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INTRODUCTION  

 

In this section we are going to exhibit some fundamentals about futures contract valuation in 

commodity markets which are going to be used in the whole doctoral thesis. These 

fundamentals consist on a general methodology which can be used in all kind of problems, is 

much simpler than the ad-hoc solutions presented in the literature that can only be used in the 

concrete problem for which they were developed, and avoids approximations. 

 

1. Futures Contract Valuation 

Most of the models proposed in the literature assume that the dynamics of a commodity price 

(or its log) is given by a linear stochastic differential system: 

( )




=
++=

tt

ttt

cXY

RdWdtAXbdX
 

where tY  is the commodity price (or its log), b, A, R and c are deterministic parameters 

independent of t ( nnxnn cRAb ℜ∈ℜ∈ℜ∈ ,,, ) and Wt is a n-dimensional canonical 

Brownian motion (i.e. all components uncorrelated and its variance equal to unity). 

It is easy to prove that the solution of that problem is:  





 ++= ∫∫

−−
s

t sAt sAtA
t RdWebdseXeX

000        (I1)     

and this solution is unique (Oksendal, 1992). Moreover, even in the case that b, A and R were 

functions of t, if At and dsA
t

s∫0  commute, the solution of that problem is (I1). 

Accordingly, Xt is normally distributed with mean and variance:  

[ ]




 += ∫

− bdseXeXE
t sAtA

t 00           [ ] '

0

'' tAt sAsAtA
t edseRReeXVar





= ∫

−−     
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With this result it is easy to prove that the price of a futures contract traded at time t with 

maturity at time t+T, Ft,T, can be computed as:  

( )[ ]TgXceF t
AT

Tt += exp,                      (I2)   

where g is a, probably complicated, deterministic function.  

 

2. Volatility of Futures Returns 

The squared volatility of a futures contract traded at time t with maturity at time t+T can be 

defined as: 
[ ]

h

FFVar TtTht

h

,,

0

loglog
lim

−+

→
 (it is also possible to define it as 

[ ]
h

FFVar TthTht

h

,,

0

loglog
lim

−−+

→
). It can be proved that it is the expected value of the square 

of the coefficient of the Brownian motion (σt) in the expansion ( ) F
tttTt dWdsFd σµ +=,log , 

where Wt
F is a scalar canonical Brownian motion. 

Hence, taking logarithms and differentials on both sides of Equation (I2), it follows that: 

( ) [ ] t
AT

t
AT

t
AT

Tt dWRcedtAXbcedXceFd ++==,log  

Therefore, the squared volatility is:  ''' ceRRce ATAT .                                                (I3) 

Note that R does not need to be computed as 'RR is the noise covariance matrix. 

 

3. Empirical Models 

In the general model presented above, it is easy to prove that knowing Xt-1, Xt can be written as: 

ttttt XMcX ψ++= −1                               (I4)   
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where =tc




∫ −

− dsbee
t

t

AsA #

1
, A

t eM =  and ψt is a n-vector of serially uncorrelated Gaussian 

disturbances with zero mean and covariance matrix: 
'''

1

AAst

t

AsA edseRRee




 −

−

−
∫ . 

 

4. Uses and remarks 

This general methodology can be used in all kind of problems, is much simpler than the ad-hoc 

solutions presented in the literature that can only be used in the concrete problem for which they 

were developed, needing complex procedures like limit steps (Schwartz and Smith, 2000) or 

partial differential equations (Schwartz, 1997), and avoids approximations like in Schwartz 

(1997). 

 

5. The doctoral thesis 

As it is said above, due to the complexity of commodity prices dynamics, valuation of 

commodity contingent claims is carried out in the extant literature via ad-hoc solutions, which 

are very complex and sometimes include approximations. That is, owing to the cost of carry, the 

commodity prices dynamics is very complex. Therefore, it is needed to continue deepening in 

its study. This doctoral thesis tries to go an step forward in this sense. 

This doctoral thesis is organized as follows. Chapter 1 contains an study about the extant 

commodity models and their implications in investment under uncertainty. Investment projects 

involving commodities typically require a large amount of capital, last many years and include 

clauses which can be interpreted as call and put options. Therefore, the price dynamics 

behaviour assumed for the commodity price is essential in valuing these investment projects. In 

this chapter it is analysed the optimal contract determination assuming several models proposed 

in the literature for the commodity price dynamics. 
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In chapter 2 it is proved that seasonality in some commodities (natural gas, gasoline and heating 

oil) is an stochastic factor instead of a deterministic one. This chapter proposes a general 

(n+2m)-factor model for the stochastic behavior of commodity prices, considering seasonality 

as an stochastic factor, with n non-seasonal factors, described in the literature, and m seasonal 

factors. The model, particularized for n = 1, 2, 3 and m = 1, has been applied to Henry Hub 

natural gas futures contracts traded at NYMEX. Similar results are obtained with other 

commodities traded at NYMEX and with commodities traded in other markets (ICE Futures 

Europe). 

Chapter 3 provides evidence that crude oil and the main refining products are not only 

cointegrated but also have a common long-term trend. In this chapter there is definitive 

evidence of a common long-term trend for crude oil prices and the most important refining 

products prices, i.e. gasoline and heating oil, traded at NYMEX. These three commodities are 

not only cointegrated, but they have also a common long-term dynamics. We present definitive 

evidence of this fact by proposing different factor models to explain the dynamics of 

commodity prices jointly. These results are used to value the crack-spread options quoted at 

NYMEX, given that the most suitable way to value these options is assuming a common long-

term dynamics for crude oil and refined products prices.   

 

REFERENCES 

• Oksendal, B. (1992) ‘Stochastic Differential Equations. An Introduction with 

Applications’, 3rd ed. Springer-Verlag, Berlin Heidelberg. 

• Schwartz, E.S. (1997). The stochastic behavior of commodity prices: Implication for 

valuation and hedging. The Journal of Finance, 52, 923-973.  

• Schwartz, E.S. & Smith, J.E. (2000). Short-term variations and long-term dynamics in 

commodity prices, Management Science, 46, 893-911.
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CHAPTER 1: COMMODITY MODELS AND 

INVESTMENT UNDER UNCERTAINTY. THE 

OPTIMAL CONTRACT DETERMINATION  

 

1. Introduction  

One of the classical financial theory assumptions is the fact that the log-spot price (pt) of a 

financial asset follows a random walk with drift: pt = r + λ + pt-1 + εt, where r is the interest rate, 

λ is the risk premium and εt is an independent and identically distributed in t (iid) random noise, 

which is distributed following a Gaussian distribution with zero mean and variance σ2∆t for 

each time “t” (σ is the annualized volatility). That is, except for error terms, future prices 

growth with a constant rate which is the sum of the interest rate and the risk-premium. 

Due to the cost-of-carry, this assumption is not reasonable in the case of commodities. These 

assets present strong mean reversion, as can be appreciated in Figure 1. The natural way to 

extend the random walk to incorporate the mean reverting effect is through an AR(1) model. In 

recent years several authors have proposed more sophisticated models, in which the commodity 

price is assumed to be the sum of several factors. Specifically, we review the two-factor model 

by Schwartz and Smith (2000) and Schwartz (1997). In this model the commodity price is the 

sum of a long-term factor, which evolves according to a geometric Brownian motion, and a 

short-term factor, which evolves according to an Ornstein-Uhlenbeck process. More recently 

Cortazar and Schwartz (2003) have proposed an extension of the two factors model, allowing 

the spot price long term return to be stochastic. A generalization of this kind of models has been 

proposed by Cortazar and Naranjo (2006). 

An alternative procedure has been proposed by Clewlow and Stricland (2000). These authors try 

to model the futures price dynamics directly, by assuming that the futures prices are a 

martingale, where the price of a futures contract at time t is its price at time t-1 plus an 
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innovation which is given by the sum of several deterministic volatility functions. One possible 

way to choose these deterministic volatility functions is through a principal component analysis.  

Several authors have tried to incorporate in the model the seasonal effects commonly observed 

in many commodity prices. Sorensen (2002) has tried to incorporate these effects in a 

deterministic way, whereas Chapter 2 includes seasonality as an additional stochastic factor in 

the model. 

This chapter presents these models in an unified context, analyzing the relationships among 

them, and pointing out their advantages and limitations. Moreover, it is analyzed their relative 

performance with a common data set. Specifically, the data set is composed of three commodity 

prices series: WTI crude oil and natural gas futures contracts traded at NYMEX and Brent crude 

oil futures contracts traded at ICE Futures in London. 

This comparative study between models has critical importance in investment under 

uncertainty. Concretely, when a company is planning to develop a crude oil or natural gas field, 

the investment is huge (it usually reaches thousands million dollars) and usually lasts many 

years (in fact they usually last between twenty and thirty years), however the main investment 

has to be made at the beginning, before getting any return. Consequently, the company needs a 

sell contract, which should last at least twenty years, to guarantee the investment recovery. 

Typically these contracts contain clauses with a minimum price to guarantee the seller’s 

investment recovery, and a maximum price to protect the buyer from unexpected and steep price 

increases. It is easy to demonstrate that these clauses can be seen as put and call options and, 

therefore, the stochastic behaviour of commodity prices plays a crucial role in option valuation 

problems. As the volatility is a decisive parameter in the option valuation methodology, it is 

crucial to choose an appropriate model, with certain volatility assumptions, to characterize the 

commodity price dynamics. 

This chapter is organized as follows. The comparative study between models is contained in 

section 2. Section 3 deals with investment under uncertainty and finally section 4 concludes 

with a summary and discussion. 
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2. Commodity Models 

2.1. The AR(1) Model 

Taking into account the arguments in the previous section, the natural extension of the random 

walk to incorporate in the model the mean reversion effects is the AR(1) model. The AR(1) 

model assumes that the commodity log-spot price (pt) follows the following process: 

 tcc ερ +−=− )p(p 1-tt  

where c is the long-term mean (the log-price converges to c in the long-tem), ρ is the reversion 

speed to this long-term mean and, as before, εt is an independent and identically distributed in t 

(iid) random noise, which is distributed following a Gaussian distribution with zero mean and 

variance σ2∆t for each time “t”. 

Therefore, under this model, at time “t”, pt+1 is a random variable which is distributed N(c + ρpt 

– c), σ2∆t). Explicitly, the best prediction of the log-spot price in t+1 is c + ρ(pt – c) with 

precision given by t∆σ  (short-term volatility). It is easy to see that pt+j, with a high “j”, is a 

random variable which is distributed N(c, σ2/(1-ρ2)∆t). Explicitly, the best prediction of the log-

spot price in t+j is c with precision given by )1/( 22 ρσ −∆t  (long-term volatility). 

Consequently this model assumes that the volatility is bounded. 

The annualized volatility of futures returns is: σρσ tT
tTF −=)(ln , . 

This model will be estimated with three commodity prices series: WTI and Brent crude oil and 

Henry Hub natural gas. Currently, however, there are not spot prices for these three 

commodities. Consequently in this work we use one month futures contracts quoted at NYMEX 

in the case of WTI crude oil and Henry Hub natural gas, and one month futures contracts quoted 

at ICE in the case of Brent crude oil. Hence, the data set to calculate these parameters consists 

on weekly observations of one month futures contracts from 4/2/1990 to 3/24/2008 for Henry 
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Hub natural gas, from 6/27/1988 to 3/24/2008 for Brent crude oil and from 1/1/1985 to 

3/24/2008 for WTI crude oil. In the case of Henry Hub natural gas the deterministic seasonal 

component is removed. Table 1 contains some descriptive statistics of the data. The model 

parameter estimates for the three commodities: Brent and WTI crude oil and Henry Hub natural 

gas for the whole sample period are contained in Table 2. 

As can be appreciated in Table 2, the reversion speed to the long-term mean (ρ) is equal to one 

in all cases and the long-term mean (c) is statistically non-different from zero, which means that 

these prices do not follow a pure mean reverting process. In Figure 1 it is possible to appreciate 

that there is a mean reversion effect in commodity prices until 1999, afterwards commodity 

prices exhibit a random walk behaviour, which is the dominating effect in the previous 

estimates. These results are coherent with the standard deviations observed in Table 1, which 

are too high for a mean reverting process, and they are also coherent with Cortazar and Naranjo 

(2006) findings.  

Therefore, taking into account these results, we will assume that there is a structural break in 

19991. Specifically, the mean reverting behaviour can be appreciated if we select a data set 

which consists on weekly observations of one month futures contracts from 4/2/1990 to 

12/27/1999 for Henry Hub natural gas, from 6/27/1988 to 12/27/1999 for Brent crude oil and 

from 1/1/1985 to 12/27/1999 for WTI crude oil. Some descriptive statistics for this data set are 

presented in Table 1. The model parameter estimates for the three commodities with this new 

data set are contained in Table 2. 

In this case the reversion speed to the long-term mean (ρ) is not equal to one (although it is 

quite close to one), and the long-term mean (c) is statistically different from zero, which means 

that in this sample there are mean reverting effects.  

The lack of economical transportation and the limited storability of natural gas make its supply 

unable to change in view of variations of demand. This is the reason why natural gas prices are 

more volatile (i.e. they have higher volatility, σ) and less mean reverting (mean reversion is 
                                                           
1 Similar results are obtained if we choose 1998 or 2000 as breaking point. 
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higher because ρ is lower) than crude oil ones and it also explains why natural gas prices are 

strongly seasonal. Therefore, as we do not take into account seasonality in he model, the 

goodness of fit (R2) is worse for natural gas prices than for crude oil ones, in spite of the 

deterministic seasonal component has been removed. 

However, this model is too much simple and, as can be appreciated in Figures 2, 3 and 4, it does 

not estimate the volatility of futures returns properly.  

