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INTRODUCTION

In this section we are going to exhibit some fundatals about futures contract valuation in
commodity markets which are going to be used in tieole doctoral thesis. These

fundamentals consist on a general methodology wtéchbe used in all kind of problems, is
much simpler than the ad-hoc solutions presentdtdriiterature that can only be used in the

concrete problem for which they were developed,amdds approximations.

1. Futures Contract Valuation

Most of the models proposed in the literature asstimat the dynamics of a commodity price

(or its log) is given by a linear stochastic diffetial system:

dX, = (b+ AX, )dt + RdW
Yo =cX

where Y, is the commodity price (or its logh, A, R and c are deterministic parameters

independent oft (bOO", A ROO™", cOO") and W, is a n-dimensional canonical

Brownian motion (i.e. all components uncorrelatad #s variance equal to unity).

It is easy to prove that the solution of that peoblis:
At t _-As t _-As
X, =e [XO +joe bds+ joe RdV\g} (11)

and this solution is unique (Oksendal, 1992). Meegpeven in the case thiat A andR were

functions oft, if A, and '[t A.ds commute, the solution of that problem is (I1).
0

Accordingly,X; is normally distributed with mean and variance:

E[X ]=e" [XO + J';e‘AS bds} var[X,]= e U;e‘ASRRe‘AS'ds}eA"



With this result it is easy to prove that the priffea futures contract traded at tirhavith

maturity at timet+T, F, 1, can be computed as:
For= edeceATXt +g (T)J (12)

whereg is a, probably complicated, deterministic function

2. Volatility of Futures Returns

The squared volatility of a futures contract tradédimet with maturity at timet+T can be

Var[log Fonr —log Ft,TJ
h

defined as: Llrrc]) (it is also possible to define it as

lim Var |_|09 Ft+h,T—h - Iog FI,TJ

™ ). It can be proved that it is the expected valui® square
h-0

of the coefficient of the Brownian motiom) in the expansiord Iog(FtyT)= uds+ o, dwr,

whereW is a scalar canonical Brownian motion.

Hence, taking logarithms and differentials on betdes of Equation (I12), it follows that:

d(log For ) =ce*dX, =ce*[b+ AX, |dt + ce"” RdW,

Therefore, the squared volatility ixe*” RRe*"'c'. ) (

Note thatR does not need to be computedF&R is the noise covariance matrix.

3. Empirical Models
In the general model presented above, it is eapyoe that knowing(.1, X; can be written as:

Xt =Ct + Mtxt—l +wt (|4)



t - - - .
where ¢, = eA[ & Asb#dS] M, =e" andy is an-vector of serially uncorrelated Gaussian

disturbances with zero mean and covariance maeﬁEf e_ASRR'e‘AS‘dS}eA'
€ .

4. Uses and remarks

This general methodology can be used in all kingroblems, is much simpler than the ad-hoc
solutions presented in the literature that can belyised in the concrete problem for which they
were developed, needing complex procedures liké Bteps (Schwartz and Smith, 2000) or
partial differential equations (Schwartz, 1997)d avoids approximations like in Schwartz

(1997).

5. The doctoral thesis

As it is said above, due to the complexity of cordityo prices dynamics, valuation of

commodity contingent claims is carried out in thx¢éaat literature via ad-hoc solutions, which
are very complex and sometimes include approximatidhat is, owing to the cost of carry, the
commodity prices dynamics is very complex. Themfdt is needed to continue deepening in

its study. This doctoral thesis tries to go an $teward in this sense.

This doctoral thesis is organized as follows. Chaft contains an study about the extant
commodity models and their implications in investinender uncertainty. Investment projects
involving commodities typically require a large amé of capital, last many years and include
clauses which can be interpreted as call and ptibreg Therefore, the price dynamics
behaviour assumed for the commodity price is egdantvaluing these investment projects. In
this chapter it is analysed the optimal contra¢émeination assuming several models proposed

in the literature for the commaodity price dynamics.



In chapter 2 it is proved that seasonality in sao®modities (natural gas, gasoline and heating
oil) is an stochastic factor instead of a deterstioione. This chapter proposes a general
(n+2m)-factor model for the stochastic behavior of cordityoprices, considering seasonality
as an stochastic factor, withnon-seasonal factors, described in the literamdm seasonal
factors. The model, particularized for= 1, 2, 3 andn = 1, has been applied to Henry Hub
natural gas futures contracts traded at NYMEX. Bimresults are obtained with other
commodities traded at NYMEX and with commaoditieadid in other markets (ICE Futures

Europe).

Chapter 3 provides evidence that crude oil and rtian refining products are not only
cointegrated but also have a common long-term tréndthis chapter there is definitive
evidence of a common long-term trend for crudepoites and the most important refining
products prices, i.e. gasoline and heating oijedaat NYMEX. These three commaodities are
not only cointegrated, but they have also a comlopng-term dynamics. We present definitive
evidence of this fact by proposing different factmodels to explain the dynamics of
commodity prices jointly. These results are usedalue the crack-spread options quoted at
NYMEX, given that the most suitable way to valuegé options is assuming a common long-

term dynamics for crude oil and refined producteqs.

REFERENCES
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CHAPTER 1: COMMODITY MODELS AND
INVESTMENT UNDER UNCERTAINTY. THE

OPTIMAL CONTRACT DETERMINATION

1. Introduction

One of the classical financial theory assumptianghe fact that the log-spot pricg)(of a
financial asset follows a random walk with drgt=r + A + p.1 + &, wherer is the interest rate,
A is the risk premium ang is an independent and identically distributed {id) random noise,
which is distributed following a Gaussian distribat with zero mean and variane@At for
each time t” (o is the annualized volatility). That is, except fror terms, future prices

growth with a constant rate which is the sum ofittterest rate and the risk-premium.

Due to the cost-of-carry, this assumption is naisomable in the case of commodities. These
assets present strong mean reversion, as can becidpd in Figure 1. The natural way to
extend the random walk to incorporate the meanrtiegeeffect is through an AR(1) model. In
recent years several authors have proposed mohésiopated models, in which the commodity
price is assumed to be the sum of several facBpscifically, we review the two-factor model
by Schwartz and Smith (2000) and Schwartz (199vjhis model the commodity price is the
sum of a long-term factor, which evolves accordioga geometric Brownian motion, and a
short-term factor, which evolves according to amsdgin-Uhlenbeck process. More recently
Cortazar and Schwartz (2003) have proposed an satenf the two factors model, allowing
the spot price long term return to be stochastigeAeralization of this kind of models has been

proposed by Cortazar and Naranjo (2006).

An alternative procedure has been proposed by Glewhd Stricland (2000). These authors try
to model the futures price dynamics directly, bysuemsing that the futures prices are a

martingale, where the price of a futures contractirae t is its price at timet-1 plus an

11



innovation which is given by the sum of severakd®inistic volatility functions. One possible

way to choose these deterministic volatility fuons is through a principal component analysis.

Several authors have tried to incorporate in thdehthe seasonal effects commonly observed
in many commodity prices. Sorensen (2002) has tteedncorporate these effects in a
deterministic way, whereas Chapter 2 includes seditp as an additional stochastic factor in

the model.

This chapter presents these models in an unifiedegty analyzing the relationships among
them, and pointing out their advantages and limoitat Moreover, it is analyzed their relative
performance with a common data set. Specificallg,data set is composed of three commodity
prices series: WTI crude oil and natural gas figuwentracts traded at NYMEX and Brent crude

oil futures contracts traded at ICE Futures in Lamd

This comparative study between models has criticaportance in investment under
uncertainty. Concretely, when a company is plantangevelop a crude oil or natural gas field,
the investment is huge (it usually reaches thousaniflion dollars) and usually lasts many
years (in fact they usually last between twenty tiidy years), however the main investment
has to be made at the beginning, before gettingetoyn. Consequently, the company needs a
sell contract, which should last at least twentarge to guarantee the investment recovery.
Typically these contracts contain clauses with aimim price to guarantee the seller's
investment recovery, and a maximum price to prdteebuyer from unexpected and steep price
increases. It is easy to demonstrate that thesisedacan be seen as put and call options and,
therefore, the stochastic behaviour of commoditggw plays a crucial role in option valuation
problems. As the volatility is a decisive paramdtethe option valuation methodology, it is
crucial to choose an appropriate model, with certalatility assumptions, to characterize the

commodity price dynamics.

This chapter is organized as follows. The compagasitudy between models is contained in
section 2. Section 3 deals with investment undeerainty and finally section 4 concludes

with a summary and discussion.

12



2. Commodity Models

2.1. The AR(1) Model

Taking into account the arguments in the previagtien, the natural extension of the random
walk to incorporate in the model the mean reverstiacts is the AR(1) model. The AR(1)

model assumes that the commodity log-spot ppdddliows the following process:
p—c=p(Pu-C)tg

wherec is the long-term mean (the log-price converges itothe long-tem)p is the reversion
speed to this long-term mean and, as befgiie,an independent and identically distributed in
(iid) random noise, which is distributed followirgGaussian distribution with zero mean and

varianced®At for each time t".

Therefore, under this model, at tim®, “p..1 is a random variable which is distributedcN{ op

- ¢), ’At). Explicitly, the best prediction of the log-spptice int+1 is ¢ + p(p; — ¢) with

precision given byam (short-term volatility). It is easy to see tiga, with a high {”, is a

random variable which is distributed d&J@?/(1-0)At). Explicitly, the best prediction of the log-

spot price int+j is ¢ with precision given by./g’At/(1- p?) (long-term volatility).

Consequently this model assumes that the volaidibpounded.
The annualized volatility of futures returns &(In F; ;) = oo,

This model will be estimated with three commoditices series: WTI and Brent crude oil and
Henry Hub natural gas. Currently, however, there aot spot prices for these three
commodities. Consequently in this work we use ooatmfutures contracts quoted at NYMEX
in the case of WTI crude oil and Henry Hub natgas, and one month futures contracts quoted
at ICE in the case of Brent crude oil. Hence, th et to calculate these parameters consists

on weekly observations of one month futures cotdariom 4/2/1990 to 3/24/2008 for Henry

13



Hub natural gas, from 6/27/1988 to 3/24/2008 foer@rcrude oil and from 1/1/1985 to
3/24/2008 for WTI crude oil. In the case of HenrytHnatural gas the deterministic seasonal
component is removed. Table 1 contains some déiseriptatistics of the data. The model
parameter estimates for the three commodities:tBned WTI crude oil and Henry Hub natural

gas for the whole sample period are contained bieTa

As can be appreciated in Table 2, the reversioadspe the long-term meap)(is equal to one

in all cases and the long-term meahi$ statistically non-different from zero, whickeans that
these prices do not follow a pure mean revertimggss. In Figure 1 it is possible to appreciate
that there is a mean reversion effect in commogriges until 1999, afterwards commodity
prices exhibit a random walk behaviour, which i® tlominating effect in the previous
estimates. These results are coherent with thelatdrdeviations observed in Table 1, which
are too high for a mean reverting process, and déineyalso coherent with Cortazar and Naranjo

(2006) findings.

Therefore, taking into account these results, wie agsume that there is a structural break in
1999. Specifically, the mean reverting behaviour canapereciated if we select a data set
which consists on weekly observations of one moiotiures contracts from 4/2/1990 to
12/27/1999 for Henry Hub natural gas, from 6/278.%8 12/27/1999 for Brent crude oil and
from 1/1/1985 to 12/27/1999 for WTI crude oil. Sodescriptive statistics for this data set are
presented in Table 1. The model parameter estiniatdbe three commodities with this new

data set are contained in Table 2.

In this case the reversion speed to the long-temamy) is not equal to one (although it is
quite close to one), and the long-term meanq statistically different from zero, which means

that in this sample there are mean reverting effect

The lack of economical transportation and the Bahistorability of natural gas make its supply
unable to change in view of variations of demartusTs the reason why natural gas prices are

more volatile (i.e. they have higher volatilitg) and less mean reverting (mean reversion is

! Similar results are obtained if we choose 1998080 as breaking point.
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higher becausg is lower) than crude oil ones and it also explaifg natural gas prices are
strongly seasonal. Therefore, as we do not take a&gcount seasonality in he model, the
goodness of fit ) is worse for natural gas prices than for crudeooges, in spite of the

deterministic seasonal component has been removed.

However, this model is too much simple and, asbeaappreciated in Figures 2, 3 and 4, it does

not estimate the volatility of futures returns pedp.

Therefore, we can conclude that these one-factanmeverting models, like the AR(1), are not
very realistic since they generate a volatilityfutiires returns which goes to zero as the time to
maturity of the futures contract approaches infinihs can be appreciated in the previous
charts, the empirical volatility of futures returdi@es not go to zero when time to maturity goes
to infinity. Even more, models considering a singteirce of uncertainty are not very realistic
since they imply that futures prices for differematurities should be perfectly correlated, which
defies existing evidence. In the following sectiarighis work we are going to present more

complex models in which volatility of futures remsris better characterized.
2.2. The Two-Factor Model

The model that we are going to present now iswhefactor model introduced by Schwartz and
Smith (2000), which is equivalent to the one pragbby Schwartz (1997). In this model it is

assumed that the log-spot price is the sum of woponents (or factors): one short term factor
(x) which follows an Ornstein-Uhlenbeck process ane long term factore{) which follows a

standard Brownian motion. Writing the model indtscrete-time version we have that:

X, =Cc+QX_, +1, where:
. , expkat) 0
X\ =ln. &l o=[o w at; Q{ 0 J:

2

(L- exp(2kAt)) r (L- exp(kAt)) Ix9ePre
Val’[ﬂt] = 2k k ;

g, o
(L- exp(kAL)) *kfp*f o

15



ands, independent oK.

In the appendix it is proved that the AR(1) modehiparticular case of the two-factor one when

the long-term factor is considered deterministic.

In the same way as before, it is possible to detnatesthat, under this model assumptions, at
time t, pw1 is @ random variable and the best prediction efltig-spot price ir+1 is gAt +

exp(kAt) x;, with precision given by the following expressi@hort-term volatility):

J ((1-exp(-2At))a,* 1(2K) + 0, “At + 2(1- exp(-KAt)) o, 0, p,. 1K)

In the same way, it is easy to see that the long-tmlatility is Jgﬁ. Therefore, this model

assumes that the volatility grows with time, consagly it is not bounded. This implies that the
volatility of futures returns does not go to zerben time to maturity goes to infinity, which it

is a desirable property.

The annualized volatility of futures returns &(In ;) =70, * +0,” + 26X, 0,p,, .

As there is not market quotation for the factorsvirich the spot price of the three commaodities
can be decomposed, the estimation has been pedausieg the Kalman filter methodology
(see, for example Harvey, 1989)he data set employed in the estimation procedomsists on
weekly observations of Henry Hub natural gas andl \WTde oil futures prices traded at
NYMEX and Brent crude oil futures prices tradedGE. The data set for Henry Hub natural
gas is made of contracts F1, F5, F9, F13, F17, F25, F29, F33, F37, F41, F44 and F48
where F1 is the contract closest to maturity, Rhéssecond contract closest to maturity and so
on. This data set contains 330 quotations of eacdkract from 12/03/2001 to 03/24/2008. The
data set for WTI crude oil is made of contracts F4,, F7, F10, F13, F16, F19, F22, F25 and
F28. This data set contains 654 quotations of eaakract from 9/18/1995 to 03/24/2008. The

data set for Brent crude oil is made of contradtsf4, F7, F10, F12, F16-18, F22-24 and F31-

2 As explained in Schwartz and Smith (2000), thé-risutral version of the model is necessary to
estimate the parameters. This is the reason wirg thea risk-premium for the short-term deviatiah)(
and also a risk-adjusted long-term drii#zA).
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36. This data set contains 537 quotations of eantract from 12/15/1997 to 03/24/2008. Table
3 contains some descriptive statistics of thesa dets. The model parameter estimates for the

three commodities are presented in Table 4.

The results are coherent with the ones obtaineddywartz and Smith (2000). As in the

previous section, comparing this estimation with 8thwartz and Smith (2000) one, which use
data until 1995, we find that with our data (u@l08) the mean-reversion effect is lower than
in the case of data until 1995. There is also tesselation between factors than in Schwartz

and Smith (2000).

In this case, as the model accounts for long-tdfects (i.e. random walk effects), there are not

the problems described in the previous sectionnkwere, as can be appreciated in Figures 2, 3
and 4, this model estimates the volatility of fesireturns properly, in a more accurate way
than the previous one. As before, volatility andameeversionk) are higher in natural gas

prices.

The in-sample predictive power ability of the twasfor model can be analyzed through the bias
(real minus predicted prices) and the root meamsglierror, which are shown in Table 5. As
can be appreciated in the table, the model goodifefitsis worse in natural gas than in crude

oil because we do not take into account seasofeatefin model specification.
2.3. The Three-Factor Model

This model was proposed by Cortazar and Schwabz3)2and is an extension of the two-factor
model presented above. The only difference isrlreduction of a new risk factor: the drift,

(i.e. the spot price long term return). Althougke thodel formulation by the authors is slightly
different from the one of the two-factor model mei®d above, it is proved that both

formulations are equivalent (see Chapter 2).
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Var[/7t ] =

In this work we use the same data set and estimatiocedure (Kalman filtetas in the two
factor model case, just to compare the results dmtwmodels. Even more, we are going to
present the model with the same formulation thantwo factor model one to make comparison
easier. Therefore, it is assumed that the log-ppioe is the sum of three components (or
factors): two short term factorgs( and ;) which follow an Ornstein-Uhlenbeck process and
one long term factorg) which follows a standard Brownian motion. Writitlge model in its

discrete-time version we have that:

X, =c+QX,_, +77,where

1 0 0
X' =g, X Xali €=t 0 0 Q=|0 exp(kAt) o |
0 0 exp(-k,At)
ot (L- exp(-k,At) U“iﬁ (L- exp(-k,At) @
@-expehan) Z20Ene - expe2k ) 72 (L-expi-(k, + K,y 172
_ - 0,20:Py2¢ _ - 019 y2P y1x2 _ = T2 ’
@ -exp¢ szt))ik2 (L-exp((k, +k,)At)) 7‘(1 kK, (1-exp(2k,At)) %, |

and/, independent oX.;.

The annualized volatility of futures returns is:

-2k, T -2k, T

— 2 2 2 -k, T -k, T
o(nk;,)=0; +o,e™ +0,,e +27 0,005, t2677 0.0,,05,

~(ky+ko)T
+2e 010,00y,

The model parameter estimates for the three contiesdire contained in Tablé.6

The results are consistent with those obtainedhénprevious section. In this model there are
two short-term factors whose parameters are higiggificant, and in all cases one of these
factors has significantly higher speed of adjustiriean the other. This means that there are

two types of stochastic short-term effects, one (@me with highek) with stronger mean

% Cortazar and Schwartz (2003) propose a very siegtienation procedure and apply it to an incomplete
panel of oil futures prices. The methodology, hogrexdoes not make an optimal use of prices in the
estimation of state variables (as opposed to thien&m filter methodology), and is unable to obtain
parameter estimation errors.

“ As before, the risk-neutral version of the modalécessary to estimate the parameters.
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reversion than the other (the one with lowgrand both of them significant. We can see in
Table 6 that the less mean-reverting short-ternofdeas positive risk-premium whereas the

more mean-reverting one has a negative risk-premium

There is also high and negative correlation betwssort-term factors, which indicates that
these short term-factors (one of them more meaeriaeg than the order) usually work in
opposite directions. It is also interesting to notat the long-term factor has negative
correlation with the less reverting short-term éactand positive correlation with the more

mean-reverting one.

The in-sample predictive power ability of the thfaetor model can be analyzed through the
bias (real minus predicted prices) and the rootmsgmared error, which are shown in Table 7.
It is also possible to compare these results \aitise obtained with the two-factor model (Table
5). As expected, the root mean squared errorsraataivith the three-factor model are lower

than those obtained with the two-factors one.

As before, volatility and mean reversion are highamatural gas prices whereas goodness of fit

is worse.

The relative performance of the two and three-fantodels can also be analyzed through the

Schwartz and Akaike Information Criteria (SIC andCArespectively). If we define the
Schwartz Information Criterion (SIC) da(L,, ) —qIn(T), whereq is the number of estimated

parametersT is the number of observations ahg is the value of the likelihood function,
using theq estimated parameters, then the higher the SIChb#teer the fit. The same

conclusions are obtained with the Akaike InformatiGriterion (AIC), which is defined as
In(L,, ) —29. As expected, the values of both measures arehigith the three-factor model

(Table 6) than with the two-factor one (Table 4).

The volatilities of futures returns for the thresmamodities are depicted in Figures 2, 3 and 4. It
is easy to appreciate in the charts that with liheet-factor model the volatility of futures returns

fits better than with the two-factor one.
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Finally, we can conclude that since the three-factodel has more structure (more factors and
parameters), the goodness of fit is better thaménprevious case. Therefore, in each case we
have to decide between both models (the two-faatar the three factor model) taking into
account that although the three-factor model féttds to the data, the two-factor one is simpler
and therefore it is easier to estimate, the siggifte of each stochastic factor is more clear,
needs less data to be estimated... Consequenthcim @se, depending on its characteristics,
we will choose between the simplicity (the two taatnodel) and the goodness of fit (the three

factor model).

Cortazar and Naranjo (2006) proved that, for WTider oil data, the three factor model is well

enough and there is little improvement in addingerfactors and defining a four factor model.
2.4. The Principal Components Model

In previous subsections we have presented modeWhich the assumptions were made on the
spot price dynamics. Known the spot price dynamigs,derived the futures price dynamics.
The following model, introduced by Clewlow and 8k&nd (2000), models the futures price

dynamics directly.

This model departs from the fact that the bestiptied int for the price of a futures contract
maturing inT is the futures price i (i.e., the futures price is a martingale). Theref the

model assumes that, today (at tithethe futures price maturing in follows the following
N

process: Fr ., =F, +FT,t|:ZJi (t,T)é‘it] where ¢(t,T) are deterministic volatility
i=1

functions, & are orthogonal iid random noises which are disted following a Gaussian

distribution with zero mean and variantefor each time t”°.

One possible way to choo$¢ and thedi(t,T) functions is through a principal components

analysis. Thej” principal component is a vector which is defireedthe squared root of th¢h

® If we choose in a proper wayand &, (t,T), we get the factors models (AR(1) model, two-dachodel
and three-factor model) presented above. Consdguéaig model can be understood as a generalization
of the previous ones.
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highest eigenvalue times its eigenvector. It isyetas prove that the matrix which has the

principal components in their columns times itséelhsposed is the covariance makix

The data set to implement the principal componemisiel is the same as the one used to
estimate the two and three-factor models, whiateicribed in Table 3. Specifically, for Henry
Hub natural gas the data set is made of weeklyreégens of contracts F1 to F48 from
12/03/2001 to 03/24/2008, for WTI crude oil it imde of weekly observations of contracts F1
to F28 from 9/18/1995 to 03/24/2008, and for Bremide oil it is made of weekly observations

of contracts F1 to F31-36 from 12/15/1997 to 03Z298.

The first three principal components for the theeemmodities are depicted in Figures 5, 6 and
7. The first component is considered a long-term as it has the same sign for all maturities
and does not go to zero as maturity goes to igfimithich means that a random shock which
follows this principal component has the same divecfor all maturities and does not vanish

with time. The second and the third ones are censitshort-term ones as they change their
sign depending on the maturity considered, whiclamaghat a random shock which follows

these principal components has some direction imesperiods time and the opposite in the

others, and therefore, in the long-time its efféetsl to vanish.

As can be seen in the Table 8, in the case of Widl Brent crude oil, the first component

explains more than the 90% of the volatility, ahd first three ones explain almost the 100% of
the volatility. Therefore, in the case of WTI antkeBt crude oil, the other principal components
have little importance. In the case of natural thasfirst three principal components explain the
80% of the volatility, consequently, the other oaes important. The reason for this difference
between crude oil and natural gas lies again orfatiethat natural gas is a strongly seasonal
commodity whereas the crude oil is not, thus, itura gas the other principal components (the

fourth, the fifth and so on) explain part of thdatiity because they include seasonal effects.

As before, depending on the characteristic (the tyfpthe data set, the precision needed,...) of

our problem we will decide how mang(t,T) functions we will choose and the number of
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parameters that define each of them. The decisionld be based on simplicity vs. goodness of

fit.
2.5. Seasonality

As said above, the natural gas is a strongly sehsmmmodity. One of the clearest ways to
visualize this seasonality is through the forwandve. Figure 8 depicts the forward curve for
Henry Hub natural gas futures contracts traded¥EX on 03/17/2008. In this figure it is

possible to appreciate that Henry Hub natural geepare expected to be higher during winter

months and lower during summer months, therefare,commaodity price is seasonal.

In the factor models presented above only the easanal part of the price is modelled. Thus, a
reasonable gquestion to answer is how the resustsgehif we take into account seasonality in
the models. In Sorensen (2002) seasonality is ceghtihrough a deterministic factor and it is

demonstrated that if seasonality is consideretiénmodel, it fits better to the data for seasonal
commodities like corn, soybean, and wheat. Chaptehows that seasonality is a stochastic

factor in seasonal commodity prices like natural, gmsoline and heating oil.

As were pointed out by Blanco, Soronow and Stefis@®002), in the principal components

model it is possible to incorporate seasonality ifve assume that:

N
Fria =Fr Ry {Z g, (t,T)e’it} where gi(t,T) are deterministic volatility functions whose
i=1

forms are different depending on the month of thie d”.

Using a data set which is made of weekly obsermatiof Henry Hub natural gas futures
contracts (F1 to F17) from 04/22/1992 to 03/24/2008 divide the sample in twelve sub-
samples (one for each month) and carry out a pahciomponents analysis for each month. As

we need enough data each month, we need a datditiasent from the previous sections one.

The results show that the first component is simitaall months (see Figure 9) whereas the

second and the third exhibit a clear seasonalrpafsee Figures 10 and 11). To be precise, the
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second and the third principal components exhif@tdlassical “tilt” and “bending” behaviour,

however, this behaviour is mixed with a seasonal on

As can be appreciated in Figure 7, in the caseéhefsecond principal component the “tilt”
behaviour takes over the seasonal one, while fertlird one we find the opposite, i.e. the

seasonal behaviour dominates the “bending” one.

3. Investment under uncertainty. The optimal contrat determination

Investment projects related with crude oil or naltuigas are highly intensive in investment,
therefore the stochastic behaviour of commoditycgwihas important implications for the

valuation of projects related to the prices of thhosmmodities.

Concretely, when a company is planning to developruale oil or natural gas field, the

investment is huge (it usually reaches thousand®mdollars) and it usually lasts many years
(they usually last between twenty and thirty yeah®wever the main investment has to be
faced up before getting any return. Consequerity,company, which faces up the investment,
needs a sell contract, which should last at leasinty years, to guaranty the investment

recovery.

