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To all people who make the world the marvellous place it is. Let them find the

happiness they give and deserve.

“A habit of basing convictions upon evidence, and of giving to them only that degree or
certainty which the evidence warrants, would, if it became general, cure most of the ills

from which the world suffers” Bertrand Russell
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INTRODUCTION

A HISTORICAL BACKGROUND

The history of Kalman filter is long and broad, and so is the literature of its applications
to the field of Economics. It was first derived by Kalman in a celebrated article in 1960,
following a previous and more theoretical work of Stratonovich (1959). Its importance
was recognized in the Engineering literature from the very start.

Economics lagged a few years in following this approach, as it was dominated by a
more antique ARIMA approach. However, as early as 1989, Andrew J. Harvey, in his
now classical book “Forecasting, Structural Time Series and the Kalman Filter” already
exposes practically all now mainstream techniques in dealing with Kalman filter
estimation.

Continuous-time Finance, being a rather more recent field (we can not even speak
properly of Continuous-time Finance until the seventies, with the pioneer works of
Black and Scholes) had to wait a bit more. We can establish the time when this
approach became dominant in the influential work of Schwartz (1997).

However, since this date, the field has really become exuberant. Kalman Filter deals
routinely, in the blackboards of academics and the workstations of practitioners with
thousands of real world financial series and its implications seem to be far from

exhausted. This thesis tries to be a contribution, humble as may be, to this research.

GENERAL SETUP

The framework where all these thesis’ results are set is a continuous-time state space
system that exhibits a dynamics given by:

{dXt = (b+ AX, )dt + RAW,
(MR)

S, = exp(cX,)



where S; is the spot price of a given financial asset commodity, X; is a vector of n states
which are usually not observable, ; is unitary Brownian motion and » and 4,R and C
are matrices of appropriate size, that in most applications need to be identified.
Following Schwartz (1997), in the spirit of the Black-Scholes risk neutral valuation,
another fictitious dynamics is introduced via a vector called risk premium. We thus
obtained a risk neutral dynamics, which is used to value options and futures contracts:

{dX, =(b— A+ AX,)dt + RaW,
(MN)

S, = exp(cX t)
It is worth remarking why models exhibit hidden dynamics. In fact, classical

continuous-time financial models are directly observable. In the black-Scholes world,

dynamics is just given by:

dX, :(,u—%z+XtJdt+GdW,

S, = exp(X ,)
And we just have to take logarithms to recover state from spot price. However, as noted
by Schwartz (1997), this model implies perfect correlation among different futures,
which is contrary to existing evidence. As a result, he proposed a particular version of
general model (MR)-(MN) where the spot price was the sum of two hidden
components, one continuous-time random walk (the classical model for financial assets)
and transitory short run component. A number of generalizations following model
structure (MN)-(MR) have been proposed since. As examples, the reader can consult
Cortazar and Naranjo (2003) or Garcia, Poblacion and Serna (2012).
Going back into the equations, we shall see that they can be solved explicitly, giving a
complete discrete time model to be identified directly from observable data.
Although full details will be given in the thesis, let us briefly outline how this is done. A

direct application of the results in Oksendal (1992) gives us the solution of equation



(MR) as X, , =e™ [X + J'OAte*A‘bds + J'OAteA‘RdV&S} which means we can exactly

ANt

compute state dynamics. Defining b, = e [ .[Ome'“bds} A, =e and

77’ — eAAt IOAtefASRdW

t+s

we have a fully specified equation X,,,, =b, + 4, X, +7,.

t+At

However, we do not usually (and never in the models considered in this work) observe
spot prices but instead have data on futures or options. Regarding futures, which is the
data we shall use to estimate models (options are taken into account later for valuation
purposes), in the Black Scholes world they are simply the risk neutral expectation of
spot prices or, in symbols, F,, = E, [S.,, /1] where F,; is the future contracted at ¢
with maturity T (i.e. with delivery time ¢+7"), Q is the risk neutral measure and /, is
the information available at ¢.

Under risk neutral measure, we have to use equations (MN) and therefore, conditional

to ¢, F,, is lognormal and ce”’ [X o+ J'OTe*AS (b—/l)ds} is its logarithm’s mean while

CUOT ¢ ")RR' [e_A(T_S) ] dsjc' .
The bottom line is that logF,, = d(T)+¢(T)X, for known matrices d(T') and ¢(T)

whereas X, has a known discrete dynamics so we arrive to a fully specified discrete

model that can be estimated from real data via Kalman filter :

X1+At :bD +ADXt +771
logF,, =d(T)+c(T)X, +eé,

Different chapters of this thesis describe different aspects of this model, using it to

estimate parameters and value options in different commodities.



SUMMARY OF CHAPTER ONE

This chapter deals with a mathematically general version of (MR) and (MN). As
financial data are never observed in continuous time (even ultra high frequency data is
observed at intervals of tens of milliseconds), in order to estimate parameters a discrete
time version of the model has to be achieved.

In the literature, the dominant approach was to develop discrete time formulae from ad
hoc procedures, involving limit steps and partial differential equations. We have shown
that these ideas are unnecessary and have developed a general method to achieve
discrete time forms which is applicable to all models proposed in the literature.
Moreover, we have also establish a general, directly programmable, computer efficient
method to obtain this formulae, which we have contrasted against theoretical
alternatives, reducing computation time in an order of magnitude.

In this part, we have also used our formulae to contrast our approach with Schwartz
(1997) formulae using West Texas Intermediate (WTI) futures data. We show that his
method was an approximation that tends to (slightly) overestimate the parameters and

increase error.

SUMMARY OF CHAPTER TWO

This chapter treats a modification of model (MN)-(MR) where risk premium is allowed
to vary over time, that is:

{dX, =(b—A, + AX,)dt + RdW,
(MN)

S, = exp(CX t)
This problem was very appealing, as seemed very reasonable to assume that the state of

world economy should have a direct implication in the premium an investor demands to

purchase a risky asset.
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Estimating this premium via a Kolos and Ronn (2008) algorithm and a moving window
we obtained a time series, which we compared with several economic indicators.
Results were very interesting as we observed, among other findings fully described in
the chapter, that there was a positive relation between the estimated long-term market
price of risk and the average NAPM index, the average S&P 500 index and an indicator
of economic expansion. This relation was reversed when we compared these economic
indicators with short term risk premium.

In addition, we proposed a model with time varying risk premium, and showed how it
could be estimated via exactly the same discrete Kalman filter, by modifying the way
discrete time equations were obtained. This model was estimated (separately) with real
WTI Oil, Heating Oil, Gasoline and Henry Hub (HH) Natural Gas outperforming
constant risk premium models.

Finally, we applied the new model was used to valuate a sample of American WTI

options, obtaining better results than more standard approaches.

SUMMARY OF CHAPTER THREE

This final chapter studies convenience yield dynamics. Convenience yield can be
defined as the value of owing a commodity physically instead of having a financial
asset that guarantees its possession in a certain date.

More formally, remember that in a Black-Scholes world, futures prices are given by risk

neutral expectation of spot prices or F,, = E “[S.., /1,]. Convenience yield (,7) is the

t+T

difference, in continuous time between this price and the spot price increased due to real

. T

interest rate, that is F, ; T =8

t
What we did in this part was to derive the distribution of convenience yield from first

principles when spot prices followed a stochastic seasonal model. We showed that this

11



implies, in convenience yield series, a seasonal component directly related to the spot

price original. Moreover, this finding was confirmed when estimating a model for

convenience yield directly from real world (WTI Oil, Heating Oil, Gasoline and HH

Natural Gas) data.

In addition, we also showed that our seasonal model was maximal in a sense related to

Dai-Singleton (2000) and gave a canonical, globally identifiable form for this model,

which can actually be applied to all constant volatility models in the literature.
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CHAPTER 1: ANALYTIC FORMULAE FOR COMMODITY

CONTINGENT VALUATION
1.1. INTRODUCTION

It6 calculus has become the main approach in derivatives valuation theory since it was
first used in Finance (Black and Scholes, 1972). The same methodology was first used
in the valuation of commodity contingent claims (see for example Brennan and
Schwartz, 1985, Paddock et al., 1988, among others), i.e. by assuming that asset prices
follow a geometric Brownian motion, the classical Black-Scholes formulae can be used
with slight modifications (if any). Subsequently several authors, such as Laughton and
Jacobi (1993) Ross (1997) or Schwartz (1997), have considered that a mean-reverting
process is more appropriate to model the stochastic behaviour of commodity prices,
pointing out that the geometric Brownian motion hypothesis implies a constant rate of
growth in the commodity price and a variance of futures prices increasing
monotonically with time, which are not realistic assumptions. The idea behind mean-
reverting processes is that the supply of the commodity, by increasing or decreasing,

will force its price towards an equilibrium (or long-term mean) price level.

In spite of their attractiveness, these one-factor mean-reverting models are not very
realistic since they generate a constant volatility term structure of futures returns,
instead of a decreasing term structure, as observed in practice. Gibson and Schwartz
(1990) and Schwartz (1997) propose a two-factor model, where the second factor is the
convenience yield, which is also assumed to follow a mean-reverting process. Schwartz
and Smith (2000) propose a two-factor model allowing for mean reversion in short-term

prices and uncertainty in the equilibrium (long-term) price to which prices revert, which

"' See Schwartz (1997) and Schwartz and Smith (2000) for an excellent discussion of these issues.
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is equivalent to the Schwartz (1997) one. Schwartz (1997) also considers a three-factor
model, extending the Gibson-Schwartz (1990) model to include stochastic interest rates.
Cortazar and Schwartz (2003) propose a three-factor model, which is an extension of
the Schwartz (1997) two-factor model, where all three factors are calibrated using only
commodity prices. More recently Cortazar and Naranjo (2006) extend two and three

factor models to an arbitrary number of factors (N-factor model).

Unfortunately, the application of the standard Black-Scholes valuation framework is not
easy in the context of commodity contingent valuation, given the complex dynamics of
commodity prices. This is the reason why the studies on commodity contingent
valuation usually present very complex ad-hoc solutions and sometimes include
approximations or limit steps. In this article we show how to simplify formulae and
deductions, computing the explicit, directly implementable general formula, based on

well known results in stochastic calculus.

Specifically, after describing the general theoretical model for commodity contingent
valuation, we present two specific applications. Firstly, we show how this general
framework can be implemented in the context of the two-factor model by Schwartz
(1997), obtaining simpler expressions and more precise estimates than the
approximations given by the author. It is also shown that the approximations by
Schwartz tend to overestimate the parameters, a fact that, as we will see, becomes
important in the valuation of commodity contingent claims. Secondly, we shall show
how to obtain the expression for the futures price and volatility of futures returns given
by Schwartz (1997) and Schwartz and Smith (2000) in a simpler way, avoiding

unnecessary partial differential equations or limit steps.

This chapter is organized as follows. The general methodology for commodity

contingent valuation and volatility estimation is presented in Section 2. Section 3

15



describes how these formulae can be used in practice and proposes a ready-to-
implement algorithm to estimate any linear model which is evaluated in terms of
computer time. Section 4 shows how to obtain more precise estimators of the
parameters in the two-factor model by Schwartz (1997). Section 5 shows how to
simplify the deduction of the futures price in the two-factor model by Schwartz and
Smith (2000), avoiding unnecessary limit steps. Finally, section 6 concludes with a

summary and discussion.

1.2. THEORETICAL MODEL

Contract Valuation

Most of the models proposed in the literature for the stochastic behaviour of commodity

prices can be summarized by means of the following system:

{dX, =(b+ AX,)dt + RAW, @

where Y, is the commodity price (or its log), b, 4, R and ¢ are deterministic matrices’

independent of ¢ (beR",4,ReR""", ceR") and W, is a n-dimensional canonical

Brownian motion (i.e. all components uncorrelated and its variance equal to unity).
Usually, the estimation of these matrices can be simplified, as they can be assumed to
depend in a predefined way of some estimable values, called structural parameters or
hyperparameters (for example, if 4 is 2x2, instead of computing four values one may

-1

0
assume, as in Schwartz, 1997, that A4 :(
-K

j where x is the hyperparameter to be

estimated).

% R does not have to be computed, as all formulae shall use RR .

16



As it shall be proven in appendix B the solution of this problem is:

X, =e" [XO + [[e " bds + JZeASRdWS] )

t

0 0
We shall assume now that 4 is diagonalizable with 4= PDP~' and D Z(O DJ
1

diagonal’. Let us define the auxiliary quantities:

It 0 B
Jle)= P( 0 D Mexp(D,t)- 1]]1) ®)

G(t) = exp(At)Pvec B {[ J'; exp(Ds) ® exp(Ds )ds}vec(PlRR ! P')}(P1 )‘exp(At)‘ 4)

This integral can be computed explicitly, but depends on the eigenvalues (see appendix
A).
Using (2) and the results in Appendix A about integrals, it is evident that, given X, X,

is Gaussian, with mean and variance:
E[X |=e"X,+J(t) , Var[X,]= G(r). (5)

Which yields that Y, is also Gaussian with E[Y, | = cE[X,] , Var[Y,|= cVar|X,]c’

t

Under the risk-neutral measure, the dynamics are exactly the same as in (1) but
changing b into a different »* which contains the risk premia (all other matrices stay the

same) so, using this measure and conditional to X,, X, is Gaussian. To compute the

risk-neutral mean and variance of X, and Y, we must substitute b for 5" in (5), thus

providing a valuation scheme for all sorts of commodity contingent claims such as

financial derivatives on commodity prices, real options, investment decisions, etc.

3 To the best of the authors’ knowledge all models in the existing literature fulfil this restriction, most of
them directly by imposing 4 to be diagonal. Notable exceptions where 4 is not diagonal but
diagonalizable are the Schwartz (1997) model or the cycles in Harvey (1991).
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If Y, is the log of the commodity price (S)), it is easy to prove (just by the properties of
the log-normal distribution) that the price of a futures contract traded at time “#” with

maturity at time “¢+77 is:
F(t,7)= exp(ceATXt +cJ(Th" + %cG(T)c‘j (6)

This methodology is general, feasible for all kind of problems, at least when the
parameters in (1) are independent of ¢, and much simpler than the ad-hoc solutions
presented in the literature, that can only be used in the concrete problem for which they
were developed and need complex procedures such as partial differential equations
(Schwartz 1997) or limit steps (Schwartz-Smith 2000). Even more, these formulae can
be implemented directly in any mathematical oriented computer language, such as
Matlab or C++ regardless on the size of the matrices or their dependence of the
hyperparameters, using the matrices directly as inputs. So there is no need to compute
explicit formulae each time we use a different model. It possible to use the same script

(changing the way the matrix depend on the hyperparameters) for any model.

Volatility of Future Returns

We can define the squared volatility of a futures contract traded at time £’ with

Var|logF,,, , —logF,
maturity at time “¢+7” as*: lim [ & enr 7108 t’T]

lim P . In appendix C it is proved that

it is the expected value of the square of the coefficient of the Brownian motion (0t) in

the expansion d log(Ft’T): u.ds +o,dW" , where W/ is a scalar canonical Brownian

Var|log F, —logF
* The same results would be obtained if the volatility were defined as: lim l £ Hh‘;f' 8l J .
h—0

18



motion, as long as x, is mean squared bounded in an interval containing ¢ (it does not

matter whether it is a function of F, ; or not) and E [atz] is continuous in .

In the general problem of this article these conditions are satisfied. Therefore, after

taking logarithms and differentials on both sides of Equation (6), we can obtain that:
d(logFtI )= ce’"dX, =ce'[b+ AX, ldt + ce’" RaW,
So, the squared volatility is simply’:

ce’"RR'e""'¢". (7)

1.3. DISCRETIZATION AND ESTIMATION ISSUES

This section is devoted to provide a practitioner’s guide to the use of the above results.
Suppose that we observe a forward curve F(z,7) of N futures prices and wish to

estimate a linear multifactor model as in (1). First of all, we need a discrete version of
(1). Let At be the interval of discretization.
As stated above E[X,]|=e" X, +J(t)b and Var[X,]= G(t). Consequently, it is easy to

prove that:

{XtJrAl = bD + ADXt + 77t (8)

Y, =d+c,X, +¢,

where  y, =[log(F(¢,T})),...,log(F(£,T,))] is the log of the full forward
curve, 4, = exp(AAt),b, = J(At)b, E[n,]=0,Var(n) = G(At),

cexp(4T;)
d, =cJ(T ) +%cG(Tl.)c' i=1..N and ¢, =| ...
cexp(ATN)

> Note again that R does not need to be computed as RR' is the noise covariance matrix.
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Of course, the measurement noise (¢&,) is user-defined. The most usual convention,

followed by Schwartz (1997), Schwartz and Smith (2000), Cortazar and Naranjo (2006)

o, 0 0
among others, is E[g,]=0,Varle,]=| 0 .. 0
0 0 oy

The process to estimate a model is as follows:

1. Given a set of hyperparameters ¢, make explicit the dependence of the continuous

time system matrices A(¢),c(¢) and so on in (1)

2. Compute the discrete-time system (8). This can be done using the formulae (3) and
(4) or directly via the integrals in appendix B. The easiest way is obviously to
compute them by hand and insert them in the program. However, the computer can
do it, using the formulae (3) and (4) each iteration at a moderate additional
computational cost (thus allowing the user to write a single program for all models,

instead of changing it each time).

3. Estimate the parameters in the models by a log-likelihood algorithm. See Hamilton

(1994) for details on estimating a state-space model.

From the authors’ point of view, unless the user always deals with the same kind of
model, the increasing complexity of using formulae (3) and (4) in each iteration is a

price worth paying by having a single general program.

We would like to stress the importance of formulae (3) and (4). Without them, unless
the practitioner writes a separate script for each model, he would have to compute (via a
symbolic processor such as Matlab Symbolic Toolbox) an integral in each iteration. The
computational cost of that is burdensome, approximately 100 times the one with the

formulae, which is two orders of magnitude higher.
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To proof this, we have estimated the Schwartz and Smith (2000) and Cortazar and
Schwartz (2003) models with different data sets, representative of the kind of series a
practitioner is likely to work with. Here, it suffices to say that they are a two factor
(Schwartz and Smith, 2000) and a three factor (Cortazar and Schwartz, 2003) model
with 8 and 13 identifiable hyperparameters respectively. The data set employed consists
on weekly observations of Henry Hub natural gas, WTI crude oil futures prices (both of
them traded at NYMEX) and Brent crude oil futures prices (traded at ICE). The data set
for Henry Hub natural gas is made of contracts F1, F5, F9, F13, F17, F21, F25, F29,
F33, F37, F41, F44 and F48 where F1 is the contract closest to maturity, F2 is the
second contract closest to maturity and so on. This data set contains 330 quotations of
each contract from 12/03/2001 to 03/24/2008. The data set for WTTI crude oil is made of
contracts F1, F4, F7, F10, F13, F16, F19, F22, F25 and F28. This data set contains 654
quotations of each contract from 9/18/1995 to 03/24/2008. The data set for Brent crude
oil is made of contracts F1, F4, F7, F10, F12, F16-18, F22-24 and F31-36. This data set
contains 537 quotations of each contract from 12/15/1997 to 03/24/2008. These data
sets have been chosen taking into account that futures contracts with long-term and
short-term maturities are necessary to estimate properly the parameters of the long-term

and the short-term factors.

In Table 1 a brief summary of the time needed for an evaluation of the log-likelihood
function is given, specifying the data and model used (two factors means Schwartz and
Smith, 2000, model, three factors means Cortazar and Schwartz, 2003). Note that, as all
quantities are given in milliseconds, a 30% less for the formulae (implementing each
case separately) is not a big reward. All experiments were made with an x86 Intel

Celeron (Family 6 Model 8 Stepping 3, 261.616 Kb RAM).

21



In order to illustrate this fact, we have also included another Table (number 2) where the
estimation time is given for the general case and the estimation for each case separately
(using the theoretical formulae for integrals would be too slow). As the reader can see,
the difference is small enough and, from the authors’ point of view, it is not worth the
effort to compute formulae by hand case by case instead of using matrix forms. Note
that the difference is estimating a model in a minute and a minute and a half, even with

a rather old computer.

1.4. PRECISE ESTIMATION OF THE SCHWARTZ (1997) TWO-

FACTOR MODEL

Let us consider the two-factor model in Schwartz (1997). Let S; and &, be the spot price
of a commodity and its instantaneous convenience yield at time z. The model can be

expressed as:

ds, =(u—46,)S,dt + o,S,dz,
ds, = kla -6, )dt + o,dz,

The standard Brownian motions, dz; and dz,, are assumed to be correlated, i.e. dzidz, =
pdt. The parameter u is the long-term total return on the commodity, x is the mean-
reverting coefficient, « is the long-term convenience yield, and finally oy and o> are the

volatilities of the spot price and the convenience yield respectively.

