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“A habit of basing convictions upon evidence, and of giving to them only that degree or 

certainty which the evidence warrants, would, if it became general, cure most of the ills 

from which the world suffers” Bertrand Russell   
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INTRODUCTION 

A HISTORICAL BACKGROUND 

The history of Kalman filter is long and broad, and so is the literature of its applications 

to the field of Economics. It was first derived by Kalman in a celebrated article in 1960, 

following a previous and more theoretical work of Stratonovich (1959). Its importance 

was recognized in the Engineering literature from the very start. 

 Economics lagged a few years in following this approach, as it was dominated by a 

more antique ARIMA approach. However, as early as 1989, Andrew J. Harvey, in his 

now classical book “Forecasting, Structural Time Series and the Kalman Filter” already 

exposes practically all now mainstream techniques in dealing with Kalman filter 

estimation. 

Continuous-time Finance, being a rather more recent field (we can not even speak 

properly of Continuous-time Finance until the seventies, with the pioneer works of 

Black and Scholes) had to wait a bit more. We can establish the time when this 

approach became dominant in the influential work of Schwartz (1997). 

However, since this date, the field has really become exuberant. Kalman Filter deals 

routinely, in the blackboards of academics and the workstations of practitioners with 

thousands of real world financial series and its implications seem to be far from 

exhausted. This thesis tries to be a contribution, humble as may be, to this research.     

 

GENERAL SETUP 

The framework where all these thesis’ results are set is a continuous-time state space 

system that exhibits a dynamics given by: 

( )
( )




=

++=

tt

ttt

cXS

RdWdtAXbdX

exp
    (MR) 
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where St is the spot price of a given financial asset commodity, Xt is a vector of n states 

which are usually not observable, Wt is unitary Brownian motion and b and A,R and C 

are matrices of appropriate size, that in most applications need to be identified. 

 Following Schwartz (1997), in the spirit of the Black-Scholes risk neutral valuation, 

another fictitious dynamics is introduced via a vector called risk premium. We thus 

obtained a risk neutral dynamics, which is used to value options and futures contracts:  

( )
( )




=

++−=

tt

ttt

cXS

RdWdtAXbdX

exp

λ
   (MN) 

It is worth remarking why models exhibit hidden dynamics. In fact, classical 

continuous-time financial models are directly observable. In the black-Scholes world, 

dynamics is just given by: 

( )







=

+







+−=

tt

ttt

XS

dWdtXdX

exp

2

2

σ
σ

µ
 

And we just have to take logarithms to recover state from spot price. However, as noted 

by Schwartz (1997), this model implies perfect correlation among different futures, 

which is contrary to existing evidence. As a result, he proposed a particular version of 

general model (MR)-(MN) where the spot price was the sum of two hidden 

components, one continuous-time random walk (the classical model for financial assets) 

and transitory short run component. A number of generalizations following model 

structure (MN)-(MR) have been proposed since. As examples, the reader can consult 

Cortazar and Naranjo (2003) or García, Población and Serna (2012). 

Going back into the equations, we shall see that they can be solved explicitly, giving a 

complete discrete time model to be identified directly from observable data. 

Although full details will be given in the thesis, let us briefly outline how this is done. A 

direct application of the results in Oksendal (1992) gives us the solution of equation 
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(MR) as 



 ++= ∫ ∫

∆ ∆

+
−−∆

∆+

t t

st

AsAs

t

tA

tt RdWebdseXeX
0 0

 which means we can exactly 

compute state dynamics. Defining 



= ∫

∆ −∆ t
AstA

D bdseeb
0

, tA

D eA ∆=  and 

∫
∆

+
−∆=

t

st

AstA

t RdWee
0

η  we have a fully specified equation ttDDtt XAbX η++=Α+ .  

However, we do not usually (and never in the models considered in this work) observe 

spot prices but instead have data on futures or options. Regarding futures, which is the 

data we shall use to estimate models (options are taken into account later for valuation 

purposes), in the Black Scholes world they are simply the risk neutral expectation of 

spot prices or, in symbols, [ ]tTtQTt ISEF /, +=  where TtF ,  is the future contracted at t 

with maturity T (i.e. with delivery time Tt + ), Q is the risk neutral measure and tI  is 

the information available at t. 

Under risk neutral measure, we have to use equations (MN) and therefore, conditional 

to t, TtF ,  is lognormal and ( ) 



 −+ ∫ −T

As

t

AT dsbeXce
0

λ  is its logarithm’s mean while 

( ) ( )[ ] '

0

'' cdseRRec
T

sTAsTA 




 ∫ −−−− .  

The bottom line is that ( ) ( ) tTt XTcTdF +=,log  for known matrices ( )Td  and ( )Tc  

whereas tX  has a known discrete dynamics so we arrive to a fully specified discrete 

model that can be estimated from real data via Kalman filter : 

( ) ( )



++=

++=Α+

ttTt

ttDDtt

XTcTdF

XAbX

ε

η

,log
 

Different chapters of this thesis describe different aspects of this model, using it to 

estimate parameters and value options in different commodities.  
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SUMMARY OF CHAPTER ONE 

This chapter deals with a mathematically general version of (MR) and (MN). As 

financial data are never observed in continuous time (even ultra high frequency data is 

observed at intervals of tens of milliseconds), in order to estimate parameters a discrete 

time version of the model has to be achieved. 

In the literature, the dominant approach was to develop discrete time formulae from ad 

hoc procedures, involving limit steps and partial differential equations. We have shown 

that these ideas are unnecessary and have developed a general method to achieve 

discrete time forms which is applicable to all models proposed in the literature. 

Moreover, we have also establish a general, directly programmable, computer efficient 

method to obtain this formulae, which we have contrasted against theoretical 

alternatives, reducing computation time in an order of magnitude. 

In this part, we have also used our formulae to contrast our approach with Schwartz 

(1997) formulae using West Texas Intermediate (WTI) futures data. We show that his 

method was an approximation that tends to (slightly) overestimate the parameters and 

increase error. 

 

SUMMARY OF CHAPTER TWO 

This chapter treats a modification of model (MN)-(MR) where risk premium is allowed 

to vary over time, that is: 

  
( )
( )




=

++−=

tt

tttt

CXS

RdWdtAXbdX

exp

λ
             (MN’) 

This problem was very appealing, as seemed very reasonable to assume that the state of 

world economy should have a direct implication in the premium an investor demands to 

purchase a risky asset. 
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Estimating this premium via a Kolos and Ronn (2008) algorithm and a moving window 

we obtained a time series, which we compared with several economic indicators. 

Results were very interesting as we observed, among other findings fully described in 

the chapter, that there was a positive relation between the estimated long-term market 

price of risk and the average NAPM index, the average S&P 500 index and an indicator 

of economic expansion. This relation was reversed when we compared these economic 

indicators with short term risk premium. 

In addition, we proposed a model with time varying risk premium, and showed how it 

could be estimated via exactly the same discrete Kalman filter, by modifying the way 

discrete time equations were obtained. This model was estimated (separately) with real 

WTI Oil, Heating Oil, Gasoline and Henry Hub (HH) Natural Gas outperforming 

constant risk premium models. 

Finally, we applied the new model was used to valuate a sample of American WTI 

options, obtaining better results than more standard approaches. 

 

SUMMARY OF CHAPTER THREE 

This final chapter studies convenience yield dynamics. Convenience yield can be 

defined as the value of owing a commodity physically instead of having a financial 

asset that guarantees its possession in a certain date.  

More formally, remember that in a Black-Scholes world, futures prices are given by risk 

neutral expectation of spot prices or [ ]tTtTt ISEF /*
, += . Convenience yield (δt,T) is the 

difference, in continuous time between this price and the spot price increased due to real 

interest rate, that is Tr

t

T

Tt
TtTr eSeF

··
,

,, ·· =δ . 

What we did in this part was to derive the distribution of convenience yield from first 

principles when spot prices followed a stochastic seasonal model. We showed that this 
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implies, in convenience yield series, a seasonal component directly related to the spot 

price original. Moreover, this finding was confirmed when estimating a model for 

convenience yield directly from real world (WTI Oil, Heating Oil, Gasoline and HH 

Natural Gas) data. 

In addition, we also showed that our seasonal model was maximal in a sense related to 

Dai-Singleton (2000) and gave a canonical, globally identifiable form for this model, 

which can actually be applied to all constant volatility models in the literature. 
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CHAPTER 1: ANALYTIC FORMULAE FOR COMMODITY 

CONTINGENT VALUATION 

1.1. INTRODUCTION 

Itô calculus has become the main approach in derivatives valuation theory since it was 

first used in Finance (Black and Scholes, 1972). The same methodology was first used 

in the valuation of commodity contingent claims (see for example Brennan and 

Schwartz, 1985, Paddock et al., 1988, among others), i.e. by assuming that asset prices 

follow a geometric Brownian motion, the classical Black-Scholes formulae can be used 

with slight modifications (if any). Subsequently several authors, such as Laughton and 

Jacobi (1993) Ross (1997) or Schwartz (1997), have considered that a mean-reverting 

process is more appropriate to model the stochastic behaviour of commodity prices, 

pointing out that the geometric Brownian motion hypothesis implies a constant rate of 

growth in the commodity price and a variance of futures prices increasing 

monotonically with time, which are not realistic assumptions. The idea behind mean-

reverting processes is that the supply of the commodity, by increasing or decreasing, 

will force its price towards an equilibrium (or long-term mean) price level1.  

In spite of their attractiveness, these one-factor mean-reverting models are not very 

realistic since they generate a constant volatility term structure of futures returns, 

instead of a decreasing term structure, as observed in practice. Gibson and Schwartz 

(1990) and Schwartz (1997) propose a two-factor model, where the second factor is the 

convenience yield, which is also assumed to follow a mean-reverting process.  Schwartz 

and Smith (2000) propose a two-factor model allowing for mean reversion in short-term 

prices and uncertainty in the equilibrium (long-term) price to which prices revert, which 

                                                 
1 See Schwartz (1997) and Schwartz and Smith (2000) for an excellent discussion of these issues. 
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is equivalent to the Schwartz (1997) one. Schwartz (1997) also considers a three-factor 

model, extending the Gibson-Schwartz (1990) model to include stochastic interest rates. 

Cortazar and Schwartz (2003) propose a three-factor model, which is an extension of 

the Schwartz (1997) two-factor model, where all three factors are calibrated using only 

commodity prices. More recently Cortazar and Naranjo (2006) extend two and three 

factor models to an arbitrary number of factors (N-factor model). 

Unfortunately, the application of the standard Black-Scholes valuation framework is not 

easy in the context of commodity contingent valuation, given the complex dynamics of 

commodity prices. This is the reason why the studies on commodity contingent 

valuation usually present very complex ad-hoc solutions and sometimes include 

approximations or limit steps. In this article we show how to simplify formulae and 

deductions, computing the explicit, directly implementable general formula, based on 

well known results in stochastic calculus. 

Specifically, after describing the general theoretical model for commodity contingent 

valuation, we present two specific applications. Firstly, we show how this general 

framework can be implemented in the context of the two-factor model by Schwartz 

(1997), obtaining simpler expressions and more precise estimates than the 

approximations given by the author. It is also shown that the approximations by 

Schwartz tend to overestimate the parameters, a fact that, as we will see, becomes 

important in the valuation of commodity contingent claims. Secondly, we shall show 

how to obtain the expression for the futures price and volatility of futures returns given 

by Schwartz (1997) and Schwartz and Smith (2000) in a simpler way, avoiding 

unnecessary partial differential equations or limit steps. 

This chapter is organized as follows. The general methodology for commodity 

contingent valuation and volatility estimation is presented in Section 2. Section 3 



 16

describes how these formulae can be used in practice and proposes a ready-to-

implement algorithm to estimate any linear model which is evaluated in terms of 

computer time. Section 4 shows how to obtain more precise estimators of the 

parameters in the two-factor model by Schwartz (1997). Section 5 shows how to 

simplify the deduction of the futures price in the two-factor model by Schwartz and 

Smith (2000), avoiding unnecessary limit steps. Finally, section 6 concludes with a 

summary and discussion. 

 

1.2. THEORETICAL MODEL 

Contract Valuation 

Most of the models proposed in the literature for the stochastic behaviour of commodity 

prices can be summarized by means of the following system: 

                                              
( )





=

++=

tt

ttt

cXY

RdWdtAXbdX
                                            (1) 

where tY  is the commodity price (or its log), b, A, R and c are deterministic matrices2 

independent of t ( nnxnn cRAb ℜ∈ℜ∈ℜ∈ ,,, ) and Wt is a n-dimensional canonical 

Brownian motion (i.e. all components uncorrelated and its variance equal to unity). 

Usually, the estimation of these matrices can be simplified, as they can be assumed to 

depend in a predefined way of some estimable values, called structural parameters or 

hyperparameters (for example, if A is 2x2, instead of computing four values one may 

assume, as in Schwartz, 1997, that 








−

−
=

κ0

10
A  where κ  is the hyperparameter to be 

estimated). 

                                                 
2 R does not have to be computed, as all formulae shall use RR’. 
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As it shall be proven in appendix B the solution of this problem is: 

                                   



 ++= ∫∫ −−

s

t
sA

t
sAtA

t RdWebdseXeX
000                                   (2) 

We shall assume now that A is diagonalizable with 1−= PDPA  and 







=

10

00

D
D  

diagonal3. Let us define the auxiliary quantities: 

                                            ( )
( )[ ]

1

1
1

1 exp0

0 −
− 








−

= P
ItDD

It
PtJ                                    (3)                                                     

( ) ( ) ( ) ( ) ( ) ( ) ( )'exp'''expexpexp 11

0

1 AtPPRRPvecdsDsDsPvecAttG
t −−−













 ⊗= ∫             (4) 

This integral can be computed explicitly, but depends on the eigenvalues (see appendix 

A). 

Using (2) and the results in Appendix A about integrals, it is evident that, given 0X , tX  

is Gaussian, with mean and variance:  

                               [ ] ( )btJXeXE At

t += 0  , [ ] ( )tGXVar t = .                                       (5) 

Which yields that tY  is also Gaussian with [ ] [ ] [ ] [ ] ', cXcVarYVarXcEYE tttt ==                                                    

Under the risk-neutral measure, the dynamics are exactly the same as in (1) but 

changing b into a different *b  which contains the risk premia (all other matrices stay the 

same) so, using this measure and conditional to 0X , tX  is Gaussian. To compute the 

risk-neutral mean and variance of tX  and tY  we must substitute b for *b  in (5), thus 

providing a valuation scheme for all sorts of commodity contingent claims such as 

financial derivatives on commodity prices, real options, investment decisions, etc. 

                                                 
3 To the best of the authors’ knowledge all models in the existing literature fulfil this restriction, most of 
them directly by imposing A to be diagonal. Notable exceptions where A is not diagonal but 
diagonalizable are the Schwartz (1997) model or the cycles in Harvey (1991).   
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If Yt is the log of the commodity price (St), it is easy to prove (just by the properties of 

the log-normal distribution) that the price of a futures contract traded at time “t” with 

maturity at time “t+T” is: 

                                      ( ) ( ) 






 ++= ')(
2

1
exp, * cTcGbTcJXceTtF t

AT                          (6) 

This methodology is general, feasible for all kind of problems, at least when the 

parameters in (1) are independent of t, and much simpler than the ad-hoc solutions 

presented in the literature, that can only be used in the concrete problem for which they 

were developed and need complex procedures such as partial differential equations 

(Schwartz 1997) or limit steps (Schwartz-Smith 2000). Even more, these formulae can 

be implemented directly in any mathematical oriented computer language, such as 

Matlab or C++ regardless on the size of the matrices or their dependence of the 

hyperparameters, using the matrices directly as inputs. So there is no need to compute 

explicit formulae each time we use a different model. It possible to use the same script 

(changing the way the matrix depend on the hyperparameters) for any model. 

 

Volatility of Future Returns 

We can define the squared volatility of a futures contract traded at time “t” with 

maturity at time “t+T” as4: 
[ ]

h

FFVar TtTht

h

,,

0

loglog
lim

−+

→
. In appendix C it is proved that 

it is the expected value of the square of the coefficient of the Brownian motion (σt) in 

the expansion ( ) F

tttTt dWdsFd σµ +=,log , where Wt
F is a scalar canonical Brownian 

                                                 

4 The same results would be obtained if the volatility were defined as: 
[ ]

h

FFVar TthTht

h

,,

0

loglog
lim

−−+

→
. 
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motion, as long as tµ  is mean squared bounded in an interval containing t  (it does not 

matter whether it is a function of TtF ,  or not) and [ ]2
tE σ  is continuous in t .  

In the general problem of this article these conditions are satisfied. Therefore, after 

taking logarithms and differentials on both sides of Equation (6), we can obtain that: 

( ) [ ] t

AT

t

AT

t

AT

Tt dWRcedtAXbcedXceFd ++==,log  

So, the squared volatility is simply5: 

                                                       ''' ceRRce ATAT .                                                       (7)  

 

1.3. DISCRETIZATION AND ESTIMATION ISSUES 

This section is devoted to provide a practitioner’s guide to the use of the above results. 

Suppose that we observe a forward curve ( )TtF ,  of N futures prices and wish to 

estimate a linear multifactor model as in (1). First of all, we need a discrete version of 

(1). Let t∆  be the interval of discretization. 

As stated above [ ] ( )btJXeXE At

t += 0  and [ ] ( )tGXVar t = . Consequently, it is easy to 

prove that:  

                                             




++=

++=Α+

ttdt

ttDDtt

Xcdy

XAbX

ε

η
                                                (8) 

where ( )( ) ( )( )[ ] '
1 ,log,...,,log Nt TtFTtFy =  is the log of the full forward 
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5 Note again that R does not need to be computed as 'RR is the noise covariance matrix. 
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Of course, the measurement noise ( tε ) is user-defined. The most usual convention, 

followed by Schwartz (1997), Schwartz and Smith (2000), Cortazar and Naranjo (2006) 

among others, is [ ] [ ]













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==

N

tt VarE

σ

σ

εε
00

0...0

00

,0
1

 

The process to estimate a model is as follows: 

1. Given a set of hyperparameters φ , make explicit the dependence of the continuous 

time system matrices ( ) ( )φφ cA , and so on in (1) 

2. Compute the discrete-time system (8). This can be done using the formulae (3) and 

(4) or directly via the integrals in appendix B. The easiest way is obviously to 

compute them by hand and insert them in the program. However, the computer can 

do it, using the formulae (3) and (4) each iteration at a moderate additional 

computational cost (thus allowing the user to write a single program for all models, 

instead of changing it each time). 

3. Estimate the parameters in the models by a log-likelihood algorithm. See Hamilton 

(1994) for details on estimating a state-space model. 

From the authors’ point of view, unless the user always deals with the same kind of 

model, the increasing complexity of using formulae (3) and (4) in each iteration is a 

price worth paying by having a single general program.  

We would like to stress the importance of formulae (3) and (4). Without them, unless 

the practitioner writes a separate script for each model, he would have to compute (via a 

symbolic processor such as Matlab Symbolic Toolbox) an integral in each iteration. The 

computational cost of that is burdensome, approximately 100 times the one with the 

formulae, which is two orders of magnitude higher. 
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To proof this, we have estimated the Schwartz and Smith (2000) and Cortazar and 

Schwartz (2003) models with different data sets, representative of the kind of series a 

practitioner is likely to work with. Here, it suffices to say that they are a two factor 

(Schwartz and Smith, 2000) and a three factor (Cortazar and Schwartz, 2003) model 

with 8 and 13 identifiable hyperparameters respectively. The data set employed consists 

on weekly observations of Henry Hub natural gas, WTI crude oil futures prices (both of 

them traded at NYMEX) and Brent crude oil futures prices (traded at ICE). The data set 

for Henry Hub natural gas is made of contracts F1, F5, F9, F13, F17, F21, F25, F29, 

F33, F37, F41, F44 and F48 where F1 is the contract closest to maturity, F2 is the 

second contract closest to maturity and so on. This data set contains 330 quotations of 

each contract from 12/03/2001 to 03/24/2008. The data set for WTI crude oil is made of 

contracts F1, F4, F7, F10, F13, F16, F19, F22, F25 and F28. This data set contains 654 

quotations of each contract from 9/18/1995 to 03/24/2008. The data set for Brent crude 

oil is made of contracts F1, F4, F7, F10, F12, F16-18, F22-24 and F31-36. This data set 

contains 537 quotations of each contract from 12/15/1997 to 03/24/2008. These data 

sets have been chosen taking into account that futures contracts with long-term and 

short-term maturities are necessary to estimate properly the parameters of the long-term 

and the short-term factors.  

In Table 1 a brief summary of the time needed for an evaluation of the log-likelihood 

function is given, specifying the data and model used (two factors means Schwartz and 

Smith, 2000, model, three factors means Cortazar and Schwartz, 2003). Note that, as all 

quantities are given in milliseconds, a 30% less for the formulae (implementing each 

case separately) is not a big reward. All experiments were made with an x86 Intel 

Celeron (Family 6 Model 8 Stepping 3, 261.616 Kb RAM). 
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In order to illustrate this fact, we have also included another Table (number 2) where the 

estimation time is given for the general case and the estimation for each case separately 

(using the theoretical formulae for integrals would be too slow). As the reader can see, 

the difference is small enough and, from the authors’ point of view, it is not worth the 

effort to compute formulae by hand case by case instead of using matrix forms. Note 

that the difference is estimating a model in a minute and a minute and a half, even with 

a rather old computer.  

 

1.4. PRECISE ESTIMATION OF THE SCHWARTZ (1997) TWO- 

FACTOR MODEL 

Let us consider the two-factor model in Schwartz (1997). Let St and δt be the spot price 

of a commodity and its instantaneous convenience yield at time t. The model can be 

expressed as: 

( )
( ) 22

11
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dzSdtSdS

tt

tttt

σδακδ

σδµ

+−=

+−=
 

The standard Brownian motions, dz1 and dz2, are assumed to be correlated, i.e. dz1dz2 = 

ρdt. The parameter µ is the long-term total return on the commodity, κ is the mean-

reverting coefficient, α is the long-term convenience yield, and finally σ1 and σ2 are the 

volatilities of the spot price and the convenience yield respectively. 