The most reasonable way to define the sell priceraugh the price of a contract which quotes
in a liquid international market (like NYMEX or IQETo choose the proper quotation
variables, geographical location and product gupéléve to be taken into account. However, if
the sell price is linked with the international anea linear way, it is not possible to recover the
investment when the commaodity price goes down tiratrreason these buy-sell contracts use to
be designed with clauses which enforce the buyg@atoa minimum amount independently of
international quotations. This guarantees the rsalleestment recovery. To compensate the
buyer for this clause, and to hedge him againstpeeed and steeper price increases, it is also
common to introduce other clause to allow the bugepay at most a maximum amount

independently of international quotations.
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As a result, the typical buy-sell commodity contreca long term contract (it lasts between
twenty and thirty years) and is designed in thieofahg way: in each period the exchange price
is linked with an international quotation in a limevay with two main clauses, one to guaranty
the seller investment recovery through a minimuimcepand other to protect the buyer from
price increases through a maximum price. It is éasee that, in each liquidation period, these

clauses are a put option bought by the seller azall @ption bought by the buyer respectively.

As these contracts contain many call and put optieome of them with maturity in a long
period time, the stochastic behaviour of commogitges plays a central roll in valuing these
sort of commodity contingent contracts and the ehosiodel to carry-out the valuation,

specially its volatility assumptions, is esseritiahe final result.

There are mainly two issues which depends on tlsash model, the first one is determining
the put and call options value and the second sraetermining the maximum price which,
given a minimum price, makes the value of the miioms, on average, equal to the call options

value to get, on average, that the contract val@gjual to the one without clauses.

Both issues are highly related. The first one igeaeral problem, which is determining the
options value for calculating the whole contraduea The second one is a particular problem
when it is decided that the buyer options (the calls) have to be valued the same as the seller
ones (the put ones). This second issue is essentm@gotiating the contract by the seller and
buyer company managers. As said above, the waylt@ gshese problems is through the
stochastic behaviour of commodity prices and theseh model is essential. The valuation of
the contract using two different models, specialiy different models with highly different

assumptions about volatility, could differ in huadmillion dollars.

To illustrate this fact we propose three fictitiazentracts, one for a WTI crude oil field, other
for a Brent crude oil field and other for a natugals field located in Henry HEBllwhich are
defining in the following way: The contracts lastenty years from 1/1/2009 to 12/31/2028, the

crude oil or natural gas amount exchanged is thesa each period, the liquidation is monthly

® Henry Hub is a hub located in Louisiana (EE.UUam® the Texas border.
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and the contract prices are the monthly averagbeofirst month WTI, Brent and Henry Hub

futures price traded at NYMEX and ICE respectively.

If the seller wants to include a clause to guamargeminimum price to recover their initial

investment there are two questions to deal witkfittst one is the value of this clauses and the
second one is what should be the maximum pricettigabuyer should include to do not lose
money. Even more, if the buyer wants to introduteoclause to guarantee a maximum price

there are an additional question: what shoulddeatue.

We are going to answer these questions using thiffieeent models: the AR(1)model, the two
factor model and the three factor model. In allesathe valuation date is 3/24/2008 and the
assumed risk free interest rate for the whole peisc5%. As there are no forward curves for
any commodity which cover the whole contracts meiioom 1/1/2009 to 12/31/2028), it has
been estimated a forward curve for the three contmedased on the observed forward curve
at the validation date (3/24/2008). The estimatatias been carried out assuming in all cases
that there is a long-term forward price and thesoled futures prices converge to the long-term
one through an exponential way. In the case ofrahgas it has been assumed that seasonality
Is a deterministic factor that has been calculdtasked on the observed forward curve at the

validation date and has been incorporated in thimated one for the whole contract period.

Figures 12, 13 and 14 show the minimum price claadge as a function of their strike prices
(the minimum price) for the three commodities préed above. Figures 15, 16 and 17 contain
the maximum price clause valuations whereas Figii8e49 and 20 show the maximum price
that the buyer should include to do not lose mategending on the minimum price calculated.
As can be appreciated in the Figures, the resuéispeesented in $/bbl or $/MMBtu to be
compared with the commodity average price in thareat period, which is 95.97 $/bbl in the
case of WTI crude oil, 96.14 $/bbl in the case wéri crude oil and 8.56 $/MMBtu in the case

of natural gas in Henry Hub. Comparing the clausdaes in $/bbl or in $MMBtu with the

" The parameters used in the estimate are the aileslated with data until 1999 because the ones
calculated with the whole sample period have nes@s explained above.
® The same result has been obtained using diffeignfree interest rates for each period time.
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average prices is equivalent to compare the clawveeg with the whole contract value as the

amount exchange in each period time is the same.

Table 9 present the differences in valuation ughmg three factor model vs. the other two
models (the AR(1) and the two factor model) as @aiage of the average price, which is equal
to the differences in valuation as percentage efwhole contract value. Table 10 shows the
differences in calculating the maximum price tlnet buyer should include to do not lose money
if the seller includes a minimum price using thee¢hfactor model vs. the other two models as

percentage of the result obtained with the threefanodel.

The first issue to highlight is the fact that tresults obtained are basically the same for all
commodities, especially in the case of the natgea, if we use the two factor and the three
factor model. That brings again what is said abouelation to both models: as the two factor

model is a particular case of the three factor ¢me,three factor models gets more accurate
estimates, however, the two factor one is simpteeasy to deal with. Therefore, depending on
the problem the optimal choice should be the aogu@ the simplicity. In this case, as

thousand million dollars are involved, it soundsrenceasonable to choose accuracy instead of
simplicity. As said above, Cortazar and Naranjd@Qealized that adding one more factor and
getting the four factor model is useless and theetlfiactor model is well enough to characterize

this sort of commodities dynamics.

Opposite conclusions arise when we compare theatraiuresults obtained with the two and
three factor models with those obtained with the(l3Rone. Just to get an idea about this
differences amount we can see for example thataleoptions value if the maximum price is
100 $/bbl or the put options value if the minimunice is 95 $/bbl differs in almost 8 $/bbl in
the case of WTI crude oil and in almost 9 $/bbtha case of Brent crude oil, using the AR(1)
model instead of the two or three factor modelshdth cases it represents almost 10% of the
average price. In the case of natural gas thedereliices round 1.15 $/MMBtu, which
represents almost 15% of the average price. Therets these projects involve enormous

amounts of commodity (as said above, its value llysueaches thousand million dollars), a
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10% or a 15% of the whole project could represendheds million dollars. For that reason the
chosen model has a crucial role in negotiating kimd of contracts. Comparing the differences
between the two and the three factor model we ajetpaximum, 1.3 $/bbl in the case of the
crude oil and 0.07 $/MMBtu in the case of naturas.grhese figures represent less than 1.5%
and 1% in the crude oil case and natural gas oesgectively. As the amount of money
included in this kind of projects is so big, thediferences are also important, however it

extend is around ten times less than the previoas.o

Even more, comparing the results obtained withtwWheeand three factor models in valuing the
put and call options, we get a bias which is notly and operates in the same direction in
both cases. Subsequently, when we calculate thémmax price that the buyer should include
to do not lose money if the seller includes a mummprice in the contract, the differences
between models round 3%. If we compare the AR(Wlehavith the other two models, these
differences reach more or less 15% in the casheotitude oil and 22% in the case of natural
gas. As before, we can conclude that, as the anafumbney involved in this type of projects is

huge, the differences between models are impoitaall cases, however in comparing the
AR(1) model with the other two, the differences ggitical importance in contract

determination.

These huge differences in the valuation resultainet with these models (the AR(1) model
vs. the two and three factor models) comes fronfabethat in the AR(1) volatility is bounded,
whereas in the two and three factor models it is bmunded. As an option contract is not
symmetric, the volatility plays a central role ig valuation (see for example Hull, 2006) and, as
the contract lasts so much time, the fact the Wityais or not bounded is crucial in determining

the value, as we have seen.

Other issue to highlight is the fact that, as carappreciated in Figures 18, 19 and 20, there is
not symmetry between the minimum and the maximuivep~or example, with an average
price of 95.97 $/bbl for the WTI crude oil, one y&manager could think that if the minimum

price is settled at 50 $/bbl, the maximum priceusthde fixed at 95.97 + (95.97 — 50) = 141.97

27



$/bbl to get the same amount upwards than downwalelgertheless, as can be appreciated in
the Figures this reasoning is false. With the ARfhe two and three factor models the
maximum price should be 192, 217 and 223 $/bbleetbyely. The reason behind this result is
again the options contracts asymmetry, and theneakgetting a higher maximum price than
the one defined by the symmetric axis is the fhat the put option revenue is bounded (the
maximum revenue is the strike price) whereas thleopdion revenue is not (for more details

see, for example, Hull, 2006), therefore highekstprices are needed in call options.

As the put option revenue is bounded and the galbo one is not, there is not symmetry
between the maximum and the minimum price indepathdef the model used in valuation.

However, as we can see in Figures 18, 19 and 20dramdble 10, and as we have analysed
above, the degree of asymmetry depends on thercinaséel, specially depends on the chosen

model volatility assumptions.

As said above, the big differences found come ftioenfact that the AR(1) model assumes that
the volatility is bounded in the long-term and flaetor models do not. If we compare two
models which assume that the volatility is boundedwo models which assume that the
volatility is not bounded, in the long-term thefdiences are much smaller. However, as these
sorts of contracts involves thousands million dsllasmall differences in valuation involves

much money.

4. Conclusions

This chapter presents an empirical study aboutdifferent models which can be used to
characterize the commodity price dynamics, withcedeemphasis on the volatility of futures
returns estimates. These models are presentedinifiad context, analyzing the relationships
among them, and pointing out their advantages antdations. It is analyzed their relative
performance with a common data set, which is coegpad three commodity price series: WTI

crude oil and natural gas in Henry Hub futures i@mts traded at NYMEX and Brent crude oil
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futures contracts traded at ICE Futures in Londonally we discuss the importance of these
models in investment under uncertainty, concrefalyvaluing long-term contracts highly

intensive in investment with clauses which aregnd call options.

The first model analyzed is the basic AR(1) mod#tdwever, these one-factor mean-reverting
models, like the AR(1), are not very realistic sirtbey generate a volatility of futures returns
which goes to zero as the time to maturity of tterles contract approaches infinity, and imply
that futures prices for different maturities shoblkl perfectly correlated, which defies existing

evidence.

Next we analyze the empirical performance of ttetdiamodels proposed in the literature: the
two-factor model introduced by Schwartz and Smi#®00) and the three-factor model
proposed by Cortazar and Schwartz (2003) whichigxension of the two-factor one. Our
results indicate that with these factor modelsasiimated volatility fits better to the empirical
one than with the basic AR(1) model. Moreover, tifree-factor model outperforms the two-
factor one in terms of the in sample predictivdighiFinally, we can conclude that since the
three-factor model has more structure (more factord parameters), the goodness of fit is
better than in the previous case, however, assinf@e structure it is more difficult to estimate,
the significance of each stochastic factor is lelemr, needs more data to be estimated...
Consequently in each case, depending on its cleaistats, we will choose between the

simplicity (the two factor model) and the goodnekft (the three factor model).

In all cases, the factors models goodness of fitdsse with natural gas data than with crude oil
data because we do not take into account seasdieaksein model specification. Other
interesting evidence that we find in this studythie fact that the mean-reversion in the three
commodities is less steep when using data unti82b@n in previous studies which did not use
recent data. That is caused by the fact that tisereean reversion in commodity prices until

1999, afterwards commodity prices exhibit a ranaeaitk behaviour.

The principal components analysis proposed by @ewdnd Stricland (2000) is investigated

next. These authors try to model the futures pdgeamics directly, by assuming that the
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futures prices are a martingale, where the prica fofures contract at tintds its price at time
t-1 plus an innovation which is given by the sunse¥eral deterministic volatility functions. It
is possible to define these volatility functiongatigh a principal component analysis. In the
other hand, given that many commodity prices arengty seasonal, it is discussed the

importance of explicitly incorporating seasonaéffects in the models.

One we have compared the relative performance leetwedels, we apply the conclusions to
investment under uncertainty, especially in deteimgj the best contract. The projects related
with the commodities presented in this work arenlyigntensive in investment, last many years
and have clauses which include put and call optiofiserefore, their price dynamics

characterization is essential in valuing thesessau

We have seen a hypothetical project for each contgnad illustrate the big differences in
contract valuation using different models. Condyetd we use an AR(1) model instead of a
two or three factor one, the clauses valuation differ between the 10%-15% of the whole
contract value, which should represent hundredionildollars. These big differences come
from the fact that the AR(1) model assumes thatvtiatility is bounded in the long term and
the two or three factor models do not. However,options contract valuation volatility

assumptions are crucial.

If we compare two models with the same assumpatimut volatility (bounded or not bounded)
the differences are much smaller. However, as tbage of contracts involve thousands million

dollars, small differences in valuation entails imuooney.

In calculating the maximum price that the buyerudtianclude in the contract to do not lose
money if the seller includes a minimum price in domtract, there are also big differences if we
use the AR(1) model instead of the two and theetffmetor ones. The reason is the same, in one

case the volatility is assumed bounded and in therdt is assumed not bounded.

Other interesting issue to take into account isféot that there is not symmetry between the

maximum and the minimum price. The reason behind ihe fact that put option revenue is
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bounded whereas call options revenue is not. Taexehigher strike prices are needed in call
options. Even though it happens independently ef ttodel used, once again, the model
volatility assumptions are crucial in determininige tdegree of asymmetry between the

maximum and the minimum price.

APPENDIX

Nested Models

As said above, the AR(1) model, the two factor ni@dal the three factor model are nested
models, that is, the two factor model is a parica@ase of the three factor model when one of
the short-term factors is assumed deterministie. AR(1) model is a particular case of the two

factor model when the long-term factor is assunegtdrdhinistic.

To prove it, we are going to present the modelth@ir formal way, through their stochastic
differential equations (SDE). In this work, just fmplicity, we have presented the models in
their discrete-time version. However, as can ba se¢he standard literature (see for example
Cortazar and Naranjo, 2006), the proper way tondef factor model is through its SDE.
Afterwards, if it is necessary in the parametetsrege procedure, the discrete-time version of

the model is presented.

We start with the three factor model SDE:
de, = p dt+ g, dW,

dxy = -k dt+o,,dW

Yt

d)(zt = _Kz)(ztdt + szdW

'y 2t
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In Chapter 2 it is proved that the discrete-timesion of the model is the one presented in

section 2.3.

The two factor model SDE are the ones presentedealeacept for the last one, which does not

appear in this case (there is only one stochastit-$erm factor):
dg, = p dt+ o, dW,
dy, = —kxdt+ o, dW,

As before, it is easy to prove that the discreteetiversion of the model is the one presented in

section 2.2.

The AR(1) model SDE is the one presented for tloetgbrm factor in the two factor model:
dy, = —kxdt+ o, dW,

The discrete-time version of the model is the amsgnted in section 2.1.

Therefore, as it is said above, we can concludettigatwo factor model is a particular case of

the three factor one and the AR(1) model is a @algr case of the two factor one.

REFERENCES

e Blanco, C., Soronow, D. and Stefiszyn, P. (2002peGstep forward’ GARP Risk
Review Vol. 9, pp. 39-43.

e Clewlow L. & Strickland, C. (2000). Energy Derivadis, Pricing and Risk
Management. London (U.K.): Lamina Publications.

e Cortazar G. & Naranjo L. (2006). An N-Factor gaassinodel of oil futures priceShe

Journal of Futures Market26, 209-313.

32



Cortazar, G. and Schwartz, E.S. (2003) ‘Implemenéirstochastic model for oil futures
prices’.Energy Economigs/ol 25, pp. 215-218.

Harvey, A.C. (1989). Forecasting Structural Timei€&eModels and the Kalman Filter.
Cambridge (U.K.): Cambridge University Press.

Hull J. C. (2006). Options, Futures and Other Daiires. Sixth Edition. New Jersey,
Upper Saddle River (USA): Prentice Hall.

Schwartz, E. S. and Smith, J E. (2000) ‘Short-tgamations and long-term dynamics
in commodity prices’Management Scienc¥ol. 46, pp. 893-911.

Schwartz, E. S. (1997) ‘The stochastic behaviourashmodity prices: Implication for

valuation and hedgingThe Journal of Finangevol. 52, pp. 923-973.

Sorensen, C. (2002). ‘Modeling seasonality in agrucal commodity futures’The

Journal of futures market¥ol. 22, pp. 393-426.

33



FIGURE 1

ONE MONTH FUTURES PRICES

120 16
—WTI
— =Brent l [ 14
100
-==-HH i
i
! - 12
A
H
80 R
[ - 10
()
1) 5
=
— i o]
Q ) H
60 i H 8§
S~
2 \ \ =
| \ &
1 \
L M &
40 54
1
Ha
20
F2
s\
0 — T — — T T — — T T — T — — — —— T —— — 0
FIFPL L PRSPPI PP PSPPSRI IILSIFIPLPL S PP
PP DD ELP P> PF PP PRSP PPSP TSP IFIPFS SIS
ST FFF VS F IV FISTEFFIFEFIFT I FFTSF ST &S
35%
Empirical Volatility from 9/18/1995 to 3/24/2008
30% — -+ = AR(L) Volatility from 1/1/1985 to 12/27/1999
------ Two Factor Model Volatiity from 9/18/1995 to 3/24/2008
— - = Three Factor Model Volatilty from 9/18/1995 to 3/24/2008
25%
2 20%
=
<
g 15%
—— il
10%
C~ .
5% —
S — ..
0% T T T T T T
5 10 15 20 25 30 35

Maturity Months

34



FIGURE 3
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FIGURE 5

WTI Principal Components
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FIGURE 13

Put Options Value (Brent)
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FIGURE 17

Call Options Value (HH)
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FIGURE 19

Maximum Price as Function of the Minimum one (Brent)
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TABLE 1

DESCRIPTIVE STATISTICS FOR THE DATA SET USED IN THE AR(1)
ESTIMATION.

The table shows the main descriptive statisticshef three commodity prices series employed in the
estimation. Weekly Observations of one month figurentracts are used in all cases. For the whole
sample period: NYMEX WTI crude oil from 1/1/1985 824/2008, NYMEX Henry Hub natural gas
from 4/2/1990 to 3/24/2008 and ICE Brent crudefrmim 6/27/1988 to 3/24/2008. Until 1999: NYMEX
WTI crude oil from 1/1/1985 to 12/27/1999, NYMEX hty Hub natural gas from 4/2/1990 to
12/27/1999 and ICE Brent crude oil from 6/27/1988 2/27/1999.

One Month Futures

Contract Whole Sample Period Until 1999

Mean Standard Deviation Mean s;i?;gg
WTI 28.75 $/bbl 17.68 $/bbl 19.64 $/bbl 4.27 $/bbl
Brent 28.88 $/bbl 18.82 $/bbl 18.11 $/bbl 3.85 $/bb
Henry Hub 3.8 $/MMBtu 2.5 $/MMBtu 2.03 $/MMBtu  0.48MMBtu

44



TABLE 2

AR(1) PARAMETER ESTIMATES

The Table shows the parameter estimates of the YAR@Hel, which assumes that the commodity log-
spot price ) follows the processp, —C = p(p,, —C) +&,. There are two data sets. For the whole

sample period: NYMEX WTI crude oil from 1/1/1985 824/2008, NYMEX Henry Hub natural gas
from 4/2/1990 to 3/24/2008 and ICE Brent crudefrmim 6/27/1988 to 3/24/2008. Until 1999: NYMEX
WTI crude oil from 1/1/1985 to 12/27/1999, NYMEX hty Hub natural gas from 4/2/1990 to
12/27/1999 and ICE Brent crude oil from 6/27/198812/27/1999. Weekly observations of one month

futures contracts are used in all cases. Standaidtébns in parenthesis.

Param. Whole Sample Period Until 1999
Brent WTI Crude Henry Hub Brent WTI Crude Henry Hub
Crude Oll Ol Natural Gas Crude Oll Ol Natural Gas
0 1.00(0.002) 1.00(0.003) 0.99(0.003) 0.98(0.008) 0.98(0.007) 0.96(0.01)
c -1.97 14.03 1.51(0.93) 2.93(1.35) 2.9(1.18) 0.69(0.23)
(20.69) (76.10)
o 28% 30% 48% 28% 30% 45%
R 99% 99% 99% 96% 96% 92%
Number 1031 1213 939 601 783 509
Obs.
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TABLE 3

DESCRIPTIVE STATISTICS FOR THE DATA SET USED IN THE TWO AND
THREE-FACTOR MODELS ESTIMATION

The Table shows the main descriptive statisticstfierdata set used in the two and three factor mode
estimation: NYMEX WTI crude oil futures contractei 9/18/1995 to 3/24/2008, NYMEX Henry Hub

natural gas futures contracts from 12/3/2001 td/2208, and ICE Brent crude oil futures contraotsnf

12/15/1997 to 3/24/2008. Weekly Observations ircatles.

Henry Hub ($/MMBtu) WTI ($/bbl) Brent ($/bbl)
Contract Mean [?;?/?aizg Contract Mean s;i?;tig Contract Mean [?;?/?aizg

F1 6.40 2.22 F1 36.33 20.94 F1 38.32 21.98
F5 6.86 2.25 F4 36.07 21.42 F4 38.23  22.40
F9 6.93 2.26 F7 35.62 21.64 F7 37.89 22.67
F13 6.85 2.26 F10 35.20 21.74 F10 3750 2281
F17 6.77 2.26 F13 34.82 21.76 F12 37.24 22.86
F21 6.66 2.19 F16 34.48 21.73 F16-18 36.69 22.84
F25 6.53 2.10 F19 34.20 21.66 F22-24 36.14  22.69
F29 6.44 2.09 F22 33.96 21.57 F31-36 35.42 22.33
F33 6.33 2.03 F25 33.76 21.46

F37 6.24 1.94 F28 33.59 21.36

F41 6.18 1.93

F45 6.10 1.87

F48 6.05 1.80
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TABLE 4

TWO FACTOR MODEL PARAMETER ESTIMATES

The Table shows the parameter estimates in thefdetor model. The data set is composed of weekly
observations of NYMEX WTI crude oil futures contimérom 9/18/1995 to 3/24/2008, NYMEX Henry
Hub natural gas futures contracts from 12/3/2003/24/2008, and ICE Brent crude oil futures corrac
from 12/15/1997 to 3/24/2008. Standard errors irepidneses. The estimated values are reported with *

denoting significance at 10%, ** denoting significa at 5%, and *** denoting significance at 1%.

Contract Brent Henry Hub WTI

He 0.1641" (0.0293) 0.1524 (0.0286) 0.1376 (0.0247)

k 0.8854" (0.0071) 1.1879 (0.0425) 1.0598 (0.0083)

o 0.1441" (0.0033) 0.1553 (0.0059) 0.1315 (0.0027)

oy 0.3038" (0.0081) 0.6057 (0.0240) 0.2905 (0.0066)

Pe, -0.1736 (0.0342) -0.1791 (0.0585) -0.0240 (0.0310)

e -0.0269 (0.0008) -0.0601 (0.0016) -0.0219 (0.0007)

A, 0.0792 (0.0630) -0.0225 (0.1327) 0.1120.0547)

oy 0.0127" (0.0001) 0.0735 (0.0006) 0.0127 (0.0001)
Log-likelihood 30847 17635 47232
AIC 30831 17619 47215
SIC 30797 17588 47180

Number Obs. 537 330 654
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TABLE 5

IN-SAMPLE PREDICTIVE ABILITY OF THE TWO-FACTOR MODE L

The Table shows the mean error (real minus pretlieed the root mean squared error (RMSE) obtained
with the two-factor model, for the three commodityces series, using the parameter estimates iteTab
4,

BRENT HENRY HUB WTI

Contract Mean RMSE Contract Mean RMSE Contract Mean RMSE

F1 0.0035 0.0428 F1 0.0175 0.0945 F1 0.0025 0.0457

F4 -0.0031 0.0323 FS -0.0159 0.0870 F4 -0.0026 0.0333

F7 -0.0027 0.0282 F9 -0.0161 0.0838 F7 -0.0019 0.0291

F10 -0.0008 0.0261 F13 -0.0066 0.0676  F10 -0.0006 0.0265

F12 0.0006 0.0249 F17 0.0012 0.0772 F13 0.0006 0.0240

F17 0.0021 0.0231 F21 0.0044 0.0749 F16 0.0014 0.0220

F23 0.0021 0.0219 F25 0.0087 0.0717 F19 0.0016 0.0203

F34 -0.0017 0.0256 F29 0.0104 0.0720 F22 0.0009 0.0197

- - - F33 0.0085 0.0706 F25 -0.0003 0.0207

- - - F37 0.0057 0.0725 F28 -0.0017 0.0232

- - - F41 0.0007 0.0709 - - -

- - - F45  -0.0054 0.0749 - - -

- - - F48 00127 0.0844 - - -

48



TABLE 6

THREE FACTOR MODEL PARAMETER ESTIMATES

The table shows the parameter estimates of the-fartor model. The data set is composed of weekly
observations of NYMEX WTI crude oil futures contimérom 9/18/1995 to 3/24/2008, NYMEX Henry
Hub natural gas futures contracts from 12/3/2003/24/2008, and ICE Brent crude oil futures cortsac
from 12/15/1997 to 3/24/2008. Standard errors irepidoeses. The estimated values are reported with *

denoting significance at 10%, ** denoting significa at 5%, and *** denoting significance at 1%.

Contract Brent Henry Hub WTI
He 0.1346" (0.0252) 0.1598 (0.0308) 0.1766 (0.0317)
ki 0.8477" (0.0119) 0.70071 (0.0424) 0.8348 (0.0288)
ka 2.2362" (0.0286) 6.2955 (0.0000) 1.0800 (0.0328)
o 0.1300" (0.0026) 0.1726 (0.0086) 0.1515 (0.0037)
o 0.2963" (0.0069) 0.5333 (0.0216) 0.8987 (0.1946)
6, 0.2826 (0.0074) 0.8514 (0.0000) 0.9187 (0.1956)
Pra -0.1497" (0.0289) -0.4790 (0.0607) -0.39271 (0.0314)
Pe2 0.1951" (0.0288) 0.3197 (0.0531) 0.3763 (0.0313)
P2 -0.4867" (0.0276) -0.37471 (0.0487) -0.9553 (0.0195)
e 0.0032" (0.0009) -0.0458 (0.0018) 0.0041 (0.0015)
Ao 0.1961" (0.0548) 0.3781 (0.1061) 0.1424 (0.1686)
M -0.1042" (0.0521) -0.4271 (0.1858) -0.0849 (0.1778)
oy 0.0045" (0.0000) 0.0684 (0.0005) 0.0055 (0.0000)
Log-likelihood 35575 18106 57240
AIC 35549 18080 57214
SIC 35493 18031 57156
Number Obs. 537 330 654
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TABLE 7

IN-SAMPLE PREDICTIVE ABILITY OF THE THREE-FACTOR MO DEL

The Table shows the mean error (real minus pradlieed the root mean squared error (RMSE) obtained
with the three-factor model, for the three commpgitices series, using the parameter estimateslieT
6.