Defining Y; = In(S;) and applying It6’s Lemma, the model, under the risk-neutral

measure, can be expressed as:

dY, = (r -6, -0} /2)dt +0,dz,
ds, = kla-6,)-Aldt + o,dz;
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Where dz, and dz, are the Brownian motions under the equivalent martingale
measure, which are assumed to be correlated, i.e. d z,dz, = pdt, A is the market price
of risk associated to the convenience yield and r is the risk-free interest rate.

If we define the state vector as X, =(¥,,5,) and after applying the results in section 2,

it is easy to prove that X, is normally distributed with a mean and variance given by the

following expressions®’:

E*[Xt]:((r—of/2—a)t+a(1—ek’)/l/k}{l —(1—e’“)/ij0

a(l-e™) 0 et
var[x,]=
014200, (1 — i)/ 2 —02 (3—de™ +e ™ 2t 128 5,0, p(1—e ™) kot P (1-267 +e70) /242
oo, po(1-e™)/ k+0;,(1-2¢* +e )/ 2k o (l—e*)/k

Therefore, Y,

"~ =1In(S,) 1s also Gaussian, under the risk-neutral measure, with mean:

Y,-0,(0—e™)/k+(r-o;/2—a d+a’ k(l-e™)/k*
where @ =« — A/ k, and variance:
(02 +02 k> =20,0,p/ k)t + (1) 12k + 2(po,0, — o2 1)1 —e ™ )/ 2.
Finally, given that the spot price S, is lognormal, the futures price can be expressed as:

o = B, J=exs{ £ 1o Jvar ] -

explY, —6,(1-e™)/ k+(r—a +03/2k> —o,0,p/ k)T

+ (1?02 /4 +(a'k+ po,o, — o [)(1-e ™)/ k7

% E*[] and Var*[] are the mean and variance under the risk neutral measure.
7 Here, in this section, we shall use the formulas in integral form, without resorting to (3) and (4).
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This is the result already obtained in Schwartz (1997), equation 20, but avoiding

unnecessary partial differential equations.

Using the results in section 2, the squared volatility of futures returns can be expressed

(10 1 (e_"T—l)/K ol  po,o, 1 0 Y1) _
0 e’ poc, Ol (e”‘T —1)/ Kk e |0

ol + (1 —e )2 ol /K’ — 2(1 —e )palaz /K

as:

which is the same formula as in Schwartz (1997), equation 40.

Now let us express the model in its discrete-time version. Following Schwartz’s

notation the model can be expressed as®:
Xt = ct + Mtthl + l)”t

where:

. :((,u—of /2—a)At+a(1—ekA’)/1/kj’Mt :(1 (e —1)/KJ o)

(l(l _ e*kAt)

and the error term vector, denoted as y;, is a n-vector of serially uncorrelated Gaussian

disturbances with zero mean and variance given by the following expression:

Va{u/,]z

200,41 —e™ —IN) o5 (3—de™ +e ~2UN) o0, p(1-e™) N o5 (1-27 +e™)

o K 2k k 2k* (10)
c,0,0(1-e™) . o (1-2™ +e™) o (1-e™)
koo % k

¥ Note that these expressions are just the discrete-time counterpart of expressions (8) with 4 p =M, and

d= ¢, in our notation.
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If we perform a Taylor expansion when A¢ tends to zero and drop all terms of order
higher than one, we get expressions 35 in Schwartz (1997):

-0l /2)At 1 —At
ct = (IL[ O-l ) , M[ = and Va{l//]: O-IZN 0-10-2/”
akAt 0 1-xAf Y \looy SN

Therefore, we can conclude that Schwartz (1997) uses a discrete-time version of the
model which is an approximation to the precise one presented above, which is given by
expressions (9) and (10). As we will see below, these divergences, specially the more

accurate estimator of the variance of the residual, Vafy], given by expression (10), are

important in the valuation of commodity contingent claims.

Next we are going to compare the empirical performance of both estimation procedures,
1.e. the precise version of the estimates given in this chapter and the approximate
version in Schwartz (1997), using the same data set as in Schwartz (1997). Specifically,
the data set is composed of weekly observations of NYMEX WTI crude oil futures
contracts, with maturity 1, 3, 5, 7, and 9 months, from 1/1/1985 to 02/13/1995. We have
a total of 529 observations’. WTI futures prices with one month to maturity are depicted

in Figure 1.

The results of the estimation of the two factor model by Schwartz obtained with both
estimation procedures are contained in Table 3. The main differences between the
results obtained with both procedures are found in the values of « (the mean-reverting
parameter), o» (the volatility of the convenience yield) and A (the market price of risk
associated to the convenience yield). Specifically, the value of x found with the precise
version, 1.5433, is considerable lower than the value found with the Schwartz

approximation, 1.8855. Moreover, the value of A found with the precise version is also

? This is one of the data sets used in Schwartz (1997). However in that paper the data set includes 510
observations, instead of 529. That is the reason why the results presented here for Schwartz
approximation are not exactly the same as the ones presented in Schwartz (1997).
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lower than the value found with the Schwartz approximation (0.2181 and 0.2558
respectively). Finally, the value of o, obtained with the precise and approximate
versions is 0.3967 and 0.4622 respectively. In general looking at the Table we can
appreciate that all the values found with the approximate version used by Schwartz
(1997) are higher than the corresponding values found with the precise version.
Therefore, we can conclude that, at least with this data set, the approximate version by

Schwartz (1997) tends to overestimate the parameters.

Figures 2 and 3 present the differences between one month WTI futures prices and the
spot price calculated with both the precise and the approximated estimates'’.
Specifically, Figure 2 compares the predictive ability of both estimates in terms of the
mean error (ME), defined as the average of the series of one month futures price minus
estimated spot prices, whereas in Figure 3 it is used the root mean squared error

(RMSE).

In the full sample period, 1985-1995, the precise estimates outperform the
approximation by Schwartz (1997), using the two metrics. This is also the case in all the
annual periods considered in the Figures. However, it is interesting to note that the best
performance of the precise estimates is found in 1985 and 1990, years which are
characterized by high volatility, as can be appreciated in Figure 1. This fact is not
surprising since, as pointed out above, one of the main advantage of the precise
methodology is that it provides a more accurate estimation of the variance of the

residual, Vafy|, which is given by expression (10). Finally, it is worth noting that the

mean error is negative in the whole sample period, implying that both estimates tend to

' To the best of our knowledge, there is no reliable index which reflects the WTI crude oil spot price.
Therefore, the best available approximation for it, NYMEX WTI crude oil futures contracts with one
month to maturity, is used.
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overestimate spot prices. It is also the case in all the annual periods, except for 1986,

1993 and 1994.

Figures 4 and 5 show the differences between one month WTI futures and spot prices
calculated with both the precise and the approximated estimates, by month. The results
are similar to those obtained in Figures 2 and 3, i.e. the precise estimates outperform the
approximation by Schwartz (1997), using the two metrics (mean error and root mean

squared error), in all months, except for March with the mean error measure.

Finally, Table 4 compares the irnprovement11 (expressed in percentage) in the RMSE
and the standard deviation of one-month futures price, by month. Interestingly, the
highest improvement in the RMSE is obtained in October and November, which are that
the months characterized by the highest degree of variance. As pointed out above, this
result can be related with the fact that one of the main advantages of the precise
estimation procedure is that it provides a more accurate estimation of the variance of the

residual, Vafy], which is given by expression (10). It should be noted, however, that

there are also months with no such high variance showing a high improvement in the

RMSE (January and December).

1.5. SIMPLIFIED DEDUCTION OF THE FUTURES PRICES IN
THE TWO-FACTOR MODEL BY SCHWARTZ AND SMITH (2000)
Let us consider the two-factor model in Schwartz and Smith (2000). They assume that

the spot log-price of a commodity at time ¢, In(S;), can be decomposed as the sum of a

short-term deviation, y,, and the equilibrium price level, &,: In(S,) =y, +¢&,.

" Defined as the RMSE computed with the Schwartz approximation minus the RMSE computed with the
precise version of the estimates.
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The short-term deviation and the equilibrium level are assumed to follow a mean-

reverting process (toward zero) and a standard Brownian motion respectively, i.e.:

dy,=—-xydi+o,dz,
dé, = pdi+o.dz,

Where dz,and dz.are standard Brownian motions with correlation p, i.e.
dz,dz, = pdt, Kk represents the rate at which the short-term deviations revert toward

zero (the mean-reverting coefficient), 4 1is the equilibrium total return and o, and oy are

the volatilities of the short-term deviation and the equilibrium level respectively.

The risk-neutral version of their model is given by the following SDE:

dy, =(-ky,—1,)dt+o,d Z;
dé = ,u;dt + O'gydz;i

Where dz; and dzz are again standard Brownian motions with correlation p, 1.e.

dz,dz, = pdt, ,u; =u.—A;,and A, and A, are the market prices of risk associated

to the short-term deviation and the equilibrium level respectively.

Defining the state vector as X, = ( X<, ) , the model can be expressed as'’:

-1, -k 0
dX, = S|+ X, |dt + RdW,
M 0 O

where R is the Choleski decomposition of the noise covariance matrix'*:

2
[ o, palagj
2
po 0, o

2 See Appendix B.

“Note again that R does not need to be calculated as RR' is the noise covariance matrix.
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Now, we will use expressions (3) and (4). Note that, as A is diagonal, P =1 so we can

safely drop P and P~ from all expressions.

It is easy to see that (note that, in order to comply with Schwartz and Smith’s notation,

D, 0
D= ( 01 OJ’ the null part is in the bottom of the matrix):
1- e"“ —xt
0
J(e — 0 exp(At):( J
0 ¢ !
o -
0 0 0
2K o

0 1 o po,o. [\ 0 1
0 0 0 2
K O
A 0 0 t |
e -1 , e -1
(e 0 e A PO (e 0 B
0 1)e" -1 2 0 1
PO 0, lo;
1-e* 1-e”
_ 2K Oy P PO O
l_em 2
- PO 0, lo;

Now, the mean and variance of X; are:

E*[Xt]:(— (1—e—*’)/11 /k]+(exz onO

M 0 1

Var'[X, :G(t):(((l_e_m)a;i/z’f (1—6_"’)/00'105/1(J

l—e"")pazagy /K ot
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In this model, the log of spot price, ¥, = In(S;), is given by y, +&,. Thus, In(S)) is a

Gaussian variable with mean:
e yy+E gt —(1—e)A, Tk
and variance:
(1 —e" )0'; /2K + 2(1 —e™™ )pO'ZO'§ [K+0t.

Finally, the spot price, S,, is lognormal distributed, and, therefore, the futures price can

be written as:

For =5 1o £} Lrar ] -

(1 —e" )O'jl /2K + 2(1 —e™ )palag /K + O'fl}
2

= exp{e’“;go +&, + y;t —(1-e™ A, Tk +

We have obtained the same result as in Schwarz and Smith (2000), Equation 9, but in a

simpler way, avoiding unnecessary limit steps.

1.6. CONCLUSIONS

The stochastic behaviour of commodity prices has been a common topic of research
during the last years. However, the application of the standard Black-Scholes analysis is
not straightforward, due to the complex dynamics of commodity prices. This is the
reason why most of these studies present ad-hoc solutions, which are very complex and

sometimes include approximations.

This article shows how to simplify formulae and deductions, and even compute an

explicit matrix general formula, using well known techniques and results in stochastic
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calculus. This formula has been tested on real data and is a real alternative to

programming each model separately.

Concretely, we show how to obtain more precise estimators of the parameters in the
Schwartz (1997) two-factor model context, than the approximations given by the author.
It is found that, in general, the approximations by Schwartz tend to overestimate the
parameters. These divergences are important in the valuation of commodity contingent
claims. Moreover, we have shown how to obtain the expression for the futures price

given by Schwartz and Smith (2000) in a simpler way, avoiding unnecessary limit steps.
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APPENDIX A: MATHEMATICAL REFERENCE RESULTS

In order to understand the results, it is necessary to introduce some mathematical
preliminaries. All the concepts and formulae here shall be presented in an intuitive way,

stressing the practical implementation.

First of all, we remind the reader some well known concepts. For an extensive review of

matrix algebra and matrix derivatives, we recommend Magnus and Neudecker (1999).

e The derivative and integral of a time-dependent matrix (which we shall denote A(t)
or A, indistinctly) are given element by element:

d d s

—a,(t) . Ealn(t) J.r a,(tdr ... J-

Saln(t)dt
T T e [ AGpr=| .. R |
@) . La (o) [[and . [a,, @

dt r
Indefinite integrals I A, dt are defined in the same way. Linear properties, such

as %(BAI):B%A,, are easy to prove and shall be used without explicitly

mentioning them.
e The matrix exponential of a diagonalizable matrix 4 = PDP~" with D diagonal is:

exp(d,) 0 0
exp(d)=P .. .. .. |P'. It is not hard to see the equality
exp(d, )

%exp(At) =4 exp(At)

e Given two matrices 4 € R”, B e R™ their Kronecker product is a pm x gn matrix

a,B a,B .. a,B

a,B a,B .. a,B
defined as: A®B=| 2 2

a,B a,B .. a,B
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ap
ay
ay e 4y, 4
. pl
e The vec operator is defined as: vec| ... .. .. |=
a,
a a
rl rq
a,

e Integrals with a single product: We shall calculateJ.S exp(At)H dt where H is an

0 O
arbitrary constant matrix. Let 4 = PDP™' = P(O jPl with D diagonal and D,

1

non-singular. The previous integral is therefore easily computed explicitly as:

j exp(At)Hdt = P( j exp(Dt)dt)Pl H = [ p(fé eXpE)Dlt)jleT )
P((S —r)l 0 r

0 D <exp<Dls>—exp<Dlr>>j’”H

e Integrals with double product: We shall calculate I U exp(At)H exp(At) V dt , where

U, H, V are arbitrary constant matrices. As before:

0 0
A=PDP' =P P!
0 D,

.[ "U exp(At)H exp(At) V dt = UP(J-S exp(Dt)P™ H (P‘1 )exp(Dt)' dt]P'V so we shall

focus on the middle part. Using the vec operator:

I

vec™ U: (exp(Dr) ® exp(D t))vec(P_lH(P_l ) }lt} B
- vec [ [ xplon@esp(onkeclr (e )

.[: exp(Dt)H exp(Dt) dt = vec™ [vec( .[ ’ exp(Dt)(P‘lH (P_l )')exP(Dt)' dtﬂ =

The

only thing left is to compute the central integral. However, if D is diagonal, let
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.. 0
D= . Then exp(Dt)= . The Kronecker
0 . d, 0 e
0 . 0
I |
product is thus given by: exp(Dt)@ exp(Dt)z . If no
0 el

eigenvalue is exactly the opposite of another eigenvalue the integral is given by

(r=s) 0
S O d [ D -l (d11+D)[ O
J| exp(D1)® exp(Dr) = @l +D) e If
0 o (d1+D,)" e 4P)

two eingenvalues are one the opposite of the other, matters are not much more

4, 0 ... 0
difficult. Let D = = including all zero and nonzero eigenvalues. If
0 0 .. u

we just let py, =g +u, and substitute in the formula, we have

(7w 0 0 0 |
0 7, . 0
exp(Dt)®exp(Dt)=exp|| =~ 7 7 " | and its integral is:
0 0 w7, = 0
Lo 0 0 Vie ) |
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j el dt 0 0 0 0
0 j Ce dt 0 0
I “exp(D1)® exp(Dt) = ' o Where
’ 0 0 j e dt 0
0 0 0 . j " e dt
s—r for y, =0

. S 22
obviously .[ el dt =4 ot _ i X
g ———  for y, #0
ij
7[[

e Note that the expression vec"l{[jsexp(Dt)@) exp(Dt)dt}vec(P‘lH(P‘l)')} can be

done in a different way, using the Hadamard product instead of the Kronecker one
and thus avoiding the use of diagonal matrices. To do so, remember that the

Hadamard product of 4 and B denoted Ae Bis defined each element at a time:

(AOB)Z.]. =A4,B,. 1f we just define Z :vec'l( jsexp(Dt)®exp(Dt)dt] or
equivalently Z, :jsey "dt, then it is easy to notice, just by substitution, that

vec™ {U: eXP(Dt)@ exp(Dt)dt}veC(P “H (P B ) )} equals ZP™'H (P B ) The reader

should note, however, that due to the fact that our Kronecker product is diagonal, it
does not have to be stored in full, so an efficient implementation of the algorithm
will use only the diagonal

All operations are easily implemented in any mathematically adapted computer

language such as Matlab.
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APPENDIX B: FUTURES CONTRACT VALUATION

Most of the models proposed in the literature assume that the risk-neutral dynamics of a

commodity price (or its log) is given by a linear stochastic differential system:

dX, =(b+ AX,)dt + RdW,
Y =cX,

t

where Y, is the commodity price (or its log), b, A, R and c are deterministic

parameters14 independent of  (beR", A, ReR""", ceR") and W, is a n-dimensional

canonical Brownian motion (i.e. all components uncorrelated and its variance equal to

unity) under the risk-neutral measure.

Let us see that the solution of that problem is'?:
X, =e" [XO + [ e " bds + jo’e“RdWS} (B1)
In order to proof it, we shall apply the general rule for the derivation of the product of
stochastic components (Oksendal, 1992):
dx, = (de™ {XO +[ e bds + JZeASRdWY}+ eA’d[XO +[ e bds + JZeASRdWY}+
+ (deA’ )d[XO + JZ e “bds + j; eASRdWS}
It is easy to show that:
d[XO + [ bds + jOteASRdWS} = e "bdt + e " RAW,

The first differential only has elements of type dt, hence the product of the first
differential times the second differential is zero.

Thus:

'* Again note that R does not need to be computed.

t
!5 Even in the case that b, 4 and R were function of ¢, if 4, and L AS ds commute, the solution of that

problem is (B1).
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dx, = AeA’dt[Xo + [ bds + .[Ote"ASRdWS} +e"ebdt + e RAW, |= A, X dt + bdt + RAW,

Consequently we obtain expression (B1):

X =e* [XO + re’A“bds + re“RdWY]
0 0 ;

t

It is easy to prove that the solution is unique (Oksendal, 1992).
An elementary rule of the stochastic calculus states that if J; is a deterministic function,

t
.[0 J,dW_ is normally distributed with mean zero and variance:

N

VWU; Jdes) = J-; JJ. ds (Itd’s isometry).

Accordingly, X, is normally distributed with mean and variance'®:

E'[X, ]=e" [XO + jo’e*“ bds} (B2)
Var'[X,]=e™ U;e_ASRR'e_AS'dS }e’“' (B3)
Therefore, Y,, under the risk-neutral measure, is also Gaussian and it easily follows that

its mean and variance are: E°[Y,|=cE’[X,], Var'[Y]=cVar'[X ]c', providing a
valuation scheme for all sorts of commodity contingent claims as financial derivatives

on commodity prices, real options, investment decisions and other more.

If Y; is the log of the commodity price (S;), the price of a futures contract traded at time #

with maturity at time #+7,, F; 7, can be computed as:

I, ]} (B4)

[t]+;Var*[Yt+T

o =05, 11 - exp{ £

where I, is the information available at time ¢.

' E*[] and Var*[] are the mean and variance under the risk neutral measure.
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This methodology can be used in all kind of problems (even if b, 4 and R are functions
of ¢, although, in this case the explicit formulae for the integrals, given in appendix A,
do not apply). Moreover, this methodology is much simpler than the ad-hoc solutions
presented in the literature that can only be used in the concrete problem for which they
were developed and need complex procedures like limit steps (Schwartz and Smith,

2000) or partial differential equations (Schwartz, 1997).
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APPENDIX C: VOLATILITY OF FUTURES RETURNS

The squared volatility of a futures contract traded at time ¢ with maturity at time ¢+7 is

defined as'’:

Var[log F. . —logF,, ]
m .

h—0 h
We will prove that it is the expected value of the square of the coefficient of the
Brownian motion (0y) in the expression d log(Ft,T)z uds +o,dw", where W' is a
scalar canonical Brownian motion, as long as g, is mean squared bounded in an

interval containing ¢ (it does not matter whether it is a function of F,, or not) and
E [af] is continuous in 7 '®.

