0.150
79%

0.024
72%

0.068
68%

0.118
54%

0.005
99%

Beta: WLSShanken 0.113
83%

0.090
86%

0.023
98%

0.032
91%

0.103
48%

0.002
100%

GMMA: Fist-stage 0.072
62%

0.061
77%

0.017
73%

0.020
77%

0.044
83%

0.002
99%

GMMA: Second-stage 0.128
X

0.092
X

0.025
X

0.098
X

0.169
X

0.005
X

GMMB: Fist-stage 0.082
67%

0.058
73%

0.017
73%

0.020
78%

0.046
71%

0.001
99%

GMMB: Second-stage 0.160
67%

0.127
73%

0.030
73%

0.119
78%

0.194
71%

0.005
99%

GMMC 0.143
52%

0.119
79%

0.033
73%

0.088
73%

557.638
65%

0.005
99%

N = 10

TS: GRS 0.660
1%

0.394
31%

0.135
8%

0.188
4%

0.163
3%

0.108
11%

Beta: OLSShanken 0.219
7%

0.105
90%

0.057
44%

0.034
78%

0.062
56%

0.023
90%

Beta: GLSShanken 0.621
0%

0.122
91%

0.058
40%

0.064
73%

0.123
48%

0.040
90%

Beta: WLSShanken 0.230
94%

0.123
100%

0.058
100%

0.038
100%

0.084
47%

0.026
100%

GMMA: Fist-stage 0.158
7%

0.089
94%

0.049
55%

0.029
86%

0.055
79%

0.022
88%

GMMA: Second-stage 1.656
X

0.093
X

0.058
X

0.107
X

0.195
X

0.026
X

GMMB: Fist-stage 0.192
2%

0.092
93%

0.050
55%

0.030
87%

0.054
68%

0.020
88%

GMMB: Second-stage 1.534
9%

0.107
93%

0.098
55%

0.136
87%

0.184
68%

0.025
88%

GMMC 17.160
8%

0.135
94%

0.079
51%

0.088
83%

0.191
52%

0.027
88%
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Panel B. N Portfolios formed on BE/ME

Method T = 60 T = 120 T = 240 T = 360 T = 480 T = 948

N = 5

TS: GRS 0.129
69%

0.052
98%

0.056
77%

0.041
84%

0.052
53%

0.040
31%

Beta: OLSShanken 0.076
62%

0.017
99%

0.014
94%

0.026
76%

0.028
61%

0.012
88%

Beta: GLSShanken 0.093
53%

0.020
98%

0.015
94%

0.028
77%

0.031
58%

0.012
88%

Beta: WLSShanken 0.077
69%

0.018
99%

0.014
96%

0.026
70%

0.028
60%

0.012
87%

GMMA: Fist-stage 0.070
73%

0.011
99%

0.017
94%

0.024
77%

0.029
68%

0.011
88%

GMMA: Second-stage 0.168
X

0.025
X

0.023
X

0.026
X

0.038
X

0.016
X

GMMB: Fist-stage 0.060
71%

0.014
99%

0.011
94%

0.021
76%

0.022
68%

0.009
88%

GMMB: Second-stage 0.197
71%

0.040
99%

0.020
94%

0.028
76%

0.037
68%

0.016
88%

GMMC 0.265
76%

0.044
99%

0.018
94%

0.028
76%

0.037
61%

0.016
88%

N = 10

TS: GRS 0.156
89%

0.081
99%

0.078
80%

0.056
80%

0.062
70%

0.065
12%

Beta: OLSShanken 0.122
86%

0.066
94%

0.028
100%

0.028
98%

0.030
99%

0.046
34%

Beta: GLSShanken 0.140
84%

0.067
94%

0.028
99%

0.030
98%

0.032
99%

0.047
34%

Beta: WLSShanken 0.127
83%

0.066
97%

0.028
100%

0.030
99%

0.031
98%

0.047
47%

GMMA: Fist-stage 0.112
83%

0.061
93%

0.028
100%

0.027
98%

0.031
100%

0.041
29%

GMMA: Second-stage 0.185
X

0.107
X

0.037
X

0.028
X

0.039
X

0.132
X

GMMB: Fist-stage 0.107
81%

0.058
93%

0.024
100%

0.025
98%

0.027
100%

0.040
27%

GMMB: Second-stage 0.250
81%

0.080
93%

0.032
100%

0.030
98%

0.037
100%

0.115
27%

GMMC 0.227
83%

0.108
93%

0.036
100%

0.030
98%

0.038
99%

1.286
45%
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Panel C. N Portfolios formed by the intersections of ME and

BE/ME

Method T = 60 T = 120 T = 240 T = 360 T = 480 T = 948

N = 6

TS: GRS 0.493
7%

0.321
1%

0.165
0%

0.210
0%

0.191
0%

0.121
0%

Beta: OLSShanken 0.438
8%

0.060
82%

0.054
86%

0.078
44%

0.115
49%

0.096
1%

Beta: GLSShanken 0.582
14%

0.074
81%

0.084
87%

0.154
64%

0.149
41%

0.133
5%

Beta: WLSShanken 0.539
0%

0.081
98%

0.084
90%

0.107
69%

0.144
14%

0.114
3%

GMMA: Fist-stage 0.400
12%

0.044
89%

0.040
92%

0.056
73%

0.069
84%

0.087
4%

GMMA: Second-stage 0.495
X

0.105
X

0.100
X

0.211
X

0.086
X

0.207
X

GMMB: Fist-stage 0.358
16%

0.049
89%

0.044
91%

0.064
67%

0.094
77%

0.078
1%

GMMB: Second-stage 0.611
15%

0.137
89%

0.119
91%

0.272
68%

0.142
77%

0.159
1%

GMMC 1.336
60%

0.146
89%

0.153
93%

0.358
87%

0.150
78%

1.306
50%

N = 25

TS: GRS 0.620
21%

0.434
1%

0.223
0%

0.252
0%

0.227
0%

0.186
0%

Beta: OLSShanken 0.484
0%

0.230
27%

0.133
10%

0.134
14%

0.153
16%

0.176
0%

Beta: GLSShanken 0.686
0%

0.295
3%

0.134
5%

0.149
2%

0.201
3%

0.182
0%

Beta: WLSShanken 0.520
0%

0.239
98%

0.139
100%

0.141
92%

0.165
6%

0.180
3%

GMMA: Fist-stage 0.440
0%

0.174
39%

0.101
17%

0.098
10%

0.112
53%

0.157
0%

GMMA: Second-stage 0.794
X

0.527
X

0.295
X

0.197
X

0.139
X

0.176
X

GMMB: Fist-stage 0.457
0%

0.217
4%

0.125
2%

0.126
6%

0.145
17%

0.167
0%

GMMB: Second-stage 0.710
0%

0.735
4%

0.424
2%

0.258
5%

0.232
16%

0.191
0%

GMMC 5.850
4%

1.618
58%

0.636
44%

0.526
19%

0.343
27%

8.484
18%

N = 100

TS: GRS 0.503
58%

0.274
0%

0.290
0%

0.263
0%

0.237
3%

Beta: OLSShanken 0.345
0%

0.223
0%

0.202
0%

0.193
0%

0.184
1%

Beta: GLSShanken 0.462
0%

0.243
0%

0.270
0%

0.236
0%

0.198
1%

Beta: WLSShanken 0.348
98%

0.229
95%

0.205
55%

0.196
4%

0.188
51%

GMMA: Fist-stage 0.285
0%

0.187
0%

0.162
0%

0.160
0%

0.169
1%

GMMA: Second-stage 0.928
X

0.886
X

0.823
X

0.329
X

0.210
X

GMMB: Fist-stage 0.340
0%

0.220
0%

0.199
0%

0.190
0%

0.181
0%

GMMB: Second-stage 0.872
0%

0.244
0%

0.290
0%

0.289
0%

0.188
0%

GMMC 21.013
0%

6.322
0%

1.999
0%

5.203
1%

1.535
6%
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Panel D. N Portfolios formed on ME MOM

Method T = 60 T = 120 T = 240 T = 360 T = 480 T = 948

N = 6

TS: GRS 0.661
9%

0.420
17%

0.277
0%

0.304
0%

0.267
0%

0.159
0%

Beta: OLSShanken 0.355
8%

0.221
2%

0.216
0%

0.225
0%

0.199
0%

0.102
0%

Beta: GLSShanken 0.666
0%

0.385
2%

0.263
0%

0.298
0%

0.255
0%

0.110
0%

Beta: WLSShanken 0.427
11%

0.266
13%

0.256
1%

0.265
0%

0.239
0%

0.123
3%

GMMA: Fist-stage 0.260
11%

0.207
3%

0.197
0%

0.205
0%

0.182
0%

0.092
0%

GMMA: Second-stage 1.091
X

0.305
X

0.263
X

0.222
X

0.194
X

0.104
X

GMMB: Fist-stage 0.290
22%

0.181
2%

0.176
0%

0.183
0%

0.162
0%

0.084
0%

GMMB: Second-stage 1.101
22%

0.337
2%

0.234
0%

0.326
0%

0.240
0%

0.146
0%

GMMC 4.611
13%

1.043
6%

0.505
0%

1.145
0%

0.775
0%

0.108
0%

N = 25

TS: GRS 0.801
18%

0.505
5%

0.306
0%

0.330
0%

0.286
0%

0.213

Beta: OLSShanken 0.418
1%

0.336
0%

0.241
0%

0.246
0%

0.205
0%

0.100
0%

Beta: GLSShanken 0.780
0%

0.507
0%

0.304
0%

0.325
0%

0.252
0%

0.112
0%

Beta: WLSShanken 0.446
14%

0.359
7%

0.259
2%

0.266
0%

0.226
0%

0.112
18%

GMMA: Fist-stage 0.327
0%

0.303
0%

0.217
0%

0.217
0%

0.183
0%

0.088
0%

GMMA: Second-stage 0.805
X

0.555
X

0.627
X

0.533
X

0.420
X

0.167
X

GMMB: Fist-stage 0.395
0%

0.317
0%

0.228
0%

0.232
0%

0.194
0%

0.095
0%

GMMB: Second-stage 0.708
0%

0.545
0%

0.277
0%

0.295
0%

0.214
0%

0.129
0%

GMMC 8.612
5%

3.148
0%

1.614
1%

1.831
0%

1.033
0%

0.221
0%
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Panel E. N Industry Portfolios