BRENT HENRY HUB WTI

Contract Mean RMSE Contract Mean RMSE Contract Mean RMSE

F1 0.0007 0.0395 F1 0.0163 0.0816 F1 0.0002 0.0406

F4 -0.0020 0.0321 F5 0.0120 0.0768 F4 -0.0007 0.0328

F7 -0.0009 0.0276 F9 -0.0004 0.0823 F7 0.0002 0.0270

F10 0.0001 0.0249 Fi13 -0.0010 0.0710 F10 0.0003 0.0241

F12 0.0006 0.0235 F17 0.0006 0.0695 F13 0.0001 0.0222

F17 -0.0003 0.0222 F21 0.0005 0.0740 F16 0.0000 0.0210

F23 -0.0014 0.0215 F25 0.0033 0.0697 F19 -0.0001 0.0199

F34 0.0003 0.0198 F29 0.0052 0.0746 F22 -0.0003 0.0190

- - - F33 0.0045 0.0690 F25 -0.0002 0.0185

- - - F37 0.0037 0.0682 F28 0.0003 0.0185

- - - F41 0.0016 0.0755 - - -

- - - F45 -0.0010 0.0684 - - -

- - - F48 -0.0055 0.0718 - - -
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TABLE 8

PRINCIPAL COMPONENTS ANALYSIS

The Table shows the percentage of the empiricatiity explained by each principal component for
each of the three commodities. The data set is oeagpof weekly observations of NYMEX WTI crude
oil futures contracts from 9/18/1995 to 3/24/20088MEX Henry Hub natural gas futures contracts from
12/3/2001 to 3/24/2008, and ICE Brent crude oilifas contracts from 12/15/1997 to 3/24/2008.

Henry Hub WTI Brent
First Principal Component 61% 95% 94%
First Two Principal Components 75% 99% 99%
First Three Principal Components 80% 100% 99%
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TABLE 9

CLASUSES VALUATION

The Table shows the differences in options valueguthe three factor model vs. the other two models
(the AR(1) and the two factors ones) as percenvhdgiee average price which is equal to the differ=n

in valuation as percentage of the whole contraltteva

WTI
Put Value Call Value

Minimum Three Factor Th\:seeTli:l’;loctor Maximum Three Factor | Three Factor

Price vs. AR(1) Fa'lctors Price vs. AR(1) vs. Two Factor
40 0.6% 0.2% 100 9.5% 1.3%
45 1.0% 0.3% 105 9.5% 1.3%
50 1.6% 0.4% 110 9.2% 1.3%
55 2.3% 0.5% 115 8.9% 1.3%
60 3.2% 0.7% 120 8.4% 1.3%
65 4.2% 0.8% 125 7.9% 1.3%
70 5.3% 0.9% 130 7.4% 1.2%
75 6.4% 1.0% 135 6.8% 1.2%
80 7.5% 1.1% 140 6.3% 1.2%
85 8.3% 1.2% 145 5.8% 1.1%
90 8.9% 1.2% 150 5.3% 1.1%
95 9.4% 1.3% 155 4.9% 1.0%
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TABLE 9 (CONTINUATION)

Brent
Put Value Call Value
Minimum Three Factors Thz/eSelesgtors Maximum Three Factors Th:/eSeTIT:c():tors
Price vs AR(1) Factors Price vs AR(1) Factors
40 0.4% -0.2% 100 8.4% -1.4%
45 0.6% -0.3% 105 8.3% -1.4%
50 1.1% -0.4% 110 8.0% -1.4%
55 1.7% -0.5% 115 7.6% -1.4%
60 2.4% -0.6% 120 7.2% -1.3%
65 3.3% -0.8% 125 6.7% -1.3%
70 4.4% -0.9% 130 6.1% -1.3%
75 5.4% -1.0% 135 5.6% -1.2%
80 6.4% -1.1% 140 5.1% -1.2%
85 7.2% -1.2% 145 4.6% -1.1%
90 7.8% -1.3% 150 4.1% -1.1%
95 8.2% -1.3% 155 3.7% -1.0%
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TABLE 9 (CONTINUATION)

HH
Put Value Call Value
Minimum Three Factors Thz/eSelesgtors Maximum Three Factors Th:/eSeTIT:c():tors
Price vs AR(1) Factors Price vs AR(1) Factors
40 0.8% 0.2% 100 14.4% 0.9%
45 1.4% 0.2% 105 14.4% 0.9%
50 2.3% 0.3% 110 14.1% 0.9%
55 3.4% 0.4% 115 12.9% 0.9%
60 4.8% 0.5% 120 12.2% 0.9%
65 6.4% 0.5% 125 11.5% 0.9%
70 8.1% 0.6% 130 10.0% 0.8%
75 9.8% 0.7% 135 9.3% 0.8%
80 11.3% 0.7% 140 8.6% 0.8%
85 12.6% 0.8% 145 8.0% 0.8%
90 13.6% 0.8% 150 7.4% 0.8%
95 14.2% 0.8% 155 6.4% 0.7%
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TABLE 10

MINIMUM PRICES vs. MAXIMUM PRICE

The Table shows the differences in calculatingniiaimum price that the buyer should include to db n
lose money if the seller includes a minimum priseng the three factor model vs. the other two me&del

(the AR(1) and the two factors ones) as percerafgfee result obtained with the three factors model

WTI
Minimum Price Three Factors vs. AR(1) Three FactsrsTwo Factors
40 17.5% 3.5%
45 15.7% 3.1%
50 13.9% 2.7%
55 12.1% 2.3%
60 10.4% 2.0%
65 8.7% 1.6%
70 7.1% 1.3%
75 5.6% 1.0%
80 4.2% 0.7%
85 2.8% 0.5%
90 1.5% 0.2%
95 0.2% 0.0%
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TABLE 10 (CONTINUATION)

Brent
Minimum Price Three Factors vs AR(1) Three Facter§wo Factors
40 14.4% -3.0%
45 13.0% -2.6%
50 11.5% -2.3%
55 10.0% -2.0%
60 8.6% -1.7%
65 7.2% -1.4%
70 5.9% -1.2%
75 4.7% -0.9%
80 3.5% -0.7%
85 2.4% -0.5%
90 1.3% -0.3%
95 0.2% 0.0%
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TABLE 10 (CONTINUATION)

HH
Minimum Price Three Factors vs AR(1) Three Facter§wo Factors
40 21.9% 3.1%
45 19.4% 2.6%
50 17.3% 2.2%
55 15.4% 1.8%
60 13.6% 1.4%
65 11.8% 1.2%
70 10.0% 0.9%
75 8.2% 0.7%
80 6.3% 0.5%
85 4.4% 0.3%
90 2.4% 0.2%
95 0.3% 0.0%
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CHAPTER 2: THE STOCHASTIC SEASONAL BEHAVIOR

OF THE NATURAL GAS PRICE

1. Introduction

In recent times, both academics and practitionake lbeen paying attention to the valuation
and hedging of commodity contingent claims andhe procedures for evaluating natural
resources investment projects, especially to theefan determining when it is optimal to invest.

The stochastic behavior of commodity prices plageratral role in this area.

Early studies on the stochastic behavior of comtyagatices assumed that spot prices follow a
geometric Brownian motion (see for example Brenaad Schwartz, 1985; Paddock et al.,
1988, among others). However, the geometric Browni@tion hypothesis implies a constant
rate of growth in the commodity price and a coristaratility of futures price returns, which

are not realistic assumptions. In practice it isnit that commodity prices show mean-reversion

and the volatility of futures price returns is a@asing function of time.

Consequently, in recent years several authors, asictaughton and Jacobi (1993) and (1995),
Ross (1997) or Schwartz (1997), have consideretl ahanean-reverting process is more
appropriate to model the stochastic behavior of roority prices. Unfortunately, these one-
factor mean-reverting models are not very realistince they generate a volatility of futures
returns which goes to zero as the time to matwifitthe futures contract approaches infinity.
Even more, models considering a single source oémiainty are not very realistic since they
imply that futures prices for different maturitisbould be perfectly correlated, which defies

existing evidence.
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Looking for more realistic results, multi-factorodels have been developed (Schwartz, 1997;
Schwartz and Smith, 2000; Cortazar and Schwart23;2CGortazar and Naranjo, 2006, among
others). All these multi-factor models assume thatspot price is the sum of short-term and
long-term components. Long-term factors accounttifier long-term dynamics of commodity

prices, which is assumed to be a random walk, vesesbort-term factors account for the mean-

reversion components in the commodity price.

Most of these articles are focused on oil pricesetent years, however, there have been many
papers addressing the study of natural gas pri€eg for example the papers by Clewlow and

Strickland (2000), Wei and Zhu (2006) and Mu (208@jong others.

Natural gas represents almost the fourth part efviborld energy consumption, with similar
figures to coal and only behind oil. World natugals consumption is about 45 millions barrels
of oil equivalent per day while world oil consunwtiis about 80 millions barrels per day.
World proved reserves are more or less the sameafimral gas and oil which are roughly one

trillion barrels of oil equivalent for each one.

Almost the third part of natural gas world consuimptis located in the United States. In this
country gas natural represents the 25% of the coedienergy and this percentage is growing
very fast. This is the reason why the most develoges natural markets are located in the
United Sates. The lack of economical transportati@kes the natural gas price substantially
different along the country. The most liquid andnéus natural gas market is located in

Louisiana, near to the Texas border, which is naReary Hub.

This lack of economical transportation and the tiahistorability of natural gas make its supply
unable to change in view of seasonal variationseshand. Therefore, natural gas prices are
strongly seasonal. One of the clearest ways taaliimuthis seasonality is through the forward
curve. In Figure 1 it is possible to appreciatd thenry Hub natural gas prices are expected to

be higher during winter months and lower during suanmonths.
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It is also possible to notice that in spot pricetdrical series the highest prices have been

reached in winter while the lowest prices appeauimmer.

There are studies taking into account the seadmtalvior of some commodity prices, such as
Lucia and Schwartz (2002), Sorensen (2002), Tolpnaskl Hindanov (2002) and Borovkova
and Geman (2006) among others, but, to the besircknowledge, seasonality has never been

considered as an stochastic factor.

As pointed out by Schwartz (1997), the stochagsticgss assumed for the commodity price is
important not only for derivatives valuation purpss but also for the valuation of natural

resource investment projects, specially for the fat determining when it is optimal to invest.

In this chapter, it has been developed a genetéif)-factor model considering seasonality as
an stochastic factor. This generat-2m)-factor model assumes that the log-spot pricehés t
sum ofn andm stochastic factorsi(non-seasonal and seasonal). The non-seasonal factors are
the factors of the models mentioned above. Theoseh$actors are trigopnometric components
generated by stochastic processes. Then, thisaemedel has been particularized far= 1
andn = 1, 2, 3, thus, three, four and five-factor modedsre been obtained to explain the
stochastic behavior of Henry Hub natural gas pridée Kalman filter methodology has been
applied to estimate the parameters of the modetedb@an Henry Hub natural gas futures
contracts traded at the New York Mercantile Excleatidgy MEX). Finally, using the estimated
parameters, it is analyzed the models goodness wf the spot price dynamics and the term
structure of futures prices and volatilities. legingly, it is found that models allowing for

stochastic seasonality outperform standard modighsdeterministic seasonality.

This chapter is organized as follows. Section Asdeé@&h seasonality in Henry Hub natural gas
prices. The model allowing for stochastic seasonaideveloped in Section 3. The estimation
methodology is discussed in Section 4. Sectionsib & present the data and the empirical
results regarding the estimation of the models. Jomdness of fit of the models regarding the

spot price, forward curve and volatility of futureturns estimations is contained in section 7.
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Section 8 presents the results obtained for otbemuodities (RBOB gasoline and heating oil
traded at NYMEX) and other markets (natural gas gasl oil traded at ICE Futures Europe,

London). Finally, section 9 concludes with a sumyrard discussion.

2. Seasonality in Henry Hub Natural Gas Prices

Looking at Figure 1 it seems clear that Henry Hakural gas prices are seasonal with a one
year period. A very simple algorithm can be devetbfo understand it more clearly. L®tbe

the spot price and; the centered moving average in a yearSotlefined as follows. If
{S}z1.23,...is the spot price time series with monthly frequerthenY; = (0.55.6 + Sus + Sia +

.. +S+ ... +Ss+0.556)/12.

Let us define; = S/Y;, which is a measure of how big is the spot pnceonth t” with respect
to the prices in one-year period centered in thaatm‘t”. If the price in this montht” is higher
than the price in the previous and following monthenz will be grater than one, if not, will

be less than one. Let us also defipeas the average af for month ‘M’ (m = January,
February,..., December) amg, the scaling factor for monttt, as r,, =i, /%3iji,..i;, . Itis

obvious thatryr,...r;, = 1, and it is also easy to show thatfis greater than one, then the
prices in month M’ are higher than the average price and,ifs less than one, then the prices

in month ‘m” are less than the average price.

As can be appreciated in Figure 2, the spot pnckthe forward curve scaling factors present
the same pattern: In winter months they are hig¢feam one and in summer months they are less

than one. This is clear evidence of seasonalitiierprice of natural gas in Henry Hub.

A more sophisticated analysis can be implementezbioplete this result. The spectrum of an
stationary process is defined as the Fourier teamsftion of its autocovariance function. It can

be proved (Wei, 2005hat deterministic seasonality appears in the spest as sharp peaks
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(actually Dirac delta functions) in several freqcies whereas stochastic seasonality shows a

softer pattern.

This implies that in data analysis a sharp spikthénsample spectrum may indicate a possible
deterministic cyclical component, while broad peaken imply a nondeterministic seasonal
component. Of course, the results should be takiém seme care as estimation errors and

aliasing effects can take place, confusing detastitrand stochastic “ideal” patterns.

It can be proved (Wei, 2005) that in a generaistaty ARMA(p,q) model,y,(L)S = 4(L)e,

where L is the lag function ang is white noise with variance’, the spectrum is given

2

Hq (e—iw )
Yo(e™)

2
by: f(w) = ¢

If it is assumed that Henry Hub spot natural gasegrfollow an AR(1) with yearly stochastic
seasonality, that is, (@L)(1-PL'AS = e, its spectrum should be:
o’ 1

= or @+ o7 - 20 costaw)(A+ ¢7 - 24 cosw)

Thus, for®>0, other than a peak at = 0, the spectrum also exhibits peaks and troaghs
seasonal harmonic frequencies 2tk/12 andw = n(2k-1)/12 respectively (k =1, 2, 3, 4, 5 and
6). The Henry Hub natural gas price spectrum idategh in Figure 3. It seems that, more or

less, the spectrum exhibits peaks and troughsaetfiequencies.

Therefore, this analysis suggests that naturalimasenry Hub price has a yearly stochastic

seasonal component.
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3. A model for stochastic seasonality

As mentioned above, in this section it is presefivedgenerah+2m-factor model. This model
assumes that the log-spot prie€) (s the sum ofh+m stochastic factors(non-seasonal and

seasonal):
n-1 m
X, :Et-l-z)(it-*-zajt (1)
i=1 i=1

The non-seasonal factorg andy;) are the same that Cortazar and Naranjo (2006)nuiteir

paper. Their stochastic differential equations (pBie:
dé, = ydt+o dW; 2
dx, = -k x.dt+o, dW, i=1,2,3,..n1 (3)
where s K, 0 and g, are constants andWz and dW,; are correlated Brownian motions
increments.

Each seasonal factor is modeled through a trigotricr@dmponent. The trigonometric SDE is

complex:
da, =-i2mp,a,dt+Q,dW,,

whereay is a complex factorag = oy + ey ), Qg is @ complex numbe; = Q1 + iQ,2) and
W, a complex Brownian motionW,; = W,z + iW,5:), provided thatdcrjt and da";t are

uncorrelated and with the same variance (Oksed@8R).

To get it, a necessary and sufficient conditiontdsassume thadW,, and dW,., are

uncorrelated. A proof of this fact can be foundappendix A. In appendix A it is also proved
, D — A .

that the argument o®, (Q, expressed in polars ®,; =€ "0, ) has no effect in the model

once expressed using only real numbers, this gayoequalling components in the previous
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equation. This is the reason wrﬂ/j is chosen equal to zero and, consequer(ﬂx,: O -

Therefore the last SDE can be written as:

da, =-i2mp,a,dt+ o, ,dW,

%t ait
Equalling components in the previous equation giélb real SDEs for each seasonal factor:
da, =2mp,a; dt+0,dW, 4)

*

da’jt = 277¢ja'jtdt+O'O,deUI*jt j=1,2 3,..m (5)

whereW,; andW,+; are uncorrelated.

To assess derivatives contracts the “risk-neutratsion of the model has to be used. The SDEs

for the factors under the equivalent martingalesueacan be expressed as:

dé, = (4 — A, )dt+ o dW,’ (6)
dx, = (=KX, —A,)dt+0,,dW,° i=1,2,3,.n1  (7)
da, = m,a, - A,)dt+o,dW,’ (8)
da,’ =(-2mp,a, - A, )dt+o,dW. °  j=1,2,3,.m (9

wherel;, 4, 4 Y A are each factor “risk-premia” awg, W)(t<> , Wm-t<> andW.,. jt<> are each

factor Brownian motions under the equivalent mgdie measure. It is admitted any correlation
structure among Brownian motions with the reswictiexplained aboveW,; and W, are
uncorrelated). For each seasonal factor, both coamge (corresponding to real and imaginary

parts in a complex process) should have equaln@giand be uncorrelated.

General expressions for the price of a futuresrashtand for the volatility of futures returns

can be found in Appendix B.
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Next, the general model presented above will béqudarized forn= 1, 2, 3 andn= 1. This is
to say, we present three, four and five-factor nedeorder to explain the stochastic behavior
of Henry Hub natural gas prices. Due to the anglgsiveloped in Section 2, these particular

models will have only one seasonal factor and éxisected that the estimated phase is one year

(p =1).

The non-seasonal part will be the same as in Sthwae97) for the three-factor model,
Schwartz and Smith (2000) for the four-factor moaledl Schwartz and Cortazar (2003) for the
five-factor model. Due to the seasonal factor,Slbbwartz (1997) one-factor model becomes a
three-factor model, the Schwartz and Smith (200@)-factor model becomes a four-factor

model and the Schwartz and Cortazar (2003) threteffanodel becomes a five-factor model.

3.1. The Three-Factor Model

In this model it is assumed that the log-spot p(Xg is the sum of two stochastic factors: a
short-term componenjy{) and a seasonal componeny)(and a deterministic factor: the long-

term componentg).

X, =& +x, ta, (10)

The third stochastic factor is the other seasambf ;) which complements,.

The SDE of these factors are:

dé, = .t (11)
dy, =-kx,dt+o, dwW, (12)
da, = 2mpa;, dt + o, dW,, (13)
da, =-2mpadt+o,dW,. (14)

Equation (12) is identical to equations (2) in Sahw (1997).
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The “risk-neutral” SDE are:

dé, = y.dt (15)

dy, = (— KX, —/1)()dt+a)(dWX[t (16)
da, = (2ﬂ¢at* -2, )dt +0,dW,* (17)
da,” = (- 2/mpa, - 2. Jdt+o,dw. * (18)

Applying the result in Appendix B, expression (B#je log-price of a futures contract with

maturity at time T+t” traded at timd is:
IN[F(X,,T+0)]=& +e™" x, + cos@mT)a, + sen2mT)a; + A(T)  (19)

where:

AT) =(t; +0502)T - (1-€*")A, Ik ~(A,. +,5e@7mT) -
-1, cosb)) /(27 + % (1-€ ) (4K) +
, S0P,k e (et ~keostrn))} 20)
k2 4_(25qa»2
010+ Py (2w~ (2rmpcostrn) +kse@rmn)]
k2_+(27w®2

It is important to note that the trigonometric terin the expressions above try to capture the

seasonality in the forward curve.

Particularizing equation (B5) in Appendix B, itdetermined the squared volatility of futures

returns implied by this model:

—2KT

ot (T)=0e™ +0;+2e"0,0,p,,cosRmpT) +2e"0,0,p,,.5en2rmpT) (21)
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As can be appreciated in the previous equatioimtanesting fact of this model with respect to
the one factor model in Schwartz (1997) is the faet in this case the volatility of futures
returns does not go to zero as the time to matafifytures contract approaches infinity, which

is an undesirable property. It happens becausemsa&dactors are long-term factors.

Other interesting fact to take into account is fnesence of seasonality in the volatility of
futures returns. In this model seasonality disappaehen the time to maturity of futures
contracts approaches infinity. It happens becawsesanality comes from the correlation
between seasonal and non-seasonal factors. Inmibdel, however, there is only one non-
seasonal stochastic factor, which is a short-tewtof. In following sections this facts are going

to be discussed again.

3.2. The Four-Factor Model

In this model the log-spot priceX is the sum of three stochastic factors: a lomgite

component §), a short-term componeny) and a seasonal componedy) (

X, =¢ +x, t+a, (22)

The fourth stochastic factor is the other seasfamabr (a; ) which complementsy.

The SDE of these factors are:

dé, = udt+o,.dW, (23)
dy, =-kx,dt+o,dW, (24)
da, = 2mpa, dt + o, dW, (25)
da; = -2mpa,dt + o, dW.. (26)

Equations (23) and (24) are identical to equati(@)sand (1) respectively in Schwartz and

Smith (2000).
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The “risk-neutral” SDE are:

dé, =y, 'dt+o,dW, (27)
dy, = (— KX, —/1)()dt+a)(dW)(t (28)
da, = 2mpa; - A, Jdt + o, dW, (29)
da; = (-2mpa, - A Jdt+ o,dW.. (30)

whereu: = u; - A: is the “risk-neutral” drift.

As before, the log-price of a futures contract withturity at time T+t” traded at time can be

calculated applying the result in Appendix B, exgien (B4):
In[F(X, T +)]= & +e™x, +coserpT)a, +ser2mT)a; + A(T) (31)

where:

A(T) = (1,'+0507 + 0502)T ~ (L- ™) /K -
~ (A + A, 5en27T) - A . cos@mpT)) /(27) +
0.0, p{l- cosRQmpT)} + 0,0,.p,,.sen(27T) . (32
2rmp
0,0,p,.4k - e (kcos@mT) + 2mpsen2rmT))} .
k? + (2mp)*
0,00 {2 + e (ksen2mpT) - 273 cosrpT))}
k? + (21mp)°

+o.0,p,A0-e")/k+

+ 02507 (1-e*")/k+

And the squared volatility of futures returns is:

2 —_ 42 2 A—2kT 2 —KkT
o:,(T)=0;+0,e°" +0,+26 00,0 +20,0,p0,, COSRTRT) +

(33)
+20,0,p;,.5er2mpT) + 260 0,p,, cOsRmT) + 2™ 0 0, p, . Ser(27mpT)
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Given that in this model there is a long-term ststic factor, seasonality in the volatility of
futures returns does not disappear when the timmaturity of futures contracts approaches

infinity.

3.3. The Five-Factor Model

In this model the log-spot pric&{ is the sum of four stochastic factors: a longaaeomponent

(&), two short-term componentg;(and x,,) and a seasonal componeay (

X =& + Xy + Yo 0, (34)

The fifth stochastic factor is the other seasoaeidr @ ) which complements:.

The SDE of these factors are:

dé, =y dt+o,.dW; (35)
dyy = -k x,dt+0,,dW (36)
Ay = —K XAt +0,,dW, (37)

da, = 2mpa, dt + o, dW, (38)
da; = —2mpa,dt + o, dW.. (39)

In Appendix C.1 it can be seen that the non-sedsamthof this model is equivalent to the three

factor model proposed in Cortazar and Schwartz3g00

The “risk-neutral” SDE are:
dé, = u,'dt+ o, dW, (40)
dy, = (_ K Xu ~ /1)(1 )dt + a,\/ldW,\/lt (41)

dyy = (_Kz)(zr _sz)dt-"a)(zdw

X2t (42)
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da, = (2mpa; - A, Jdt + o, dW, (43)
da; =(-2mpa, - 2. )dt+ o,dW.., (44)

whereu: = u; - A: is the “risk-neutral” drift.

The log-price of a futures contract with maturitytisme “T+t” traded at time and the squared
volatility of futures returns can be calculatedtie same way as in the three and four-factor

models. Their complex expressions are given in AgpeC.2.

4. Estimation methodology

As stated in previous studies, one of the mainadiffies in estimating the parameters of the
model is the fact that the factors (or state vées)bare not directly observable and must be
estimated from spot and/or futures prices. Intaliy the non-seasonal factors (long term and
short-term factors) are going to be estimated basethe relationship between long-maturity
futures and short-maturity futures (or spot pricasyl the seasonal factors are going to be

estimated through the relationship between futaoegracts maturing in different months.

The formal way to do this is through the Kalmarnefihg methodology. This methodology
enables the calculation of the likelihood of a daties given a particular set of model
parameters and a prior distribution of the varigbléhich permits the estimation of the
parameters using maximum likelihood techniquesailst accounts of Kalman filtering are

given in Harvey (1989).

The Kalman filter methodology is a recursive mettiody that estimates the unobservable time
series, the state variables or fact&3, pased on an observable time serigswhich depends

on these state variables.

In the traditional version of this methodology, twonditions need to be fulfilled. First, no

missing points in the data set. Second, the lenfjthectorY; must be independent of’:* An
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improved version of this methodology has been dgad in Cortazar and Naranjo (2006) to
handle with incomplete data sets and vectyravhose length depends oti.“The problem
using this methodology with a data set with a loinissing points in the futures contracts with
higher maturities is the unbalance in the relatigndetween long and short effects and, in the
case handled in this work, the unbalance in thaticglship between futures contracts whose
maturity occurs in different months, which accoufds the seasonal effects. As explained
below, taking into account these considerations @thér issues related to data liquidity, the
data set used in this study has not missing paimisall vectors have the same length. Therefore

in this chapter the traditional version of the Kahrfilter methodology is used.

In Cortazar and Schwartz (2003) an alternativeh® Kalman filter methodology has been
developed to estimate the model parameters anstahe variables. This technique is a simple

one which only needs a spreadsheet to be impleghente

To estimate the parameters of the models througliK#iman filter methodology, or through the

Cortazar and Schwartz (2003) technique, we neéstaete-time version of the models.

As stated in Appendix B, the solution to the gehprablem of this chapter is (B1) atl is
Gaussian with mean and variance given by expres¢®2) and (B3) respectively. Thus, if the
difference between the current period and theaingeriod is one period time; follows the

discrete process:
Z =c+TZ_ +y, t=1,..,N (45)

where ¢, =e™ :_le_AdesDDh, T=e"00™ and ¢, 00" is a vector of serially

uncorrelated Gaussian disturbances with zero meamd acovariance matrix
t _AsYT T . . . .
Q= (eA[jt_le A'SR(e As) ds}(eA) . This equation will be called, following standard

conventions in the literature, thr@ansition equatiorof each model.
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The measurement equatida just the expression of the log-futures priceé} i terms of the
factors ¢) by adding serially uncorrelated disturbances wéto mean/;) to take into account
measurement errors derived from bid-ask spreadge plimits, non-simultaneity of
observations, errors in the data, etc. To avoidinfpavith a great amount of parameters, the
covariance matri, will be assumed diagonal with all its diagonalnedmts being equal. This
simple structure for the measurement errors is gagao that the serial correlation and cross
correlation in the log-prices is attributed to tlagiation of the unobservable state variables. The

measurement equation will be expressed as:

Y, =d, +M,Z, +n, t=1,..N (46)

whereY,,d, 00",M, 00O™", Z, OO" (his the number of state variables, or factorsthin
model) andr, 00"is a vector of serially uncorrelated Gaussian distnces with zero mean

and covariance matriA..