Expressing d log F, . = u,dt + o,dW, in the equivalent integral form:

t+h t+h
logF,,,, —logF,; :.[ u.ds +.[ o dw,,

N

t+h

its expected value is .[ E[u, |ds . Therefore, its variance is given by:

t

Var[logFH” —logthT]zE{(J:Hh )3 —E[,us]dererh O'SdWsjz]

Using standard properties:

E{(J:h u,~EluJas+ [ o.aw, ﬂ _ E{( I —E[us]dsjz} +EKJ‘:”’ anWsﬂ

as 4, is non-anticipating.

By Itd’s isometry: EK.[M adeSJZ} = .[Hh E[Gf]ds

'” The same results are going to be obtained if the volatility is defined as:
lim Var[log F oy —log FtTJ

h—0 h
' In the general problem of this article these conditions are satisfied.
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Taking limits and using the mean value theorem of the integral calculus:

liml o E[af] ds = E[a,z].

h—0 h Jt

For the other term it can be seen that:

t+h 2 t+h 2

E (J: U, —E[ys]ds) = < (.[ | 2ds)
As for some o6 >0, y, is mean squared bounded in the interval (#-J, t+J), when 4 — 0,
p, = Elp,]

, IS € (t-06,t+ 5)}SM for some M. Hence,

1E Uh 1, — E[u ]ds)z <Ly
h ¢ N s - h

which converges to 0 when 42 — 0.

py = Elu,]

2
2

[ n, - Elu,Jds

, :se(t—5,t+5)}, and

this integral is less or equal than #A° supﬂ

u, = Elu,]

sup ﬂ

Therefore:

o VarllogF .y —log £, | _ £o?]

h—0 h

Hence, taking logarithms and differentials on both sides of Equation (B4), it follows

that:
d(logFtJ )= ce’"dX, =ce'[b+ AX, ldt + ce’" Raw,
Therefore, the squared volatility is':

AT AT
ce” " RR'e™ 'c'.

' Again note that R needs not to be computed as RR' is the noise covariance matrix.
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TABLES AND FIGURES

TABLE 1
TIME (MILISECONDS) NEEDED FOR AN EVALUATION OF THE LOG-

LIKELIHOOD FUNCTION

Integral stands for using a symbolic processor to compute the integral each step. General means using the
same script (formulae (3) and (4) in matrix form) for all models and Particular means writing down the

formulae for each case.

Data Brent Heating oil WTI
Factors 2 3 2 3 2 3
Integral 2785.00 7881.34  3316.16 14774.04  5404.36 3916.64
General 61.48 64.28 55.48 56.08 75.52 89.12

Particular 47.08 49.88 33.06 34.64 57.48 70.10
TABLE 2

TIME (SECONDS) FOR A FULL ESTIMATION OF A MODEL

General means using the same script (formulae (3) and (4) in matrix form) for all models and Particular
means writing down the formulaec for each case. Integrating symbolically each step would be

computationally burdensome.

Data Brent Heating oil WTI
Factors 2 3 2 3 2 3
General 74.10 250.02 59.39 180.23 91.70 210.33

Particular 60.26 220.97 39.31 128.06 69.53 234.42

43



FIGURE 1

WTI FUTURES PRICE WITH ONE MONTH TO MATURITY
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TABLE 3
THE TWO-FACTOR MODEL BY SCHWARTZ (1997). PRECISE AND

APPROXIMATE ESTIMATES

The Table shows the parameter estimates obtained with the Schwartz (1997) approximation and with the

precise method described in this chapter. Standard errors in parenthesis.

Parameter Precise Method Schvs./artz.
Approximation

0.1629 0.1678

H (0.0725) (0.0732)
K 1.5433 1.8855
(0.0318) (0.0356)

o 0.1458 0.1496
(0.0558) (0.0545)

o 0.3278 0.3293
! (0.0073) (0.0072)
S 0.3967 0.4622
2 (0.0113) (0.0119)
0.8073 0.8084

p (0.0104) (0.0107)
A 0.2181 0.2558
(0.0864) (0.1029)
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FIGURE 2

MEAN ERROR BY YEAR

The Figure shows the differences (mean error) between the one month futures price and the spot price

calculated with precise and approximated estimates, by year.
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FIGURE 3

ROOT MEAN SQUARED ERROR BY YEAR

The Figure shows the differences (root mean squared error) between the one month futures price and the

spot price calculated with precise and approximated estimates, by year.
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FIGURE 4

MEAN ERROR BY MONTH

The Figure shows the differences (mean error) between the one month futures price and the spot price

calculated with both precise and approximated estimates, by month.
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FIGURE 5

ROOT MEAN SQUARED ERROR BY MONTH

The Figure shows the differences (root mean squared error) between the one month futures price and the

spot price calculated with both precise and approximated estimates, by month.
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TABLE 4
COMPARISON OF THE IMPROVEMENT IN THE RMSE AND ONE-MONTH

FUTURES PRICE STANDAR DEVIATION BY MONTH

The Table shows the improvement (expressed in percentage) in the RMSE, defined as the RMSE
computed with the Schwartz approximation minus the RMSE computed with the precise version of the

estimates, and one-month futures price standard deviation, by month.

Improvement RMSE (%) Volatility

All Months 6.06341562 4.5066963
January 6.69700526 3.45920263
February 2.90069147 3.43375304
March 2.86456161 3.9271667
April 3.82981177 3.88082312
May 3.20130602 3.37948674
June 4.20386706 3.61776438
July 4.02239618 4.05271984
August 3.25451898 4.14305907
September 3.37241986 425738991
October 11.0467666 6.73405967
November 8.73584998 5.73730612
December 7.36128089 4.18504435
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CHAPTER 2: COMMODITY DERIVATIVES VALUATION
UNDER A FACTOR MODEL WITH TIME-VARYING RISK

PREMIA

2.1 INTRODUCTION

In equity markets, the market price of risk is the excess return over the risk-free rate per
unit standard deviation (( u-r)/ a) that investors want as compensation for taking risk,

which is also called the Sharpe ratio. This ratio plays an important role in derivatives
valuation. If the underlying asset is a traded asset, it is possible to build a risk-free
portfolio by buying the derivative and selling the underlying asset or vice versa.
Consequently, the market price of risk does not appear in the derivatives valuation
model.

However, if the underlying asset is not a traded asset, there is no way of building a
riskless portfolio by buying the derivative and selling the underlying asset or vice versa;
therefore, we must know how much return is needed to compensate the unhedgeable
risk. This is why the market price of risk must be estimated to obtain a theoretical value
for the derivative asset.

In commodity markets, the market price of risk has a slightly different definition. As
noted by Kolos and Ronn (2008), equities require a costly investment and,
consequently, return the risk-free rate under the risk-neutral measure. In the case of
commodities, it should be noted that sometimes there is a storage cost associated with
storing the commodity and also a convenience yield associated with holding the
commodity rather than the derivative asset. Nevertheless, futures contracts are costless
to enter into; therefore, their risk-neutral drift is zero. Thus, the market price of risk in

commodity markets is defined as the ratio of the asset return to its standard
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deviation(,u/ 0'). Additionally, whereas the market price of risk must be positive in

equity markets, it can be negative in commodity markets.

There have been several papers that have analyzed the properties of market prices of
risk in commodity markets and their relation with other variables. Fama and French
(1987 and 1988) note the importance of allowing for time-varying risk premia as
negative correlations between spot prices and risk premia can generate mean reversion
in spot prices. Bessembinder (1992) shows that market prices of risk in financial and
commodity markets are related to the covariance of the market portfolio and the futures
returns. Routledge et al. (2001) and Bessembinder and Lemmon (2002) relate market
prices of risk to several measures of uncertainty, such as price volatility, spikes and
uncertainty in demand. Moosa and Al-Loughani (1994), Sardosky (2002) and Jalali-
Naini and Kazemi-Manesh (2006) find evidence of variable risk premia in oil markets
using GARCH models.

More recently, Kolos and Ronnn (2008) estimate the market prices of risk for energy
commodities, finding positive long-term and negative short-term market prices of risk.
Lucia and Torro (2008) find that risk premia in the Nordic Power Exchange (Nord Pool)
vary seasonally over the year and are related to unexpected low reservoir levels.

There have also been several papers that have analyzed the importance of allowing for
time-varying risk premia from the point of view of asset valuation. Following the ideas
in Fama (1984) and Fama and Bliss (1987), Duffee (2002) and Dai and Singleton
(2002) propose interest rate models where risk premia are linear functions of the state
variables. Casassus and Collin-Dufresne (2005) propose and estimate a three-factor
model for commodity spot prices, convenience yields and interest rates where
convenience yields depend on spot prices and interest rates, and time-varying (state

depending) risk premia using a maximum likelihood method. They also test the
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importance of the dependence of convenience yields on spot prices and of interest rates
on the valuation of a set of theoretical commodity European call options. However, they
do not test the importance of time-varying risk premia on the valuation of commodity
derivatives.

In this chapter, we extend these ideas by proposing and estimating a commodity
derivative valuation model with time-varying risk premia. Time series of market prices
of risk for energy commodities (crude oil, heating oil, gasoline and natural gas) are
estimated under the most widely used model for commodity derivatives valuation,
which is the Schwartz and Smith (2000) model, using the Kalman filter method on a
moving windows basis. The results show that market prices of risk vary through time
accordingly with several macroeconomic variables related to the business cycle, such as
crude oil prices, NAPM (National Association of Purchasing Managers) and S&P 500
indices. These results constitute preliminary evidence that the risk compensation that
investors want in a commodity derivative contract varies as market conditions change.
Based on these results, a factor model with market prices of risk depending on the
business cycle (proxied by the underlying asset short- and long-term factors) using the
Kalman filter method is proposed and estimated®’. The proposed model with time-
varying risk premia is also maximal, in accordance with Dai and Singleton (2000). The
valuation results obtained with an extensive sample of commodity American options,
traded on the NYMEX, show that the proposed model with time-varying risk premia
outperforms standard models with constant risk premia. These results confirm the
previous findings shown in the literature of non-constant market prices of risk.
Moreover, in the present chapter, it is found that allowing for variable market prices of

risk has an important effect in commodity derivative valuation. To the best of our

* Contrary to previous papers, such as Casassus and Collin-Dufresne (2005), who use a maximum
likelihood method, in the present chapter, the estimation is carried out using the Kalman Filter method,
which employs all the information available in the forward curve of commodity futures prices.
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knowledge, this is the first time that a model with time-varying (state depending) risk
premia is applied to the valuation of exchange-traded commodity derivatives.

The remainder of this chapter is organized as follows. Section 2 presents the data sets
used in the chapter. Some preliminary findings regarding the market prices of risk
estimation using the maximum-likelihood method proposed by Kolos and Ronn (2008)
and the Kalman filter method, and their relation to the business cycle are presented in
Section 3. The factor model with time-varying business cycle related market prices of
risk is proposed and estimated in Section 4. Section 5 presents the option valuation
results obtained with the models with time-varying and constant market prices of risk.

Finally, Section 6 concludes with a summary and discussion.

2.2 DATA

In this section, we briefly describe the data that will be used in this and the following
sections. The data set used in this chapter consists of weekly observations of WTI (light
sweet) crude oil, heating oil, unleaded gasoline (RBOB) and natural gas (Henry Hub)
futures prices traded on the NYMEX, as well as a set of exogenous variables related to
the business cycle.

Currently, there are futures being traded on NYMEX for WTI crude oil with maturities
of one month to seven years, for heating oil from one month to eighteen months, for
gasoline from one month to twelve months and for Henry Hub natural gas from one
month to six years. However, there is not enough liquidity for the futures with longer
maturities, especially in the case of gasoline. Therefore, in the cases of WTI crude oil
and heating oil, our data set is comprised of futures prices from one to eighteen months
(1,338 weekly observations) between 1/1/1985 and 8/16/2010. In the case of RBOB

gasoline, the data set is comprised of futures prices from one to nine months (1,338
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weekly observations) between 1/1/1985 and 8/16/2010. Finally, in the case of Henry
Hub natural gas, the data set is comprised of futures prices from one to eighteen months
(1,064 weekly observations) between 4/2/1990 and 8/16/2010. The main descriptive
statistics of these variables are contained in Table 1.

To asses the robustness of the results, two different data sets have been employed for
each commodity. The first set contains more windows but fewer futures contracts, while
the second set contains fewer windows but more futures contracts.

In the case of WTI crude oil, the first data set is comprised of contracts F1, F3, F5, F7
and F9 from 1/1/1985 to 8/16/2010, with 180 windows, yielding a time series of 180
market prices of risk. F1 is the contract for the month closest to maturity, F2 is the
contract for the second-closest month to maturity, and so on. The second data set for
WTI crude oil is comprised of contracts F1, F4, F7, F11, F15 and F18 from 9/9/1996 to
8/16/2010, with 82 windows, yielding a time series of 82 market prices of risk.

In the case of heating oil, the first data set is comprised of contracts F1, F3, F6, F8 and
F10 from 10/14/1985 to 8/16/2010, with 177 windows, yielding a time series of 177
market prices of risk. The second data set for heating oil is comprised of contracts F1,
F4, F8, F11, F15 and F18 from 9/9/1996 to 8/16/2010, with 82 windows, yielding a
time series of 82 market prices of risk.

In the case of RBOB gasoline, the first data set is comprised of contracts F1, F3, F4, F5
and F7 from 4/29/1985 to 8/16/2010, with 181 windows, yielding a time series of 181
market prices of risk. The second data set for heating oil is comprised of contracts F1,
F3, F5, F7 and F9 from 7/17/1995 to 8/16/2010, with 92 windows, yielding a time series
of 92 market prices of risk.

Finally, in the case of Henry Hub natural gas, the first data set is comprised of contracts

F1, F4, F6, F9 and F11 from 4/16/1990 to 8/16/2010, with 135 windows, yielding a
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time series of 135 market prices of risk. The second data set for Henry Hub natural gas
prices is comprised of contracts F1, F4, F8, F12, F15, F18, F22, F26, F29, F31 and F35
from 5/28/1997 to 8/16/2010, with 76 windows, yielding a time series of 76 market
prices of risk.

The set of business cycle-related variables is composed of weekly observations from
1/1/1985 to 8/16/2010 of WTI one month futures prices and S&P 500 index prices, as
well as monthly observations of the NAPM (National Association of Purchasing
Managers) index and the indicator of the expansion of the economy, which takes the

value 1 (0) if the NAPM index is above (below) 50.

2.3 PRELIMINARY FINDINGS

In this section, we present some preliminary findings regarding the time series evolution
of market prices of risk for crude oil, heating oil, gasoline and natural gas, as well as the
market prices of risk relationship with the business cycle, using the maximum

likelihood method proposed by Kolos and Ronn (2008) and the Kalman filter method.

Market prices of risk estimation using the maximum-likelihood method

Kolos and Ronn (2008) obtain short- and long-term estimates of the market price of risk
for several energy commodities assuming the two-factor model by Schwartz and Smith
(2000). In this model, the log-spot price (X;) is assumed to be the sum of two stochastic

factors, a short-term deviation (¥;) and a long-term equilibrium price level (&). Thus,
X, =&+ (1)
The stochastic differential equations (SDEs) for these factors are as follows:
dé, = p dt+o.dW,

2)
dy, =-kydi+o,dW,
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where dWs and dW), can be correlated (dWsdW,; = pdt) and with pg, representing the
coefficient of correlation between long- and short-term factors.
To value derivative contracts, we must rely on the “risk-neutral” version of the model.

The SDEs for the factors under the equivalent martingale measure can be expressed as:

dé, =(u;—A,)dt+o.dW;

3)
dy, =(—Ky, —A,)dt +aldW;t

where As and /, are the market prices of risk for the long- and short-term factors,
respectively, and W&* and W;(t* are the factor Brownian motions under the equivalent

martingale measure.
Schwartz and Smith (2000) and Kolos and Ronn (2008) obtain the SDE for forward
contracts (under the historical measure):

t

A0, +1505)dt+e_’“01dWﬂ +o.dW, 4)

Discretizing equation (4) and applying Ito’s Lemma, it is possible to obtain the log-

likelihood function, which is (after omitting unessential constants):*'

InL=-nlno, —anln(\/ez’“" +(a§/al )2 )—
i=1

ol 4o /o)) )
AlnF, | A e ’+ﬂ,§(0§/al)— z 5 2o At )

1 n
- 207 At Z

i=1 \/e_zm" + (0'5/0'1 )2

Maximum likelihood estimates of short- and long-term market prices of risk (4, and A,
respectively), together with the rest of the model parameters, can be obtained by

maximizing this log-likelihood function.

! See Kolos and Ronn (2008) for the details.
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In this chapter, the maximization of the log-likelihood function has been performed
subsequently over moving windows of 240 weeks, using weekly observations of one
month futures prices for WTI crude oil, heating oil, RBOB gasoline and Henry Hub
natural gas. In this way, we obtain time series of market prices of risk for the four
commodity series (180 observations in the case of WTI crude oil, heating oil and RBOB
gasoline, and 134 observations in the case of Henry Hub natural gas).

In Figure 1, we plot the time series evolution of the estimated market prices of risk in
the case of WTI crude oil*>. The estimated series show high volatility, which is
consistent with the results found by Kolos and Ronn (2008).

The results regarding the coefficients of correlation among the estimated market prices
of risk and the business cycle-related variables described above are shown in Table 2.
The correlations between short- and long-term risk premia are negative in all cases,
although significant only in the case of Henry Hub natural gas.

Positive and significant correlations are found among market prices of risk and WTI one
month futures prices™, except for the long-term risk premium for RBOB gasoline and
long- and short-term risk premia for Henry Hub natural gas.

Moreover, positive and significant correlations among market prices of risk and
S&P500 (and its one week lag) are found, except for the long-term one in the case of
RBOB gasoline and long- and short-term ones in the case of Henry Hub natural gas. In
the case of the NAPM index (and its one month lag), positive and significant
correlations with short-term market prices of risk for all four commodities and with
long-term one in the case of WTI are also found, although the magnitude of the

correlation is lower than the magnitude in the S&P500 case (except for the Henry Hub

2 For the sake of brevity, only the plot of market prices of risk estimated with WTI crude oil are
presented here. The plots for the other three commodities show a very similar pattern.

“ WTI one month futures prices are calculated as the mean of the futures price during the window used to
estimate the market price of risk.

55



natural gas). Finally, evidence of correlation among market prices of risk and the
expansion indicator of the economy has not been found. In fact, as can be evidenced in
Figure 1, market prices of risk seem to show a “noise pattern” that is not clear and that
is not directly associated with market conditions.

In summary, the preliminary analysis performed with the Kolos and Ronn (2008)
maximum likelihood method shows evidence of some linear relationship mostly among
short-term market risk premia and business cycle-related variables, such as S&P 500
and NAPM indices. As will be discussed herein, the maximum likelihood method used
by Kolos and Ronn (2008) and Casassus and Collin-Dufresne (2005) presents some

disadvantages when compared to the Kalman filter method used in the next section.

Market Prices of Risk Estimation using the Kalman Filter Method

The Kalman filter method is, theoretically, superior to the maximum likelihood method
for several reasons. First, the Kalman filter method estimates all of the dynamic of the
underlying asset, whereas the maximum likelihood method only uses market prices of
futures contracts without taking into account the dynamics of the common underlying
asset. Second, with the Kalman filter method, we are able to use more futures contracts
(more maturities), which will result in more stable estimates of the parameters than
those obtained with the maximum likelihood method, such as in Kolos and Ronn (2008)
and Casassus and Collin-Dufresne (2005).

As stated in Section 3.1 and in the context of the Schwartz and Smith (2000) two-factor
model, the log spot price (X;) is assumed to be the sum of two stochastic factors, a short-
term deviation (y;) and a long-term equilibrium price level (&). Moreover, in the cases

of commodities, such as natural gas, heating oil and gasoline, a deterministic seasonal

56



component is added, as suggested by Sorensen (2002)**. Therefore, the log spot price
for heating oil, gasoline and natural gas (X;) is assumed to be the sum of two stochastic
factors (y; and &) and a deterministic seasonal trigonometric component (a;),

X, =& + y, +a,. The SDEs for &, and y, are given by expressions (2) and:

da, = 2npa, dt
* ©)

da, = 2npa, dt
where ¢ is the other seasonal factor, which complements ¢, and ¢ is the seasonal
period.
The SDEs for the long- and short- term factors under the equivalent martingale measure
are given by expressions (3).
As stated in previous studies, one of the main difficulties in estimating the parameters of
the two-factor model is that the short- and long-term factors (or state variables) are not
directly observable. Instead, they must be estimated from spot and/or futures prices®.
The formal method to estimate the model is to use the Kalman filter methodology,
which is briefly described in the Appendix*®. The Kalman filter method has been
subsequently performed over moving windows of 240 weeks, using weekly
observations of futures prices for WTI crude oil, heating oil, RBOB gasoline and Henry
Hub natural gas?’. Two different data sets (defined in Section 2) have been employed

for each commodity. The first set contains more windows but fewer futures contracts,

while the second set contains fewer windows but more futures contracts.