Therefore, we can conclude that these one-factor mean-reverting models, like the AR(1), are not 

very realistic since they generate a volatility of futures returns which goes to zero as the time to 

maturity of the futures contract approaches infinity. As can be appreciated in the previous 

charts, the empirical volatility of futures returns does not go to zero when time to maturity goes 

to infinity. Even more, models considering a single source of uncertainty are not very realistic 

since they imply that futures prices for different maturities should be perfectly correlated, which 

defies existing evidence. In the following sections of this work we are going to present more 

complex models in which volatility of futures returns is better characterized. 

2.2. The Two-Factor Model 

The model that we are going to present now is the two-factor model introduced by Schwartz and 

Smith (2000), which is equivalent to the one proposed by Schwartz (1997). In this model it is 

assumed that the log-spot price is the sum of two components (or factors): one short term factor 

(χt) which follows an Ornstein-Uhlenbeck process and one long term factor (εt) which follows a 

standard Brownian motion. Writing the model in its discrete-time version we have that: 

ttt QXcX η++= −1    where: 

[ ]tttX εχ ,' = ;  [ ]tc ∆= εµ,0' ;   






 ∆−
=

10

0)exp( tk
Q ;    

[ ]


















∆∆−−

∆−−∆−−
=

t
k

tk

k
tk

k
tk

Var t
2

2

))exp(1(

))exp(1(
2

))2exp(1(

ε
χεεχ

χεεχχ

σ
ρσσ

ρσσσ

η ;   
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and ηt independent of Xt-1. 

In the appendix it is proved that the AR(1) model is a particular case of the two-factor one when 

the long-term factor is considered deterministic. 

In the same way as before, it is possible to demonstrate that, under this model assumptions, at 

time t, pt+1 is a random variable and the best prediction of the log-spot price in t+1 is µε∆t + 

exp(-k∆t)χt, with precision given by the following expression (short-term volatility): 

)/))exp(-k-(12)2/())exp(-2k-((1 22 kttkt χεεχεχ ρσσσσ ∆+∆+∆  

In the same way, it is easy to see that the long-term volatility is tεσ . Therefore, this model 

assumes that the volatility grows with time, consequently it is not bounded. This implies that the 

volatility of futures returns does not go to zero when time to maturity goes to infinity, which it 

is a desirable property. 

The annualized volatility of futures returns is: χεεχεχ ρσσσσσ kTkT
tT eeF −− ++= 2)(ln 222
, . 

As there is not market quotation for the factors in which the spot price of the three commodities 

can be decomposed, the estimation has been performed using the Kalman filter methodology 

(see, for example Harvey, 1989)2. The data set employed in the estimation procedure consists on 

weekly observations of Henry Hub natural gas and WTI crude oil futures prices traded at 

NYMEX and Brent crude oil futures prices traded at ICE. The data set for Henry Hub natural 

gas is made of contracts F1, F5, F9, F13, F17, F21, F25, F29, F33, F37, F41, F44 and F48 

where F1 is the contract closest to maturity, F2 is the second contract closest to maturity and so 

on. This data set contains 330 quotations of each contract from 12/03/2001 to 03/24/2008. The 

data set for WTI crude oil is made of contracts F1, F4, F7, F10, F13, F16, F19, F22, F25 and 

F28. This data set contains 654 quotations of each contract from 9/18/1995 to 03/24/2008. The 

data set for Brent crude oil is made of contracts F1, F4, F7, F10, F12, F16-18, F22-24 and F31-

                                                           
2 As explained in Schwartz and Smith (2000), the risk-neutral version of the model is necessary to 
estimate the parameters. This is the reason why there is a risk-premium for the short-term deviation (λχ) 
and also a risk-adjusted long-term drift (µξ*). 
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36. This data set contains 537 quotations of each contract from 12/15/1997 to 03/24/2008. Table 

3 contains some descriptive statistics of these data sets. The model parameter estimates for the 

three commodities are presented in Table 4. 

The results are coherent with the ones obtained by Schwartz and Smith (2000). As in the 

previous section, comparing this estimation with the Schwartz and Smith (2000) one, which use 

data until 1995, we find that with our data (until 2008) the mean-reversion effect is lower than 

in the case of data until 1995. There is also less correlation between factors than in Schwartz 

and Smith (2000).      

In this case, as the model accounts for long-term effects (i.e. random walk effects), there are not 

the problems described in the previous section. Even more, as can be appreciated in Figures 2, 3 

and 4, this model estimates the volatility of futures returns properly, in a more accurate way 

than the previous one. As before, volatility and mean reversion (k) are higher in natural gas 

prices.  

The in-sample predictive power ability of the two-factor model can be analyzed through the bias 

(real minus predicted prices) and the root mean squared error, which are shown in Table 5.  As 

can be appreciated in the table, the model goodness of fit is worse in natural gas than in crude 

oil because we do not take into account seasonal effects in model specification. 

2.3. The Three-Factor Model 

This model was proposed by Cortazar and Schwartz (2003) and is an extension of the two-factor 

model presented above. The only difference is the introduction of a new risk factor: the drift, µ 

(i.e. the spot price long term return). Although the model formulation by the authors is slightly 

different from the one of the two-factor model presented above, it is proved that both 

formulations are equivalent (see Chapter 2).  
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In this work we use the same data set and estimation procedure (Kalman filter)3 as in the two 

factor model case, just to compare the results between models. Even more, we are going to 

present the model with the same formulation than the two factor model one to make comparison 

easier. Therefore, it is assumed that the log-spot price is the sum of three components (or 

factors): two short term factors (χ1t and χ2t) which follow an Ornstein-Uhlenbeck process and 

one long term factor (εt) which follows a standard Brownian motion. Writing the model in its 

discrete-time version we have that: 

ttt QXcX η++= −1 where: 

[ ]ttttX 21 ,,' χχε= ;  [ ]00' tc ∆= εµ ;   
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The model parameter estimates for the three commodities are contained in Table 64. 

The results are consistent with those obtained in the previous section. In this model there are 

two short-term factors whose parameters are highly significant, and in all cases one of these 

factors has significantly higher speed of adjustment than the other. This means that there are 

two types of stochastic short-term effects, one (the one with higher k) with stronger mean 
                                                           
3 Cortazar and Schwartz (2003) propose a very simple estimation procedure and apply it to an incomplete 
panel of oil futures prices. The methodology, however, does not make an optimal use of prices in the 
estimation of state variables (as opposed to the Kalman filter methodology), and is unable to obtain 
parameter estimation errors. 
4 As before, the risk-neutral version of the model is necessary to estimate the parameters. 
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reversion than the other (the one with lower k), and both of them significant. We can see in 

Table 6 that the less mean-reverting short-term factor has positive risk-premium whereas the 

more mean-reverting one has a negative risk-premium. 

There is also high and negative correlation between short-term factors, which indicates that 

these short term-factors (one of them more mean-reverting than the order) usually work in 

opposite directions. It is also interesting to note that the long-term factor has negative 

correlation with the less reverting short-term factor, and positive correlation with the more 

mean-reverting one. 

The in-sample predictive power ability of the three-factor model can be analyzed through the 

bias (real minus predicted prices) and the root mean squared error, which are shown in Table 7. 

It is also possible to compare these results with those obtained with the two-factor model (Table 

5). As expected, the root mean squared errors obtained with the three-factor model are lower 

than those obtained with the two-factors one. 

As before, volatility and mean reversion are higher in natural gas prices whereas goodness of fit 

is worse. 

The relative performance of the two and three-factor models can also be analyzed through the 

Schwartz and Akaike Information Criteria (SIC and AIC respectively). If we define the 

Schwartz Information Criterion (SIC) as )ln()ln( TqLML − , where q is the number of estimated 

parameters, T is the number of observations and LML is the value of the likelihood function, 

using the q estimated parameters, then the higher the SIC the better the fit. The same 

conclusions are obtained with the Akaike Information Criterion (AIC), which is defined as 

qLML 2)ln( − . As expected, the values of both measures are higher with the three-factor model 

(Table 6) than with the two-factor one (Table 4). 

The volatilities of futures returns for the three commodities are depicted in Figures 2, 3 and 4. It 

is easy to appreciate in the charts that with the three-factor model the volatility of futures returns 

fits better than with the two-factor one.  
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Finally, we can conclude that since the three-factor model has more structure (more factors and 

parameters), the goodness of fit is better than in the previous case. Therefore, in each case we 

have to decide between both models (the two-factor and the three factor model) taking into 

account that although the three-factor model fits better to the data, the two-factor one is simpler 

and therefore it is easier to estimate, the significance of each stochastic factor is more clear, 

needs less data to be estimated…  Consequently in each case, depending on its characteristics, 

we will choose between the simplicity (the two factor model) and the goodness of fit (the three 

factor model).  

Cortazar and Naranjo (2006) proved that, for WTI crude oil data, the three factor model is well 

enough and there is little improvement in adding more factors and defining a four factor model.  

2.4. The Principal Components Model  

In previous subsections we have presented models in which the assumptions were made on the 

spot price dynamics. Known the spot price dynamics, we derived the futures price dynamics. 

The following model, introduced by Clewlow and Stricland (2000), models the futures price 

dynamics directly. 

This model departs from the fact that the best prediction in t for the price of a futures contract 

maturing in T is the futures price in t. (i.e., the futures price is a martingale). Therefore, the 

model assumes that, today (at time t), the futures price maturing in T follows the following 

process: 

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,,1, ),( , where σi(t,T) are deterministic volatility 

functions, εit are orthogonal iid random noises which are distributed following a Gaussian 

distribution with zero mean and variance ∆t for each time “t” 5.     

One possible way to choose N and the σi(t,T) functions is through a principal components 

analysis. The “j” principal component is a vector which is defined as the squared root of the j-th 

                                                           

5 If we choose in a proper way N and σi (t,T), we get the factors models (AR(1) model, two-factor model 
and three-factor model) presented above. Consequently this model can be understood as a generalization 
of the previous ones. 
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highest eigenvalue times its eigenvector. It is easy to prove that the matrix which has the 

principal components in their columns times itself transposed is the covariance matrix Σ. 

The data set to implement the principal components model is the same as the one used to 

estimate the two and three-factor models, which is described in Table 3. Specifically, for Henry 

Hub natural gas the data set is made of weekly observations of contracts F1 to F48 from 

12/03/2001 to 03/24/2008, for WTI crude oil it is made of weekly observations of contracts F1 

to F28 from 9/18/1995 to 03/24/2008, and for Brent crude oil it is made of weekly observations 

of contracts F1 to F31-36 from 12/15/1997 to 03/24/2008. 

The first three principal components for the three commodities are depicted in Figures 5, 6 and 

7. The first component is considered a long-term one as it has the same sign for all maturities 

and does not go to zero as maturity goes to infinity, which means that a random shock which 

follows this principal component has the same direction for all maturities and does not vanish 

with time. The second and the third ones are considered short-term ones as they change their 

sign depending on the maturity considered, which means that a random shock which follows 

these principal components has some direction in some periods time and the opposite in the 

others, and therefore, in the long-time its effects tend to vanish.  

As can be seen in the Table 8, in the case of WTI and Brent crude oil, the first component 

explains more than the 90% of the volatility, and the first three ones explain almost the 100% of 

the volatility. Therefore, in the case of WTI and Brent crude oil, the other principal components 

have little importance. In the case of natural gas the first three principal components explain the 

80% of the volatility, consequently, the other ones are important. The reason for this difference 

between crude oil and natural gas lies again on the fact that natural gas is a strongly seasonal 

commodity whereas the crude oil is not, thus, in natural gas the other principal components (the 

fourth, the fifth and so on) explain part of the volatility because they include seasonal effects. 

As before, depending on the characteristic (the type of the data set, the precision needed,…) of 

our problem we will decide how many σi(t,T) functions we will choose and the number of 
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parameters that define each of them. The decision should be based on simplicity vs. goodness of 

fit.   

2.5. Seasonality 

As said above, the natural gas is a strongly seasonal commodity. One of the clearest ways to 

visualize this seasonality is through the forward curve. Figure 8 depicts the forward curve for 

Henry Hub natural gas futures contracts traded at NYMEX on 03/17/2008. In this figure it is 

possible to appreciate that Henry Hub natural gas prices are expected to be higher during  winter 

months and lower during summer months, therefore, this commodity price is seasonal.  

In the factor models presented above only the non-seasonal part of the price is modelled. Thus, a 

reasonable question to answer is how the results change if we take into account seasonality in 

the models. In Sorensen (2002) seasonality is captured through a deterministic factor and it is 

demonstrated that if seasonality is considered in the model, it fits better to the data for seasonal 

commodities like corn, soybean, and wheat. Chapter 2 shows that seasonality is a stochastic 

factor in seasonal commodity prices like natural gas, gasoline and heating oil.  

As were pointed out by Blanco, Soronow and Stefiszyn (2002), in the principal components 

model it is possible to incorporate seasonality if we assume that: 
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,,1, ),(  where σi(t,T) are deterministic volatility functions whose 

forms are different depending on the month of the date “t”.  

Using a data set which is made of weekly observations of Henry Hub natural gas futures 

contracts (F1 to F17) from 04/22/1992 to 03/24/2008, we divide the sample in twelve sub-

samples (one for each month) and carry out a principal components analysis for each month.  As 

we need enough data each month, we need a data base different from the previous sections one.   

The results show that the first component is similar in all months (see Figure 9) whereas the 

second and the third exhibit a clear seasonal pattern (see Figures 10 and 11). To be precise, the 
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second and the third principal components exhibit the classical “tilt” and “bending” behaviour, 

however, this behaviour is mixed with a seasonal one. 

As can be appreciated in Figure 7, in the case of the second principal component the “tilt” 

behaviour takes over the seasonal one, while for the third one we find the opposite, i.e. the 

seasonal behaviour dominates the “bending” one. 