The specific transition and measurement equationshie particular models considered in this

study (three, four and five factor models) are\dstiin Appendix D.

Let Y, be the conditional expectation df and let =, be the covariance matrix Of;

conditional on all information available at tinhe- 1. Then the log-likelihood function can be

expressed as (after omitting unessential constants)

== I = =200 =Y =0 (Y~ V) (47)

5. Data

The data set employed in the estimation procedansists of weekly observations of Henry

Hub natural gas futures prices traded at NYMEXour different data sets are used in the

° See Harvey (1989) for a detailed discussion okstanation of a model in state space form by
maximum likelihood.
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estimation procedure. In all cases nine futuredraots (i.e.n = 9) have been used. The three
first ones data sets (data sets 1, 2 and 3) are ofacbntracts F1, F5, F9, F14, F18, F22, F27,
F31 and F35 where F1 is the contract closest tamnibatF2 is the second contract closest to
maturity and so on. Data set 1 contains 438 quotsitof each contract from 09/01/1997 to

01/16/2006, data set 2 contains 222 quotations §6f81/1997 to 11/26/2001, and data set 3
contains 216 quotations from 12/03/2001 to 01/1@620rhe last data set (data set 4) entails
contracts F1, F8, F15, F22, F29, F36, F43, F50FR5W from 12/03/2001 to 01/16/2006 (216

quotations).

As explained in Schwartz (1997), since futures im$ have a fixed maturity date, the time to
maturity changes as time progresses, but remainiagharrow time interval. This is the reason
why, as in Schwartz (1997), it is assumed thattithe to maturity does not change with time

and it is equal to one month for F1, to two morithd=2 and so on.

There are currently 72 contracts traded for difier@aturities ranging from 1 to 72 months.
However, until December 2001 the maximum maturigléd at NYMEX was only 36 months.
In this date new contracts were introduced to ihelumaturities up to 72 months, but the
liquidity of these new contracts is relatively l@md in recent times there is not quotation for
the contracts with the latest maturities in someslaBefore September 1997 there were also
liquidity problems with the contracts with the Isttenaturities and, to be precise, there is not

quotation for the latest maturities ones (from E2636) in many dates.

As stated above, it is expected that the seasastdrfin the particular models has one year
period. Thus, the total number of futures contraatslong as the number of contracts with
different maturities needed in the present stuslgonsiderable higher than in previous studies.
Specifically, we need futures contracts with mdrant one year to maturity, contracts with
different maturities and as many contracts as ptes$p account for it. Futures contracts with

long-term and short-term maturities are also necgs® estimate properly the parameters of

1 The NYMEX is the biggest market for natural gas.
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the non-seasonal factors (long-term and short-faotors). Moreover, the higher the number of

contracts used in the estimation, the more prebsestimates of the parameters.

Nevertheless, there are also other consideratmnake into account. As explained above, in
order to estimate properly the relationship betwémmg and short-term effects and the
parameters in the seasonal process, it is desittadii¢he data set includes more or less the same

quotations for all futures contracts.

Moreover, to account for structural changes inrthtural gas price dynamics it is desirable to

consider different data sets with different sang@gods.

Taking into account all these arguments, it hasnbaefined the sets of futures contracts
specified above. Nonetheless, the estimation haa bepeated using different data sets (data
sets with more futures contracts and with futuretiaets with other maturities) and the results

are more or less the same than those presentiid ichapter.

NYMEX quotations are market prices, that is, manxeces at NYMEX arise as a result of
matching bid and ask orders. However, there aréHeary Hub natural gas spot prices. Some
institutions, such as Bloomberg, provide naturat ga Henry Hub spot prices asking the
participants in the market for their best estimatiand applying an internal procedure.

Therefore, spot prices are not properly marketgsric

Table | contains the main descriptive statisticcahfNYMEX data series employed in this

study. In all cases, units are $/MMBtu

1 «“MMBtu” means “millions of British thermal units’which is an energy measure. US $ per MMBtu is
the accepted way to represent the natural gas @niddYMEX, natural gas quotes in US $ per MMBtu).

The energy contained in a crude oil barrel depardshe kind of the oil, but broadly speaking an oll
barrel contains something less than six MMBtu adrgp.
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6. Empirical Results

6.1. The Three-Factor Model

Assuming that the variance-covariance matrix;¢$ diagonal and all diagonal elements are the
same, there are eleven parameters to be estinmated three-factor model:, K, ¢, 6,, 64, Py

Pyars My Aay Agx @Ndo,,.

Table Il presents the results for the three-faaotodel applied to the four data sets described

above.

One interesting issue from these results is thietiet in all cases the seasonal period is more or
less one year and the standard deviation of treosahfactor 4£,) is significantly different from
zero. This implies that seasonality in Henry Hukurel gas prices is stochastic with one year

period, which is consistent with the results intioec2.

The speed of adjustmer) (s highly significant which implies, as in theseaof oil (Schwartz,
1997), mean reversion in the natural gas price. Maeket prices of risk, thé’s, are not
significantly different from zero in most of theses. The long-term treng, is positive and

significantly different from zero in all cases, ilyipg long-term growth in the natural gas price.

As can be appreciated in the table, it has beesiradat more or less the same results with the
first three data sets. The results with the lath dat are slightly different. Specifically, these
significantly less mean reversion, the volatility fwture returns, which is calculated by
substituting the parameters is equation (21),9e algnificantly lower, the price of risk for the
sort-term factor x) is highly significant and the long-term treng)(is also different. This fact

is also a first sign that more structure is neeé@uhlly, the values of the Akaike and Schwartz
Information Criteria (AIC and SIC respectively) askown at the bottom of the table. These

values will be useful for comparing the models (isec7).
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As stated above, the seasonal factor is a longeetor, but, as it will be discussed below, it is
unable to capture all stochastic long-term eff@eesent in the natural gas price. Therefore, at

least one stochastic long-term factor is needed.

6.2. The Four-Factor Model

Assuming that the variance-covariance matrix;¢$ diagonal and all diagonal elements are the

same, there are sixteen parameters to be estinmated four-factor modelu;, k, ¢, o5, g,, o,

,Dg“)(y Péas Péa*s p)(m p)(a*y ,uiy , /1)(1 ;{m ;{a* ando_n-
Table Il presents the results for the four-factmdel applied to the data sets described above.

As in the previous model, in all cases the seasoer@bd is one year and the standard deviation
of the seasonal factos,j) is significantly different from zero although itsagnitude is lower

than in the three-factor model. This is due toftwt that in the three-factor model the seasonal
factor captures stochastic long-term effects whach captured by the stochastic long-term

factor in the four-factor model.

The speed of adjustmenk)(is higher than in the previous model, implying rmmanean

reversion, probably due to the fact that the stesrtz factor in the three-factor model was
capturing long-term stochastic effects, whereagptrameters of the new stochastic factor, the
long-term one, are also highly significant, whicbnfirms the previous perception that a

stochastic long-term factor is needed.

Moreover, the market prices of risk, the, are not significantly different from zero in staf
the cases, the long-term trend is positive andldhg-term trend adjusted by risk:() is

negative and in both cases significantly differfeoin zero.

In this case the results are more or less the sam# data sets. The only difference which
remains is that in the fourth data set, which dsésres with higher maturities, there is less
mean reversion. This difference is consistent withresults obtained by Schwartz (1997), since

the fourth data set contains futures contracts hidginer maturities than those in the first three
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data sets. Like in the oil case, Schwartz (199Mas important implications in valuation and
hedging natural gas contingent claims or in investimdecisions, since it is necessary to
account for the payments term structure when chgosie futures contracts to estimate the

model parameters.

6.3. The Five-Factor Model

Assuming that the variance-covariance matrix;a$ diagonal and all diagonal elements are the

same, there are twenty three parameters to beatstinn the five-factor model;, ki, ks, ¢, o,

Oy1y Oy2y Ogy PEds Pég2s Péas Péars Pyl y2y Prlas Pylo*s Pyas Pya*s ,uéj , )*;{11 i}(Z: iav ia* andO'”.
Table IV presents the results for the five-factadel applied to the data sets described above.

The results are quite close to the four-factor rhodes. In this model there are two short-term
factors whose parameters are highly significard, iarall cases one of these factors has higher
speed of adjustment than the other. This meanghbet are two types of stochastic short-term
effects, one (the one with highkr with stronger mean reversion than the other ¢the with
smallerk), and both of them significant. It is interestittgnote that, in all cases, the price of

risk for the short-term factor with stronger meawarsion is highly significant.

As the non-seasonal part of this model is equitaierthe Schwartz and Cortzar (2003) one
(appendix C.1), the fact that both sort-term fagtare significant implies that Henry Hub

natural gas prices long-term drift is stochastic.

7. Comparing the models

In this section the relative performance of the etedvill be compared. Specifically, we will

analyze the in-sample and out-of-sample performaame the goodness of fit for the spot price,
the forward curve and the volatility of futuresumts. The analysis of the goodness of fit for the
spot price and the forward curve will be developesihg the first data set because it is the

biggest one, whereas the goodness of fit for tHatility will be developed using the fourth
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one, to account for volatilities of futures with tmdties higher than 36 months. Nevertheless,

using whatever other data set the results are lyrtiael same.

The results will be also compared with those oleidiwith the Schwartz and Smith (2000) two-

factor model with deterministic seasonality, whiglsorensen (2002) proposal.

7.1 Deterministic versus stochastic seasonality

Before comparing the relative performance of theeehmodels with stochastic seasonality
presented in this chapter, it could be useful togare the results obtained with the models with
stochastic seasonality with those obtained with #tendard models with deterministic

seasonality as in Sorensen (2002).

Table V presents the results of the estimationhef $chwartz and Smith (2000) two-factor
model with deterministic seasonality, which will bempared with those obtained with the
four-factor model with stochastic seasonality (Ealil). In order to save space only the
comparison of the results obtained with the Schevand Smith (2000) two-factor model with
deterministic seasonality and the four-factor modih stochastic seasonality are presented,
although similar conclusions are obtained with otimedels. As it is going to be pointed out
below, the four-factor model is much more accutateapture Henry Hub natural gas prices
dynamics than the three-factor one and simpler tharfive-factor one. This is the reason why

the four-factor model is the one chosen for the gamson.

First of all, it is interesting to compare the \alof the Schwartz Information Criterion (SIC)
obtained with both models. If we define the SIClad.,, ) —qIn(T), whereq is the number
of estimated parameterE,is the number of observations ang is the value of the likelihood
function, defined in (47), using tlepestimated parameters, then the preferred modbéisne
with the highest SIC. It is found that the valuetbé SIC for the four-factor model with
stochastic seasonality, shown at the bottom of & #hlis higher than the corresponding value

obtained with the standard model with determinisgasonality, shown at the bottom of Table

78



V. The same conclusions are obtained with the Akailformation Criterion (AIC), which is

defined adn(L,, ) — 29.

A second way of comparing the models is thoughrtipeedictive ability. The in-sample
predictive ability of the Schwartz and Smith (200®o-factor model with deterministic
seasonality and the four-factor model with stodhastasonality is presented in Table VI, using
the whole data set, i. e. data set 1. It is foumat,tin general, the model accounting for
stochastic seasonality outperforms the standardemwdth deterministic seasonality. The
advantages of the stochastic seasonality model theedeterministic seasonality one are even
clearer when we analyze the out-of-sample predicibility (Table VII). The out-of-sample
results are obtained valuing the contracts in dateB with the parameters obtained estimating
the models with data set 2. As expected, out opsapricing errors are slightly higher than the

corresponding in-sample values.

7.2 Spot Price

Following a procedure close to the Kalman filtechieique it has been obtained factors
estimations in each time based on the informatiailable until this time, for each model and
for the parameters estimated with each data set.attual spot price estimation, provided by
Bloomberg, and the spot price estimated by eachefriod the first data set, together with the
deviation from the actual spot price of the spatgs estimated by each model are depicted in

Figure 4.

In Figure 4 it is possible to notice that the fiaetor model is the model with the best
performance, the four-factor model the second mktlae three-factor model is the model with
the worst performance of the models presentedisnvibrk, in estimating the actual spot price.
The standard deviation of the deviation from acigpt price is 9% for the five-factor model,

9.6% for the four-factor model and 13.1% for thee#@ifactor model.

One interesting fact, which has been observedéamnptievious section, is the difference in the

estimations obtained with the three-factor model aith the four and five-factor models. The
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estimations of the last two models are much bétin the three-factor model ones. It confirms
that a long-term stochastic factor is needed tcetstdnd the natural gas price dynamics. The
five-factor model estimations are better than therfactor model ones, but both of them are

close and highly accurate.

7.3 Forward Curve

Proceeding in a similar manner as in the previolissection and using the first data set as well,
it is also possible to obtain estimations of thevfrd curve. The actual forward curve and the

one estimated by the models for a randomly choaémate depicted in Figure 5.

As previously obtained in the case of the goodiéds for the spot price, the model with the
best fit to actual data is the five-factor mode& second one is the four-factor model and so on.
Moreover, the estimations for the five and fourtéaenodels are close and are much better than

the three-factor model ones.

7.4 Volatility of Futures Returns

The volatility of futures returns can be calculateg substituting the estimated parameters
presented section 6 in the corresponding formuasldped in section 3. The volatility of

futures returns estimated by each model compartdtive actual one are depicted in Figure 6.
In this case it has been used the fourth dataesstuse with the first one it is not possible to
calculate the actual volatility for maturities heghthan 36 months. Anyway, the conclusion of

the analysis will be the same if the first dataveete used.

The comments in the previous sub-sections alsoydmgk. One interesting issue to note is that
the actual natural gas price volatility is seaspoppositely to oil. As stated in section 3, in the
models proposed in this chapter, natural gas potaility is also seasonal because the seasonal
factors are stochastic. With deterministic seasdaedors, as in Sorensen (2002), it is not
possible to get seasonal volatility. Therefore, seasonal volatility in actual data is a new
evidence in favor of using stochastic seasonalofacinstead of deterministic ones, in

explaining natural gas prices dynamics.
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In the case of the three-factor model, seasonddityeases when futures maturity grows, going
to zero when maturity goes to infinity, whereaddes not in the case of the four and five-factor
models. Looking at Figure 6 it seems that the swdidp in the actual volatility does not

decrease, which is a new evidence in favor of the &nd five-factor models and against the
three-factor one. Moreover, in the case of theetfiaetor model it is not possible to appreciate

the seasonality even for short maturity contramsause in this casg is much smaller thas,.

8. Other commodities and other markets

In this section we also apply our model with st@tltaseasonality to other commodities.
Specifically, we have investigated heating oil &BIOB gasoline futures contracts traded at

NYMEX ** and gas oil and natural gas futures contractetrad ICE Futures Europe (London).

Tables VIII and IX present the results for heatirigfutures contracts traded at NYMEX. Table
VIII contains the results for the Schwartz and $n(#000) two-factor model with deterministic
seasonality and Table IX contains the results fog four-factor model with stochastic
seasonality. Both models have been estimated wattkly observations, using contracts F1, F3,
F5, F7, F10, F12, F14, F16 and F18. The whole sampliod (data set 1) consists of 524
weekly observations from 09/09/1996 to 09/18/20D6ta sets 2 and 3 consists of weekly
observations from 09/09/1996 to 09/10/2001 and f@817/2001 to 09/19/2006 respectively
(262 observations each one). The results are sitildnose obtained for the natural gas futures
prices. Specifically, the long-term trend;)(is positive and significant (except for data 2gt
implying long-term growth in heating oil prices.i#t worth noting that the long-term trend is
higher in the second sub-period (data set 3), imglynore long-term grown in the last years of
the sample, which is consistent with the high groexperimented by oil products during the

last years.

2t is worth noting that although crude oil pricgs not exhibit seasonality, the main oil produats a
strongly seasonal. This is because seasonalitiyeiset products goes in opposite direction. Spetifica

heating oil prices are higher in winter months, was gasoline prices are higher in summer months. T
sum of these effects results in non-seasonalitpifgrices.
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The speed of adjustmerk)(is significantly different from zero in all casdmplying mean
reversion, which is consistent with our previousutes for the natural gas and also with the
results obtained by Schwartz (1997) in the caseiloMoreover, as in the case of natural gas,
the volatility of the seasonal factaryj is significantly different from zero (Table IXimplying
that seasonality in heating oil prices is stocleasfith one year periodd( close to one). It is
worth noting that the short-term volatilityy) is higher than the long-term volatilitgy). Also,

it can be appreciated from Table IX that all thvetatilities (o; o, andg,) are lower than those
obtained in the natural gas case for the samefémtior model (Table Ill), anddg: and o) are
similar to those presented in Schwartz-Smith (2G60the case of oil. As before, the market

prices of risk are not significantly different fraero in most of the cases.

Finally, it is found that the value of the SIC aAC for our four-factor model (Table IX) are
higher than the corresponding values obtained wWith standard model with deterministic

seasonality (Table VIII).

Table X presents the out of sample pricing errasults for heating oil futures prices
(NYMEX). As in the natural gas case, these resrsobtained valuing the contracts in data set
3 with parameters obtained estimating the models eldta set 2. The results are quite similar to
those obtained with the natural gas series. This say, the model accounting for stochastic
seasonality outperforms the standard model witkrd@nistic seasonality. Moreover, the (root
mean squared) errors obtained with the heatingevies are lower than those obtained with the

natural gas series.

The estimation results for RBOB gasoline (NYMEXdamatural gas and gas oil (ICE Futures
Europe) are contained in Table XI. The data seRBOB gasoline (NYMEX) is composed of

weekly observations from 12/08/2003 to 01/30/2@@tracts F1, F3, F5, F7, F9 and F12 (113
observations). Due to liquidity constrains, theadst for natural gas (ICE futures) is composed
of weekly observations from 03/30/1998 to 09/25(0tbntracts F1, F3, F5, F7, F9, F11, F13

and F15 (131 observations). Finally, the dataaegés oil (ICE futures) is composed of weekly
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observations from 10/04/1999 to 09/18/2006 (364nlzions). The results are quite similar to
those obtained for natural gas and heating oil (NE®Y1 From the point of view of this chapter
goal, the most important fact is that all three pwdities in Table XI show stochastic
seasonality @, is significantly different from zero), with one aeperiod ¢ close to one). This
confirms that stochastic seasonality is commonlgeolbed in commodity futures markets.
Consequently, stochastic seasonality is a factghaitild be considered in a commodity futures

valuation model.

9. Conclusions

Most studies on the stochastic behavior of comrgoplitces are focused on oil prices. The
number of papers addressing the study of natusapgaes is still scarce. However natural gas
represents almost the fourth part of the world gneronsumption. The lack of economical
transportation and the limited storability of natiugas make its supply unable to change in view

of seasonal variations of demand. Therefore, nag)asaprice is strongly seasonal.

Analyzing the natural gas price spectrum, it sebighly probable that seasonality in natural
gas price is an stochastic factor and not a detéstia one. However, to the best of the authors”
knowledge, seasonality has never been consideraah asochastic factor in previous studies.
Therefore, in this chapter it has been developgdreerain+2m-factor model of the stochastic
behavior of commodity prices, considering seastgna an stochastic factor. Then, this general
model has been particularized for= 1 andn = 1,2,3, thus, three, four and five-factor models
have been obtained to explain the stochastic behafi Henry Hub natural gas prices. The
parameters of the models have been estimated tihtbeg<alman filter methodology and using

NYMEX data.

One of the main conclusions of this study is theficmation of the fact that seasonality in the
natural gas price is stochastic and not deternignias many studies assume. It is also found

that the natural gas prices seasonal period isyeae Similar results are obtained with other
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commodities and with commodities traded in otherkeis. Specifically we have confirmed the
presence of stochastic seasonality in the caseeafify oil and RBOB gasoline futures
contracts traded at NYMEX and natural gas and gdsitares contracts traded at ICE Futures

Europe (London).

The seasonal factors considered in this chaptee fmviong-term component, but it is
demonstrated that this long-term component is unabapture properly the natural gas long-
term dynamics. Consequently, it is necessary toasandom walk as a long-term factor.
Therefore the four and five-factor models are moetter than the three-factor one in explaining
the natural gas price behavior. The classical @aber model fails in this task because it does

not account for seasonality.

Consequently, the four and five-factor models presin this work seem appropriate to value
all natural gas contingent claims or investmenjguts. The five-factor model is better than the
four-factor one although it needs more structurend¢, the use of the four or the five-factor

models will depend on the precision needed.

APPENDICES

Appendix A: Seasonal Factors
As stated above, the stochastic differential equatsDE) for each seasonal factor is:
da, =-ig;a,dt+Q,dW,,
where @ is a complex factoraf = oy +iay'), Q; @ complex numbeiQ; = Qg + iIQ.z) andWiy;

a complex Brownian motioiAp; = W, + iW,:), provided thatdcrjt and da} are uncorrelated

and with the same variance.
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Equalling components in the previous equation giéb real SDES:
da, = ¢,a, dt+Q,,dW,, —Q,,dW,.,
dajt* = _¢jajtdt + QajZdWajt + QajldWa'*jt

If W, and W, are uncorrelated, thenticrjt and da";t are also uncorrelated and with the same

variance, which is; =QZ, +Qj,, being g, the complex numberQ, module (the

sufficiency condition).
On the other hand:
cov(da,,da’,)= (Q2, - Q2,)cov(dW,, ,dW,. ),

Var(da,) = Qz,dt+QZ,dt - 2Q,,Q,, cov([dW,, ,dW,. )
Var(da ) = Q;,dt + QZ,dt + 2Q,,Q,, cov(dW,, ,dW,.,, )

To get cov(da,,da})=0 and Var(da,)=Var(da,) it is necessary that
cov(dW,, ,dW,. ) =0 (the necessary condition).

ajt

Let now Q,; be expressed in polar coordinat@g = e’ o, where g, is the module and,

the phase.

x g . . X t ig .
Defining  dW,, =e'6'dV\/ajt, it is clear that W, =joe'5'dV\/ajS, or equivalently:

W, =W,

it it - Equalling components in the last equation yields:

W~ _ cost, -—serd, | W,
W, .~ serd, cosd, \W,.,

a*jt
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From the previous equation, taking into account g, andW_., are uncorrelated, it follows

W, w,
varl * |=Var " |=1
W2t Wa’*Jt

Where | the 2x2 identity matrix.

that:

Therefore, the phas«éj is indistinguishable.

Appendix B: Futures Contract Valuation

Let Zt=(t X " Xoen Oy alt* R amt*) be the vector of all factors. The

“risk-neutral” SDE ofz; can be expressed as:
dz, = (b° + AZ, )dt+ QdwW,

where dV\Q is a vector of independent Brownian motions, dretdfore Vamdz) = R = QQ"

(Q" is the transpose matrix ofQ) with the restriction explained above,

b =(g -2 -Ay - “Apa “Adn A o —Am —Apn) and:
0 O 0 0O O 0O O
0 -k 0 0O O 0O O
0 O k., 0 O 0O O
A=10 O 0 ¢, 0O O
0 O 0 -¢ O 0O O
0 O 0 0O O 0 o,
0 O 0 0O O -¢, O
n-1 m
— ——
Under this notatioiX, = cZ,, wherec=1 1 - 1.1 0 --- 1 0}.
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It is easy to prove that the (unique) solutionhafttproblem is (Oksendal, 1992)
At U —Asp0 t _-As 0
Z =e [ZO +Ioe b ds+j0e QdWZS} (B1)

It is clear that, under the risk-neutral measuneergZ,, Z, is Gaussian, with mean and

variance*®

E'[z]=e" [ZO + Ee’AS b°ds} (B2)

Var'[z,]= e Uge”*sR(e‘As)T ds}(e’“)T (B3)

n-1 m
As X, =cZ, =¢§ + Z)(it + ZGﬁ , then under the risk-neutral measulg, is also Gaussian
i=1 j=1

with mean and variance:
E'(X,)=cE'(z)
Var (X,)=cVar (z,)c’

This provides a valuation scheme for all sorts @modity contingent claims as financial

derivatives on commodity prices, real options, Btameent decisions and other more.

In particular, the price of a futures contract gddat time t’ with maturity at time t+T”

It]+%Var*[Xt+T It]}, where |; is the information

is:Fr = E'[Su 1] = exp{E*[XHT

available at timet”. It can be expressed as:

Fr= exriceATZt +g(T )J (B4)

13 This methodology is general and can be used ikitadl of problems. It does not matter which is b, A
and R. Even in the case that b, A and R were fonobif t, if At and commute, the solution of that
problem is (B1).

14 E*] and Var*[] are the mean and variance undertisk neutral measure.

' Superscript T indicate transpose matrix.
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+T +T
where g(T) = ce*’ J‘: e b’ds+ % ce’’ U: e *R(e™*)’ ds}(eAT Y'c', whichis a
deterministic function.

The squared volatility of a futures contract tradédime t” with maturity at time t+T" is

Var[log Fonr —log FLTJ
h

defined a¥ Llrrc]) . It is easy to prove that it is the expected vaitie

the square of the coefficient of the Brownian motioe) in the expansion:
d Iog(Ft’T)=,utdS+ o,dW" , whereW" is a scalar canonical Brownian motion. Therefore,

taking logarithms and differentials on both side&quation (B4), it follows that:
d(logF ;)= ce’"dz, = ce*"[b+ Az Jdt + ce’ Qdw
So, the futures squared volatility is:

ce’ " R(e*)" ¢’ (B5)

Appendix C: The Five-Factor Model

C.1 Five-factor model reformulation

In the five factors model the log-spot pri¢§)(is given by:

xt zgzt +Xlt +/Y2t +at

The SDEs of the factors can be expressed as:

® The same results are going to be obtained if thelatility is defined as:

lim Var |.|Og Ft+h,T—h B |Og Ft,TJ
h-o h
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dé, Us 0 O 0 0 0)¢ o dW;
dx, 0 0 -k 0 O Of xu 7,,dW,
dyy |=| O |dt+|0 0 -k, 0 O} )y, [dt+]0,,dW ,
da, 0 0 O 0 0 ¢| q o, dW,,
da, 0 0 0 0 -¢ O)\a, o, dW,,,

Defining v, = kK X, andv, =—K,x,, itis clear that:

At

dy; = k,dx, = &, (- &y, dt) + KO AW, = —K; [%j +K,0,dW,,, =

= _Klytdt + Klo-)(ldV\{le

dv, = —k,dx, = =k, (=K x5, dt) - K,0 AW, = —k,v, d - Ky0 2 AW, 5,

Let A :VtD +Iu{ andftD = Et —%, in this case:
2

dy, =dv; =-k,v, dt-k,o,,dW,

X2t

=k, (s —v,)dt—k,0,,dW,,,
dé&” =dé& = pdt+o.dw,

It is easy to see that:

Yo M

X, =&t Yy t Xyt =& + +a,
k Kk,
Therefore:
dX. = dé +dy. +dy, +da, =dé” + D mM LG40 = 4 dt+ondW, — ydt+ o dW
t Et+ X TOX +0a, = Et +k_ k_+ at_:uz '[+0'5 & Yi t+UX1 X1t+
1 2
= (U = V)dt+ 0, dW,,, +ga;dt+0,AW,., = (v -y, +¢a; Jdt + o dW,,
where o, dW,, = o dW, +0,,dW , +0 ,dW,, +0,dW,,.
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Thus, the model can be expressed in terms of tivevadables. The new factors ab&; yi, v, a

ande; . The SDE of these new factors are:
dX, = (vt -y, +ga, )dt + 0, dW,,

dy, =-ky,dt+ko,dwW

X1t

dv, =k, (1 —v)dt-k,0,,dW,,,
da, = ¢a; dt+ o, dW,

da; = -ga,dt+o,dW .