** Sorensen (2002) suggests introducing into the model a deterministic seasonal component for
agricultural commodities. Here, we use Sorensen’s proposal for heating oil, gasoline and natural gas,
which present a strong seasonal behavior (see, for example, Garcia et al., 2011a).

** The exact expression for the futures price under the Schwartz and Smith (2000) two-factor model with
seasonal factors can be found in Garcia et al. (2011a).

*® Detailed accounts for Kalman filtering are given in Harvey (1989) and Puthenpura et al. (1995).

*’ Details about implementing the Kalman filter in Matlab can be found in Date and Bang (2009).
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In Figure 2, we plot the time series evolution of the estimated market prices of risk in
the case of WTI crude oil with the first data set, together with several business cycle-
related variables®®. Looking at the time-evolution of the estimated risk premia, it is clear
that we obtain more stable estimates with the Kalman filter method than those obtained
with the maximum likelihood method. The results show a negative relationship between
long- and short-term market risk premia. Moreover, a positive (negative) relationship
between the long- (short-) term market price of risk and the average price of one month
WTI futures is found, suggesting that the long- (short-) term risk compensation that
investors want to enter in a commodity derivative is positively (negatively) related to
crude oil prices”. This finding suggests that when crude oil prices are high, the risk
associated with the long-term factor (which is the factor that does not disappear with
time) tends to not be diversifiable. Moreover, the volatility of one month WTI futures
prices is negatively (positively) related to the long- (short-) term market price of risk.

Concerning the estimated market prices of risk p-values, it is found that risk premia are
significant (and therefore not diversifiable) during expansion periods or when crude oil
prices rise, whereas they are not significant in contraction periods or when crude oil
prices decrease, although the pattern is somewhat clearer in the case of the long-term
market risk premium, which confirms that the crude oil risk is not diversifiable when
crude oil price is high enough. If we consider the relationship between the average long-
and short-term factors and the estimated market prices of risk, we find that long-term
(short-term) market prices of risk are positively (negatively) related to both long- and
short-term factors. Moreover, the estimated market price of risk seems to be positively

related to its respective (long- or short-term) factor standard deviation.

8 As before, for the sake of brevity, only the plot of market prices of risk estimated with WTI crude oil
are presented here. The plots for the other three commodities show a very similar pattern.

** As in the previous section, the futures prices average is the mean of the futures price during the window
used to estimate the market price of risk.
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Finally, a positive (negative) relationship is found between the estimated long-term
(short-term) market price of risk and the average NAPM index, the average S&P 500
index and the indicator of expansion®’, suggesting that the risk associated with the long-
term factor tends to not be diversifiable during expansion periods.

The results regarding the coefficients of correlation among the estimated market prices
of risk and the business cycle related variables described above are shown in Tables 3
for WTI crude oil, 4 for heating oil, 5 for RBOB gasoline and 6 for Henry Hub natural
gas. The results confirm the graphical analysis of Figure 2. The relationship between the
long- and short-term market prices of risk is found to be negative and significant in the
case of WTI crude oil (Table 3) and positive and significant in the cases of heating oil
(Table 4), RBOB gasoline (Table 5) and Henry Hub natural gas (Table 6).

It is also interesting to observe the positive and significant relationship found between
the long-term market price of risk and WTTI futures prices for WTI crude oil, heating oil
and RBOB gasoline (the relationship is less clear in the case of Henry Hub natural gas).
This result suggests, once again, that the long-term compensation that investors require
to enter into a commodity contract rises as WTI futures prices rise’.

Rather ambiguous relationships are found among the market prices of risk and the
volatility of one month WTI futures price, the model volatility and the maximum
likelihood, and the NAPM and S&P500 (and their lags) indices.

However, the most obvious relationship is the one found among the estimated market
prices of risk and the underlying long- and short-term factors, although the relationship

is less clear in the case of Henry Hub natural gas prices. Less clear is the relationship

3% The indicator of the expansion of the economy takes the value 1 (0) if the NAPM index is above
(below) 50.

3! Cortazar, Milla and Severino (2008) and Garcia, Poblacion and Serna (2011b) show that crude oil and
its main refined products (heating oil and gasoline) share common long-term dynamics. Therefore, it is
not surprising that the long-term compensations associated with crude oil, heating oil and gasoline are
(positively) related to WTI futures prices.
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among the market prices of risk and the volatility of the underlying long- and short-term
factors.

These findings confirm our previous assumption that the risk compensation that
investors want to enter into a commodity derivative contract varies as market conditions
change. Specifically, it is quite interesting to observe how the market prices of risk vary
according to the underlying long- and short-term factors. Therefore, it seems natural to
propose a factor model with market prices of risk depending on the business cycle,
proxied by the underlying long- and short-term factors, along the lines suggested by
Casassus and Collin-Dufresne (2005), although here we use the Kalman filter method

instead of the maximum likelihood method.

24 A FACTOR MODEL WITH TIME-VARYING MARKET

PRICES OF RISK DEPENDING ON THE BUSINESS CYCLE

Based on the previous results, in this section, a factor model with time-varying market
prices of risk depending on the business cycle is proposed and estimated. The proxy for
the business cycle will be the Schwartz and Smith (2000) long- and short-term factors,
& and g, respectively. These two factors are found to be the business cycle related
variables with higher coefficients of correlation with the estimated market prices of risk.
The model with time-varying risk premia will be an extension of the two-factor model
described in Section 3, where the log spot price for heating oil, gasoline and natural gas

(X;) is assumed to be the sum of two stochastic factors (¥, and &) and a deterministic

seasonal trigonometric component (&), X, =&, +y, +a, (X, =&, + y, for crude oil),

where ¢, is defined in expressions (6). The SDEs for the long- and short- term factors
under the equivalent martingale measure, with time-varying risk premia, can be

expressed as:
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dé, = (. — 4. )dt+c.dW;

(7
dy, =(-xx, —4,)dt+o,dW,

where, as before, Wa* and WZ,* are the factor Brownian motions under the equivalent

martingale measure, and Az and 4, are time-varying market prices of risk for the long-
and short-term factors, respectively.
Following Duffee (2002), Dai and Singleton (2002) and Casassus and Collin-Dufresne
(2005), the market prices of risk are expressed as linear functions of the underlying
long- and short-term factors:
Ay = Ao+ Ae &+ ey X,
8)
Ag=Aotd, & +4,, %,

The parameters of the model are estimated, as in Section 3.2, using the Kalman filter
method rather than the maximum likelihood procedure used by Casassus and Collin-
Dufresne (2005). The results of the estimation of this factor model with time-varying
market risk premia, together with the results of the standard two-factor Schwartz and
Smith (2000) model with constant risk premia for the four commodity series using both
the first and the second data sets described in Section 2 are shown in Table 7 (WTI
crude oil), Table 8 (heating oil), Table 9 (RBOB gasoline) and Table 10 (Henry Hub
natural gas).
The results in Tables 7, 8, 9 and 10 confirm the presence of the mean reversion effect,
typically observed in commodity markets (parameter k is significant in all cases).
Moreover, as expected, both long- and short-term factors are found to be stochastic
(their corresponding standard deviations, oz and o, respectively, are significant),
although the short-term standard deviation is found to be higher than the corresponding

long-term standard deviation, suggesting that short-term effects have a higher impact on
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spot prices than long-term effects’>. However, as explained above, it must be kept in
mind that short-term effects tend to disappear with time (the short-term process is
stationary), whereas long-term effects do not disappear with time (the long-term process
is integrated).

However, the most important issue in Tables 7, 8, 9 and 10 from the point of view of the
goal of this chapter, is that the parameters associated with the market prices of risk (4w,
Aa, Aa, Ap, A and Ap) are significant in most of the cases, confirming that risk
premia vary through time depending on the economic conditions (proxied in this
chapter by the model long- and short-term factors).

If we define the Schwartz information criterion (SIC) as In(L,, ) —¢qIn(T), where g is

the number of estimated parameters, 7 is the number of observations and L,y is the
value of the likelihood function using the g estimated parameters, then the fit is better
when the SIC is higher. The same conclusions are obtained with the Akaike information

criterion (AIC), which is defined as In(Z,, ) — 2g . It is worth noting that in Tables 7, 8,

9 and 10, the values of the SIC and the AIC are higher in the model with time-varying
risk premia. This finding confirms the results obtained by Casassus and Collin-Dufresne
(2005), in that allowing for time-varying market risk premia improves the estimation
results. However, in this chapter, the estimation is carried out using the Kalman filter
method, which is theoretically superior to the maximum likelihood method used by
Casassus and Collin-Dufresne (2005).

In the next section, we use these results for commodity option valuation purposes.
Specifically, we show the importance of allowing for time-varying market risk premia
in valuing a set of market traded commodity options. It should be noted that Casassus

and Collin-Dufresne (2005) also propose a model with time-varying risk premia, but

32 This fact is also found in Schwartz and Smith (2000) and Garcia et al. (2011b), among others.
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they do not test the importance of time-varying market prices of risk on the valuation of

commodity derivatives.

2.5 OPTION VALUATION WITH TIME-VARYING MARKET

PRICES OF RISK DEPENDING ON THE BUSINESS CYCLE

As stated above, in this section, we apply our model with time-varying risk premia to
the valuation of an extensive set of commodity market traded options.

Option Data

The data set used in the estimation procedure consists of daily observations of WTI,
heating oil, RBOB gasoline and Henry Hub natural gas American call and put options
quoted at the NYMEX and corresponding to the years from 2006 until 2010. The
number of series is 1,293 call and 2,153 put (223,272 and 118,316 observations,
respectively) in the case of WTI crude oil; 1,567 call and 302 put (177,927 and 45,725
observations, respectively) in the case of heating oil; 1,633 call and 938 put (145,354
and 59,576 observations, respectively) in the case of RBOB gasoline; and 681 call and
758 put (79,957 and 99,828 observations, respectively) in the case of Henry Hub natural
gas.

In the NYMEX, WTI option contracts mature each month for the current year and for
the next five years. Additionally, the June and December months are listed beyond the
sixth year. Strike prices are the one at-the-money strike price, twenty strike prices in
increments of $0.50 per barrel above and below the at-the-money strike price, and the
next 10 strike prices in increments of $2.50 above the highest and below the lowest
existing strike prices for a total of at least 61 strike prices.

In the case of heating oil and RBOB gasoline options, there are listed contracts for the

next 36 consecutive months, and available strike prices are the at-the-money, twenty
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strike prices in $0.01 per gallon increments above and below the at-the-money strike
price, and the next 10 strike prices in $0.05 increments above the highest and below the
lowest existing strike prices for a total of at least 61 strike prices.

Finally, in the case of Henry Hub natural gas options, there are listed contracts for the
consecutive months for the balance of the current year plus 5 additional years. Strike
prices are the one at-the-money strike prices, twenty strike prices in increments of $0.05
per mmBtu above and below the at-the-money strike price in all months, plus an
additional 20 strike prices in increments of $0.05 per mmBtu above the at-the-money
price will be offered in the first three nearby months, and the next 10 strike prices in
increments of $0.25 per mmBtu above the highest and below the lowest existing strike
prices in all months, for a total of at least 81 strike prices in the first three nearby
months and a total of at least 61 strike prices for four months and beyond®”.

In all cases, the underlying asset is the corresponding WTI, heating oil, RBOB gasoline

or Henry Hub natural gas futures contract.

Option Valuation Methodology

The computation of American option prices is a challenging problem which implies
solving an optimal stopping problem. The problem can be simplified employing Monte
Carlo techniques. The starting point of these methods is to replace the time interval of
exercise dates by a finite subset. The solution of the corresponding discrete optimal
stopping problem reduces to an effective implementation of the dynamic programming
principle. However, the conditional expectations involve in the iterations of the dynamic
programming cause the main difficulty for the development of the Monte Carlo

techniques. One way of treating this problem is the method presented in Longstaff and

33 Additional details about the contracts can be found on the CME Group web page.
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Swchartz (2001), which is one of the most popular American option valuation methods
and will be the method used in this section to value commodity American options.
Specifically, the method proposed by Longstaff and Schwartz (2001) consists of
estimating the conditional expected pay-off to the holder of the option from
continuation using least squares regression techniques.
For the purpose of option valuation, we need a full description of the model. In matrix
form, the state dynamics can be described as follows:

dZ, =(u+ AZ,)dt +dw, . )
To clarify, let us take U, to be a unit of Brownian motion (i.e., dU,dU = I dt) and
rewrite (9) as:

dZ, =(u+ AZ,)dt + RdU, . (10)
For parameter estimation purposes, we use Kalman filter equations to estimate

Zy, = ElZ,/2Z,..,Z,_,], and as an intermediate result, Z o= E[Z._/Z,..,Z,_]. This

process (estimating using current or even future information) is termed “aliasing” in the

Kalman filter literature. The series Z,, is used as initial states for option valuation.

Option Valuation Results

Table 11 presents several metrics to analyze the predictive power ability of the models
for the data set of WTI, heating oil, RBOB gasoline and Henry Hub natural gas
American options. The models considered are the time-varying risk premia and the
standard constant (two-factor) risk premia. Moreover, the results shown in the table are
based on the estimation results obtained from both the first and the second data sets

described in Section 2.
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The statistics presented in Table 11 are the root mean squared error (RMSE), the
percentage root mean squared error (PRMSE) and the mean absolute error (MAE),

which are defined as:

n 2

( im _fi,z)

i=1

RMSE:\/

S |-

i( im fi,t )2

Jl
n i
PRMSE =
1 n
7Zfi,2m
V nio

MAE :%Z‘fm — ful
i=1

where f; ,, and f;, are the market and the theoretical prices, respectively, of option i.

The values shown in the table are the median of the different means for each option
series. It can be observed that we achieve better results with the time-varying risk
premia model for all commodities under study with all three statistics (except in the
case of heating oil using the RMSE with the second data set). It is also worth noting
that, in general, we achieve better results using the first data set (at least in the case of
WTI crude oil, heating oil and RBOB gasoline). Furthermore, it can be appreciated that
the best results of the time-varying model are achieved with RBOB gasoline, followed
by heating oil.

These results confirm that the constant risk premia assumption in standard option
valuation models has an important effect in terms of valuation errors. Therefore, the fact
that market prices of risk vary over time according to the business cycle must be taken
into account in option valuation models. Specifically, we have seen that the risk that
investors face when they enter in a derivative contract cannot sometimes be diversified,
depending on the market conditions, which has important implications in terms of

derivative valuation. In particular, it is found that the risk associated with the long-term
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factor tends to not be diversifiable during expansion periods. Therefore, it seems natural
that the risk associated with the model factors is sometimes not diversifiable, depending
on the market conditions, and can somewhat affect option values. In this chapter, we
have seen that, in fact, by allowing for time-varying (state-depending) market prices of
risk option valuation, errors can be reduced compared to those obtained with standard
(constant market prices of risk) models.

Finally, it should be noted that there have been several papers proposing factor models
with time-varying (state depending) risk premia, such as Casassus and Collin-Dufresne
(2005). However, these papers do not test the importance of time-varying risk premia on
the valuation of commodity derivatives. To the best of our knowledge, this is the first
time that a model with time-varying (state depending) risk premia is applied to the

valuation of exchange-traded commodity derivatives.

2.6 CONCLUSIONS

In this chapter, we note the importance of allowing for time-varying market prices of
risk in a commodity derivative model. Specifically, we show that the compensation that
investors want in a commodity derivative contract varies through time according to
several business related variables. More importantly, this business cycle dependence of
market prices of risk has an important effect in terms of option valuation errors.

The chapter begins by estimating time series of market prices of risk for crude oil,
heating oil, gasoline and natural gas under the two-factor model proposed by Schwartz
and Smith (2000) and using the Kalman filter method. The results show that the risk
compensation that investors want in a commodity derivative contract varies as market
conditions change. Specifically, close relationships among market prices of risk and

several variables related to the business cycle, such as NAPM and S&P 500 indices,
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crude oil prices, crude oil price volatility and long- and short-term price factors, among
others, are found.

Based on these results, a factor model with market prices of risk depending on the
business cycle and proxied by long- and short-term price factors is proposed and
estimated. The valuation results obtained with a sample of futures contracts on crude
oil, heating oil, gasoline and natural gas show that the proposed model with time-
varying risk premia depending on the business cycle outperforms the standard two-
factor model with constant risk premia. This finding confirms the results obtained by
Casassus and Collin-Dufresne (2005) in that allowing for time-varying market risk
premia improves the estimation results. Nonetheless, in this chapter, the estimation is
carried out using the Kalman filter method, which is theoretically superior to the
maximum likelihood method used by Casassus and Collin-Dufresne (2005).

However, the most important contribution of this chapter is the application of the model
with time-varying risk premia to the valuation of an extensive sample of exchange-
traded commodity derivatives. Specifically, the data base is comprised of American
options on WTIL, heating oil, RBOB gasoline and Henry Hub natural gas futures
contracts, traded at NYMEX and yielding better results than those obtained with
standard (constant market prices of risk) models. Specifically, we have seen that the risk
that investors face when they enter in a derivative contract cannot always be diversified,
depending on the market conditions. In particular, it is found that the risk associated
with the long-term factor tends to not be diversifiable in expansion periods.
Consequently, it is important to take into account the dependence of risk premia on the

economic conditions in valuing derivative contracts.
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To the best of our knowledge, this is the first time that a model with time-varying (state
depending) risk premia is applied to the valuation of exchange-traded commodity

derivatives.
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APPENDIX

The Kalman filter technique is a recursive methodology that estimates the unobservable
time series and the state variables or factors (Z;) based on an observable time series (Y,),
which depends on these state variables. The measurement equation accounts for the

relationship between the observable time series and the state variables such that:

Y =d +M,Z +n, t=1,..,N; (Al)
where Y,,d, e R", M, € R Z e R", h is the number of state variables, or factors, in

the model, and 7, € R" is a vector of serially uncorrelated Gaussian disturbances with

zero mean and covariance matrix H; To avoid dealing with a large number of
parameters, we assume that /7, is diagonal with main diagonal entries equal to o,
The transition equation accounts for the evolution of the state variables:

Z =c,+TZ,  +y, t=1,..,N; (A2)
where ¢, e R",T, e R"*"and y, e R" are vectors of serially uncorrelated Gaussian
disturbances with zero mean and covariance matrix Q,.

Let Y,

;1 be the conditional expectation of Y, and let E, be the covariance matrix of ¥,

conditional on all information available at time ¢ — 1. Then, after omitting unessential

constants, the log-likelihood function can be expressed as:

[==3 In|E |- (Y, ~Y, )VE'(Y,~Y,.) (A3)
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TABLES AND FIGURES

TABLE 1

DESCRIPTIVE STATISTICS

The table shows the mean and standard deviation (S.D.) of the four commodity series
prices. F1 is the futures contract closest to maturity, F2 is the contract second-closest to
maturity and so on. In the cases of WTI crude oil and heating oil the data set is comprised of
futures prices from one to eighteen months (1338 weekly observations) from 1/1/1985 to
8/16/2010. In the case of RBOB gasoline, the data set is comprised of futures prices from
one to nine months (1338 weekly observations) from 1/1/1985 to 8/16/2010. In the case of
Henry Hub natural gas, the data set is comprised of futures prices from one to eighteen

months (1064 weekly observations) from 4/2/1990 to 8/16/2010.

WTI Crude Oil Heating Oil RBOB Gasoline Henry Hub Natural Gas

Mean S.D. Mean S.D. Mean S.D. Mean S. D.
F1 3339 2356 3891 27.65 39.76 26.01 4.04 2.60
F2 334 2379 38.94 2794 39.53 26.01 4.13 2.66
F3 3337 2397 3898 2822 3934 2597 4.19 2.71
F4 3332 2411 3899 2846 39.16 25091 422 2.73
F5 3326 2423 3897 28.65 39.03 2593 425 2.75
Fo6 332 2433 3894 28.81 38.92 2597 4.27 2.76
F7 33.14 24.41 39 29.06 38.95 26.17 4.29 2.77
F8 33.08 24.48 3898 29.17 39.56 26.71 4.3 2.78
F9 33.03 2454 3894 2921 4052 27.28 4.3 2.78
F10 33.15 24.67 3894 29.27 4.29 2.76
F11 336 2496 39.39 29.59 4.29 2.74
F12 3424 2527 40.44 30.17 4.33 2.73
F13 35.1 25.63 42.17 30.92 4.53 2.73
F14 3535 2575 4278 31.25 4.52 2.73
F15 356 2596 4379 31.77 4.52 2.73
F16 357 26.09 44.62 32.29 4.52 2.73
F17 358 26.17 465 33.03 4.53 2.73
F18 362 2643 4927 33.84 4.56 2.73
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TABLE 2

CORRELATION AMONG MAXIMUM LIKELIHOOD ESTIMATES OF MARKET

PRICES OF RISK AND BUSINESS CYCLE RELATED VARIABLES

The table shows the coefficients or correlation among the estimated market prices of risk with

the Kolos and Ronn (2008) maximum likelihood method and several business cycle variables.