 

3. Investment under uncertainty. The optimal contract determination 

Investment projects related with crude oil or natural gas are highly intensive in investment, 

therefore the stochastic behaviour of commodity prices has important implications for the 

valuation of projects related to the prices of those commodities.  

Concretely, when a company is planning to develop a crude oil or natural gas field, the 

investment is huge (it usually reaches thousands million dollars) and it usually lasts many years 

(they usually last between twenty and thirty years), however the main investment has to be 

faced up before getting any return. Consequently, the company, which faces up the investment, 

needs a sell contract, which should last at least twenty years, to guaranty the investment 

recovery.   

The most reasonable way to define the sell price is through the price of a contract which quotes 

in a liquid international market (like NYMEX or ICE). To choose the proper quotation 

variables, geographical location and product quality have to be taken into account. However, if 

the sell price is linked with the international one in a linear way, it is not possible to recover the 

investment when the commodity price goes down. For that reason these buy-sell contracts use to 

be designed with clauses which enforce the buyer to pay a minimum amount independently of 

international quotations. This guarantees the seller investment recovery. To compensate the 

buyer for this clause, and to hedge him against unexpected and steeper price increases, it is also 

common to introduce other clause to allow the buyer to pay at most a maximum amount 

independently of international quotations.          
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As a result, the typical buy-sell commodity contract is a long term contract (it lasts between 

twenty and thirty years) and is designed in the following way: in each period the exchange price 

is linked with an international quotation in a linear way with two main clauses, one to guaranty 

the seller investment recovery through a minimum price and other to protect the buyer from 

price increases through a maximum price. It is easy to see that, in each liquidation period, these 

clauses are a put option bought by the seller and a call option bought by the buyer respectively.  

As these contracts contain many call and put options, some of them with maturity in a long 

period time, the stochastic behaviour of commodity prices plays a central roll in valuing these 

sort of commodity contingent contracts and the chosen model to carry-out the valuation, 

specially its volatility assumptions, is essential in the final result.  

There are mainly two issues which depends on the chosen model, the first one is determining 

the put and call options value and the second one is determining the maximum price which, 

given a minimum price, makes the value of the put options, on average, equal to the call options 

value to get, on average, that the contract value is equal to the one without clauses.  

Both issues are highly related. The first one is a general problem, which is determining the 

options value for calculating the whole contract value. The second one is a particular problem 

when it is decided that the buyer options (the call ones) have to be valued the same as the seller 

ones (the put ones). This second issue is essential in negotiating the contract by the seller and 

buyer company managers. As said above, the way to solve these problems is through the 

stochastic behaviour of commodity prices and the chosen model is essential. The valuation of 

the contract using two different models, specially two different models with highly different 

assumptions about volatility, could differ in hundred million dollars.  

To illustrate this fact we propose three fictitious contracts, one for a WTI crude oil field, other 

for a Brent crude oil field and other for a natural gas field located in Henry Hub6 which are 

defining in the following way: The contracts last twenty years from 1/1/2009 to 12/31/2028, the 

crude oil or natural gas amount exchanged is the same in each period, the liquidation is monthly 

                                                           
6 Henry Hub is a hub located in Louisiana (EE.UU) near to the Texas border.  
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and the contract prices are the monthly average of the first month WTI, Brent and Henry Hub 

futures price traded at NYMEX and ICE respectively.  

If the seller wants to include a clause to guarantee a minimum price to recover their initial 

investment there are two questions to deal with: the first one is the value of this clauses and the 

second one is what should be the maximum price that the buyer should include to do not lose 

money. Even more, if the buyer wants to introduce other clause to guarantee a maximum price 

there are an additional question: what should be its value.  

We are going to answer these questions using three different models: the AR(1)7 model, the two 

factor model and the three factor model. In all cases the valuation date is 3/24/2008 and the 

assumed risk free interest rate for the whole period is 5%8. As there are no forward curves for 

any commodity which cover the whole contracts period (from 1/1/2009 to 12/31/2028), it has 

been estimated a forward curve for the three commodities based on the observed forward curve 

at the validation date (3/24/2008).  The estimatation has been carried out assuming in all cases 

that there is a long-term forward price and the observed futures prices converge to the long-term 

one through an exponential way. In the case of natural gas it has been assumed that seasonality 

is a deterministic factor that has been calculated based on the observed forward curve at the 

validation date and has been incorporated in the estimated one for the whole contract period. 

Figures 12, 13 and 14 show the minimum price clause value as a function of their strike prices 

(the minimum price) for the three commodities presented above. Figures 15, 16 and 17 contain 

the maximum price clause valuations whereas Figures 18, 19 and 20 show the maximum price 

that the buyer should include to do not lose money depending on the minimum price calculated. 

As can be appreciated in the Figures, the results are presented in $/bbl or $/MMBtu to be 

compared with the commodity average price in the contract period, which is 95.97 $/bbl in the 

case of WTI crude oil, 96.14 $/bbl in the case of Brent crude oil and 8.56 $/MMBtu in the case 

of natural gas in Henry Hub. Comparing the clauses values in $/bbl or in $/MMBtu with the 

                                                           
7 The parameters used in the estimate are the ones calculated with data until 1999 because the ones 
calculated with the whole sample period have no sense as explained above. 
8 The same result has been obtained using different risk free interest rates for each period time. 
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average prices is equivalent to compare the clauses value with the whole contract value as the 

amount exchange in each period time is the same. 

Table 9 present the differences in valuation using the three factor model vs. the other two 

models (the AR(1) and the two factor model) as percentage of the average price, which is equal 

to the differences in valuation as percentage of the whole contract value. Table 10 shows the 

differences in calculating the maximum price that the buyer should include to do not lose money 

if the seller includes a minimum price using the three factor model vs. the other two models as 

percentage of the result obtained with the three factor model. 

The first issue to highlight is the fact that the results obtained are basically the same for all 

commodities, especially in the case of the natural gas, if we use the two factor and the three 

factor model. That brings again what is said above in relation to both models: as the two factor 

model is a particular case of the three factor one, the three factor models gets more accurate 

estimates, however, the two factor one is simpler an easy to deal with. Therefore, depending on 

the problem the optimal choice should be the accuracy or the simplicity. In this case, as 

thousand million dollars are involved, it sounds more reasonable to choose accuracy instead of 

simplicity. As said above, Cortazar and Naranjo (2006) realized that adding one more factor and 

getting the four factor model is useless and the three factor model is well enough to characterize 

this sort of commodities dynamics.  

Opposite conclusions arise when we compare the valuation results obtained with the two and 

three factor models with those obtained with the AR(1) one. Just to get an idea about this 

differences amount we can see for example that the call options value if the maximum price is 

100 $/bbl or the put options value if the minimum price is 95 $/bbl differs in almost 8 $/bbl in 

the case of WTI crude oil and in almost 9 $/bbl in the case of Brent crude oil, using the AR(1) 

model instead of the two or three factor models. In both cases it represents almost 10% of the 

average price. In the case of natural gas these differences round 1.15 $/MMBtu, which 

represents almost 15% of the average price. Therefore, as these projects involve enormous 

amounts of commodity (as said above, its value usually reaches thousand million dollars), a 
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10% or a 15% of the whole project could represent hundreds million dollars. For that reason the 

chosen model has a crucial role in negotiating this kind of contracts. Comparing the differences 

between the two and the three factor model we get, at maximum, 1.3 $/bbl in the case of the 

crude oil and 0.07 $/MMBtu in the case of natural gas. These figures represent less than 1.5% 

and 1% in the crude oil case and natural gas case respectively. As the amount of money 

included in this kind of projects is so big, these differences are also important, however it 

extend is around ten times less than the previous ones. 

Even more, comparing the results obtained with the two and three factor models in valuing the 

put and call options, we get a bias which is not too big and operates in the same direction in 

both cases. Subsequently, when we calculate the maximum price that the buyer should include 

to do not lose money if the seller includes a minimum price in the contract, the differences 

between models round 3%. If we compare the AR(1) model with the other two models, these 

differences reach more or less 15% in the case of the crude oil and 22% in the case of natural 

gas. As before, we can conclude that, as the amount of money involved in this type of projects is 

huge, the differences between models are important in all cases, however in comparing the 

AR(1) model with the other two, the differences get critical importance in contract 

determination.   

These huge differences in the valuation results obtained with these models (the AR(1) model  

vs. the two and three factor models) comes from the fact that in the AR(1) volatility is bounded, 

whereas in the two and three factor models it is not bounded. As an option contract is not 

symmetric, the volatility plays a central role in its valuation (see for example Hull, 2006) and, as 

the contract lasts so much time, the fact the volatility is or not bounded is crucial in determining 

the value, as we have seen. 

Other issue to highlight is the fact that, as can be appreciated in Figures 18, 19 and 20, there is 

not symmetry between the minimum and the maximum price. For example, with an average 

price of 95.97 $/bbl for the WTI crude oil, one naive manager could think that if the minimum 

price is settled at 50 $/bbl, the maximum price should be fixed at 95.97 + (95.97 – 50) = 141.97 
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$/bbl to get the same amount upwards than downwards. Nevertheless, as can be appreciated in 

the Figures this reasoning is false. With the AR(1), the two and three factor models the 

maximum price should be 192, 217 and 223 $/bbl respectively. The reason behind this result is 

again the options contracts asymmetry, and the reason of getting a higher maximum price than 

the one defined by the symmetric axis is the fact that the put option revenue is bounded (the 

maximum revenue is the strike price) whereas the call option revenue is not (for more details 

see, for example, Hull, 2006), therefore higher strike prices are needed in call options.         

As the put option revenue is bounded and the call option one is not, there is not symmetry 

between the maximum and the minimum price independently of the model used in valuation. 

However, as we can see in Figures 18, 19 and 20 and in Table 10, and as we have analysed 

above, the degree of asymmetry depends on the chosen model, specially depends on the chosen 

model volatility assumptions.    

As said above, the big differences found come from the fact that the AR(1) model assumes that 

the volatility is bounded in the long-term and the factor models do not. If we compare two 

models which assume that the volatility is bounded or two models which assume that the 

volatility is not bounded, in the long-term the differences are much smaller. However, as these 

sorts of contracts involves thousands million dollars, small differences in valuation involves 

much money. 

 

4. Conclusions 

This chapter presents an empirical study about the different models which can be used to 

characterize the commodity price dynamics, with special emphasis on the volatility of futures 

returns estimates. These models are presented in a unified context, analyzing the relationships 

among them, and pointing out their advantages and limitations. It is analyzed their relative 

performance with a common data set, which is composed of three commodity price series: WTI 

crude oil and natural gas in Henry Hub futures contracts traded at NYMEX and Brent crude oil 
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futures contracts traded at ICE Futures in London. Finally we discuss the importance of these 

models in investment under uncertainty, concretely in valuing long-term contracts highly 

intensive in investment with clauses which are put and call options. 

The first model analyzed is the basic AR(1) model. However, these one-factor mean-reverting 

models, like the AR(1), are not very realistic since they generate a volatility of futures returns 

which goes to zero as the time to maturity of the futures contract approaches infinity, and imply 

that futures prices for different maturities should be perfectly correlated, which defies existing 

evidence. 

Next we analyze the empirical performance of the factor models proposed in the literature: the 

two-factor model introduced by Schwartz and Smith (2000) and the three-factor model 

proposed by Cortazar and Schwartz (2003) which is an extension of the two-factor one. Our 

results indicate that with these factor models the estimated volatility fits better to the empirical 

one than with the basic AR(1) model. Moreover, the three-factor model outperforms the two-

factor one in terms of the in sample predictive ability. Finally, we can conclude that since the 

three-factor model has more structure (more factors and parameters), the goodness of fit is 

better than in the previous case, however, as it has more structure it is more difficult to estimate, 

the significance of each stochastic factor is less clear, needs more data to be estimated… 

Consequently in each case, depending on its characteristics, we will choose between the 

simplicity (the two factor model) and the goodness of fit (the three factor model).  

In all cases, the factors models goodness of fit is worse with natural gas data than with crude oil 

data because we do not take into account seasonal effects in model specification. Other 

interesting evidence that we find in this study is the fact that the mean-reversion in the three 

commodities is less steep when using data until 2008 than in previous studies which did not use 

recent data. That is caused by the fact that there is mean reversion in commodity prices until 

1999, afterwards commodity prices exhibit a random walk behaviour.  

The principal components analysis proposed by Clewlow and Stricland (2000) is investigated 

next. These authors try to model the futures price dynamics directly, by assuming that the 
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futures prices are a martingale, where the price of a futures contract at time t is its price at time 

t-1 plus an innovation which is given by the sum of several deterministic volatility functions. It 

is possible to define these volatility functions through a principal component analysis. In the 

other hand, given that many commodity prices are strongly seasonal, it is discussed the 

importance of explicitly incorporating seasonality effects in the models.  

One we have compared the relative performance between models, we apply the conclusions to 

investment under uncertainty, especially in determining the best contract. The projects related 

with the commodities presented in this work are highly intensive in investment, last many years 

and have clauses which include put and call options. Therefore, their price dynamics 

characterization is essential in valuing these clauses.  

We have seen a hypothetical project for each commodity to illustrate the big differences in 

contract valuation using different models. Concretely, if we use an AR(1) model instead of a 

two or three factor one, the clauses valuation can differ between the 10%-15% of the whole 

contract value, which should represent hundred million dollars. These big differences come 

from the fact that the AR(1) model assumes that the volatility is bounded in the long term and 

the two or three factor models do not. However, in options contract valuation volatility 

assumptions are crucial. 

 If we compare two models with the same assumption about volatility (bounded or not bounded) 

the differences are much smaller. However, as these sorts of contracts involve thousands million 

dollars, small differences in valuation entails much money. 