Therefore, it is obvious that this model is a gahzation of the three-factor model developed in

Cortazar and Schwartz (2003).

C.2 The log-price of futures contracts and the ssgigolatility of futures returns

In the context of the five-factor model, the logeprof a futures contract with maturity at time

“T+t” traded at timd can be calculated applying the result in equatit):
IN[F (X, T +8)]= & + €™ o + €™ Yo + cOSQT )0, + sen27mpT)ay + A(T)

where:
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A/(T) = (i, "+050% + 0502)T - (1-€™ ")\, 1k, — (1-€™")A,, [k, —(A.. +],Ser2rmpT) -
~ A . cos@rmp))/(2rmp) + 0,0, 0;, A=) K, + 0,0, 0r,, A—€7") [ K, +
, 00, P, {1~ COSUBN)} + 0,0, oy, SE27YT)
@)
+0,,0,,Py1y2 @L- g (atle)T )k +k,)+ 0250)2(2 - 5 ) K, +
 99uP i €™ (i cosermT) + gseriepn)}
K + (2
040 Py 2789+ € (k SeI27T) ~ 2739 COSRrAPT) |
K + (2’
91294 Praafie =€ (k,coserm) + gseremm)}
K + 2’
910 Py (278 + €™ (kgser2ryT) - pcosery) |
K + (2

+ 02502 (1-e™") [k, +

And, from equation (B5), the squared volatilityfofures returns is:

2T -2k, T

2 — 42 2 A 2 2 —k.T —k,T
Oes(T)=0;+0,6°" +0,,67" +0,+26" 0,0,0,,+26 7 0,0,,0s,
—(ky+ky)T
+20,0,05, COSRMPT) + 20,0, P, SEN2TPT) + 26" T,,0,,0,1,, +
—kT —kT
+2e" 0,,0,0,, COSRMT)+2e™ 0,,0,p,,,-SEN2HT) +

+2e0,,0,0,,, COSRTHT) + 28" 0,0, 0, ,,SEN27T)

Appendix D: Transition and measurement equations

The Three-Factor Model

Transition equation:

Z =c, +T.Z_, +yY, t=1,....N
where :
é At 1 0 0 0
0 0 e™ 0 0
Zt = X | C = ! T[ = .
a, 0 0 O cos@At) sin(@At)
a 0 0 0 -sin@At) cos@At)
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and

O _
0 02 (L-e72) /(2K)
Var@y =0 -o.0.p,, k{-1+e™ (cosgnt) + ser(¢Ati)2} : z{2—1+ ™ (cos@nt) - ser(gnt))}
k{1+ e (- cos@nt) + ser(¢At))} + ¢{— 1+e™ (cos@nt) + ser(¢At))}
O JXUaan k2 + ¢2
Measurement equation:
Y, =d, +M.,Z, +n1, t=1, ... N

where:

InF, A(T) 1 €% cos@T,) ser(dT,)
Y,=| : |'d = : "M, = : :
InF;, A(T,) 1 €™ cos@T,) ser(gT,)
The Four-Factor Model
Transition equation:
Z =c, +T.Z_, +y, t=1, ..., N
where:
{t /U{At 1 0 0 0
0 -kat
Zl - /Yt ) Ct - 3 Tt — 0 e 0 - 0
ai 0 0 0 cos@At) sin(@At)
a, 0 0 0 -sin@At) cos@ht)
and

gint

0 ot
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foph

0.0,p,(1-e**)/k

Vary,) =| 0,0,p.,(L+serfght) — cospt))/ ¢

- 0-/\/0—010 xa

k{— 1+e™*(cosgnt) + serq¢At))} + ¢{— 1+e™(cosfnt) - serq¢At))}

o2 (L- %) /(2K)

k2+¢2

0,005, (~1+ sertght) +cospt)) /¢ 7,0,p,, v o™ (-cosfi) sertgth}+ 9L+ (cosit + serignt)

Measurement equation:

k2+¢2

Y, =d, +M,Z, +71, t=1, ...,N
where:
InFyy A(T) 1 €% cos@T,) ser(dT,)
Yo=| d=| © "M =|: : :
InFy, A(T,) 1 e*™ cos@T,) ser4T,)
The Five-Factor Model
Transition equation:
Z =c +T.Z_ +y, t=1, ...,N

where:
¢ IR 1 0 0
Xa 0 0 e 0
Z=|x,| &=| 0 |'T,=[0 0 e
a, 0 0 O 0
a 0 0 0 0

0 0

0 0

0 0
COS@At)  sin(gAt)

—sin(@At) cos@At)

andVar(y,) is the same as in the other models but with a r@uwnmn:
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00 2Py L= €)1k,
019 2Pz @- g lra ) /(kl + kz)

P 02, (L- 72 /(2K,) P
Varp)=|. . o0 p kz{—1+ e (cosgAt) + ser(¢At))} + ¢{— 1+e™ (cos@t) - ser(¢At))} -
: x2= al x2a k2 + ¢2 co
k2{1 +e™ (- cosgt) + ser(¢At))2} + ¢{— 1+e™ (cosgnt) + ser(¢At))}

kZ +¢?

ax20—a p/y2a

Measurement equation:

Y, =d, +M.,Z, +n1, t=1, ... N
where :
InF, A(T) 1 e*t e™h cos@T,) sen(4T,)
v=[ ¢ d=| ¢ Pwm=lr o2 : :
InF,, A(T,) 1 e e™" cos@T,) ser(dT,)
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FIGURE 3: SPECTRUM
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TABLE |

HENRY HUB NATURAL GAS FUTURES PRICES. DESCRIPTIVE STATS
($/MMBLtu)

The table shows the main descriptive stats of Heéfuly natural gas futures prices traded at NYMEX for

four different data sets.

Data-Set 1 Data-Set 2 Data-Set 3 Data-Set 4
Num. Obs. 438 222 216
Contract Mean Stand. Mean Stand. Mean  Stand. Contract Mean  Stand.
Dev. Dev. Dev. Dev.
F1 4.57 2.53 3.19 151 5.99 2.57 F1 5.99 2.57
F5 4.61 2.38 3.16 1.10 6.10 2.57 F8 5.96 2.07
F9 4.50 2.15 3.10 1.05 5.94 2.57 F15 5.81 2.19
F14 4.42 2.20 3.03 0.89 5.86 2.56 F22 5.51 1.71
F18 4.28 1.96 2.97 0.82 5.63 2.56 F29 5.34 1.70
F22 4.20 1.85 2.93 0.78 5.51 2.55 F36 5.22 1.55
F27 4.17 1.89 2.92 0.72 5.45 2.54 F43 5.07 1.35
F31 4.06 1.70 2.88 0.70 5.27 2.54 F50 5.08 1.43
F35 4.03 1.65 2.88 0.68 5.21 2.53 F57 4.92 1.09
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TABLE I

HENRY HUB NATURAL GAS (NYMEX). THREE-FACTOR MODEL

The table presents the results for the three-factodel applied to the four data sets describechén t
chapter. Standard errors in parentheses. The @stimalues are reported wittdenoting significance at
10%,” denoting significance at 5%, and denoting significance at 1%.

Data-Set 1 Data-Set 2 Data-Set 3 Data-Set 4
Number obs. 438 222 216 216
e 0.1429 0.1446" 0.1655" 0.0155
(0.0004) (0.0009) (0.0025) (0.0062)
k 0.4025" 0.4723" 0.5714" 0.1886
(0.0046) (0.0062) (0.0143) (0.0058)
) 0.9941" 0.9885 1.010" 1.0025"
(0.0023) (0.0030) (0.0034) (0.0027)
o, 1.0056 " 1.0047" 1.4358" 0.3014"
(0.0196) (0.0245) (0.0313) (0.0174)
Oy 0.0846 0.0824" 0.0510 0.0670"
(0.0041) (0.0054) (0.0083) (0.0061)
P 0.2010 0.1216" 0.6616 0.1549"
(0.0310) (0.0359) (0.0390) (0.0316)
Py 0.5762" 0.6709" 0.3140° 0.0960
(0.0275) (0.0312) (0.0406) (0.0250)
A, 0.6596 0.4807 0.6497 0.4470°
(0.2904) (0.4299) (0.5719) (0.1027)
A 0.0025 -0.0135 -0.0351" 0.0008
(0.0112) (0.0151) (0.0124) (0.0144)
Ao -0.0084 -0.0042 -0.0121 -0.0317
(0.0137) (0.0206) (0.0114) (0.0137)
oy 0.0544" 0.0497" 0.0592" 0.0680"
(0.0005) (0.0006) (0.0007) (0.0008)
Log-likelihood 17849 9387.03 8471.95 8279.9
AIC 17827 9365.03 8449.95 8257.9
SIC 17782.1 9327.6 84128.2 82207.7

101



TABLE Il
HENRY HUB NATURAL GAS (NYMEX). FOUR-FACTOR MODEL

The table presents the results for the four-factodel applied to the four data sets described én th
chapter. Standard errors in parentheses. The g¢estimalues are reported withtdenoting significance at
10%, denoting significance at 5%, and denoting significance at 1%.

Data-Set 1 Data-Set 2 Data-Set 3 Data-Set 4
Number obs. 438 222 216 216
e 0.1791" 0.1182 0.2476" 0.2292
(0.0436) (0.1220) (0.0674) (0.1433)
k 0.9135° 1.0968 " 0.7817" 0.5912"
(0.0038) (0.0126) (0.0037) (0.0061)
) 0.9973" 0.9937 0.9999" 1.0008"
(0.0015) (0.0020) (0.0028) (0.0033)
o 0.1704" 0.1765 0.1611" 0.1995
(0.0015) (0.0038) (0.0020) (0.0020)
o, 0.5592" 0.5509 0.5922" 0.7542"
(0.0076) (0.0149) (0.0014) (0.0025)
Oy 0.0561" 0.0515 0.0576 0.0529"
(0.0012) (0.0023) (0.0004) (0.0008)
Pe, -0.3908" -0.2560 -0.5398" -0.7236
(0.0039) (0.0063) (0.0047) (0.0022)
Pra -0.2617" -0.2193" -0.2946" -0.0729"
(0.0037) (0.0048) (0.0047) (0.0022)
Peor -0.1096 -0.0911" -0.1760" -0.1626
(0.0041) (0.0059) (0.0053) (0.0023)
P 0.3942" 0.3956 0.3735" 0.0540"
(0.0084) (0.0393) (0.0010) (0.0051)
Py 0.2716 0.3006 0.3072" 0.2618"
(0.0067) (0.0246) (0.0071) (0.0053)
e -0.0479" -0.0312" -0.0661" -0.0264"
(0.0020) (0.0016) (0.0042) (0.0024)
A 0.0029 -0.0726 0.0791" 0.1926
(0.0894) (0.0476) (0.0317) (0.1014)
Ao 0.0019 0.0003 0.0059 0.0081
(0.0036) (0.0102) (0.0056) (0.0050)
Ao -0.0117 -0.0149 -0.0075 -0.0038
(0.0057) (0.0121) (0.0072) (0.0201)
oy 0.0324° 0.0300" 0.0324" 0.0373"
(0.0002) (0.0004) (0.0004) (0.0004)
Log-likelihood 21555.9 11150.2 10661.5 10193.6
AlC 21523.8 11118.2 10629.5 10161.6
SIC 21458.5 11063.8 10575.5 10107.6
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TABLE IV
HENRY HUB NATURAL GAS (NYMEX). FIVE-FACTOR MODEL

The table presents the results for the five-factmdel applied to the four data sets described én th
chapter. Standard errors in parentheses. The @¢etimalues are reported wittdenoting significance at
10%, denoting significance at 5%, and denoting significance at 1%.

Data-Set 1 Data-Set 2 Data-Set 3 Data-Set 4
Number obs. 438 222 216 216
e 0.1678" 0.1248 0.2340" 0.0930
(0.0262) (0.1270) (0.0539) (0.0816)
Ky 0.5660" 7.5352" 6.1064" 3.3543"
(0.0009) (0.1789) (0.2765) (0.0235)
Kz 5.3633" 0.6259° 0.7001" 0.4411"
(0.0500) (0.0032) (0.0102) (0.0012)
P 0.9916" 0.9923" 0.9897" 0.9948™
(0.0019) (0.0034) (0.0019) (0.0019)
o 0.1995" 0.2020" 0.1613" 0.1933"
(0.0044) (0.0060) (0.0013) (0.0022)
G, 0.4550" 0.6390" 0.5568" 0.5195"
(0.0058) (0.0126) (0.0133) (0.0022)
G, 0.5441" 0.4070" 0.4808" 0.4754"
(0.0222) (0.0070) (0.0345) (0.0084)
Gy 0.0600" 0.0525" 0.0674" 0.0459"
(0.0099) (0.0016) (0.0021) (0.0018)
Pet -0.6173" 0.1029" 0.2626 0.3012"
(0.0043) (0.0022) (0.0064) (0.0027)
Pey2 0.1573" -0.5064" -0.5517" -0.7455"
(0.0043) (0.0056) (0.0049) (0.0028)
Pra -0.2705" -0.1820" -0.3167" -0.1479"
(0.0068) (0.0059) (0.0043) (0.0028)
Prat 0.0728" 0.0743" 0.0670" 0.1572"
(0.0049) (0.0057) (0.0044) (0.0028)
P2 -0.0985" 0.0612 -0.2374" -0.3005"
(0.0057) (0.0332) (0.0688) (0.0186)
Pyl 0.3786" -0.3751" -0.3277" -0.0534"
(0.0437) (0.0270) (0.0567) (0.0153)
Poet -0.0245" 0.0902" 0.0540" -0.0208
(0.0040) (0.0329) (0.0122) (0.0206)
P2 -0.3071" 0.3125" 0.4265" 0.1141"
(0.1160) (0.0085) (0.0028) (0.0082)
P2ut 0.0628 -0.0828" 0.0084 -0.0963"
(0.0657) (0.0091) (0.0171) (0.0100)
i -0.0137" -0.0033 -0.0420" -0.0056
(0.0048) (0.0039) (0.0029) (0.0023)
Ao 0.1258 -0.6780" -0.6910" -0.6639"
(0.0901) (0.0936) (0.1455) (0.1110)
A2 -0.5237" 0.0165 0.1992" 0.6836
(0.0605) (0.0487) (0.0738) (0.0602)
A -0.0051 -0.0046 -0.0004 -0.0085
(0.0233) (0.0070) (0.0030) (0.0077)
Ao 0.0124 0.0070 0.0235" 0.0233
(0.0327) (0.0051) (0.0067) (0.0139)
oy 0.0251" 0.0224" 0.0267" 0.0289"
(0.0003) (0.0004) (0.0002) (0.0002)
Log-likelihood 22858.2 11917.9 111135 10950.1
AIC 22812.2 11871.9 11167.5 10904.1
SIC 22718.3 11793.6 10989.8 10826.4
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TABLE V

HENRY HUB NATURAL GAS (NYMEX). SCHWARTZ AND SMITH (2000) TWO-
FACTOR MODEL WITH DETERMINISTIC SEASONALITY

The table presents the results for the Schwartz@mith (2000) two-factor model with deterministic
seasonality, applied to the four data sets destribehe chapter. Standard errors in parentheses. T
estimated values are reported wittlenoting significance at 10%, denoting significance at 5%, and
denoting significance at 1%.

Data-Set 1 Data-Set 2 Data-Set 3 Data-Set 4
Number obs. 438 222 216 216
0.1781" 0.1160 0.2512" 0.2283"
He (0.0326) (0.0513) (0.0376) (0.0436)
) 1.0292" 1.2208" 0.9726" 0.6358"
(0.0201) (0.0273) (0.0280) (0.0148)
o 0.9843" 0.9822" 0.9929" 0.98770
(0.0003) (0.0009) (0.0010) (0.0007)
0.1688" 0.1769" 0.1476" 0.1864"
O¢ (0.0051) (0.0071) (0.0070) (0.0040)
0.5554" 0.550%" 0.5621" 0.6966"
O1 (0.0175) (0.0236) (0.0265) (0.0152)
-0.3296 -0.2267" -0.3483" -0.6583"
Per (0.0409) (0.0570) (0.0626) (0.0125)
, -0.0484" .0.0324" .0.0665" 0.0425"
He (0.0017) (0.0021) (0.0024) (0.0005)
-0.0059 -0.0885 0.0773 -0.0306"~
My (0.1210) (0.1704) (0.1755) (0.0013)
N -0.0023 -0.0080" 0.0470" 0.1868
. (0.0027) (0.0035) (0.0050) (0.1892)
N 0.0260" 0.0271" -0.0578" -0.0484"
a* (0.0034) (0.0044) (0.0048) (0.0007)
0.0362" 0.0336" 0.0368" 0.0526"
On (0.0003) (0.0004) (0.0005) (0.0041)
Log-likelihood 20988,8 10861,5 10334.1 9831.87
AIC 20966.7 10839.6 10312 9809.9
SIC 20921.8 10802.1 10274.9 9727.7
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TABLE VI
HENRY HUB NATURAL GAS (NYMEX).
IN-SAMPLE PREDICTIVE ABILITY (DATA SET 1)

The table presents several metrics trying to complae in-sample predictive power ability of the
Schwartz and Smith (2000) two-factor model withedetinistic seasonality and the four-factor
model with stochastic seasonality. The resultdased on the first data set.

PANEL A: SCHWARTZ AND SMITH (2000) TWO-FACTOR MODEMWITH
DETERMINISTIC SEASONALITY

Mean error Std. Dev. Error Std. Dev. error Root Mean Root Mean

(Real-Predicted) (% mean)  Squared Error Squared Error
(% mean)

F1 0.011873 0.073741 5.317492 0.074691 0.05386
F5 -0.01563 0.058013 4.111995 0.06008 0.042585
F9 -0.00594 0.048836 3.494517 0.049196 0.035203
F14 0.001658 0.042283 3.05686 0.042315 0.030592
F18 0.002208 0.037473 2.755082 0.037538 0.027599
F22 0.007588 0.034945 2.593316 0.035759 0.026537
F27 0.002152 0.036535 2.727677 0.036599 0.027324
F31 -0.00175 0.038182 2.887859 0.038222 0.028909
F35 -0.00205 0.036748 2.7867 0.036805 0.02791

PANEL B: FOUR-FACTOR MODEL WITH STOCHASTIC SEASONALY

F1 0.007864 0.071977 5.190253 0.072405 0.052211
F5 -0.0092 0.052742 3.738416 0.053538 0.037948
F9 -0.0056 0.045167 3.231979 0.045513 0.032567
F14 -0.00239 0.037048 2.678386 0.037125 0.02684

F18 0.007655 0.035478 2.608369 0.036294 0.026684
F22 0.005313 0.034116 2.531833 0.034528 0.025623
F27 -0.00042 0.035255 2.63206 0.035257 0.026322
F31 0.003122 0.039431 2.982327 0.039554 0.029917
F35 -0.00615 0.036058 2.734364 0.036579 0.027739
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TABLE VI
HENRY HUB NATURAL GAS (NYMEX)
OUT-OF-SAMPLE PREDICTIVE ABILITY

The table presents several metrics trying to comfia out-of-sample predictive power ability of the
Schwartz and Smith (2000) two-factor model withedetinistic seasonality and the four-factor
model with stochastic seasonality. The resultoatained valuing the contracts in data set 3 with t
parameters obtained estimating the models with sktta.

PANEL A: SCHWARTZ AND SMITH (2000) TWO-FACTOR MODEL

Mean error (Real- Std. Dev. Error Std. Dev. error  Root Mean Root Mean

Predicted) (% mean) Squared Error Squared Error
(% mean)
F1 0.02061 0.070913 6.58469 0.073847 0.068572
F5 -0.02638 0.062268 5.679274 0.067626 0.061679
F9 -0.02824 0.050649 4.685677 0.057991 0.053648
F14 -0.02244 0.047966 4.48428 0.052958 0.049509
F18 -0.01421 0.041866 3.97686 0.044213 0.041998
F22 -0.00423 0.037435 3.589902 0.037674 0.036128
F27 0.003337 0.043051 4.128993 0.04318 0.041414
F31 0.010411 0.045073 4.373193 0.04626 0.044883
F35 0.018478 0.04249 4.120222 0.046334 0.04493

PANEL B: FOUR-FACTOR MODEL WITH STOCHASTIC SEASONALY

F1 0.015791 0.070325 6.530147 0.072076 0.066927
F5 -0.01559 0.054871 5.004566 0.057042 0.052026
F9 -0.0296 0.044777 4.142435 0.053675 0.049656
Fi14 -0.02492 0.0342 3.197334 0.042315 0.03956
F18 -0.00598 0.034203 3.248993 0.034722 0.032983
F22 -0.01016 0.031116 2.983895 0.032732 0.031389
F27 0.003033 0.035621 3.416454 0.03575 0.034288
F31 0.016003 0.037406 3.629328 0.040686 0.039475
F35 0.010345 0.037622 3.648209 0.039018 0.037836
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TABLE VI

HEATING OIL (NYMEX). SCHWARTZ AND SMITH (2000) TWO- FACTOR
MODEL WITH DETERMINISTIC SEASONALITY

The table presents the results for the Schwartz@mith (2000) two-factor model with deterministic
seasonality, applied to the three data sets destiio the chapter. Standard errors in parenth&des.
estimated values are reported wittlenoting significance at 10%, denoting significance at 5%, and
denoting significance at 1%.

Data-Set 1 Data-Set 2 Data-Set 3
Number obs. 524 262 262
0.1361" 0.0576 0.2097"
He (0.0309) (0.0373) (0.0479)
1.5156 1.3826 1.4036"
k (0.0185) (0.0257) (0.0263)
0.9914" 0.9889 0.9832"
o (0.0002) (0.0007) (0.0005)
0.1506" 0.1378" 0.1583"
O (0.0036) (0.0054) (0.0051)
0.2978" 0.3223" 0.2710°
Oy (0.0073) (0.0116) (0.0091)
0.0552 -0.1707" 0.2426
Pey (0.0360) (0.0546) (0.0446)
, -0.0582" -0.0460" -0.0697"
He (0.0016) (0.0029) (0.0018)
-0.0396 -0.0114 -0.0537
Ay (0.0603) (0.0909) (0.0807)
-0.0537" -0.0538" 0.0007
A (0.0016) (0.0026) (0.0015)
-0.0091" -0.0025 -0.0061"
Ao (0.0013) (0.0020) (0.0013)
0.0164" 0.0194" 0.0111"
O (0.0001) (0.0002) (0.0001)
Log-likelihood 31741,6 15259,5 17407,2
AlC 31719.6 15237.5 17385.2
sIC 31672.7 15198.2 17345.9
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TABLE IX
HEATING OIL (NYMEX). FOUR-FACTOR MODEL

The table presents the results for the four-factodel applied to the three data sets describetidan t
chapter. Standard errors in parentheses. The @¢etimalues are reported wittdenoting significance at
10%, denoting significance at 5%, and denoting significance at 1%.

Data-Set 1 Data-Set 2 Data-Set 3
Number obs. 524 262 262
e 0.1435 0.0651 0.2097"
(0.0323) (0.0456) (0.0480)
k 1.1372° 1.0354" 1.3996"
(0.0170) (0.0250) (0.0223)
) 1.0031" 0.9949" 1.0091"
(0.0021) (0.0037) (0.0020)
o 0.1462" 0.1254" 0.1493"
(0.0036) (0.0048) (0.0049)
5, 0.3078" 0.3255 0.2701°
(0.0076) (0.0120) (0.0092)
Gy 0.0271" 0.0333" 0.0218"
(0.0010) (0.0018) (0.0009)
Py -0.0167" 0.0437" 0.0433"
(0.0056) (0.0084) (0.0071)
Pra 0.0454" -0.0859" -0.0056
(0.0059) (0.0090) (0.0084)
Pror 0.0269" -0.0368" -0.0180
(0.0064) (0.0112) (0.0081)
P -0.0614" 0.1148" 0.0016
(0.0121) (0.0191) (0.0152)
Py -0.0448" 0.0834" -0.0172
(0.0138) (0.0240) (0.0147)
e -0.0568" -0.0450" -0.0689"
(0.0017) (0.0031) (0.0015)
A, -0.0385 -0.0109 -0.0532
(0.0664) (0.1040) (0.0822)
A -0.0067 -0.0079 -0.0072
(0.0040) (0.0076) (0.0045)
Ao -0.0137" -0.0072 -0.0185"
(0.0032) (0.0057) (0.0039)
o, 0.0128" 0.0156 0.0087"
(0.0001) (0.0002) (0.0001)
Log-likelihood 32972,4 15695,6 18133,6
AIC 32940.4 15663.6 18101.6
SIC 32872.2 15606.5 18044.5
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TABLE X
HEATING OIL (NYMEX). OUT-OF-SAMPLE PREDICTIVE ABILI  TY

The table presents several metrics trying to comffa out-of-sample predictive power ability of the
Schwartz and Smith (2000) two-factor model withedetinistic seasonality and the four-factor
model with stochastic seasonality. The resultoatained valuing the contracts in data set 3 with t
parameters obtained estimating the models with sktta.