Coefficients of correlation are reported with their standard errors in parenthesis. The estimated

values are reported with ~ denoting significance at 10%, = denoting significance at 5%, and ~

denoting significance at 1%.

WTI CRUDE OIL
4, A WTI FI S&P500 S&P500(5) NAPM NAPM(D) - Expans.
4 Indicator
11 -0.0022  0.3957  0.5196 0.5095  0.1736  0.1894" 0.0285
4 (0.0749)  (0.06883)  (0.0640) (0.0645) (0.0738)  (0.0735)  (0.0749)
a . 0.3265""  0.3204™ 02936~ 0-1908 0.2140°" 0.0436
3
(0.0708)  (0.0710) (0.0716) 0.0736) (0.0732)  (0.0749)
HEATING OIL
NAPM
S&P 500 Expans.
A, As WTI F1 S&P 500 ) NAPM (-1) fndicator
11 -0.0824 03651 046727 0.4773 0.1265°  0.1492" 0.0158
4 (0.0749)  (0.0699)  (0.0665) (0.0660) (0.0746)  (0.0743)  (0.0751)
a . 0.2794""  0.3047"" 0.3199° 0 01' 615 0:0045 0.0421
5 .
(0.0722)  (0.0716) (0.0712) (0.075]) (0.0752)  (0.0751)
RBOB GASOLINE
NAPM
S&P 500 Expans.
A, A WTI F1 S&P 500 ) NAPM (-1) fndicator
11 -0.3030  0.39027"  0.4746" 0.4666 0.18627 0.1949™" 0.1129
4 (0.7016)  (0.0692)  (0.0662) (0.0665) (0.0738)  (0.0737)  (0.0747)
a | -0.0512  0.0821 0.0713 0.1042 0.1087 -0.0293
¢ (0.0751)  (0.0749) (0.0750) (0.0747)  (0.0747)  (0.0751)
HENRY HUB NATURAL GAS
NAPM
S&P 500 Expans.
2, A WTI F1 S&P 500 ) NAPM (-1) Indioator
i1 0.49307  -0.0623 021317 0.18327 0.20527  0.2059" 0.1098
z (0.0749)  (0.0859)  (0.0841) (0.0846) (0.0842)  (0.0842)  (0.0855)
B ) -0.0679  -0.1399 -0.1134 0.0306 0.0224 0.0918
¢ (0.0859)  (0.0852) (0.0855) (0.0860)  (0.0860)  (0.0857)
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TABLE 3

CORRELATION AMONG WTI KALMAN FILER ESTIMATES OF MARKET

PRICES OF RISK AND BUSINESS CYCLE RELATED VARIABLES

The table shows the coefficients or correlation among the estimated WTI crude oil market prices
of risk with the Kalman filter method and several business cycle related variables. Coefficients
of correlation are reported with their standard errors in parenthesis. The estimated values are
reported with ~ denoting significance at 10%, = denoting significance at 5%, and ~ denoting

significance at 1%.

WTI FRIST DATA SET | WTI SECOND DATA SET
A A, A A,
1 -0.5813" 1 033517
A (0.0610) (0.1053)
-0.5813 1 -0.3351 1
A, (0.0610) (0.1053)
0.5492""°  -0.8503" = 0.3829 -0.8691
WTI F1 (0.0626) (0.0394) (0.1033) (0.0553)
0.1228" -0.0324 -0.8765 0.1132
VOLAT. F1 (0.0744) (0.0749) (0.0538) (0.1111)
MODEL VOLAT. 0.0666 0.0581 -0.7846 0.3445
(0.0748) (0.0748) (0.0693) (0.1050)
LIKELIHOOD -0.2528  0.4568 | -0.8910 02716
(0.0725) (0.0667) (0.0508) (0.1076)
g 0.6574""  -0.8424 046147  -0.7809
(0.0565) (0.0404) (0.0992) (0.0698)
Y 0.19817 052397 04989 -0.7385
(0.0735) (0.0638) (0.0969) (0.0754)
o 0.8234"  -0.6554 | 0.8642  -0.4755"
(0.0425) (0.0566) (0.0562) (0.0984)
o, 0.0370 -0.0046  -0.6753"" 03362
(0.0449) (0.0750) (0.0825) (0.1053)
NAPM 0.1823" -0.0318 0.8479"" -0.2518"
(0.0737) (0.0749) (0.0593) (0.1082)
NAPM(-1) 0.1896" -0.0608 0.8408" -0.3158
(0.0736) (0.0748) (0.0605) (0.1061)
S&P 500 0.6945  -0.6880 @ -0.1899" -0.4351
(0.0539) (0.0544) (0.1098) (0.1007)
S&P 500 (-5) 0.6897 -0.6570 0.0507 -0.5552"
(0.0543) (0.0565) (0.1112) (0.0930)
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TABLE 4

CORRELATION AMONG HEATING OIL KALMAN FILER ESTIMATES OF

MARKET PRICES OF RISK AND BUSINESS CYCLE RELATED VARIABLES

The table shows the coefficients or correlation among the estimated heating oil market prices of
risk with the Kalman filter method and several business cycle related variables. Coefficients of
correlation are reported with their standard errors in parenthesis. The estimated values are
reported with ~ denoting significance at 10%, = denoting significance at 5%, and ~~ denoting

significance at 1%.

HEATING OIL FRIST | HEATING OIL SECOND
DATA SET DATA SET
A A, A A,
0.7896 0.5207"
A 1 1
(0.0464) (0.0955)
B 0.7896 | 0.5207" |
z (0.0464) (0.0955)
WTI F1 03711 0.0309 0.4068 -0.1922"
(0.0702) (0.0756) (0.1021) (0.1097)
0.0904 0.0608 -0.3687" 0.0824
VOLAT. Fl (0.0753) (0.0755) (0.1039) (0.1114)
0.1560" 0.1383" 0.2519" 0.5875
MODEL VOLAT. (0.0747) (0.0749) (0.1082) (0.0905)
-0.0225 0.1857 -0.3440" 0.0812
LIKELIHOOD (0.0756) (0.0743) (0.1050) (0.1114)
0.6106 0.4365 0.6884 0.4267
S (0.0599) (0.0680) (0.0811) (0.1011)
0.6041""  -0.6356 | -0.5586 -0.8958""
X (0.0602) (0.0584) (0.0927) (0.0497)
0.2922"" -0.0458 0.4454™" -0.0069
¢ (0.0726) (0.0755) (0.1001) (0.1118)
-0.0022 -0.0960 -0.3736" -0.0765
Ox (0.0756) (0.0752) (0.1037) (0.1115)
-0.0569 -0.0969 0.3371 0.0748
NAPM (0.0755) (0.0752) (0.1053) (0.1115)
-0.0559 -0.1016 0.3419 0.0496
NAPM(-1) (0.0755) (0.0752) (0.1051) (0.1117)
0.1657 -0.0542 0.0388 -0.1803
S&P 500 (0.0745) (0.0755) (0.1117) (0.1098)
0.1152 -0.0878 0.1025 -0.2097"
S&P 500 (-5) (0.0751) (0.0753) (0.1112) (0.1093)
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TABLE 5

CORRELATION AMONG RBOB GASOLINE KALMAN FILER ESTIMATES OF

MARKET PRICES OF RISK AND BUSINESS CYCLE RELATED VARIABLES

The table shows the coefficients or correlation among the estimated RBOB gasoline market

prices of risk with the Kalman filter method and several business cycle related variables.

Coefficients of correlation are reported with their standard errors in parenthesis. The estimated

values are reported with = denoting significance at 10%, = denoting significance at 5%, and ~

denoting significance at 1%.

RBOB GASOLINE RBOB GASOLINE
FRIST DATA SET SECOND DATA SET
A A, A A,
1 0.8618"" 1 0.8520"
A (0.0379) (0.0552)
0.8618" 1 0.8520"" 1
A, (0.0379) (0.0552)
0.1992" 0.0234 0.2644 0.0608
WTI F1 (0.0732) (0.0747) (0.1017) (0.1052)
0.1942"" 0.0267 0.1230 -0.0222
VOLAT. F1 (0.0733) (0.0747) (0.1046) (0.1054)
MODEL VOLAT. -0.0442 -0.1434" -0.1613 -0.1499
(0.0747) (0.0740) (0.1040) (0.1042)
LIKELIHOOD -0.1191 -0.0845 -0.0105 -0.1235
(0.0742) (0.0745) (0.1054) (0.1046)
¢ 0.6041° 04824 0.6415 0.5540"
(0.0596) (0.0655) (0.0809) (0.0878)
Y -0.6850°"  -0.6929  -0.7215  -0.8156
(0.0545) (0.0539) (0.0730) (0.0610)
o: 0.0660 -0.0744 0.2166 -0.0656
(0.0746) (0.0745) (0.1029) (0.1052)
o, -0.16137  -0.1109 -0.0919 0.0044
(0.0738) (0.0743) (0.1050) (0.1054)
NAPM -0.0491 -0.0617 0.2012° 0.0189
(0.0747) (0.0746) (0.1033) (0.1054)
NAPM(-1) -0.0375 -0.0615 0.2263" 0.0365
(0.0747) (0.0746) (0.1027) (0.1053)
S&P 500 0.1478" -0.0358 0.0226 -0.0410
(0.0739) (0.0747) (0.1054) (0.1053)
S&P 500 (-5) 0.1357 -0.0450 0.0400 0.0002
(0.0741) (0.0747) (0.1053) (0.1054)
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TABLE 6
CORRELATION AMONG HENRY HUB NATURAL GAS KALMAN FILER
ESTIMATES OF MARKET PRICES OF RISK AND BUSINESS CYCLE RELATED

VARIABLES

The table shows the coefficients or correlation among the estimated Henry Hub natural gas
market prices of risk with the Kalman filter method and several business cycle related variables.
Coefficients of correlation are reported with their standard errors in parenthesis. The estimated
values are reported with ~ denoting significance at 10%, ~ denoting significance at 5%, and =

denoting significance at 1%.

HENRY HUB HENRY HUB NATURAL
NATURAL GAS FRIST GAS SECOND DATA
DATA SET SET
A A, A A,
R : 0.3024" : 0.23137
g (0.0827) (0.1131)
B 0.3024 . 0.2313" .
x (0.0827) (0.1131)
WTI F1 0.4506 -0.3204 -0.0284 -0.6381
(0.0774) (0.0774) (0.1162) (0.0895)
0.3790 0.0022 0.3384 0.4662"
VOLAT. Fl (0.0802) (0.0802) (0.1094) (0.1028)
0.2315 0.3538" 0.3085 0.3269
MODEL VOLAT. (0.0844) (0.0844) (0.1106) (0.1099)
0.0005 -0.0779 -0.1138 -0.6353"
LIKELIHOOD (0.0867) (0.0867) (0.1155) (0.0898)
0.6706 -0.0153 0.0125 0.0209
S (0.0643) (0.0643) (0.1162) (0.1162)
0.6737  -0.5463 0.0095 -0.8082""
X (0.0641) (0.0641) (0.1162) (0.0685)
0.4327 -0.1896 0.7007 0.1682
Oe (0.0782) (0.0782) (0.0829) (0.1147)
-0.0157 -0.0634 -0.3838"" 0.3283"
Ox (0.0867) (0.0867) (0.1073) (0.1098)
0.0155 -0.1080 0.6385 -0.2403"
NAPM (0.0867) (0.0867) (0.0895) (0.1128)
0.0200 -0.1235 0.6058"" -0.2710"
NAPM(-1) (0.0867) (0.0867) (0.0925) (0.1119)
0.4897 -0.1823"  -0.4528 -0.2309"
S&P 500 (0.0756) (0.0756) (0.1036) (0.1131)
0.4911°° -0.1787 -0.2605"" -0.3593"
S&P 500 (-5) (0.0755) (0.0755) (0.1122) (0.1085)
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TABLE 7

ESTIMATION RESULTS OF THE FACTOR MODELS WITH TIME-VARYING

BUSINESS CYCLE RELATED AND CONSTANT MARKET PRICES OF RISK

WTI CRUDE OIL

The table shows the estimation results of the model with time-varying market prices of risk

(MPR), depending on the model long- and short-term factors, together with those obtained with

the standard Schwartz and Smith (2000) two-factor model with constant risk premia. The table

shows the results obtained with both the first and the second data sets described in section 3.

Standard errors are in parentheses. The estimated values are reported with = denoting

significance at 10%, ~ denoting significance at 5%, and = denoting significance at 1%.

First Data Set

Second Data Set

WTI WTI WTI WTI

Constant Variable Constant Variable

MPR MPR MPR MPR

e 0.0452° 0.0404 0.1128™ 0.0868"
(0.0270)  (0.0268) (0.0334) (0.0410)

K 1.97487"  1.1859 1.1254™ 13257
(0.0234) (0.2318) (0.0103) (0.2478)

o 0.1936"  0.1919  0.1761°  0.2160
(0.0030)  (0.0170) (0.0037) (0.0283)

o, 0.2467°  0.1799" 02763 0.1393"
(0.0043)  (0.0266) (0.0065) (0.0384)

Aso 0.0907"  0.3821° 0.1669 04945
(0.0271)  (0.1991) (0.0334) (0.1505)
Ay - -0.0856 ) -0.1009"
(0.0569) (0.0387)

e - 0.8030° ) 1.2291°
(0.4184) (0.6864)

A 0.0453 1.1308™ -0.0333 0.3670"
(0.0346)  (0.3736) (0.0524) (0.1758)

Ay - -0.3251° -0.1022"
(0.1084) ) (0.0473)

M2 - 0.8121" ) -0.1048
(0.2647) (0.2702)

Pe, 0.1494™ 05775 0.0445 0.7349™
(0.0239)  (0.0949) (0.0320) (0.0791)

oy 0.0079"  0.0078" 0.0093"" 0.0093""
(0.0001)  (0.0001) (0.0001) (0.0001)

Log-L  50007.70  50160.36 3214672 32163.08
AlIC 4999170 5013636 3213072 32139.08
SIC  49950.11  50073.97  32093.99  32084.00
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TABLE 8
ESTIMATION RESULTS FOR HEATING OIL
The table shows the estimation results of the model with time-varying market prices of risk
(MPR), depending on the model long- and short-term factors, together with those obtained with
the standard Schwartz and Smith (2000) two-factor model with constant risk premia. The table
shows the results obtained with both the first and the second data sets described in section 3.
Standard errors are in parentheses. The estimated values are reported with ~ denoting

significance at 10%, ~ denoting significance at 5%, and = denoting significance at 1%.

First Data Set Second Data Set
Heating Oil Heating Oil  Heating Oil  Heating Oil
Constant Variable Cosntant Variable
MPR MPR MPR MPR
e 0.16597  0.3994" 0.2248" 0.0635
(0.0310)  (0.1237) (0.0327) (0.0283)
K 1.8522"7 113127 17080 0.4026
(0.0911)  (0.0205) (0.0158) (0.0000)
o 0.17707" 03691  0.1696"  0.1905
(0.0035)  (0.0031) (0.0037) (0.0000)
o, 03343 0.6105 0.2441" 0.3758"
(0.0158)  (0.0206) (0.0072) (0.0000)
d 0.9976"  0.9974" 09972 0.9974""
(0.0000)  (0.0000) (0.0002) (0.0002)
Ao 0.2239" 0.3642 02322 0.2883
(0.0327)  (0.2214) (0.0329) (0.0000)
Ay - -0.2846 ) 0.0216"
(0.0000) (0.0000)
A2 - -0.8459 ) -0.5506"
(0.0225) (0.0198)

EEES

A 0.6999""  0.5173" 03546 -0.9568
(0.1079)  (0.2067) (0.0496) (0.0000)

EEE] EEE]

A - 0.5407 ] 0.0462
(0.0198) (0.0000)

Ay - 0.6409"" 1.1536
(0.0378) (0.0000)

p, 012297 -0.5889  0.4488° -0.4248
(0.0431)  (0.0340) (0.0307) (0.0000)

oy 0.02097"  0.0143"" 0.0190"" 0.0187

(0.0003) (0.0001) (0.0001) (0.0001)
Log-L 47709.23 51511.79 42417.57 42573.40

AIC 4769123  51485.79 42399.57 42547.40
SIC 4764472  51418.61 42358.26 42487.73
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TABLE 9
ESTIMATION RESULTS FOR RBOB GASOLINE
The table shows the estimation results of the model with time-varying market prices of risk
(MPR), depending on the model long- and short-term factors, together with those obtained with
the standard Schwartz and Smith (2000) two-factor model with constant risk premia. The table
shows the results obtained with both the first and the second data sets described in section 3.
Standard errors are in parentheses. The estimated values are reported with ~ denoting

significance at 10%, ~ denoting significance at 5%, and = denoting significance at 1%.

First Data Set Second Data Set
RBOB RBOB RBOB RBOB
Constant Variable Cosntant Variable
MPR MPR MPR MPR

e 04000 0.2855 0.2621" 0.0909
(0000) (0.0173) (0.0315) (0.0200)

K 3.11447° 04002  2.0500 2.1285"
(0.0916)  (0.0206) (0.0558) (0.1590)

o 020937 030237 0.1877  0.2458"
(0.0034)  (0.0000) (0.0045) (0.0000)

o, 037707 03212 0.3084 0.5067
(0.0088)  (0.0000) (0.0084) (0.0000)

d 0.9947"  0.9940 1.0028™ 1.0002™"
(0.0001)  (0.0000) (0.0004) (0.0003)

A 039197 0.68937 03439 0.0298
(0.0041)  (0.0000) (0.0323) (0.1130)

Ay - 0.0576"" ) -0.0045
(0.0140) (0.0396)
A2 - 0.3876 ) -0.8974"
(0.0000) (0.0000)

A -0.3849  0.6412° 03791 0.9855"
(0.0288)  (0.0000) (0.0548) (0.2980)

Ay - 0.4053"" -0.1642°
(0.0000) ) (0.0901)

Ay - 1.1309™ -0.0410
(0.0482) ) (0.1778)

EEE] EEE]

Pz, 0.0764"  -0.2500 0.10727"  -0.7064
(0.0322)  (0.0000) (0.0404) (0.0000)

EEES EX T3 EX 23 EE 23

Oy 0.0162 0.0151 0.0162 0.0159
(0.0001) (0.0001) (0.0002) (0.0002)

Log-L 4222728  42409.56 25273.54 25374.57
AIC 42209.28  42383.56 25255.54 25348.57
SIC 42162.60  42316.14 25213.51 25287.86
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TABLE 10
ESTIMATION RESULTS FOR HENRY HUB NATURAL GAS
The table shows the estimation results of the model with time-varying market prices of risk
(MPR), depending on the model long- and short-term factors, together with those obtained with
the standard Schwartz and Smith (2000) two-factor model with constant risk premia. The table
shows the results obtained with both the first and the second data sets described in section 3.
Standard errors are in parentheses. The estimated values are reported with ~ denoting

significance at 10%, ~ denoting significance at 5%, and = denoting significance at 1%.