Defining Yt = ln(St) and applying Itô’s Lemma, the model, under the risk-neutral 

measure, can be expressed as: 
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Where *
1zd  and *

2zd  are the Brownian motions under the equivalent martingale 

measure, which are assumed to be correlated, i.e. dtdzzd ρ=*
2

*
1 , λ is the market price 

of risk associated to the convenience yield and r is the risk-free interest rate. 

If we define the state vector as ( )', ttt YX δ=  and after applying the results in section 2, 

it is easy to prove that tX  is normally distributed with a mean and variance given by the 

following expressions6,7: 
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Therefore, )ln( tt SY =  is also Gaussian, under the risk-neutral measure, with mean: 

2**2
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where κλαα /* −= , and variance: 
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Finally, given that the spot price tS  is lognormal, the futures price can be expressed as: 
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6 E*[] and Var*[] are the mean and variance under the risk neutral measure. 
7 Here, in this section, we shall use the formulas in integral form, without resorting to (3) and (4). 
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This is the result already obtained in Schwartz (1997), equation 20, but avoiding 

unnecessary partial differential equations. 

Using the results in section 2, the squared volatility of futures returns can be expressed 

as: 

( ) ( )
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which is the same formula as in Schwartz (1997), equation 40. 

Now let us express the model in its discrete-time version. Following Schwartz’s 

notation the model can be expressed as8:  

ttttt XMcX ψ++= −1  

where:  










−

−+∆−−
=

∆−

∆−

)1(

/)1()2/( 2
1

tk

tk

t
e

ket
c

α
λαασµ

,
( )








 −
=

∆−

∆−

t

t

t
e

e
M

κ

κ κ
0

/11
  (9) 

and the error term vector, denoted as ψt, is a n-vector of serially uncorrelated Gaussian 

disturbances with zero mean and variance given by the following expression: 
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8 Note that these expressions are just the discrete-time counterpart of expressions (8) with tD MA =  and 

tcd =  in our notation. 
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If we perform a Taylor expansion when t∆  tends to zero and drop all terms of order 

higher than one, we get expressions 35 in Schwartz (1997): 
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Therefore, we can conclude that Schwartz (1997) uses a discrete-time version of the 

model which is an approximation to the precise one presented above, which is given by 

expressions (9) and (10). As we will see below, these divergences, specially the more 

accurate estimator of the variance of the residual, [ ]tVarψ , given by expression (10), are 

important in the valuation of commodity contingent claims. 

Next we are going to compare the empirical performance of both estimation procedures, 

i.e. the precise version of the estimates given in this chapter and the approximate 

version in Schwartz (1997), using the same data set as in Schwartz (1997). Specifically, 

the data set is composed of weekly observations of NYMEX WTI crude oil futures 

contracts, with maturity 1, 3, 5, 7, and 9 months, from 1/1/1985 to 02/13/1995. We have 

a total of 529 observations9. WTI futures prices with one month to maturity are depicted 

in Figure 1. 

The results of the estimation of the two factor model by Schwartz obtained with both 

estimation procedures are contained in Table 3. The main differences between the 

results obtained with both procedures are found in the values of κ (the mean-reverting 

parameter), σ2 (the volatility of the convenience yield) and λ (the market price of risk 

associated to the convenience yield). Specifically, the value of κ found with the precise 

version, 1.5433, is considerable lower than the value found with the Schwartz 

approximation, 1.8855. Moreover, the value of λ found with the precise version is also 
                                                 
9 This is one of the data sets used in Schwartz (1997). However in that paper the data set includes 510 
observations, instead of 529. That is the reason why the results presented here for Schwartz 
approximation are not exactly the same as the ones presented in Schwartz (1997).  
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lower than the value found with the Schwartz approximation (0.2181 and 0.2558 

respectively). Finally, the value of σ2 obtained with the precise and approximate 

versions is 0.3967 and 0.4622 respectively. In general looking at the Table we can 

appreciate that all the values found with the approximate version used by Schwartz 

(1997) are higher than the corresponding values found with the precise version. 

Therefore, we can conclude that, at least with this data set, the approximate version by 

Schwartz (1997) tends to overestimate the parameters. 

Figures 2 and 3 present the differences between one month WTI futures prices and the 

spot price calculated with both the precise and the approximated estimates10. 

Specifically, Figure 2 compares the predictive ability of both estimates in terms of the 

mean error (ME), defined as the average of the series of one month futures price minus 

estimated spot prices, whereas in Figure 3 it is used the root mean squared error 

(RMSE).  

In the full sample period, 1985-1995, the precise estimates outperform the 

approximation by Schwartz (1997), using the two metrics. This is also the case in all the 

annual periods considered in the Figures. However, it is interesting to note that the best 

performance of the precise estimates is found in 1985 and 1990, years which are 

characterized by high volatility, as can be appreciated in Figure 1. This fact is not 

surprising since, as pointed out above, one of the main advantage of the precise 

methodology is that it provides a more accurate estimation of the variance of the 

residual, [ ]tVarψ , which is given by expression (10). Finally, it is worth noting that the 

mean error is negative in the whole sample period, implying that both estimates tend to 

                                                 
10 To the best of our knowledge, there is no reliable index which reflects the WTI crude oil spot price. 
Therefore, the best available approximation for it, NYMEX WTI crude oil futures contracts with one 
month to maturity, is used. 
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overestimate spot prices. It is also the case in all the annual periods, except for 1986, 

1993 and 1994. 

Figures 4 and 5 show the differences between one month WTI futures and spot prices 

calculated with both the precise and the approximated estimates, by month. The results 

are similar to those obtained in Figures 2 and 3, i.e. the precise estimates outperform the 

approximation by Schwartz (1997), using the two metrics (mean error and root mean 

squared error), in all months, except for March with the mean error measure. 

Finally, Table 4 compares the improvement11 (expressed in percentage) in the RMSE 

and the standard deviation of one-month futures price, by month. Interestingly, the 

highest improvement in the RMSE is obtained in October and November, which are that 

the months characterized by the highest degree of variance. As pointed out above, this 

result can be related with the fact that one of the main advantages of the precise 

estimation procedure is that it provides a more accurate estimation of the variance of the 

residual, [ ]tVarψ , which is given by expression (10). It should be noted, however, that 

there are also months with no such high variance showing a high improvement in the 

RMSE (January and December). 

 

1.5. SIMPLIFIED DEDUCTION OF THE FUTURES PRICES IN 

THE TWO-FACTOR MODEL BY SCHWARTZ AND SMITH (2000) 

Let us consider the two-factor model in Schwartz and Smith (2000). They assume that 

the spot log-price of a commodity at time t, ln(St), can be decomposed as the sum of a 

short-term deviation, tχ , and the equilibrium price level, tξ : tttS ξχ +=)ln( . 

                                                 
11 Defined as the RMSE computed with the Schwartz approximation minus the RMSE computed with the 
precise version of the estimates. 
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The short-term deviation and the equilibrium level are assumed to follow a mean-

reverting process (toward zero) and a standard Brownian motion respectively, i.e.: 
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Where χdz and ξdz are standard Brownian motions with correlation ρ, i.e. 

dtdzzd ρξχ = , κ represents the rate at which the short-term deviations revert toward 

zero (the mean-reverting coefficient), µξ is the equilibrium total return and σχ and σξ are 

the volatilities of the short-term deviation and the equilibrium level respectively. 

The risk-neutral version of their model is given by the following SDE: 
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Where *
χdz and *

ξdz  are again standard Brownian motions with correlation ρ, i.e. 

dtdzzd ρξχ = , ξξξ λµµ −=* , and χλ  and ξλ  are the market prices of risk associated 

to the short-term deviation and the equilibrium level respectively. 

Defining the state vector as ( )', tttX ξχ= , the model can be expressed as12: 
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where R is the Choleski decomposition of the noise covariance matrix13:   











2

2

ξξχ

ξχχ

σσρσ
σρσσ

 

                                                 
12 See Appendix B. 
13Note again that R does not need to be calculated as 'RR is the noise covariance matrix. 
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Now, we will use expressions (3) and (4). Note that, as A is diagonal, IP =  so we can 

safely drop P  and 1−P  from all expressions. 

It is easy to see that (note that, in order to comply with Schwartz and Smith’s notation, 
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Now, the mean and variance of Xt are:  
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In this model, the log of spot price, Yt = ln(St), is given by tt ξχ + . Thus, ln(St) is a 

Gaussian variable with mean: 

kete ktt /)1(*
00 χξ

κ λµξχ −− −−++  

 and variance: 

( ) ( ) tee tt 222 /122/1 ξξχ
κ

χ
κ σκσρσκσ +−+− −− . 

Finally, the spot price, tS , is lognormal distributed, and, therefore, the futures price can 

be written as: 
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We have obtained the same result as in Schwarz and Smith (2000), Equation 9, but in a 

simpler way, avoiding unnecessary limit steps. 

 

1.6. CONCLUSIONS 

The stochastic behaviour of commodity prices has been a common topic of research 

during the last years. However, the application of the standard Black-Scholes analysis is 

not straightforward, due to the complex dynamics of commodity prices. This is the 

reason why most of these studies present ad-hoc solutions, which are very complex and 

sometimes include approximations.  

This article shows how to simplify formulae and deductions, and even compute an 

explicit matrix general formula, using well known techniques and results in stochastic 
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calculus. This formula has been tested on real data and is a real alternative to 

programming each model separately.  

Concretely, we show how to obtain more precise estimators of the parameters in the 

Schwartz (1997) two-factor model context, than the approximations given by the author. 

It is found that, in general, the approximations by Schwartz tend to overestimate the 

parameters. These divergences are important in the valuation of commodity contingent 

claims. Moreover, we have shown how to obtain the expression for the futures price 

given by Schwartz and Smith (2000) in a simpler way, avoiding unnecessary limit steps.  
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APPENDIX A: MATHEMATICAL REFERENCE RESULTS 

In order to understand the results, it is necessary to introduce some mathematical 

preliminaries. All the concepts and formulae here shall be presented in an intuitive way, 

stressing the practical implementation. 

First of all, we remind the reader some well known concepts. For an extensive review of 

matrix algebra and matrix derivatives, we recommend Magnus and Neudecker (1999). 

• The derivative and integral of a time-dependent matrix (which we shall denote ( )tA  

or tA  indistinctly) are given element by element:  
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. 

Indefinite integrals ∫ dtAt  are defined in the same way. Linear properties, such 

as ( ) tt A
dt

d
BBA

dt

d
= , are easy to prove and shall be used without explicitly 

mentioning them. 

• The matrix exponential of a diagonalizable matrix 1−= PDPA  with D diagonal is: 

( )
( )

( )

1

1

exp......
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00exp
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


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









= P

d

d
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n

. It is not hard to see the equality 

( ) ( )AtAAt
dt

d
expexp =  

• Given two matrices mxnpxq BA ℜ∈ℜ∈ ,  their Kronecker product is a pm x qn matrix 

defined as: 





















=⊗

BaBaBa

BaBaBa

BaBaBa

BA

pqpp

q

q

...

............

...

...

21

22221

11211

. 



 33

• The vec operator is defined as: 
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• Integrals with a single product: We shall calculate ( )∫
s

r
dtHAtexp  where H is an 

arbitrary constant matrix. Let 1

1

1

0

00 −−








== P

D
PPDPA  with D diagonal and 1D  

non-singular. The previous integral is therefore easily computed explicitly as: 
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• Integrals with double product: We shall calculate ( ) ( )∫
s

r
dtVAtHAtU

'expexp , where 

U, H, V are arbitrary constant matrices. As before: 

1

1

1

0
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




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s
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s

r

''11' exp'expexpexp 




= ∫∫ −−   so we shall 

focus on the middle part. Using the vec operator: 
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                                          The 

only thing left is to compute the central integral. However, if D is diagonal, let 
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. The Kronecker 

product is thus given by: ( ) ( )
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eigenvalue is exactly the opposite of another eigenvalue the integral is given by 
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two eingenvalues are one the opposite of the other, matters are not much more 

difficult. Let 
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 including all zero and nonzero eigenvalues. If 

we just let jiij µµγ +=  and substitute in the formula, we have 
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 and its integral is:  
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• Note that the expression ( ) ( ) ( )( )












 ⊗ −−− ∫

'111 expexp PHPvecdtDtDtvec
s

r
can be 

done in a different way, using the Hadamard product instead of the Kronecker one 

and thus avoiding the use of diagonal matrices. To do so, remember that the 

Hadamard product of A  and B  denoted BA • is defined each element at a time: 

( ) ijijij BABA =• . If we just define ( ) ( ) 




 ⊗= ∫− s

r
dtDtDtvecZ expexp1  or 

equivalently ∫=
s

r

t

ij dteZ ijγ
, then it is easy to notice, just by substitution, that  

( ) ( ) ( )( )












 ⊗ −−− ∫

'111 expexp PHPvecdtDtDtvec
s

r
 equals ( )'11 −− PHZP . The reader 

should note, however, that due to the fact that our Kronecker product is diagonal, it 

does not have to be stored in full, so an efficient implementation of the algorithm 

will use only the diagonal 

All operations are easily implemented in any mathematically adapted computer 

language such as Matlab. 
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APPENDIX B: FUTURES CONTRACT VALUATION 

Most of the models proposed in the literature assume that the risk-neutral dynamics of a 

commodity price (or its log) is given by a linear stochastic differential system: 

( )




=

++=

tt

ttt

cXY

RdWdtAXbdX
 

where tY  is the commodity price (or its log), b, A, R and c are deterministic 

parameters14 independent of t ( nnxnn cRAb ℜ∈ℜ∈ℜ∈ ,,, ) and Wt is a n-dimensional 

canonical Brownian motion (i.e. all components uncorrelated and its variance equal to 

unity) under the risk-neutral measure. 

Let us see that the solution of that problem is15: 





 ++= ∫∫ −−

s

t
sA

t
sAtA

t RdWebdseXeX
000         (B1)     

In order to proof it, we shall apply the general rule for the derivation of the product of 

stochastic components (Oksendal, 1992): 
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It is easy to show that: 

t

AtAt
t t

s

AsAs RdWebdteRdWebdseXd −−−− +=



 ++ ∫ ∫0 00  

The first differential only has elements of type dt, hence the product of the first 

differential times the second differential is zero. 

Thus:  

                                                 
14 Again note that R does not need to be computed. 

15 Even in the case that b, A and R were function of t, if At and dsA
t

s∫0 commute, the solution of that 

problem is (B1). 
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[ ] tttt

AtAtAt
t t

s
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t RdWbdtdtXARdWebdteeRdWebdseXdtAedX ++=++



 ++= −−−−∫ ∫0 00

Consequently we obtain expression (B1): 


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
 ++= ∫∫ −−

s

t
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t
sAtA

t RdWebdseXeX
000 .               

It is easy to prove that the solution is unique (Oksendal, 1992). 

An elementary rule of the stochastic calculus states that if Js is a deterministic function, 

∫
t

ss dWJ
0

 is normally distributed with mean zero and variance:  

∫∫ =




 t T

ss

t

ss dsJJdWJVar
00

 (Itô´s isometry). 

Accordingly, Xt is normally distributed with mean and variance16:  
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sAtA
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


= ∫ −−    (B3)     

       

Therefore, tY , under the risk-neutral measure, is also Gaussian and it easily follows that 

its mean and variance are: [ ] [ ] [ ] [ ] ', **** cXcVarYVarXcEYE tttt == , providing a 

valuation scheme for all sorts of commodity contingent claims as financial derivatives 

on commodity prices, real options, investment decisions and other more. 

If Yt is the log of the commodity price (St), the price of a futures contract traded at time t 

with maturity at time t+T, Ft,T, can be computed as:  

[ ] [ ] [ ]






 +== +++ tTttTttTtTt IYVarIYEISEF ***

, 2

1
exp   (B4) 

where It is the information available at time t.     

                                                 
16 E*[] and Var*[] are the mean and variance under the risk neutral measure. 
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This methodology can be used in all kind of problems (even if b, A and R are functions 

of t, although, in this case the explicit formulae for the integrals, given in appendix A, 

do not apply). Moreover, this methodology is much simpler than the ad-hoc solutions 

presented in the literature that can only be used in the concrete problem for which they 

were developed and need complex procedures like limit steps (Schwartz and Smith, 

2000) or partial differential equations (Schwartz, 1997). 
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APPENDIX C: VOLATILITY OF FUTURES RETURNS 

The squared volatility of a futures contract traded at time t with maturity at time t+T is 

defined as17: 

[ ]
h

FFVar TtTht

h

,,

0

loglog
lim

−+

→
. 

We will prove that it is the expected value of the square of the coefficient of the 

Brownian motion (σt) in the expression ( ) F

tttTt dWdsFd σµ +=,log , where Wt
F is a 

scalar canonical Brownian motion, as long as tµ  is mean squared bounded in an 

interval containing t  (it does not matter whether it is a function of TtF ,  or not) and 

[ ]2
tE σ  is continuous in t 18.  

Expressing tttTt dWdtFd σµ +=,log  in the equivalent integral form: 
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Using standard properties: 
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as tµ  is non-anticipating. 
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17 The same results are going to be obtained if the volatility is defined as: 
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18 In the general problem of this article these conditions are satisfied. 
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Taking limits and using the mean value theorem of the integral calculus: 
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For the other term it can be seen that: 
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As for some δ >0, µt is mean squared bounded in the interval (t-δ, t+δ), when 0→h , 

this integral is less or equal than [ ] ( ){ }δδµµ +−∈− ttsEh ss ,:sup
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 which converges to 0 when .0→h  

Therefore: 
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Hence, taking logarithms and differentials on both sides of Equation (B4), it follows 

that: 

( ) [ ] t

AT

t

AT

t

AT

Tt dWRcedtAXbcedXceFd ++==,log  

Therefore, the squared volatility is19:  

''' ceRRce ATAT . 

 

 

                                                 
19 Again note that R needs not to be computed as 'RR is the noise covariance matrix. 
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TABLES AND FIGURES 

TABLE 1 

TIME (MILISECONDS) NEEDED FOR AN EVALUATION OF THE LOG-

LIKELIHOOD FUNCTION 

Integral stands for using a symbolic processor to compute the integral each step. General means using the 

same script (formulae (3) and (4) in matrix form) for all models and Particular means writing down the 

formulae for each case. 

 

Data Brent Heating oil WTI 

Factors 2 3 2 3 2 3 
Integral 2785.00 7881.34 3316.16 14774.04 5404.36 3916.64 
General 61.48 64.28 55.48 56.08 75.52 89.12 

Particular 47.08 49.88 33.06 34.64 57.48 70.10 

 

 

TABLE 2 

TIME (SECONDS) FOR A FULL ESTIMATION OF A MODEL 

 

General means using the same script (formulae (3) and (4) in matrix form) for all models and Particular 

means writing down the formulae for each case. Integrating symbolically each step would be 

computationally burdensome. 

 

Data Brent Heating oil WTI 

Factors 2 3 2 3 2 3 
General 74.10 250.02 59.39 180.23 91.70 210.33 

Particular 60.26 220.97 39.31 128.06 69.53 234.42 
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FIGURE 1 

WTI FUTURES PRICE WITH ONE MONTH TO MATURITY 
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TABLE 3 

THE TWO-FACTOR MODEL BY SCHWARTZ (1997). PRECISE AND 

APPROXIMATE ESTIMATES 

The Table shows the parameter estimates obtained with the Schwartz (1997) approximation and with the 

precise method described in this chapter. Standard errors in parenthesis. 

 

Parameter Precise Method 
Schwartz 

Approximation 

µ 0.1629 
 (0.0725) 

0.1678 
 (0.0732) 

k 1.5433 
 (0.0318) 

1.8855 
 (0.0356) 

α 
0.1458 
 (0.0558) 

0.1496 
 (0.0545) 

σ1 
0.3278 
 (0.0073) 

0.3293 
 (0.0072) 

σ2 
0.3967 
 (0.0113) 

0.4622 
 (0.0119) 

ρ 0.8073 
 (0.0104) 

0.8084 
 (0.0107) 

λ 0.2181 
 (0.0864) 

0.2558 
 (0.1029) 
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FIGURE 2 

MEAN ERROR BY YEAR 

The Figure shows the differences (mean error) between the one month futures price and the spot price 

calculated with precise and approximated estimates, by year. 
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FIGURE 3 

ROOT MEAN SQUARED ERROR BY YEAR 

 

The Figure shows the differences (root mean squared error) between the one month futures price and the 

spot price calculated with precise and approximated estimates, by year. 
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FIGURE 4 

MEAN ERROR BY MONTH 

The Figure shows the differences (mean error) between the one month futures price and the spot price 

calculated with both precise and approximated estimates, by month. 
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FIGURE 5 

ROOT MEAN SQUARED ERROR BY MONTH 

The Figure shows the differences (root mean squared error) between the one month futures price and the 

spot price calculated with both precise and approximated estimates, by month. 
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TABLE 4 

COMPARISON OF THE IMPROVEMENT IN THE RMSE AND ONE-MONTH 

FUTURES PRICE STANDAR DEVIATION BY MONTH 

 

The Table shows the improvement (expressed in percentage) in the RMSE, defined as the RMSE 

computed with the Schwartz approximation minus the RMSE computed with the precise version of the 

estimates, and one-month futures price standard deviation, by month. 

 

 Improvement RMSE (%) Volatility 
All Months 6.06341562 4.5066963 

January 6.69700526 3.45920263 
February 2.90069147 3.43375304 

March 2.86456161 3.9271667 
April 3.82981177 3.88082312 
May 3.20130602 3.37948674 
June 4.20386706 3.61776438 
July 4.02239618 4.05271984 

August 3.25451898 4.14305907 
September 3.37241986 4.25738991 

October 11.0467666 6.73405967 
November 8.73584998 5.73730612 
December 7.36128089 4.18504435 

 



 48

CHAPTER 2: COMMODITY DERIVATIVES VALUATION 

UNDER A FACTOR MODEL WITH TIME-VARYING RISK 

PREMIA 

2.1 INTRODUCTION 

In equity markets, the market price of risk is the excess return over the risk-free rate per 

unit standard deviation ( )σµ )( r−  that investors want as compensation for taking risk, 

which is also called the Sharpe ratio. This ratio plays an important role in derivatives 

valuation. If the underlying asset is a traded asset, it is possible to build a risk-free 

portfolio by buying the derivative and selling the underlying asset or vice versa. 