Method T = 60 T = 120 T = 240 T = 360 T = 480 T = 948

N = 5

TS: GRS 0.223
85%

0.190
49%

0.185
8%

0.193
2%

0.189
1%

0.178
0%

Beta: OLSShanken 0.111
75%

0.042
92%

0.023
93%

0.045
76%

0.044
72%

0.053
45%

Beta: GLSShanken 0.117
73%

0.048
93%

0.025
93%

0.057
75%

0.053
71%

0.062
43%

Beta: WLSShanken 0.121
74%

0.047
91%

0.023
93%

0.055
67%

0.052
63%

0.060
33%

GMMA: Fist-stage 0.091
68%

0.036
93%

0.020
94%

0.040
77%

0.040
73%

0.048
48%

GMMA: Second-stage 0.105
X

0.046
X

0.033
X

0.053
X

0.052
X

0.060
X

GMMB: Fist-stage 0.088
67%

0.033
93%

0.018
94%

0.036
78%

0.034
74%

0.042
49%

GMMB: Second-stage 0.130
68%

0.050
93%

0.036
94%

0.060
78%

0.057
74%

0.065
49%

GMMC 0.777
80%

0.069
94%

0.038
94%

0.056
76%

0.055
72%

0.068
46%

N = 17

TS: GRS 0.392
26%

0.290
64%

0.200
12%

0.198
1%

0.181
0%

0.139
0%

Beta: OLSShanken 0.334
78%

0.241
62%

0.152
84%

0.160
63%

0.135
37%

0.102
49%

Beta: GLSShanken 0.424
89%

0.243
60%

0.172
79%

0.181
57%

0.154
30%

0.107
46%

Beta: WLSShanken 0.337
81%

0.248
89%

0.157
90%

0.161
55%

0.137
40%

0.102
30%

GMMA: Fist-stage 0.311
88%

0.215
56%

0.135
87%

0.142
52%

0.123
29%

0.095
51%

GMMA: Second-stage 0.478
X

0.332
X

0.212
X

0.176
X

0.153
X

0.103
X

GMMB: Fist-stage 0.308
88%

0.222
56%

0.140
90%

0.148
63%

0.124
41%

0.094
55%

GMMB: Second-stage 0.435
88%

0.274
56%

0.204
90%

0.187
61%

0.167
40%

0.106
55%

GMMC 0.609
93%

0.246
51%

0.177
83%

0.176
52%

0.149
28%

0.103
48%

N = 30

TS: GRS 0.541
50%

0.435
69%

0.248
8%

0.232
1%

0.214
0%

0.203
0%

Beta: OLSShanken 0.506
7%

0.345
79%

0.206
73%

0.190
63%

0.170
67%

0.146
30%

Beta: GLSShanken 0.640
3%

0.439
48%

0.268
59%

0.207
58%

0.184
59%

0.157
22%

Beta: WLSShanken 0.542
52%

0.381
99%

0.215
89%

0.190
70%

0.172
63%

0.149
18%

GMMA: Fist-stage 0.458
12%

0.289
79%

0.183
69%

0.172
65%

0.155
64%

0.134
32%

GMMA: Second-stage 0.617
X

0.424
X

0.262
X

0.215
X

0.165
X

0.159
X

GMMB: Fist-stage 0.483
1%

0.329
72%

0.196
74%

0.181
60%

0.162
69%

0.139
37%

GMMB: Second-stage 0.714
1%

0.446
73%

0.246
75%

0.193
61%

0.184
69%

0.160
37%

GMMC 0.723
5%

0.494
77%

0.225
61%

0.210
63%

0.174
60%

0.150
26%
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Chapter 4

The efficiency of the SDF and Beta
methods at evaluating multi-factor
asset-pricing models

§ †

The classical beta method and the stochastic discount factor (SDF) method may be

considered competing paradigms for empirical work in asset pricing. The two methods

are equally efficient at estimating risk premiums in the context of the single-factor

§A paper-version of this chapter – in Southwestern Finance Association 48th Annual Meeting
Proceedings – is currently being written jointly with Stuart Hyde and Ian Garrett (Manchester
Business School).

†An earlier version of this work was presented (or accepted for presentation) at the 2008 An-
nual Doctoral Conference at Manchester Business School; Internal Seminar (University Carlos III
de Madrid, April 2008); Jornada de Investigación en Finanzas (Universidad de Castilla-La Mancha,
October 2008); XVI AEFIN Finance Forum (ESADE Business School, Barcelona, November 2008);
International Conference on Finance (National Taiwan University, December 2008); Southwestern
Finance Association 48th Annual Meeting; (Oklahoma City, February 2009); Royal Economic Soci-
ety Conference (London, April 2009); Symposium in Statistics and Econometrics (Lausanne, April
2009); Eastern Finance Association Annual Meeting (Washington D.C., May 2009); Asian Finance
Association Conference (Brisbane, July 2009); and at the Symposium in Economics and Finance
(Geneva, July 2009). I would like to thank Genaro Sucarrat (Universidad Carlos III de Madrid),
Chien-Ting Lin (University of Adelaide), and Sheng Guo (Florida International University) for
helpful comments as discussants. Mart́ın Lozano gratefully acknowledges financial assistance from
the Delegation of the Basque Government in México (Graduate Student Mobility Grant 2007) and
especially to the European Union Marie Curie Program.
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4.1 – Introduction

model. We show this does not hold for multi-factor models. Inference is consistently

more reliable in the Beta method for the estimates in models which include size,

value and momentum factors. However, our evidence also illustrates that the SDF

method is generally more efficient at estimating sample pricing errors. Finally, the

specification test in the Beta method tends to under-reject in finite samples while the

SDF method has approximately the correct size. Our Monte Carlo simulation results

are consistent whether we use a normal or empirical distribution, or different sets and

sizes of tests portfolios.

In this chapter we focus our analysis on simulated data, which it is necessary to

develop a finite sample analysis of the estimator efficiency. On the previous chapter,

we focus our analysis on several datasets of historical data. Another difference is that

in previous chapter we evaluate several estimators in the Beta method, while in this

chapter we focus in OLS estimators in order to give more importance to the analysis

of the estimator efficiency. Finally, previous chapter analyzes the model performance,

while in this chapter we focus our analysis on the method performance.

4.1 Introduction

Empirical finance widely adopts either the classical Beta method or the stochastic

discount factor (SDF) method for the evaluation of asset-pricing models. The Beta

method involves estimating the beta representation where the expected return on an

asset is a linear function of its factor betas. This approach is widely implemented

in the finance literature (see Kan, Robotti and Shanken [65]) using the two-stage

cross-sectional regression methodology advocated by Black, Jensen and Scholes [9]

and Fama and MacBeth [32]. In the SDF representation, the value of an asset equals
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the expected value of the product of the asset’s payoff and the SDF.1 This approach

estimates the asset pricing model using its SDF representation and the generalized

method of moments (GMM).

Typically, it is common for researchers to select one approach over the other (Beta

or SDF) and consequently certain specific areas of the literature appear to favor one

method over the other. In fact, it is a common trend to compare procedures within

methodologies. For example, Jagannathan and Wang [57] compare the asymptotic

efficiency of the two-stage cross-sectional regression method and the FamaMacBeth

procedure; Shanken and Zhou [94] analyze the finite sample properties and empirical

performance of the Fama-MacBeth, maximum likelihood, and generalized method of

moments for Beta pricing models2; other related examples can be found in Farnsworth,

Ferson, Jackson and Todd [33], Velu and Zhou [101], Kan and Robotti [64, 63], Chen

and Kan [22], and Amsler and Schmidt [2], just to mention a few. However, only

recently have there been attempts to evaluate the two approaches.

In particular, Kan and Zhou [68, 66] and Jagannathan and Wang [58] were the

first who evaluate and compare the two methods by examining the efficiency of the

SDF approach relative to the Beta method in the framework of a single factor model.

The lack of previous studies about the comparison of the Beta and the SDF methods

may respond to the fact that there is no a direct one-to-one mapping between the

estimators from both methodologies. Here, we intend to contribute to the knowledge

about their differences in terms of efficiency.

1This was first pointed out by Ross [90] and Dybvig and Ingersoll [28] who derive the SDF
representation for the CAPM.

2In fact, Shanken [92] provided the first comprehensive analysis of the statistical properties of the
classical two-pass estimator on beta models under the assumption that returns and factors exhibit
conditional homoscedasticity.
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Kan and Zhou [68] made the first formal comparison of both methods in a stan-

dardized single-factor model, where the factor mean and variance are known in ad-

vance and the factor can be normalized to have zero mean and unit variance.3 Under

this specific assumption, the factor risk premium from the Beta method numerically

coincides with the linear coefficient associated with the factor in the pricing kernel of

the SDF method but they find that the SDF method is less efficient than the Beta

method when both are estimated using GMM. However, factors used in empirical

work generally do not have zero mean and unit variance thus the estimates will not

be identical and comparison of their estimation efficiency becomes more difficult. Ja-

gannathan and Wang [58] and Cochrane [23] discuss these issues with nonstandardized

factors.

Jagannathan and Wang [58] show that under an alternative framework, which

augments each method by additional moment conditions, the SDF method is as effi-

cient as the beta method. They note that while the risk premium in the SDF method

is not equal to the risk premium in the beta method, they are related by a one-to-

one transformation. Explicitly accounting for this transformation they show in the

context of the market risk premium from a single-factor model that the Beta method

does not dominate the SDF method. Cochrane [23] reaches a similar conclusion.

However much empirical research in asset pricing employs multi-factor models, e.g.

adopting the Fama-French three factor model [30, 31] or the Carhart four factor model

[18] rather than solely relying on inference from the single-factor CAPM. We extend

the empirical work of Jagannathan and Wang [58] to cover this gap and ask whether

the estimation efficiency of the SDF method is still similar to the Beta method when

3As pointed out by Cochrane [23], this is unusual, but not incorrect, since any mean-variance
efficient portfolio can serve as reference return.
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one employs more than one factor. To compare the methods we examine the estima-

tion of the risk premiums, the sample pricing errors and the associated specification

tests. Our key results show that the finite-sample efficiency of the methods depend on

(i) the number of factors included in the model, (ii) the GMM moment restrictions

imposed in each method and (iii) the degree of non-normality of the adopted factors.

Therefore, the estimation efficiency of the methods may differ.

When evaluating the methods with the single factor CAPM, we find both methods

lead to the same results for estimating the market risk premium, reinforcing the

previous findings of Jagannathan and Wang [58], Cochrane [25] and the previous

chapter as well. However, our findings indicate that this does not hold for the multi-

factor models, in which inference is consistently more reliable in the Beta method.

This suggests that choosing the single factor CAPM for evaluating the efficiency of

risk premiums constitutes a fairly weak scenario. Indeed, we are unable to see any

significant difference, even if we allow for different sample sizes, alternative numbers

of return portfolios or different factors’ distributions.

On the other hand, the relative advantage of the Beta method at estimating risk

premiums does not apply to the estimation of sample pricing errors, where invariably

the efficiency of the SDF method is superior, even in the smallest sample considered.

This result is expected given the previous result on last chapter. Consequently, the

specification test in the Beta method generally under-rejects in finite samples whereas

the SDF method over-rejects but has roughly the correct size4.

4One added value of performing simulation analysis is that we can perform size and power tests,
which were not possible to compute in last chapter. This represent a significant contribution to the
literature since there are very few evidence about size and power tests applied on Beta and SDF
methods. Recent works such as Grauer and Janmaat [42] examine power tests for competing Beta
pricing models.
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Our results are consistent whether we assume that returns and factors are drawn

from a multivariate normal distribution or from the empirical distribution estimated

by the bootstrap method. They are also consistent to different sets and sizes of test

portfolios such as the 10 single-sorted size, the 25 double-sorted size/book-to-market

(Fama-French) portfolios and the 30 industry-sorted portfolios.

The main implication of our results is that if we are interested on making inference

on a multi-factor model estimator(s), we should prefer the Beta method over the

SDF method. Conversely, if we are primarily interested on making inference on the

sampling pricing error or Jensen’s alpha, the SDF method should be preferred. This

argument primarily relies on the lower simulated standard error of the random draws

of the estimator and sample pricing errors. Hence, there is no method that fully

dominates the other, rather they are complementary. Similar conclusions are reached

in related papers, such as Shanken and Zhou [94] who conduct a simulation analysis

of several procedures applied to Beta models and claim that no single estimation

procedure dominates in all respects.

Even though the purpose of the previous chapter is different from this chapter,

we can find some similarities. For instance, we previously find some indication of

greater efficiency of the Beta method for estimating risk premiums by comparing the

estimate value and the bias from the risk premium in percent values. However, in

order to test this hypothesis it is necessary to conduct a finite sample analysis, as we

do in this chapter.

Our results contribute to cover an important gap in the empirical asset pricing

literature, since the generalized idea about the Beta and SDF methods is that both
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lead to almost identical results in terms of efficiency. For example, Ferson [35] con-

cludes that when the two methods correctly exploit the same moments they deliver

nearly identical results. Cochrane [25] also comes to similar conclusions comparing

the efficiency of the estimation of the risk premiums. However, we argue that these

conclusions are limited. Once the asset pricing model under consideration includes

more factors with greater non-normality, the differences in terms of efficiency clearly

emerge.5

The main difference with previous chapter is that we now perform a finite sample

analysis using simulated data. Furthermore, in previous chapter we focus on the

model performance while in this chapter our main interest is the method comparison

in terms of efficiency. This final chapter is intended to be a response and an extension

of the work of Jagannathan and Wang [58] and Kan and Zhou [66, 68] about the

comparison of these two methodologies. Therefore, our results on this chapter have

direct implications over statistical inference in empirical works.

The outline of the remainder of the paper is as follows. In section 4.2 we present the

methodology, describing both the Beta method and the SDF method, how comparison

of the methods is undertaken and details the Monte Carlo simulation procedure.