First Data Set Second Data Set
Henry Hub Henry Hub  Henry Hub  Henry Hub
Constant Variable Cosntant Variable
MPR MPR MPR MPR

e -0.3996 02996  0.0719 0.0284
(0.0307)  (0.0621) (0.0252) (0.0000)

K 1.8158"  0.8416 1.11637 1.0458"
(0.0000)  (0.0607) (0.0138) (0.0000)

o 025157 023347 0.1297 03325
(0.0000)  (0.0295) (0.0040) (0.0000)

o, 0.5547°  0.5475 0.4779" 0.1714™
(0.0087)  (0.0285) (0.0155) (0.0000)

d 0.99577"  0.9997"  0.9999 0.9992""
(0.0001)  (0.0002) (0.0001) (0.0001)

A -0.1397 0489277 0.1236 -0.0587
(0.0488)  (0.0284) (0.0253) (0.0000)
Ay - -0.3987" ) -0.0029
(0.0539) (0.0506)

A2 - -0.3539 ) 19929
(0.0768) (0.0000)

A 0.0008 0.4166° 021777 -0.0252°"
(0.0994)  (0.1922) (0.0928) (0.0000)
A - 0.1618 -0.0358
(0.1466) ) (0.0212)

Ay - 0.8608" 0.0452""
(0.0000) ) (0.0000)

p, 05678 -0.7205 -0.0222 0.9166
(0.0000)  (0.0677) (0.0471) (0.0000)

oy 0.0916"  0.0914 0.0399" 0.0383""

(0.0006) (0.0006) (0.0002) (0.0002)
Log-L 22625.01 22758.45 39438.12 40032.74

AIC 22607.01 22732.45 39420.12 40006.74
SIC 2256230  22667.87 39379.28 39947.75
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TABLE 11

AMERICAN OPTION VALUATION RESULTS

ERROR DESCRIPTIVE STATISTICS

The table presents several metrics, root mean squared error (RMSE), percentage root mean

squared error (PRMSE) and mean absolute error (MAE), to analyze the predictive power ability

of the models under study: the time-varying risk premia model and the standard (two-factor)

model with constant risk premia. The data set is comprised of daily observations of WTI

American call and put options quoted at NYMEX during the years 2006 to 2010. For each

series, we have calculated the corresponding statistic. These results correspond to the median

value of these multiple means. The total number of observations is 341588, 223652, 204930 and

179785 for WTI crude oil, heating oil, RBOB gasoline and Henry Hub natural gas respectively.

PANEL A: WTT AMERICAN OPTIONS

CONSTANT RISK PREMIA TIME-VARYING RISK PREMIA
RMSE  PRMSE  MAE RMSE PRMSE MAE
FIRST DATA SET 0.9727 274746  0.6853  0.8974 25.20429 0.6416
SECOND DATA SET  0.9675 2849709  0.6835  0.9313 26.39755 0.6672
PANEL B: HEATING OIL AMERICAN OPTIONS
CONSTANT RISK PREMIA TIME-VARYING RISK PREMIA
RMSE  PRMSE MAE RMSE PRMSE MAE
FIRST DATA SET 3.1407 43.2489 2.7943 1.3379 14.0521 1.0127
SECOND DATA SET 1 3484 16.3243 1.1052  1.3807 17.0274 1.0706
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TABLE 11 (CONT.)
AMERICAN OPTION VALUATION RESULTS
ERROR DESCRIPTIVE STATISTICS
The table presents several metrics, root mean squared error (RMSE), percentage root mean
squared error (PRMSE) and mean absolute error (MAE), to analyze the predictive power ability
of the models under study: the time-varying risk premia model and the standard (two-factor)
model with constant risk premia. The data set is comprised of daily observations of WTI
American call and put options quoted at NYMEX during the years 2006 to 2010. For each
series, we have calculated the corresponding statistic. These results correspond to the median
value of these multiple means. The total number of observations is 341588, 223652, 204930 and

179785 for WTI crude oil, heating oil, RBOB gasoline and Henry Hub natural gas respectively.

PANEL C: RBOB GASOLINE AMERICAN OPTIONS

CONSTANT RISK PREMIA TIME-VARYING RISK PREMIA

RMSE PRMSE MAE RMSE  PRMSE MAE
FIRST DATA SET 55027 164.1529 4.6894 1.4065  39.7270 1.0744
SECOND DATA SET 14952  37.8001 1.1821 0.9294  28.1595 0.7342

PANEL D: HENRY HUB NATURAL GAS AMERICAN OPTIONS

CONSTANT RISK PREMIA  TIME-VARYING RISK PREMIA

RMSE PRMSE MAE RMSE PRMSE MAE

FIRST DATA SET (01192 64.2655 0.0913 0.1124  54.8146 0.0878

SECOND DATA SET 01055 718211  0.0846 0.0864 140521 0.0678
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FIGURE 1

TIME-SERIES EVOLUTION OF MAXIMUM LIKELIHOOD MARKET PRICES OF

RISK FOR WTI CRUDE OIL
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FIGURE 2

TIME-SERIES EVOLUTION OF KALMAN FILTER MARKET PRICES OF RISK

FOR WTI CRUDE OIL AND BUSINESS CYCLE RELATED VARIABLES
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FIGURE 2
TIME-SERIES EVOLUTION OF KALMAN FILTER MARKET PRICES OF RISK

FOR WTI CRUDE OIL AND BUSINESS CYCLE RELATED VARIABLES (CONT.)
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FIGURE 2
TIME-SERIES EVOLUTION OF KALMAN FILTER MARKET PRICES OF RISK

FOR WTI CRUDE OIL AND BUSINESS CYCLE RELATED VARIABLES (CONT.)
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CHAPTER 3: THE STOCHASTIC SEASONAL BEHAVIOR

OF ENERGY COMMODITY CONVENIENCE YIELS

3.1 INTRODUCTION

In consumption commodities (commodities that are consumption assets rather than
investment assets) the benefit from holding the physical asset net of storage cost is
sometimes referred to as the “convenience yield” provided by the commodity (see for

example Hull, 2003).

In other words, if we denote by F and S the futures and spot prices respectively, in the
case of consumption commodities we do not necessarily have equality in F < S
(where r and u represent the risk free rate and storage costs respectively and 7 is the
time to maturity), because users of a consumption commodity may feel that ownership
of the physical commodity provides benefits that are not obtained by holders of futures
contracts. For example, an oil refiner is unlikely to regard a futures contract on crude oil
as equivalent to crude oil held in inventory. The crude oil in inventory can be an input
to the refining process whereas a futures contract cannot be used for this purpose. In
general, ownership of the physical asset enables a manufacturer to keep a production

process running and perhaps profit from temporary local shortages. A futures contract

does not do the same (see for example Brennan and Schwartz, 1985). Therefore the

convenience yield net of storage costs, denoted by &, is defined so that: F-e’” = S-e'”.

Previous studies have considered the convenience yield as a deterministic function of
time, such as Brennan and Schwartz (1985), or as a stochastic process, such as Gibson
and Schwartz (1990) and Schwartz (1987). Specifically, Gibson and Schwartz (1990)
allow for stochastic convenience yield of crude oil in order to develop a two-factor oil

contingent claims price model. Moreover, Gibson and Schwartz (1990) show that
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convenience yields exhibit mean reversion, which is consistent with the theory of
storage (see, for example, Brennan, 1985) in which it is established an inverse
relationship between the net convenience yield and the level of inventories. Schwartz
(1997) presents and empirically compares several factor models in which the
convenience yield is assumed to be a stochastic factor. Hilliard and Reis (1998) and
Miltersen and Schwartz (1998) use models with stochastic convenience yield to value
commodity derivatives (futures and options). More recently, Casassus and Collin-
Dufresne (2005) characterize a three-factor model, “maximal” in a sense of Dai and
Singleton (2000), of commodity spot prices, convenience yields and interest rates,

which nests many existing specifications.

Wei and Zhu (2006) investigate the empirical properties of convenience yields in the
US natural gas market, finding that convenience yields are highly variable and
economically significant, with their variability depending on spot price level, spot price

variability and the variability of lagged convenience yields.

In spite of there have been many papers analyzing the seasonal behavior of some
commodity prices (Lucia and Schwartz, 2002, Sorensen, 2002, Manoliu and Tompaidis,
2002, Garcia et al., 2012, among others), considerably less attention has been paid to the
seasonal behavior of convenience yields. Based on the finding of seasonality in the
convenience yield made by Fama and French (1987), Amin et al. (1994) propose a one-
factor model for the spot price with deterministic seasonal convenience yield. More
recently, Borovkova and Geman (2006) present a two-factor model in which the first
factor is the average forward price, instead of the commodity spot price, and the second
factor is the stochastic convenience yield. These authors allow for a deterministic

seasonal premium within the convenience yield.
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In this chapter, we go further by presenting a factor model in which the (stochastic)
convenience yield exhibits stochastic seasonality. Specifically, we show that the four-
factor model presented by Garcia et al. (2012), with two long- and short-term factors
and two additional trigonometric seasonal factors, can generate stochastic seasonal
convenience yields. An expression for the instantaneous convenience yield within this
model is obtained, showing that the instantaneous convenience yield exhibits mean
reversion and stochastic seasonality. Moreover, it is found a n/2 lag in the convenience

yield seasonality with respect to spot price seasonality.

Based on this evidence, the next step is to present a theoretical model to characterize the
commodity convenience yield dynamics which is coherent with the previous findings.
Specifically, the model takes into account mean reversion and stochastic seasonal
effects in the convenience yield. The model is estimated using data from a variety of
energy commodity futures prices: crude oil, heating oil, gasoline and natural gas. We
also show that commodity price seasonality can be better estimated through
convenience yields rather than through futures prices. The reason is that futures prices
are driven for many things, such as supply, demand, political aspects, speculation,
weather conditions, etc. Therefore, sometimes it may be difficult to extract the seasonal
component from futures prices. However, as we will show in Section 2, the convenience
yield is estimated though a ratio of two futures prices, so many of these non-seasonal

factors tend to disappear, facilitating the estimation of the seasonal component.

The remainder of this chapter is organized as follows. Section 2 presents the data and
some preliminary findings regarding seasonality in convenience yields. We show that
convenience yields show mean reversion and stochastic seasonality, using data from
heating oil, gasoline and natural gas futures markets. In section 3 we present the four-

factor model accounting for stochastic seasonality in commodities and the expression
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for the instantaneous convenience yield derived from this four-factor model. In section
3 we also discuss the properties of the model estimated convenience yields for the four
commodities under study, showing that in fact they exhibit mean reversion, stochastic
seasonality and a m/2 lag with respect to spot price seasonality. Based on this empirical
evidence, in section 4 it is proposed and estimated a factor model characterizing the
commodity convenience yield dynamics, taking into account mean reversion and
stochastic seasonal effects in the convenience yield. Finally, Section 5 concludes with a

summary and discussion.

3.2 DATA AND PRELIMINARY FINDINGS

In this section, we present a data description of the futures prices for the four
commodities used in the chapter, i.e. WTI crude oil, heating oil, RBOB gasoline and
Henry Hub natural gas. Moreover, it is described the procedure presented by Gibson
and Schwartz (1990) in order to obtain the convenience yield data. The section
concludes analyzing the main empirically observed characteristics of the convenience

yield data.

Data description

Futures Prices

The data set used in this chapter consists of weekly observations of WTI (light sweet)
crude oil, heating oil, unleaded gasoline (RBOB) and natural gas futures prices traded at
NYMEX, during the period 9/27/1999 to 7/4/2011 (615 weekly observations).

Actually, there are futures being traded on NYMEX with maturities from one month up
to seven years for WTI crude oil, from one to eighteen months for heating oil, from one

to twelve months for RBOB gasoline and from one month to six years in the case of
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Henry Hub natural gas. However, liquidity is scarce for the futures with longer
maturities, mostly in the case of gasoline.

In the estimation of the models presented below a representative set of maturities has
been used for each commodity. Thus, in the case of WTI crude oil, the data set is
comprised of contracts F1, F4, F7, F11, F14, F17, F20, F24 and F27, where F1 is the
contract for the month closest to maturity, F2 is the contract for the second-closest
month to maturity, and so on. In the case of heating oil, the data set is comprised of
contracts F1, F3, F5, F7, F10, F12, F14, F16 and F18. In the case of RBOB gasoline,
the data set contains contracts F1, F3, F5, F7, F9 and F12. Finally, in the case of Henry
Hub natural gas, the data set contains contracts F1, F5, F9, F14, F18, F22, F27, F31 and

F35. The main descriptive statistics of these variables are contained in Table 1.

Convenience Yield

The estimation of the convenience yield series is carried out using the procedure defined
in Gibson and Schwartz (1990). Based on the convenience yield definition,
Fe’T =Se" we have:

F(S,x_months) =S exp{(7, onns — O monns)" (¥/12)}

where 7. monms 15 the interest rate of a zero coupon bond with x months to maturity and

Ox monts 18 the convenience yield in x months for this commodity. Analogously:

F(S,x+1_month) =S-exp{(r\; oun = Oxi1 monn) (x +1)/12)}

where 7y+1 mons 18 the interest rate of a zero coupon bond with x+1 months to maturity
and Ox+1_mons 18 the convenience yield in x+1 months for this commodity.
From these expressions we have:

F(S,x+1_months)

F(S,x_month) +1_months — ‘x.rx_month)_ ((x + 1).§x+1_m()nrhs - x.5x_munrh )} (1/12)} (1)

=exp ((x +1)r,
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On the other hand, by definition:
XD+ 7ot mte = X7 N 1= XD s a0 vt o (1/12)}

Where 7impiicit x 10 x+1_mons 18 the implicit interest rate from x months to x+1 months, and
XA DSt e =X, s N2 = XD i o et (112}

where Oimpiicit x 10 x+1_months 15 the implicit convenience yield from x months to x+1
months.
Taking into account these definitions, expression (1) can be written as:

F(S,x+1_months)
F(S, x month) = eXp {(nmplicitixitoix-%—limonths - é‘implicitixitoixﬂimonths ) ) (1 /12)}

or equivalently:

F(S,x+1 months
é‘implicit7x7107x+17m(mthx = }/;'mplicit7x7t07x+17m0nths - 1211'1{ (F.(S X _n’lOnth) )}

Oimplicit x 1o x+1_months €an be used as a proxy for the instantaneous convenience yield d;.

Following this procedure we have estimated the convenience yield series for the four
commodity futures prices series described above. The main descriptive statistics of
these convenience yield series are summarized in Table 2. In Figure 1 we plot the time
series evolution of some of the estimated convenience yields for the four commodities
under study. It can be appreciated in the figures the mean-reverting and seasonality
effects, although the pattern is less clear in the case of WTI crude oil. These issues are

further discussed below.

Preliminary Findings

Previous studies found evidence of mean reversion in the convenience yield dynamics.
From convenience yield data obtained as in the previous sub-section, Gibson and
Schwartz (1990) show a strong mean reverting tendency in the convenience yield,

which is consistent with the theory of storage (see, for example, Brennan,1985) in
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which it is established an inverse relationship between the level of inventories and the
relative net convenience yield.

Fama and French (1987) pointed out that seasonals in production or demand can
generate seasonals in inventories. Under the theory of storage, inventory seasonals
generate seasonals in the marginal convenience yield. Following this reasoning,
Borovkova and Geman (2006) present a model allowing for a deterministic seasonal
premium within the convenience yield.

Here, using the estimated convenience yield series from the previous sub-section for the
four commodities under study, we will investigate the existence of mean reverting and
seasonal effects in the convenience yield.

Table 3 presents the results of the unit root tests for WTI, heating oil, gasoline and
Henry Hub natural gas convenience yield series. The empirical evidence from previous
studies of mean reversion is confirmed in the present work using the standard
Augmented Dickey-Fuller test. Specifically, we are able to reject the null hypothesis of
a unit root in all the cases, with the only exception of WTI crude oil (mostly as we go
further in time). These results are coherent with the time evolution of the series shown
in Figure 1.

The presence of seasonality in the estimated convenience yield series is assessed
through the Kurskal-Wallis test. To perform the test we have computed monthly
averages from the weekly estimated convenience yield series. The null hypothesis of the
test is that there are no monthly seasonal effects. The results of the test are shown in
Table 4. The results indicate the rejection of the null hypothesis of no seasonal effects in
all cases, except for WTI crude oil. The seasonal effects are even clearer in the cases of
RBOB gasoline and Henry Hub natural gas convenience yield series. These seasonal

effects are evident in Figure 1.
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As explained above, Borovkova and Geman (2006) allow for a deterministic seasonal
premium within the convenience yield. However, it may be possible that seasonal
effects in the convenience yield are stochastic rather than deterministic. Garcia et al.
(2012) present a model for the stochastic behavior of commodity prices allowing for
stochastic seasonality in commodity prices. Following this idea, we will check for the
existence of stochastic seasonal effects in the convenience yield series.

The RBOB gasoline® convenience yield spectrum and its first differences are depicted
in Figure 2, assuming that the series follows an AR(1) process with yearly seasonality,
following the procedure described in Garcia et al. (2012). As explained by Garcia et al.
(2012), sharp spikes in the spectrum are likely to indicate a deterministic cyclical
component, while broad peaks often indicate a nondeterministic seasonal component.
The asterics (*) shown in the Figure denote harmonic points, calculated as 27k/12
(peaks) and 7(2k-1)/12 (troughs), where k=1, 2, 3, 4, 5 and 6.

Looking at Figure 2, it seems that, more or less, the spectrum exhibits broad peaks and
thoughts, suggesting that seasonality in convenience yields is stochastic rather than
deterministic. However, these results must be taken with care, as aliasing effects and
estimation errors can confuse deterministic and stochastic patterns.

In Figure 3 we plot the forward curves for the estimated convenience yield series on a
representative date (July 4, 2011) in the case of Henry Hub natural gas prices”". Looking
at the figure it can be appreciated that both futures and convenience yield series present
an evident seasonal pattern. Moreover, it is interesting to observe how the seasonal
picks in the convenience yield series are delayed three months compared to those

observed in the futures series.

¥ The patter for the rest of commodities is very similar.
% For short only the figure for Henry Hub natural gas is presented. The pattern is similar in the rest of the
cases.
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3.3 THE PRICE MODEL

In this section, we show that a four-factor model for the stochastic behavior of
commodity prices, with two long- and short-term factors and two additional seasonal
factors, can accommodate some of the most important empirically observed
characteristics of commodity convenience yields described in Section 2, such as mean
reversion, stochastic seasonality and a three months delay in the convenience yield

seasonality with respect to the spot price seasonality.

General Considerations
Based on the convenience yield definition, F-e’” = S-e"” taking into account that the
spot price (S;) and the convenience yield (J,) are stochastic if 7 > 0, the previous
equation can be expressed as an SDE in the following way:

ds, =S, (r 5 )dt + cdW, 2)
which is the classical definition of the convenience yield under the O-measure (see, for
example, Schwartz, 1997, or Casassus and Collin-Dufresne, 2005). Under the P-
measure the SDE can be expressed in the following way:

ds, =S (u— 5 )dt +ocdW, (3)
To characterize the convenience yield dynamics, let X, = log(St) be the log of the spot
price. If we assume a linear model, like in the studies listed above, its general dynamics
is given by:

dX, =(m+ AX,)dt + RdW,
(4)

Sl = exp(¢0 + CXI)

As it shall be proven in appendix B, the model above has an explicit (unique) solution

(note that it is enough to solve for X, ):
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X, = e“”[X0 +JZ e ' mds +J‘(: eASRdWS]

Note that §, = exp((zﬁo +CX ,) and we would like to establish a stochastic differential

equation for S, . Taking differentials and using Ito’s lemma:
as, = explg + CX, )X, + Lexplg, + o, Jo(ax, Xax, ) = 5 {CdX, Lt yax,) c}
Using the fact that drdt = dtdW, =0 and (dW, \dW,) = Idt we obtain:
ds, =S, [C(m + AX,)dt + CRAW, + ; CRR'C' dt}
and finally:
das, =8, {C(m + ;RR'C’+AX, jdr + CRdW,} (5)

y7,

0
If m is defined asm =| . |, which is necessary to the model be maximal (or globally

identifiable), we get that Cm = g and from (4):
o, = —C[; RR'C’+AX,) (6)

Therefore, with (6) we can obtain the convenience yield dynamics from the model

factors dynamics.

Theoretical Model
Here we are going to present a model to characterize the commodity prices dynamics
which takes into account the seasonal effects and which is coherent with the previous

findings.
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In the four-factor model in Garcia et al. (2012), the log spot price (X;) is the sum of
three stochastic factors, a long-term component (&), a short-term component (y,) and a
seasonal component ().

X, =&+, +a, (7)
The fourth stochastic factor is the other seasonal factor (at*), which complements ¢;.

The SDEs of these factors are:

dé, = p.dt+o.dW, )
dy, =—kydt+o,dw, 9
da, =2rpa dt + o, dW, (10)
da, = 2rpa,dt+o,dW . (11)

Equations (8) and (9) are identical to equations (2) and (1), respectively, in
Schwartz and Smith (2000).