Consequently, the market price of risk does not appear in the derivatives valuation 

model.  

However, if the underlying asset is not a traded asset, there is no way of building a 

riskless portfolio by buying the derivative and selling the underlying asset or vice versa; 

therefore, we must know how much return is needed to compensate the unhedgeable 

risk. This is why the market price of risk must be estimated to obtain a theoretical value 

for the derivative asset. 

In commodity markets, the market price of risk has a slightly different definition. As 

noted by Kolos and Ronn (2008), equities require a costly investment and, 

consequently, return the risk-free rate under the risk-neutral measure. In the case of 

commodities, it should be noted that sometimes there is a storage cost associated with 

storing the commodity and also a convenience yield associated with holding the 

commodity rather than the derivative asset. Nevertheless, futures contracts are costless 

to enter into; therefore, their risk-neutral drift is zero. Thus, the market price of risk in 

commodity markets is defined as the ratio of the asset return to its standard 



 49

deviation ( )σµ . Additionally, whereas the market price of risk must be positive in 

equity markets, it can be negative in commodity markets. 

There have been several papers that have analyzed the properties of market prices of 

risk in commodity markets and their relation with other variables. Fama and French 

(1987 and 1988) note the importance of allowing for time-varying risk premia as 

negative correlations between spot prices and risk premia can generate mean reversion 

in spot prices. Bessembinder (1992) shows that market prices of risk in financial and 

commodity markets are related to the covariance of the market portfolio and the futures 

returns. Routledge et al. (2001) and Bessembinder and Lemmon (2002) relate market 

prices of risk to several measures of uncertainty, such as price volatility, spikes and 

uncertainty in demand. Moosa and Al-Loughani (1994), Sardosky (2002) and Jalali-

Naini and Kazemi-Manesh (2006) find evidence of variable risk premia in oil markets 

using GARCH models. 

 More recently, Kolos and Ronnn (2008) estimate the market prices of risk for energy 

commodities, finding positive long-term and negative short-term market prices of risk. 

Lucia and Torro (2008) find that risk premia in the Nordic Power Exchange (Nord Pool) 

vary seasonally over the year and are related to unexpected low reservoir levels. 

There have also been several papers that have analyzed the importance of allowing for 

time-varying risk premia from the point of view of asset valuation. Following the ideas 

in Fama (1984) and Fama and Bliss (1987), Duffee (2002) and Dai and Singleton 

(2002) propose interest rate models where risk premia are linear functions of the state 

variables. Casassus and Collin-Dufresne (2005) propose and estimate a three-factor 

model for commodity spot prices, convenience yields and interest rates where 

convenience yields depend on spot prices and interest rates, and time-varying (state 

depending) risk premia using a maximum likelihood method. They also test the 
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importance of the dependence of convenience yields on spot prices and of interest rates 

on the valuation of a set of theoretical commodity European call options. However, they 

do not test the importance of time-varying risk premia on the valuation of commodity 

derivatives.  

In this chapter, we extend these ideas by proposing and estimating a commodity 

derivative valuation model with time-varying risk premia. Time series of market prices 

of risk for energy commodities (crude oil, heating oil, gasoline and natural gas) are 

estimated under the most widely used model for commodity derivatives valuation, 

which is the Schwartz and Smith (2000) model, using the Kalman filter method on a 

moving windows basis. The results show that market prices of risk vary through time 

accordingly with several macroeconomic variables related to the business cycle, such as 

crude oil prices, NAPM (National Association of Purchasing Managers) and S&P 500 

indices. These results constitute preliminary evidence that the risk compensation that 

investors want in a commodity derivative contract varies as market conditions change.  

Based on these results, a factor model with market prices of risk depending on the 

business cycle (proxied by the underlying asset short- and long-term factors) using the 

Kalman filter method is proposed and estimated20. The proposed model with time-

varying risk premia is also maximal, in accordance with Dai and Singleton (2000). The 

valuation results obtained with an extensive sample of commodity American options, 

traded on the NYMEX, show that the proposed model with time-varying risk premia 

outperforms standard models with constant risk premia. These results confirm the 

previous findings shown in the literature of non-constant market prices of risk. 

Moreover, in the present chapter, it is found that allowing for variable market prices of 

risk has an important effect in commodity derivative valuation. To the best of our 

                                                 
20 Contrary to previous papers, such as Casassus and Collin-Dufresne (2005), who use a maximum 
likelihood method, in the present chapter, the estimation is carried out using the Kalman Filter method, 
which employs all the information available in the forward curve of commodity futures prices. 
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knowledge, this is the first time that a model with time-varying (state depending) risk 

premia is applied to the valuation of exchange-traded commodity derivatives. 

The remainder of this chapter is organized as follows. Section 2 presents the data sets 

used in the chapter. Some preliminary findings regarding the market prices of risk 

estimation using the maximum-likelihood method proposed by Kolos and Ronn (2008) 

and the Kalman filter method, and their relation to the business cycle are presented in 

Section 3. The factor model with time-varying business cycle related market prices of 

risk is proposed and estimated in Section 4. Section 5 presents the option valuation 

results obtained with the models with time-varying and constant market prices of risk. 

Finally, Section 6 concludes with a summary and discussion.   

 

2.2 DATA 

In this section, we briefly describe the data that will be used in this and the following 

sections. The data set used in this chapter consists of weekly observations of WTI (light 

sweet) crude oil, heating oil, unleaded gasoline (RBOB) and natural gas (Henry Hub) 

futures prices traded on the NYMEX, as well as a set of exogenous variables related to 

the business cycle. 

Currently, there are futures being traded on NYMEX for WTI crude oil with maturities 

of one month to seven years, for heating oil from one month to eighteen months, for 

gasoline from one month to twelve months and for Henry Hub natural gas from one 

month to six years. However, there is not enough liquidity for the futures with longer 

maturities, especially in the case of gasoline. Therefore, in the cases of WTI crude oil 

and heating oil, our data set is comprised of futures prices from one to eighteen months 

(1,338 weekly observations) between 1/1/1985 and 8/16/2010. In the case of RBOB 

gasoline, the data set is comprised of futures prices from one to nine months (1,338 
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weekly observations) between 1/1/1985 and 8/16/2010. Finally, in the case of Henry 

Hub natural gas, the data set is comprised of futures prices from one to eighteen months 

(1,064 weekly observations) between 4/2/1990 and 8/16/2010. The main descriptive 

statistics of these variables are contained in Table 1. 

To asses the robustness of the results, two different data sets have been employed for 

each commodity. The first set contains more windows but fewer futures contracts, while 

the second set contains fewer windows but more futures contracts. 

In the case of WTI crude oil, the first data set is comprised of contracts F1, F3, F5, F7 

and F9 from 1/1/1985 to 8/16/2010, with 180 windows, yielding a time series of 180 

market prices of risk. F1 is the contract for the month closest to maturity, F2 is the 

contract for the second-closest month to maturity, and so on. The second data set for 

WTI crude oil is comprised of contracts F1, F4, F7, F11, F15 and F18 from 9/9/1996 to 

8/16/2010, with 82 windows, yielding a time series of 82 market prices of risk. 

In the case of heating oil, the first data set is comprised of contracts F1, F3, F6, F8 and 

F10 from 10/14/1985 to 8/16/2010, with 177 windows, yielding a time series of 177 

market prices of risk. The second data set for heating oil is comprised of contracts F1, 

F4, F8, F11, F15 and F18 from 9/9/1996 to 8/16/2010, with 82 windows, yielding a 

time series of 82 market prices of risk. 

In the case of RBOB gasoline, the first data set is comprised of contracts F1, F3, F4, F5 

and F7 from 4/29/1985 to 8/16/2010, with 181 windows, yielding a time series of 181 

market prices of risk. The second data set for heating oil is comprised of contracts F1, 

F3, F5, F7 and F9 from 7/17/1995 to 8/16/2010, with 92 windows, yielding a time series 

of 92 market prices of risk. 

Finally, in the case of Henry Hub natural gas, the first data set is comprised of contracts 

F1, F4, F6, F9 and F11 from 4/16/1990 to 8/16/2010, with 135 windows, yielding a 
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time series of 135 market prices of risk. The second data set for Henry Hub natural gas 

prices is comprised of contracts F1, F4, F8, F12, F15, F18, F22, F26, F29, F31 and F35 

from 5/28/1997 to 8/16/2010, with 76 windows, yielding a time series of 76 market 

prices of risk. 

The set of business cycle-related variables is composed of weekly observations from 

1/1/1985 to 8/16/2010 of WTI one month futures prices and S&P 500 index prices, as 

well as monthly observations of the NAPM (National Association of Purchasing 

Managers) index and the indicator of the expansion of the economy, which takes the 

value 1 (0) if the NAPM index is above (below) 50. 

  

2.3 PRELIMINARY FINDINGS 

In this section, we present some preliminary findings regarding the time series evolution 

of market prices of risk for crude oil, heating oil, gasoline and natural gas, as well as the 

market prices of risk relationship with the business cycle, using the maximum 

likelihood method proposed by Kolos and Ronn (2008) and the Kalman filter method. 

 

Market prices of risk estimation using the maximum-likelihood method 

Kolos and Ronn (2008) obtain short- and long-term estimates of the market price of risk 

for several energy commodities assuming the two-factor model by Schwartz and Smith 

(2000). In this model, the log-spot price (Xt) is assumed to be the sum of two stochastic 

factors, a short-term deviation (χt) and a long-term equilibrium price level (ξt). Thus, 

                                                        tttX χξ +=                                                      (1) 

The stochastic differential equations (SDEs) for these factors are as follows: 
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where dWξt and dWχt can be correlated (dWξtdWχt = ρξχdt) and with ρξχ representing the 

coefficient of correlation between long- and short-term factors.  

To value derivative contracts, we must rely on the “risk-neutral” version of the model. 

The SDEs for the factors under the equivalent martingale measure can be expressed as: 
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+−=

∗

∗

ttt

tt
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χχχ
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                                      (3) 

where λξ and λχ are the market prices of risk for the long- and short-term factors, 

respectively, and ∗
tWξ  and ∗

tWχ  are the factor Brownian motions under the equivalent 

martingale measure. 

Schwartz and Smith (2000) and Kolos and Ronn (2008) obtain the SDE for forward 

contracts (under the historical measure): 

( ) tt

t

t dWdWedte
F

dF
ξξχχ
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κτ σσσλσλ +++= −−                    (4) 

Discretizing equation (4) and applying Ito’s Lemma, it is possible to obtain the log-

likelihood function, which is (after omitting unessential constants):21 
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Maximum likelihood estimates of short- and long-term market prices of risk (λχ and λξ, 

respectively), together with the rest of the model parameters, can be obtained by 

maximizing this log-likelihood function. 

                                                 
21 See Kolos and Ronn (2008) for the details. 
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In this chapter, the maximization of the log-likelihood function has been performed 

subsequently over moving windows of 240 weeks, using weekly observations of one 

month futures prices for WTI crude oil, heating oil, RBOB gasoline and Henry Hub 

natural gas. In this way, we obtain time series of market prices of risk for the four 

commodity series (180 observations in the case of WTI crude oil, heating oil and RBOB 

gasoline, and 134 observations in the case of Henry Hub natural gas).  

In Figure 1, we plot the time series evolution of the estimated market prices of risk in 

the case of WTI crude oil22. The estimated series show high volatility, which is 

consistent with the results found by Kolos and Ronn (2008).  

The results regarding the coefficients of correlation among the estimated market prices 

of risk and the business cycle-related variables described above are shown in Table 2. 

The correlations between short- and long-term risk premia are negative in all cases, 

although significant only in the case of Henry Hub natural gas.   

Positive and significant correlations are found among market prices of risk and WTI one 

month futures prices23, except for the long-term risk premium for RBOB gasoline and 

long- and short-term risk premia for Henry Hub natural gas. 

Moreover, positive and significant correlations among market prices of risk and 

S&P500 (and its one week lag) are found, except for the long-term one in the case of 

RBOB gasoline and long- and short-term ones in the case of Henry Hub natural gas. In 

the case of the NAPM index (and its one month lag), positive and significant 

correlations with short-term market prices of risk for all four commodities and with 

long-term one in the case of WTI are also found, although the magnitude of the 

correlation is lower than the magnitude in the S&P500 case (except for the Henry Hub 

                                                 
22 For the sake of brevity, only the plot of market prices of risk estimated with WTI crude oil are 
presented here. The plots for the other three commodities show a very similar pattern. 
23 WTI one month futures prices are calculated as the mean of the futures price during the window used to 
estimate the market price of risk. 
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natural gas). Finally, evidence of correlation among market prices of risk and the 

expansion indicator of the economy has not been found. In fact, as can be evidenced in 

Figure 1, market prices of risk seem to show a “noise pattern” that is not clear and that 

is not directly associated with market conditions. 

In summary, the preliminary analysis performed with the Kolos and Ronn (2008) 

maximum likelihood method shows evidence of some linear relationship mostly among 

short-term market risk premia and business cycle-related variables, such as S&P 500 

and NAPM indices. As will be discussed herein, the maximum likelihood method used 

by Kolos and Ronn (2008) and Casassus and Collin-Dufresne (2005) presents some 

disadvantages when compared to the Kalman filter method used in the next section.  

 

Market Prices of Risk Estimation using the Kalman Filter Method 

The Kalman filter method is, theoretically, superior to the maximum likelihood method 

for several reasons. First, the Kalman filter method estimates all of the dynamic of the 

underlying asset, whereas the maximum likelihood method only uses market prices of 

futures contracts without taking into account the dynamics of the common underlying 

asset. Second, with the Kalman filter method, we are able to use more futures contracts 

(more maturities), which will result in more stable estimates of the parameters than 

those obtained with the maximum likelihood method, such as in Kolos and Ronn (2008) 

and Casassus and Collin-Dufresne (2005). 

As stated in Section 3.1 and in the context of the Schwartz and Smith (2000) two-factor 

model, the log spot price (Xt) is assumed to be the sum of two stochastic factors, a short-

term deviation (χt) and a long-term equilibrium price level (ξt). Moreover, in the cases 

of commodities, such as natural gas, heating oil and gasoline, a deterministic seasonal 
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component is added, as suggested by Sorensen (2002)24. Therefore, the log spot price 

for heating oil, gasoline and natural gas (Xt) is assumed to be the sum of two stochastic 

factors (χt and ξt) and a deterministic seasonal trigonometric component (αt), 

ttttX αχξ ++= . The SDEs for tξ  and tχ are given by expressions (2) and: 

      
dtd

dtd

tt

tt

πϕαα

πϕαα

2

2

*

*

−=

=
                   (6) 

where αt
* is the other seasonal factor, which complements αt, and ϕ is the seasonal 

period.  

The SDEs for the long- and short- term factors under the equivalent martingale measure 

are given by expressions (3). 

As stated in previous studies, one of the main difficulties in estimating the parameters of 

the two-factor model is that the short- and long-term factors (or state variables) are not 

directly observable. Instead, they must be estimated from spot and/or futures prices25.  

The formal method to estimate the model is to use the Kalman filter methodology, 

which is briefly described in the Appendix26. The Kalman filter method has been 

subsequently performed over moving windows of 240 weeks, using weekly 

observations of futures prices for WTI crude oil, heating oil, RBOB gasoline and Henry 

Hub natural gas27. Two different data sets (defined in Section 2) have been employed 

for each commodity. The first set contains more windows but fewer futures contracts, 

while the second set contains fewer windows but more futures contracts. 

                                                 
24 Sorensen (2002) suggests introducing into the model a deterministic seasonal component for 
agricultural commodities. Here, we use Sorensen’s proposal for heating oil, gasoline and natural gas, 
which present a strong seasonal behavior (see, for example, Garcia et al., 2011a). 
25 The exact expression for the futures price under the Schwartz and Smith (2000) two-factor model with 
seasonal factors can be found in Garcia et al. (2011a). 
26 Detailed accounts for Kalman filtering are given in Harvey (1989) and Puthenpura et al. (1995). 
27 Details about implementing the Kalman filter in Matlab can be found in Date and Bang (2009). 
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In Figure 2, we plot the time series evolution of the estimated market prices of risk in 

the case of WTI crude oil with the first data set, together with several business cycle- 

related variables28. Looking at the time-evolution of the estimated risk premia, it is clear 

that we obtain more stable estimates with the Kalman filter method than those obtained 

with the maximum likelihood method. The results show a negative relationship between 

long- and short-term market risk premia. Moreover, a positive (negative) relationship 

between the long- (short-) term market price of risk and the average price of one month 

WTI futures is found, suggesting that the long- (short-) term risk compensation that 

investors want to enter in a commodity derivative is positively (negatively) related to 

crude oil prices29. This finding suggests that when crude oil prices are high, the risk 

associated with the long-term factor (which is the factor that does not disappear with 

time) tends to not be diversifiable. Moreover, the volatility of one month WTI futures 

prices is negatively (positively) related to the long- (short-) term market price of risk. 

Concerning the estimated market prices of risk p-values, it is found that risk premia are 

significant (and therefore not diversifiable) during expansion periods or when crude oil 

prices rise, whereas they are not significant in contraction periods or when crude oil 

prices decrease, although the pattern is somewhat clearer in the case of the long-term 

market risk premium, which confirms that the crude oil risk is not diversifiable when 

crude oil price is high enough. If we consider the relationship between the average long- 

and short-term factors and the estimated market prices of risk, we find that long-term 

(short-term) market prices of risk are positively (negatively) related to both long- and 

short-term factors. Moreover, the estimated market price of risk seems to be positively 

related to its respective (long- or short-term) factor standard deviation. 

                                                 
28 As before, for the sake of brevity, only the plot of market prices of risk estimated with WTI crude oil 
are presented here. The plots for the other three commodities show a very similar pattern. 
29 As in the previous section, the futures prices average is the mean of the futures price during the window 
used to estimate the market price of risk. 
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Finally, a positive (negative) relationship is found between the estimated long-term 

(short-term) market price of risk and the average NAPM index, the average S&P 500 

index and the indicator of expansion30, suggesting that the risk associated with the long-

term factor tends to not be diversifiable during expansion periods. 

The results regarding the coefficients of correlation among the estimated market prices 

of risk and the business cycle related variables described above are shown in Tables 3 

for WTI crude oil, 4 for heating oil, 5 for RBOB gasoline and 6 for Henry Hub natural 

gas. The results confirm the graphical analysis of Figure 2. The relationship between the 

long- and short-term market prices of risk is found to be negative and significant in the 

case of WTI crude oil (Table 3) and positive and significant in the cases of heating oil 

(Table 4), RBOB gasoline (Table 5) and Henry Hub natural gas (Table 6).  

It is also interesting to observe the positive and significant relationship found between 

the long-term market price of risk and WTI futures prices for WTI crude oil, heating oil 

and RBOB gasoline (the relationship is less clear in the case of Henry Hub natural gas). 

This result suggests, once again, that the long-term compensation that investors require 

to enter into a commodity contract rises as WTI futures prices rise31. 

Rather ambiguous relationships are found among the market prices of risk and the 

volatility of one month WTI futures price, the model volatility and the maximum 

likelihood, and the NAPM and S&P500 (and their lags) indices. 

However, the most obvious relationship is the one found among the estimated market 

prices of risk and the underlying long- and short-term factors, although the relationship 

is less clear in the case of Henry Hub natural gas prices. Less clear is the relationship 

                                                 
30 The indicator of the expansion of the economy takes the value 1 (0) if the NAPM index is above 
(below) 50. 
31 Cortazar, Milla and Severino (2008) and García, Población and Serna (2011b) show that crude oil and 
its main refined products (heating oil and gasoline) share common long-term dynamics. Therefore, it is 
not surprising that the long-term compensations associated with crude oil, heating oil and gasoline are 
(positively) related to WTI futures prices. 
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among the market prices of risk and the volatility of the underlying long- and short-term 

factors. 

These findings confirm our previous assumption that the risk compensation that 

investors want to enter into a commodity derivative contract varies as market conditions 

change. Specifically, it is quite interesting to observe how the market prices of risk vary 

according to the underlying long- and short-term factors. Therefore, it seems natural to 

propose a factor model with market prices of risk depending on the business cycle, 

proxied by the underlying long- and short-term factors, along the lines suggested by 

Casassus and Collin-Dufresne (2005), although here we use the Kalman filter method 

instead of the maximum likelihood method. 

 

2.4 A FACTOR MODEL WITH TIME-VARYING MARKET 

PRICES OF RISK DEPENDING ON THE BUSINESS CYCLE 

Based on the previous results, in this section, a factor model with time-varying market 

prices of risk depending on the business cycle is proposed and estimated. The proxy for 

the business cycle will be the Schwartz and Smith (2000) long- and short-term factors, 

ξt and χt, respectively. These two factors are found to be the business cycle related 

variables with higher coefficients of correlation with the estimated market prices of risk. 

The model with time-varying risk premia will be an extension of the two-factor model 

described in Section 3, where the log spot price for heating oil, gasoline and natural gas 

(Xt) is assumed to be the sum of two stochastic factors (χt and ξt) and a deterministic 

seasonal trigonometric component (αt), ttttX αχξ ++=  ( tttX χξ +=  for crude oil), 

where αt is defined in expressions (6).  The SDEs for the long- and short- term factors 

under the equivalent martingale measure, with time-varying risk premia, can be 

expressed as: 
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where, as before, ∗
tWξ  and ∗

tWχ  are the factor Brownian motions under the equivalent 

martingale measure, and λξt and λχt are time-varying market prices of risk for the long- 

and short-term factors, respectively.  