Section 4.3 presents the results while section 4.4 concludes.

4.2 Methodology

To compare the estimators and test statistics derived from both the Beta and SDF

methods we use Hansen [46]’s GMM methodology6. This approach is common, Kan

5This is complementary to the findings of Kan and Zhou [66] who argue that estimation is
sensitive to the presence of skewness and kurtosis.

6Skoulakis [96] follow the CRS method in a similar comparison.
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and Zhou [68, 66] and Jagannathan and Wang [58] also employ GMM to examine both

approaches. Although the Beta method can be applied using the common two-stage

Fama and MacBeth [32] approach or by using the maximum likelihood procedure.

Shanken and Zhou [94] examine the performance of the alternative estimation meth-

ods in the context of the Beta method. While the GMM approach reduces to both

estimators under the appropriate assumptions, it is less restrictive allowing for con-

ditional heteroskedasticity, serial correlation and non-normality. For more examples

of applications of the GMM methodology in finance, see Jagannathan, Skoulakis and

Wang [54].

Even though we have presented the Beta and the SDF method before in previous

chapters, we have not show how to estimate the Beta method via GMM. Therefore,

we will have to rewrite some equations. Furthermore, in previous chapter we present

risk premium estimates for Beta and SDF methods separately, having different units.

Here, it would be crucial to transform one of them in order to have the same units

even though they came from different methodologies. This will facilitate to compare

their standard errors, size and power tests. For all these reasons, it is convenient to

present in some detail the particularities of both methodologies.

4.2.1 The Beta method

Following [58] notation, we denote rt as the vector of N stock returns in excess of the

risk-free rate and ft a vector of K economy-wide pervasive risk factors during period t.

According to the notation in previous chapters, the mean and the covariance matrix

of the factors are denoted by µ, where µ =E[ft], and Σf respectively. The standard

linear asset-pricing model under the Beta representation was introduced by equation
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1.3.1, in this section we will rewrite it in order to maintain the usual notation in

related works such as [23, 58, 68, 66]. Thus, the Beta representation is given by

E [rt] = δβ (4.2.1)

where δ is the vector of factor risk premiums, and β is the matrix of factor loadings

which measure the sensitivity of asset returns to the factors, defined as

βN×K ≡ E
[
rt (ft − µ)′

]
Σ−1

f (4.2.2)

Equivalently, we can identify β as a parameter in the time-series regression (equa-

tion 1.2.1): rt = φ + βft + εt where the residual εt has zero mean and is uncorrelated

with the factors ft. The specification of the asset-pricing model under the Beta rep-

resentation in equation (4.2.1) imposes the following restriction on the time-series

intercept, φ = (δ − µ) β. By substituting this restriction in the regression equation,

we obtain:

rt = (δ − µ + ft) β + εt where

{
E [εt] = 0N

E [εtf
′
t ] = 0N×K

(4.2.3)

Hence, the Beta representation in equation (4.2.1) gives rise to the factor model,

equation (4.2.3). The associated moment conditions of the factor model, equa-

tion (4.2.3) are:

E [rt − (δ − µ + ft) β] = 0N

E [[rt − (δ − µ + ft) β] f ′t ] = 0N×K

(4.2.4)

However, when the factor is the return on a portfolio of traded assets, as in the

single and multi-factor models analyzed in this paper – the CAPM, the Fama-French

three factor model, and the Carhart four factor model – it can be verified that the

estimate of µ (the sample mean of the factor) is also the estimate of the risk premium
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δ.7 Therefore, given δ = µ, the moment conditions given in equation (4.2.4) simplify

to
E [rt − ftβ] = 0N

E [(rt − ftβ) f ′t ] = 0N×K

E [ft − µ] = 0K

(4.2.5)

where neither δ or µ appear in the first two restrictions of equation (4.2.5) but it

is necessary to include the definition of µ to identify the vector of risk premiums δ

as a third moment restriction.8,9 Now, following the usual GMM notation, we define

the vector of unknown parameters θeq(4.2.5) =
[
vec (β)′ µ′

]′
, where the vec operator

‘vectorizes’ the βN×K matrix by stacking its columns, and the observable variables

are xt = [r′t f ′t ]
′. Then, the function g in the moment restriction is given by

g
(
xt, θ

eq(4.2.5)
)
(N+NK+K)×1

=




rt − ftβ

vec [(rt − ftβ) f ′t ]

ft − µ


 (4.2.6)

Now, for any θ, the sample analogue of E[g (xt, θ)] is equal to

gT (θ) =
1

T

T∑
t=1

g (xt, θ) (4.2.7)

Then, a natural estimation strategy for θ is to choose the values that make gT (θ)

7Non-traded factors are economic factors such as consumption growth used in the Consumption
CAPM see [12] or industrial production growth and inflation adopted in linear factor models, see
Chen, Roll, and Ross [21] for similar analysis as well.

8Nevertheless, it is also possible to estimate the last moment restriction of equation (4.2.5) outside
the GMM framework by computing µ = E [ft] . This is because the number of added moment
restrictions in equation (4.2.5) compared with equation (4.2.4) is the same as the number of added
unknown parameters. Hence, the efficiency of equation (4.2.4) and equation (4.2.5) remains the
same. By following this alternative, we drop the factor-mean moment condition without ignoring
that it has to be estimated.

9An additional moment condition to estimate the variance Σf could also be added to equa-
tion (4.2.5). However the variance can also be estimated outside the GMM framework without
affecting efficiency.
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as close to the zero vector as possible. For that reason we choose θ to solve10

min
θ

gT (θ)′ W−1gT (θ) (4.2.8)

To compute the first-stage GMM estimator θ1 we consider W = I in equa-

tion (4.2.8). The second-stage GMM estimator θ2 is the solution of equation (4.2.8)

when the weighting matrix is the spectral density matrix of g (xt, θ1) :

S =
∞∑

j=−∞
E

[
g (xt, θ1) g (xt, θ1)

′] (4.2.9)

In order to examine the validity of the pricing model derived from the moment

restrictions in equation (4.2.5) we can test whether the vector of N Jensen’s alphas,

given by α =E[rt]−δβ is jointly equal to zero.11 This can be done using the J-statistic

with an asymptotic χ2 distribution. Given there are N + NK + K equations and

NK + K unknown parameters in equation (4.2.6), then the degrees of freedom is N .

The covariance matrix of the pricing errors, Cov(gT ), is given by

Cov (gT ) =
1

T

[(
I − β (β′β)

−1
β′

)
S

(
I − β (β′β)

−1
β′

)]
(4.2.10)

and the test is a quadratic form of the vector of pricing errors. In particular, the

Hansen [46] J-statistic is computed as (see also equation 1.5.5)

First-stage: gT (θ1)
′ Cov (gT )−1 gT (θ1) ∼ χ2

N

Second-stage: TgT (θ2)
′ S−1gT (θ2) ∼ χ2

N

(4.2.11)

Both the first and second-stage statistic in equation (4.2.11) lead to the same

numerical value. However, if we weight equations (4.2.10) and (4.2.11) by any other

matrix different to S, such as E[rtr
′
t] or Cov[rt], this result no longer holds.

10Even though we introduce this equation earlier in section 1.5.1, it is important to show it again
for illustration purposes.

11This approach is known as the restricted test, see MacKinlay and Richardson [80].

227



4.2 – Methodology

4.2.2 The SDF method

To derive the SDF representation from the Beta representation we follow Ferson and

Jagannathan [38] and Jagannathan and Wang [58] among others. First, we substitute

the expression for β (equation 4.2.2) into equation (4.2.1) and rearrange the terms,

to give:

E [rt]− E
[
rtδ

′Σ−1
f ft − rtδ

′Σ−1
f µ′

]
= E

[
rt

(
1 + δ′Σ−1

f µ− δ′Σ−1
f ft

)]
= 0N

again, if we are considering traded factors, then δ = µ so 1+δ′Σ−1
f µ = 1+µ′Σ−1

f µ ≥ 1,

then divide each side by 1 + δ′Σ−1
f µ,12

E

[
rt

(
1− δ′Σ−1

f

1 + δ′Σ−1
f µ

ft

)]
= 0N

If we transform the vector of risk premiums δ into a vector of new parameters λ

as follows,

λ =
δ′Σ−1

f

1 + δ′Σ−1
f µ

(4.2.12)

then we obtain the following SDF representation and moment restriction of the linear

asset-pricing model,

E [rt (1− λft)] = 0N (4.2.13)

where the random variable mt ≡ 1− f ′tλ is the SDF because E[rtmt] = 0N .13

From the moment restrictions, equation (4.2.13), we obtain the vector of N pricing

errors defined as π =E[rt] − λE[rtft]. The analytical solution of equation (4.2.13) is

obtained by GMM.14 Writing the sample pricing errors as

gT (λ) = −E [rt] + λE [rtft] (4.2.14)

12Even when the factors are not traded, it is common to suppose 1 + δ′Σ−1
f µ 6= 0.

13Alternatively, we could derive the Beta representation from the SDF representation by expanding
m and rearranging the terms.

14This is useful given the need to undertake vast numbers of simulations. Similar simplifications
of multi-dimensional optimization problems for Beta models can be found in Shanken and Zhou [94].
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define d = −∂gT (λ)
∂λ′ = E [rtft], the second-moment matrix of returns and factors. The

first-order condition to minimize the quadratic form of the sample pricing errors,

equation (4.2.8), is −d′W [E [rt]− λd] = 0, where W is the GMM weighting matrix,

equal to the identity matrix in the first-stage estimator and equal to the spectral

density matrix S, equation (4.2.9), in the second-stage estimator. Therefore, the

GMM estimates of λ are:

λ̂A
1 = (d′d)−1 d′E [rt]

λ̂A
2 = (d′S−1d)

−1
d′S−1E [rt]

(4.2.15)

Specifying the SDF as a linear function of the factors as in equation (4.2.13) has

been very popular in the empirical literature. However, Kan and Robotti [64] point

out that this is problematic because the specification test statistic is not invariant

to an affine transformation of the factors. Therefore, following [64], we also consider

an alternative specification that defines the SDF as a linear function of de-meaned

factors. We decorate with an A to λ̂ to indicate that the estimator comes from the

un-meaned specification and with a B to indicate that comes from the de-meaned

specification.15

The alternative de-meaned version of equation (4.2.13) is defined as:

E [rt [1− λ (ft − µ)]] = 0N (4.2.16)

According to [55] and [58], it is also possible to estimate µ in equation (4.2.16)

outside of the GMM estimation by computing µ =E[ft]. This is because the number of

added moment restrictions is the same as the number of added unknown parameters.

Hence, the efficiency of the estimators remains the same. By following this alternative,

15Burnside [14] also finds some advantages of the de-meaned version in terms of specification tests.
This de-meaned SDF specification can be also found in Cochrane [25], and in Balduzzi and Yao [4].
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we can drop the factor-mean moment condition without ignoring that it has to be

estimated, and obtain analytical expressions for λ̂B
1 and λ̂B

2 .

Naturally, the procedure to solve the moment restrictions in equation (4.2.16) is

similar to that for the un-meaned SDFA method. In particular, we substitute E[rtft]

for Cov[rtft] in equation (4.2.14), then define b = −∂gT (λ)
∂λ′ as the covariance matrix of

returns and factors. Finally, the SDFB first and second stage GMM estimates are:

λ̂B
1 = (b′b)−1 b′E [rt]

λ̂B
2 = (b′S−1b)

−1
b′S−1E [rt]

(4.2.17)

The specification tests can be conducted by following equations (4.2.7) and (4.2.11),

the only difference being that we substitute β by d =E[rtft] (the second moment ma-

trix of returns and factors) for the SDFA case, and by b =Cov[rtft] (the covariance

matrix of returns and factors) for the SDFB case. The degrees of freedom in equa-

tion (4.2.11) are specific for the Beta method, in the SDF method the degrees of

freedom is equal to N −K, since there are N equations and K unknown parameters

in both equations (4.2.13) and (4.2.16).