PANEL A: SCHWARTZ AND SMITH (2000) TWO-FACTOR MODEL

Mean error Std. Dev. Error Std. Dev. error Root Mean Root Mean
(Real-Predicted) (% mean)  Squared Error Squared Error

(% mean)
F1 0,002912 0,045427 1,421227 0,04552 0,014241
F3 -0,00269 0,039435 1,234471 0,039527 0,012373
F5 -0,00541 0,037057 1,161716 0,037451 0,01174
F7 -0,01228 0,03582 1,125849 0,037866 0,011902
F10 -0,01366 0,031593 0,99601 0,034421 0,010852
F12 -0,00553 0,029557 0,933671 0,030069 0,009498
F14 0,002676 0,026995 0,854329 0,027127 0,008585
F16 0,004152 0,024821 0,786907 0,025166 0,007978
F18 -0,00438 0,025607 0,813414 0,02598 0,008252

PANEL B: FOUR-FACTOR MODEL WITH STOCHASTIC SEASONALY

F1 0,000999 0,04439 1,388795 0,044401 0,013891
F3 -0,00543 0,038672 1,210584 0,039051 0,012225
F5 -0,00201 0,034761 1,089737 0,034819 0,010916
F7 -0,00136 0,032437 1,019496 0,032465 0,010204
F10 -0,00336 0,027752 0,874921 0,027954 0,008813
F12 -0,00336 0,027192 0,858962 0,027398 0,008655
F14 -0,00166 0,025963 0,821682 0,026016 0,008234
F16 0,000415 0,024686 0,782607 0,024689 0,007827
F18 -0,00206 0,025379 0,806161 0,025462 0,008088
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TABLE XI

GAS OIL AND NATURAL GAS (ICE FUTURES, LONDON) AND R BOB
GASOLINE (NYMEX). FOUR-FACTOR MODEL AND SCHWARTZ AN D SMITH

(2000) TWO-FACTOR MODEL

The table presents the results for the Schwartz@mith (2000) two-factor model with deterministic
seasonality and for the four-factor model with bims&tic seasonality. Standard errors in parenth@s$es.
estimated values are reported wittlenoting significance at 10%, denoting significance at 5%, and
denoting significance at 1%.

GASOIL GASOIL GASOLINE GASOLINE NATURAL NATURAL

IPE IPE NYMEX  NYMEX oo o
FOUR-F. DETERM. FOUR-F.  DETERM. ot DETERM.
Number 364 364 113 113 131 131
obs.
He - - - - \
0.1960°  0.1962 0.4282 0.5193 0.1600 0.1918
(0.0389)  (0.0387)  (0.0782) (0.1093)  (0.0626)  (0.0641)
k 1.3650°  1.4259°  1.5407" 0.5998" 20348  4.2371"
(0.0236)  (0.0201)  (0.3065) (0.0904)  (0.4678)  (0.2891)
o 1.0217° 099500  0.9580" 0.9733" 1.0142°  0.9907"
(0.0038)  (0.0007)  (0.0124) (0.0020)  (0.0057)  (0.0015)
oe 0.1522°  0.1528"  0.1768" 0.2889°  0.1942°  0.1918"
(0.0042) ~ (0.0042)  (0.0095) (0.0475)  (0.0148)  (0.0097)
o, 0.2685  0.2663°  0.3587" 0.5243"  0.4275  0.5148"
(0.0079)  (0.0078)  (0.0295) (0.0606)  (0.0284)  (0.0376)
Gy 0.0257" 0.0487" 0.1021"
(0.0009) (0.0037) (0.0074)
Py -0.0117  0.0004 -0.0673  -0.7898" -0.2348  0.2465
(0.0409)  (0.0407)  (0.1960) (0.0785)  (0.1861)  (0.1012)
Pa 0.1127" -0.0053 -0.1011
(0.0427) (0.1297) (0.1452)
Pra 0.1176" 0.1791 0.2293"
(0.0428) (0.1041) (0.0885)
P -0.1630" 0.5269" 0.3204
(0.0447) (0.0924) (0.1465)
Pt -0.1842" -0.3494" -0.0712
(0.0460) (0.0790) (0.1016)
b -0.0357°  -0.0366  -0.1470°  -0.2682°  -0.0928  -0.0309
(0.0012)  (0.0012)  (0.0256) (0.0814)  (0.0296)  (0.0128)
A, 0.0974  0.0970  -0.2805 -0.4626 -0.1419  -0.1075
(0.0677)  (0.0660)  (0.1670) (0.2507)  (0.1430)  (0.1885)
Ao 0.0107°  -0.0022 -0.0085 -0.0226 0.0211  0.1909
(0.0041) ~ (0.0015)  (0.0195) (0.0042) ~ (0.0280)  (0.0135)
JR -0.0192"  -0.0044 0.0377 0.0191 -0.0430  -0.0263
(0.0043)  (0.0018)  (0.0184) (0.0160)  (0.0270)  (0.0203)
oy 0.0115°  0.0134"  0.0104" 0.0144°  0.0561°  0.0686"
(0.0001)  (0.0001)  (0.0003) (0.0003)  (0.0009)  (0.0011)
Log- ~ 23744.84 23190.87 4757.064  4571.973  4732.799  4400.313
likelihood
AIC 23712.84  23168.87 4725064 4549973  4700.799 43383
SIC 23650.49 23126 4681.426 4519.971  4654.796 _ 4346.686
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CHAPTER 3: CRUDE OIL AND REFINED PRODUCTS. A

COMMON LONG-TERM TREND

1. Introduction

In recent years the study of the stochastic bebavald commodity prices has grown in
importance among academics and practitioners, #iqdays a central role in the valuation and
hedging of commodity contingent claims and in definprocedures for evaluating natural

resources investment projects, especially in deténgnthe optimal investment rules.

In spite of the existing empirical evidence, whiiggests that commodity prices show mean-
reversion and the volatility of futures returnsidecreasing function of time, the first works on
the stochastic behaviour of commodity prices assiimas in the equity assets context, that
commodity prices follow a geometric Brownian motiarhich implies a constant rate of growth
in the commodity price and a constant volatilityfutures returns (see for example Brennan and

Schwartz, 1985; Paddock et al., 1988, among others)

More recently, several authors, such as LaughtdnJaoobi (1993) and (1995), Ross (1997) or
Schwartz (1997), have considered that a mean-regegptocess is more appropriate to model
the stochastic behaviour of commodity prices. Unimaitely, these one-factor mean-reverting
models are not very suitable, since they generatelatility of futures returns which goes to
zero as the time to maturity of the futures cortegaproaches infinity, which is not a realistic

assumption.

In addition, these models, that consider only angce of uncertainty, are not very reasonable
since they entail that futures prices for differawaturities should be perfectly correlated, which
defies existing evidence. Looking for more reatistésults, Schwartz (1997), Schwartz and

Smith (2000), Cortazar and Schwartz (2003) anda2artand Naranjo (2006), among others,
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have developed multi-factor models. All these mifattor models assume that the spot price is
the sum of short-term and long-term componentsghienm factors account for the long-term
dynamics of commodity prices, which is assumeda@bandom walk, whereas the short-term

factors account for the mean-reversion componentse commodity prices.

Most of these articles are focused on crude odgsriand not on the refining products derived
from crude oil. Briefly speakirig due to the refining process 47% of a crude oitedas
transformed into gasoline, 24% into diesel fuel &edting oil, 13% into jet fuel oil, 4% into
heavy fuel oil, 4% into liquefied Petroleum Gas @PFand 8% into other products like asphalts
and others more. Each of these products has a marice which quotes in an organized
market, as crude oil. Therefore, there is a raelabetween product prices and crude oil prices
and the difference between refining product andderoil prices is known as the refining

margin.

An interesting question that will not be addressgethis chapter (and has not been taken into
account in the literature until recently) is thetfthat both gasoline and heating oil are seasonal
whereas crude oil is not. This is because seaspirathese products goes in opposite direction.
Specifically, heating oil prices are higher in veinimonths, whereas gasoline prices are higher
in summer months. The sum of these effects resulten-seasonality for oil prices (see, for

example, Tolmasky and Hyndanov, 2002, or Chapter 2)

In order to keep our models parsimonious, we sis#Ino seasonal models, as they would only
improve the refined product part. The reader shdwelp in mind, however, that a seasonal
model is more realistic and convenient when onlgofiae or heating oil are considered (see

Chapter 2 for a more detailed analysis of seasmrainuous time models).

This work aims to understand the relationship betwerude oil and refining product prices.
The first issue to take into account is the faet tie refining margin is an stationary series,

whereas crude oil and refined products prices senie not. Therefore, crude oil and refining

17 See the Oil Market Report (2006) elaborated byltibernational Energy Agency for more information
about these issues.
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products prices should be cointegrated. In thiskwe present an empirical analysis of the
relation among crude oil (WTI) prices and the meafining products prices (gasoline and
heating oil), traded at NYMEX, using unit root acmintegration tests. In previous studies like
Serletis (1994), Gjolberg and Johnsen (1999), As@jelberg and Volker (2003) and Lanza,
Manera and Giovanninni (2005) we can find evidesitenit root and cointegration in crude oil
and refined product prices, but no evidence ofiatacity in the refining margin is found.
Nevertheless, these works carry out their studiés more refining products. However, in this
chapter we demonstrate that these three commoditeesiot only cointegrated, but they have
also a common long-term dynamics. The first evigeat it is achieved through a principal
component analysis. Following the studies carriati iy Clewlow and Strickland (2000) or
Tolmasky and Hyndanov (2002), it can be considehed the first principal component is a
long-term factor and the second and third oneslaoet-term factors. In this work we show that
when we calculate the principal components of tepimodities jointly, the sign of the first
principal component does not change depending@mieturity of the futures contracts, but the

second and the third do, which is a new eviden@eammon long-term dynamics.

A definitive evidence of this fact is achieved bpposing different factor models to explain the
dynamics of commodity prices jointly. It is foundat the most suitable model in terms of
simplicity and fit is the one which assumes a commong-term trend for all three

commodities.

This fact will have straightforward applications time valuation and hedging of commodity
contingent claims and in defining procedures foaleating investment projects in natural
resources, especially when determining optimal stment rules. Specifically, we use these
results to value the so-called crack-spread optigmsted at NYMEX, and we find that,

assuming a common long-term trend for crude oil r@ficdied product prices, option valuation is

as accurate as using models with more factors araieters.
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This chapter is organized as follows. Section Z@més some preliminary results about the
existence of a common long-term trend for crudepoites and the most important refining
products prices, i.e. the results of the unit raot cointegration tests and the principal
component analysis. The results of the estimatioth@ factor models with a common long-
term dynamics are contained in section 3. Sectishotvs the valuation results of the so-called
crack-spread options quoted at NYMEX, with a modéich assumes a common long-term
trend for crude oil and the main refining produdtes, with a model which allows for a long-
term trend for each commodity and with a model Whpostulates uncorrelated models for each

commodity. Finally, section 5 concludes with a suemyrand discussion.

2. Unit Root Tests, Cointegration tests and Princigl Component Analysis

In this section we find evidence of unit root ide oil, gasoline and heating oil spot prices, but
not in the refining margin. Taking into accounttthes it is said above, the main part of a crude
oil barrel is transformed into gasoline and heatoiy this fact suggests that these three
commodities should be cointegrated. In order tockhi, cointegration tests have been
implemented. It is found that these three commeslitire not only cointegrated, but they also
share a common long-term dynamics. The first ewideof it is achieved through a principal

component analysis. More evidence on these issilidsenpresented in the next section.

2.1. Unit Root Tests

Next we present three unit root tests to show thatrefining margin is stationary, whereas
crude oil, gasoline and heating oil prices are mbe first one is the Augmented Dickey-Fuller
(ADF) test and the second one is the Phillips-Retest. Both of them are based on the Dickey-
Fuller test, which is only valid if the series i AR(1) process and tests if the AR(1) coefficient

minus one is statistically different from cero (Kéy and Fuller, 1979).

As the basic Dickey-Fuller test needs a rather acspecification, several alternatives have

been proposed. The ADF test allows for higher-o®erelation by adding lagged difference
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terms of the dependent variable. Said and Dické84)1 demonstrate that the ADF test remains
valid even when the series has a moving average) @¢dAponent, provided that enough lagged
difference terms have been added to the regresBioilips and Perron (1988) propose a

nonparametric method to control for higher-orderad@utocorrelation.

The third unit root test is based on the works mgWijik (2001) and Boswijik and Doornik
(2005). These authors point out that standard Di¢kdler tests based on LS estimators are
often sensitive in the presence of GARCH errorsiclvlis a typical phenomenon in financial
high-frequency data. This problem becomes seriobhgnwthe volatility process is near
integrated. Therefore, given that our commoditycesi series are serious candidates to show
GARCH errors, the test proposed by Boswijk and Ddoshould be implemented. This test is
based on a likelihood ratio statistic, which substdly improves the asymptotic local power of
the standard Dickey-Fuller tests. The likelihootioréest will be based on the following model:

X, =(¢-D(Xy — ) + &

g =h"’n;n, iid.N(0))

h'? = B, + B, + Bh
Where X; is a commodity price series and the paramet@tescribes the degree of mean-
reversion. The null hypothesis will be:Hg— 1) = 0, which is tested against the alternatiye H
(¢- 1) < 0. The distribution for the likelihood rattatistic (under the null) is approximated by

a gamma distribution (see Boswijk and Doornik, 2005

To the best of the author knowledge there are pat grices for gasoline, heating oil or crude
oil associated with the futures traded at NYMEX.efigfore, weekly observations for WTI
(light sweet) crude oil prices, RBOB gasoline amating oil from 9/9/1996 to 9/4/2006 (522

observations) of one month futures prices are gturige used to test cointegration relations.

The refining margin used in the tests below is Wated by subtracting the cost of WTI crude
oil and the freight cost from the value of oil puots produced by a refinery in the US Gulf

Coast (catalytic cracking refinery). The value dfpsoducts is calculated by adding together a

115



fixed percentage of each refined oil product preduby a refinery. Weekly observations for

this refining margin from 04/20/2001 to 09/15/2(0@83 observations) are used in the tests.

The main descriptive statistics of the series argained in Table 1. Table 2 presents the results
for the unit root tests for gasoline, heating oildawTI crude oil prices, together with the
refining margin described above. Our results ingicagnificant presence of GARCH errors in
all the commodity serié% which confirms that the Boswijk and Doornik testiould be
implemented. It is found that at 1% significanceelehe unit root test hypothesis is rejected for
the refining margin with the ADF and the PhillipsrPon tests and at 5% significance level it is
also rejected with the Boskijk-Doornik t&tbut it is not possible to reject it for gasoline,
heating oil and crude oil prices, even at 10% $icgmce level. Thus, the empirical evidence
already found in previous studies of a unit rootiande oil, heating oil and gasoline prices is
confirmed in the present work even in the preseic®@ARCH errors. Therefore, given that the
refining margin does not show evidence of a unit,rave can conclude that there should be a

cointegration relation among crude oil prices drrhain refining product prices.

2.2. Cointegration Tests

Cointegration is the phenomenon that occurs wheh eamponenty;; (i = 1,...k), of a vector
time series proces§ is a unit root process, possibly with drift, betrtain linear combinations
of theses components are stationary. In the preweation it was found that gasoline, heating
oil and crude oil prices have a unit root, but teBning margin has not. As stated above, the
refining margin is a linear combination of thesenoeodity prices and other more like jet fuel
oil, heavy fuel oil, liquefied petroleum gas (LP@sphalts, etc. These two facts together
suggest a cointegration relation among all theniedj products and the crude oil. However, it is
not possible to conclude that there is a cointégratelation among crude oil, heating oil and

gasoline. In this section we show that this coirgdgn relation indeed exists, even more, there

18 For short, the results of the estimation of theR&A models are not presented in the paper, although
they are available from the authors upon request.

191t should be noted that at 1% significance lehel tinit root test hypothesis is almost rejectedh wie
Boswijk-Doornik test, for the refining margin.
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are also cointegration relations between crudaradl heating oil, crude oil and gasoline, heating
oil and gasoline and also among heating oil, gasaind crude oil. This is a first evidence of a

common long-term dynamics among the three commaquites.

In order to demonstrate that these cointegratitations exist, the Johansen test (Johansen,
1988) will be used. The approach by Johansen dsengis estimating the Vector Error
Correction Model (VECM), which is a model for thector time series in first differences,
including the cointegration relation. The modelestimated by maximum likelihood, under
various assumptions about the trend or interceainpaters and the numbat’ ‘0f cointegrating
vectors. Once the model has been estimated, weaatuct likelihood ratio tests. Assuming
that the VECM errors are independently distribugat] given the cointegrating restrictions on
the trend or intercept parameters, the maximuntitiked is a function of the cointegration rank

r. Johansen proposes two types of tests:fohe lambda-max test and the trace test.

The first one is based on the log-likelihood rdtifLmax(r)/Lmax(+1)], and is conducted
sequentially for = 0,1,.k-1. In this test the null hypothesis is that théntagration rank is
equal tor and the alternative is that the cointegration rsnéqual tar + 1. The second one is
based on the log-likelihood ratio In[Lmax{_max(k)], and is conducted sequentially for k-
1,...,1,0. In this test the null hypothesis is ttied cointegration rank is equal toand the
alternative is that the cointegration rankkidn this study we will present the results frone th
first one, however it has been checked that theegasults are obtained using the second one.

Johansen’s test also dispatches the cointegrafiations if it exists.

As in the previous section, weekly observationsnfr@9/1996 to 9/4/2006 (522 observations)
of one month futures prices for crude oil, gasoline heating oil, traded at NYMEX, are going

to be used to test cointegration relations.

Tables 3, 4, 5 and 6 present the results for thategration test and the normalized
cointegrating coefficients for gasoline and crudle leeating oil and crude oil, gasoline and

crude oil and, finally, for gasoline, heating aildacrude oil. All the tests have been performed
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assuming that it is possible to find a determinigtend in the cointegration equation. However,
similar results have been obtained when we repghgetests assuming that this kind of trend is

not feasible.

As can be seen in the tables, the results suggasttude oil, gasoline and heating oil prices
have a common trend. At 1% significance level, éhare cointegration relations between
gasoline and heating oil prices, between gasolimteciude oil prices and between heating oil
and crude oil prices, and the (normalized) coirdggg coefficients are, more or less, 1 and -1
in all cases. There is also a cointegration rataimong gasoline, heating oil and crude oil

prices at the same significance level.

2.3. Principal Component Analysis

In this section we carry out a principal componan@alysis with the three commodities
presented above trying to find more evidence obmron trend. As in the previous sub-
sections, we use weekly observations for WTI (ligiveet) crude oil prices, RBOB gasoline
and heating oil from 9/9/1996 to 9/4/2006, tradet’¥MEX. However, given that we need to
analyze the term structure of futures contractsegti the twelve futures contracts closest to
expiration will be employed (522 weekly observasipriThe principal component analysis will

be based on the eigenvalue decomposition of thariance matrix of the weekly log-returns.

Figure 1 shows the results of the principal compor@malysis for each commodity separately.
The first three principal components are depictedthie charts. The first component and,
therefore, the primary dynamics of the forward eyhe shift, is a roughly parallel shift of the

whole curve either up or down depending on thectliva of the random shock. The fact that the
function is not flat indicates that the volatiliof the short end of the forward curve is greater
than the long end one. The second and third conmierrepresent tilts and bendings of the
forward curve respectively. The tilt is a movemehthe short end of the forward curve either
up or down depending on the direction of the randbock and a movement of the long end of

the curve in the opposite direction. The bending msovement of the short end and the long end
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of the forward curve either up or down dependingtun direction of the random shock and a

movement of the middle end of the curve in the sjtpalirection.

Moreover, it should be noted that the first compurieas the same sign for all maturities and
does not go to zero as maturity goes to infinitgplying that a random shock following this

component has the same direction for all maturéies does not vanish with time. However, the
second and third components have a certain sigadiore maturities and the opposite sign for
the other ones, implying that a random shock falhgihese components has a certain direction
in some periods and the opposite direction in opegrods and, therefore, in the long-term its
effect tends to vanish. For these reasons we casidar that the first principal component is a

long-term component, whereas the second and tbirgponents are short-term ones.

The same conclusion is derived from Table 7. Threselts are similar to those obtained by
Clewlow and Stricland (2000) and Tolmasky and Hyrma(2002). It can be appreciated from
Table 7 that the first component explains more @@ of the volatility (more than 98% in the
case of the crude oil). This evidence is consistétit the extant literature about modelling the
stochastic behaviour of commodity prices, whers #lways considered one long-term factor
and one or more short-term factors (see for exa@phtazar and Schwartz, 2003; Cortazar and
Naranjo, 2006). As in Clewlow and Stricland (20@8)Tolmasky and Hyndanov (2002), the

first three components explain almost 100% of thiatiity.

In spite of the fact that in all cases the firghpipal component explains more than the 90% of
the volatility, as can be appreciated in the fipanel of Table 7, this explanatory power is
greater for crude oil than for the other two comitied. This means that short-term shocks
have more importance in refining product pricesthmcrude oil prices. This is coherent with

previous papers, see for example Radchenko (2@0&hRJ2005b), who state that in the case of
refining products, particularly in the case of damn there are short-term imperfections in the
markets like lags and asymmetries in response teements in crude oil prices. Other cause

could be the fact that, as explained in the Intotidn Section and as can be seen in Tolmasky

119



and Hyndanov (2002) or in Chapter 2, gasoline amatihg oil prices are seasonal whereas
crude oil prices are not, and therefore as thecjp@h components are calculated without
considering this fact, seasonality could be takera ahort-term shock. Moreover, the lack of
liquidity of the refining products long maturitytfires prices quotation, especially in the case of
gasoline, could be other explanation. Other possisplanation could be related with the fact
that gasoline is more volatile than the other t@mmodities, as can be appreciated in Figure 1

and also in Table 1.

Figure 2 shows the results of the principal comporanalysis with the three commodities
considered in this study joined in pairs. In these, given that the estimation is performed with
more than one commodity, the same number of futaoedracts have been used for each
commodity, in order not to upset the balance oheammmodity. Similar maturities were also
taken for each commodity futures, so that shorit@nd long-term relationships were not
decompensatél Thus, we take the first, third, fifth, seventlinth and eleventh maturating

futures contracts for the first commodity and teeand, fourth, sixth, eighth, tenth and twelfth
maturating futures contracts for the second ond, \ee carry out the principal component

analysis in the same way as before.

Looking at Figure 2 we can appreciate that the ismponent follows the same pattern as in
Figure 1, but the second and the third principahgonents do not. This is new evidence in
favour of a common long-term trend for these tloe@@mmodities, despite of their differences in
the short-term. Moreover, from the second paneTalble 7 it can be appreciated that the
percentage of the volatility explained by each congmt, with the three commodities joined in
pairs, is broadly the same than in the case of eantmodity separately, which confirms the
evidence of only one long-term trend for all comimtied, since the first principal component

explains more than the 90% of the volatility.

The same conclusion is obtained when we performpthresipal component analysis with the

three commodities jointly (Figure 3). Specificallye take the first, fourth, seventh and tenth

20 Similar results have been obtained with futureth wifferent maturities.
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maturating futures contracts for heating oil, teeand, fifth, eighth and eleventh for WTI crude
oil and the third, sixth, ninth, and twelfth matimg futures contracts for unleaded gasoline,
and carried out the principal component analysisthis case the first component explains

92.93% of the volatility, the first two componef%.90% and the first three 96.25%.

Given these first signs of a common long-term tfe three commodities considered in this
study, the next section tries to shed more lighthtwse issues by proposing different factor
models for the stochastic behaviour of commoditggs, including models assuming a common

long-term trend for all three commodities.

As it is said above, the previous studies aboutetsion among crude oil and refining product
prices were focused on the cointegration relatamsng them. However, as we will see in the
following sections, in this chapter we also finddence of a common long-term trend among

crude oil and refining product prices.

3. Factor Models

In order to find definitive evidence of a commondeterm trend among crude oil, gasoline and
heating oil prices, we are going to fit the datadifferent factor models. It seems clear that
modelling each commodity separately is the wayetiotige best fit to data. However, if we get a
similar goodness of fit when modelling the threenomodities jointly with a common long-term
trend, the conclusion is a definitive evidence abanmon long-term trend. Of course, it is also
possible to compare the results of modelling theroodities jointly with and without a

common long-term trend. If there is a common loggrttrend the results must be comparable.

3.1. Theoretical Models

In order to model each commodity separately, wél sise the two factor model proposed by
Schwartz and Smith (2000). Given the existing eio@irevidence (see for example Schwartz,

1997), this is a reasonable approach for this kihdommodities. In this model the log-spot
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price (X, is assumed to be the sum of two stochastic feictoshort-term deviationyg and a

long-term equilibrium price levelq):
X, =&+ X, 1)

The stochastic differential equations (SDE) of éhizgtors are:

{dgﬁ = pdt+ o, dW, o

dy, = -kx, dt+o,dW;

wheredW¢ anddWy; can be correlatedl(V&dWy; = péxdt).

In order to test the existence of a common longiteeend for each pair of commodities, we will
compare the model goodness of fit for each commaskparately in the context of the two
factor model presented above, and the goodness foir the commaodities in pairs in a joint
model in which the log-spot pric;{) of the commodity i” is assumed to be the sum of two
stochastic factors: a short-term deviatign)( different for each commodity, and a common
long-term equilibrium price level§) for both commoditiesX, = ¢, + X, (i = 1,2). We shall
also compare this joint model, which possessesnanumm long-term trend for the pair of
commodities, with another joint model without a e¢oan long-term trend in which the log-spot
price ;) of each commodity is taken as the sum of two hatetic factors: a short-term

deviation ;) and a different long-term equilibrium price lev&}) for each commodity:

Xp =&+ X (=12).

The SDE of the factors are the same as the onesmieal above. For the model with common

long-term trend they are:

dé, = . dt+o,.dW;
dy. 1 — “KiXy dt + JX1dWX1t 3)
d)(zt = _Kz)(ztdt + szdW

'yt

122



where any correlation structure can exits amdids, dW,; and dWy, (dWrdW,i = 0gdt,

dWzdW,2t = péx2dt anddWy1tdWy2t = pxyLy2d1).

For the modeWwithout common long-term trend the SDE are:

déy, = pdt+ oy, dW,
dé, = ,uzfdt + szdW&t
dy, = -k xdt+o deWXn

Ay, = =K X, dt+ U)(de)(zt

(4)

where againdWs;, dWg, dW,,; and dWy,; can show any correlation structur@\(dWp,; =
,Oglggdt, dW{ltdW)(lt = pgl)(ldt, deltdWth = pﬁﬂdt, de‘thWXlt = ,Ogg)ﬂdt, dW{thWXZt = ,Oggﬂdt and

dWXltdW)(Zt = p)ﬂ_)(zdt)

As can be appreciated, the model for each commadiparately and the model for pairs of
commodities jointly have the same SDE. Howeverhe first case, there is no correlation
between factors of different commodities, whichdearly, an undesirable property in valuing

commodity contingent claims, as shall be discussdolw.

If there is a common long-term trend for pairs ofntnodities, the log-likelihood for these three
methodologies (one model for each commodity seplgrahe joint model with common long-
term trend and the joint model without common ldegn trend) must be similar. In this case,
the most suitable model for pairs of commoditieshis joint model with common long-term
trend. This model is preferable to the joint modéthout common long-term trend as it
contains less parameters (being, therefore, sinpled because it has only one long-term
factor, which is an advantage in valuing long-tezammodity contingent claims. From our
point of view, the economic interpretation of batbmmodities to be common long term
trended is also quite appealing in qualitative trithe point is that, all things equal, a model
whose parameters are interpretable is better. kebrniefly compare our models from a

qualitative point of view.
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In a standard two factor model framework each coditpdactors are, by design, uncorrelated
to the other commodity ones. So nothing can beaadit the relationship between both series.
Should we impose or estimate a correlation strecaimong different commodities factors we
would end up with 4 more parameters and therefoeemodel would be equivalent to a four
factor model. Four factor models, such as the miwd@), i.e. the joint model without common
long term trend for commodities in pairs, do acdadonthe relationship between both series but
they do so in a rather ambiguous way. We have felations to look at, and none of them is
negligible, in general. We have two correlated laegn trends but the relationship between
both series does not stop here. We can not takedhielation as the only measure, as the long
term trend for crude oil is also correlated witle tehort term trend for refined products.
Moreover, one cannot answer to questions like, wghdite market general trend? This question
is meaningless in our model without common longntarend unless we assume some

combination of both long term trends as “reprederga

In contrast, with only one long term trend this spim can be fully answered, as the general
trend is the common long term trend. We can eventlse relationship between the general
trend and each of the series, just looking at détsglrun-short run correlation coefficient.