Following Duffee (2002), Dai and Singleton (2002) and Casassus and Collin-Dufresne 

(2005), the market prices of risk are expressed as linear functions of the underlying 

long- and short-term factors: 
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The parameters of the model are estimated, as in Section 3.2, using the Kalman filter 

method rather than the maximum likelihood procedure used by Casassus and Collin-

Dufresne (2005). The results of the estimation of this factor model with time-varying 

market risk premia, together with the results of the standard two-factor Schwartz and 

Smith (2000) model with constant risk premia for the four commodity series using both 

the first and the second data sets described in Section 2 are shown in Table 7 (WTI 

crude oil), Table 8 (heating oil), Table 9 (RBOB gasoline) and Table 10 (Henry Hub 

natural gas). 

The results in Tables 7, 8, 9 and 10 confirm the presence of the mean reversion effect, 

typically observed in commodity markets (parameter κ is significant in all cases). 

Moreover, as expected, both long- and short-term factors are found to be stochastic 

(their corresponding standard deviations, σξ and σχ, respectively, are significant), 

although the short-term standard deviation is found to be higher than the corresponding 

long-term standard deviation, suggesting that short-term effects have a higher impact on 
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spot prices than long-term effects32. However, as explained above, it must be kept in 

mind that short-term effects tend to disappear with time (the short-term process is 

stationary), whereas long-term effects do not disappear with time (the long-term process 

is integrated). 

However, the most important issue in Tables 7, 8, 9 and 10 from the point of view of the 

goal of this chapter, is that the parameters associated with the market prices of risk (λξ0, 

λξ1, λξ2, λχ0, λχ1 and λχ2) are significant in most of the cases, confirming that risk 

premia vary through time depending on the economic conditions (proxied in this 

chapter by the model long- and short-term factors). 

If we define the Schwartz information criterion (SIC) as )ln()ln( TqLML − , where q is 

the number of estimated parameters, T is the number of observations and LML is the 

value of the likelihood function using the q estimated parameters, then the fit is better 

when the SIC is higher. The same conclusions are obtained with the Akaike information 

criterion (AIC), which is defined as qLML 2)ln( − . It is worth noting that in Tables 7, 8, 

9 and 10, the values of the SIC and the AIC are higher in the model with time-varying 

risk premia. This finding confirms the results obtained by Casassus and Collin-Dufresne 

(2005), in that allowing for time-varying market risk premia improves the estimation 

results. However, in this chapter, the estimation is carried out using the Kalman filter 

method, which is theoretically superior to the maximum likelihood method used by 

Casassus and Collin-Dufresne (2005). 

In the next section, we use these results for commodity option valuation purposes. 

Specifically, we show the importance of allowing for time-varying market risk premia 

in valuing a set of market traded commodity options. It should be noted that Casassus 

and Collin-Dufresne (2005) also propose a model with time-varying risk premia, but 

                                                 
32 This fact is also found in Schwartz and Smith (2000) and Garcia et al. (2011b), among others. 
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they do not test the importance of time-varying market prices of risk on the valuation of 

commodity derivatives. 

 

2.5 OPTION VALUATION WITH TIME-VARYING MARKET 

PRICES OF RISK DEPENDING ON THE BUSINESS CYCLE 

As stated above, in this section, we apply our model with time-varying risk premia to 

the valuation of an extensive set of commodity market traded options.  

Option Data 

The data set used in the estimation procedure consists of daily observations of WTI, 

heating oil, RBOB gasoline and Henry Hub natural gas American call and put options 

quoted at the NYMEX and corresponding to the years from 2006 until 2010. The 

number of series is 1,293 call and 2,153 put (223,272 and 118,316 observations, 

respectively) in the case of WTI crude oil; 1,567 call and 302 put (177,927 and 45,725 

observations, respectively) in the case of heating oil; 1,633 call and 938 put (145,354 

and 59,576 observations, respectively) in the case of RBOB gasoline; and 681 call and 

758 put (79,957 and 99,828 observations, respectively) in the case of Henry Hub natural 

gas. 

In the NYMEX, WTI option contracts mature each month for the current year and for 

the next five years. Additionally, the June and December months are listed beyond the 

sixth year. Strike prices are the one at-the-money strike price, twenty strike prices in 

increments of $0.50 per barrel above and below the at-the-money strike price, and the 

next 10 strike prices in increments of $2.50 above the highest and below the lowest 

existing strike prices for a total of at least 61 strike prices.  

In the case of heating oil and RBOB gasoline options, there are listed contracts for the 

next 36 consecutive months, and available strike prices are the at-the-money, twenty 
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strike prices in $0.01 per gallon increments above and below the at-the-money strike 

price, and the next 10 strike prices in $0.05 increments above the highest and below the 

lowest existing strike prices for a total of at least 61 strike prices. 

Finally, in the case of Henry Hub natural gas options, there are listed contracts for the 

consecutive months for the balance of the current year plus 5 additional years. Strike 

prices are the one at-the-money strike prices, twenty strike prices in increments of $0.05 

per mmBtu above and below the at-the-money strike price in all months, plus an 

additional 20 strike prices in increments of $0.05 per mmBtu above the at-the-money 

price will be offered in the first three nearby months, and the next 10 strike prices in 

increments of $0.25 per mmBtu above the highest and below the lowest existing strike 

prices in all months, for a total of at least 81 strike prices in the first three nearby 

months and a total of at least 61 strike prices for four months and beyond33. 

In all cases, the underlying asset is the corresponding WTI, heating oil, RBOB gasoline 

or Henry Hub natural gas futures contract. 

 

Option Valuation Methodology 

The computation of American option prices is a challenging problem which implies 

solving an optimal stopping problem. The problem can be simplified employing Monte 

Carlo techniques. The starting point of these methods is to replace the time interval of 

exercise dates by a finite subset. The solution of the corresponding discrete optimal 

stopping problem reduces to an effective implementation of the dynamic programming 

principle. However, the conditional expectations involve in the iterations of the dynamic 

programming cause the main difficulty for the development of the Monte Carlo 

techniques. One way of treating this problem is the method presented in Longstaff and 

                                                 
33 Additional details about the contracts can be found on the CME Group web page. 
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Swchartz (2001), which is one of the most popular American option valuation methods 

and will be the method used in this section to value commodity American options.  

Specifically, the method proposed by Longstaff and Schwartz (2001) consists of 

estimating the conditional expected pay-off to the holder of the option from 

continuation using least squares regression techniques. 

For the purpose of option valuation, we need a full description of the model. In matrix 

form, the state dynamics can be described as follows: 

                                                 ( ) ttt dWdtAZdZ ++= µ .                                    (9)  

To clarify, let us take tU  to be a unit of Brownian motion (i.e., dtIdUdU T

tt = ) and 

rewrite (9) as:  

                                                 ( ) ttt RdUdtAZdZ ++= µ .                              (10) 

For parameter estimation purposes, we use Kalman filter equations to estimate 

[ ]111| ,...,/ −− = tttt ZZZEZ , and as an intermediate result, [ ]1111|1 ,...,/ −−−− = tttt ZZZEZ . This 

process (estimating using current or even future information) is termed “aliasing” in the 

Kalman filter literature. The series ttZ | is used as initial states for option valuation.  

 

Option Valuation Results 

Table 11 presents several metrics to analyze the predictive power ability of the models 

for the data set of WTI, heating oil, RBOB gasoline and Henry Hub natural gas 

American options. The models considered are the time-varying risk premia and the 

standard constant (two-factor) risk premia. Moreover, the results shown in the table are 

based on the estimation results obtained from both the first and the second data sets 

described in Section 2.  
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The statistics presented in Table 11 are the root mean squared error (RMSE), the 

percentage root mean squared error (PRMSE) and the mean absolute error (MAE), 

which are defined as: 
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where fi,m and fi,t are the market and the theoretical prices, respectively, of option i.  

The values shown in the table are the median of the different means for each option 

series. It can be observed that we achieve better results with the time-varying risk 

premia model for all commodities under study with all three statistics (except in the 

case of heating oil using the RMSE with the second data set). It is also worth noting 

that, in general, we achieve better results using the first data set (at least in the case of 

WTI crude oil, heating oil and RBOB gasoline). Furthermore, it can be appreciated that 

the best results of the time-varying model are achieved with RBOB gasoline, followed 

by heating oil. 

These results confirm that the constant risk premia assumption in standard option 

valuation models has an important effect in terms of valuation errors. Therefore, the fact 

that market prices of risk vary over time according to the business cycle must be taken 

into account in option valuation models. Specifically, we have seen that the risk that 

investors face when they enter in a derivative contract cannot sometimes be diversified, 

depending on the market conditions, which has important implications in terms of 

derivative valuation. In particular, it is found that the risk associated with the long-term 
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factor tends to not be diversifiable during expansion periods. Therefore, it seems natural 

that the risk associated with the model factors is sometimes not diversifiable, depending 

on the market conditions, and can somewhat affect option values. In this chapter, we 

have seen that, in fact, by allowing for time-varying (state-depending) market prices of 

risk option valuation, errors can be reduced compared to those obtained with standard 

(constant market prices of risk) models. 

Finally, it should be noted that there have been several papers proposing factor models 

with time-varying (state depending) risk premia, such as Casassus and Collin-Dufresne 

(2005). However, these papers do not test the importance of time-varying risk premia on 

the valuation of commodity derivatives. To the best of our knowledge, this is the first 

time that a model with time-varying (state depending) risk premia is applied to the 

valuation of exchange-traded commodity derivatives. 

 

2.6 CONCLUSIONS 

In this chapter, we note the importance of allowing for time-varying market prices of 

risk in a commodity derivative model. Specifically, we show that the compensation that 

investors want in a commodity derivative contract varies through time according to 

several business related variables. More importantly, this business cycle dependence of 

market prices of risk has an important effect in terms of option valuation errors. 

The chapter begins by estimating time series of market prices of risk for crude oil, 

heating oil, gasoline and natural gas under the two-factor model proposed by Schwartz 

and Smith (2000) and using the Kalman filter method. The results show that the risk 

compensation that investors want in a commodity derivative contract varies as market 

conditions change. Specifically, close relationships among market prices of risk and 

several variables related to the business cycle, such as NAPM and S&P 500 indices, 



 68

crude oil prices, crude oil price volatility and long- and short-term price factors, among 

others, are found. 

Based on these results, a factor model with market prices of risk depending on the 

business cycle and proxied by long- and short-term price factors is proposed and 

estimated. The valuation results obtained with a sample of futures contracts on crude 

oil, heating oil, gasoline and natural gas show that the proposed model with time-

varying risk premia depending on the business cycle outperforms the standard two-

factor model with constant risk premia. This finding confirms the results obtained by 

Casassus and Collin-Dufresne (2005) in that allowing for time-varying market risk 

premia improves the estimation results. Nonetheless, in this chapter, the estimation is 

carried out using the Kalman filter method, which is theoretically superior to the 

maximum likelihood method used by Casassus and Collin-Dufresne (2005). 

However, the most important contribution of this chapter is the application of the model 

with time-varying risk premia to the valuation of an extensive sample of exchange-

traded commodity derivatives. Specifically, the data base is comprised of American 

options on WTI, heating oil, RBOB gasoline and Henry Hub natural gas futures 

contracts, traded at NYMEX and yielding better results than those obtained with 

standard (constant market prices of risk) models. Specifically, we have seen that the risk 

that investors face when they enter in a derivative contract cannot always be diversified, 

depending on the market conditions. In particular, it is found that the risk associated 

with the long-term factor tends to not be diversifiable in expansion periods. 

Consequently, it is important to take into account the dependence of risk premia on the 

economic conditions in valuing derivative contracts. 
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To the best of our knowledge, this is the first time that a model with time-varying (state 

depending) risk premia is applied to the valuation of exchange-traded commodity 

derivatives. 
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APPENDIX 

The Kalman filter technique is a recursive methodology that estimates the unobservable 

time series and the state variables or factors (Zt) based on an observable time series (Yt), 

which depends on these state variables. The measurement equation accounts for the 

relationship between the observable time series and the state variables such that:   

    ttttt ZMdY η++=   t = 1, …, Nt                           (A1) 

where h

t

hxn

t

n

tt ZMdY ℜ∈ℜ∈ℜ∈ ,,, , h is the number of state variables, or factors, in 

the model, and n

t ℜ∈η  is a vector of serially uncorrelated Gaussian disturbances with 

zero mean and covariance matrix Ht. To avoid dealing with a large number of 

parameters, we assume that Ht is diagonal with main diagonal entries equal to ση. 

The transition equation accounts for the evolution of the state variables:  

      ttttt ZTcZ ψ++= −1    t = 1, …, Nt            (A2)    

where h

t

hxh

t

h

t andTc ℜ∈ℜ∈ℜ∈ ψ,  are vectors of serially uncorrelated Gaussian 

disturbances with zero mean and covariance matrix Qt. 

Let 1| −ttY  be the conditional expectation of Yt and let tΞ  be the covariance matrix of Yt 

conditional on all information available at time t – 1. Then, after omitting unessential 

constants, the log-likelihood function can be expressed as: 

∑ ∑ −
−
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t t
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TABLES AND FIGURES 

TABLE 1 

DESCRIPTIVE STATISTICS 

 

The table shows the mean and standard deviation (S.D.) of the four commodity series 

prices. F1 is the futures contract closest to maturity, F2 is the contract second-closest to 

maturity and so on. In the cases of WTI crude oil and heating oil the data set is comprised of 

futures prices from one to eighteen months (1338 weekly observations) from 1/1/1985 to 

8/16/2010. In the case of RBOB gasoline, the data set is comprised of futures prices from 

one to nine months (1338 weekly observations) from 1/1/1985 to 8/16/2010. In the case of 

Henry Hub natural gas, the data set is comprised of futures prices from one to eighteen 

months (1064 weekly observations) from 4/2/1990 to 8/16/2010. 

 

 WTI Crude Oil Heating Oil RBOB Gasoline Henry Hub Natural Gas 
 Mean S. D. Mean S. D. Mean S. D. Mean S. D. 
F1 33.39 23.56 38.91 27.65 39.76 26.01 4.04 2.60 
F2 33.4 23.79 38.94 27.94 39.53 26.01 4.13 2.66 
F3 33.37 23.97 38.98 28.22 39.34 25.97 4.19 2.71 
F4 33.32 24.11 38.99 28.46 39.16 25.91 4.22 2.73 
F5 33.26 24.23 38.97 28.65 39.03 25.93 4.25 2.75 
F6 33.2 24.33 38.94 28.81 38.92 25.97 4.27 2.76 
F7 33.14 24.41 39 29.06 38.95 26.17 4.29 2.77 
F8 33.08 24.48 38.98 29.17 39.56 26.71 4.3 2.78 
F9 33.03 24.54 38.94 29.21 40.52 27.28 4.3 2.78 
F10 33.15 24.67 38.94 29.27    4.29 2.76 
F11 33.6 24.96 39.39 29.59    4.29 2.74 
F12 34.24 25.27 40.44 30.17    4.33 2.73 
F13 35.1 25.63 42.17 30.92    4.53 2.73 
F14 35.35 25.75 42.78 31.25    4.52 2.73 
F15 35.6 25.96 43.79 31.77    4.52 2.73 
F16 35.7 26.09 44.62 32.29    4.52 2.73 
F17 35.8 26.17 46.5 33.03    4.53 2.73 
F18 36.2 26.43 49.27 33.84    4.56 2.73 
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TABLE 2 

CORRELATION AMONG MAXIMUM LIKELIHOOD ESTIMATES OF MARKET 

PRICES OF RISK AND BUSINESS CYCLE RELATED VARIABLES 

 

The table shows the coefficients or correlation among the estimated market prices of risk with 

the Kolos and Ronn (2008) maximum likelihood method and several business cycle variables. 

Coefficients of correlation are reported with their standard errors in parenthesis. The estimated 

values are reported with * denoting significance at 10%, ** denoting significance at 5%, and *** 

denoting significance at 1%. 

 

WTI CRUDE OIL 

 λχ λξ WTI   F1 S&P 500 S&P 500 (-5) NAPM 
NAPM (-1) 

 
Expans. 
Indicator 

λχ 1 
-0.0022 
(0.0749) 

0.3957*** 
(0.06883) 

0.5196*** 
(0.0640) 

0.5095*** 
(0.0645) 

0.1736** 
(0.0738) 

0.1894** 
(0.0735) 

0.0285 
(0.0749) 

λξ  1 
0.3265*** 
(0.0708) 

0.3204*** 
(0.0710) 

0.2936*** 
(0.0716) 

0.1908**

* 
(0.0736) 

0.2140*** 
(0.0732) 

0.0436 
(0.0749) 

HEATING OIL 

 λχ λξ WTI   F1 S&P 500 
S&P 500 

(-5) 
NAPM 

NAPM 
(-1) 

 

Expans. 
Indicator 

λχ 1 
-0.0824 
(0.0749) 

0.3651*** 
(0.0699) 

0.4672*** 
(0.0665) 

0.4773*** 
(0.0660) 

0.1265* 
(0.0746) 

0.1492** 
(0.0743) 

0.0158 
(0.0751) 

λξ  1 
0.2794*** 
(0.0722) 

0.3047*** 
(0.0716) 

0.3199*** 
(0.0712) 

-
0.01615 
(0.0751) 

0.0045 
(0.0752) 

0.0421 
(0.0751) 

RBOB GASOLINE 

 λχ λξ WTI   F1 S&P 500 
S&P 500 

(-5) 
NAPM 

NAPM 
(-1) 

 

Expans. 
Indicator 

λχ 1 
-0.3030 
(0.7016) 

0.3902*** 
(0.0692) 

0.4746*** 
(0.0662) 

0.4666*** 
(0.0665) 

0.1862** 
(0.0738) 

0.1949*** 
(0.0737) 

0.1129 
(0.0747) 

λξ  1 
-0.0512 
(0.0751) 

0.0821 
(0.0749) 

0.0713 
(0.0750) 

0.1042 
(0.0747) 

0.1087 
(0.0747) 

-0.0293 
(0.0751) 

HENRY HUB NATURAL GAS 

 λχ λξ WTI   F1 S&P 500 
S&P 500 

(-5) 
NAPM 

NAPM 
(-1) 

 

Expans. 
Indicator 

λχ 1 
-0.4930*** 
(0.0749) 

-0.0623 
(0.0859) 

0.2131** 
(0.0841) 

0.1832** 
(0.0846) 

0.2052** 
(0.0842) 

0.2059** 
(0.0842) 

0.1098 
(0.0855) 

λξ  1 
-0.0679 
(0.0859) 

-0.1399 
(0.0852) 

-0.1134 
(0.0855) 

0.0306 
(0.0860) 

0.0224 
(0.0860) 

0.0918 
(0.0857) 
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TABLE 3 

CORRELATION AMONG WTI KALMAN FILER ESTIMATES OF MARKET 

PRICES OF RISK AND BUSINESS CYCLE RELATED VARIABLES 

 

The table shows the coefficients or correlation among the estimated WTI crude oil market prices 

of risk with the Kalman filter method and several business cycle related variables. Coefficients 

of correlation are reported with their standard errors in parenthesis. The estimated values are 

reported with * denoting significance at 10%, ** denoting significance at 5%, and *** denoting 

significance at 1%. 

 

 WTI FRIST DATA SET WTI SECOND DATA SET 
 λξ λχ λξ λχ 

λξ 
1 -0.5813*** 

(0.0610) 
1 -0.3351*** 

(0.1053) 

λχ 
-0.5813*** 
(0.0610) 

1 -0.3351*** 
(0.1053) 

1 

WTI F1 
0.5492*** 
(0.0626) 

-0.8503*** 
(0.0394) 

0.3829*** 
(0.1033) 

-0.8691*** 
(0.0553) 

VOLAT. F1 
0.1228** 
(0.0744) 

-0.0324 
(0.0749) 

-0.8765*** 
(0.0538) 

0.1132 
(0.1111) 

MODEL VOLAT. 0.0666 
(0.0748) 

0.0581 
(0.0748) 

-0.7846*** 
(0.0693) 

0.3445*** 
(0.1050) 

LIKELIHOOD -0.2528*** 
(0.0725) 

0.4568*** 
(0.0667) 

-0.8910*** 
(0.0508) 

0.2716** 
(0.1076) 

ξ 0.6574*** 
(0.0565) 

-0.8424*** 
(0.0404) 

0.4614*** 
(0.0992) 

-0.7809*** 
(0.0698) 

χ 0.1981*** 
(0.0735) 

-0.5239*** 
(0.0638) 

0.4989*** 
(0.0969) 

-0.7385*** 
(0.0754) 

σξ 0.8234*** 
(0.0425) 

-0.6554*** 
(0.0566) 

0.8642*** 
(0.0562) 

-0.4755*** 
(0.0984) 

σχ 0.0370 
(0.0449) 

-0.0046 
(0.0750) 

-0.6753*** 
(0.0825) 

0.3362*** 
(0.1053) 

NAPM 0.1823** 
(0.0737) 

-0.0318 
(0.0749) 

0.8479*** 
(0.0593) 

-0.2518** 
(0.1082) 

NAPM(-1) 0.1896** 
(0.0736) 

-0.0608 
(0.0748) 

0.8408*** 
(0.0605) 

-0.3158*** 
(0.1061) 

S&P 500 0.6945*** 
(0.0539) 

-0.6880*** 
(0.0544) 

-0.1899** 
(0.1098) 

-0.4351*** 
(0.1007) 

S&P 500 (-5) 0.6897*** 
(0.0543) 

-0.6570*** 
(0.0565) 

0.0507 
(0.1112) 

-0.5552*** 
(0.0930) 
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TABLE 4 

CORRELATION AMONG HEATING OIL KALMAN FILER ESTIMATES OF 

MARKET PRICES OF RISK AND BUSINESS CYCLE RELATED VARIABLES 

 

The table shows the coefficients or correlation among the estimated heating oil market prices of 

risk with the Kalman filter method and several business cycle related variables. Coefficients of 

correlation are reported with their standard errors in parenthesis. The estimated values are 

reported with * denoting significance at 10%, ** denoting significance at 5%, and *** denoting 

significance at 1%. 