In calculating the maximum price that the buyer should include in the contract to do not lose 

money if the seller includes a minimum price in the contract, there are also big differences if we 

use the AR(1) model instead of the two and the three factor ones. The reason is the same, in one 

case the volatility is assumed bounded and in the other it is assumed not bounded.  

Other interesting issue to take into account is the fact that there is not symmetry between the 

maximum and the minimum price. The reason behind it is the fact that put option revenue is 
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bounded whereas call options revenue is not. Therefore, higher strike prices are needed in call 

options. Even though it happens independently of the model used, once again, the model 

volatility assumptions are crucial in determining the degree of asymmetry between the 

maximum and the minimum price.  

 

 

APPENDIX 

Nested Models 

As said above, the AR(1) model, the two factor model and the three factor model are nested 

models, that is, the two factor model is a particular case of the three factor model when one of 

the short-term factors is assumed deterministic. The AR(1) model is a particular case of the two 

factor model when the long-term factor is assumed deterministic. 

To prove it, we are going to present the models in their formal way, through their stochastic 

differential equations (SDE). In this work, just for simplicity, we have presented the models in 

their discrete-time version. However, as can be seen in the standard literature (see for example 

Cortazar and Naranjo, 2006), the proper way to define a factor model is through its SDE. 

Afterwards, if it is necessary in the parameters estimate procedure, the discrete-time version of 

the model is presented.    

We start with the three factor model SDE: 

   tt dWdtd εεε σµε +=                        

   ttt dWdtd 11111 χχσχκχ +−=                        

   ttt dWdtd 22222 χχσχκχ +−=    
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In Chapter 2 it is proved that the discrete-time version of the model is the one presented in 

section 2.3. 

The two factor model SDE are the ones presented above, except for the last one, which does not 

appear in this case (there is only one stochastic short-term factor): 

    tt dWdtd εεε σµε +=                        

   ttt dWdtd χχσκχχ +−=                        

As before, it is easy to prove that the discrete-time version of the model is the one presented in 

section 2.2. 

The AR(1) model SDE is the one presented for the short-term factor in the two factor model: 

   ttt dWdtd χχσκχχ +−=    

The discrete-time version of the model is the one presented in section 2.1. 

Therefore, as it is said above, we can conclude that the two factor model is a particular case of 

the three factor one and the AR(1) model is a particular case of the two factor one. 
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FIGURE 7 
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FIGURE 9 
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FIGURE 17 
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TABLE 1 

DESCRIPTIVE STATISTICS FOR THE DATA SET USED IN THE  AR(1) 

ESTIMATION.  

 

The table shows the main descriptive statistics of the three commodity prices series employed in the 

estimation. Weekly Observations of one month futures contracts are used in all cases. For the whole 

sample period: NYMEX WTI crude oil from 1/1/1985 to 3/24/2008, NYMEX Henry Hub natural gas 

from 4/2/1990 to 3/24/2008 and ICE Brent crude oil from 6/27/1988 to 3/24/2008. Until 1999: NYMEX 

WTI crude oil from 1/1/1985 to 12/27/1999, NYMEX Henry Hub natural gas from 4/2/1990 to 

12/27/1999 and ICE Brent crude oil from 6/27/1988 to 12/27/1999. 

 

One Month Futures 
Contract 

Whole Sample Period  Until 1999 

 Mean  Standard Deviation Mean  
Standard 
Deviation 

WTI 28.75 $/bbl 17.68 $/bbl 19.64 $/bbl 4.27 $/bbl 

Brent 28.88 $/bbl 18.82 $/bbl 18.11 $/bbl 3.85 $/bbl 

Henry Hub 3.8 $/MMBtu 2.5 $/MMBtu 2.03 $/MMBtu 0.48 $/MMBtu 
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TABLE 2 

AR(1) PARAMETER ESTIMATES  

 

The Table shows the parameter estimates of the AR(1) model, which assumes that the commodity log-

spot price (pt) follows the process: tcc ερ +−=− )p(p 1-tt . There are two data sets. For the whole 

sample period: NYMEX WTI crude oil from 1/1/1985 to 3/24/2008, NYMEX Henry Hub natural gas 

from 4/2/1990 to 3/24/2008 and ICE Brent crude oil from 6/27/1988 to 3/24/2008. Until 1999: NYMEX 

WTI crude oil from 1/1/1985 to 12/27/1999, NYMEX Henry Hub natural gas from 4/2/1990 to 

12/27/1999 and ICE Brent crude oil from 6/27/1988 to 12/27/1999. Weekly observations of one month 

futures contracts are used in all cases. Standard deviations in parenthesis. 

 

Param.  Whole Sample Period  Until 1999 

 Brent 
Crude Oil 

WTI Crude 
Oil 

Henry Hub 
Natural Gas 

Brent 
Crude Oil 

WTI Crude 
Oil 

Henry Hub 
Natural Gas 

ρ 1.00 (0.002) 1.00 (0.003) 0.99 (0.003) 0.98 (0.008) 0.98 (0.007) 0.96 (0.01) 

c -1.97 
(20.69) 

14.03 
(76.10) 

1.51 (0.93)  2.93 (1.35) 2.9 (1.18) 0.69 (0.23)  

σ 28% 30% 48% 28% 30% 45% 

R2 99% 99% 99% 96% 96% 92% 

Number 
Obs. 

1031 1213 939 601 783 509 
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TABLE 3 

DESCRIPTIVE STATISTICS FOR THE DATA SET USED IN THE  TWO AND 

THREE-FACTOR MODELS ESTIMATION 

 

The Table shows the main descriptive statistics for the data set used in the two and three factor model 

estimation: NYMEX WTI crude oil futures contracts from 9/18/1995 to 3/24/2008, NYMEX Henry Hub 

natural gas futures contracts from 12/3/2001 to 3/24/2008, and ICE Brent crude oil futures contracts from 

12/15/1997 to 3/24/2008. Weekly Observations in all cases. 

 

Henry Hub ($/MMBtu) WTI ($/bbl) Brent ($/bbl) 

Contract Mean 
Standard 
Deviation 

Contract Mean 
Standard 
Deviation 

Contract Mean 
Standard 
Deviation 

F1 6.40 2.22 F1 36.33 20.94 F1 38.32 21.98 

F5 6.86 2.25 F4 36.07 21.42 F4 38.23 22.40 

F9 6.93 2.26 F7 35.62 21.64 F7 37.89 22.67 

F13 6.85 2.26 F10 35.20 21.74 F10 37.50 22.81 

F17 6.77 2.26 F13 34.82 21.76 F12 37.24 22.86 

F21 6.66 2.19 F16 34.48 21.73 F16-18 36.69 22.84 

F25 6.53 2.10 F19 34.20 21.66 F22-24 36.14 22.69 

F29 6.44 2.09 F22 33.96 21.57 F31-36 35.42 22.33 

F33 6.33 2.03 F25 33.76 21.46    

F37 6.24 1.94 F28 33.59 21.36    

F41 6.18 1.93       

F45 6.10 1.87       

F48 6.05 1.80       
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TABLE 4 

TWO FACTOR MODEL PARAMETER ESTIMATES 

 

The Table shows the parameter estimates in the two-factor model. The data set is composed of weekly 

observations of NYMEX WTI crude oil futures contracts from 9/18/1995 to 3/24/2008, NYMEX Henry 

Hub natural gas futures contracts from 12/3/2001 to 3/24/2008, and ICE Brent crude oil futures contracts 

from 12/15/1997 to 3/24/2008. Standard errors in parentheses. The estimated values are reported with * 

denoting significance at 10%, ** denoting significance at 5%, and *** denoting significance at 1%. 

 

Contract Brent  Henry Hub WTI 

µξ 0.1641*** (0.0293) 0.1524***  (0.0286) 0.1376***  (0.0247) 

k 0.8854***  (0.0071) 1.1879***  (0.0425) 1.0598***  (0.0083) 

σξ 0.1441***  (0.0033) 0.1553***  (0.0059) 0.1315***  (0.0027) 

σχ 0.3038***  (0.0081) 0.6057***  (0.0240) 0.2905***  (0.0066) 

ρξχ -0.1736** * (0.0342) -0.1791***  (0.0585) -0.0240***  (0.0310) 

µξ
*  -0.0269***  (0.0008) -0.0601***  (0.0016) -0.0219***  (0.0007) 

λχ 0.0792 (0.0630) -0.0225 (0.1327) 0.1120**  (0.0547) 

ση 0.0122***  (0.0001) 0.0735***  (0.0006) 0.0127***  (0.0001) 

Log-likelihood 30847 17635 47232 

AIC 30831 17619 47215 

SIC 30797 17588 47180 

Number Obs. 537 330 654 

 



 48

 

TABLE 5 

IN-SAMPLE PREDICTIVE ABILITY OF THE TWO-FACTOR MODE L 

 

The Table shows the mean error (real minus predicted) and the root mean squared error (RMSE) obtained 

with the two-factor model, for the three commodity prices series, using the parameter estimates in Table 

4. 

 

BRENT HENRY HUB WTI 

Contract Mean RMSE Contract Mean RMSE Contract Mean RMSE 

F1 0.0035 0.0428 F1 0.0175 0.0945 F1 0.0025  0.0457  

F4 -0.0031 0.0323 F5 -0.0159 0.0870 F4 -0.0026  0.0333  

F7 -0.0027 0.0282 F9 -0.0161 0.0838 F7 -0.0019  0.0291  

F10 -0.0008 0.0261 F13 -0.0066 0.0676 F10 -0.0006  0.0265  

F12 0.0006 0.0249 F17 0.0012 0.0772 F13 0.0006  0.0240  

F17 0.0021 0.0231 F21 0.0044 0.0749 F16 0.0014  0.0220  

F23 0.0021 0.0219 F25 0.0087 0.0717 F19 0.0016  0.0203  

F34 -0.0017 0.0256 F29 0.0104 0.0720 F22 0.0009  0.0197  

- - - F33 0.0085 0.0706 F25 -0.0003  0.0207  

- - - F37 0.0057 0.0725 F28 -0.0017  0.0232  

- - - F41 0.0007 0.0709 - - - 

- - - F45 -0.0054 0.0749 - - - 

- - - F48 -0.0127 0.0844 - - - 
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TABLE 6 

THREE FACTOR MODEL PARAMETER ESTIMATES 

 

The table shows the parameter estimates of the three-factor model.  The data set is composed of weekly 

observations of NYMEX WTI crude oil futures contracts from 9/18/1995 to 3/24/2008, NYMEX Henry 

Hub natural gas futures contracts from 12/3/2001 to 3/24/2008, and ICE Brent crude oil futures contracts 

from 12/15/1997 to 3/24/2008. Standard errors in parentheses. The estimated values are reported with * 

denoting significance at 10%, ** denoting significance at 5%, and *** denoting significance at 1%. 

 

Contract Brent Henry Hub WTI 

µξ 0.1346***  (0.0252) 0.1598***  (0.0308) 0.1766***  (0.0317) 

k1 0.8477***  (0.0119) 0.7001***  (0.0424) 0.8348***  (0.0288) 

k2 2.2362***  (0.0286) 6.2955***  (0.0000) 1.0800***  (0.0328) 

σξ 0.1300***  (0.0026) 0.1726***  (0.0086) 0.1515***  (0.0037) 

σχ1 0.2963***  (0.0069) 0.5333***  (0.0216) 0.8987***  (0.1946) 

σχ2 0.2826***  (0.0074) 0.8514***  (0.0000) 0.9187***  (0.1956) 

ρξχ1 -0.1497***  (0.0289) -0.4790***  (0.0607) -0.3921***  (0.0314) 

ρξχ2 0.1951***  (0.0288) 0.3197***  (0.0531) 0.3763***  (0.0313) 

ρχ1 χ2 -0.4867***  (0.0276) -0.3741***  (0.0487) -0.9553***  (0.0195) 

µξ
*  0.0032***  (0.0009) -0.0458***  (0.0018) 0.0041***  (0.0015) 

λχ1 0.1961***  (0.0548) 0.3781***  (0.1061) 0.1424 (0.1686) 

λχ2 -0.1042**  (0.0521) -0.4271**  (0.1858) -0.0849 (0.1778) 

ση 0.0045***  (0.0000) 0.0684***  (0.0005) 0.0055***  (0.0000) 

Log-likelihood 35575 18106 57240 

AIC 35549 18080 57214 

SIC 35493 18031 57156 

Number Obs. 537 330 654 
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TABLE 7 

IN-SAMPLE PREDICTIVE ABILITY OF THE THREE-FACTOR MO DEL 

 

The Table shows the mean error (real minus predicted) and the root mean squared error (RMSE) obtained 

with the three-factor model, for the three commodity prices series, using the parameter estimates in Table 

6. 

 

BRENT HENRY HUB WTI 

Contract Mean RMSE Contract Mean RMSE Contract Mean RMSE 

F1 0.0007  0.0395  F1 0.0163  0.0816  F1 0.0002  0.0406  

F4 -0.0020  0.0321  F5 0.0120  0.0768  F4 -0.0007  0.0328  

F7 -0.0009  0.0276  F9 -0.0004  0.0823  F7 0.0002  0.0270  

F10 0.0001  0.0249  F13 -0.0010  0.0710  F10 0.0003  0.0241  

F12 0.0006  0.0235  F17 0.0006  0.0695  F13 0.0001  0.0222  

F17 -0.0003  0.0222  F21 0.0005  0.0740  F16 0.0000  0.0210  

F23 -0.0014  0.0215  F25 0.0033  0.0697  F19 -0.0001  0.0199  

F34 0.0003  0.0198  F29 0.0052  0.0746  F22 -0.0003  0.0190  

- - - F33 0.0045  0.0690  F25 -0.0002  0.0185  

- - - F37 0.0037  0.0682  F28 0.0003  0.0185  

- - - F41 0.0016  0.0755  - - - 

- - - F45 -0.0010  0.0684  - - - 

- - - F48 -0.0055  0.0718  - - - 
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TABLE 8 

PRINCIPAL COMPONENTS ANALYSIS  

 

The Table shows the percentage of the empirical volatility explained by each principal component for 

each of the three commodities. The data set is composed of weekly observations of NYMEX WTI crude 

oil futures contracts from 9/18/1995 to 3/24/2008, NYMEX Henry Hub natural gas futures contracts from 

12/3/2001 to 3/24/2008, and ICE Brent crude oil futures contracts from 12/15/1997 to 3/24/2008. 