This model is “maximal” in a sense of Dai and Singleton (2000). Even more this
model is Dai-Singleton Ag(4) as can be seen in Appendix C. To see this, note that in the
canonical form given by expressions (4):

a 0 0 0
0 —a 0 0
0 0 k 279
0 0 -27p k

and the model is globally identifiable. The Garcia et al. (2012) model imposes the
restriction a=k=0 and « > 0. And, as a restriction of a globally identifiable model
imposing concrete values and intervals to the parameters, it is also globally identifiable

and maximal.
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As stated above, in Garcia et al. (2012) model we have®®:

0 O 0 0 7
0 -k 0 0 0
4= ,C=( 11 0),m=
0 O 0 27 0
0 27 O 0
And:
2
o — — —
2
RR'= 0:0,P¢ o, a a

2
Géo-ap;(a G;(Gap)(a Ga -

2
O:0,P 0,0,P 0 O

a

Under this model, using expression (6), the convenience yield can be written in the
following way:

o, = —%(ag + aj +20. + 20.0,p; +20.0,p,,+20.0,p,,++20,0,p,,+20,0,p,,.)+ky, — 2npa,
(12)

As can be appreciated in the previous expression, J, does not depend on the long-
term factor, &, neither the seasonal factor, &;. However, it depends on the sum of factor
variances, the short-term factor, y;, (times the speed of mean reversion) and the seasonal
factor that complements the one defined in the spot price, o, (times the seasonal
frequency). In other words, the convenience yield is the sum of a constant term plus a
short-term factor plus a seasonal factor.

The fact that J; is stationary (does not depend on the long-term factor and depends
on the short-term one) in the previous expression is coherent with the fact that the two
factor model defined in Schwartz-Smith (2000) is equivalent to the one defined in
Schwartz (1997) in which J, follows an Ornstein-Uhlenbeck process, which is a mean-
reverting one. It is clear, therefore, that J, should depends on y, instead of ¢&. It is also

clear that the dependency should be modulated by k£ because the higher the mean-

36 As can be seen in Garcia et al. (2012), py+ = 0 and o, = 0.
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reverting speed, the higher the benefit of holding the physical asset. Think, for example,
in a shortage, if the price come back to its equilibrium level in a short-term period (high
mean-reverting speed) the owner of the physical asset can sell the commodity and buy
it again in a short-period (consequently with a low cost) getting the benefit. In the other
hand, if the price delay in coming back to their equilibrium level (low mean-reverting
speed), the owner of the physical asset has to buy the commodity again at a higher price
or he is not going to be able to keep the production process running.

Taking into account expression (2), and getting around the stochastic part of it, it is

da,

clear that: Lo —0,. As =2rpea, , it is not suppressive that J, depends on a;

dt

‘
instead of a,, that implies a 7/2 lag in the convenience yield seasonality with respect
spot price seasonality. As in the previous case, the dependency should be modulated by
@ because the higher the seasonal frequency, the higher the benefit of holding the
physical asset.

The same can be said about the sum of factor variances, the higher the variance the
higher is the convenience yield (in absolute value) because the benefit of holding the
physical asset is higher. It is interesting to note that the convenience yield depends on
the sum of the factor variances instead of the spot price variance, that is, depends on the
whole system variance and not only the variance of the factors which compose the spot
price.

Finally, it is worth noting that expression (12) for the convenience yield is coherent
with the empirical facts observed for the convenience yield in Section 2.2: mean
reversion, (stochastic) seasonality and a three months (7/2) lag in the convenience yield

seasonality with respect to the spot price one.
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Estimation Results

Here, we present the results of the estimation of the four-factor model for the four
commodities presented above. The models presented in Section 3.1 were estimated
using the Kalman filter methodology, which is briefly described in Appendix A. The
results are shown in Table 5.

It is found that in all cases the seasonal factor volatility (o,) is significantly different
from zero and the seasonal period (¢) is more or less one year, implying that seasonality
in all four commodity prices is stochastic with a period of one year, which is consistent
with the results obtained by Garcia et al. (2012). Moreover, the speed of adjustment (k)
is highly significant, implying, mean reversion in commodity prices, which is coherent
with the results obtained by Schwartz (1997). It is also found that the long-term trend
(ue) 1s positive and significantly different from zero in all cases, implying long-term
growth in commodity prices, specially in the cases of RBOB gasoline, heating oil and
WTI crude oil.

It is also interesting to note that short-term volatility (o) is higher than long-term
volatility (oy) in all cases, which is coherent with the results found by Schwartz (1997)
and Garcia et al. (2012).

Concerning the market prices if risk, it is found that the risk premium associate with the
long-term factor (Ay) is significantly different from zero in all cases, whereas the risk
premium associated with the short-term one (A4,) is not, suggesting that the risk
associated with the long-term factor is more difficult to diversify than the risk
associated with the short-term one. Moreover, the market prices of risk associated with
the real and complex parts of the seasonal component (1, and A+ respectively) are not
significantly different from zero in most of the cases, suggesting that the risk associated

to the seasonal component can be diversified in most of the cases.
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However, from the point of view of the goal of this chapter it is interesting to analyze
the influence of the estimated parameters for each commodity on its convenience yield.
As stated above, the speed of adjustment (k) is relatively high and significantly different
from zero in all cases, implying high convenience yield, especially in the case of RBOB
gasoline, followed by Henry Hub natural gas. It is also found that the highest value of
the seasonal period (@) is found in the case of Henry Hub natural gas, followed by
RBOB gasoline , heating oil and WTI crude oil, implying higher convenience yield for
Henry Hub natural gas and lower for WTI crude oil (in absolute value). Finally, from
the estimated vales shown in Table 5 it is easy to compute the term in parenthesis in
expression (12), involving the standard deviations and the correlations among the model
factors. It is found that the highest value for this term, and therefore the highest absolute
value for the convenience yield, corresponds to Henry Hub natural gas (with a value of
0.2336), followed by RBOB gasoline (0.1296), WTI (0.1128) and heating oil (0.0993).
Therefore, we can conclude that the highest estimated values of the convenience yield
are found in the cases of Henry Hub natural gas and RBOB gasoline.

Finally, Figure 4 shows the time series evolution of the estimated seasonal components
and the estimated convenience yield, both obtained with the four-factor model. It can be
appreciated the three months delay of convenience yields (green line) seasonality with
respect to the commodity price seasonality (blue line), although the pattern is less clear
in the case of WTI crude oil. The seasonal pattern is less clear in the case of WTI, which

is coherent with the results found in Section 2.

3.4 THE CONVENIENCE YIELD MODEL

Here we present a model for the stochastic behavior of convenience yields. This model

will account for stochastic seasonality. Moreover, it could be the case that in certain
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commodities like crude oil, in which there were not observe seasonality, it is possible
that there is a weak seasonal component, which is hidden by other factors, and this
seasonal component can be estimated through the convenience yield.

Specifically, the proposed model for the convenience yield is the three-factor model by
Garcia et al. (2012). This model will allow us to estimate crude oil seasonality through

its convenience yield and to compare spot price and convenience yield seasonality.

Theoretical Model
Here we present a model to characterize the commodity convenience yield dynamics
which takes into account the seasonal effects and which is coherent with the previous
findings.
The proposed model for the stochastic behavior of convenience yields is the three-factor
model in Garcia et al. (2012)*’. In this three-factor model the spot convenience yield
(X;) is the sum of a deterministic long-term factor (&) and two stochastic factors®, a
short-term component (¥;) and a seasonal component (;):

X, =& +y +a, (13)
The third stochastic factor is the other seasonal factor (at*), which complements ¢;. The

SDEs of these factors are:

dé, = p.dt (14)
dy, =—kydt+o,dw, (15)
da, =2rpa dt +c,dW,, (16)

37 A four factor model like the one presented in section 3 has been estimated for the convenience yield,
however the stochastic parameters related with the long-term factor were no significant, which confirms
previous evidence regarding the strong mean-reverting behavior of convenience yield series.

** It should be noted that in the original three-factor model by Garcia et al. (2012) the log-spot price is the
sum of three stochastic factors. However, here we model directly the convenience yield price instead of
its log, given that the convenience yield can take negative values.
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da, = 2rpa,dt+o,dW . (17)

As shown in the case of the four-factor model, this model is “maximal” in the sense of
Dai and Singleton (2000). Even more this model is Dai-Singleton Ay(3), as can be seen

in Appendix C.

Estimation Results

The three factor model presented above has been estimated though the Kalman filter
methodology, using the convenience yield data estimated in Section 2. The results of the
model estimation are shown in Table 6. The results indicate a high degree of mean
reversion (high value of «), mostly in the case of Henry Hub natural gas, which is
coherent with the preliminary results obtained in Section 2.

However, the most important issue in Table 6, from the point of view of this chapter
goal, is the fact that the standard deviation of the seasonal factor (o) is significantly
different from zero for all four commodities. This result is suggesting that convenience
yields not only show seasonality, but this seasonality is stochastic rather than
deterministic. Moreover, the values of the standard deviation of the seasonal factor
obtained in Table 6 for the convenience yield series are considerable higher than those
obtained in Table 5 for the commodity price series. This result is suggesting that
seasonality is even clearer in the convenience yield series than in the commodity price
ones. It is interesting to observe the high values of o, obtained in the cases of RBOB
gasoline and Henry Hub natural gas convenience yield series, which is coherent with
results shown in Figure 1. It is also very interesting to observe that the WTI

convenience yield series (and the WTI futures prices series in Table 5) also shows
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evidence of stochastic seasonality, although the tests in Section 2 did not detected
evidence of seasonality in the case of WTI crude oil convenience yield series.

Looking at expression (12) it is clear that the short-term component in the convenience
yield is equal to the short-term component in the spot price multiplied by the speed of
adjustment in the four-factor model (x). Given that the estimated values of x in the four-
factor model (Table 5) are not very far from one, the standard deviations of the short-
term components in the convenience yield and the spot price series should be similar.
This is the result found in the cases of RBOB gasoline and heating oil. The values of the
standard deviations of the short-term component in the WTI and Henry Hub natural gas
convenience yield series (Table 6) are higher than the corresponding values in the spot
price series (Table 5) due to the high variability found in these convenience yield series,
as can be appreciated in Figure 1.

Moreover, from expression (12) we can conclude that the seasonal component in the
convenience yield is equal (in absolute value) to the complementary seasonal
component in the spot price multiplied by 27z¢. Given that the estimated values of the
seasonal period (@) in Table 5 are very close to one, the standard deviation of the spot
price complementary factor” should be similar to the standard deviation of the
convenience yield divided by 2x. In the case of WTI crude oil the standard deviation of
the complementary seasonal factor in the spot price model is 0.0106, whereas the
standard deviation of the seasonal factor in the convenience yield model (divided by 27)
1s 0.00844. The figures in the case of heating oil are 0.0118 and 0.0115 respectively. In
the case of RBOB gasoline these figures are 0.0425 and 0.0760 respectively. Finally,

the figures in the case of Henry Hub natural gas are 0.0385 and 0.0600 respectively.

3 Remember that in the four-factor model Oy =0 .
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This result can be corroborated looking at Figure 4. In this Figure the estimated
convenience yield (green line) shows a very similar patter to the complementary
seasonal factor (&) in the four-factor model (red line), although as before the pattern is
less clear in the case of WTI crude oil.

Table 7 presents a summary of the influence of the seasonal components on the
commodity price (four-factor model for commodity spot prices) and on the convenience
yield (three-factor model for convenience yields). Specifically the table shows the
average weights of the seasonal factors (« and a*) in the log-price of the commodity
(Panel A) and in the convenience yield (Panel B)*. It is quite striking to observe how
the weights of the seasonal components are considerable higher in the model for the
convenience yield (Panel B). In both panels the highest weights are achieved in the
cases of RBOB, heating oil and Henry Hub natural gas. Finally, it is also interesting to
observe the relative high weight of the seasonal pattern on the convenience yield in the
case of WTI crude oil, suggesting that in commodities like crude oil, in which there
were not observe seasonality, that there is a weak seasonal component and this seasonal
component can be estimated through the convenience yield.

In summary, we can conclude that the estimated convenience yield series show
evidence of stochastic seasonality and that this seasonality is even clearer than in the
case of commodity spot prices series. This result is suggesting that commodity price
seasonality can be better estimated through convenience yields rather than through
futures prices. The reason is that futures prices are driven for many things, such as
supply, demand, political aspects, speculation, weather conditions, etc. Therefore,

sometimes it may be difficult to extract the seasonal component from futures prices.

* The weight of the sum of the two seasonal factors (a and @) over the convenience yield price in Panel
B of Table 7 is greater than 100%. This is due to the fact that in the three-factor model the convenience
yield is the sum of a long-term (&, deterministic) component, a short-term (7, stochastic) component and a
seasonal (¢, stochastic) component. The other seasonal component, o', does not influence the
convenience yield price.
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However, as shown in Section 2, the convenience yield is estimated though a ratio of
two futures prices, so many of these non-seasonal factors tend to disappear, facilitating

the estimation of the seasonal component.

3.5 CONCLUSIONS

This chapter focuses on commodity convenience yields. Convenience yields for four
energy commodities (WTI crude oil, heating oil, RBOB gasoline and Henry Hub natural
gas) are estimated using the procedure defined in Gibson and Schwartz (1990), finding,
as in previous studies, that convenience yields exhibit seasonality and mean reversion.
Based on this empirical evidence, we present a factor model in which the convenience
yield exhibits mean reversion and stochastic seasonality. Specifically, we show that the
four-factor model presented by Garcia et al. (2012), with two long- and short-term
factors and two additional trigonometric seasonal factors, can generate stochastic
seasonal mean-reverting convenience yields. Moreover, it is found a n/2 lag in the
convenience yield seasonality with respect to spot price seasonality.

Based on this evidence, the next step is to present a theoretical model to characterize the
commodity convenience yield dynamics which is coherent with the previous findings.
Specifically, the model takes into account mean reversion and stochastic seasonal
effects in the convenience yield. We also show that commodity price seasonality can be
better estimated through convenience yields rather than through futures prices. The
reason is that futures prices are driven for many things, such as supply, demand,
political aspects, speculation, weather conditions, etc. Therefore, sometimes it may be
difficult to extract the seasonal component from futures prices. However, the

convenience yield is estimated though a ratio of two futures prices, so many of these
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non-seasonal factors tend to disappear, facilitating the estimation of the seasonal

component.
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APPENDIX A. ESTIMATION METHODOLOGY

The Kalman filter technique is a recursive methodology that estimates the unobservable time
series, the state variables or the factors (Z,) based on an observable time series (Y,) that depends
on these state variables. The measurement equation accounts for the relationship between the

observable time series and the state variables:

Y =d, +M,Z, +n, t=1,..., N, (A1)
where Y,,d, e R",M, e R"*", Z, € R", h is the number of state variables, or factors, in the

model, and 77, € R" is a vector of serially uncorrelated Gaussian disturbances with zero mean

and covariance matrix H,.
In the estimation procedure, a discrete time version of this equation is necessary; in the case of
the joint model with a common long-term trend for the three commodities, this equation is given

by the following expressions:

InF}, ANT)

. : 1 e™ 0 0

1 T S : :

lnFTzn 2( ) | ot 0 0 N .
InFy, 1, A1) |, I o ebn o |and Fpis the price of a futures
InF} AX(T,) L0 o o
InF;, A(T) 1 o 0 ot
In F, ANT,) 10 0 e

contract for the commodity “7” (i=1,2,3) with maturity at time “7;+¢” traded at time ¢. In
principle, it would be possible to use a different number of futures contracts for each
commodity; however, in this work, we consider it more suitable to use the same number (“n”)
of futures contracts for all commodities.

The transition equation accounts for the evolution of the state variables:

Z,=c,+TZ _ +y, t=1,..., N, (A2)
where ¢, e R",T, e R""and y, eR" is a vector of serially uncorrelated Gaussian

disturbances with zero mean and covariance matrix Q..
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In the case of the joint model with a common long-term trend for the three commodities, the

discrete time version of this equation, which is needed in the estimation procedure, is given by

the following expressions:

Su Mz AL 1 0 0 0
0 0 e™ 0 0 |and
Zt — th ) C, — 9 T, — e s
P 0 0 0 e 0
7 0 0 0 0 e

oA 0.0, Pz, (1=¢"*) K
Va’(‘//): O-§|O-Zyp§17(| (l_eiklm)/kl Gfll (l_eizklN)/(zkl)
l O-5| O-lzpfylz (l_eiklm)/kz O-Zl Glzplllz (l_ei(klAHkZN)) /(kl +k2)

040, Pz, A 0.0,p;,(1-¢"*)/k,
O-ly O-Zzplllz (1 _ei(klAHkZN)) /(kl +k2) O-ll O-lellll (1 _ei(klAHk}N)) /(kl +k3)

@, (1) [(2k,) 0,0, P, (1= ) [k, k)
959 P (1-e*y/ ky %1% Puz a- ei(k]AHkJN)) /(kl + 1(3) 9.%:Prn (1= ei(kgm%m)) /(k? + 1(3) ch; (1) /(2ky)

Here, Y, , is the conditional expectation of ¥, and =

, 1s the covariance matrix of ¥,

conditional on all information available at time ¢ — 1. After omitting unessential constants, the

log-likelihood function can be expressed as

==Y I|E, |- -Y, )& (¥, -7,.,). (A3)
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APPENDIX B. STOCHASTIC DIFERENTIAL EQUATIONS (SDE)
INTEGRATION

Most of the models proposed in the literature assume that the risk-neutral dynamics of a

commodity price (or its log) is given by a linear stochastic differential system:

Y, =cX,

t

{dX, =(b+ AX, )dt + RAW,

where Y, is the commodity price (or its log), b, 4, R and c¢ are deterministic

parameters®' independent of 7 (beR", A,Re R"*", ceR") and W, is a n-dimensional

canonical Brownian motion (i.e. all components uncorrelated and its variance equal to

unity) under the risk-neutral measure.

Let us see that the solution of that problem is**:

X =e' [XO + jo’e—“bds + J-Ote‘A*'RdWS} (B1)

t

In order to proof it, we shall apply the general rule for the derivation of the product of
stochastic components (Oksendal, 1992):
dx, = (de" [XO +[ e bds+[ e Raw, } + eA’d[XO +[ e bds+[ e Raw, } +
+ (deA’ )d[XO + J-; e “bds + J-; e_ASRdWS}
It is easy to show that:

d[XO + e bds + J-(:e"ASRdWS} = e "bdt + e " RAW,

! Again note that R does not need to be computed.

t
*2 Even in the case that b, A and R were function of ¢, if 4, and .[o AS ds commute, the solution of that

problem is (B1).
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The first differential only has elements of type dt, hence the product of the first
differential times the second differential is zero.

Thus:

dx, = AeA’dt[Xo +[ebds + .[Ote"AstWs} +e"ebdt + e RAW, | = A, X dt + bdt + RAW,

Consequently we obtain expression (B1):

t

X =e” [XO + Ite’A“bds + J‘te“RdWY]
0 0 ;

It is easy to prove that the solution is unique (Oksendal, 1992).
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APPENDIX C. CANONICAL REPRESENTATION

Introduction

In this appendix, we shall see how our models can be related to Dai-Singleton Ay(n)
class, with the important distinction of allowing complex eigenvalues. Afterwards, we shall
show global identification properties.

General setup

Let Z, =log(S,) be the log of the spot price. If we assume a linear model, its real
dynamics is given by:

dX, =(m+ AX,)dt + RAW,
S, = expl¢y +CX,) (F)
X, given

whereas its risk neutral dynamics is given by:

dX, =(m— A+ AX,)dt + RdW,
S, = exp(¢, +CX,) (FN)
X, given

where R is full rank lower triangular (we shall examine this assumption later). We
would like to know how this general setup can be reduced to a model which is maximal,
1.e. cannot be reduced to an equivalent model with less states and parameters (another
way to see this is saying that has the maximum number of identificable parameters). We
shall concentrate first in (F).
First of all, (see for example Sontag 1990), a model has the minimal number of states if
C
CA

and only if is observable and controlable, i.e. rank =n (observability

C n-1

condition) and rank(R AR AZR...A"‘IR): n (controlability condition). As the latter is

always satisfied if R is full rank, we just impose the former. Moreover, in the context of
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stochastic systems, controlability plays a small role as it means that some states are
unaffected by noise so whether they are observationally equivalent to other system
depends only on initial states.

Invariant transformations

Following Dai and Singleton, we allow for the following transformations
1. Affine transformations of states: X, = v+ GX, where G is nonsingular and v is
an arbitrary vector. Note the important role of constants ¢, and ¢,. If they where
not present and output equation were CX,, then v could not be arbitrary but instead
would have to accomplish Cv =0.
2. Rotations of brownian motions. W, =UW, where UU" = as Brownian motion

is unobserved.
Note that these transformations preserve observability and rank of R.
Relationship with Ay(n)

We shall first show now how to relate our model to Dai-Singleton Ay(n) class, i.e. a

dY, = —KY.dt +3dW,

- where R=17, C=(l..1) and K is lower
s, =expls, +C,)

system like: (DS){

triangular with all their diagonal elements strictly positive, i.e. K, > 0.