Equations (4.2.10) and (4.2.11) are weighted by equation (4.2.9), since it is sta-

tistically optimal. This approach was first suggested by Hansen [46] as it maximizes

the asymptotic statistical information in the sample about a model, given the choice

of moments. However, there are also alternatives for this weighting matrix which are

suitable for model comparisons because they are invariant to the model and their

parameters. For instance, Hansen and Jagannathan [49] suggest the use of the sec-

ond moment matrix of excess returns W=E[rtr
′
t] instead of W = S. Also, Burnside

[14], Balduzzi and Yao [4], and Kan and Robotti [64] suggest that the SDFB method

should use the covariance matrix of excess returns W =Cov[rt]. We investigate the

implications of using these alternative weighting matrices.
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4.2.3 Comparison of the methods

There is a one-to-one mapping between δ (from θeq(4.2.5)) and λ (from equations 4.2.15

and 4.2.17), which facilitates the comparison of the two methods.16 Hence we can

derive an estimate of λ not only by the SDF method but also by the Beta method.

By the same token we can derive an estimate of δ not only by the Beta method but

also by the SDF method. Therefore, for convenience, variables decorated with ‘∗’
refer to the estimates from the Beta method and with ‘̂’ to the estimates from the

SDF method. From the previous definition of λ in equation (4.2.12), we have:

λ =
δ

Σf + δµ′
or δ =

Σfλ

1− µ′λ
(4.2.18)

Remember µ and Σf represent the mean and the variance of the factor f , while δ

and λ represent the risk premium estimators from the Beta (solving 4.2.8) and SDF

method (solving 4.2.15 or 4.2.17 respectively. In a similar way, substituting equation

(4.2.18) into π, we can find a one-to-one mapping between π from the SDF method

and α from the Beta method.

π =
Σf

Σf + δµ′
α or α =

Σf + δµ′

Σf

π (4.2.19)

In the first formal attempt to compare both methods, Kan and Zhou [68] assume

that the factor has zero mean and unit variance, that is µ = 0 and Σf = 1. In this

standardized single factor model, equations (4.2.18) and (4.2.19) imply λ = δ and

π = α. By assuming that the mean and the variance of the factor are predetermined

without estimation, they ignore the sampling errors associated with the estimates of µ

and Σf and conclude that the estimates of the Beta method are more efficient. Jagan-

nathan and Wang [58] and Cochrane [23] explain the effects of standardized factors,

16Thanks to Raymond Kan (University of Toronto) for kindly sharing complementary econometric
notes on Kan and Zhou [66].
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showing that in general, predetermining the factor moments reduces the sampling

error of the estimate in the Beta method and not in the SDF method.

However, with the Beta moment restrictions, equation (4.2.5), we only can make

inference on δ, not on λ. Yet to compare the methods using equation (4.2.18) re-

quires an estimator of Σf . One solution is to add an additional moment condition to

equation (4.2.5) to estimate Σf . An alternative is to estimate µ and Σf outside the

GMM estimation. In simulation results not showed here, we find that the efficiency

of both alternatives is the same. Hence we elect to estimate Σf outside the GMM

estimation.

Predetermining the values of µ and Σf to be known constants – not necessarily

µ = 0 and Σf = 1 – gives an informational advantage to the Beta method in terms

of efficiency. Predetermining without estimation implies ignoring the sampling errors

associated with µ∗ and Σ∗
f , as a consequence λ∗ becomes considerably more efficient

than if we follow equation (4.2.5). In our simulation analysis, we consider the case

where µ and Σf must be estimated.

To summarize, the Beta method gives the GMM estimate δ∗ while the SDF method

gives the GMM estimate λ̂. In our Monte Carlo simulation results, we transform the

estimate δ∗ into an estimate of λ and then compare the variances of the sampling

distribution of λ∗ and λ̂. In the same way, we transform α∗ into an estimate of π and

then compare the efficiency of π∗ and π̂.

We also compare the distributions of Hansen’s [46] test of overidentification using

the J-statistic of the transformed beta J∗ and Ĵ from the SDF method. The null hy-

pothesis is that all pricing errors are zero. In the size tests we calculate the probability

of rejection under the null that the asset pricing model is true, in the power tests we
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calculate the probability of rejection under the null that the asset pricing model is

false. To misspecify the asset pricing model, we attach to the usual methodology of

using fixed alternatives17 such as in Jagannathan and Wang [58] and Kan and Zhou

[66] among others.

4.2.4 Monte Carlo simulation

Researchers are faced with data sets of finite, and occasionally rather small, sample

sizes. It is therefore imperative to obtain a sense of the small sample performance

of the two methods. Since finite-sample analytical results can be obtained only un-

der certain distributional assumptions, it is customary to resort to some simulation

technique, which allows us to alter the simulation input and develop an understand-

ing of how sensitive the results are with respect to the various features of the data

generating process.

We use Monte Carlo simulation 18 to whether the asymptotic GMM estimators and

test statistics have any bias. In particular we are interested in evaluating the standard

deviation of λ∗, λ̂, π∗, π̂ and also the tail of the J-statistic distribution to conduct

specification tests. We assume that the factors ft are drawn either from a multivariate

normal or an empirical distribution estimated by the bootstrap method. Using the

empirical distribution allows for non-normalities, autocorrelation, heteroskedasticity

and non-independence of factors and residuals.

To artificially generate the excess returns we use the factor model, equation (4.2.3)

17Hall and Inoue [45] show the limiting distribution theory for the GMM estimator when the
estimation is based on a population moment condition which is subject to nonlocal (or fixed)
misspecification.

18Simulations were executed using the North West Grid computational facilities. See Ahn and
Gadarowski [1] for an examination of finite-sample properties of several model tests methods.
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where t = 1, ..., T . For T , we consider the following four time horizons: 60, 360, 600

and 1000 months. As Shanken and Zhou [94] argue, varying T is useful in order to

understand the small-sample properties of the tests and the validity of asymptotic

approximations. For instance, we elect to examine a 5 year window since this may

show how distorted results from taking a really small sample could potentially be

and also it is a commonly adopted horizon when using rolling windows, a 30 year

window corresponds approximately to the sample sizes of Fama and French [29, 30]

and Jagannathan and Wang [56] while the 600 month sample matches the largest

sample examined by Jagannathan and Wang [58]. We also examine 1000 months since

this approximates the current size of the largest sample available on the Kenneth

French’s library [July 1926 to December 2007 – 978 months]. The estimators and

specification tests are then calculated based on the T samples of the factors and

returns generated from the factor model. We repeat this independently to obtain

10,000 draws of the estimators of λ, π (the pricing errors) and J (the overidentifying

restriction statistic).

Previous related empirical studies such as Kan and Zhou [68, 66], Jagannathan

and Wang [58] and Cochrane [25] focus on the CAPM model to test the Beta and SDF

methods. Our contribution is to evaluate the methods on multi-factor models in order

to check for consistency in presence of other more leptokurtic factors commonly used

by researchers. Therefore, we evaluate the two methods by estimating and testing the

single-factor model (CAPM), the Fama and French [30, 31] three factor model, and

the Carhart [18] four factor model (based on the findings of Jegadeesh and Titman

[59]). We denote the factors as the excess market return (RMRF), size (SMB), value
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(HML) and momentum (UMD).19

In order to generate the excess returns from equation (4.2.3) we first need the

N ×K matrix β, capturing the sensitivity of returns to the factor(s). This β matrix,

(equation 4.2.2), represents the slope coefficients in the OLS regressions of each N -

test portfolio and K-factor model. We use three values of N to generate β, these

are the value weighted returns of the 10 size-sorted portfolios, the 25 Fama-French

portfolios (the intersections of the 5 size and 5 book-to-market portfolios) and the 30

industry portfolios. As Lewellen, Nagel and Shanken [72] suggest, the traditional tests

portfolios used in empirical work such as the size and 25 size/value sorted portfolios

frequently present a strong factor structure, hence it seems reasonable to adopt other

criteria (industry) for sorting.

In summary, we have K = 1, 3, 4 and N = 10, 25, 30; their combinations give rise

to nine β matrices, allowing us to add another criteria for evaluating the method’s

performance, in this case measured by the efficiency. Finally, the covariance matrix

E[εtε
′
t | ft] in equation (4.2.3), is set equal to the sample covariance matrix of the

residuals obtained in the N OLS regressions.

In Table 4.1 we report the descriptive statistics of historical observations of factors

and test portfolios, these values are used to calibrate the Monte Carlos. As can be seen

from the four moments shown, the factors associated with the multi-factor models

are quite different from the excess market return factor, in particular the momentum

factor is almost three times more leptokurtic than the excess market return. Thus, it

is important to consider an alternative to the multivariate normal distribution which

captures properties more consistent with the data such as excess kurtosis. Similar

19See [30], for a complete description of the Fama-French factors.
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Table 4.1: Sample statistics of the factors and portfolios

This table reports sample mean, standard deviation, skewness and kurtosis of the
excess return (RMRF), small minus big (SMB), high minus low (HML) and up minus
down (UMD) factors; and 10 size, 25 Fama-French and 30 industry test portfolios.
The sample statistics are obtained using 978 monthly observations over the period
July 1926 to December 2007 from the Kenneth French library.

Factors K Portfolios N
RMRF SMB HML UMD 10 size 25 FF 30 Industry

Mean µ 0.65 0.23 0.41 0.76 0.883 0.847 0.740
Std. Dev. 5.41 3.35 3.58 4.65 0.163 0.328 0.125
Skewness 0.22 2.22 1.90 −3.04 0.103 −1.359 0.099
Kurtosis 10.97 25.28 18.96 31.66 2.932 6.331 2.295

studies such as Kan and Zhou [67] consider the Student-t distribution however the

magnitude of kurtosis is still limited for a t-distribution with a finite fourth moment.20

In previous simulations not showed here, a Student-t distribution with five degrees of

freedom implies a kurtosis of 6 for the RMRF factor, which is still much lower than

the empirical value of 11. Therefore, we consider the empirical distribution as the

alternative to the multivariate normal.

Figure 4.1 illustrates the difference between the simulated distributions, compar-

ing the cumulative distribution function of 1000 random observations from the multi-

variate normal and empirical distributions. As expected, the cumulative distribution

function of the sample data is approximately identical to the empirical distribution.

Hence, by simulating from the empirical distribution, we closely replicate the non-

normalities of the factors and portfolios described in Table 4.1.

20The asymptotic distribution theory for the GMM requires that returns and factors have finite
fourth moments. Hence, there must be more than four degrees of freedom.
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Figure 4.1: Factors CDF plots from empirical distribution in blue (thin line), and
from a multivariate normal in red (thick line).

4.3 Results

We fist show the results on the risk premium estimate efficiency in section 4.3.1, and

finally the results on pricing errors efficiency , size and power tests in section 4.3.2.
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Table 4.2: Relative standard errors of the estimated market risk premium

Independent samples {(ftε
′
t)}t=1,...,T are drawn from the empirical distribution to obtain the

simulated standard errors. Excess returns on 10 size sorted portfolios are then constructed
to satisfy rt= f tβ + εt for t = 1, ..., T . In each approach, the estimator λ is calculated based
on T samples. We repeat this independently to obtain 10,000 draws of the estimator of
λ. The simulated standard error is the standard deviation of the random draws of the
estimator.

T
σ(λ̂A

1 )
σ(λ∗)

σ(λ̂A
2 )

σ(λ∗)
σ(λ̂B

1 )
σ(λ∗)

σ(λ̂B
2 )

σ(λ∗) Average

Panel A: CAPM
60 1.086 1.333 1.186 1.311 1.23
360 1.073 1.052 1.126 1.084 1.08
600 1.081 1.027 1.135 1.067 1.08
1000 1.089 1.017 1.142 1.071 1.08

Panel B: Fama-French
60 1.056 1.197 1.172 1.246 1.17
360 1.098 1.039 1.147 1.068 1.09
600 1.111 1.049 1.148 1.086 1.10
1000 1.075 1.015 1.106 1.045 1.06

Panel C: Carhart
60 1.192 1.239 1.432 1.421 1.32
360 1.386 1.339 1.660 1.584 1.49
600 1.450 1.312 1.725 1.562 1.51
1000 1.475 1.344 1.786 1.623 1.56

Average
1.18 1.16 1.31 1.26 1.23
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4.3.1 Parameter efficiency

Market risk premium

The simulation results for the standard errors of the estimated market risk premium

σ (λRMRF) are reported in Table 4.2. This table correspond to the 10 size-sorted

portfolios. In the appendix, in Tables 4.6 and 4.7, we show the results for the 25

size-value and 30 industry sorted portfolios.