 

 Henry Hub WTI Brent 

First Principal Component 61% 95% 94% 

First Two Principal Components 75% 99% 99% 

First Three Principal Components 80% 100% 99% 
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TABLE 9 

CLASUSES VALUATION  

 

The Table shows the differences in options value using the three factor model vs. the other two models 

(the AR(1) and the two factors ones) as percentage of the average price which is equal to the differences 

in valuation as percentage of the whole contract value.  

 

WTI  

 Put Value  Call Value 

Minimum 
Price 

Three Factor 
vs. AR(1) 

Three Factor 
vs. Two 
Factors 

Maximum 
Price 

Three Factor 
vs. AR(1) 

Three Factor 
vs. Two Factor 

40 0.6% 0.2% 100 9.5% 1.3% 

45 1.0% 0.3% 105 9.5% 1.3% 

50 1.6% 0.4% 110 9.2% 1.3% 

55 2.3% 0.5% 115 8.9% 1.3% 

60 3.2% 0.7% 120 8.4% 1.3% 

65 4.2% 0.8% 125 7.9% 1.3% 

70 5.3% 0.9% 130 7.4% 1.2% 

75 6.4% 1.0% 135 6.8% 1.2% 

80 7.5% 1.1% 140 6.3% 1.2% 

85 8.3% 1.2% 145 5.8% 1.1% 

90 8.9% 1.2% 150 5.3% 1.1% 

95 9.4% 1.3% 155 4.9% 1.0% 
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TABLE 9 (CONTINUATION) 

Brent 

 Put Value  Call Value 

Minimum 
Price 

Three Factors 
vs AR(1) 

Three Factors 
vs Two 
Factors 

Maximum 
Price 

Three Factors 
vs AR(1) 

Three Factors 
vs Two 
Factors 

40 0.4% -0.2% 100 8.4% -1.4% 

45 0.6% -0.3% 105 8.3% -1.4% 

50 1.1% -0.4% 110 8.0% -1.4% 

55 1.7% -0.5% 115 7.6% -1.4% 

60 2.4% -0.6% 120 7.2% -1.3% 

65 3.3% -0.8% 125 6.7% -1.3% 

70 4.4% -0.9% 130 6.1% -1.3% 

75 5.4% -1.0% 135 5.6% -1.2% 

80 6.4% -1.1% 140 5.1% -1.2% 

85 7.2% -1.2% 145 4.6% -1.1% 

90 7.8% -1.3% 150 4.1% -1.1% 

95 8.2% -1.3% 155 3.7% -1.0% 
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TABLE 9 (CONTINUATION) 

HH 

 Put Value  Call Value 

Minimum 
Price 

Three Factors 
vs AR(1) 

Three Factors 
vs Two 
Factors 

Maximum 
Price 

Three Factors 
vs AR(1) 

Three Factors 
vs Two 
Factors 

40 0.8% 0.2% 100 14.4% 0.9% 

45 1.4% 0.2% 105 14.4% 0.9% 

50 2.3% 0.3% 110 14.1% 0.9% 

55 3.4% 0.4% 115 12.9% 0.9% 

60 4.8% 0.5% 120 12.2% 0.9% 

65 6.4% 0.5% 125 11.5% 0.9% 

70 8.1% 0.6% 130 10.0% 0.8% 

75 9.8% 0.7% 135 9.3% 0.8% 

80 11.3% 0.7% 140 8.6% 0.8% 

85 12.6% 0.8% 145 8.0% 0.8% 

90 13.6% 0.8% 150 7.4% 0.8% 

95 14.2% 0.8% 155 6.4% 0.7% 
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TABLE 10 

MINIMUM PRICES vs. MAXIMUM PRICE  

 

The Table shows the differences in calculating the maximum price that the buyer should include to do not 

lose money if the seller includes a minimum price using the three factor model vs. the other two models 

(the AR(1) and the two factors ones) as percentage of the result obtained with the three factors model. 

 

WTI  

Minimum Price Three Factors vs. AR(1) Three Factors vs. Two Factors 

40 17.5% 3.5% 

45 15.7% 3.1% 

50 13.9% 2.7% 

55 12.1% 2.3% 

60 10.4% 2.0% 

65 8.7% 1.6% 

70 7.1% 1.3% 

75 5.6% 1.0% 

80 4.2% 0.7% 

85 2.8% 0.5% 

90 1.5% 0.2% 

95 0.2% 0.0% 
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TABLE 10 (CONTINUATION) 

Brent 

Minimum Price Three Factors vs AR(1) Three Factors vs Two Factors 

40 14.4% -3.0% 

45 13.0% -2.6% 

50 11.5% -2.3% 

55 10.0% -2.0% 

60 8.6% -1.7% 

65 7.2% -1.4% 

70 5.9% -1.2% 

75 4.7% -0.9% 

80 3.5% -0.7% 

85 2.4% -0.5% 

90 1.3% -0.3% 

95 0.2% 0.0% 
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TABLE 10 (CONTINUATION) 

HH 

Minimum Price Three Factors vs AR(1) Three Factors vs Two Factors 

40 21.9% 3.1% 

45 19.4% 2.6% 

50 17.3% 2.2% 

55 15.4% 1.8% 

60 13.6% 1.4% 

65 11.8% 1.2% 

70 10.0% 0.9% 

75 8.2% 0.7% 

80 6.3% 0.5% 

85 4.4% 0.3% 

90 2.4% 0.2% 

95 0.3% 0.0% 
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CHAPTER 2: THE STOCHASTIC SEASONAL BEHAVIOR 

OF THE NATURAL GAS PRICE  

 

1. Introduction 

In recent times, both academics and practitioners have been paying attention to the valuation 

and hedging of commodity contingent claims and to the procedures for evaluating natural 

resources investment projects, especially to the rule for determining when it is optimal to invest. 

The stochastic behavior of commodity prices plays a central role in this area. 

Early studies on the stochastic behavior of commodity prices assumed that spot prices follow a 

geometric Brownian motion (see for example Brennan and Schwartz, 1985; Paddock et al., 

1988, among others). However, the geometric Brownian motion hypothesis implies a constant 

rate of growth in the commodity price and a constant volatility of futures price returns, which 

are not realistic assumptions. In practice it is found that commodity prices show mean-reversion 

and the volatility of futures price returns is a decreasing function of time.  

Consequently, in recent years several authors, such as Laughton and Jacobi (1993) and (1995), 

Ross (1997) or Schwartz (1997), have considered that a mean-reverting process is more 

appropriate to model the stochastic behavior of commodity prices. Unfortunately, these one-

factor mean-reverting models are not very realistic since they generate a volatility of futures 

returns which goes to zero as the time to maturity of the futures contract approaches infinity. 

Even more, models considering a single source of uncertainty are not very realistic since they 

imply that futures prices for different maturities should be perfectly correlated, which defies 

existing evidence. 
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 Looking for more realistic results, multi-factor models have been developed (Schwartz, 1997; 

Schwartz and Smith, 2000; Cortazar and Schwartz, 2003; Cortazar and Naranjo, 2006, among 

others). All these multi-factor models assume that the spot price is the sum of short-term and 

long-term components. Long-term factors account for the long-term dynamics of commodity 

prices, which is assumed to be a random walk, whereas short-term factors account for the mean-

reversion components in the commodity price. 

Most of these articles are focused on oil prices. In recent years, however, there have been many 

papers addressing the study of natural gas prices.  See for example the papers by Clewlow and 

Strickland (2000), Wei and Zhu (2006) and Mu (2006) among others. 

Natural gas represents almost the fourth part of the world energy consumption, with similar 

figures to coal and only behind oil. World natural gas consumption is about 45 millions barrels 

of oil equivalent per day while world oil consumption is about 80 millions barrels per day. 

World proved reserves are more or less the same for natural gas and oil which are roughly one 

trillion barrels of oil equivalent for each one.     

Almost the third part of natural gas world consumption is located in the United States. In this 

country gas natural represents the 25% of the consumed energy and this percentage is growing 

very fast. This is the reason why the most developed gas natural markets are located in the 

United Sates. The lack of economical transportation makes the natural gas price substantially 

different along the country. The most liquid and famous natural gas market is located in 

Louisiana, near to the Texas border, which is named Henry Hub. 

This lack of economical transportation and the limited storability of natural gas make its supply 

unable to change in view of seasonal variations of demand. Therefore, natural gas prices are 

strongly seasonal. One of the clearest ways to visualize this seasonality is through the forward 

curve. In Figure 1 it is possible to appreciate that Henry Hub natural gas prices are expected to 

be higher during winter months and lower during summer months. 
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It is also possible to notice that in spot price historical series the highest prices have been 

reached in winter while the lowest prices appear in summer. 

There are studies taking into account the seasonal behavior of some commodity prices, such as 

Lucia and Schwartz (2002), Sorensen (2002), Tolmasky and Hindanov (2002) and Borovkova 

and Geman (2006) among others, but, to the best of our knowledge, seasonality has never been 

considered as an stochastic factor. 

As pointed out by Schwartz (1997), the stochastic process assumed for the commodity price is 

important not only for derivatives valuation purposes, but also for the valuation of natural 

resource investment projects, specially for the rule for determining when it is optimal to invest. 

In this chapter, it has been developed a general (n+2m)-factor model considering seasonality as 

an stochastic factor. This general (n+2m)-factor model assumes that the log-spot price is the 

sum of n and m stochastic factors (n non-seasonal and m seasonal). The non-seasonal factors are 

the factors of the models mentioned above. The seasonal factors are trigonometric components 

generated by stochastic processes. Then, this general model has been particularized for m = 1 

and n = 1, 2, 3, thus, three, four and five-factor models have been obtained to explain the 

stochastic behavior of Henry Hub natural gas prices. The Kalman filter methodology has been 

applied to estimate the parameters of the models based on Henry Hub natural gas futures 

contracts traded at the New York Mercantile Exchange (NYMEX). Finally, using the estimated 

parameters, it is analyzed the models goodness of fit to the spot price dynamics and the term 

structure of futures prices and volatilities. Interestingly, it is found that models allowing for 

stochastic seasonality outperform standard models with deterministic seasonality. 

This chapter is organized as follows. Section 2 deals with seasonality in Henry Hub natural gas 

prices. The model allowing for stochastic seasonality is developed in Section 3. The estimation 

methodology is discussed in Section 4. Sections 5 and 6 present the data and the empirical 

results regarding the estimation of the models. The goodness of fit of the models regarding the 

spot price, forward curve and volatility of futures returns estimations is contained in section 7. 
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Section 8 presents the results obtained for other commodities (RBOB gasoline and heating oil 

traded at NYMEX) and other markets (natural gas and gas oil traded at ICE Futures Europe, 

London). Finally, section 9 concludes with a summary and discussion. 

 

2. Seasonality in Henry Hub Natural Gas Prices  

Looking at Figure 1 it seems clear that Henry Hub natural gas prices are seasonal with a one 

year period. A very simple algorithm can be developed to understand it more clearly. Let St be 

the spot price and Yt the centered moving average in a year of St defined as follows. If 

{ St} t=1,2,3,… is the spot price time series with monthly frequency, then Yt = (0.5St+6 + St+5 + St+4 + 

… + St + … + St-5 + 0.5St-6)/12. 

Let us define τt = St/Yt, which is a measure of how big is the spot price in month “t” with respect 

to the prices in one-year period centered in this month “t”. If the price in this month “t” is higher 

than the price in the previous and following months, then τt will be grater than one, if not, τt will 

be less than one. Let us also define im as the average of τt for month “m” (m = January, 

February,…, December) and rm, the scaling factor for month “m“, as 12
1221 .../ iiiir mm = . It is 

obvious that r1r2…r12 = 1, and it is also easy to show that if rm is greater than one, then the 

prices in month “m” are higher than the average price and if rm is less than one, then the prices 

in month “m” are less than the average price. 

As can be appreciated in Figure 2, the spot price and the forward curve scaling factors present 

the same pattern: In winter months they are higher than one and in summer months they are less 

than one. This is clear evidence of seasonality in the price of natural gas in Henry Hub. 

A more sophisticated analysis can be implemented to complete this result. The spectrum of an 

stationary process is defined as the Fourier transformation of its autocovariance function. It can 

be proved (Wei, 2005) that deterministic seasonality appears in the spectrums as sharp peaks 
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(actually Dirac delta functions) in several frequencies whereas stochastic seasonality shows a 

softer pattern.  

This implies that in data analysis a sharp spike in the sample spectrum may indicate a possible 

deterministic cyclical component, while broad peaks often imply a nondeterministic seasonal 

component. Of course, the results should be taken with some care as estimation errors and 

aliasing effects can take place, confusing deterministic and stochastic “ideal” patterns. 