 

 
HEATING OIL FRIST 

DATA SET 
HEATING OIL SECOND 

DATA SET 
 λξ λχ λξ λχ 

λξ 1 
0.7896*** 
(0.0464) 

1 
0.5207*** 
(0.0955) 

λχ 
0.7896*** 
(0.0464) 

1 
0.5207*** 
(0.0955) 

1 

WTI F1 
0.3711*** 
(0.0702) 

0.0309 
(0.0756) 

0.4068*** 
(0.1021) 

-0.1922* 
(0.1097) 

VOLAT. F1 
0.0904 

(0.0753) 
0.0608 

(0.0755) 
-0.3687*** 
(0.1039) 

0.0824 
(0.1114) 

MODEL VOLAT. 
0.1560** 
(0.0747) 

0.1383* 
(0.0749) 

0.2519** 
(0.1082) 

0.5875*** 
(0.0905) 

LIKELIHOOD 
-0.0225 
(0.0756) 

0.1857** 
(0.0743) 

-0.3440*** 
(0.1050) 

0.0812 
(0.1114) 

ξ 
0.6106*** 
(0.0599) 

0.4365*** 
(0.0680) 

0.6884*** 
(0.0811) 

0.4267*** 
(0.1011) 

χ 
-0.6041*** 
(0.0602) 

-0.6356*** 
(0.0584) 

-0.5586*** 
(0.0927) 

-0.8958*** 
(0.0497) 

σξ 
0.2922*** 
(0.0726) 

-0.0458 
(0.0755) 

0.4454*** 
(0.1001) 

-0.0069 
(0.1118) 

σχ 
-0.0022 
(0.0756) 

-0.0960 
(0.0752) 

-0.3736*** 
(0.1037) 

-0.0765 
(0.1115) 

NAPM 
-0.0569 
(0.0755) 

-0.0969 
(0.0752) 

0.3371*** 
(0.1053) 

0.0748 
(0.1115) 

NAPM(-1) 
-0.0559 
(0.0755) 

-0.1016 
(0.0752) 

0.3419*** 
(0.1051) 

0.0496 
(0.1117) 

S&P 500 
0.1657** 
(0.0745) 

-0.0542 
(0.0755) 

0.0388 
(0.1117) 

-0.1803 
(0.1098) 

S&P 500 (-5) 
0.1152 

(0.0751) 
-0.0878 
(0.0753) 

0.1025 
(0.1112) 

-0.2097* 
(0.1093) 
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TABLE 5 

CORRELATION AMONG RBOB GASOLINE KALMAN FILER ESTIMATES OF 

MARKET PRICES OF RISK AND BUSINESS CYCLE RELATED VARIABLES 

 

The table shows the coefficients or correlation among the estimated RBOB gasoline market 

prices of risk with the Kalman filter method and several business cycle related variables. 

Coefficients of correlation are reported with their standard errors in parenthesis. The estimated 

values are reported with * denoting significance at 10%, ** denoting significance at 5%, and *** 

denoting significance at 1%. 

 

 
RBOB GASOLINE 
FRIST DATA SET 

RBOB GASOLINE 
SECOND DATA SET 

 λξ λχ λξ λχ 

λξ 
1 0.8618*** 

(0.0379) 
1 0.8520*** 

(0.0552) 

λχ 
0.8618*** 
(0.0379) 

1 0.8520*** 
(0.0552) 

1 

WTI F1 
0.1992*** 
(0.0732) 

0.0234 
(0.0747) 

0.2644*** 
(0.1017) 

0.0608 
(0.1052) 

VOLAT. F1 
0.1942*** 
(0.0733) 

0.0267 
(0.0747) 

0.1230 
(0.1046) 

-0.0222 
(0.1054) 

MODEL VOLAT. -0.0442 
(0.0747) 

-0.1434** 
(0.0740) 

-0.1613 
(0.1040) 

-0.1499 
(0.1042) 

LIKELIHOOD -0.1191 
(0.0742) 

-0.0845 
(0.0745) 

-0.0105 
(0.1054) 

-0.1235 
(0.1046) 

ξ 0.6041*** 
(0.0596) 

0.4824*** 
(0.0655) 

0.6415*** 
(0.0809) 

0.5540*** 
(0.0878) 

χ -0.6850*** 
(0.0545) 

-0.6929*** 
(0.0539) 

-0.7215*** 
(0.0730) 

-0.8156*** 
(0.0610) 

σξ 0.0660 
(0.0746) 

-0.0744 
(0.0745) 

0.2166** 
(0.1029) 

-0.0656 
(0.1052) 

σχ -0.1613** 
(0.0738) 

-0.1109 
(0.0743) 

-0.0919 
(0.1050) 

0.0044 
(0.1054) 

NAPM -0.0491 
(0.0747) 

-0.0617 
(0.0746) 

0.2012* 
(0.1033) 

0.0189 
(0.1054) 

NAPM(-1) -0.0375 
(0.0747) 

-0.0615 
(0.0746) 

0.2263** 
(0.1027) 

0.0365 
(0.1053) 

S&P 500 0.1478** 
(0.0739) 

-0.0358 
(0.0747) 

0.0226 
(0.1054) 

-0.0410 
(0.1053) 

S&P 500 (-5) 0.1357* 
(0.0741) 

-0.0450 
(0.0747) 

0.0400 
(0.1053) 

0.0002 
(0.1054) 
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TABLE 6 

CORRELATION AMONG HENRY HUB NATURAL GAS KALMAN FILER 

ESTIMATES OF MARKET PRICES OF RISK AND BUSINESS CYCLE RELATED 

VARIABLES 

 

The table shows the coefficients or correlation among the estimated Henry Hub natural gas 

market prices of risk with the Kalman filter method and several business cycle related variables. 

Coefficients of correlation are reported with their standard errors in parenthesis. The estimated 

values are reported with * denoting significance at 10%, ** denoting significance at 5%, and *** 

denoting significance at 1%. 

 

 
HENRY HUB 

NATURAL GAS FRIST 
DATA SET 

HENRY HUB NATURAL 
GAS SECOND DATA 

SET 
 λξ λχ λξ λχ 

λξ 1 
0.3024*** 
(0.0827) 

1 
0.2313** 
(0.1131) 

λχ 
0.3024*** 
(0.0827) 

1 
0.2313** 
(0.1131) 

1 

WTI F1 
0.4506*** 
(0.0774) 

-0.3204*** 
(0.0774) 

-0.0284 
(0.1162) 

-0.6381*** 
(0.0895) 

VOLAT. F1 
0.3790*** 
(0.0802) 

0.0022 
(0.0802) 

0.3384*** 
(0.1094) 

0.4662*** 
(0.1028) 

MODEL VOLAT. 
0.2315*** 
(0.0844) 

0.3538*** 
(0.0844) 

0.3085*** 
(0.1106) 

0.3269*** 
(0.1099) 

LIKELIHOOD 
0.0005 

(0.0867) 
-0.0779 
(0.0867) 

-0.1138 
(0.1155) 

-0.6353*** 
(0.0898) 

ξ 
0.6706*** 
(0.0643) 

-0.0153 
(0.0643) 

0.0125 
(0.1162) 

0.0209 
(0.1162) 

χ 
-0.6737*** 
(0.0641) 

-0.5463*** 
(0.0641) 

0.0095 
(0.1162) 

-0.8082*** 
(0.0685) 

σξ 
0.4327*** 
(0.0782) 

-0.1896** 
(0.0782) 

0.7007*** 
(0.0829) 

0.1682 
(0.1147) 

σχ 
-0.0157 
(0.0867) 

-0.0634 
(0.0867) 

-0.3838*** 
(0.1073) 

0.3283*** 
(0.1098) 

NAPM 
0.0155 

(0.0867) 
-0.1080 
(0.0867) 

0.6385*** 
(0.0895) 

-0.2403** 
(0.1128) 

NAPM(-1) 
0.0200 

(0.0867) 
-0.1235 
(0.0867) 

0.6058*** 
(0.0925) 

-0.2710** 
(0.1119) 

S&P 500 
0.4897*** 
(0.0756) 

-0.1823** 
(0.0756) 

-0.4528*** 
(0.1036) 

-0.2309** 
(0.1131) 

S&P 500 (-5) 
0.4911*** 
(0.0755) 

-0.1787** 
(0.0755) 

-0.2605** 
(0.1122) 

-0.3593*** 
(0.1085) 
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TABLE 7 

ESTIMATION RESULTS OF THE FACTOR MODELS WITH TIME-VARYING 

BUSINESS CYCLE RELATED AND CONSTANT MARKET PRICES OF RISK 

WTI CRUDE OIL 

The table shows the estimation results of the model with time-varying market prices of risk 

(MPR), depending on the model long- and short-term factors, together with those obtained with 

the standard Schwartz and Smith (2000) two-factor model with constant risk premia. The table 

shows the results obtained with both the first and the second data sets described in section 3. 

Standard errors are in parentheses. The estimated values are reported with * denoting 

significance at 10%, ** denoting significance at 5%, and *** denoting significance at 1%. 

 First Data Set Second Data Set 

 WTI 
Constant 

MPR 

WTI 
Variable 

MPR 

WTI 
Constant 

MPR 

WTI 
Variable 

MPR 

µξ 0.0452* 
(0.0270) 

0.0404 
(0.0268) 

0.1128*** 
(0.0334) 

0.0868** 
(0.0410) 

κ 1.9748*** 
(0.0234) 

1.1859*** 
 (0.2318) 

1.1254*** 
(0.0103) 

1.3257*** 
(0.2478) 

σξ 0.1936*** 
(0.0030) 

0.1919*** 
(0.0170) 

0.1761*** 
(0.0037) 

0.2160*** 
(0.0283) 

σχ 0.2467*** 
(0.0043) 

0.1799*** 
(0.0266) 

0.2763*** 
(0.0065) 

0.1393*** 
(0.0384) 

λξ0 0.0907*** 
(0.0271) 

0.3821* 
(0.1991) 

0.1669*** 
(0.0334) 

0.4945*** 
(0.1505) 

λξ1 - -0.0856 
(0.0569) 

- 
-0.1009*** 
(0.0387) 

λξ2 - 0.8030* 
(0.4184) 

- 
1.2291* 
(0.6864) 

λχ0 0.0453 
(0.0346) 

1.1308*** 
(0.3736) 

-0.0333 
(0.0524) 

0.3670** 
(0.1758) 

λχ1 - -0.3251*** 
(0.1084) 

- 
-0.1022** 
(0.0473) 

λχ2 - 0.8121*** 
(0.2647) 

- 
-0.1048 
(0.2702) 

ρξχ 0.1494*** 
(0.0239) 

0.5775*** 
(0.0949 ) 

0.0445 
(0.0320) 

0.7349*** 
(0.0791) 

ση 0.0079*** 
(0.0001) 

0.0078*** 
(0.0001) 

0.0093*** 
(0.0001) 

0.0093*** 
(0.0001) 

Log-L 50007.70  50160.36 32146.72 32163.08 

AIC 49991.70 50136.36 32130.72 32139.08 

SIC 49950.11 50073.97 32093.99 32084.00 
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TABLE 8 

ESTIMATION RESULTS FOR HEATING OIL 

The table shows the estimation results of the model with time-varying market prices of risk 

(MPR), depending on the model long- and short-term factors, together with those obtained with 

the standard Schwartz and Smith (2000) two-factor model with constant risk premia. The table 

shows the results obtained with both the first and the second data sets described in section 3. 

Standard errors are in parentheses. The estimated values are reported with * denoting 

significance at 10%, ** denoting significance at 5%, and *** denoting significance at 1%. 

 First Data Set Second Data Set 

 Heating Oil 
Constant 

MPR 

Heating Oil 
Variable 

MPR 

Heating Oil 
Cosntant 

MPR 

Heating Oil 
Variable 

MPR 

µξ 0.1659*** 
(0.0310) 

0.3994*** 
(0.1237) 

0.2248*** 
(0.0327) 

0.0635 
(0.0283) 

κ 1.8522*** 
(0.0911) 

1.1312*** 
(0.0205) 

1.7080*** 
(0.0158) 

0.4026*** 
(0.0000) 

σξ 0.1770*** 
(0.0035) 

0.3691*** 
(0.0031) 

0.1696*** 
(0.0037) 

0.1905*** 
(0.0000) 

σχ 0.3343*** 
(0.0158) 

0.6105*** 
(0.0206) 

0.2441*** 
(0.0072) 

0.3758*** 
(0.0000) 

φ 0.9976*** 
(0.0000) 

0.9974*** 
(0.0000) 

0.9972*** 
(0.0002) 

0.9974*** 
(0.0002) 

λξ0 0.2239*** 
(0.0327) 

0.3642 
(0.2214) 

0.2322*** 
(0.0329) 

0.2883 
(0.0000) 

λξ1 - -0.2846*** 
(0.0000) 

- 
0.0216*** 
(0.0000) 

λξ2 - -0.8459*** 
(0.0225) 

- 
-0.5506*** 
(0.0198) 

λχ0 0.6999*** 
(0.1079) 

0.5173** 
(0.2067) 

0.3546*** 
(0.0496) 

-0.9568*** 
(0.0000) 

λχ1 - 0.5407*** 
(0.0198) 

- 
0.0462*** 
(0.0000) 

λχ2 - 0.6409*** 
(0.0378) 

- 
1.1536*** 
(0.0000) 

ρξχ -0.1229*** 
(0.0431) 

-0.5889*** 
(0.0340) 

0.4488*** 
(0.0307) 

-0.4248*** 
(0.0000) 

ση 0.0209*** 
(0.0003) 

0.0143*** 
(0.0001) 

0.0190*** 
(0.0001) 

0.0187*** 
(0.0001) 

Log-L 47709.23 51511.79 42417.57 42573.40 

AIC 47691.23 51485.79 42399.57 42547.40 

SIC 47644.72 51418.61 42358.26 42487.73 
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TABLE 9 

ESTIMATION RESULTS FOR RBOB GASOLINE 

The table shows the estimation results of the model with time-varying market prices of risk 

(MPR), depending on the model long- and short-term factors, together with those obtained with 

the standard Schwartz and Smith (2000) two-factor model with constant risk premia. The table 

shows the results obtained with both the first and the second data sets described in section 3. 

Standard errors are in parentheses. The estimated values are reported with * denoting 

significance at 10%, ** denoting significance at 5%, and *** denoting significance at 1%. 

 First Data Set Second Data Set 

 RBOB 
Constant 

MPR 

RBOB 
Variable 

MPR 

RBOB 
Cosntant 

MPR 

RBOB 
Variable 

MPR 

µξ -0.4000*** 
(0000) 

0.2855*** 
(0.0173) 

0.2621*** 
(0.0315) 

0.0909 
(0.0200) 

κ 3.1144*** 
(0.0916) 

0.4002*** 
(0.0206) 

2.0500*** 
(0.0558) 

2.1285*** 
(0.1590) 

σξ 0.2093*** 
(0.0034) 

0.3023*** 
(0.0000) 

0.1877*** 
(0.0045) 

0.2458*** 
(0.0000) 

σχ 0.3770*** 
(0.0088) 

0.3212*** 
(0.0000) 

0.3084*** 
(0.0084) 

0.5067*** 
(0.0000) 

φ 0.9947*** 
(0.0001) 

0.9940*** 
(0.0000) 

1.0028*** 
(0.0004) 

1.0002*** 
(0.0003) 

λξ0 -0.3919*** 
(0.0041) 

0.6893*** 
(0.0000) 

0.3439*** 
(0.0323) 

0.0298 
(0.1130) 

λξ1 - 0.0576*** 
(0.0140) 

- 
-0.0045 
(0.0396) 

λξ2 - 0.3876*** 
(0.0000) 

- 
-0.8974*** 
(0.0000) 

λχ0 -0.3849*** 
(0.0288) 

0.6412* 
(0.0000) 

0.3791*** 
(0.0548) 

0.9855*** 
(0.2980) 

λχ1 - 0.4053*** 
(0.0000) 

- 
-0.1642* 
(0.0901) 

λχ2 - 1.1309*** 
(0.0482) 

- 
-0.0410 
(0.1778) 

ρξχ 0.0764** 
(0.0322) 

-0.2500*** 
(0.0000) 

0.1072*** 
(0.0404) 

-0.7064*** 
(0.0000) 

ση 0.0162*** 
(0.0001) 

0.0151*** 
(0.0001) 

0.0162*** 
(0.0002) 

0.0159*** 
(0.0002) 

Log-L 42227.28 42409.56 25273.54 25374.57 

AIC 42209.28 42383.56 25255.54 25348.57 

SIC 42162.60 42316.14 25213.51 25287.86 
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TABLE 10 

ESTIMATION RESULTS FOR HENRY HUB NATURAL GAS 

The table shows the estimation results of the model with time-varying market prices of risk 

(MPR), depending on the model long- and short-term factors, together with those obtained with 

the standard Schwartz and Smith (2000) two-factor model with constant risk premia. The table 

shows the results obtained with both the first and the second data sets described in section 3. 

Standard errors are in parentheses. The estimated values are reported with * denoting 

significance at 10%, ** denoting significance at 5%, and *** denoting significance at 1%. 

 First Data Set Second Data Set 

 Henry Hub 
Constant 

MPR 

Henry Hub 
Variable 

MPR 

Henry Hub 
Cosntant 

MPR 

Henry Hub 
Variable 

MPR 

µξ -0.3996*** 
(0.0307) 

-0.2996*** 
(0.0621) 

0.0719*** 
(0.0252) 

0.0284*** 
(0.0000) 

κ 1.8158*** 
(0.0000) 

0.8416*** 
(0.0607) 

1.1163*** 
(0.0138) 

1.0458*** 
(0.0000) 

σξ 0.2515*** 
(0.0000) 

0.2334*** 
(0.0295) 

0.1297*** 
(0.0040) 

0.3325*** 
(0.0000) 

σχ 0.5547*** 
(0.0087) 

0.5475*** 
(0.0285) 

0.4779*** 
(0.0155) 

0.1714*** 
(0.0000) 

φ 0.9957*** 
(0.0001) 

0.9997*** 
(0.0002) 

0.9999*** 
(0.0001) 

0.9992*** 
(0.0001) 

λξ0 -0.1397*** 
(0.0488) 

0.4892*** 
(0.0284) 

0.1236*** 
(0.0253) 

-0.0587*** 
(0.0000) 

λξ1 - -0.3987*** 
(0.0539) 

- 
-0.0029 
(0.0506) 

λξ2 - -0.3539*** 
(0.0768) 

- 
1.9929*** 
(0.0000) 

λχ0 0.0008 
(0.0994) 

0.4166* 
(0.1922) 

-0.2177** 
(0.0928) 

-0.0252*** 
(0.0000) 

λχ1 - 0.1618 
(0.1466) 

- 
-0.0358 
(0.0212) 

λχ2 - 0.8608*** 
(0.0000) 

- 
0.0452*** 
(0.0000) 

ρξχ -0.5678*** 
(0.0000) 

-0.7205*** 
(0.0677) 

-0.0222 
(0.0471) 

0.9166*** 
(0.0000) 

ση 0.0916*** 
(0.0006) 

0.0914*** 
(0.0006) 

0.0399*** 
(0.0002) 

0.0383*** 
(0.0002) 

Log-L 22625.01 22758.45 39438.12 40032.74 

AIC 22607.01 22732.45 39420.12 40006.74 

SIC 22562.30 22667.87 39379.28 39947.75 
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TABLE 11 

AMERICAN OPTION VALUATION RESULTS 

 ERROR DESCRIPTIVE STATISTICS 

 

The table presents several metrics, root mean squared error (RMSE), percentage root mean 

squared error (PRMSE) and mean absolute error (MAE), to analyze the predictive power ability 

of the models under study: the time-varying risk premia model and the standard (two-factor) 

model with constant risk premia. The data set is comprised of daily observations of WTI 

American call and put options quoted at NYMEX during the years 2006 to 2010. For each 

series, we have calculated the corresponding statistic. These results correspond to the median 

value of these multiple means. The total number of observations is 341588, 223652, 204930 and 

179785 for WTI crude oil, heating oil, RBOB gasoline and Henry Hub natural gas respectively. 

 

PANEL A: WTI AMERICAN OPTIONS 

 CONSTANT RISK PREMIA TIME-VARYING RISK PREMIA 

 RMSE PRMSE MAE RMSE PRMSE MAE 

FIRST DATA SET 0.9727 27.4746 0.6853 0.8974 25.20429 0.6416 

SECOND DATA SET 0.9675 28.49709 0.6835 0.9313 26.39755 0.6672 

 

 

PANEL B: HEATING OIL AMERICAN OPTIONS 

 CONSTANT RISK PREMIA TIME-VARYING RISK PREMIA 

 RMSE PRMSE MAE RMSE PRMSE MAE 

FIRST DATA SET 3.1407 43.2489 2.7943 1.3379 14.0521 1.0127 

SECOND DATA SET 1.3484 16.3243 1.1052 1.3807 17.0274 1.0706 
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TABLE 11 (CONT.) 

AMERICAN OPTION VALUATION RESULTS 

 ERROR DESCRIPTIVE STATISTICS 

The table presents several metrics, root mean squared error (RMSE), percentage root mean 

squared error (PRMSE) and mean absolute error (MAE), to analyze the predictive power ability 

of the models under study: the time-varying risk premia model and the standard (two-factor) 

model with constant risk premia. The data set is comprised of daily observations of WTI 

American call and put options quoted at NYMEX during the years 2006 to 2010. For each 

series, we have calculated the corresponding statistic. These results correspond to the median 

value of these multiple means. The total number of observations is 341588, 223652, 204930 and 

179785 for WTI crude oil, heating oil, RBOB gasoline and Henry Hub natural gas respectively. 