For each estimator of λRMRF the tables gives the standard deviation of the 10,000

estimated risk premium parameters relative to those obtained from the Beta method,

that is
σ(λ̂)
σ(λ∗) . These ratios will facilitate the comparison between methods, models,

test portfolios and time lengths.

According to the results on Tables 4.2, 4.6 and 4.7 the Beta method is slightly

more efficient than the SDF method, since all values are marginally greater than one.

Therefore, there appears to be no significant gain in efficiency when we estimate the

parameters by the Beta or the SDF method at least in the case of the market risk

premium. This is especially true for both the single and three-factor models (Panels

A and B) since the average ratio is no greater than 1.11 for T=1000.

However, the Carhart model (Panel C in Tables 4.2, 4.6 and 4.7) shows a greater

difference between the two methods’ efficiency. For example, we report an average

ratio of 1.57 for T=1000 in Table 4.6. This result suggest that adding a fourth factor

such as momentum, tend to distort the estimation of the market risk premium in the

Carhart model.

Although we only present the case of the simulations drawn from the empiri-

cal distribution, the results using the multivariate normal are qualitatively similar.
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Furthermore, they are also consistent across other test portfolios such as the 25 Fama-

French and the 30 industry sorted portfolios.21

Note also that the efficiency of the method improves as we increase the sample

size T for the CAPM model, to the point that the ratio of σ(λ̂RMRF) to σ (λ∗RMRF) is

close to unity at T = 1000. Nevertheless, the multi-factor models may exhibit greater

variance as we increase the sample size (see Panels B and C in Tables 4.2, 4.6 and

4.7). This is because it is more likely to have greater dispersion in simulated data

when T is sufficiently long.22

While Table 4.2 shows that the efficiency of both methods is about the same

when estimating the market risk premium even in small samples, we can see that the

standard deviation of the second-stage SDFA is actually the closest to the standard

deviation of the Beta method. On the other hand, the more dissimilar standard

deviation is with respect to the first-stage SDFB. By construction, the efficiency

of the second-stage GMM estimator is greater than the first-stage for both SDF

specifications (see equations 4.2.15 and 4.2.17), however the SDFA is slightly more

efficient than the SDFB method.23

Our results reported in Table 4.2, Panel A are comparable to the results of Ja-

gannathan and Wang [58] and Cochrane [25] for the CAPM with the 10 size-sorted

portfolios. Basically, they conclude there are no differences in the standard errors

of the estimated λ whichever method is adopted. Our results strongly support this

previous finding, showing that there is no substantial efficiency gain from the choice

21The results of adopting the multivariate normal distribution, and the actual values of σ
(
λ̂
)

and

σ (λ∗) are available upon request.
22The relative standard errors of the estimated pricing errors do diminish as we increase T .
23Shanken and Zhou [94] also find that the standard errors of the second-stage estimators are

consistently smaller than the standard errors of the fist-stage estimators. Although their study is
based on Beta models.
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of the method when we estimate the CAPM model to estimate λRMRF. In particular,

the average
σ(λ̂)
σ(λ∗) ratio is 1.08. Our contribution to this debate is that this is not

always the case, as long as we introduce other models in our analysis the differences

between the methods emerge.

Even in small samples, the difference is not large, and as we increase T , the

magnitude of the standard deviation is almost the same especially for the CAPM

and Fama-French models. While the expected returns of the 25 Fama-French test

portfolios have higher dispersion than the 10 size-sorted and the 30 industry portfolios

(see Table 4.1), these changes in the distribution of N do not alter our conclusions

regarding the efficiency of the estimators in either method.

In sum, we do not find significant differences except for the case of the Carhart

model (Panel C in Tables 4.2, 4.6 and 4.7). It is interesting to note that the parameter

efficiency is apparently more sensible to the model, and number of factors included,

rather than to time lengths and portfolio formations.

Size, value and momentum risk premium

Our key result is that the methods are no longer equivalent in terms of estimator

efficiency when we compare the rest of the estimators in the multi-factor models.

Table 4.3 shows the results for λSMB, λHML (estimated in the Fama-French and Carhart

models) and λUMD (estimated in the Carhart model). This table correspond to the

10 size-sorted portfolios. In the appendix, in Tables 4.8 and 4.9, we show the results

for the 25 size-value and 30 industry sorted portfolios respectively.

In this case, it is evident that the Beta method is more efficient than the SDF
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Table 4.3: Relative standard errors of the estimated size, value and momentum risk
premiums

Independent samples {(ftε
′
t)}t=1,...,T are drawn from the empirical distribution to obtain the

simulated standard errors. Excess returns on 10 size sorted portfolios are then constructed
to satisfy rt= f tβ + εt for t = 1, ..., T . In each approach, the estimator λ is calculated based
on T samples. We repeat this independently to obtain 10,000 draws of the estimator of
λ. The simulated standard error is the standard deviation of the random draws of the
estimator.

Fama-French Carhart

T
σ(λ̂A

1 )
σ(λ∗)

σ(λ̂A
2 )

σ(λ∗)
σ(λ̂B

1 )
σ(λ∗)

σ(λ̂B
2 )

σ(λ∗) Average
σ(λ̂A

1 )
σ(λ∗)

σ(λ̂A
2 )

σ(λ∗)
σ(λ̂B

1 )
σ(λ∗)

σ(λ̂B
2 )

σ(λ∗) Average

Panel A: λSMB

60 1.250 1.362 1.334 1.396 1.34 1.320 1.360 1.474 1.461 1.40
360 1.403 1.323 1.447 1.347 1.38 1.366 1.291 1.472 1.385 1.38
600 1.382 1.284 1.422 1.308 1.35 1.330 1.269 1.446 1.369 1.35
1000 1.333 1.232 1.373 1.262 1.30 1.309 1.226 1.433 1.340 1.33

Panel B: λHML

60 2.591 2.263 2.755 2.346 2.49 3.034 2.868 3.368 3.193 3.12
360 2.922 2.264 3.038 2.329 2.64 3.720 3.406 4.233 3.866 3.81
600 2.939 2.267 3.051 2.336 2.65 3.537 3.327 4.126 3.873 3.72
1000 2.933 2.211 3.044 2.277 2.62 3.644 3.377 4.222 3.911 3.79

Panel C: λUMD

60 - - - - - 3.698 3.529 4.345 4.095 3.92
360 - - - - - 5.697 5.406 6.729 6.333 6.04
600 - - - - - 5.564 5.205 6.602 6.205 5.89
1000 - - - - - 6.017 5.517 7.069 6.465 6.27
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method at estimating λ, especially in the case of λHML, and λUMD. The main impli-

cation of our finding is that inference on λ will be in general more accurate if one

follows the Beta method than if one follows the SDF method. According to Table

4.3, the value risk premium standard error is 2.6 times bigger when following the

SDF method, this may represent the difference between rejecting or not rejecting an

hypothesis test. The case of the momentum risk premium is even more evident, the

ratio can reach 8.2 for T=1000 (see Table 4.8).

These reported differences considerably accentuates in the case of multi-factor

models, therefore presumably the number of factors are relevant at deliver efficient

estimators.

It is interesting to highlight the performance of the second-stage SDF estimators

since they are, by construction, more efficient than the first-stage: σ(λ̂1) > σ(λ̂2).

Our empirical results support this argument, however, they are still far from the

efficiency of the OLS Beta estimators: σ(λ̂1) > σ(λ̂2) > σ(λ∗).

The case of λUMD is special since the momentum factor has the highest kurtosis

relative to the factor mean of all factors examined, see Figure 4.1. Even when pricing

the 10 size sorted portfolios – which have lower expected returns variance – and taking

the longest sample T = 1000, the difference between the standard deviation of λ̂UMD

can be seven times as big as the standard deviation of λ∗UMD. Hence it appears that

Table 4.3 suggests the SDF method consistently delivers more inefficient estimators

than the Beta method as the factor becomes more non-normal. However, as we

explain below, this is not the only and main reason.
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Why is the Beta method more efficient?

We argue that there are at least three feasible reasons that explain the differences

between the efficiency of the SDF and Beta methods at estimating λ.

1. Factors’ non-normalities. The SDF method is not only exposed to the

first moments of the returns and factors as in the case of the Beta method, but also to

the higher order moments. In particular, the SDFA estimates depend on d =E[rtft] ,

and the SDFB on b =Cov[rtft], see equations (4.2.15) and (4.2.17). On the other

hand, the Beta estimates, δ∗, depend on the first moment of the factor δ = µ =E[ft],

since the asset pricing models we study use traded factors; additionally, δ∗ captures

the sampling variation of the second moment of the factor, Σf , when it is transformed

from δ∗ to λ∗ by equation (4.2.18). Then, as our evidence illustrates in Table 4.3, the

more non-normal the factors included in the model the less efficient the estimators in

the SDF relative to the Beta method.

2. Numbers of factors. As we show in Table 4.2, the estimation of the single-

factor model does not reflect a significant difference between the methods, while

Table 4.3 shows that when we evaluate multi-factor models the Beta method clearly

outperforms the SDF method. Even though this is one original result, other authors

find similar evidence when comparing Beta models such as Shanken and Zhou [94],

and Hou and Kimmel [52].24

In order to test the influence of factor non-normality and the number of factors,

we conduct a further simulation experiment in which single and multi-factor models

are loaded with new artificial series, calibrated from either low or high non-normal

24They examine theoretical and econometric issues in the estimation of risk pemia in a linear
factor model when the model is misspecified. They show that, for a given set of test assets, the risk
premium of an unspanned factor is very sensitive to the choice of other factors in the model.
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factors. To make our new setup comparable to our previous analysis, we calibrate

the low and high non-normal series by considering the historical distribution of the

market and momentum factors respectively.25

The results indicate the number of factors is in fact more important than the

degree of non-normality of the factor in explaining the differences between the effi-

ciency of the Beta over the SDF method. In particular, whether we load a three or

four factor model with low or high non-normal factors, we still get consistently more

efficient estimators λ in the Beta than in the SDF method. Further, in the case of

the single-factor model, no differences emerge independently of the factor’s degree of

normality.

Therefore, we should expect that SDF method will deliver risk premium estimates

with higher variance in models which include more factors such as APT. One practical

recommendation is to follow the Beta method at estimating APT risk premiums.

3. GMM Moment restrictions. One may think that if we include the defini-

tion of λ, that is λ = µ
µ2+Σf

such that E[(µ2 + Σf ) λ− µ] = 0 as an additional GMM

moment restriction in the SDF method, as is usually the case in the Beta method, the

puzzle regarding the discrepancy in efficiency of λ∗ and λ̂ will disappear. This seems

reasonable because originally the GMM moment conditions in the SDF method are

the definition of the pricing errors, and therefore the efficiency of λ̂ may improve if we

25An alternative procedure would be to conduct a Box-Cox transformation to the actual factors
in order to see whether the main results change once normalized. However, this would require a
previous monotonic transformation to get rid of values less than or equal to zero. The historical
mean of factors E[f ] is 0.64 and 0.76 for the market and momentum factor, and the minimum
value min[f ] is −29.04 and −50.63. Hence, such monotonic transformation will be changing the
fundamental relation between the benchmark portfolios and the factors, and the magnitude of the
estimates becomes meaningless as well as their variance. Our proposed procedure is free of this
problem.
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include its definition as an additional restriction. In a Monte Carlo simulation anal-

ysis not reported here, we find that the variance of the SDF estimator λ̂ diminishes

with inclusion of additional moment restrictions. However, the observed decrease is

not sufficient to change our main conclusion, not even in the case of the second-stage

SDF estimators.26

Our key result in Table 4.3 makes an important contribution to the empirical

asset pricing literature. Jagannathan and Wang [58], Ferson [35] and Cochrane [25]

emphasize that the Beta and SDF methods lead to almost identical results in terms

of efficiency. While this holds for the single-factor model we show it does not apply

to multi-factor models. Once we include other factors with greater non-normalities,

the differences clearly emerge. Kan and Zhou [66] also indicate that estimation in

the SDF method is significantly affected by the presence of skewness and kurtosis in

factors.