Moreover, the (isolated) influence of a seriestendther can be directly seen just looking at the

short term-short term correlation coefficient.

Finally, the joint model with a common long-terrend is also more suitable than a model for
each commodity separately (without correlation agndifferent commodities factors) as the
first one has less parameters and factors and becas stated above, it takes into account the
correlation between different commodities factasiich is essential in valuing commodity

contingent claims, a fact that will be discusseldwe

To test the existence of a common long-term tremdte three commodities jointly we shall
compare the goodness of fit if we estimate eachnoodity separately (using a two factor

model as presented above) and the goodness of fi joint model (for the three commodities
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together) in which the log-spot prick;§ of the commodity i" is assumed to be the sum of two
stochastic factors: a short-term deviatign), which is different for each commodity, and a

common long-term equilibrium price levelg) which is equal for all commoditigs

Xi =&+ X, (i=1,23).

The SDE of the factors for the joint model with goon long term trend for all three

commodities are the same as before:

dé, = ydt+o,dW;
dxy =-k xdt+o,,dW,

. (5)
d)(zt = _Kz)(ztdt + J)(ZdW)(Zt
d)(st = _Ks)(stdt + UX3dWX3t

where dWg, dWy;, dWy,: and dW,s can show any correlation structurd@\xzdWy; = 0gadt,
dW&dWXZt = p&th, dWﬁdWAet = p&/\gdt, dWXltdW)ﬂt = p)ﬂ_)(zdt, dW)ﬂ[dWAet = p)ﬂﬁdt and

dW/ﬂtdWXg,t = pﬂ)@dt)

As in the previous case, if there is a common Itangs trend for the three commaodities, the log-
likelihood for both methodologies (one model forckeacommodity separately and the joint
model with common long-term trend) must be simi&nould this be the case, the most suitable
model for the three commodities will be the joimbael with common long-term trend, because
it is simpler (it has less structure) and becatidakies into account the correlation between
different commodities factors, which is essentmalaluing commaodities contingent claims, as

we will discuss below.

In all models presented in this sub-section, tlgespot price of each commodity is the sum of

two factors: a short-term deviatiofy;) and a long-term equilibrium price level&)(

(X, =&, + x,). Therefore, the expression for the log-price ofutures contract for each

2L Of course, we could also estimate a joint modeheit common long term trend for all three
commodities. However, apart from the fact that thizdel would have a high number of parameters, its
interpretation would be ambiguous, as said abovehi® case of the joint model without common long
term trend for commodities in pairs.
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commodity with maturity at time “T+t” traded at tart is the one obtained by Schwartz and

Smith (20003
In[F(X,, T+t)]=& +e™ x, + AT) (6)
where:
A(T) = (u;'+0502)T - (1-e™)A, Ik+0,0,p, 1-€*")/k+ 02507 (1-e*T)/k

As explained in Schwartz and Smith (2000), the-risktral version of the model is necessary
to calculate this expression. This is the reasow thibre is a risk-premium for the short-term
deviation ,) and also a long-term drift corrected by rigk) instead of the original one for the

long-term equilibrium price level.

Finally, it should be noted that the differencesMaen the models presented above lay on the

number of factors and in the correlation assumeadngnthem.

3.2. Estimation Methodology

Given that the factors (or state variables) aredu@ctly observable, the model's parameters
must be estimated using the Kalman Filter. Thishm@ology enables the estimation of the
likelihood of a data series, given a particularcfetnodel parameters and a prior distribution of
the variables, which allows the estimation of thargmeters by maximum likelihood

technique¥.

The Kalman filter technique is a recursive methodyglthat estimates the unobservable time
series, the state variables or fact&3, pased on an observable time serigswhich depends
on these state variables. Theasurement equaticaccounts for the relationship between the

observable time series and the state variables:

22 For the same reason the volatility of the futuresirns has the same expression as in Schwartz and
Smith (2000).
% Detailed accounts of Kalman filtering are giverHarvey (1989).
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Y, =d, +M,Z, +7, t=1,..,N, 7

whereY,,d, 00",M, 0O™", Z, 00", his the number of state variables, or factorsthin

model, andp, 00" is a vector of serially uncorrelated Gaussianudistnces with zero mean

and covariance matriA..

Thetransition equatioraccounts for the evolution of the state variables:

Z, =c +T.Z +if, t=1, ...,N, 8)

where ¢, 00", T,00™"and ¢, 00" is a vector of serially uncorrelated Gaussian

disturbances with zero mean and covariance matrix

Let Y, be the conditional expectation df and let =, be the covariance matrix Of;

conditional on all information available at time 1. Then, after omitting unessential constants,

the log-likelihood function can be expressed as:
I == 1= =20 (% =Y =Y~ Yy) 9)
t t

Two conditions need to be fulfilled in the originadrsion of this methodology. Firstly, the data
must have no missing points and, secondly, thetleofyvectorY; must be independent of"!
Cortazar and Naranjo (2006) introduce a new versibrthis methodology to handle with
incomplete data sets and vect¥rsvhose length depends oti.“However, with a data set with

a lot of missing points in the futures contracttwionger maturities, we face the problem of the
unbalance in the relationship between long andtsifects. As explained below, the data set
employed in this chapter has not missing pointsalhdectors have the same length. Therefore

in this work the traditional version of the Kalm@ter methodology can be used.

A discrete-time version of the models is neededrigler to estimate the parameters of the
models through the Kalman filter methodology. Givkat the expression for the log-price of a

futures contract for each commodity is independadrthe model, the discrete time version of
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each model will be similar to the ones obtainedbiiwartz and Smith (2000). The differences
are due to the correlation among factors. The éisctime versions of the models presented

above are developed in the Appendix.

3.3. Data

The data set employed in the estimation procedomsists on weekly observations of unleaded

gasoline, heating oil and WTI crude oil futurecps traded at NYMEX.

There are currently futures traded at NYMEX for WéFlide oil from one month to seven years,
for heating oil from one to eighteen months and dasoline from one to twelve months.
However, in the case of the gasoline there is mough liquidity for the futures of longer
maturities. In the estimations presented in thiskwiior models with more than one commodity,
we have chosen to use futures contracts with thee saaturities for all commodities, in order
not to decompensate the short-term-long-term it Therefore, to estimate the parameters

for the different models presented above the fdtigwdata sets have been set up:

e The data set for the joint model with common loag+ trend for the three commodities is
made of contracts F1, F3, F5, F7 and F9 from 0&&¥ to 04/24/2006, which implies 461
quotations of each contract, where F1 is the confaa the month closest to maturity, F2 is
the contract for the second month closest to ntgtarid so on.

e« The data set for the joint model for WTI crude aild heating oil (with and without
common long-term trend) is made of contracts F1, F4, F11, F15 and F18 from
09/09/1996 to 09/18/2006, which implies 522 quotadiof each contract.

* The data set for the joint model for WTI crude arild gasoline (with and without common
long-term trend) is made of contracts F1, F3, F5akd F9 from 06/30/1997 to 04/24/2006,

which implies 461 quotations of each contract.

24 Details about the contracts can be found in th&/IEX homepage.
% Similar results have been obtained with futureth wifferent maturities.
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The data set for the joint model for heating oitlagasoline (with and without common
long-term trend) is made of contracts F1, F3, F5akd F9 from 06/30/1997 to 04/24/2006,
which implies 461 quotations of each contract.

The data set for the two factor model for gasoiteade of contracts F1, F3, F5, F7 and
F9 from 06/30/1997 to 04/24/2006, which implies 4ibtations of each contract.

There are two data sets for the two factor modeWad| crude oil. The first one is made of
contracts F1, F3, F5, F7 and F9 from 06/30/1997046424/2006, which implies 461
quotations of each contract. The second one is ma&é&, F4, F7, F11, F15 and F18 from
09/09/1996 to 09/18/2006, which implies 522 quotadiof each contract. Depending of the
case we will employ one or the other. The firsadsgt is employed when crude oil is used
jointly with gasoline, whereas the second one béllused in all other cases.

There are also two data sets for the two factorehtat WTI heating oil. The first one is
made of contracts F1, F3, F5, F7 and F9 from 0&&8X to 04/24/2006, which implies 461
guotations of each contract. The second one is mb&&, F4, F7, F11, F15 and F18 from
09/09/1996 to 09/18/2006, which implies 522 quotadi of each contract. As in the
previous case we shall employ one or the otherrdpg on the situation, the first data set

when heating oil is used jointly with gasoline, #ezond one in all other situations.

The use of different data sets for gasoline andother two commodities is due to liquidity
constrains. Specifically, as stated above, in #ee®f gasoline the available futures contracts
are less liquid and their maturities are shortenthhe other two commodities contracts.
Therefore, given that in the case of heating arehare futures contracts with enough liquidity
until eighteen months of maturity, we have decittedse a data set with more futures contracts

and with futures contracts with longer maturitileart in the case of gasoline, in which there are

not enough liquidity for futures with maturitieqiger than nine months. In the case of crude oil

there are available futures contracts until sewsrs/ of maturity. However, as it is said above,

it has been decided to use crude oil futures cotstraith the same maturity as the ones used for

the other commodities, in order to not decompentetehort-term-long-term effects. Schwartz
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(1997) realized that mean reversion effects tertabttower for contracts with longer maturities.
The same evidence in the case of the natural gabden presented in chapter 2. Therefore, to
avoid undesirable effects, for models with morentbae commodity, it has been decided to use

futures contracts with the same maturities focathmodities.

As explained in Schwartz (1997), since futures i@mts have a fixed maturity date, the time to
maturity changes as time progresses, but remaiasniarrow time interval. This is the reason
why, as in Schwartz (1997), it is assumed thattithe to maturity does not change with time

and it is equal to one month for F1, two monthsH@rand so on.

3.4. Results

Table 8 presents the results for the two factorehagdplied to each commodity (WTI crude oil,
heating oil and gasoline) separately and for athdsets described above. Tables 9 and 10
present the results for the joint model for pafrs@mmmodities with and without common long-
term trend respectively. Finally, Table 11 presehésresults for the joint model with common
long-term trend for all three commodities. As satbove, for models with more than one
commodity, we have chosen to use futures contradtis the same maturities for each

commodity.

The first notable issue is the fact that the gasofrice is more volatile than the other two
commodity prices, since in Tables 8, 9, 10 andh&lvblatility coefficients are higher when the

gasoline appears in the model. It can be also ajgteel in Table 1 and in Figure 1.

If we define the Schwartz Information Criterion ¢3las In(L,, ) —qIn(T), whereq is the

number of estimated parametefsis the number of observations abg is the value of the
likelihood function, defined in (9), using tlgeestimated parameters, then the higher the SIC the

better the fit. The same conclusions are obtainigtdl tive Akaike Information Criterion (AIC),

which is defined asn(L,, ) — 29.
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The main result of this part of the work is thetfdtat there is a common long-term trend for
these three commodities. To reach this conclusiistof all we can appreciate that the SIC and
the AIC values in the joint model with common lotegm trend for pairs of commaodities (Table
9) are more or less the same as the ones obtaiiedhe joint model without common long-
term trend (Table 10), and are also more or lesss#fime as the sum of the SICs or the AICs
values obtained with the two factor model for eambmmodity separately (Table 8).
Specifically, in the case of heating oil and WTlide oil, in the in the joint model with common
long-term trend, for the period time from 09/09/636 09/18/2006 and using the contracts F1,
F4, F7, F11, F15 and F18, the SIC is 39195.4 (T8hlevhereas in the joint model without
common long-term trend the SIC is 39456.3 (Table T@e sum of the SICs estimated in the
two factor model for each commodity separately 3¢441.8 + 17761.8 = 41206.6 (Table 8).
Therefore, we can conclude that all the modelmbite or less the same and, consequently, as
the joint model with common long-term trend is gimplest one, we don't need a second long-
term factor in modelling heating oil and WTI crudi jointly. They have the same long-term

trend.

Similar results are obtained for gasoline and Wide oil and for gasoline and heating oil for
the period 06/30/1997 to 04/24/2006 and using ectdrF1, F3, F5, F7 and F9 in both cases. In
the case of gasoline and WTI crude oil the SiCh@jbint model with common long-term trend
is 26436.2 (Table 9) whereas in the joint modehwitt common long-term trend and adding
the SICs of the two factor models separately waiol®27672.7 (Table 10) and 30113.9 (Table
8) respectively. In the case of gasoline and hgatiih these figures are: 24306.2 (Table 9),

26313 (Table 10) and 25912.4 (Table 8) respectively

Using the previous evidence we can conclude trattliree commodities have the same long-
term trend when we analyse them in pairs. Usingrémesitive property we could conclude that
all three commodities have the same long-term trétmvever, in order to reach a definitive
evidence of this fact, we can just compare the f8fGhe joint model with common long-term

trend for the three commodities, which is 39033.@ble 11), and the sum of the SICs of the
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two factor model for each of these three commoslisieparately, which is 17812.6 + 13611.1 +
12301.3 = 43725 (Table 8). The period used goes @6/30/1997 to 04/24/2006 and the
contracts used are F1, F3, F5, F7 and F9. As theres are similar, we can conclude

definitively that the three commodities have theedong-term trend.

Moreover, it is worth noting that in Table 8 thdues of the SIC and the AIC are higher for
crude oil than for the other two commodities, usthg same time period (06/30/1997 to
04/24/2006) and the same contracts (F1, F3, Fara7F93°. As in the case of the principal

component analysis, the better fit to crude oiladabuld be related with the short term
imperfections in the refining product markets, witle fact that the two factor models do not
account for seasonality, whereas gasoline andrigeatl prices are seasonal and, especially in
the case of gasoline, or the lack of liquidity imndler maturity futures prices quotations.

Nevertheless, in all cases the fit is well enougttiie purpose of this study.

The relative fit of the models to our three comniypgirices series can be assed more formally
looking at their in-sample predictive ability. Tiesample predictive ability of the Schwartz
and Smith (2000) two-factor model is presentedefach commodity separately (Table 12), for
pairs of commodities with common long-term trenclifle 13), and for pairs of commodities
without common long-term trend (Table 14). It isufid that, whenever the results are
comparable (i.e. contracts F1, F3, F5, F7 and &®)pugh the model for each commaodity
separately performs slightly better (Table 12)anrts of the root mean squared error than the
other two models, the differences, in general, lave Therefore, given that the predictive
ability of all three models is very similar, as twef, we can conclude that all three commodities
have the same long-term trend. Moreover, lookingthat results in Table 12, it can be
appreciated that the root mean squared error valaescrude oil are lower than the
corresponding values obtained with the other twmroodities, which confirms our previous

guess.

% |t should be pointed out that, although in priteithe values of the SIC and the AIC are not diyect
comparable whenever the series are different, lmeetcommodity prices series have the same order of
magnitude, the time period (06/30/1997 to 04/246)0énd the futures contracts used in the estimation
procedure (F1, F3, F5, F7 and F9) are the same.

132



Finally, it is also noticeable that previous stediave already found that crude oil and the main
refined product prices are cointegrated but ingresent work this conclusion is extended, as
we find out that they have also a common long-téremd. Moreover, to the best of our
knowledge this is the first time that a factor mogdi#h a common long-term trend for crude oll

and its main refined product prices is proposedestithated.

In the next section we shall use these resultakaevthe so-called crack-spread options quoted
at NYMEX, assuming a common long-term trend forderwil and the main refining product

prices.

4. Crack Spread Option Valuation

It is well known that commodity markets have beeowgng fast during the last years.
According to the Hedge Funds Review (2008), we diatinguish three types of investors in
commodity markets. Firstly, investors looking forpartfolio diversification tool, especially
pension funds. Secondly, investors looking for arse of alpha, especially hedge funds. And
thirdly, European banks, which use commodity deénves to structure products that they retail
to their customers. Therefore, in this contexsiimportant to have techniques which can be
implemented easily to value commodity derivatives;h as the so called crack spread options.
In this section we present a technique to valuseloeack spread options assuming a common
long-term trend, for WTI crude oil and gasoline dod WTI and heating oil, which can be

implemented relatively easy and is simpler thanstaedard techniques.

4.1. Data

The data set employed in the estimation procedomsists on two sets of daily observations of
crack-spread put and call options quoted at NYMEKe first one contains Heating Oil vs.

WTI and the second one Gasoline vs. WTI.
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In NYMEX there are only quotations for these twatsaf crack spread options (Heating Oil

vs. WTI and Gasoline vs. WTI) and contracts maguoitcurs each month for the following

eighteen months for different strike prices. Speaily, the strike prices are the at-the-money
one, five additional strikes both above and belbe éstablished "at-the-money" strike price at
$0.25 (25¢) increments, three additional out-oftheney strike prices are added above and
below those strikes at $1.00 intervals, and twatewhél strikes will be added above and below
at $2.00 intervals. Options traded at NYMEX are Aicen style, so the holder can exercise his

right at any time.

The market for this kind of options is much legwid than the one for futures. Due to the
scarcity of data, we have chosen to use daily &ksté weekly data. This fact has forced us to
do same minor changes in the model, as we shallbebew. Even more, these liquidity
constrains are the cause of the lack of data faryntktes in many contracts. As a result, our
data set includes daily quotations from January2a0Qlanuary 2007. However, there are many
missing dates or contracts. Specifically, for tlasec of the Gasoline vs. WTI crack-spread
options we have data corresponding to four mangatiates: March, April, August 2006 and
January 2007, with twelve exercise prices, frono 36 dollars. In the case of the Heating Oll
vs. WTI crack spread option we have data correspgni contracts maturating from January
2004 to January 2007, with only two exercise prigesilable, which are 5 and 8 dollars. A

brief summary of these options is given in table 15

Let us give a brief review of the option descripti€rack spread options are used to protect the
refining margin, while at the same time allowingrket participants to take advantages of
favourable changes in the spread. A crack-spreth@t#on is a contract that gives the holder
the right (not the obligation) to buy a refined gwet futures contract from the writer and sell
him a crude oil futures contract, paying a previpagreed crack spread price. Note that these
three actions are simultaneous and can not be &plitthe holder is unable to just buy the

contract and leave the rest of the transactiodater. Conversely, a crack spread put allows to
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sell a refined product futures contract and to hugrude oil futures contract, paying a crack

spread price.

4.2. Option Valuation Methodology

In order to value crack spread options, we shallovio the methodology described in

Barraguand and Martineau (1995).

First of all, let us keep in mind what the problenWe have a set of crack-spread American
options that we would like to replicate. Of courdgre is no close analytic expression for their
price so one has to resort to simulation. In addito that, our models are three dimensional
(common trended one) or four dimensional (when wmsiler one trend for each commodity)

which severely narrows down the methods we can use.

There are several ways to value an American opédinof them involve discretization of the
state space, so at each point of time and eacle wdlthe factors, the holder of the option must
decide whether to exercise his right or not and tlecision can only be based on future
dynamics. However, when the number of factors mes, one can not help finding the “course
of dimensionality” (a concept due to Bellman) al dliscretization is almost infeasible due to

computational complexity for more than three fagtor

In order to reduce this problem, three are the rappproaches (Bally, Caramellino and Zanette,
2005). One idea is to perform state aggregatiooriter to develop a “synthetic indicator” in
fewer dimensions, so that the holder of the optiecides whether to exercise or not just
depending on it and not on the three or more fact®his is the idea in Barraquand and
Martineau (1995), which we shall follow becausesitaplicity. The other ones use either base
functions (Longstaff and Schwartz, 2001 or Tsiisikknd VanRoy, 1999) or compute
conditional expectations via Malliavin Calculus,es€ournié, et al. (1999) for numerical

applications and Bouchard and Touzi (2004) for gartbeory and variance reduction.

The basic idea in the Barraquand and Martineu (Big#)hod is to construct a one-dimensional

indicator summarizing all states. The syntheticidatbr will be the difference between the
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values of the refined product and the crude oiliress. We shall sum up the algorithm in the

following scheme.

1. Divide the time interval [0,T] intk subintervalsO =t, <t; <...<t, =N (uniformly
spaced). The value of an American option will beragimated by a Bermuda option

that can only be exercised at these intervalsAtet t;,, —t;.
2. Start at = 0 and simulat&l trajectories of the process starting)&§. For each instant
of time, one can measure the difference in futyrmesess, D(Xti ) which is one-

dimensional. Discretize this quantity i intervals {Pl(ti )P (ti )} so that each

r

, 1 -
interval contains— of probability.
r

3. Using simulation, compute the transition probaiesitgiven by the formula:

7,0 = PX,0ae 0P/ X, TP () (0

4. Compute a mean for each interval:
fi(t) = E[D(X,)/ X, OR(t) (11)
5. Solve the problem by backwards iteration, i.e.tfe intervalr — 1, the value of not
exercising ise™™ Zr:ﬂij fj (tr ) so the value of the option at that interval igegi by the
j=1

maximum:

Clit.)= ma{ L) e St )j 12

i=1
6. Repeat 5 until reaching :

X, ie.Cli,t)= ma>{ f (tk_l),e‘rmzr:ﬂijC(j,tk)] (13)
=
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Note that for each valuation, one has to compyte which means that we must have an
estimation of the state for each instant in timeisTis done via an aliasing algorithm, which
computes the expectation of the state conditional on the information of the futuresiate t

(see Harvey, 1989, for details). This is the nteasonable choice, as there is no reason why a
practitioner would not employ the (already avaigbilitures price at timg but future prices at

timest+h, t+2h... can never be observed prior to time a real application.

All parameters and dynamics were estimated usireklyalata. However, changing the model
to daily dynamics is not really an issue in contiasi time. We have just resampled the model
(we did not estimate parameters again) and usediasing algorithm to get daily states. The

RMSE is a bit higher, but the difference is small.

Finally, once we have an estimation of the optidogy we must keep in mind the possibility of
direct exercise, this is, buying the option andreiseng it right away, thus obtaining the
differences in futures prices minus the strike @ri€hould this quantity be higher than our
estimated price, the real price would be the formes we would exercise the option

immediately.

4.3. Commodity Price Dynamics

In order to value an option, we need a full degiznipof the model. In matrix form, the state

dynamics can be described as:

dX, = (u+ AX,)dt+dw, (14)

In order to clarify matters, let us také, to be a unit Brownian motion (i.eU,dU, =1 dt)

and rewrite (14) as:

dX, = (u+ AX, )dt + RdU, (15)
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If we just consider the models in equations (3) &dthe only thing that is left to do is to
estimate the states via an aliasing algorithmhidase of two models put together, we have

two equations in matrix form:
dX, = (4 + AX,)dt+Rdw, (i=12) (16)

Therefore, if we assume uncorrelation the globadehds:

o e ALl (s alar) e
dXy H, 0 A Xy 0 R, \dU,

Whereas if we allow a free correlation structure tfiodel is:

dxlt — /'11 + Ai O Xlt dt+ R* dUlt (18)
det luZ O AZ x2t dUZt
4.4, Results

Table 16 presents several metrics in order to apdlye in-sample predictive power ability of
the models, for both types of options: the heatitys. WTI and the gasoline vs. WTI crack-
spread options. The models considered are theeffactor) joint model with common long-
term trend, the (four-factor) joint model withouwdnamon long-term trend, and the (two-factor)

model for both commodities separately.

What we see is that we get better results withféluie and three factor models. Even in some
cases our model with common long-term trend giveeb results than the model without
common long-term trend. The difference betweenjoire models with and without common

long-term trend is rather small when compared \thih difference between each one of them
and the uncorrelated model, which gives the wagsults. This confirms our hypothesis of

common trend.

Finally, we can conclude that, given that our jaimdel with common long-trend is simpler

and easier to implement for the purposes of optalnation, and given that the valuation errors
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obtained with the joint models with and without goon trend are quite similar and lower than
those obtained with the uncorrelated model, théepred model is the one with common long-
term trend. This is further evidence of the congané of using a common trend for both series,

as soundness is always a prerequisite for accuracy.

5. Conclusion

In this chapter we have found evidence of a comlong-term trend for crude oil (WT]I) prices
and the prices of the most important refined preésl{gasoline and heating oil), traded at
NYMEX. This evidence was obtained from three indefsnt sources, which makes our

findings even more convincing.

First of all, studies on stationarity and Johanwsts show a cointegration relation. This fact

would suggest common non-stationary dynamics butave been able to go further.

Secondly, a principal component analysis shows these three commodities are not only
cointegrated, but they have also a common long-dyrmamics, which can be obtained from

one of these components (the first one).

Our next step was to propose a model that takesfdlt into account and to compare it with
independent models. In order to do so, we havegsexgba joint model with common long-term
trend for two or three commodities, within the femork of the factor models proposed by
Schwartz (1997) and Schwartz and Smith (2000).r€kelts indicate that our joint model with
common long-term trend gives similar results imgrof goodness of fit and Schwartz and
Akaike information criteria than a joint model watlt common long-term trend and a standard

model for the commaodities separately, suggestiagttiere is a common long-term trend.

These three models have also been used to valgk-gpeead options traded at NYMEX.
Specifically, we have used Heating Oil vs. WTI &@&dsoline vs. WTI crack-spread options

traded at NYMEX. The results indicate that the a#ibn errors obtained with our common

139



long-term model are quite similar to the resulttaoted with the model without common trend,
and lower than those obtained with the uncorrelatedel. Therefore, we can conclude that,
given that our joint model with common long-trersdsimpler and easier to implement for the

purposes of option valuation, the preferred mosi¢ghé one with common long-term trend.

Finally, we can conclude that crude oil and itsmmaifined products have a common long-term
trend and therefore a model taking into accourst thét is the most useful. This model can be

used not only for valuation of claims, but also doialitative analysis.

APPENDIX

The Two-Factor Model for Each Commaodity Separately

Transition equation:

Z =C, +TZ_, +yY, t=1,...,N
wherez -( <], ¢ =[#A), 7 (1 © ] and
l Xt ' 0 ' 0 e"‘A‘
- oEAt 0.0, Py (L-e™) 1k
Ve (Uzaxpxs(l‘e_m)/ k  o;@-e™¥)/(2k)

Measurement equation:

Y, =d, +M,Z, +71, t=1,...,N
InF,, A(T,) e
WhereY - i do=| ‘M=l andF+; is the price of a futures contract on the
t t . t —| - .
InF,, A(T,) 1 e*m

commodity with maturity at timeT;+t” traded at timd.
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This model is the two factor model presented inv&etz and Smith (2000).