 

PANEL C: RBOB GASOLINE AMERICAN OPTIONS 

 CONSTANT RISK PREMIA TIME-VARYING RISK PREMIA 

 RMSE PRMSE MAE RMSE PRMSE MAE 

FIRST DATA SET 5.5027 164.1529 4.6894 1.4065 39.7270 1.0744 

SECOND DATA SET 1.4952 37.8901 1.1821 0.9294 28.1595 0.7342 

 

 

 
PANEL D: HENRY HUB NATURAL GAS AMERICAN OPTIONS 

 CONSTANT RISK PREMIA TIME-VARYING RISK PREMIA 

 RMSE PRMSE MAE RMSE PRMSE MAE 

FIRST DATA SET 0.1192 64.2655 0.0913 0.1124 54.8146 0.0878 

SECOND DATA SET 0.1055 71.8211 0.0846 0.0864 14.0521 0.0678 
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FIGURE 1 

TIME-SERIES EVOLUTION OF MAXIMUM LIKELIHOOD MARKET PRICES OF 

RISK FOR WTI CRUDE OIL 
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FIGURE 2 

TIME-SERIES EVOLUTION OF KALMAN FILTER MARKET PRICES OF RISK 

FOR WTI CRUDE OIL AND BUSINESS CYCLE RELATED VARIABLES 
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FIGURE 2 

TIME-SERIES EVOLUTION OF KALMAN FILTER MARKET PRICES OF RISK 

FOR WTI CRUDE OIL AND BUSINESS CYCLE RELATED VARIABLES (CONT.) 
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FIGURE 2 

TIME-SERIES EVOLUTION OF KALMAN FILTER MARKET PRICES OF RISK 

FOR WTI CRUDE OIL AND BUSINESS CYCLE RELATED VARIABLES (CONT.) 
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CHAPTER 3: THE STOCHASTIC SEASONAL BEHAVIOR 

OF ENERGY COMMODITY CONVENIENCE YIELS 

3.1 INTRODUCTION 

In consumption commodities (commodities that are consumption assets rather than 

investment assets) the benefit from holding the physical asset net of storage cost is 

sometimes referred to as the “convenience yield” provided by the commodity (see for 

example Hull, 2003).  

In other words, if we denote by F and S the futures and spot prices respectively, in the 

case of consumption commodities we do not necessarily have equality in TureSF )·(· +≤  

(where r and u represent the risk free rate and storage costs respectively and T is the 

time to maturity), because users of a consumption commodity may feel that ownership 

of the physical commodity provides benefits that are not obtained by holders of futures 

contracts. For example, an oil refiner is unlikely to regard a futures contract on crude oil 

as equivalent to crude oil held in inventory. The crude oil in inventory can be an input 

to the refining process whereas a futures contract cannot be used for this purpose. In 

general, ownership of the physical asset enables a manufacturer to keep a production 

process running and perhaps profit from temporary local shortages. A futures contract 

does not do the same (see for example Brennan and Schwartz, 1985). Therefore the 

convenience yield net of storage costs, denoted by δ, is defined so that: TrT eSeF ·· ·· =δ . 

Previous studies have considered the convenience yield as a deterministic function of 

time, such as Brennan and Schwartz (1985), or as a stochastic process, such as Gibson 

and Schwartz (1990) and Schwartz (1987). Specifically, Gibson and Schwartz (1990) 

allow for stochastic convenience yield of crude oil in order to develop a two-factor oil 

contingent claims price model. Moreover, Gibson and Schwartz (1990) show that 
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convenience yields exhibit mean reversion, which is consistent with the theory of 

storage (see, for example, Brennan, 1985) in which it is established an inverse 

relationship between the net convenience yield and the level of inventories. Schwartz 

(1997) presents and empirically compares several  factor models in which the 

convenience yield is assumed to be a stochastic factor. Hilliard and Reis (1998) and 

Miltersen and Schwartz (1998) use models with stochastic convenience yield to value 

commodity derivatives (futures and options). More recently, Casassus and Collin-

Dufresne (2005) characterize a three-factor model, “maximal” in a sense of Dai and 

Singleton (2000), of commodity spot prices, convenience yields and interest rates, 

which nests many existing specifications.  

Wei and Zhu (2006) investigate the empirical properties of convenience yields in the 

US natural gas market, finding that convenience yields are highly variable and 

economically significant, with their variability depending on spot price level, spot price 

variability and the variability of lagged convenience yields. 

In spite of there have been many papers analyzing the seasonal behavior of some 

commodity prices (Lucia and Schwartz, 2002, Sorensen, 2002, Manoliu and Tompaidis, 

2002, Garcia et al., 2012, among others), considerably less attention has been paid to the 

seasonal behavior of convenience yields. Based on the finding of seasonality in the 

convenience yield made by Fama and French (1987), Amin et al.  (1994) propose a one-

factor model for the spot price with deterministic seasonal convenience yield. More 

recently, Borovkova and Geman (2006) present a two-factor model in which the first 

factor is the average forward price, instead of the commodity spot price, and the second 

factor is the stochastic convenience yield. These authors allow for a deterministic 

seasonal premium within the convenience yield. 
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In this chapter, we go further by presenting a factor model in which the (stochastic) 

convenience yield exhibits stochastic seasonality. Specifically, we show that the four-

factor model presented by Garcia et al. (2012), with two long- and short-term factors 

and two additional trigonometric seasonal factors, can generate stochastic seasonal 

convenience yields. An expression for the instantaneous convenience yield within this 

model is obtained, showing that the instantaneous convenience yield exhibits mean 

reversion and stochastic seasonality. Moreover, it is found a π/2 lag in the convenience 

yield seasonality with respect to spot price seasonality. 

Based on this evidence, the next step is to present a theoretical model to characterize the 

commodity convenience yield dynamics which is coherent with the previous findings. 

Specifically, the model takes into account mean reversion and stochastic seasonal 

effects in the convenience yield. The model is estimated using data from a variety of 

energy commodity futures prices: crude oil, heating oil, gasoline and natural gas. We 

also show that commodity price seasonality can be better estimated through 

convenience yields rather than through futures prices. The reason is that futures prices 

are driven for many things, such as supply, demand, political aspects, speculation, 

weather conditions, etc. Therefore, sometimes it may be difficult to extract the seasonal 

component from futures prices. However, as we will show in Section 2, the convenience 

yield is estimated though a ratio of two futures prices, so many of these non-seasonal 

factors tend to disappear, facilitating the estimation of the seasonal component. 

The remainder of this chapter is organized as follows. Section 2 presents the data and 

some preliminary findings regarding seasonality in convenience yields. We show that 

convenience yields show mean reversion and stochastic seasonality, using data from 

heating oil, gasoline and natural gas futures markets. In section 3 we present the four-

factor model accounting for stochastic seasonality in commodities and the expression 
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for the instantaneous convenience yield derived from this four-factor model. In section 

3 we also discuss the properties of the model estimated convenience yields for the four 

commodities under study, showing that in fact they exhibit mean reversion, stochastic 

seasonality and a π/2 lag with respect to spot price seasonality. Based on this empirical 

evidence, in section 4 it is proposed and estimated a factor model characterizing the 

commodity convenience yield dynamics, taking into account mean reversion and 

stochastic seasonal effects in the convenience yield. Finally, Section 5 concludes with a 

summary and discussion. 

 

3.2 DATA AND PRELIMINARY FINDINGS 

In this section, we present a data description of the futures prices for the four 

commodities used in the chapter, i.e. WTI crude oil, heating oil, RBOB gasoline and 

Henry Hub natural gas. Moreover, it is described the procedure presented by Gibson 

and Schwartz (1990) in order to obtain the convenience yield data. The section 

concludes analyzing the main empirically observed characteristics of the convenience 

yield data. 

 

Data description 

Futures Prices 

The data set used in this chapter consists of weekly observations of WTI (light sweet) 

crude oil, heating oil, unleaded gasoline (RBOB) and natural gas futures prices traded at 

NYMEX, during the period 9/27/1999 to 7/4/2011 (615 weekly observations). 

Actually, there are futures being traded on NYMEX with maturities from one month up 

to seven years for WTI crude oil, from one to eighteen months for heating oil, from one 

to twelve months for RBOB gasoline and from one month to six years in the case of 
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Henry Hub natural gas. However, liquidity is scarce for the futures with longer 

maturities, mostly in the case of gasoline.  

In the estimation of the models presented below a representative set of maturities has 

been used for each commodity. Thus, in the case of WTI crude oil, the data set is 

comprised of contracts F1, F4, F7, F11, F14, F17, F20, F24 and F27, where F1 is the 

contract for the month closest to maturity, F2 is the contract for the second-closest 

month to maturity, and so on. In the case of heating oil, the data set is comprised of 

contracts F1, F3, F5, F7, F10, F12, F14, F16 and F18. In the case of RBOB gasoline, 

the data set contains contracts F1, F3, F5, F7, F9 and F12. Finally, in the case of Henry 

Hub natural gas, the data set contains contracts F1, F5, F9, F14, F18, F22, F27, F31 and 

F35. The main descriptive statistics of these variables are contained in Table 1.  

 

Convenience Yield 

The estimation of the convenience yield series is carried out using the procedure defined 

in Gibson and Schwartz (1990). Based on the convenience yield definition, 

TrT eSeF ·· ·· =δ , we have: 

)}12/)·(·exp{()_,( __ xrSmonthsxSF monthsxmonthsx δ−=  

where rx_months is the interest rate of a zero coupon bond with x months to maturity and 

δx_months is the convenience yield in x months for this commodity. Analogously: 

)}12/)1)·((·exp{()_1,( _1_1 +−=+ ++ xrSmonthxSF monthxmonthx δ  

where rx+1_month is the interest rate of a zero coupon bond with x+1 months to maturity 

and δx+1_month is the convenience yield in x+1 months for this commodity. 

From these expressions we have: 

 ( ) ( )[ ]{ })12/1·(·)·1(·)·1(exp
)_,(

)_1,(
__1__1 monthxmonthsxmonthxmonthsx xxrxrx

monthxSF

monthsxSF
δδ −+−−+=

+
++

    (1) 
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On the other hand, by definition: 

( ){ } )}12/1·(exp{)12/1·(·)·1(exp _1_____1 monthsxtoximplicitmonthxmonthsx rrxrx ++ =−+  

where rimplicit_x_to_x+1_months is the implicit interest rate from x months to x+1 months, and 

( ){ } )}12/1·(exp{)12/1·(·)·1(exp _1_____1 monthsxtoximplicitmonthxmonthsx xx ++ =−+ δδδ  

where δimplicit_x_to_x+1_months is the implicit convenience yield from x months to x+1 

months. 

Taking into account these definitions, expression (1) can be written as: 

 )}12/1)·(exp{(
)_,(

)_1,(
_1____1___ monthsxtoximplicitmonthsxtoximplicitr

monthxSF

monthsxSF
++ −=

+
δ  

or equivalently:  







 +

−= ++ )_,(

)_1,(
·ln12_1____1___

monthxSF

monthsxSF
r monthsxtoximplicitmonthsxtoximplicitδ  

δimplicit_x_to_x+1_months can be used as a proxy for the instantaneous convenience yield δt. 

Following this procedure we have estimated the convenience yield series for the four 

commodity futures prices series described above. The main descriptive statistics of 

these convenience yield series are summarized in Table 2. In Figure 1 we plot the time 

series evolution of some of the estimated convenience yields for the four commodities 

under study. It can be appreciated in the figures the mean-reverting and seasonality 

effects, although the pattern is less clear in the case of WTI crude oil. These issues are 

further discussed below. 

 

Preliminary Findings 

Previous studies found evidence of mean reversion in the convenience yield dynamics. 

From convenience yield data obtained as in the previous sub-section, Gibson and 

Schwartz (1990) show a strong mean reverting tendency in the convenience yield, 

which is consistent with the theory of storage (see, for example, Brennan,1985) in 



 96

which it is established an inverse relationship between the level of inventories and the 

relative net convenience yield.  

Fama and French (1987) pointed out that seasonals in production or demand can 

generate seasonals in inventories. Under the theory of storage, inventory seasonals 

generate seasonals in the marginal convenience yield. Following this reasoning, 

Borovkova and Geman (2006) present a model allowing for a deterministic seasonal 

premium within the convenience yield. 

Here, using the estimated convenience yield series from the previous sub-section for the 

four commodities under study, we will investigate the existence of mean reverting and 

seasonal effects in the convenience yield. 

Table 3 presents the results of the unit root tests for WTI, heating oil, gasoline and 

Henry Hub natural gas convenience yield series.  The empirical evidence from previous 

studies of mean reversion is confirmed in the present work using the standard 

Augmented Dickey-Fuller test. Specifically, we are able to reject the null hypothesis of 

a unit root in all the cases, with the only exception of WTI crude oil (mostly as we go 

further in time). These results are coherent with the time evolution of the series shown 

in Figure 1. 

The presence of seasonality in the estimated convenience yield series is assessed 

through the Kurskal-Wallis test. To perform the test we have computed monthly 

averages from the weekly estimated convenience yield series. The null hypothesis of the 

test is that there are no monthly seasonal effects. The results of the test are shown in 

Table 4. The results indicate the rejection of the null hypothesis of no seasonal effects in 

all cases, except for WTI crude oil. The seasonal effects are even clearer in the cases of 

RBOB gasoline and Henry Hub natural gas convenience yield series. These seasonal 

effects are evident in Figure 1. 
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As explained above, Borovkova and Geman (2006) allow for a deterministic seasonal 

premium within the convenience yield. However, it may be possible that seasonal 

effects in the convenience yield are stochastic rather than deterministic. Garcia et al. 

(2012) present a model for the stochastic behavior of commodity prices allowing for 

stochastic seasonality in commodity prices. Following this idea, we will check for the 

existence of stochastic seasonal effects in the convenience yield series. 

The RBOB gasoline34 convenience yield spectrum and its first differences are depicted 

in Figure 2, assuming that the series follows an AR(1) process with yearly seasonality, 

following the procedure described in Garcia et al. (2012). As explained by Garcia et al. 

(2012), sharp spikes in the spectrum are likely to indicate a deterministic cyclical 

component, while broad peaks often indicate a nondeterministic seasonal component. 

The asterics (*) shown in the Figure denote harmonic points, calculated as 2πk/12 

(peaks) and π(2k-1)/12 (troughs), where k = 1, 2, 3, 4, 5 and 6. 

Looking at Figure 2, it seems that, more or less, the spectrum exhibits broad peaks and 

thoughts, suggesting that seasonality in convenience yields is stochastic rather than 

deterministic. However, these results must be taken with care, as aliasing effects and 

estimation errors can confuse deterministic and stochastic patterns. 

In Figure 3 we plot the forward curves for the estimated convenience yield series on a 

representative date (July 4, 2011) in the case of Henry Hub natural gas prices35. Looking 

at the figure it can be appreciated that both futures and convenience yield series present 

an evident seasonal pattern. Moreover, it is interesting to observe how the seasonal 

picks in the convenience yield series are delayed three months compared to those 

observed in the futures series. 

 
                                                 
34 The patter for the rest of commodities is very similar. 
35 For short only the figure for Henry Hub natural gas is presented. The pattern is similar in the rest of the 
cases. 
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3.3 THE PRICE MODEL 

In this section, we show that a four-factor model for the stochastic behavior of 

commodity prices, with two long- and short-term factors and two additional seasonal 

factors, can accommodate some of the most important empirically observed 

characteristics of commodity convenience yields described in Section 2, such as mean 

reversion, stochastic seasonality and a three months delay in the convenience yield 

seasonality with respect to the spot price seasonality.  

 

General Considerations 

Based on the convenience yield definition, TrT eSeF ·· ·· =δ ,taking into account that the 

spot price (St) and the convenience yield (δt) are stochastic if T > 0, the previous 

equation can be expressed as an SDE in the following way:  

( ) *
tttt dWdtrSdS σδ +−=         (2) 

which is the classical definition of the convenience yield under the Q-measure (see, for 

example, Schwartz, 1997, or Casassus and Collin-Dufresne, 2005). Under the P-

measure the SDE can be expressed in the following way:  

( ) tttt dWdtSdS σδµ +−=                       (3) 

To characterize the convenience yield dynamics, let ( )tt SX log=  be the log of the spot 

price. If we assume a linear model, like in the studies listed above, its general dynamics 

is given by: 

( )
( )




+=

++=

tt

ttt

CXS

RdWdtAXmdX

0exp φ
                   (4) 

As it shall be proven in appendix B, the model above has an explicit (unique) solution 

(note that it is enough to solve for tX ):  
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



 ++= ∫∫ −− t

s

As
t

AsAt

t RdWemdseXeX
000 . 

Note that ( )tt CXS += 0exp φ  and we would like to establish a stochastic differential 

equation for tS . Taking differentials and using Ito’s lemma: 

( ) ( ) ( )( ) ( )( ) 




 +=+++= '
2

1
exp

2

1
exp ''

00 CdXdXCCdXSCdXdXCCXCdXCXdS tttttttttt φφ
 

Using the fact that 0== tdtdWdtdt  and ( )( ) IdtdWdW tt ='  we obtain:  

( ) 




 +++= dtCCRRCRdWdtAXmCSdS tttt ''
2

1
 

and finally: 









+







 ++= tttt CRdWdtAXCRRmCSdS ''
2

1
        (5) 

If m is defined as



















=

0

0

M

µ

m , which is necessary to the model be maximal (or globally 

identifiable), we get that Cm = µ and from (4):  








 +−= tt AXCRRC ''
2

1
δ                     (6) 

Therefore, with (6) we can obtain the convenience yield dynamics from the model 

factors dynamics.  

 

Theoretical Model 

Here we are going to present a model to characterize the commodity prices dynamics 

which takes into account the seasonal effects and which is coherent with the previous 

findings.  
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In the four-factor model in Garcia et al. (2012), the log spot price (Xt) is the sum of 

three stochastic factors, a long-term component (ξt), a short-term component (χt) and a 

seasonal component (αt). 

ttttX αχξ ++=          (7) 

The fourth stochastic factor is the other seasonal factor (αt
*), which complements αt. 

The SDEs of these factors are: 

tt dWdtd ξξξ σµξ +=          (8) 

     ttt dWdtd χχσκχχ +−=          (9) 

     ttt dWdtd αασπϕαα += *2        (10) 

                
ttt dWdtd *2*

αασπϕαα +−=        (11)

                  

 Equations (8) and (9) are identical to equations (2) and (1), respectively, in 

Schwartz and Smith (2000). 

 This model is “maximal” in a sense of Dai and Singleton (2000). Even more this 

model is Dai-Singleton A0(4) as can be seen in Appendix C. To see this, note that in the 

canonical form given by expressions (4): 



















−

−
=

k

k

a

A

πϕ
πϕ

α

200

200

000

000

 

and the model is globally identifiable. The García et al. (2012) model imposes the 

restriction 0== ka  and 0>α . And, as a restriction of a globally identifiable model 

imposing concrete values and intervals to the parameters, it is also globally identifiable 

and maximal. 
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As stated above, in Garcia et al. (2012) model we have36: 


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 Under this model, using expression (6), the convenience yield can be written in the 

following way: 

*
**

222 2)222222(
2

1
ttt k πϕαχρσσρσσρσσρσσρσσσσσδ χααχχααχχααξχααξξχχξαχξ −++++++++−=

  (12) 

 As can be appreciated in the previous expression, δt does not depend on the long-

term factor, ξt, neither the seasonal factor, αt. However, it depends on the sum of factor 

variances, the short-term factor, χt, (times the speed of mean reversion) and the seasonal 

factor that complements the one defined in the spot price, αt
*, (times the seasonal 

frequency). In other words, the convenience yield is the sum of a constant term plus a 

short-term factor plus a seasonal factor. 

 The fact that δt is stationary (does not depend on the long-term factor and depends 

on the short-term one) in the previous expression is coherent with the fact that the two 

factor model defined in Schwartz-Smith (2000) is equivalent to the one defined in 

Schwartz (1997) in which δt follows an Ornstein-Uhlenbeck process, which is a mean-

reverting one. It is clear, therefore, that δt should depends on χt instead of ξt. It is also 

clear that the dependency should be modulated by k because the higher the mean-

                                                 
36 As can be seen in García et al. (2012), ραα* = 0 and σα = σα*. 
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reverting speed, the higher the benefit of holding the physical asset. Think, for example, 

in a shortage, if the price come back to its equilibrium level in a short-term period (high 

mean-reverting speed) the  owner of the physical asset can sell the commodity and buy 

it again in a short-period (consequently with a low cost) getting the benefit. In the other 

hand, if the price delay in coming back to their equilibrium level (low mean-reverting 

speed), the owner of the physical asset has to buy the commodity again at a higher price 

or he is not going to be able to keep the production process running. 

 Taking into account expression (2), and getting around the stochastic part of it, it is 

clear that: t

t

t

dtS

dS
δ−∝ . As *2 t

t

dt

d
πϕα

α
= , it is not suppressive that δt depends on αt

* 

instead of αt, that implies a π/2 lag in the convenience yield seasonality with respect 

spot price seasonality. As in the previous case, the dependency should be modulated by 

ϕ because the higher the seasonal frequency, the higher the benefit of holding the 

physical asset. 

 The same can be said about the sum of factor variances, the higher the variance the 

higher is the convenience yield (in absolute value) because the benefit of holding the 

physical asset is higher. It is interesting to note that the convenience yield depends on 

the sum of the factor variances instead of the spot price variance, that is, depends on the 

whole system variance and not only the variance of the factors which compose the spot 

price. 

 Finally, it is worth noting that expression (12) for the convenience yield is coherent 

with the empirical facts observed for the convenience yield in Section 2.2: mean 

reversion, (stochastic) seasonality and a three months (π/2) lag in the convenience yield 

seasonality with respect to the spot price one. 
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Estimation Results 

Here, we present the results of the estimation of the four-factor model for the four 

commodities presented above. The models presented in Section 3.1 were estimated 

using the Kalman filter methodology, which is briefly described in Appendix A. The 

results are shown in Table 5.  