It can be proved (Wei, 2005) that in a general stationary ARMA(p,q) model, ψp(L)St = θq(L)et, 

where L is the lag function and et is white noise with variance σe
2, the spectrum is given 

by:
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If it is assumed that Henry Hub spot natural gas prices follow an AR(1) with yearly stochastic 

seasonality, that is, (1-φL)(1-ΦL12)St = et, its spectrum should be: 
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Thus, for Φ>0, other than a peak at w = 0, the spectrum also exhibits peaks and troughs at 

seasonal harmonic frequencies w = 2πk/12 and w = π(2k-1)/12 respectively (k = 1, 2, 3, 4, 5 and 

6). The Henry Hub natural gas price spectrum is depicted in Figure 3. It seems that, more or 

less, the spectrum exhibits peaks and troughs at those frequencies. 

Therefore, this analysis suggests that natural gas in Henry Hub price has a yearly stochastic 

seasonal component. 
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3. A model for stochastic seasonality 

As mentioned above, in this section it is presented the general n+2m-factor model. This model 

assumes that the log-spot price (Xt) is the sum of n+m stochastic factors (n non-seasonal and m 

seasonal):  

∑∑
=

−

=

++=
m

j
jt

n

i
itttX

1

1

1

αχξ          (1) 

The non-seasonal factors (ξt and χit) are the same that Cortazar and Naranjo (2006) use in their 

paper. Their stochastic differential equations (SDE) are:  

t
dWdtd t ξξξ σµξ +=                      (2) 

iti
dWdtd itiit χχσχκχ +−=            i = 1, 2, 3,..., n-1      (3) 

where µξ, κi, σξ and σχi are constants and dWξt and dWχit are correlated Brownian motions 

increments. 

Each seasonal factor is modeled through a trigonometric component. The trigonometric SDE is 

complex:  

ajtjjtjjt dWQdtaida απϕ +−= 2   

where ajt is a complex factor (ajt = αjt + iαjt
*), Qαj is a complex number (Qαj = Qαj1 + iQαj2) and 

Wajt a complex Brownian motion (Wajt = Wαjt + iWα*jt ), provided that jtdα and *
jtdα are 

uncorrelated and with the same variance (Oksendal, 1992).  

To get it, a necessary and sufficient condition is to assume that jtdWα  and jtdW *α  are 

uncorrelated. A proof of this fact can be found in appendix A. In appendix A it is also proved 

that the argument of jQα  ( jQα expressed in polars is j
i

j
jeQ α

θ
α σ= ) has no effect in the model 

once expressed using only real numbers, this is to say equalling components in the previous 
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equation. This is the reason why jθ is chosen equal to zero and, consequently, jjQ αα σ= . 

Therefore the last SDE can be written as: 

ajtajjtjjt dWdtaida σπϕ +−= 2  

Equalling components in the previous equation yields two real SDEs for each seasonal factor: 

   jtjjtjjt dWdtd αασαπϕα += *2           (4) 

   
jtjjtjjt dWdtd *2*

αασαπϕα +−=        j = 1, 2, 3,..., m   (5) 

where Wαjt and Wα*jt  are uncorrelated. 

To assess derivatives contracts the “risk-neutral” version of the model has to be used. The SDEs 

for the factors under the equivalent martingale measure can be expressed as: 

◊+−= tt dWdtd ξξξξ σλµξ )(                       (6) 

◊+−−= itiiitiit dWdtd χχχ σλχκχ )(             i = 1, 2, 3, ..., n-1        (7) 

   
◊+−= jtjjjtjjt dWdtd ααα σλαπϕα )2( *
           (8) 

   
◊+−−=

jtjjjtjjt dWdtd ** )2(*

ααα σλαπϕα           j = 1, 2, 3, ..., m     (9) 

where λξ, λχi, λαj y λα*j  are each factor “risk-premia” and 
◊

tWξ , 
◊

tWχ , 
◊

jtWα  and 
◊

jtW *α  are each 

factor Brownian motions under the equivalent martingale measure. It is admitted any correlation 

structure among Brownian motions with the restriction explained above (Wαjt and Wα*jt  are 

uncorrelated). For each seasonal factor, both components (corresponding to real and imaginary 

parts in a complex process) should have equal variance and be uncorrelated.  

General expressions for the price of a futures contract and for the volatility of futures returns 

can be found in Appendix B. 
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Next, the general model presented above will be particularized for n = 1, 2, 3 and m = 1. This is 

to say, we present three, four and five-factor models in order to explain the stochastic behavior 

of Henry Hub natural gas prices. Due to the analysis developed in Section 2, these particular 

models will have only one seasonal factor and it is expected that the estimated phase is one year 

(φ =1). 

The non-seasonal part will be the same as in Schwartz (1997) for the three-factor model, 

Schwartz and Smith (2000) for the four-factor model and Schwartz and Cortazar (2003) for the 

five-factor model. Due to the seasonal factor, the Schwartz (1997) one-factor model becomes a 

three-factor model, the Schwartz and Smith (2000) two-factor model becomes a four-factor 

model and the Schwartz and Cortazar (2003) three-factor model becomes a five-factor model. 

3.1. The Three-Factor Model 

In this model it is assumed that the log-spot price (Xt) is the sum of two stochastic factors: a 

short-term component (χt) and a seasonal component (αt), and a deterministic factor: the long-

term component (ξt). 

ttttX αχξ ++=        (10) 

The third stochastic factor is the other seasonal factor (αt
*) which complements αt. 

The SDE of these factors are: 

     dtd t ξµξ =         (11) 

    ttt dWdtd χχσκχχ +−=         (12) 

          ttt dWdtd αασπϕαα += *2         (13) 

    
ttt dWdtd *2*

αασπϕαα +−=         (14) 

Equation (12) is identical to equations (2) in Schwartz (1997). 
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The “risk-neutral” SDE are: 

      dtd t ξµξ =                      (15) 

         ( ) ±+−−= ttt dWdtd χχχ σλκχχ         (16) 

              ( ) ±+−= ttt dWdtd ααα σλπϕαα *2         (17) 

       ( ) ±+−−=
ttt dWdtd **2*

ααα σλπϕαα       (18) 

Applying the result in Appendix B, expression (B4), the log-price of a futures contract with 

maturity at time “T+t” traded at time t is: 

[ ] )()2()2cos(),(ln 3
*
0000 TATsenTetTXF kT

t ++++=+ − απϕαπϕχξ    (19)  
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It is important to note that the trigonometric terms in the expressions above try to capture the 

seasonality in the forward curve.  

Particularizing equation (B5) in Appendix B, it is determined the squared volatility of futures 

returns implied by this model: 

)2(2)2cos(2)( *
2222

3 TseneTeeT kTkTkT
F πϕρσσπϕρσσσσσ χααχχααχαχ

−−− +++=  (21) 
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As can be appreciated in the previous equation, an interesting fact of this model with respect to 

the one factor model in Schwartz (1997) is the fact that in this case the volatility of futures 

returns does not go to zero as the time to maturity of futures contract approaches  infinity, which 

is an undesirable property. It happens because seasonal factors are long-term factors.   

Other interesting fact to take into account is the presence of seasonality in the volatility of 

futures returns. In this model seasonality disappears when the time to maturity of futures 

contracts approaches infinity. It happens because seasonality comes from the correlation 

between seasonal and non-seasonal factors. In this model, however, there is only one non-

seasonal stochastic factor, which is a short-term factor. In following sections this facts are going 

to be discussed again. 

3.2. The Four-Factor Model 

In this model the log-spot price (Xt) is the sum of three stochastic factors: a long-term 

component (ξt), a short-term component (χt) and a seasonal component (αt). 

ttttX αχξ ++=          (22) 

The fourth stochastic factor is the other seasonal factor (αt
*) which complements αt. 

The SDE of these factors are: 

tt dWdtd ξξξ σµξ +=                     (23) 

   ttt dWdtd χχσκχχ +−=                     (24) 

   ttt dWdtd αασπϕαα += *2                     (25) 

             
ttt dWdtd *2*

αασπϕαα +−=                     (26) 

Equations (23) and (24) are identical to equations (2) and (1) respectively in Schwartz and 

Smith (2000). 
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The “risk-neutral” SDE are: 

   tt dWdtd ξξξ σµξ += '         (27) 

   ( ) ttt dWdtd χχχ σλκχχ +−−=         (28) 

        ( ) ttt dWdtd ααα σλπϕαα +−= *2         (29) 

   ( )
ttt dWdtd **2*

ααα σλπϕαα +−−=        (30) 

where µξ’  = µξ - λξ is the “risk-neutral” drift. 

As before, the log-price of a futures contract with maturity at time “T+t” traded at time t can be 

calculated applying the result in Appendix B, expression (B4): 

[ ] )()2()2cos(),(ln 4
*
0000 TATsenTetTXF kT

t ++++=+ − απϕαπϕχξ (31)  
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And the squared volatility of futures returns is: 
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Given that in this model there is a long-term stochastic factor, seasonality in the volatility of 

futures returns does not disappear when the time to maturity of futures contracts approaches 

infinity. 

3.3. The Five-Factor Model 

In this model the log-spot price (Xt) is the sum of four stochastic factors: a long-term component 

(ξt), two short-term components (χ1t and χ2t) and a seasonal component (αt). 

tttttX αχχξ +++= 21         (34) 

The fifth stochastic factor is the other seasonal factor (αt
*) which complements αt. 

The SDE of these factors are: 

   tt dWdtd ξξξ σµξ +=                       (35) 

   ttt dWdtd 11111 χχσχκχ +−=                       (36) 

   ttt dWdtd 22222 χχσχκχ +−=          (37) 

   ttt dWdtd αασπϕαα += *2                       (38) 

               
ttt dWdtd *2*

αασπϕαα +−=                       (39) 

In Appendix C.1 it can be seen that the non-seasonal part of this model is equivalent to the three 

factor model proposed in Cortazar and Schwartz (2003).     

The “risk-neutral” SDE are: 

   tt dWdtd ξξξ σµξ += '         (40)  

   ( ) ttt dWdtd 11111 χχχ σλχκχ +−−=       (41) 

   ( ) ttt dWdtd 222222 χχχ σλχκχ +−−=        (42) 
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        ( ) ttt dWdtd ααα σλπϕαα +−= *2         (43) 

   ( )
ttt dWdtd **2*

ααα σλπϕαα +−−=        (44) 

where µξ’  = µξ - λξ is the “risk-neutral” drift. 

The log-price of a futures contract with maturity at time “T+t” traded at time t and the squared 

volatility of futures returns can be calculated in the same way as in the three and four-factor 

models. Their complex expressions are given in Appendix C.2.  

             

4. Estimation methodology 

As stated in previous studies, one of the main difficulties in estimating the parameters of the 

model is the fact that the factors (or state variables) are not directly observable and must be 

estimated from spot and/or futures prices. Intuitively, the non-seasonal factors (long term and 

short-term factors) are going to be estimated based on the relationship between long-maturity 

futures and short-maturity futures (or spot prices) and the seasonal factors are going to be 

estimated through the relationship between futures contracts maturing in different months.  

The formal way to do this is through the Kalman filtering methodology. This methodology 

enables the calculation of the likelihood of a data series given a particular set of model 

parameters and a prior distribution of the variables which permits the estimation of the 

parameters using maximum likelihood techniques. Detailed accounts of Kalman filtering are 

given in Harvey (1989). 

The Kalman filter methodology is a recursive methodology that estimates the unobservable time 

series, the state variables or factors (Zt), based on an observable time series (Yt) which depends 

on these state variables.  

In the traditional version of this methodology, two conditions need to be fulfilled. First, no 

missing points in the data set. Second, the length of vector Yt must be independent of “t”. An 
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improved version of this methodology has been developed in Cortazar and Naranjo (2006) to 

handle with incomplete data sets and vectors Yt whose length depends on “t”. The problem 

using this methodology with a data set with a lot of missing points in the futures contracts with 

higher maturities is the unbalance in the relationship between long and short effects and, in the 

case handled in this work, the unbalance in the relationship between futures contracts whose 

maturity occurs in different months, which accounts for the seasonal effects. As explained 

below, taking into account these considerations and other issues related to data liquidity, the 

data set used in this study has not missing points and all vectors have the same length. Therefore 

in this chapter the traditional version of the Kalman filter methodology is used. 

In Cortazar and Schwartz (2003) an alternative to the Kalman filter methodology has been 

developed to estimate the model parameters and the state variables. This technique is a simple 

one which only needs a spreadsheet to be implemented. 

To estimate the parameters of the models through the Kalman filter methodology, or through the 

Cortazar and Schwartz (2003) technique, we need a discrete-time version of the models. 

As stated in Appendix B, the solution to the general problem of this chapter is (B1) and Zt is 

Gaussian with mean and variance given by expressions (B2) and (B3) respectively. Thus, if the 

difference between the current period and the initial period is one period time, Zt follows the 

discrete process: 

tttt TZcZ ψ++= −1    t = 1, …, Nt    (45) 

where ht

t

AsAt
t bdseec ℜ∈= ∫ −

−

1
, hxhAeT ℜ∈=  and h

t ℜ∈ψ  is a vector of serially 

uncorrelated Gaussian disturbances with zero mean and covariance matrix 

( ) ( ) ( )TAt
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1
. This equation will be called, following standard 

conventions in the literature, the transition equation of each model. 
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The measurement equation is just the expression of the log-futures prices (Yt) in terms of the 

factors (Zt) by adding serially uncorrelated disturbances with zero mean (ηt) to take into account 

measurement errors derived from bid-ask spreads, price limits, non-simultaneity of 

observations, errors in the data, etc. To avoid dealing with a great amount of parameters, the 

covariance matrix Ht will be assumed diagonal with all its diagonal elements being equal. This 

simple structure for the measurement errors is imposed so that the serial correlation and cross 

correlation in the log-prices is attributed to the variation of the unobservable state variables. The 

measurement equation will be expressed as: 

ttttt ZMdY η++=    t = 1, …, Nt     (46) 

where h
t

nxn
t

n
tt ZMdY ℜ∈ℜ∈ℜ∈ ,,,  (h is the number of state variables, or factors,  in the 

model) and n
t ℜ∈η is a vector of serially uncorrelated Gaussian disturbances with zero mean 

and covariance matrix Ht. 