The Joint Model With Common Long-Term Trend forBaf Commodities

Transition equation:

Z =c +T.Z_ +¢, t=1,...,N
¢ U Ot 1 0 0
where Z=|yulc=| 0 T =0 et 0 and
KXot 0 0 0 e
ozt 0.0, Py, A=)k 0,0, Py, A-€")/Kk,
Val(wt) = a-{a-)(llo{/\/l (l_ eiklm)/kl a-)z(l (1_ e’2k1A[ ) /(2k1) U/\/l 0-)(2 p/Yi)(z (l_ ei(klAHk?A[))/(kl + k2)
0.0, Py, A-€**) Ik, 0,0, p,, Q- ") /(k +k,) o2 (L-e2%)/(2k,)

Measurement equation:

Y, =d, +M,Z, +1, t=1,..,N
1
|n F'I}l A (Tl) l e*lel O
WhereY _|InFL g o AT, | 1 e‘@T" (') and F/, is the price of a futures
Clmez | o emy | Ml o e
InF2 AX(T,) 1 0 ekh

contract on the commodity™(i=1,2) with maturity at timeT,+t” traded at timd. In principle,
it would be possible to use a different numberutfifes contracts for each commodity, but in
this work we consider more suitable to use the sanmsber (h") of futures contracts for both

commodities.

The Joint Model Without Common Long-Term Trend Rairs of Commodities

Transition equation:

Z =c +T.Z._, +y, t=1,...,N
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glt /u{lAt 1 0 O O
where P P 0 |, 0 e“™ 0 0 |and
Sl & | |Het] YO 0 1 0
Xa 0 0 0 0 e*
oM 0.0, p,, (L-e**)/k, 0,0, 0, .0, 0., (L-e )k
& s xnl"an &7 &EPEG &7 X6 2
Vi) =| F%nPar =€) 77, 0™ *) /(%) 0,0 Py, =€)k 0,0, 0, A=) i +k,)
‘ 0—510—{2p51<(zAt O—Xlo'{zp/\ﬁ{z (1_ e_klm)/ki J?zAt a—fzo—sz{z)(z CL_e_kZAt)/kz
0.0, P, A-e“")Ik, o,0,p, . (@—elarety (i +k,) 0,0, P, A-e) /K, o; (1-e ) /(2k,)
Measurement equation:
Y, =d, +M,Z, +71, t=1,...,N
1
In F'I}l A (Tl) 1 e_k1T1 0 0
" 1' : : : : Q. .
whereYl _[InFL s d = Az(Tn) ST & 0 0 and k, is the price of a futures
In FT21 A (Tl) t 0 0 1 e_sz1
InF2 AX(T,) 0 0 1 e*b

contract on the commodity™ (i=1,2) with maturity at time T,+t” traded at time. As in the
previous case, in principle, it would be possildeuse a different number of futures contracts
for each commodity, but in this work we considerrensuitable to use the same number’)(*

of futures contracts for both commodities.

The Joint Model With Common Long-Term Trend for il@ee Commodities

Transition equation:

Z =c +T.Z_ +y, t=1,...,N
&, U 1 0 0 0
0 0 e 0 0
WhereZt _| X | ¢ = T = o and
Xt 0 0 0 e* 0
Xat 0 0 0 0 e
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T T 0Py, L€ ) Ky 50 Py O30 =€) K,
0,05, A=) 1K g, (L-e™) /(%) 0,0,,P, A-€ ")l +k) 0,0, 0, M=) (i +K)
00,05, 0-€") Ik, 0,0, P, (=€) (i +K,) o, (1-€7) /(2,) 0,0, Py, A=) [k, +)
0,0, Py, A=)k, 0,0, p,, Q- ")k +k) 0,0, p,, Q-2 ) [k +k) 7, 1-€7)/(2¢)

Vay,) =

Measurement equation:

Y, =d, +M,Z, +7, t=1, ..., N

InF: AN(T,)

Ak L 1 e 0 o0

. AT S A
In FT2n 2( n) 1 & o 0 - |
where InF7 |, A {Tl) , 1 o e o |andFgisthe price of a futures
Yt = : , dt - 2: M, =|: : B

InFr, A(T,) 1 0 e o0
|n FT31 A3 (Tl) 1 0 0 e_k3T1
InF, A(T,) 1 0 0 ekh

contract on the commodity™(i=1,2,3) with maturity at timeT;+t” traded at timd. As in the
previous cases, in principle, it would be possibleise a different number of futures contracts
for each commodity, but in this work we considerrensuitable to use the same number)("

of futures contracts for all the commodities.
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DESCRIPTIVE STATISTICS

TABLE 1

The table shows the mean and volatility of the foammodity series prices. F1 is the futures

contract closest to maturity, F2 is the secondreattclosest to maturity and so on.

WTI cruce oil

Heating Oil

Gasoline

Ref. Margin

Mean Volatility Mean Volatility Mean Volatility Mean Stand.Dev.

Spot - - - - - - 4.02 4.99
F1 32.07 30% 37.10 31% 39.26 35% - -
F2 32.05 27% 37.16 28% 38.98 30% - -
F3 3194 26% 37.12 26% 38.63 27% - -
F4 3178 24% 37.01 25% 38.28 24% - -
F5 31.60 22% 36.85 23% 37.90 22% - -
F6 3142 21% 36.69 22% 37.31 22% - -
F7 3123 20% 36.52 21% 36.62 21% - -
F8 31.05 19% 36.34 19% 36.08 21% - -
FO 30.88 18% 36.16 18% 35.50 20% - -
F10 30.71 18% 3599 18% 3515 20% - -
F11 3055 17% 3582 17% 34.89 19% - -
F12 30.40 17% 35.67 16% 34.73 19% - -
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TABLE 2

UNIT ROOT TESTS

The Table shows the results of the Augmented Didkaller (ADF), Phillips-Perron and Boswijk-
Doornik unit root tests. The reported critical \@ufor the ADF and Phillips-Perron tests are the
MacKinnon critical values for rejection of the ntaypothesis of a unit root. In the case of the Bsw
Doornik test the reported critical values are asytip p-values obtained by the gamma approximation

proposed by Boswijk and Doornik (2005).

WTI CRUDE OIL ADF PHILLIPS-PERRON  BOSWIJK-DOORNIK
Test statistic -0.0062 0.1460 3.2198

1% Critical value -3.4427 3.4427 12.5284

5% Critical value -2.8669 -2.8669 9.1422

10% Critical Value -2.5697 -2.5697 7.5999
HEATING OIL ADF PHILLIPS-PERRON BOSWIJK-DOORNIK
Test statistic 0.2975 0.0117 1.5572

1% Critical value -3.4427 -3.4427 12.5642

5% Critical value -2.8669 -2.8669 9.0843

10% Critical Value -2.5697 -2.5697 7.5063
GASOLINE ADF PHILLIPS-PERRON BOSWIJK-DOORNIK
Test statistic -1.1137 -1.1564 0.9192

1% Critical value -3.4427 -3.4427 12.5406

5% Critical value -2.8669 -2.8669 9.1284

10% Critical Value -2.5697 -2.5697 7.5761
REFINING MARGIN ADF PHILLIPS-PERRON  BOSWIJK-DOORNIK
Test statistic -3.9437 -4.5629 11.4066

1% Critical value -3.4537 -3.4535 11.8653

5% Critical value -2.8717 -2.8716 8.0008

10% Critical Value -2.5723 -2.5722 6.3071
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TABLE 3

JOHANSEN COINTEGRATION TEST FOR GASOLINE AND HEATI NG OIL

Hypothesized Number of  Likelihood 5 Percent 1 Percent
Cointegration Equations
Ratio Critical Value Critical Value
None ** 38.67195 15.41 20.04
At most 1 0.041342 3.76 6.65

Normalized Cointegrating Coefficients: 1 CointegrgtEquation

Gasoline Heating QOil Trend Coefficient Log likelibab

1.00000 -0.913957 -5.41611 -1983.337

*(**) denotes rejection of the hypothesis at 5%{1$ignificance level

TABLE 4

JOHANSEN COINTEGRATION TEST FOR GASOLINE AND CRUDE OIL

Hypothesized Number of  Likelihood 5 Percent 1 Percent
Cointegration Equations
Ratio Critical Value Critical Value
None ** 41.69961 15.41 20.04
At most 1 0.311977 3.76 6.65

Normalized Cointegrating Coefficients: 1 CointegrgtEquation

Gasoline Crude Oil Trend Coefficient Log likelihood

1.00000 -1.134830 -2.919235 -1813.967

*(**) denotes rejection of the hypothesis at 5%(18ighificance level
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TABLE 5

JOHANSEN COINTEGRATION TEST FOR HEATING OIL AND CRU DE OIL

Hypothesized Number of  Likelihood 5 Percent 1 Percent
Cointegration Equations
Ratio Critical Value Critical Value
None ** 42.03124 15.41 20.04
At most 1 0.040317 3.76 6.65

Normalized Cointegrating Coefficients: 1 CointegrgtEquation

Gasoline Crude Oil Trend Coefficient Log likelihood

1.00000 -1.22888 2.321953 -1598.295

*(**) denotes rejection of the hypothesis at 5%(18ignificance level

TABLE 6

JOHANSEN COINTEGRATION TEST FOR GASOLINE, HEATING OIL AND

CRUDE OIL
Hypothesized Number of Likelihood 5 Percent 1 Percent
Cointegration Equations
Ratio Critical Value Critical Value
None ** 87.88729 29.68 35.65
At most 1 ** 37.97700 15.41 20.04
At most 2 0.215044 3.76 6.65

Normalized Cointegrating Coefficients: 1 CointegrgtEquation

Gasoline Heating QOil Crude Oil  Trend Coefficient dlikelihood

1.000000 1.42074 -2.881141 0.39226 -2527.315

Normalized Cointegrating Coefficients: 2 CointegrgtEquations

Gasoline Heating QOil Crude Oil  Trend Coefficient dlikelihood
1.000000 -1.130430 -3.060284
-2508.434
1.000000 -1.232253 2.430102

*(**) denotes rejection of the hypothesis at 5%(18ighificance level
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TABLE 7

PRINCIPAL COMPONENT ANALYSIS

The Table shows the percentage of the volatiligpl@red by each principal component.

Panel 1: Gasoline, Heating Oil and Crude Oil sapfra

Gasoline Heating Oil Crude Qil
First Component 91,25% 95,05% 98,01%
First Two Components 94,55% 97,70% 99,74%
First Three Components 96,99% 99,19% 99,95%

Panel 2: Gasoline, Heating Oil and Crude Oil irrpai

Gasoline and Heating Gasoline and  Heating Oil and Crude

Oil Crude Oil Oil
First Component 92,27% 92,87% 94,74%
First Two Components 94,21% 95,67% 97,11%
First Three Components 96,41% 97,08% 98,26%
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TABLE 8

THE TWO FACTOR MODEL FOR EACH COMMODITY SEPARATELY

The table presents the results for the SchwartzSmidh (2000) two-factor model for each commodity

separately. Standard errors in parentheses.

WTI Crude  WTI Crude Heating Oill Heating Oil Gasoline
oil Oil

Contracts F1, F3,F5, F1,F4, F7, F1, F3, F5, F1, F4, F7, F1, F3, F5,
F7and F9 F11,Fl15and F7andF9 F11,Fl15and F7 andF9
F18 F18

Period 06/30/1997 to 09/09/1996 to 06/30/1997 to 09/09/1996 to 06/30/1997 to
04/24/2006  09/18/2006  04/24/2006  09/18/2006  04/24/2006

Number obs. 461 522 461 522 461
e 0.1536 0.1488 0.1579 0.1471 0.1321
(0.0383) (0.0293) (0.0494) (0.0284) (0.0429)
k 1.4996 1.1304 1.0678 1.3624 1.5505
(0.0302) (0.0124) (0.0829) (0.0402) (0.1166)
Os 0.1712 0.1403 0.2957 0.1652 0.2707
(0.0042) (0.0033) (0.0194) (0.0042) (0.0164)
oy 0.3037 0.3089 0.4929 0.3337 0.5267
(0.0081) (0.0078) (0.0262) (0.0091) (0.0226)
Pty -0.0640 -0.0666 -0.7163 -0.1974 -0.6450
(0.0398) (0.0351) (0.0443) (0.0408) (0.0515)
He’ -0.1198 -0.0531 -0.1330 -0.0522 -0.0624
(0.0031) (0.0013) (0.0149) (0.0030) (0.0141)
A -0.0543 0.0142 -0.1077 -0.0241 0.0955
(0.0689) (0.0660) (0.0939) (0.0586) (0.0986)
Oy 0.0066 0.0089 0.0231 0.0289 0.0329
(0.0001) (0.0001) (0.0003) (0.0003) (0.0004)
Log- 17861.6 23494.9 13660.2 17811.9 12350.4
likelihood
AlIC 17845.6 23478.9 13644.2 17795.9 12334.4
SIC 17812.6 23444.8 13611.1 17761.8 12301.3
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TABLE 9

THE JOINT MODEL WITH COMMON LONG-TERM TREND FOR PA IRS
OF COMMODITIES

The table presents the results for the SchwartzSmith (2000) two-factor model assuming a common

long-term trend for pairs of commodities. Standamebrs in parentheses.

WTI Crude Oil and

WTI Crude Oil and

Heating Oil and

Gasoline Heating Oil Gasoline
contracts £y r3 F5 FrandFe T AP FILFLS by b3 k5 F7 and Fo
and F18
Period 06/30/1997 to 09/09/1996 to 06/30/1997 to
04/24/2006 09/18/2006 04/24/2006
Number obs. 461 522 461

s 0.2334 (0.0399) 0.1771 (0.0296) 0.1553 (0.0358)
Ky 1.1533 (0.0535) 1.1349 (0.0181) 2.1553 (0.0764)
ko 1.7312 (0.0761) 1.3854 (0.0242) 2.2657 (0.0749)
ot 0.1962 (0.0066) 0.1433 (0.0034) 0.1819 (0.0050)
64 0.3233 (0.0127) 0.2768 (0.0072) 0.3097 (0.0104)
6,2 0.4308 (0.0132) 0.3182 (0.0080) 0.3637 (0.0110)
Py -0.3035 (0.0580) 0.0043 (0.0368) 0.0726 (0.0474)
Py -0.3792 (0.0506) -0.0342 (0.0362) -0.0026 (0.0453)
Py 0.8614 (0.0166) 0.8537 (0.0110) 0.6264 (0.0298)
e -0.0857 (0.0089) -0.0522 (0.0018) -0.0857 (0.0078)
Ag 0.2387 (0.0693) 0.1373 (0.0552) 0.0193 (0.0570)
Ao 0.0055 (0.1080) -0.0697 (0.0670) -0.0861 (0.0593)
oy 0.0282 (0.0002) 0.0220 (0.0001) 0.0368 (0.0003)

Log-likelihood 26516.0 39276.7 24425.9

AIC 26490.0 39250.7 24399.9

SIC 26436.2 391954 24346.2
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TABLE 10

THE JOINT MODEL WITHOUT COMMON LONG-TERM TREND FOR
PAIRS OF COMMODITIES

The table presents the results for the Schwartz @midth (2000) two-factor model for pairs of

commaodities without common long-term trend. Staddarors in parentheses.

WTI Crude Oil and

WTI Crude Oil and

Heating Oil and

Gasoline Heating Oil Gasoline
Contracts F1, F3, F5, F7, F9 F1, F4, F7, F11, F18B, F1, F3, F5, F7, F9
Period O oot 1 00/09/1996 t0 00/18/2006 oo nio0 [©
Number obs. 461 522 461
M1 0.1519 (0.0354) 0.1474 (0.0272) 0.1602 (0.0489)
Wz 0.1305 (0.0449) 0.1476 (0.0292) 0.1306 (0.0428)
ky 1.4839 (0.0980) 1.1543 (0.0292) 1.0777 (0.1033)
ko 1.4855 (0.0846) 1.3473 (0.0292) 1.5721 (0.1025)
Os1 0.1975 (0.0065) 0.1459 (0.0037) 0.3055 (0.0240)
Os2 0.3193 (0.0136) 0.2992 (0.0083) 0.5043 (0.0319)
6, 0.2505 (0.0121) 0.1520 (0.0037) 0.2498 (0.0129)
G, 0.5021 (0.0186) 0.3180 (0.0081) 0.4947 (0.0198)
Pzic2 -0.2521 (0.0666) -0.1000 (0.0422) -0.7273 (0.0496)
Pr1yt 0.3307 (0.0431) 0.8215 (0.0178) -0.0828 (0.0597)
Peixe 0.2101 (0.0436) 0.0050 (0.0372) 0.3624 (0.0502)
Peox 0.1010 (0.0477) 0.1281 (0.0368) 0.3513 (0.0523)
Peaye 0.3279 (0.0365) 0.7310 (0.0207) -0.0285 (0.0511)
Pyix2 -0.6186 (0.0440) -0.0924 (0.0370) -0.5888 (0.0512)
Her' -0.1235 (0.0105) -0.0550 (0.0026) -0.1330 (0.0177
T -0.0589 (0.0107) -0.0508 (0.0022) -0.0625 (0.0118
Mg -0.0586 (0.0593) 0.0126 (0.0575) -0.1105 (0.0921)
A2 0.0979 (0.1007) -0.0231 (0.0615) 0.0952 (0.0958)
oy 0.0235 (0.0002) 0.0212 (0.0001) 0.0277 (0.0002)
Log-likelihood 27789.2 39575.2 26429.1
AIC 27751.2 39537.2 26391.1
SIC 27672.7 39456.3 26313
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TABLE 11

THE JOINT MODEL WITH COMMON LONG-TERM TREND FORTH E
THREE COMMODITIES

The table presents the results for the SchwartzSmith (2000) two-factor model assuming a common

long-term trend for all three commodities. Standamdrs in parentheses.

WTI Crude Oil, Gasoline and Heating Oil

Contracts F1, F3, F5, F7 and F9
Period 06/30/1997 to 04/24/2006
Number obs. 461
He 0.2062 (0.0432)
ke 1.7671 (0.0470)
ko 2.2432 (0.0629)
ko 2.0721 (0.0554)
oa1 0.1730 (0.0045)
o8l 0.2642 (0.0086)
h 0.3138 (0.0094)
Gy 0.3398 (0.0099)
Peie2 0.1504 (0.0433)
Pe1x1 0.1186 (0.0415)
Pziy2 0.0558 (0.0415)
Pz2x1 0.7164 (0.0227)
Pe2x2 0.6639 (0.0248)
Pxix2 0.6564 (0.0255)
Hea -0.0935 (0.0058)
W' 0.1705 (0.0591)
Ma -0.1312 (0.0741)
» -0.2183 (0.0682)
Oy 0.0308 (0.0002
Log-likelihood 39150.2
AIC 39112.2
SIC 39033.7
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TABLE 12
IN-SAMPLE PREDICTIVE ABILITY

TWO-FACTOR MODEL FOR EACH COMMODITY SEPARATELY

The table presents the mean error (real minus getlivalue) and the root mean squared error
(RMSE) in order to analyze the in-sample predicpesver ability of the Schwartz and Smith (2000)
two-factor model for the three commodities sepdyafehe time period is 06/30/1997 to 04/24/2006
(461 weekly observations for each commodity).

WTI Heating Oil Gasoline

Contract Mean RMSE Contract Mean RMSE Contract Mean RMSE

F1 0.0005 0.0428 F1 0.0004 0.0469 F1 -0.0001 0.0528

F3 -0.0012 0.0369 F3 -0.0010 0.0413 F3 0.0004 0.0502

F5 0.0003 0.0319 F5 0.0001 0.0397 F5 -0.0003 0.0449

F7 0.0009 0.0283 F7 0.0010 0.0328 F7 0.0000 0.0324

F9 -0.0006 0.0267 F9 -0.0006 0.0392 F9 0.0001 0.0503
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TABLE 13
IN-SAMPLE PREDICTIVE ABILITY

TWO-FACTOR MODEL FOR PAIRS OF COMMODITIES WITH
COMMON LONG-TERM TREND

The table presents the mean error (real minus @estlivalue) and the root mean squared error
(RMSE) in order to analyze the in-sample predicpesver ability of the Schwartz and Smith (2000)

two-factor model for pairs of commodities assumingommon long-term trend. The time period is

06/30/1997 to 04/24/2006 (461 weekly observatiarseiich commodity) when using the contracts
F1, F3, F5, F7 and F9 and 09/09/1996 to 09/18/28@8 weekly observations for each commodity)

when using the contracts F1, F4, F7, F11, F15 da& F

WTI AND HEATING OIL WTI AND GASOLINE HEAT. OIL AND GASOLINE

WTIL CRUDE OIL WTI CRUDE OIL HEATING OIL

Contract Mean RMSE Contract Mean RMSE Contract Mean RMSE

F1 0.0066 0.0452 F1 0.0104 0.0502 F1 0.0034 0.0513

F4 -0.0002 0.0344 F3 0.0048 0.0381 F3 0.0004 0.0435

F7 0.0022 0.0276 F5 0.0047 0.0340 F5 0.0007 0.0459
F11 0.0033 0.0255 F7 0.0054 0.0349 F7 0.0017 0.0500
F15 0.0026 0.0239 F9 0.0051 0.0377 F9 0.0011  0.0509
F18 0.0003 0.0238 - - - - - -
HEATING OIL GASOLINE GASOLINE

Contract Mean RMSE Contract Mean RMSE Contract Mean RMSE

F1 -0.0003 0.0460 F1 -0.0017 0.0542 F1 -0.0042 0.0564
F4 -0.0043 0.0441 F3 0.0008 0.0495 F3 -0.0015 0.0516
F7 0.0003 0.0431 F5 0.0008 0.0464 F5 -0.0010 0.0517
F11 0.0016 0.0378 F7 0.0007 0.0374 F7 -0.0005 0.0453
F15 0.0015 0.0310 F9 -0.000®.0460 F9 -0.0013 0.0435

F18 -0.0020 0.0298 - - - - - -
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TABLE 14
IN-SAMPLE PREDICTIVE ABILITY

TWO-FACTOR MODEL FOR PAIRS OF COMMODITIES WITHOUT
COMMON LONG-TERM TREND

The table presents the mean error (real minus @estlivalue) and the root mean squared error
(RMSE) in order to analyze the in-sample predicpesver ability of the Schwartz and Smith (2000)
two-factor model for pairs of commodities withoutnemon long-term trend. The time period is
06/30/1997 to 04/24/2006 (461 weekly observatiarseiich commodity) when using the contracts
F1, F3, F5, F7 and F9 and 09/09/1996 to 09/18/28@8 weekly observations for each commodity)
when using the contracts F1, F4, F7, F11, F15 da& F

WTI AND HEATING OIL WTI AND GASOLINE HEAT. OIL AND GASOLINE

WTIL CRUDE OIL WTI CRUDE OIL HEATING OIL

Contract Mean RMSE Contract Mean RMSE Contract Mean RMSE

F1 0.0018 0.0440 F1 0.0005 0.0443 F1 0.0004 0.0474
F4 -0.0034 0.0345 F3 -0.0012 0.0375 F3 -0.0010 0.0417
F7 0.0002 0.0272 F5 0.0003 0.0324 F5 0.0001 0.0396
F11 0.0017 0.0245 F7 0.0009 0.0291 F7 0.0010 0.0327
F15 0.0011 0.0224 F9 -0.000®.0277 F9 -0.0005 0.0397
F18 -0.0014 0.0225 - - - - - -
HEATING OIL GASOLINE GASOLINE

Contract Mean RMSE Contract Mean RMSE Contract Mean RMSE

F1 0.0018 0.0455 F1 -0.00010.0525 F1 -0.0001 0.0528
F4 -0.0035 0.0440 F3 0.0003 0.0485 F3 0.0003  0.0492
F7 0.0004 0.0434 F5 -0.0003).0443 F5 -0.0003 0.0442
F11 0.0015 0.0393 F7 0.0000 0.0314 F7 0.0000 0.0313
F15 0.0016 0.0302 F9 -0.000®.0489 F9 -0.0000 0.0499

F18 -0.0017 0.0280 - - - - - -
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TABLE 15

DESCRIPTIVE STATISTICS FOR CRACK SPREAD OPTIONS

The Table shows the main descriptive stats of taeksspread optiong.he time period is January 2004
to January 2007. For gasoline vs. WTI crack-sprgatthns there are four maturating dates: March|lApr
August 2006 and January 2007, with twelve exengigees, from 5 to 16 dollars. For heating oil VT

crack spread options there are data correspondiegritracts maturating from January 2004 to January
2007, with only two exercises prices availablen8l 8 dollars.

PANEL A: HEATING OIL VS WTI (35 SERIES, 1735 OBSERVATIONS)

% sample Mean number of Mean K Mean price
observations/series
%) %)
Put options 62.86 48.5 7.45 0.6
Call options 37.14 51.38 7.31 1.67

PANEL B: GASOLINE VS WTI (18 SERIES, 820 OBSERVATIONS)

% sample Mean number of Mean K Mean price
observations/series
(%) (%)
Put options 22.22 57.75 10.00 2.31
Call options 77.78 42.07 10.86 2.73
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TABLE 16

CRACK-SPREAD OPTION VALUATION RESULTS

ERROR DESCRIPTIVE STATISTICS

The table presents several metrics in order toyaaahe in-sample predictive power ability of the
models under study: the joint model with commomdrethe joint model without common trend and
the model for commodities separately. The time queiis 2004-2007 for gasoline vs WTI crack

spread options and 2006-2007 for heating oil vs WAtk spread options (daily observations).

PANEL A: HEATING OIL VS WTI CRACK SPREAD OPTIONS

STATISTIC

3 Factor Model

(Joint Model with

4 Factor Model

(Joint Model without

2 Factor Model

(Uncorrelated

Common Trend)  Common Trend) Model)
Mean Bias (real — predicted) 0.7925 -0.1670 1.7083
RMSE 0.4347 1.9728 2.0784
Bias Standard Deviation 1.8066 0.4013 1.1837
Median Bias 0.0036 0.1640 1.4912
Root Median Squared Error 0.3937 0.2619 1.4912

PANEL B: GASOLINE VS WTI CRACK SPREAD OPTIONS

3 Factor Model

4 Factor Model

2 Factor Model

STATISTIC (Joint Model with | (Joint Model without  (Uncorrelated
Common Trend), Common Trend) Model)
Mean Bias (real — predicted -0.5950 -0.6609 0.9696
RMSE 1.0751 0.9381 1.3856
Bias Standard Deviation 0.8954 0.6657 0.9899
Median Bias -0.4704 -0.5250 0.8522
Root Median Squared Error 0.5580 0.5565 0.8607
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FIGURE 1. PRINCIPAL COMPONENT ANALYSIS FOR GASOLINE , HEATING OIL

AND CRUDE OIL SEPARATELY

Unleaded Gasoline (NYMEX)
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FIGURE 2. PRINCIPAL COMPONENT ANALYSIS FOR GASOLINE , HEATING OIL

AND CRUDE OIL IN PAIRS

Heating Oil and Unleaded Gasoline NYMEX
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FIGURE 3. PRINCIPAL COMPONENT ANALYSIS FOR GASOLINE , HEATING OIL
AND CRUDE OIL JOINTLY
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