Jagannathan and Wang [58] argues that not only the finite sample efficiency be-

tween the methods is the same, they demonstrate that for the case of the single factor

model, the SDF method is asymptotically as efficient as the Beta method. However,

our finite sample analysis show that this is not the case for the multi-factor models.

This original result can be compared to those on Chen and Kan [22], who find that

the finite sample distributions of the estimated risk premia differ significantly from

their asymptotic distributions when testing two-pass cross-sectional regressions in a

Beta formulation.
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Table 4.4: Relative standard errors of the estimated pricing errors

Independent samples {(ftε
′
t)}t=1,...,T are drawn from the empirical distribution to ob-

tain the simulated standard errors. Excess returns on 10 size sorted portfolios are
then constructed to satisfy rt= f tβ + εt for t = 1, ..., T . In each approach, the vector
of sample pricing errors π is calculated based on T samples. We repeat this inde-
pendently to obtain 10,000 draws of π. The simulated standard error is the standard
deviation of the random draws of the sample pricing errors.

T
σ(π̂A

1 )
σ(π∗)

σ(π̂A
2 )

σ(π∗)
σ(π̂B

1 )
σ(π∗)

σ(π̂B
2 )

σ(π∗) Average

Panel A: CAPM
60 0.545 1.417 0.562 1.137 0.92
360 0.543 1.020 0.552 1.003 0.78
600 0.542 1.010 0.551 1.007 0.78
1000 0.543 1.000 0.551 1.005 0.78

Panel B: Fama-French
60 0.314 1.964 0.338 1.657 1.07
360 0.334 0.743 0.345 0.629 0.51
600 0.318 0.637 0.327 0.568 0.46
1000 0.308 0.541 0.315 0.519 0.42

Panel C: Carhart
60 0.166 0.937 0.182 0.828 0.53
360 0.134 0.316 0.146 0.307 0.23
600 0.143 0.277 0.153 0.275 0.21
1000 0.133 0.235 0.145 0.241 0.19

Average
0.34 0.84 0.35 0.76 0.57

247



4.3 – Results

4.3.2 Pricing error efficiency and specification tests

In this subsection, we evaluate the model misspecification by examining the sample

pricing errors. Our calculations are based under the null hypothesis that the asset

pricing model, equation (4.2.1), holds. Contrary to the previous section, in which

the Beta method is preferred because it yields more efficient estimators, here we

show that the SDF method outperforms the Beta method in achieving more efficient

pricing errors π, as measured by σ (π). The moment conditions in the Beta method,

equation (4.2.5), and SDF method, equations (4.2.13) and (4.2.16), are N +NK +K

and N respectively. To examine the pricing errors π, we take the first N restrictions of

the Beta method and transform α∗ into π∗ by equation (4.2.19). Hence, we compare

the standard deviations of π∗ and π̂ as we did with λ∗ and λ̂. Analogously, in Table

4.4 we report the comparisons between σ (π∗) and σ (π̂) in the same format as before.

The first and most important distinguishing feature is that the standard deviation

of the pricing errors using the SDF method is in general smaller than using the Beta

method in most of the examined cases.27 In particular, the difference is greater with

respect to the first-stage SDF pricing errors rather than the second-stage pricing

errors. This is to be expected as, in general, the first-stage aims to minimize the

pricing errors π while the second-stage weights according to the statistically most

26Significantly, researchers hardly ever impose this moment restriction when estimating asset
pricing models by the SDF method.

27This is highly relevant in efficiency tests studies. As pointed out by Ferson and Siegel [39],
testing the efficiency of a given portfolio has long been an important topic in empirical asset pricing.
They concisely support this argument as follow: The CAPM of Sharpe [95] implies that a market
portfolio should be mean variance efficient. Multiple-beta asset pricing models such as Merton [83]
imply that a combination of the factor portfolios is minimum variance efficient (Chamberlain [19];
Grinblatt and Titman [43]). The consumption CAPM implies that a maximum correlation portfolio
for consumption is efficient (see Breeden [11]). More generally, any stochastic discount factor model
implies that a maximum correlation portfolio for the stochastic discount factor is minimum variance
efficient (see Hansen and Richard [50]). Classical efficiency tests are studied by Gibbons [40], Jobson
and Korkie [61], Stambaugh [98], MacKinlay [78], Gibbons, Ross and Shanken [41] and others.
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informative portfolios, for a more complete discussion see [25, section 12.2].

A noisy SDF parameter λ̂ does not necessarily imply a noisy SDF pricing error

π̂. The N moment conditions of the SDF method coincide with the definition of the

pricing errors, equation (4.2.14), hence the GMM delivers λ̂ such that it minimizes

the expected value of π. On the other hand, the moment conditions in the Beta

method include not only the N definitions of the Jensen’s alphas, but include the

other NK + K restrictions. Thus, since the Beta method has additional restrictions,

unrelated to the minimization of the pricing errors, it is anticipated to have lower

efficiency, i.e. σ (π∗) > σ (π̂).

Table 4.4 indicates some evidence in favor of multi-factor models, since the vari-

ance of the pricing errors diminishes as we increase the number of factors (i.e. move

from Panel A to B and C). This result is consistent with recent work, see for example

Shanken and Zhou [94]. There are no notable differences between the performance

of un-meaned SDFA and de-meaned SDFB, this is consistent with Farnsworth, Fer-

son, Jackson and Todd [33], who find that measures of performance are not highly

sensitive to the SDF representation. Our results indicate that the first-stage results

(SDFA and SDFB) are quite similar, whereas in the second-stage, the SDFB method

generally performs better than the SDFA. Nevertheless, in comparing the pricing

errors, and as pointed out by Kan and Robotti [64], the SDFB specification is more

appropriate than SDFA for model comparison.

It is interesting to note the effect of the variance of the central parameter λ and

pricing errors π as we increase the size of the time-series T . In the case of the CAPM,

the sample range 360 < T < 1000 does not impact the variance of σ (λ) and σ (π).

However for both the Fama-French and Carhart models, σ (π) shows a decrease as T
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increases in the range 360 < T < 1000 while there is no clear pattern in the relation

between T and σ (λ) for the multi-factor models.

Size and power

To examine the test size in the two methods, we use the Monte Carlo simulations

to compute the rejection rates under the null hypothesis that the model holds. We

report the test size for three significant levels: 1 percent, 5 percent and 10 percent.

To estimate the tails of the sampling distribution of the J-statistics, we perform the

Monte Carlos with 10,000 simulations.28

To examine the power in the two methods, we perform identical Monte Carlo sim-

ulations to compute the rejection rates, but now allow for the possibility of deviations

from the model. In other words, we study the power under the null that the model

does not hold. There are many ways in which the expected return restriction could

be violated. In our case, consistent with the extant literature, we add a nonzero

Jensen’s alpha to the model for generating excess returns, causing the asset pricing

model, equation (4.2.3), to be misspecified.

In Table 4.5 we present the results for the size and power test, for brevity, we

show only the results from the 10 size-sorted portfolios for the CAPM and in Tables

4.10 and 4.11 the corresponding values for the Fama-French and Carhart models

respectively, the test results with the 25 size/value and 30 industry portfolios are

available upon request. Contrary to the case of the analysis of the risk premium

28To examine the standard deviation of λ and π, there is no significant difference whether one
performs 1,000 or 10,000 simulations since one takes the standard deviation of the results. However,
when examining the tail of the J-statistic distribution, it is preferable to perform 10,000 instead of
1,000 simulations. This approach is also adopted in Shanken and Zhou [94] and Kan and Zhou [66]
among others.
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Table 4.5: CAPM Specification tests on 10 size portfolios

1% 5% 10%

T λ∗ λ̂A
1 λ̂A

2 λ̂B
1 λ̂B

2 λ∗ λ̂A
1 λ̂A

2 λ̂B
1 λ̂B

2 λ∗ λ̂A
1 λ̂A

2 λ̂B
1 λ̂B

2
Panel A: Size test W = S

60 3.62 5.43 6.22 9.89 14.45 15.50 16.01 22.55 23.86
360 0.68 1.48 1.50 3.86 6.26 6.28 7.55 11.90 12.00
600 0.64 1.09 1.12 3.17 5.62 5.63 6.94 11.04 11.09
1000 0.68 1.22 1.22 3.41 5.74 5.78 7.09 10.82 10.85

Panel B: Size test W =E[rtr′t]
60 0.11 0.25 0.72 0.54 1.16 1.78 3.30 4.72 4.75 6.48 4.72 8.06 9.58 10.28 12.32
360 0.44 0.73 0.74 0.95 0.99 2.84 4.52 4.60 5.26 5.41 6.19 9.25 9.47 10.58 10.74
600 0.47 0.80 0.81 0.93 0.94 2.66 4.35 4.41 5.22 5.30 6.10 9.36 9.46 10.60 10.69
1000 0.61 0.97 0.99 1.20 1.22 3.10 4.85 4.89 5.65 5.67 6.56 9.85 9.87 10.95 11.01

Panel C: Size test W =Cov[rt]
60 3.62 4.85 5.23 6.99 7.36 9.89 13.20 13.71 16.55 17.14 16.01 20.86 21.60 25.37 26.15
360 0.68 1.25 1.25 1.71 1.72 3.86 5.83 5.89 6.75 6.81 7.55 10.97 11.05 12.58 12.66
600 0.64 1.00 1.00 1.20 1.21 3.17 5.15 5.20 6.09 6.11 6.94 10.43 10.46 11.77 11.88
1000 0.68 1.16 1.16 1.38 1.38 3.41 5.36 5.38 6.11 6.14 7.09 10.42 10.45 11.48 11.51

Panel D: Power test W = S
60 3.86 5.48 6.08 10.64 15.56 16.71 17.25 24.39 25.18
360 2.21 3.97 3.93 8.07 12.18 12.13 14.42 20.56 20.33
600 3.33 5.44 5.36 11.51 16.76 16.59 19.07 25.96 25.87
1000 6.24 9.70 9.61 18.43 24.62 24.56 27.93 36.10 35.87

Panel E: Power test W =E[rtr′t]
60 0.19 0.47 0.98 0.76 1.60 1.92 3.60 4.96 4.98 7.02 4.87 8.31 10.65 11.15 13.60
360 1.35 2.27 2.43 2.89 3.05 6.43 9.54 9.75 11.02 11.22 12.05 16.91 17.24 18.84 19.19
600 2.49 4.18 4.32 4.92 5.04 10.10 14.25 14.41 15.91 16.16 17.43 23.01 23.16 25.29 25.49
1000 5.49 8.24 8.32 9.40 9.45 17.31 22.53 22.64 24.64 24.77 26.67 33.66 33.79 36.12 36.20

Panel F: Power test W =Cov[rt]
60 3.86 5.06 5.38 7.06 7.64 10.64 14.14 14.89 18.12 19.05 17.25 22.25 23.10 27.08 27.88
360 2.21 3.50 3.63 4.31 4.42 8.07 11.48 11.57 13.16 13.24 14.42 19.43 19.57 21.69 21.87
600 3.33 5.20 5.22 5.96 6.00 11.51 15.79 15.86 17.69 17.76 19.07 24.89 24.98 27.16 27.28
1000 6.24 9.25 9.28 10.35 10.37 18.43 23.79 23.88 25.77 25.83 27.93 35.00 35.09 37.36 37.43
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efficiency, the specifications tests do not yield significant differences when comparing

the single and multi-factor cases. Therefore, in general, the conclusions reached by

Table 4.5 can be extended to those in Tables 4.10 and 4.11.29

The size and power tests represent rejection rates of the J-statistic. Nevertheless,

it is well known that this statistic can be computed in many ways, for instance,

depending on the choice of the weighting matrix used in the aggregation of the pricing

errors. We use three alternatives to give a more robust idea about the performance of

the methods. In particular we use the spectral density matrix S, the second moment

matrix E[rtr
′
t], and the covariance matrix of returns Cov[rt].