It is found that in all cases the seasonal factor volatility (σα) is significantly different 

from zero and the seasonal period (ϕ) is more or less one year, implying that seasonality 

in all four commodity prices is stochastic with a period of one year, which is consistent 

with the results obtained by Garcia et al. (2012). Moreover, the speed of adjustment (k) 

is highly significant, implying, mean reversion in commodity prices, which is coherent 

with the results obtained by Schwartz (1997). It is also found that the long-term trend 

(µξ) is positive and significantly different from zero in all cases, implying long-term 

growth in commodity prices, specially in the cases of RBOB gasoline, heating oil and 

WTI crude oil. 

It is also interesting to note that short-term volatility (σχ) is higher than long-term 

volatility (σξ) in all cases, which is coherent with the results found by Schwartz (1997) 

and Garcia et al. (2012).  

 Concerning the market prices if risk, it is found that the risk premium associate with the 

long-term factor (λξ) is significantly different from zero in all cases, whereas the risk 

premium associated with the short-term one (λχ) is not, suggesting that the risk 

associated with the long-term factor is more difficult to diversify than the risk 

associated with the short-term one. Moreover, the market prices of risk associated with 

the real and complex parts of the seasonal component (λα and λα* respectively) are not 

significantly different from zero in most of the cases, suggesting that the risk associated 

to the seasonal component can be diversified in most of the cases. 
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However, from the point of view of the goal of this chapter it is interesting to analyze 

the influence of the estimated parameters for each commodity on its convenience yield. 

As stated above, the speed of adjustment (k) is relatively high and significantly different 

from zero in all cases, implying high convenience yield, especially in the case of RBOB 

gasoline, followed by Henry Hub natural gas. It is also found that the highest value of 

the seasonal period (ϕ) is found in the case of Henry Hub natural gas, followed by 

RBOB gasoline , heating oil and WTI crude oil, implying higher convenience yield for 

Henry Hub natural gas and lower for WTI crude oil (in absolute value). Finally, from 

the estimated vales shown in Table 5 it is easy to compute the term in parenthesis in 

expression (12), involving the standard deviations and the correlations among the model 

factors. It is found that the highest value for this term, and therefore the highest absolute 

value for the convenience yield, corresponds to Henry Hub natural gas (with a value of 

0.2336), followed by RBOB gasoline (0.1296), WTI (0.1128) and heating oil (0.0993). 

Therefore, we can conclude that the highest estimated values of the convenience yield 

are found in the cases of Henry Hub natural gas and RBOB gasoline. 

Finally, Figure 4 shows the time series evolution of the estimated seasonal components 

and the estimated convenience yield, both obtained with the four-factor model. It can be 

appreciated the three months delay of convenience yields (green line) seasonality with 

respect to the commodity price seasonality (blue line), although the pattern is less clear 

in the case of WTI crude oil. The seasonal pattern is less clear in the case of WTI, which 

is coherent with the results found in Section 2. 

 

3.4 THE CONVENIENCE YIELD MODEL 

Here we present a model for the stochastic behavior of convenience yields. This model 

will account for stochastic seasonality. Moreover, it could be the case that in certain 
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commodities like crude oil, in which there were not observe seasonality, it is possible 

that there is a weak seasonal component, which is hidden by other factors, and this 

seasonal component can be estimated through the convenience yield.  

Specifically, the proposed model for the convenience yield is the three-factor model by 

Garcia et al. (2012). This model will allow us to estimate crude oil seasonality through 

its convenience yield and to compare spot price and convenience yield seasonality. 

 

Theoretical Model 

Here we present a model to characterize the commodity convenience yield dynamics 

which takes into account the seasonal effects and which is coherent with the previous 

findings.  

The proposed model for the stochastic behavior of convenience yields is the three-factor 

model in Garcia et al. (2012)37. In this three-factor model the spot convenience yield  

(Xt) is the sum of a deterministic long-term factor (ξt) and two stochastic factors38, a 

short-term component (χt) and a seasonal component (αt): 

ttttX αχξ ++=                   (13) 

The third stochastic factor is the other seasonal factor (αt
*), which complements αt. The 

SDEs of these factors are:      

dtd t ξµξ =        (14) 

     ttt dWdtd χχσκχχ +−=        (15) 

     ttt dWdtd αασπϕαα += *2        (16) 

                                                 
37 A four factor model like the one presented in section 3 has been estimated for the convenience yield, 
however the stochastic parameters related with the long-term factor were no significant, which confirms 
previous evidence regarding the strong mean-reverting behavior of convenience yield series. 
38 It should be noted that in the original three-factor model by Garcia et al. (2012) the log-spot price is the 
sum of three stochastic factors. However, here we model directly the convenience yield price instead of 
its log, given that the convenience yield can take negative values. 
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ttt dWdtd *2*

αασπϕαα +−=            (17)

                  

As shown in the case of the four-factor model, this model is “maximal” in the sense of 

Dai and Singleton (2000). Even more this model is Dai-Singleton A0(3), as can be seen 

in Appendix C.  

 

Estimation Results 

The three factor model presented above has been estimated though the Kalman filter 

methodology, using the convenience yield data estimated in Section 2. The results of the 

model estimation are shown in Table 6. The results indicate a high degree of mean 

reversion (high value of κ), mostly in the case of Henry Hub natural gas, which is 

coherent with the preliminary results obtained in Section 2.  

However, the most important issue in Table 6, from the point of view of this chapter 

goal, is the fact that the standard deviation of the seasonal factor (σα) is significantly 

different from zero for all four commodities. This result is suggesting that convenience 

yields not only show seasonality, but this seasonality is stochastic rather than 

deterministic. Moreover, the values of the standard deviation of the seasonal factor 

obtained in Table 6 for the convenience yield series are considerable higher than those 

obtained in Table 5 for the commodity price series. This result is suggesting that 

seasonality is even clearer in the convenience yield series than in the commodity price 

ones. It is interesting to observe the high values of σα obtained in the cases of RBOB 

gasoline and Henry Hub natural gas convenience yield series, which is coherent with 

results shown in Figure 1. It is also very interesting to observe that the WTI 

convenience yield series (and the WTI futures prices series in Table 5) also shows 
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evidence of stochastic seasonality, although the tests in Section 2 did not detected 

evidence of seasonality in the case of WTI crude oil convenience yield series. 

Looking at expression (12) it is clear that the short-term component in the convenience 

yield is equal to the short-term component in the spot price multiplied by the speed of 

adjustment in the four-factor model (κ). Given that the estimated values of κ in the four-

factor model (Table 5) are not very far from one, the standard deviations of the short-

term components in the convenience yield and the spot price series should be similar. 

This is the result found in the cases of RBOB gasoline and heating oil. The values of the 

standard deviations of the short-term component in the WTI and Henry Hub natural gas 

convenience yield series (Table 6) are higher than the corresponding values in the spot 

price series (Table 5) due to the high variability found in these convenience yield series, 

as can be appreciated in Figure 1.  

Moreover, from expression (12) we can conclude that the seasonal component in the 

convenience yield is equal (in absolute value) to the complementary seasonal 

component in the spot price multiplied by 2πϕ. Given that the estimated values of the 

seasonal period (ϕ) in Table 5 are very close to one, the standard deviation of the spot 

price complementary factor39 should be similar to the standard deviation of the 

convenience yield divided by 2π. In the case of WTI crude oil the standard deviation of 

the complementary seasonal factor in the spot price model is 0.0106, whereas the 

standard deviation of the seasonal factor in the convenience yield model (divided by 2π) 

is 0.00844. The figures in the case of heating oil are 0.0118 and 0.0115 respectively. In 

the case of RBOB gasoline these figures are 0.0425 and 0.0760 respectively. Finally, 

the figures in the case of Henry Hub natural gas are 0.0385 and 0.0600 respectively. 

                                                 
39 Remember that in the four-factor model σα =σα*. 
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This result can be corroborated looking at Figure 4. In this Figure the estimated 

convenience yield (green line) shows a very similar patter to the complementary 

seasonal factor (α*) in the four-factor model (red line), although as before the pattern is 

less clear in the case of WTI crude oil.  

Table 7 presents a summary of the influence of the seasonal components on the 

commodity price (four-factor model for commodity spot prices) and on the convenience 

yield (three-factor model for convenience yields). Specifically the table shows the 

average weights of the seasonal factors (α and α*) in the log-price of the commodity 

(Panel A) and in the convenience yield (Panel B)40. It is quite striking to observe how 

the weights of the seasonal components are considerable higher in the model for the 

convenience yield (Panel B). In both panels the highest weights are achieved in the 

cases of RBOB, heating oil and Henry Hub natural gas. Finally, it is also interesting to 

observe the relative high weight of the seasonal pattern on the convenience yield in the 

case of WTI crude oil, suggesting that in commodities like crude oil, in which there 

were not observe seasonality, that there is a weak seasonal component and this seasonal 

component can be estimated through the convenience yield. 

In summary, we can conclude that the estimated convenience yield series show 

evidence of stochastic seasonality and that this seasonality is even clearer than in the 

case of commodity spot prices series. This result is suggesting that commodity price 

seasonality can be better estimated through convenience yields rather than through 

futures prices. The reason is that futures prices are driven for many things, such as 

supply, demand, political aspects, speculation, weather conditions, etc. Therefore, 

sometimes it may be difficult to extract the seasonal component from futures prices. 
                                                 
40 The weight of the sum of the two seasonal factors (α and α*) over the convenience yield price in Panel 
B of Table 7 is greater than 100%. This is due to the fact that in the three-factor model the convenience 
yield is the sum of a long-term (ξ, deterministic) component, a short-term (χ, stochastic) component and a 
seasonal (α, stochastic) component. The other seasonal component, α*, does not influence the 
convenience yield price. 
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However, as shown in Section 2, the convenience yield is estimated though a ratio of 

two futures prices, so many of these non-seasonal factors tend to disappear, facilitating 

the estimation of the seasonal component.  

 

3.5 CONCLUSIONS 

This chapter focuses on commodity convenience yields. Convenience yields for four 

energy commodities (WTI crude oil, heating oil, RBOB gasoline and Henry Hub natural 

gas) are estimated using the procedure defined in Gibson and Schwartz (1990), finding, 

as in previous studies, that convenience yields exhibit seasonality and mean reversion. 

Based on this empirical evidence, we present a factor model in which the convenience 

yield exhibits mean reversion and stochastic seasonality. Specifically, we show that the 

four-factor model presented by Garcia et al. (2012), with two long- and short-term 

factors and two additional trigonometric seasonal factors, can generate stochastic 

seasonal mean-reverting convenience yields. Moreover, it is found a π/2 lag in the 

convenience yield seasonality with respect to spot price seasonality. 

Based on this evidence, the next step is to present a theoretical model to characterize the 

commodity convenience yield dynamics which is coherent with the previous findings. 

Specifically, the model takes into account mean reversion and stochastic seasonal 

effects in the convenience yield. We also show that commodity price seasonality can be 

better estimated through convenience yields rather than through futures prices. The 

reason is that futures prices are driven for many things, such as supply, demand, 

political aspects, speculation, weather conditions, etc. Therefore, sometimes it may be 

difficult to extract the seasonal component from futures prices. However, the 

convenience yield is estimated though a ratio of two futures prices, so many of these 
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non-seasonal factors tend to disappear, facilitating the estimation of the seasonal 

component. 
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APPENDIX A. ESTIMATION METHODOLOGY 

The Kalman filter technique is a recursive methodology that estimates the unobservable time 

series, the state variables or the factors (Zt) based on an observable time series (Yt) that depends 

on these state variables. The measurement equation accounts for the relationship between the 

observable time series and the state variables:    

     ttttt ZMdY η++=    t = 1, …, Nt,    (A1) 

where h

t

nxn

t

n

tt ZMdY ℜ∈ℜ∈ℜ∈ ,,, , h is the number of state variables, or factors, in the 

model, and n

t ℜ∈η  is a vector of serially uncorrelated Gaussian disturbances with zero mean 

and covariance matrix Ht. 

In the estimation procedure, a discrete time version of this equation is necessary; in the case of 

the joint model with a common long-term trend for the three commodities, this equation is given 

by the following expressions: 
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 and i

TF 1 is the price of a futures 

contract for the commodity “i” (i=1,2,3) with maturity at time “T1+t” traded at time t. In 

principle, it would be possible to use a different number of futures contracts for each 

commodity; however, in this work, we consider it more suitable to use the same number (“n”) 

of futures contracts for all commodities. 

The transition equation accounts for the evolution of the state variables:  

     ttttt ZTcZ ψ++= −1    t = 1, …, Nt,         (A2) 

where h

t

hxh

t

h

t andTc ℜ∈ℜ∈ℜ∈ ψ,  is a vector of serially uncorrelated Gaussian 

disturbances with zero mean and covariance matrix Qt. 
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In the case of the joint model with a common long-term trend for the three commodities, the 

discrete time version of this equation, which is needed in the estimation procedure, is given by 

the following expressions: 
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Here, 1| −ttY  is the conditional expectation of Yt, and tΞ  is the covariance matrix of Yt 

conditional on all information available at time t – 1. After omitting unessential constants, the 

log-likelihood function can be expressed as 

∑ ∑ −
−

− −Ξ−−Ξ−=
t t

tttttttt YYYYl )()'(||ln 1|
1

1| .        (A3) 
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APPENDIX B. STOCHASTIC DIFERENTIAL EQUATIONS (SDE) 

INTEGRATION 

Most of the models proposed in the literature assume that the risk-neutral dynamics of a 

commodity price (or its log) is given by a linear stochastic differential system: 

( )




=

++=

tt

ttt

cXY

RdWdtAXbdX
 

where tY  is the commodity price (or its log), b, A, R and c are deterministic 

parameters41 independent of t ( nnxnn cRAb ℜ∈ℜ∈ℜ∈ ,,, ) and Wt is a n-dimensional 

canonical Brownian motion (i.e. all components uncorrelated and its variance equal to 

unity) under the risk-neutral measure. 

Let us see that the solution of that problem is42: 
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In order to proof it, we shall apply the general rule for the derivation of the product of 

stochastic components (Oksendal, 1992): 
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It is easy to show that: 

t

AtAt
t t

s

AsAs RdWebdteRdWebdseXd −−−− +=



 ++ ∫ ∫0 00  

                                                 
41 Again note that R does not need to be computed. 

42 Even in the case that b, A and R were function of t, if At and dsA
t

s∫0 commute, the solution of that 

problem is (B1). 
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The first differential only has elements of type dt, hence the product of the first 

differential times the second differential is zero. 

Thus:  

[ ] tttt

AtAtAt
t t

s

AsAsAt

t RdWbdtdtXARdWebdteeRdWebdseXdtAedX ++=++



 ++= −−−−∫ ∫0 00

Consequently we obtain expression (B1): 
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t
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t RdWebdseXeX
000 .               

It is easy to prove that the solution is unique (Oksendal, 1992). 
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APPENDIX C. CANONICAL REPRESENTATION 

Introduction 

In this appendix, we shall see how our models can be related to Dai-Singleton A0(n) 

class, with the important distinction of allowing complex eigenvalues. Afterwards, we shall 

show global identification properties.  

General setup 

Let ( )tt SZ log=  be the log of the spot price. If we assume a linear model, its real 

dynamics is given by: 
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whereas its risk neutral dynamics is given by: 
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where R  is full rank lower triangular (we shall examine this assumption later). We 

would like to know how this general setup can be reduced to a model which is maximal, 

i.e. cannot be reduced to an equivalent model with less states and parameters (another 

way to see this is saying that has the maximum number of identificable parameters). We 

shall concentrate first in (F). 

First of all, (see for example Sontag 1990), a model has the minimal number of states if 

and only if is observable and controlable, i.e. n

CA
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
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−1

...
 (observability 

condition) and ( ) nRARAARRrank n =−12 ...  (controlability condition). As the latter is 

always satisfied if R is full rank, we just impose the former. Moreover, in the context of 
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stochastic systems, controlability plays a small role as it means that some states are 

unaffected by noise so whether they are observationally equivalent to other system 

depends only on initial states.  

Invariant transformations 

Following Dai and Singleton, we allow for the following transformations 

1. Affine transformations of states: tt GXvX +=
~

 where G  is nonsingular and v  is 

an arbitrary vector. Note the important role of constants 0φ  and 1φ . If they where 

not present and output equation were tCX , then v  could not be arbitrary but instead 

would have to accomplish 0=Cv . 

2. Rotations of brownian motions. tt UWW =
~

 where IUU T =  as Brownian motion 

is unobserved. 

Note that these transformations preserve observability and rank of R. 

Relationship with A0(n)   

We shall first show now how to relate our model to Dai-Singleton A0(n) class, i.e. a 

system like: (DS) ( )





+=

Σ+−=

tt

ttt

YCS

WddtKYdY
~

exp

~

0δ
 where IR = , ( )1...1=C  and K  is lower 

triangular with all their diagonal elements strictly positive, i.e. 0>iiK . 

This means several restrictions within the system: 

1. The dynamics matrix -K is full rank and all their eigenvalues are real and negative. 

2. Noise matrix is also full rank. 

All these properties are preserved through invariant transformations, so we would have 

to impose them on our system. But we have complex eigenvalues, so we have to use a 

different, although similar, canonical form. To sum up, we replace Dai-Singleton 

restrictions with others, so our approaches are similar but not directly comparable. 
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First canonical form  

If all eigenvalues are different then the pair (F) can be reduced to: 

(F1) 
( )
( )



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=

++=

tt

ttt

XCS

WdRdtXAmXd
~~

exp

~~~~~~

, where  

1. A
~

 is diagonal (real only if there are no complex eigenvalues) 

2. ( )1...11=C .  

3. R
~

 is lower triangular and all its diagonal elements are strictly possitive. 

4. 







=

0
~ 0m
m  with ℜ∈0m  

Moreover, if we start with a canonical form (F1) the system is observable and 

controlable (therefore has the minimal number possible of states). 

Proof 

If all the eingenvalues are different, then A  is diagonalizable. Therefore, changing the 

base, we have a representation where A
~

 is diagonal. We shall see now that all elements 

in C  are not null. 

Let )...(
~

1 ndddiagA = . By the observability condition, the matrix 





















−1~~
...

~~

~

nAC

AC

C

 is full rank. 

But this matrix equals 



















−−− 11
22

1
11

2211

21

...

............

...

...

n

nn

nn

nn

n

dcdcdc

dcdcdc

ccc

. Should any of the ic  be null, then 

its full column would be null and therefore the system would not be observable. This 

also proves that, starting from canonical form (F1), the system is observable. 
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As a result, we can define the transformation 







=

ncc
diagL

1
,...,

1

1
0 . Under this change 

of variable, ( )1...1
~
=C  and A

~
 is diagonal. Using a suitable ortogonal transformation of 

the noise, we can also impose the conditions on R
~

 via a Choleski decomposition (thus 

proving also that the system is controlable, due to the fact that noise matrix is full rank). 

Now for the form of m~ . We define the new state as 



















−

−

+++

−=

nn

nn

tt

d

d

dd

XX

/

...

/

/.../

~~~ 22

220

µ

µ

µµφ

. Clearly it verifies the conditions. 

 

Complex eigenvalues  

It is now time to consider complex eigenvalues. The results are essentially the same, but 

the canonical form is slightly different. Both are, however, perfectly equivalent. We 

need a few previous lemmas. 

 

Lemma 

If A  is a 2x2 real matrix with complex eigenvalues ϕik ±  and C  ia a 2x1 real matrix 

such that the pair ( )CA,  is observable then 

1. A  is diagonalizable and, if 








−

+
=Λ

ϕ
ϕ

ik

ik

0

0
 and 







 −
=

i

i
H

1

1
 then 










−
=Λ−

k

k
HH

ϕ
ϕ1  

2. There exist a real matrix T  such that 








−
=−

k

k
ATT

ϕ
ϕ1  and ( )01=CT  
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Proof 

A  has two all eigenvalues distinct therefore is diagonalizable. As it is real, its 

eigenvalues are conjugate. 

We just have to do the product. 






 −









−

+









−
=Λ−

i

i

ik

ik

ii
HH

1

1

0

011

2

11

ϕ
ϕ

. It equals 










−
=









+−

+−+









− k

k

ikik

ikik

ii ϕ
ϕ

ϕϕ
ϕϕ11

2

1
 

In order to proof part 2, let us get back to the original A . It has two eigenvectors, but is 

a real matrix. Therefore, if v  is an eingenvector associated to an eigenvalue λ , then 

vAv λ= . Taking conjugates, vvA λ= . But A  is real, therefore AA =  so vvA λ= . It 

means that v  is the eingenvector associated to the other eigenvalue.  

Let 







=

22

11
0

vv

vv
T  be the matrix of eigenvectors. Then 0

1
00

0
ATT

ik

ik −=








−

+

ϕ
ϕ

. 

Let HTT 01 = . We know then, 1
1

1 ATT
k

k −=








−ϕ
ϕ

. We shall proof know that 1T  is 

real. 

[ ] [ ]
[ ] [ ]

2x2

22

11

2222

1111

22

11

ImRe

ImRe
2

1

1
ℜ∈








=








+−+

+−+
=







 −








vv

vv

vivvv

viivvv

i

i

vv

vv
 

Finally, let ( )21 ,ccC = . As ( )CA,  is observable, 02
2

2
1 >+ cc .We define 








 −

+
=

12

21

2
2

2
1

0

1

cc

cc

cc
H  We know ( )010 =CH  

=







−









−






 −

+
=









−
−

12

21

12

21

2
2

2
1

0
1

0

1

cc

cc

k

k

cc

cc

cc
H

k

k
H

ϕ
ϕ

ϕ
ϕ

 









=








−








+−

−+

+ k

k

cc

cc

ckcckc

kccckc

cc ϕ
ϕ

ϕϕ
ϕϕ

12

21

2112

2121

2
2

2
1

1
 

So, defining 01HTT =  we get the result. 
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Lemma 

Let nxnnxk AC ℜ∈ℜ∈ ,  be real matrices where all eigenvalues of A  are different. 

There exist a real matrix T  such that 



















=−

rA

A

A

ATT

...00

............