The specific transition and measurement equations for the particular models considered in this 

study (three, four and five factor models) are derived in Appendix D.  

Let 1| −ttY  be the conditional expectation of Yt and let tΞ  be the covariance matrix of Yt 

conditional on all information available at time t – 1. Then the log-likelihood function can be 

expressed as (after omitting unessential constants)9 

∑ ∑ −
−

− −Ξ−−Ξ−=
t t

tttttttt YYYYl )()'(||ln 1|
1

1|   (47) 

 

5. Data 

The data set employed in the estimation procedure consists of weekly observations of Henry 

Hub natural gas futures prices traded at NYMEX10. Four different data sets are used in the 
                                                           
9 See Harvey (1989) for a detailed discussion of the estimation of a model in state space form by 
maximum likelihood. 
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estimation procedure. In all cases nine futures contracts (i.e. n = 9) have been used. The three 

first ones data sets (data sets 1, 2 and 3) are made of contracts F1, F5, F9, F14, F18, F22, F27, 

F31 and F35 where F1 is the contract closest to maturity, F2 is the second contract closest to 

maturity and so on. Data set 1 contains 438 quotations of each contract from 09/01/1997 to 

01/16/2006, data set 2 contains 222 quotations from 09/01/1997 to 11/26/2001, and data set 3 

contains 216 quotations from 12/03/2001 to 01/16/2006. The last data set (data set 4) entails 

contracts F1, F8, F15, F22, F29, F36, F43, F50 and F57 from 12/03/2001 to 01/16/2006 (216 

quotations). 

As explained in Schwartz (1997), since futures contracts have a fixed maturity date, the time to 

maturity changes as time progresses, but remaining in a narrow time interval. This is the reason 

why, as in Schwartz (1997), it is assumed that the time to maturity does not change with time 

and it is equal to one month for F1, to two months for F2 and so on. 

There are currently 72 contracts traded for different maturities ranging from 1 to 72 months. 

However, until December 2001 the maximum maturity traded at NYMEX was only 36 months. 

In this date new contracts were introduced to include maturities up to 72 months, but the 

liquidity of these new contracts is relatively low and in recent times there is not quotation for 

the contracts with the latest maturities in some dates. Before September 1997 there were also 

liquidity problems with the contracts with the latest maturities and, to be precise, there is not 

quotation for the latest maturities ones (from F20 to F36) in many dates. 

As stated above, it is expected that the seasonal factor in the particular models has one year 

period. Thus, the total number of futures contracts, as long as the number of contracts with 

different maturities needed in the present study, is considerable higher than in previous studies. 

Specifically, we need futures contracts with more than one year to maturity, contracts with 

different maturities and as many contracts as possible to account for it. Futures contracts with 

long-term and short-term maturities are also necessary to estimate properly the parameters of 

                                                                                                                                                                          
10 The NYMEX is the biggest market for natural gas. 
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the non-seasonal factors (long-term and short-term factors). Moreover, the higher the number of 

contracts used in the estimation, the more precise the estimates of the parameters.  

Nevertheless, there are also other considerations to take into account. As explained above, in 

order to estimate properly the relationship between long and short-term effects and the 

parameters in the seasonal process, it is desirable that the data set includes more or less the same 

quotations for all futures contracts. 

Moreover, to account for structural changes in the natural gas price dynamics it is desirable to 

consider different data sets with different sample periods.  

Taking into account all these arguments, it has been defined the sets of futures contracts 

specified above. Nonetheless, the estimation has been repeated using different data sets (data 

sets with more futures contracts and with future contracts with other maturities) and the results 

are more or less the same than those presented in this chapter.  

 NYMEX quotations are market prices, that is, market prices at NYMEX arise as a result of 

matching bid and ask orders. However, there are not Henry Hub natural gas spot prices. Some 

institutions, such as Bloomberg, provide natural gas in Henry Hub spot prices asking the 

participants in the market for their best estimation and applying an internal procedure. 

Therefore, spot prices are not properly market prices. 

Table I contains the main descriptive statistics of all NYMEX data series employed in this 

study.  In all cases, units are $/MMBtu11. 

    

                                                           
11 “MMBtu” means “millions of British thermal units”, which is an energy measure. US $ per MMBtu is 
the accepted way to represent the natural gas price (in MYMEX, natural gas quotes in US $ per MMBtu). 
The energy contained in a crude oil barrel depends on the kind of the oil, but broadly speaking an oil 
barrel contains something less than six MMBtu of energy. 
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6. Empirical Results 

6.1. The Three-Factor Model 

Assuming that the variance-covariance matrix of ηt is diagonal and all diagonal elements are the 

same, there are eleven parameters to be estimated in the three-factor model: µξ, k, φ, σχ, σα, ρχα, 

ρχα*, λχ, λα, λα* and ση. 

Table II presents the results for the three-factor model applied to the four data sets described 

above.  

One interesting issue from these results is the fact that in all cases the seasonal period is more or 

less one year and the standard deviation of the seasonal factor (σα) is significantly different from 

zero. This implies that seasonality in Henry Hub natural gas prices is stochastic with one year 

period, which is consistent with the results in Section 2.  

The speed of adjustment (k) is highly significant which implies, as in the case of oil (Schwartz, 

1997), mean reversion in the natural gas price. The market prices of risk, the λ´s, are not 

significantly different from zero in most of the cases. The long-term trend (µξ) is positive and 

significantly different from zero in all cases, implying long-term growth in the natural gas price. 

As can be appreciated in the table, it has been obtained more or less the same results with the 

first three data sets. The results with the last data set are slightly different. Specifically, there is 

significantly less mean reversion, the volatility of future returns, which is calculated by 

substituting the parameters is equation (21), is also significantly lower, the price of risk for the 

sort-term factor (χ) is highly significant and the long-term trend (µξ) is also different. This fact 

is also a first sign that more structure is needed. Finally, the values of the Akaike and Schwartz 

Information Criteria (AIC and SIC respectively) are shown at the bottom of the table. These 

values will be useful for comparing the models (section 7). 
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As stated above, the seasonal factor is a long-term factor, but, as it will be discussed below, it is 

unable to capture all stochastic long-term effects present in the natural gas price. Therefore, at 

least one stochastic long-term factor is needed. 

6.2. The Four-Factor Model 

Assuming that the variance-covariance matrix of ηt is diagonal and all diagonal elements are the 

same, there are sixteen parameters to be estimated in the four-factor model: µξ, k, φ, σξ,, σχ, σα, 

ρξχ, ρξα, ρξα*, ρχα, ρχα*, µξ’ , λχ, λα, λα* and ση. 

Table III presents the results for the four-factor model applied to the data sets described above. 

As in the previous model, in all cases the seasonal period is one year and the standard deviation 

of the seasonal factor (σα) is significantly different from zero although its magnitude is lower 

than in the three-factor model. This is due to the fact that in the three-factor model the seasonal 

factor captures stochastic long-term effects which are captured by the stochastic long-term 

factor in the four-factor model. 

The speed of adjustment (k) is higher than in the previous model, implying more mean 

reversion, probably due to the fact that the short-term factor in the three-factor model was 

capturing long-term stochastic effects, whereas the parameters of the new stochastic factor, the 

long-term one, are also highly significant, which confirms the previous perception that a 

stochastic long-term factor is needed. 

Moreover, the market prices of risk, the λ´s, are not significantly different from zero in most of 

the cases, the long-term trend is positive and the long-term trend adjusted by risk (µξ’ ) is 

negative and in both cases significantly different from zero.  

In this case the results are more or less the same in all data sets. The only difference which 

remains is that in the fourth data set, which uses futures with higher maturities, there is less 

mean reversion. This difference is consistent with the results obtained by Schwartz (1997), since 

the fourth data set contains futures contracts with higher maturities than those in the first three 
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data sets. Like in the oil case, Schwartz (1997), it has important implications in valuation and 

hedging natural gas contingent claims or in investment decisions, since it is necessary to 

account for the payments term structure when choosing the futures contracts to estimate the 

model parameters. 

6.3. The Five-Factor Model 

Assuming that the variance-covariance matrix of ηt is diagonal and all diagonal elements are the 

same, there are twenty three parameters to be estimated in the five-factor model: µξ, k1, k2, φ, σξ, 

σχ1, σχ2, σα, ρξχ1, ρξχ2, ρξα, ρξα*, ρχ1 χ2, ρχ1α, ρχ1α*, ρχ2α, ρχ2α*, µξ’ , λχ1, λχ2, λα, λα* and ση. 

Table IV presents the results for the five-factor model applied to the data sets described above. 

The results are quite close to the four-factor model ones. In this model there are two short-term 

factors whose parameters are highly significant, and in all cases one of these factors has higher 

speed of adjustment than the other. This means that there are two types of stochastic short-term 

effects, one (the one with higher k) with stronger mean reversion than the other (the one with 

smaller k), and both of them significant. It is interesting to note that, in all cases, the price of 

risk for the short-term factor with stronger mean reversion is highly significant. 

As the non-seasonal part of this model is equivalent to the Schwartz and Cortzar (2003) one 

(appendix C.1), the fact that both sort-term factors are significant implies that Henry Hub 

natural gas prices long-term drift is stochastic.   

 

7. Comparing the models 

In this section the relative performance of the models will be compared. Specifically, we will 

analyze the in-sample and out-of-sample performance, and the goodness of fit for the spot price, 

the forward curve and the volatility of futures returns. The analysis of the goodness of fit for the 

spot price and the forward curve will be developed using the first data set because it is the 

biggest one, whereas the goodness of fit for the volatility will be developed using the fourth 
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one, to account for volatilities of futures with maturities higher than 36 months. Nevertheless, 

using whatever other data set the results are broadly the same. 

The results will be also compared with those obtained with the Schwartz and Smith (2000) two-

factor model with deterministic seasonality, which is Sorensen (2002) proposal. 

7.1 Deterministic versus stochastic seasonality 

Before comparing the relative performance of the three models with stochastic seasonality 

presented in this chapter, it could be useful to compare the results obtained with the models with 

stochastic seasonality with those obtained with the standard models with deterministic 

seasonality as in Sorensen (2002).  

Table V presents the results of the estimation of the Schwartz and Smith (2000) two-factor 

model with deterministic seasonality, which will be compared with those obtained with the 

four-factor model with stochastic seasonality (Table III). In order to save space only the 

comparison of the results obtained with the Schwartz and Smith (2000) two-factor model with 

deterministic seasonality and the four-factor model with stochastic seasonality are presented, 

although similar conclusions are obtained with other models. As it is going to be pointed out 

below, the four-factor model is much more accurate to capture Henry Hub natural gas prices 

dynamics than the three-factor one and simpler than the five-factor one. This is the reason why 

the four-factor model is the one chosen for the comparison. 

First of all, it is interesting to compare the value of the Schwartz Information Criterion (SIC) 

obtained with both models. If we define the SIC as )ln()ln( TqLML − , where q is the number 

of estimated parameters, T is the number of observations and LML is the value of the likelihood 

function, defined in (47), using the q estimated parameters, then the preferred model is the one 

with the highest SIC. It is found that the value of the SIC for the four-factor model with 

stochastic seasonality, shown at the bottom of Table III, is higher than the corresponding value 

obtained with the standard model with deterministic seasonality, shown at the bottom of Table 
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V. The same conclusions are obtained with the Akaike Information Criterion (AIC), which is 

defined as qLML 2)ln( − . 

A second way of comparing the models is though their predictive ability. The in-sample 

predictive ability of the Schwartz and Smith (2000) two-factor model with deterministic 

seasonality and the four-factor model with stochastic seasonality is presented in Table VI, using 

the whole data set, i. e. data set 1. It is found that, in general, the model accounting for 

stochastic seasonality outperforms the standard model with deterministic seasonality. The 

advantages of the stochastic seasonality model over the deterministic seasonality one are even 

clearer when we analyze the out-of-sample predictive ability (Table VII). The out-of-sample 

results are obtained valuing the contracts in data set 3 with the parameters obtained estimating 

the models with data set 2. As expected, out of sample pricing errors are slightly higher than the 

corresponding in-sample values. 

7.2 Spot Price  

Following a procedure close to the Kalman filter technique it has been obtained factors 

estimations in each time based on the information available until this time, for each model and 

for the parameters estimated with each data set. The actual spot price estimation, provided by 

Bloomberg, and the spot price estimated by each model for the first data set, together with the 

deviation from the actual spot price of the spot prices estimated by each model are depicted in 

Figure 4.   

In Figure 4 it is possible to notice that the five-factor model is the model with the best 

performance, the four-factor model the second one and the three-factor model is the model with 

the worst performance of the models presented in this work, in estimating the actual spot price. 

The standard deviation of the deviation from actual spot price is 9% for the five-factor model, 

9.6% for the four-factor model and 13.1% for the three-factor model. 

One interesting fact, which has been observed in the previous section, is the difference in the 

estimations obtained with the three-factor model and with the four and five-factor models. The 
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estimations of the last two models are much better than the three-factor model ones. It confirms 

that a long-term stochastic factor is needed to understand the natural gas price dynamics. The 

five-factor model estimations are better than the four-factor model ones, but both of them are 

close and highly accurate. 

7.3 Forward Curve  

Proceeding in a similar manner as in the previous sub-section and using the first data set as well, 

it is also possible to obtain estimations of the forward curve. The actual forward curve and the 

one estimated by the models for a randomly chosen date are depicted in Figure 5. 