To add the pricing error vector gT (θ), the J-statistic, equation (4.2.11), is weighted

by the covariance of the pricing errors, equation (4.2.10) in the first-stage, which is si-

multaneously weighted by the spectral density matrix S, equation (4.2.9). Therefore,

both the first and second-stage J-statistics are weighted by S in order to aggregate

the pricing errors vector gT (θ). As we know from Hansen [46], this choice is statis-

tically optimal in the sense that it maximizes the asymptotic statistical information

in the sample about a model, given the choice of moments. However, since the S

matrix changes across models, it is not convenient to use it for model comparison. In

particular, we could not claim a better fit because of a smaller J-statistic since we

have different values of S across models.

Hansen and Jagannathan [49] suggest the use of the second moment matrix of

excess returns W = E [rtr
′
t] instead of W = S. This alternative is more suitable

for model comparison because it is invariant to the model and their parameters. It

29We find that most tests have better finite sample performances for a smaller number of assets,
this is consistent with related works for Beta pricing model comparisons such as in Li, Xu and Zhang
[73].
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provides an economic measure of the model fit instead of a statistical measure and

has the property of being invariant to portfolio formation. For our third alternative

we follow Burnside [14], Balduzzi and Yao [4] and Kan and Robotti [64] who suggest

that the de-meaned SDFB method should use the covariance matrix of excess returns

W=Cov[rt].

Since we perform size and power tests for the Beta and SDF methods at three

significance levels, using three alternative weighting matrices for the calculation of

the J-statistic, three models, three benchmark portfolios, and four time-series sizes,

for the sake of brevity, we only report a representative sample of the whole tests.

Tables 4.5, 4.10 and 4.11, illustrate that the Beta method consistently under-

rejects in finite-samples greater than T = 60. In particular, at T = 1000 the size is

around 30% below the theoretical value for the CAPM measuring between (Table 4.5)

0.61 – 0.68 at 1%; 3.1 – 3.41 at 5% and 6.56 – 7.09 at 10%. The level of under-rejection

is considerably more for the multi-factor models where in some cases the size is only

about 1% of the theoretical value. The level of under-rejection is slightly greater in

Panel B than in Panels A and C. Interestingly in the case of the Beta method, the

J-statistic leads to the same size and power results whether we adopt W = S (Panels

A and D) or W =Cov[rt] (Panels D and F). This equality does not hold for the SDFA

and SDFB specifications.

In contrast to performance of the Beta method, the size of the SDF method

is much closer to the theoretical values regardless of the model. In fact, this is

partially explained in Table 4.4 since a more efficient pricing error should lead to

better specification tests in general. With respect to the differences in size between

the two SDF specifications, we see that there is a marginal increase in size for SDFB
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with respect to SDFA. However, this should not be considered as a real difference,

since the misspecification of SDFB is lessened by the substraction of the mean of the

factor (see equations 4.2.13 and 4.2.16). In general, a less misspecified model will

lead to better specification test results. Consequently, we argue that our results do

not favor a particular SDF specification since the differences in the specification tests

can be explained by the de-meaned SDF being not as misspecified as the un-meaned

specification by construction. On the other hand, the differences of the risk premium

efficiency in section 4.3.1 have real implications since they are conducted assuming

that the model is well specified. Even though the results are sensible to the choice

of the weighting matrix, Tables 4.5, 4.10 and 4.11 show that the main changes in the

specification tests are due to the method. Nevertheless, it is important to bear in

mind the theoretical implications of taking one matrix or another.

A similar pattern is found in the power tests, where the SDF has greater capacity

to identify a misspecified model than the Beta method, regardless of the weighting

matrix and the number of factors. Our results are comparable to those of Burnside

[14] since we find the GMM tests have better power under the SDFB specification,

equation (4.2.16), than under the SDFA specification, equation (4.2.13). But as we

state earlier, this difference is due to the effect of subtracting the mean of the factor

on the model misspecification.

Thus, while there is an advantage of the SDF method over the Beta method in

terms of achieving more efficient pricing errors. The main implication of this finding

is that if we are interested in a good model fit we should prefer the SDF method,

however this comes at the cost of getting more inefficient risk premium estimates. At

the end, both methods are clearly complementary (not equivalent) and the choice is
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subject to the purpose of the empirical experiment.

4.4 Conclusions

The extant literature demonstrates that the Beta method and SDF method are

equally as efficient in terms of the estimation of risk premiums. We examine whether

this equality holds for multi-factor asset pricing models. Specifically we investigate

both the Fama-French three factor model and the Carhart four factor model in addi-

tion to the single-factor CAPM. We find results consistent with the previous literature

for the CAPM. However, in the context of multi-factor models, we find that relative

to the SDF method the Beta method is in general more efficient at estimating risk

premiums. This relative advantage of the Beta method at estimating the risk premi-

ums does not apply to the estimation of the sample pricing errors; however, where

invariably the efficiency of the SDF method is superior.

We consider this is a remarkable finding since there are numerous examples in

which researchers refer to works such as Jagannathan and Wang [58] which argue

that both methodologies are similar in terms of efficiency. For example, see Wang

and Zhang [102], Jagannathan, Skoulakis and Wang [55], Vassalou, Li and Xing [100],

Cochrane [23, 25], Smith and Wickens [97], Nieto and Rodŕıguez [85], Balvers and

Huang [5], Brandt and Chapman [10], Cai and Hong [15], and Ferson [35], just to

mention a few. Our results suggest that this similarity between the two methods only

holds under very specific situations.

Previous chapter show some evidence of this result, however the objectives of

chapter 3 and 4 are different. Here, we properly demonstrate the difference of the

methods in terms of efficiency in simulated data which allow a finite sample analysis,
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while in chapter 3 we rely on analysis based on several historical data sets.

Commonly used factors and returns in empirical studies habitually exhibit high

kurtosis, and commonly tested models are multi-factor, therefore our results suggest

that if we are interested in performing inference on risk premiums, we should prefer

the Beta method over the SDF method. Conversely, if we are interested in inference

based on the sampling pricing error, the SDF method should be preferred. Hence,

there is no method that fully dominates the other, rather, they are complementary

and, further, they should not be considered as empirically equivalent.

This work intend to contribute to the understanding of the finite sample properties

of the Beta and SDF methods by showing evidence about the magnitude, direction,

and parameters which determines the parameters bias.

Further extensions to this work could be to explore what happen when considering

non-traded factors. In principle, there is no reason to expect a similar pattern. For

example, Kan and Robotti [63] show that the standard errors under correctly specified

and potentially misspecified models are similar for traded factors, while they can differ

substantially for non-traded factors such as the scaled market return and the lagged

state variable CAY.

¥

4.5 Appendix
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Table 4.6: Relative standard errors of the estimated market risk premium, 25 Fama-
French portfolios

Independent samples {(ftε
′
t)}t=1,...,T are drawn from the empirical distribution to obtain

the simulated standard errors. Excess returns on 25 size-value sorted portfolios are then
constructed to satisfy rt= f tβ + εt for t = 1, ..., T . In each approach, the estimator λ is
calculated based on T samples. We repeat this independently to obtain 10,000 draws of
the estimator of λ. The simulated standard error is the standard deviation of the random
draws of the estimator.

T
σ(λ̂A

1 )
σ(λ∗)

σ(λ̂A
2 )

σ(λ∗)
σ(λ̂B

1 )
σ(λ∗)

σ(λ̂B
2 )

σ(λ∗) Average

Panel A: CAPM
60 1.090 2.090 1.189 1.858 1.557
360 1.074 1.149 1.128 1.138 1.122
600 1.068 1.081 1.122 1.095 1.091
1000 1.070 1.053 1.123 1.088 1.083

Panel B: Fama-French
60 0.989 1.734 1.064 1.635 1.355
360 1.019 1.094 1.057 1.094 1.066
600 1.012 1.049 1.049 1.061 1.043
1000 1.016 1.016 1.047 1.031 1.027

Panel C: Carhart
60 1.214 1.538 1.421 1.666 1.459
360 1.571 1.229 1.867 1.362 1.507
600 1.605 1.198 1.914 1.358 1.519
1000 1.683 1.190 2.032 1.381 1.571

Average
1.201 1.285 1.334 1.314 1.283
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Table 4.7: Relative standard errors of the estimated market risk premium, 30 industry
portfolios

Independent samples {(ftε
′
t)}t=1,...,T are drawn from the empirical distribution to obtain

the simulated standard errors. Excess returns on 30 industry sorted portfolios are then
constructed to satisfy rt= f tβ + εt for t = 1, ..., T . In each approach, the estimator λ is
calculated based on T samples. We repeat this independently to obtain 10,000 draws of
the estimator of λ. The simulated standard error is the standard deviation of the random
draws of the estimator.

T
σ(λ̂A

1 )
σ(λ∗)

σ(λ̂A
2 )

σ(λ∗)
σ(λ̂B

1 )
σ(λ∗)

σ(λ̂B
2 )

σ(λ∗) Average

Panel A: CAPM
60 1.039 2.455 1.130 2.130 1.688
360 1.032 1.168 1.084 1.158 1.111
600 1.014 1.110 1.068 1.110 1.075
1000 1.036 1.071 1.071 1.089 1.067

Panel B: Fama-French
60 1.028 2.042 1.063 1.898 1.508
360 1.074 1.185 1.111 1.167 1.134
600 1.061 1.122 1.098 1.122 1.101
1000 1.095 1.111 1.127 1.127 1.115

Panel C: Carhart
60 1.072 1.714 1.169 1.917 1.468
360 1.260 1.298 1.423 1.413 1.349
600 1.280 1.256 1.463 1.390 1.348
1000 1.290 1.242 1.500 1.403 1.359

Average
1.107 1.398 1.192 1.410 1.277
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Table 4.8: Relative standard errors of the estimated size, value and momentum risk
premiums, 25 Fama-French portfolios

Independent samples {(ftε
′
t)}t=1,...,T are drawn from the empirical distribution to obtain

the simulated standard errors. Excess returns on 25 size-value sorted portfolios are then
constructed to satisfy rt= f tβ + εt for t = 1, ..., T . In each approach, the estimator λ is
calculated based on T samples. We repeat this independently to obtain 10,000 draws of
the estimator of λ. The simulated standard error is the standard deviation of the random
draws of the estimator.

Fama-French Carhart

T
σ(λ̂A

1 )
σ(λ∗)

σ(λ̂A
2 )

σ(λ∗)
σ(λ̂B

1 )
σ(λ∗)

σ(λ̂B
2 )

σ(λ∗) Average
σ(λ̂A

1 )
σ(λ∗)

σ(λ̂A
2 )

σ(λ∗)
σ(λ̂B

1 )
σ(λ∗)

σ(λ̂B
2 )

σ(λ∗) Average

25Panel A: λSMB

60 1.162 1.912 1.220 1.785 1.520 1.116 1.590 1.227 1.630 1.391
360 1.178 1.172 1.209 1.153 1.178 1.110 1.091 1.220 1.152 1.143
600 1.176 1.120 1.208 1.120 1.156 1.070 1.047 1.172 1.117 1.102
1000 1.177 1.083 1.208 1.094 1.141 1.070 1.040 1.180 1.120 1.103

Panel B: λHML

60 1.146 1.894 1.193 1.786 1.505 1.641 1.786 1.917 2.003 1.837
360 1.146 1.181 1.194 1.181 1.175 2.340 1.483 2.748 1.687 2.065
600 1.153 1.126 1.189 1.135 1.151 2.452 1.443 2.878 1.661 2.109
1000 1.138 1.092 1.172 1.115 1.129 2.575 1.483 3.080 1.724 2.216

Panel C: λUMD

60 - - - - - 3.564 2.645 4.092 3.234 3.384
360 - - - - - 6.190 3.240 7.060 3.640 5.033
600 - - - - - 6.773 3.360 7.720 3.853 5.427
1000 - - - - - 7.121 3.483 8.241 4.034 5.720
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Table 4.9: Relative standard errors of the estimated size, value and momentum risk
premiums, 30 industry portfolios

Independent samples {(ftε
′
t)}t=1,...,T are drawn from the empirical distribution to obtain

the simulated standard errors. Excess returns on 30 industry sorted portfolios are then
constructed to satisfy rt= f tβ + εt for t = 1, ..., T . In each approach, the estimator λ is
calculated based on T samples. We repeat this independently to obtain 10,000 draws of
the estimator of λ. The simulated standard error is the standard deviation of the random
draws of the estimator.