This means several restrictions within the system:

1. The dynamics matrix -K is full rank and all their eigenvalues are real and negative.
2. Noise matrix is also full rank.

All these properties are preserved through invariant transformations, so we would have
to impose them on our system. But we have complex eigenvalues, so we have to use a
different, although similar, canonical form. To sum up, we replace Dai-Singleton

restrictions with others, so our approaches are similar but not directly comparable.
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First canonical form

If all eigenvalues are different then the pair (F) can be reduced to:

dx, = (i + A%, Wit + Raw,
(F1) , Where

S, = exp(&)? ,)
1. 4is diagonal (real only if there are no complex eigenvalues)

2. C=(11..1).

3. R is lower triangular and all its diagonal elements are strictly possitive.
~ m, .
4. m= 0 with m; e R

Moreover, if we start with a canonical form (F1) the system is observable and
controlable (therefore has the minimal number possible of states).
Proof

If all the eingenvalues are different, then A is diagonalizable. Therefore, changing the

base, we have a representation where A is diagonal. We shall see now that all elements

in C are not null.

~

C
~_ . . _|ca |,
Let 4 =diag(d,...d,). By the observability condition, the matrix is full rank.
5~n—1
q c, . C,
. . Cldl CZdZ nn
But this matrix equals . Should any of the ¢, be null, then
cd!™ cdit .. oc,d"

its full column would be null and therefore the system would not be observable. This

also proves that, starting from canonical form (F1), the system is observable.
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. 1 1 .
As a result, we can define the transformation L, = diag(—,...,—j . Under this change
¢ c

n

of variable, C = (1..‘1) and 4 is diagonal. Using a suitable ortogonal transformation of

the noise, we can also impose the conditions on R via a Choleski decomposition (thus
proving also that the system is controlable, due to the fact that noise matrix is full rank).

~

Now  for the form  of m. We  define the new state as

G+, ldy+.+p ld,

= -~ |-uld
X, =X, - Hal . Clearly it verifies the conditions.

—u,ld,

Complex eigenvalues
It is now time to consider complex eigenvalues. The results are essentially the same, but
the canonical form is slightly different. Both are, however, perfectly equivalent. We

need a few previous lemmas.

Lemma

If 4 is a 2x2 real matrix with complex eigenvalues k i and C ia a 2x1 real matrix

such that the pair (4,C) is observable then

) ) ) ) k+ip 0 1 —i
1. A is diagonalizable and, if A= and H = then
0 k—ip 1 i

HIAHz( ¢ (pj

k
2. There exist a real matrix T such that 7' AT :( (;J and CT = (l 0)
—Q
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Proof
A has two all eigenvalues distinct therefore is diagonalizable. As it is real, its

eigenvalues are conjugate.

. O 1(1 1 \k+ip 0 1 —i
We just have to do the product. H~AH =— ) L) It equals

] 0 k—ip i
1(1 1 Yk+ip —ik+o) (k ¢
2li —i\k—ip ik+o | \—p k

i —1i
In order to proof part 2, let us get back to the original 4. It has two eigenvectors, but is
a real matrix. Therefore, if v is an eingenvector associated to an eigenvalue A, then
Av = Av . Taking conjugates, Av = Av.But A4 is real, therefore A=A so Av=Av.It

means that v is the eingenvector associated to the other eigenvalue.

v, v
Let 7, :( : _IJ be the matrix of eigenvectors. Then (
V, W

k+ip 0

=T AT,.
0 k—i(pj 0

k
Let 7, =T,H . We know then, ( (]3 =T AT,. We shall proof know that 7; is
-

real.
v, fl 1 —i _ v, +1j1 —1iv, +z?1 _ s Re[vl] Im[vl] e
v, v, \l i v, +v, —iv,+V, Re[vz] Im[vz]

Finally, let C=(c,,c,). As (4,C) is observable, ¢ +c2>0.We define

H, = (cl _02] We know CH, = (1 0)
1

c, ¢

H- k CDH 1 o -k oo o _
"\ k)" +eile, o -0 kl-c, ¢

1 ck+c,p cp-c,k\ ¢ ) (k ¢
cd+ci\ek—cp ckvep\-c, ¢ ) \o k

So, defining 7' =T7,H, we get the result.
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Lemma

Let CeR*™",4eR™" be real matrices where all eigenvalues of A are different.

4 0 .. 0
0 4, .. 0

There exist a real matrix 7 such that T7'AT = 2 CT™' =(C1...Cr)
0 0 .. 4

where eig(Aj)z/lj eR or eig(A‘j): {kj +ip;,k; +i(oj}
Proof

Let 4,,..,4, be the real eigenvalues and ,4,..., 4,, 11, be the complex ones. Let

Vi,V and Wi Wy W, W, be the corresponding eigenvectors. We define the

p

subspaces ¥, = Sp(v,) and W, = Sp(w,,w,). V, is defined by a real vector (and thus has

areal basis) and W, = Sp{wl. +w, e _.w" } therefore has also a real basis. Let T be the
i

basis of all the subspaces together, which is a real matrix.

Clearly R""™ =V, ®...® V,®W, ®..©W, and all subspaces are 4 —invariant. Using

4 0
. .. -1 A2
the above real basis, we can partition 7~ AT = where 4, = 4|, or
0 O A

4, =4 v thus verifying the thesis.

We are now ready to state the complex canonical form.

Second canonical form

If all eigenvalues are different then (F) can be reduced to

dX, = (i + AX, it + RaW, ,
(F2) , where all matrices are real and:

S, = exp(@X , )
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~ . 0 : k¢
1. 4= and either 4, =4, € R or 4, = X
. -

2. C :(Cl...C,) each corresponding to 4, and C, =1 if 4, =4 €R or C, :(1 O)
otherwise.

3. R is lower triangular and all its diagonal elements are strictly possitive.
~ m, .
4. m= 0 with m, e R

Proof
Combining the two previous lemmas, it is obvious that there is a real matrix that
transforms 4 and C into the previous forms. By proceding as in the other third reduced

form, we obtain the rest of the result.

Maximality

In order to show that the model set is maximal we see that the model is globally
identificable, as in general the latter implies the former if all parameters are admisible.
To see this, remember that in a globally identifiable model, different parameters give
different realizations. Suppose that a model has »n parameters and is not maximal but
admits a representation with k<n parameters. By redefining the parameter space (under

some conditions) it means that the last parameters are functions of the first, formally

0 =(¢.0(¢)).
But, for a value ¢, we can take a differente value (¢* 0 ) # (¢* , go(¢* )) thus obtaining a

different admisible value. The only way to avoid contradiction would be that
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(¢*,(o*)¢ (¢*,go(¢* )) achieve the same realization, but this is imposible since the model

is globally identificable. We thus have to conclude that the model is not maximal.
We shall first proof the version where spot prices are observable and then explain why

risk premia can also be identified.

Proposition

If S, is observable, model (F3) is globally identificable (incluiding the initial state X )
Proof

Let Z, = log(S,). We assume that we can observe the mean and variance of Z, at any

moment in time. If the model has complex eigenvalues, we perform the transformation

o1y
(. ] for each 4, thus converting C into (1...1) and making A diagonal. If after
i —i

this transformation the model is globally identificable, so is the original model.
We know that var(Z,)=_Cvec™ [ JZ (exp(4u)® exp(Au))vec(RR')dt} C' (see Garcia et

al., 2012). It is the sum of exponencials of eigenvalues of 4 and in all sums appears

e “Lrr),. As (RR)

is not null and d, is the double of an eingenvalue all

i
ii

eigenvalues are identified and so is 4. Note that this argument os even valid if 0 is an
engenvalue, as we would only be able to identify n—1 values, which means that the
other is 0. Therefore, no restrictions exists in the eigenvalues of 4 so any maximal

model needs all.
But, as Cvec™ U;(exp(Au)@) exp(Au))vec(RR')dt} C', if 4 is identified, so is RR' (in

the complex case is HRR'H' where H is the change of variable, but we can get the
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original by multiplying by both inverses). We just have to extract from the integrals (as
all integrals are positive). Therefore RR' and A are identified.

We have now two cases. Let us first assume A4 is NOT full rank. Then,

1 0 .. O
dit
o t e[ Mg 3 0 e .. 0 tm
r]=ce {X”Le (0 st}_(l i I {XOJ{O H
0 0 e

So we have the equality E[Y,|= X, +m, +e®™ X,, +..e™ X,,. As all this functions

are linearly independent, it means that all their coefficients are univocaly defined.

— (0 0) —
Now, we shall assume that 4 is full rank. We define 4 = (0 AJ’ X, = (ﬁ; j and
0

C =(1C,..C,). The system is still observable, by construction and we are back to the

previous case.

Risk premia

It is now time to consider whether risk premia can be identified. If we start with model

dX, = i+ AX, e+ RaW, o
(F2) its risk neutral version is given by:

S, = exp(@X , )

{dfg = (i — A+ AX, Wt + RaW,
(F2N) N
S, = exp(CX ,)

We shall now assume that all futures are observable and show that the system, with the

risk neutral dynamics is also globally identificable.

Proposition

In the above conditions, if F,, = E°[S,, /1,] is observable, then model (F3N) is

t+T

globally identificable.
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Proof

First, if F,, is observable, making 7 =0 it means that §, is observable. So all

parameters apart from (possibly) risk premia are identified.

However, Z,., =¢, +Ce"" [X + J:)T e ™ Ads + J‘OTe*ASRd Wm}. If we take expectations

with respect first to the first measure and after to the second E [E /1, ]], the Ito
integral disapears and E Q[X ol t]:X . only depends on identifiable parameters.
Therefore we are left with E|EC[Z,/1,]|= ¢, +t(m,— 4 )€™, —..—e™ 4, in the

singular 4 case and without the ¢ term in the nonsingular case. Anyway, independent

functions which means identifiable parameters.
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TABLES AND FIGURES

TABLE 1

DESCRIPTIVE STATISTICS. FUTURES PRICES

The table shows the mean and volatility of the four commodity futures prices series. The

sample period is 9/27/1999 to 7/4/2011 (615 weekly observations). F1 is the futures contract

closest to maturity, F2 is the contract second-closest to maturity and so on.

WTI Crude Oil Heating Oil Gasoline Henry Hub
Mean  Volatility Mean Volatility Mean  Volatility Mean Volatility
F1 55.06 31.30% Fl 64.46 31.73%  Fl 64.59 36.81% Fl 5.68 46.80%
F4 55.59 26.49% F3 64.96 28.08% F3 64.19 30.13% F5 6.04 32.53%
F7 55.57 23.83% F5 65.17 26.04% F5 63.73 26.26% F9 6.17 2691%
F11 5536 21.69% F7 65.27 24.08% F7 63.37 24.53% Fl4 6.15 22.48%
F14 55.17 20.57% F10 65.23 21.59% F9 63.24 2431% F18 6.13  20.80%
F17 5498 19.72% F12 65.13 20.61% F12 63.00 23.77% F22 6.06 21.55%
F20 54.80 19.05% Fl14 65.07 20.10% - - - F27 599  19.57%
F24  54.60 18.44% F16 65.04 20.04% - - - F31 5.96  20.05%
F27 5448 18.13% FI8 65.02 19.95% - - - F35 5.89  19.17%
TABLE 2

The table shows the mean and volatility of the commodity convenience yield estimated

prices series for the four commodities under study. The sample period is 9/27/1999 to

DESCRIPTIVE STATISTICS. CONVENIENCE YIELD

7/4/2011 (615 weekly observations). d, +; denotes the implicit convenience yield from “x”

month to “x+1”” months.

WTI Crude Oil Heating Oil Gasoline Henry Hub
Mean Stand. Dev. Mean Stand. Dev. Mean Stand.Dev. Mean Stand. Dev.

0, -0.01 0.29 0, 0.01 0.28 o, » 0.08 0.41 o » -0.30 0.58
0, 5 0.06 0.15 03 4 0.04 0.24 03 4 0.07 0.40 05 ¢ -0.06 0.52
0, 3 0.08 0.11 Js ¢ 0.06 0.21 s ¢ 0.09 0.34 do 10 0.03 0.52
o1 12 0.08 0.09 d7; 3 0.06 0.19 0, 3 0.08 0.33 o014 15 0.06 0.48
014 15 0.07 0.08 o190 11 0.07 0.18 do 190 0.07 0.35 15 19 0.05 0.48
017 13 0.07 0.07 o1 13 0.06 0.17 o1 13 -1.76 3.20 02 2 0.07 0.50
0 21 0.06 0.06 o014 15 0.06 0.16 - - - 027 2z 0.08 0.47
024 25 0.06 0.05 Ji_17 0.06 0.15 - - - 031 3 0.06 0.51
0y7 23 0.06 0.04 - - - - - - - - -
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TABLE 3

UNIT ROOT TEST

The table shows the statistic of the Augmented Dickey-Fuller (ADF) test. The MacKinnon

critical values for the rejection of the null hypothesis of a unit root tests are -3.4408 (1%), -

2.8661 (5%) and -2.5692 (10%).

31 2 % 3 3 4 s 6 s o 9 10 O13 14 Oi5 16 B9 20
WTI -3.9166 -2.7213 -2.8424 -2.8563 -2.4789 -2.5284 -2.3123 -2.0427 -2.2670
Heating Oil -4.6782 -3.5201 -5.3899 -5.1484 -5.4680 -6.0645 -5.4280 -5.5776 -
RBOB -7.77077 -6.7132 -6.4348 -6.8391 -5.7703 -5.4273 -5.8969 - -
Henry Hub  -5.8121 -5.8404 -6.2003 -6.8154 -6.7486 -7.5143 -6.8356 -7.4454 -7.7367
TABLE 4
SEASONALITY TEST

The table shows the statistic of the Kruskal-Wallis test for the presence of seasonal effects in the

estimated convenience yield series. The test statistic is distributed, under the null hypothesis of

no seasonal effects, as a > with 11 degrees of freedom. The critical value for the rejection of the

null hypothesis at 99% is 24.725.

8 » S 3 83 4 O s s 6 S 7 57 g B o 9_10

WTI 3.1077 1.9255 1.3683 1.2326 1.1293 0.8077 1.1751 1.2313 1.5310
H.Oil 44.1184 43.2305 49.3397 558876  65.7434  67.7825 72.0962 79.1446  82.5958
RBOB 74.5228 85.3857 91.9193 92.2936 94.8757 99.9759 99.1085 99.1205 101.5181
H.Hub 80.7324 82.6555 88.6157 101.8594 106.3644 107.5883 112.3180 113.4766 115.0153
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TABLE 5
ESTIMATION RESULTS. FOUR-FACTOR MODEL
The table presents the results for the four-factor model applied to the four commodities under
study: WTI crude oil, heating oil, RBOB gasoline and Henry Hub natural gas. Standard errors
are in parentheses. The estimated values are reported with * denoting significance at 10%,

denoting significance at 5%, and ~ denoting significance at 1%.

WTI Heating Oil RBOB Henry Hub

e 0.1132"" 0.1158"" 0.1084" 0.0655"
(0.0409) (0.0395) (0.0474) (0.0302)

K 1.0225 1.0301 19649 113237
(0.0101) (0.0143) (0.1691) (0.0206)

® 0.9566 0.9978"" 1.0029" 1.0088
(0.0051) (0.0002) (0.0009) (0.0002)

o 0.1626 0.1573" 0.1885 0.1201""
(0.0045) (0.0044) (0.0058) (0.0049)

o, 027527 0.2458 0.3051 0.4367
(0.0090) (0.0072) (0.0119) (0.0165)

Gy 0.0106 0.0118"" 0.0425"" 0.0385"
(0.0005) (0.0006) (0.0020) (0.0022)
Pey 0.0518 0.1311 0.0573 0.0117
(0.0429) (0.0409) (0.0722) (0.0603)
Pea -0.2794" -0.1600 -0.1050" -0.0892
(0.0719) (0.0650) (0.0556) (0.0845)
Pear -0.2488" -0.1357° 0.2353" -0.0067
(0.0695) (0.0693) (0.0620) (0.0797)

P 0.3073" 0.0994 0.1760 0.2518""
(0.0759) (0.0685) (0.0655) (0.0812)

Py 0.3166 0.2957 -0.3956 0.3145™
(0.0727) (0.0722) (0.0549) (0.0740)

Ae 0.1372"" 0.1532"" 0.1515" 0.1025"
(0.0409) (0.0396) (0.0492) (0.0303)
A 0.0503 -0.0011 -0.0651 -0.0869
(0.0692) (0.0619) (0.0825) (0.1101)

A -0.0017 -0.0014 -0.0062 0.0111

(0.0029) (0.0032) (0.0112) (0.0105)
s -0.0050" -0.0077 0.0027 -0.0138
(0.0029) (0.0031) (0.0130) (0.0106)

o, 0.0112"" 0.0094 0.0117" 0.0376
(0.0001) (0.0001) (0.0002) (0.0003)

Log-likelihood 27057.14 28139.46 16835.78 19318.02
AIC 27025.14 28107.46 16803.78 19286.02
SIC 26949.69 28032.02 16728.33 19210.58
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TABLE 6

ESTIMATION RESULTS. THREE-FACTOR MODEL FOR THE CONVENIENCE

YIELD

The table presents the results for the three-factor model applied to the four commodity

convenience yield series under study: WTI crude oil, heating oil, RBOB gasoline and Henry

Hub natural gas. Standard errors are in parentheses. The estimated values are reported with *

denoting significance at 10%, = denoting significance at 5%, and ~ denoting significance at

1%.

WTI Heating Oil RBOB Henry Hub

e 0.7882"" -0.0069 0.0304 -2.5086
(0.1823) (0.0800) (0.0990) (0.7047)

K 12705 0.9639 0.8112"" 5.8064
(0.0002) (0.0294) (0.2255) (0.0003)

® 0.7906 1.0114™ 1.0080" 1.00127
(0.0000) (0.0031) (0.0103) (0.0000)

o, 0.6205" 0.2727 0.3000" 22847
(0.0002) (0.0168) (0.0483) (0.0003)

Gy 0.0530" 0.0725 047737 03772
(0.0002) (0.0054) (0.0407) (0.0003)

P 0.7771"" 0.6338 0.4382"" -0.3040"
(0.0002) (0.0806) (0.1263) (0.0003)

Pyt 0.3725" 0.1087 0.4922"" 0.1639"
(0.0002) (0.01055) (0.1160) (0.0003)
A 0.8087 -0.0615 0.0941 -1.0521
(0.1809) (0.0798) (0.0983) (0.6875)
A 0.0602"" 0.0660 -0.0660 -0.0038
(0.0163) (0.0240) (0.1510) (0.1186)
A -0.0129 -0.0427 0.1003 0.1375
(0.0164) (0.0235) (0.1437) (0.1219)

o, 0.0517"" 0.0779 02170 037727
(0.0002) (0.0008) (0.0031) (0.0003)

Log-likelihood 13008.48 9719.43 3386.01 2501.60
AIC 12986.48 9697.43 3364.01 2479.60
SIC 12937.85 9648.79 3315.37 2430.97
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TABLE 7

WEIGHTS OF SEASONAL COMPONENTS

The table presents the average weights of the estimated seasonal factors in the spot price (four-
factor model for spot commodity prices) and in the convenience yield (three-factor for
convenience yields), for the four commodities under study: WTI crude oil, heating oil, RBOB

gasoline and Henry Hub.

PANEL A: FOUR FACTOR MODEL, COMMODITY SPOT PRICES

|ol/log(S) (o + o*])/log(S)
Henry Hub 2.8866% 5.7299%
Heating Oil 0.5270% 1.0625%
RBOB 0.8295% 1.6809%
WTI 0.0826% 0.1439%

PANEL B: THREE-FACTOR MODEL, CONVENIENCE YIELDS

|of/log(S) (o + Jo*[)/log(S)
Henry Hub 34.5652% 94.0058%
Heating Oil 46.6621% 128.1067%
RBOB 63.6727% 180.6800%
WTI 9.8590% 21.0083%
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FIGURE 1

TIME SERIES EVOLUTION OF ESTIMATED CONVENIENCE YIELDS
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FIGURE 1

TIME SERIES EVOLUTION OF ESTMATED CONVENIENCE YIELDS (CONT.)
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RBOBO GASOLINE CONVENIENCE YIELD SPECTRUM
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FIGURE 2
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FIGURE 3

FORWARD CURVES FUTURES AND CONVENIENCE YIELD
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FIGURE 4

COMMODITY SEASONAL COMPONENTS AND CONVENIENCE YIELD
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