0...0

0...0

2

1

1  ( )rCCCT ...1
1 =−  

where ( ) ℜ∈= jjAeig λ  or ( ) { }
jjjjj ikikAeig ϕϕ ++= ,`  

Proof 

Let pλλ ,...,1  be the real eigenvalues and qq µµµµ ,,...,, 11  be the complex ones. Let 

pvv ,...,1  and qq wwww ,,....,, 11  be the corresponding eigenvectors. We define the 

subspaces ( )ii vSpV =  and ( )iii wwSpW ,= . iV  is defined by a real vector (and thus has 

a real basis) and 






 −

+=
i

ww
wwSpW ii

iii ,  therefore has also a real basis. Let T  be the 

basis of all the subspaces together, which is a real matrix. 

Clearly qp

qp WWVV ⊕⊕⊕⊕⊕=ℜ + ...... 11
2  and all subspaces are −A invariant. Using 

the above real basis, we can partition 



















=−

rA

A

A

ATT

...00

...........

0...0

0...0

2

1

1  where
iVi AA =  or 

iWi AA =  thus verifying the thesis.  

We are now ready to state the complex canonical form. 

 

Second canonical form 

If all eigenvalues are different then (F) can be reduced to 

(F2)
( )
( )





=

++=

tt

ttt

XCS

WdRdtXAmXd
~

exp

~~~~~

, where all matrices are real and: 
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1. 



















=

rA

A

A

A

...00

...........

0...0

0...0

~ 2

1

 and either ℜ∈= iiA λ  or 








−
=

k

k
Ai ϕ

ϕ
 

2. ( )rCCC ...1=  each corresponding to iA  and 1=iC  if ℜ∈= iiA λ  or ( )01=iC  

otherwise. 

3. R
~

 is lower triangular and all its diagonal elements are strictly possitive. 

4. 







=

0
~ 0m
m  with ℜ∈0m  

Proof 

Combining the two previous lemmas, it is obvious that there is a real matrix that 

transforms A  and C  into the previous forms. By proceding as in the other third reduced 

form, we obtain the rest of the result. 

 

Maximality  

In order to show that the model set is maximal we see that the model is globally 

identificable, as in general the latter implies the former if all parameters are admisible. 

To see this, remember that in a globally identifiable model, different parameters give 

different realizations. Suppose that a model has n parameters and is not maximal but 

admits a representation with k<n parameters. By redefining the parameter space (under 

some conditions) it means that the last parameters are functions of the first, formally 

( )( )φϕφθ ,= . 

But, for a value *φ , we can take a differente value ( ) ( )( )**** ,, φϕφϕφ ≠  thus obtaining a 

different admisible value. The only way to avoid contradiction would be that 
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( ) ( )( )**** ,, φϕφϕφ ≠  achieve the same realization, but this is imposible since the model 

is globally identificable. We thus have to conclude that the model is not maximal. 

We shall first proof the version where spot prices are observable and then explain why 

risk premia can also be identified. 

 

Proposition 

If tS  is observable, model (F3) is globally identificable (incluiding the initial state 0X )  

Proof 

Let ( )tt SZ log= . We assume that we can observe the mean and variance of tZ  at any 

moment in time.  If the model has complex eigenvalues, we perform the transformation 

1
11

−










− ii
 for each iA  thus converting C  into ( )1...1  and making A  diagonal. If after 

this transformation the model is globally identificable, so is the original model. 

We know that ( ) =tZvar  ( ) ( )( ) ( ) ''expexp
0

1 CdtRRvecAuAuCvec
t





 ⊗∫−  (see García et 

al., 2012). It is the sum of exponencials of eigenvalues of A  and in all sums appears 

( )ii

ii

Td

RR
d

e ii

'
1−

. As ( )iiRR '  is not null and iid  is the double of an eingenvalue all 

eigenvalues are identified and so is A. Note that this argument os even valid if 0  is an 

engenvalue, as we would only be able to identify 1−n  values, which means that the 

other is 0. Therefore, no restrictions exists in the eigenvalues of A so any maximal 

model needs all. 

But, as ( ) ( )( ) ( ) ''expexp
0

1 CdtRRvecAuAuCvec
t





 ⊗∫− , if A is identified, so is 'RR  (in 

the complex case is ''HHRR  where H  is the change of variable, but we can get the 
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original by multiplying by both inverses). We just have to extract from the integrals (as 

all integrals are positive). Therefore 'RR  and A are identified. 

We have now two cases. Let us first assume A  is NOT full rank. Then, 

[ ] ( ) 















+



















=















+= ∫ −

0

...00

.............

0...0

0...01

1...1
0

0
00

0
0

1 tm
X

e

e
ds

m
eXCeY

td

td
t

AsAt

t

n

 

So we have the equality  [ ] n

tdtd

t XeXetmXYE n

002001 ...2 +++= . As all this functions 

are linearly independent, it means that all their coefficients are univocaly defined. 

Now, we shall assume that A  is full rank. We define 







=

A
A

0

00
, 








=

0

0
0

X
X

φ
 and 

( )rCCC ...1 1= . The system is still observable, by construction and we are back to the 

previous case.  

 

Risk premia 

It is now time to consider whether risk premia can be identified. If we start with model  

(F2)
( )
( )





=

++=

tt

ttt

XCS

WdRdtXAmXd
~

exp

~~~~~

 its risk neutral version is given by: 

(F2N)
( )
( )





=

++−=

tt

ttt

XCS

WdRdtXAmXd
~

exp

~~~~~
λ

 

We shall now assume that all futures are observable and show that the system, with the 

risk neutral dynamics is also globally identificable. 

 

Proposition 

In the above conditions, if [ ]tTt

Q

Tt ISEF /, +=  is observable, then model (F3N) is 

globally identificable. 
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Proof 

First, if TtF ,  is observable, making 0=T  it means that tS  is observable. So all 

parameters apart from (possibly) risk premia are identified. 

However, 



 +++= ∫∫ +

−−
+

T

ts

As
T

As

t

AT

Tt RdWedseXCeZ
001 λφ . If we take expectations 

with respect first to the first measure and after to the second [ ][ ]t

Q IEE /• , the Ito 

integral disapears and [ ] ttt

Q XIXE =/  only depends on identifiable parameters. 

Therefore we are left with [ ][ ] ( ) n

tdtd

tt

Q neemtIZEE λλλφ −−−−+= .../ 2101
2  in the 

singular A  case and without the t  term in the nonsingular case. Anyway, independent 

functions which means identifiable parameters. 

 

                   

REFERENCES  

• Borovkova, S. & Geman, H. (2006), “Seasonal and stochastic effects in commodity 

forward curves” Review of Derivatives Research, 9, 167-186. 

• Brennan, Michael J., 1958, The supply of storage, American Economic Review 48, 

50–72. 

• Brennan, Michael J., and Eduardo S. Schwartz, 1985, Evaluating natural resource 

investments, Journal of Business 58, 135–157. 

• Casassus, J. and Collin-Dufresne, P., 2005, Stochastic Convenience Yield Implied 

from Commodity Futures and Interest Rates, The Journal of Finance,  Vol. LX, No. 

5, 2283-2331.  

• Dai, Qiang, and Kenneth J. Singleton, 2000, Specification analysis of affine term 

structure models, Journal of Finance 55, 1943–1978.  



 125

• Fama, Eugene F., and Kenneth R. French, 1987, Commodity futures prices: Some 

evidence on forecast power, premiums and the theory of storage, Journal of 

Business 60, 55–73.  

• García A., Población J., Serna, G., 2012. The stochastic seasonal behavior of natural 

gas prices. European Financial Management 18, 410-443.  

• Gibson, Rajna, and Eduardo S. Schwartz, 1990, Stochastic convenience yield and 

the pricing of oil contingent claims, Journal of Finance 45, 959–976.  

• Hilliard, Jimmy E., and Jorge Reis, 1998, Valuation of commodity futures and 

options under stochastic convenience yields, interest rates, and jump diffusions in 

the spot, Journal of Financial and Quantitative Analysis 33, 61–86.  

• Hull, John, 2003, Options, Options, Futures and Other Derivatives, Fifth Edition 

(Prentice Hall, New Jersey).  

• Lucia, J. & Schwartz, E.S. (2002), “Electricity Prices and Power derivatives: 

Evidence from the Nordic Power Exchange” Review of Derivative Research, 5, 5-

50.  

• Manoliu, M. & Tompaidis, S. (2002), “Energy Futures Prices: Term Structure 

Models with Kalman Filter Estimation”, Applied Mathematical Finance, 9, 21.43.  

• Miltersen, K. and Schwartz, E., (1998), Pricing of Options on Commodity Futures 

with Stochastic Term Structures of Convenience Yields and Interest Rates. The 

Journal of Financial and Quantitative Analysis, Vol. 33, No. 1, pp. 33-59.  

• Oksendal B. 1992. Stochastic Differential Equations. An Introduction with 

Applications, 3rd ed. Springer-Verlag: Berlin Heidelberg.  



 126

• Schwartz, E.S. The stochastic behavior of commodity prices: Implication for 

valuation and hedging.  The Journal of Finance, 1997, 52, 923-973.   

• Schwartz, E.S., Smith, J.E. Short-term variations and long-term dynamics in 

commodity prices. Management Science, 2000, 46(7), 893-911.  

• Sontag, E. D. (1990). Mathematical Control Theory: Deterministic Finite 

Dimensional Systems. Second Edition, Springer, New York, 1998.  

• Sorensen, C. Modeling seasonality in agricultural commodity futures. The Journal 

of Futures Markets, 2002, 22, 393-426.  

• Todorova, M.I. (2004), “Modeling Energy Commodity Futures: Is Seasonality Part 

of it?”, Journal of Alternative Investments, 7, 10-31.  

• Wei, S. Z. C., and Z. Zhu. (2006). “Commodity convenience yield and risk premium 

determination: The case of the U.S. natural gas market”. Energy Economics, 28, 

523-534. 



 127

TABLES AND FIGURES 

TABLE 1 

DESCRIPTIVE STATISTICS. FUTURES PRICES 

 

The table shows the mean and volatility of the four commodity futures prices series. The 

sample period is 9/27/1999 to 7/4/2011 (615 weekly observations). F1 is the futures contract 

closest to maturity, F2 is the contract second-closest to maturity and so on. 

 

 WTI Crude Oil  Heating Oil  Gasoline  Henry Hub 
 Mean Volatility  Mean Volatility  Mean Volatility  Mean Volatility 
F1 55.06 31.30% F1 64.46 31.73% F1 64.59 36.81% F1 5.68 46.80% 
F4 55.59 26.49% F3 64.96 28.08% F3 64.19 30.13% F5 6.04 32.53% 
F7 55.57 23.83% F5 65.17 26.04% F5 63.73 26.26% F9 6.17 26.91% 
F11 55.36 21.69% F7 65.27 24.08% F7 63.37 24.53% F14 6.15 22.48% 
F14 55.17 20.57% F10 65.23 21.59% F9 63.24 24.31% F18 6.13 20.80% 
F17 54.98 19.72% F12 65.13 20.61% F12 63.00 23.77% F22 6.06 21.55% 
F20 54.80 19.05% F14 65.07 20.10% - - - F27 5.99 19.57% 
F24 54.60 18.44% F16 65.04 20.04% - - - F31 5.96 20.05% 
F27 54.48 18.13% F18 65.02 19.95% - - - F35 5.89 19.17% 

 

TABLE 2 

DESCRIPTIVE STATISTICS. CONVENIENCE YIELD 

The table shows the mean and volatility of the commodity convenience yield estimated 

prices series for the four commodities under study. The sample period is 9/27/1999 to 

7/4/2011 (615 weekly observations). δx_x+1 denotes the implicit convenience yield from “x” 

month to “x+1” months. 

 WTI Crude Oil  Heating Oil  Gasoline  Henry Hub 
 Mean Stand. Dev.  Mean Stand. Dev.  Mean Stand.Dev.  Mean Stand. Dev. 
δ1_2 -0.01 0.29 δ1_2 0.01 0.28 δ1_2 0.08 0.41 δ1_2 -0.30 0.58 
δ4_5 0.06 0.15 δ3_4 0.04 0.24 δ3_4 0.07 0.40 δ5_6 -0.06 0.52 
δ7_8 0.08 0.11 δ5_6 0.06 0.21 δ5_6 0.09 0.34 δ9_10 0.03 0.52 
δ11_12 0.08 0.09 δ7_8 0.06 0.19 δ7_8 0.08 0.33 δ14_15 0.06 0.48 
δ14_15 0.07 0.08 δ10_11 0.07 0.18 δ9_10 0.07 0.35 δ18_19 0.05 0.48 
δ17_18 0.07 0.07 δ12_13 0.06 0.17 δ12_13 -1.76 3.20 δ22_23 0.07 0.50 
δ20_21 0.06 0.06 δ14_15 0.06 0.16 - - - δ27_28 0.08 0.47 
δ24_25 0.06 0.05 δ16_17 0.06 0.15 - - - δ31_32 0.06 0.51 
δ27_28 0.06 0.04 - - - - - - - - - 
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TABLE 3 

UNIT ROOT TEST 

 

The table shows the statistic of the Augmented Dickey-Fuller (ADF) test. The MacKinnon 

critical values for the rejection of the null hypothesis of a unit root tests are -3.4408 (1%), -

2.8661 (5%) and -2.5692 (10%). 

 

 δ1_2 δ2_3 δ3_4 δ5_6 δ8_9 δ9_10 δ13_14 δ15_16 δ19_20 
WTI -3.9166 -2.7213 -2.8424 -2.8563 -2.4789 -2.5284 -2.3123 -2.0427 -2.2670 

Heating Oil -4.6782 -3.5201 -5.3899 -5.1484 -5.4680 -6.0645 -5.4280 -5.5776 - 

RBOB -7.7077 -6.7132 -6.4348 -6.8391 -5.7703 -5.4273 -5.8969 - - 

Henry Hub -5.8121 -5.8404 -6.2003 -6.8154 -6.7486 -7.5143 -6.8356 -7.4454 -7.7367 

 

TABLE 4 

SEASONALITY TEST 

 

The table shows the statistic of the Kruskal-Wallis test for the presence of seasonal effects in the 

estimated convenience yield series. The test statistic is distributed, under the null hypothesis of 

no seasonal effects, as a χ2 with 11 degrees of freedom. The critical value for the rejection of the 

null hypothesis at 99% is 24.725. 

 

 δ1_2 δ2_3 δ3_4 δ4_5 δ5_6 δ6_7 δ7_8 δ8_9 δ9_10 
WTI 3.1077 1.9255 1.3683 1.2326 1.1293 0.8077 1.1751 1.2313 1.5310 

H. Oil 44.1184 43.2305 49.3397 55.8876 65.7434 67.7825 72.0962 79.1446 82.5958 
RBOB 74.5228 85.3857 91.9193 92.2936 94.8757 99.9759 99.1085 99.1205 101.5181 
H. Hub 80.7324 82.6555 88.6157 101.8594 106.3644 107.5883 112.3180 113.4766 115.0153 
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TABLE 5 

ESTIMATION RESULTS. FOUR-FACTOR MODEL 

The table presents the results for the four-factor model applied to the four commodities under 

study: WTI crude oil, heating oil, RBOB gasoline and Henry Hub natural gas. Standard errors 

are in parentheses. The estimated values are reported with * denoting significance at 10%, ** 

denoting significance at 5%, and *** denoting significance at 1%. 

 

 WTI Heating Oil RBOB Henry Hub 
µξ  0.1132*** 

(0.0409) 
0.1158*** 
(0.0395) 

0.1084** 
(0.0474) 

0.0655** 
(0.0302) 

κ  1.0225*** 
(0.0101) 

1.0301*** 
(0.0143) 

1.9649*** 
(0.1691) 

1.1323*** 
(0.0206) 

ϕ  0.9566*** 
(0.0051) 

0.9978*** 
(0.0002) 

1.0029*** 
(0.0009) 

1.0088*** 
(0.0002) 

σξ 0.1626*** 

(0.0045) 
0.1573*** 
(0.0044) 

0.1885*** 
(0.0058) 

0.1201*** 
(0.0049) 

σχ  0.2752*** 
(0.0090) 

0.2458*** 

(0.0072) 
0.3051*** 
(0.0119) 

0.4367*** 
(0.0165) 

σα 0.0106*** 
(0.0005) 

0.0118*** 
(0.0006) 

0.0425*** 
(0.0020) 

0.0385*** 
(0.0022) 

ρξχ  0.0518 
(0.0429) 

0.1311*** 
(0.0409) 

0.0573 

(0.0722) 
0.0117 

(0.0603) 
ρξα  -0.2794*** 

(0.0719) 
-0.1600** 
(0.0650) 

-0.1050* 
(0.0556) 

-0.0892 

(0.0845) 
ρξα* -0.2488*** 

(0.0695) 
-0.1357* 
(0.0693) 

0.2353*** 
(0.0620) 

-0.0067 
(0.0797) 

ρχα 0.3073*** 
(0.0759) 

0.0994 
(0.0685) 

0.1760*** 
(0.0655) 

0.2518*** 
(0.0812) 

ρχα*  0.3166*** 
(0.0727) 

0.2957*** 
(0.0722) 

-0.3956*** 
(0.0549) 

0.3145*** 
(0.0740) 

λξ 0.1372*** 
(0.0409) 

0.1532*** 

(0.0396) 
0.1515*** 
(0.0492) 

0.1025*** 
(0.0303) 

λχ 0.0503 
(0.0692) 

-0.0011 
(0.0619) 

-0.0651 
(0.0825) 

-0.0869 
(0.1101) 

λα -0.0017 

(0.0029) 
-0.0014 
(0.0032) 

-0.0062 
(0.0112) 

0.0111 
(0.0105) 

λα* -0.0050* 
(0.0029) 

-0.0077** 
(0.0031) 

0.0027 
(0.0130) 

-0.0138 
(0.0106) 

ση   0.0112*** 
(0.0001) 

0.0094*** 
(0.0001) 

0.0117***
 

(0.0002) 
0.0376*** 
(0.0003) 

Log-likelihood 27057.14 28139.46 16835.78 19318.02 
AIC 27025.14  28107.46 16803.78 19286.02 
SIC 26949.69 28032.02 16728.33 19210.58 
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TABLE 6 

ESTIMATION RESULTS. THREE-FACTOR MODEL FOR THE CONVENIENCE 

YIELD 

The table presents the results for the three-factor model applied to the four commodity 

convenience yield series under study: WTI crude oil, heating oil, RBOB gasoline and Henry 

Hub natural gas. Standard errors are in parentheses. The estimated values are reported with * 

denoting significance at 10%, ** denoting significance at 5%, and *** denoting significance at 

1%. 

 

 WTI Heating Oil RBOB Henry Hub 
µξ  0.7882*** 

(0.1823) 
-0.0069 
(0.0800) 

0.0304 
(0.0990) 

-2.5086*** 
(0.7047) 

κ  1.2705*** 
(0.0002) 

0.9639*** 
(0.0294) 

0.8112*** 
(0.2255) 

5.8064*** 
(0.0003) 

ϕ  0.7906*** 
(0.0000) 

1.0114*** 
(0.0031) 

1.0080*** 
(0.0103) 

1.0012*** 
(0.0000) 

σχ  0.6205*** 
(0.0002) 

0.2727*** 

(0.0168) 
0.3000*** 
(0.0483) 

2.2847*** 
(0.0003) 

σα 0.0530*** 
(0.0002) 

0.0725*** 
(0.0054) 

0.4773*** 
(0.0407) 

0.3772*** 
(0.0003) 

ρχα 0.7771*** 
(0.0002) 

0.6338*** 
(0.0806) 

0.4382*** 
(0.1263) 

-0.3040*** 
(0.0003) 

ρχα*  0.3725*** 
(0.0002) 

0.1087 
(0.01055) 

0.4922*** 
(0.1160) 

0.1639*** 
(0.0003) 

λχ 0.8087*** 
(0.1809) 

-0.0615 
(0.0798) 

0.0941 
(0.0983) 

-1.0521 
(0.6875) 

λα 0.0602*** 

(0.0163) 
0.0660*** 
(0.0240) 

-0.0660 
(0.1510) 

-0.0038 
(0.1186) 

λα* -0.0129 
(0.0164) 

-0.0427** 
(0.0235) 

0.1003 
(0.1437) 

0.1375 
(0.1219) 

ση   0.0517*** 
(0.0002) 

0.0779*** 
(0.0008) 

0.2170***
 

(0.0031) 
0.3772*** 
(0.0003) 

Log-likelihood 13008.48 9719.43 3386.01 2501.60 
AIC 12986.48  9697.43 3364.01 2479.60 
SIC 12937.85 9648.79 3315.37 2430.97 
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TABLE 7 

WEIGHTS OF SEASONAL COMPONENTS  

 

The table presents the average weights of the estimated seasonal factors in the spot price (four-

factor model for spot commodity prices) and in the convenience yield (three-factor for 

convenience yields), for the four commodities under study: WTI crude oil, heating oil, RBOB 

gasoline and Henry Hub. 

 

PANEL A: FOUR FACTOR MODEL, COMMODITY SPOT PRICES 

  |α|/log(S) (|α| + |α*|)/log(S) 

Henry Hub 2.8866% 5.7299% 
Heating Oil 0.5270% 1.0625% 
RBOB 0.8295% 1.6809% 

WTI 0.0826% 0.1439% 
 

PANEL B: THREE-FACTOR MODEL, CONVENIENCE YIELDS 

  |α|/log(S) (|α| + |α*|)/log(S) 

Henry Hub 34.5652% 94.0058% 
Heating Oil 46.6621% 128.1067% 
RBOB 63.6727% 180.6800% 

WTI 9.8590% 21.0083% 
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FIGURE 1 

TIME SERIES EVOLUTION OF ESTIMATED CONVENIENCE YIELDS 
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FIGURE 1 

TIME SERIES EVOLUTION OF ESTMATED CONVENIENCE YIELDS (CONT.) 
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FIGURE 2 

RBOBO GASOLINE CONVENIENCE YIELD SPECTRUM 
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FIGURE 3 

FORWARD CURVES FUTURES AND CONVENIENCE YIELD 
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FIGURE 4 

COMMODITY SEASONAL COMPONENTS AND CONVENIENCE YIELD 
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