Fama-French Carhart

T
σ(λ̂A

1 )
σ(λ∗)

σ(λ̂A
2 )

σ(λ∗)
σ(λ̂B

1 )
σ(λ∗)

σ(λ̂B
2 )

σ(λ∗) Average
σ(λ̂A

1 )
σ(λ∗)

σ(λ̂A
2 )

σ(λ∗)
σ(λ̂B

1 )
σ(λ∗)

σ(λ̂B
2 )

σ(λ∗) Average

indPanel A: λSMB

60 1.431 2.536 1.316 2.313 1.899 1.333 2.011 1.288 2.091 1.681
360 1.503 1.571 1.503 1.528 1.526 1.473 1.503 1.564 1.564 1.526
600 1.524 1.508 1.540 1.500 1.518 1.460 1.437 1.571 1.516 1.496
1000 1.531 1.469 1.551 1.469 1.505 1.469 1.408 1.592 1.500 1.492

Panel B: λHML

60 1.437 2.440 1.362 2.260 1.875 1.526 2.124 1.562 2.430 1.911
360 1.568 1.500 1.596 1.479 1.536 1.966 1.797 2.203 1.980 1.986
600 1.563 1.438 1.607 1.446 1.513 2.018 1.779 2.292 1.982 2.018
1000 1.593 1.407 1.640 1.430 1.517 2.080 1.761 2.386 2.011 2.060

Panel C: λUMD

60 - - - - - 2.234 2.645 2.328 3.479 2.672
360 - - - - - 3.630 3.110 4.060 3.480 3.570
600 - - - - - 3.895 3.250 4.434 3.671 3.813
1000 - - - - - 4.121 3.328 4.741 3.828 4.004
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Table 4.10: Fama-French specification tests on 10 size portfolios

1% 5% 10%

T λ∗ λ̂A
1 λ̂A

2 λ̂B
1 λ̂B

2 λ∗ λ̂A
1 λ̂A

2 λ̂B
1 λ̂B

2 λ∗ λ̂A
1 λ̂A

2 λ̂B
1 λ̂B

2
Panel A: Size test W = S

60 0.69 2.91 3.77 2.64 9.85 10.95 4.68 16.75 17.98
360 0.21 1.11 1.08 0.99 5.18 5.41 2.45 10.18 10.25
600 0.17 0.89 0.91 0.83 4.99 5.04 2.05 10.28 10.29
1000 0.13 0.92 0.99 0.87 5.31 5.28 2.33 10.22 10.04

Panel B: Size test W =E[rtr′t]
60 0.01 0.38 1.03 1.04 2.54 0.31 3.37 5.43 6.78 10.15 0.94 7.82 10.65 13.59 17.47
360 0.10 0.68 0.73 1.13 1.19 0.66 4.19 4.36 6.01 6.14 1.74 8.67 8.88 11.56 11.83
600 0.10 0.61 0.63 1.00 1.07 0.65 4.08 4.15 5.79 5.91 1.70 8.90 9.00 11.48 11.64
1000 0.10 0.72 0.75 1.15 1.16 0.78 4.52 4.59 5.89 5.94 2.13 8.80 8.88 11.30 11.40

Panel C: Size test W =Cov[rtr′t]
60 0.69 3.31 3.95 6.69 7.89 2.64 10.05 11.33 16.67 18.49 4.68 16.23 18.01 25.37 27.76
360 0.21 0.97 1.02 1.62 1.74 0.99 5.15 5.28 7.08 7.18 2.45 9.86 10.00 13.10 13.28
600 0.17 0.77 0.78 1.24 1.25 0.83 4.65 4.74 6.50 6.61 2.05 9.64 9.68 12.43 12.52
1000 0.13 0.85 0.85 1.24 1.25 0.87 4.85 4.89 6.21 6.23 2.33 9.30 9.37 11.82 11.90

Panel D: Power test W = S
60 0.91 3.76 4.60 3.22 10.73 12.36 5.92 17.97 19.65
360 0.56 2.79 2.72 2.64 9.93 9.79 5.19 17.53 17.33
600 0.88 3.87 3.78 3.81 13.14 13.06 7.16 22.14 21.69
1000 1.73 7.08 6.94 6.67 20.46 20.18 11.97 30.86 30.59

Panel E: Power test W =E[rtr′t]
60 0.00 0.50 1.18 1.37 3.01 0.39 3.87 6.17 7.48 11.05 1.16 8.77 12.16 15.07 19.13
360 0.33 2.07 2.18 2.93 3.02 2.02 8.28 8.62 10.52 10.84 4.20 15.45 15.69 18.73 19.11
600 0.69 3.12 3.22 4.05 4.20 3.25 11.44 11.71 14.22 14.40 6.37 19.97 20.14 23.39 23.63
1000 1.35 5.89 5.96 7.58 7.64 6.03 18.47 18.60 21.69 21.84 11.20 28.82 28.96 32.43 32.53

Panel F: Power test W =Cov[rtr′t]
60 0.91 3.75 4.61 7.29 8.77 3.22 11.17 12.49 18.31 20.14 5.92 18.32 20.03 27.02 29.32
360 0.56 2.73 2.80 3.78 3.85 2.64 9.65 9.76 12.26 12.53 5.19 17.00 17.28 20.64 20.83
600 0.88 3.74 3.79 4.80 4.84 3.81 12.63 12.76 15.35 15.43 7.16 21.21 21.30 24.58 24.67
1000 1.73 6.46 6.51 8.21 8.24 6.67 19.33 19.41 22.74 22.83 11.97 29.60 29.67 33.26 33.37
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Table 4.11: Carhart specification tests on 10 size portfolios

1% 5% 10%

T λ∗ λ̂A
1 λ̂A

2 λ̂B
1 λ̂B

2 λ∗ λ̂A
1 λ̂A

2 λ̂B
1 λ̂B

2 λ∗ λ̂A
1 λ̂A

2 λ̂B
1 λ̂B

2
Panel A: Size test W = S

60 0.27 1.80 2.63 1.00 6.85 8.46 2.15 12.63 14.55
360 0.07 0.75 0.93 0.38 4.53 5.12 1.08 9.06 9.82
600 0.04 0.69 0.79 0.36 4.70 4.96 1.01 9.69 9.99
1000 0.07 0.96 1.07 0.38 4.77 4.94 1.07 9.63 9.78

Panel B: Size test W =E[rtr′t]
60 0.01 0.41 1.24 1.56 3.68 0.11 2.75 5.12 7.98 12.37 0.35 6.70 10.78 15.60 20.58
360 0.06 0.52 0.60 1.32 1.46 0.27 3.76 4.18 6.65 7.05 0.78 7.99 8.49 12.25 12.95
600 0.02 0.57 0.59 1.23 1.31 0.26 3.74 3.88 6.56 6.82 0.83 8.12 8.45 12.47 12.76
1000 0.03 0.72 0.75 1.39 1.42 0.33 4.01 4.07 6.39 6.58 0.96 8.35 8.50 12.18 12.31

Panel C: Size test W =Cov[rtr′t]
60 0.27 2.12 3.16 6.44 8.22 1.00 7.48 9.89 16.78 19.62 2.15 13.44 16.28 25.18 28.51
360 0.07 0.70 0.83 1.77 1.98 0.38 4.49 4.79 7.56 7.87 1.08 8.91 9.29 13.79 14.19
600 0.04 0.62 0.67 1.46 1.49 0.36 4.11 4.38 7.22 7.47 1.01 8.84 9.14 13.15 13.39
1000 0.07 0.84 0.85 1.50 1.52 0.38 4.23 4.34 6.71 6.81 1.07 8.57 8.72 12.53 12.63

Panel D: Power test W = S
60 0.28 2.22 2.85 1.20 7.67 8.74 2.57 13.23 14.85
360 0.25 2.06 2.08 1.38 9.19 8.82 3.01 16.57 16.11
600 0.58 4.09 3.89 2.48 14.08 13.48 4.81 22.78 22.19
1000 1.02 8.87 8.33 4.95 22.38 21.57 9.23 33.60 32.88

Panel E: Power test W =E[rtr′t]
60 0.00 0.45 1.38 1.66 3.85 0.09 3.65 6.12 8.80 13.11 0.39 8.01 11.87 16.64 21.78
360 0.13 2.14 2.37 3.02 3.22 1.01 9.02 9.44 11.44 11.89 2.24 16.80 17.35 20.04 20.52
600 0.42 3.97 4.11 5.18 5.33 2.16 13.83 14.19 16.19 16.50 4.21 22.88 23.13 26.10 26.34
1000 0.83 8.29 8.41 10.10 10.19 4.55 22.14 22.32 24.77 24.95 8.68 33.38 33.54 36.52 36.71

Panel F: Power test W =Cov[rtr′t]
60 0.28 2.91 4.05 7.39 9.30 1.20 8.79 11.01 17.75 20.86 2.57 15.08 18.05 26.50 29.74
360 0.25 2.79 3.04 3.85 4.00 1.38 10.28 10.65 13.03 13.43 3.01 18.26 18.83 21.76 22.20
600 0.58 4.51 4.63 6.00 6.10 2.48 14.79 14.99 17.29 17.52 4.81 23.79 24.03 27.19 27.43
1000 1.02 8.94 9.03 10.68 10.77 4.95 22.92 22.99 25.55 25.62 9.23 34.01 34.12 37.36 37.48
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Concluding Remarks

The interest on learning about the asymptotic and finite sample properties of asset

pricing model estimators, like risk premiums and pricing errors, have attracted the

attention of researchers for decades. This interest is motivated for an extensive list

of theoretical and empirical applications mainly – but not exclusive – in economics

and finance areas. Roughly speaking, the study of estimator properties usually in-

volves a trade-off. For example, an econometric method which leads to more efficient

estimators may comes at the cost of higher pricing errors and vice versa. This evi-

dence is useful for researchers and practitioners because they could choose a proper

procedure in terms of a given application. Consequently, the adequate selection of

the econometric procedure lead to more accurate hypothesis tests and other kind of

computations.

Even though any asset pricing model can be defined either under the Beta or

the SDF representation, the literature has traditionally focus on analyzing one of

these two representations. In other words, it is not uncommon to find comparisons

of different Beta procedures, and in the other hand, comparisons of different SDF

procedures. Only until recently, researchers have established the correct framework

for comparing the two methods, opening a rich research field in financial econometrics

and asset pricing.
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Concluding Remarks

Our original contribution provides new evidence on the comparison between the

Beta and SDF methodologies. We argue that current studies which compare both

methodologies are conducted under certain conditions that are not sufficient to dif-

ferentiate them. Once we relax those conditions, we show that differences between

the two methods emerge. Specifically, we find evidence that suggest that the Beta

method lead to better risk premium estimators while the SDF method lead to bet-

ter pricing error estimators in terms of efficiency. We evaluate the magnitude of the

resulting biases and their possible explanations.

In chapters three and four we show the main pieces of empirical evidence that

support our principal and original findings. In brief, we perform extensive combi-

nations of estimations and tests under different approaches which not only confirm

previous findings but provide new arguments to the current debate between the dif-

ferences of both methods. Chapters two and three contributes to the knowledge of

the finite sample performance of different Beta and SDF procedures by separate. In

addition, our set of results also serves to empirically evaluate not only methods but

models too. Particularly, we study single and multi-factor asset pricing models in

which factors are tradable assets. Furthermore, chapters two and three introduce an

empirical motivated model which outperforms other well known pricing models. Fi-

nally, chapter one provides a comprehensive econometric review, based on recognized

authors, which is specifically orientated to facilitate the programming.

¥
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