As previously obtained in the case of the goodness of fit for the spot price, the model with the 

best fit to actual data is the five-factor model, the second one is the four-factor model and so on. 

Moreover, the estimations for the five and four-factor models are close and are much better than 

the three-factor model ones. 

7.4 Volatility of Futures Returns 

The volatility of futures returns can be calculated by substituting the estimated parameters 

presented section 6 in the corresponding formulas developed in section 3. The volatility of 

futures returns estimated by each model compared with the actual one are depicted in Figure 6. 

In this case it has been used the fourth data set because with the first one it is not possible to 

calculate the actual volatility for maturities higher than 36 months. Anyway, the conclusion of 

the analysis will be the same if the first data set were used. 

The comments in the previous sub-sections also apply here. One interesting issue to note is that 

the actual natural gas price volatility is seasonal, oppositely to oil. As stated in section 3, in the 

models proposed in this chapter, natural gas price volatility is also seasonal because the seasonal 

factors are stochastic. With deterministic seasonal factors, as in Sorensen (2002), it is not 

possible to get seasonal volatility. Therefore, the seasonal volatility in actual data is a new 

evidence in favor of using stochastic seasonal factors instead of deterministic ones, in 

explaining natural gas prices dynamics.  
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In the case of the three-factor model, seasonality decreases when futures maturity grows, going 

to zero when maturity goes to infinity, whereas it does not in the case of the four and five-factor 

models. Looking at Figure 6 it seems that the seasonality in the actual volatility does not 

decrease, which is a new evidence in favor of the four and five-factor models and against the 

three-factor one. Moreover, in the case of the three-factor model it is not possible to appreciate 

the seasonality even for short maturity contracts, because in this case σα is much smaller than σχ. 

 

8. Other commodities and other markets 

In this section we also apply our model with stochastic seasonality to other commodities. 

Specifically, we have investigated heating oil and RBOB gasoline futures contracts traded at 

NYMEX 12 and gas oil and natural gas futures contracts traded at ICE Futures Europe (London).  

Tables VIII and IX present the results for heating oil futures contracts traded at NYMEX. Table 

VIII contains the results for the Schwartz and Smith (2000) two-factor model with deterministic 

seasonality and Table IX contains the results for the four-factor model with stochastic 

seasonality. Both models have been estimated with weekly observations, using contracts F1, F3, 

F5, F7, F10, F12, F14, F16 and F18. The whole sample period (data set 1) consists of 524 

weekly observations from 09/09/1996 to 09/18/2006. Data sets 2 and 3 consists of weekly 

observations from 09/09/1996 to 09/10/2001 and from 09/17/2001 to 09/19/2006 respectively 

(262 observations each one). The results are similar to those obtained for the natural gas futures 

prices. Specifically, the long-term trend (µξ) is positive and significant (except for data set 2), 

implying long-term growth in heating oil prices. It is worth noting that the long-term trend is 

higher in the second sub-period (data set 3), implying more long-term grown in the last years of 

the sample, which is consistent with the high growth experimented by oil products during the 

last years. 

                                                           
12 It is worth noting that although crude oil prices do not exhibit seasonality, the main oil products are 
strongly seasonal. This is because seasonality in these products goes in opposite direction. Specifically, 
heating oil prices are higher in winter months, whereas gasoline prices are higher in summer months. The 
sum of these effects results in non-seasonality for oil prices. 
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The speed of adjustment (k) is significantly different from zero in all cases, implying mean 

reversion, which is consistent with our previous results for the natural gas and also with the 

results obtained by Schwartz (1997) in the case of oil. Moreover, as in the case of natural gas, 

the volatility of the seasonal factor (σα) is significantly different from zero (Table IX), implying 

that seasonality in heating oil prices is stochastic with one year period (Φ close to one). It is 

worth noting that the short-term volatility (σχ) is higher than the long-term volatility (σξ). Also, 

it can be appreciated from Table IX that all three volatilities (σξ,σχ and σα) are lower than those 

obtained in the natural gas case for the same four-factor model (Table III), and (σξ and σχ) are 

similar to those presented in Schwartz-Smith (2000) for the case of oil. As before, the market 

prices of risk are not significantly different from zero in most of the cases.  

Finally, it is found that the value of the SIC and AIC for our four-factor model (Table IX) are 

higher than the corresponding values obtained with the standard model with deterministic 

seasonality (Table VIII). 

Table X presents the out of sample pricing errors results for heating oil futures prices 

(NYMEX). As in the natural gas case, these results are obtained valuing the contracts in data set 

3 with parameters obtained estimating the models with data set 2. The results are quite similar to 

those obtained with the natural gas series. This is to say, the model accounting for stochastic 

seasonality outperforms the standard model with deterministic seasonality. Moreover, the (root 

mean squared) errors obtained with the heating oil series are lower than those obtained with the 

natural gas series. 

The estimation results for RBOB gasoline (NYMEX) and natural gas and gas oil (ICE Futures 

Europe) are contained in Table XI. The data set for RBOB gasoline (NYMEX) is composed of 

weekly observations from 12/08/2003 to 01/30/2006, contracts F1, F3, F5, F7, F9 and F12 (113 

observations). Due to liquidity constrains, the data set for natural gas (ICE futures) is composed 

of weekly observations from 03/30/1998 to 09/25/2000, contracts F1, F3, F5, F7, F9, F11, F13 

and F15 (131 observations). Finally, the data set for gas oil (ICE futures) is composed of weekly 
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observations from 10/04/1999 to 09/18/2006 (364 observations). The results are quite similar to 

those obtained for natural gas and heating oil (NYMEX). From the point of view of this chapter 

goal, the most important fact is that all three commodities in Table XI show stochastic 

seasonality (σα is significantly different from zero), with one year period (Φ close to one). This 

confirms that stochastic seasonality is commonly observed in commodity futures markets. 

Consequently, stochastic seasonality is a fact that should be considered in a commodity futures 

valuation model. 

 

9. Conclusions 

Most studies on the stochastic behavior of commodity prices are focused on oil prices. The 

number of papers addressing the study of natural gas prices is still scarce. However natural gas 

represents almost the fourth part of the world energy consumption. The lack of economical 

transportation and the limited storability of natural gas make its supply unable to change in view 

of seasonal variations of demand. Therefore, natural gas price is strongly seasonal.  

Analyzing the natural gas price spectrum, it seems highly probable that seasonality in natural 

gas price is an stochastic factor and not a deterministic one. However, to the best of the authors´ 

knowledge, seasonality has never been considered as an stochastic factor in previous studies. 

Therefore, in this chapter it has been developed a general n+2m-factor model of the stochastic 

behavior of commodity prices, considering seasonality as an stochastic factor. Then, this general 

model has been particularized for m = 1 and n = 1,2,3, thus, three, four and five-factor models 

have been obtained to explain the stochastic behavior of Henry Hub natural gas prices. The 

parameters of the models have been estimated through the Kalman filter methodology and using 

NYMEX data.  

One of the main conclusions of this study is the confirmation of the fact that seasonality in the 

natural gas price is stochastic and not deterministic, as many studies assume. It is also found 

that the natural gas prices seasonal period is one year. Similar results are obtained with other 
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commodities and with commodities traded in other markets. Specifically we have confirmed the 

presence of stochastic seasonality in the case of heating oil and RBOB gasoline futures 

contracts traded at NYMEX and natural gas and gas oil futures contracts traded at ICE Futures  

Europe (London). 

The seasonal factors considered in this chapter have a long-term component, but it is 

demonstrated that this long-term component is unable to capture properly the natural gas long-

term dynamics. Consequently, it is necessary to use a random walk as a long-term factor. 

Therefore the four and five-factor models are much better than the three-factor one in explaining 

the natural gas price behavior. The classical two-factor model fails in this task because it does 

not account for seasonality.       

Consequently, the four and five-factor models presented in this work seem appropriate to value 

all natural gas contingent claims or investment projects. The five-factor model is better than the 

four-factor one although it needs more structure. Hence, the use of the four or the five-factor 

models will depend on the precision needed. 

 

 

APPENDICES 

Appendix A: Seasonal Factors 

As stated above, the stochastic differential equation (SDE) for each seasonal factor is:  

ajtjjtjjt dWQdtaida αϕ +−=  

where ajt is a complex factor (ajt = αjt + iαjt
*), Qαj a complex number (Qαj = Qαj1 + iQαj2) and Wajt 

a complex Brownian motion (Wajt = Wαjt + iWα*jt ), provided that jtdα and *
jtdα are uncorrelated 

and with the same variance. 
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Equalling components in the previous equation yields two real SDEs: 

   jtjjtjjtjjt dWQdWQdtd *21
*

αααααϕα −+=          

   jtjjtjjtjjt dWQdWQdtd *12
*

αααααϕα ++−=           

If Wαjt and Wα*jt  are uncorrelated, then jtdα and *
jtdα are also uncorrelated and with the same 

variance, which is 2
2
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2
jjj QQ ααασ += , being jασ  the complex number jQα module (the 

sufficiency condition). 

On the other hand: 
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From the previous equation, taking into account that jtWα  and jtW *α are uncorrelated, it follows 

that: 

I
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Where I the 2x2 identity matrix. 

Therefore, the phase jθ  is indistinguishable. 

 

Appendix B: Futures Contract Valuation 

Let ( )'**
1111 mtmttttntttZ ααααχχξ LL −=  be the vector of all factors. The 

“risk-neutral” SDE of Zt can be expressed as:  

( ) ◊◊ Ω++= Zttt dWdtAZbdZ  

where ◊
ZtdW  is a vector of independent Brownian motions, and therefore Var(dZt) = R = ΩΩT 

(ΩT is the transpose matrix of Ω) with the restriction explained above, 
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It is easy to prove that the (unique) solution of that problem is (Oksendal, 1992) 13: 





 Ω++= ◊−◊−

∫∫ Zs
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000    (B1) 
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( ) ( )tt ZcEXE ** =  

( ) T
tt cZcVarXVar )(** =  

This provides a valuation scheme for all sorts of commodity contingent claims as financial 

derivatives on commodity prices, real options, investment decisions and other more. 

In particular, the price of a futures contract traded at time “t” with maturity at time “t+T” 

is: [ ] [ ] [ ]






 +== +++ tTttTttTtTt IXVarIXEISEF ***

, 2

1
exp , where I t is the information 

available at time “t”. It can be expressed as: 

( )[ ]TgZceF t
AT

Tt += exp,     (B4) 

                                                           
13 This methodology is general and can be used in all kind of problems. It does not matter which is b, A 
and R. Even in the case that b, A and R were function of t, if At and  commute, the solution of that 
problem is (B1). 
14 E*[] and Var*[] are the mean and variance under the risk neutral measure. 
15 Superscript T indicate transpose matrix. 



 88

where TTTATTt
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deterministic function.  

The squared volatility of a futures contract traded at time “t” with maturity at time “t+T” is 

defined as16 
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→
. It is easy to prove that it is the expected value of 

the square of the coefficient of the Brownian motion (σt) in the expansion: 

( ) F
tttTt dWdsFd σµ +=,log , where Wt

F is a scalar canonical Brownian motion. Therefore, 

taking logarithms and differentials on both sides of Equation (B4), it follows that: 
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So, the futures squared volatility is:  

TTATAT ceRce )(       (B5) 

 

Appendix C: The Five-Factor Model 

C.1 Five-factor model reformulation 

In the five factors model the log-spot price (Xt) is given by: 

tttttX αχχξ +++= 21          

The SDEs of the factors can be expressed as: 

                                                           
16 The same results are going to be obtained if the volatility is defined as: 
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Defining tty 11χκ=  and tt kv 22χ−=⊗  it is clear that: 
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tttttt dWkdvkdWkdtkkdkdv 222222222222 )( χχχχ σσχχ −−=−−−=−= ⊗⊗        

Let ξµ+= ⊗
tt vv  and 

2ktt
ξµ

ξξ −=⊗ , in this case: 

tttttt dWkdtvkdWkdtvkdvdv 22222222 )( χχξχχ σµσ −−=−−== ⊗⊗         
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It is easy to see that: 
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where ttttXtX dWdWdWdWdW ααχχχχξξ σσσσσ +++= 2211 . 
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Thus, the model can be expressed in terms of the new variables. The new factors are: Xt, yt, vt, αt 

and αt
*. The SDE of these new factors are: 

   ( ) XtXtttt dWdtyvdX σϕα ++−= *           

   ttt dWkdtykdy 1111 χχσ+−=            

   ttt dWkdtvkdv 2222 )( χχξ σµ −−=           

   ttt dWdtd αασϕαα += *                        

               
ttt dWdtd *

*

αασϕαα +−=                        

Therefore, it is obvious that this model is a generalization of the three-factor model developed in 

Cortazar and Schwartz (2003). 

C.2 The log-price of futures contracts and the squared volatility of futures returns 

In the context of the five-factor model, the log-price of a futures contract with maturity at time 

“T+t” traded at time t can be calculated applying the result in equation (B4): 

[ ] )()2()2cos(),(ln 5
*
0020100

21 TATsenTeetTXF TkTk
t +++++=+ −− απϕαπϕχχξ  

where: 
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And, from equation (B5), the squared volatility of futures returns is: 
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Appendix D: Transition and measurement equations 

The Three-Factor Model 

Transition equation: 

ttttt ZTcZ ψ++= −1    t = 1, …, Nt      

where : 
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and  
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Measurement equation: 

   ttttt ZMdY η++=    t = 1, …, Nt      

where: 
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The Four-Factor Model 

Transition equation: 

ttttt ZTcZ ψ++= −1    t = 1, …, Nt      

where: 
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Measurement equation: 

   ttttt ZMdY η++=    t = 1, …, Nt                        

where: 
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The Five-Factor Model 

Transition equation: 

ttttt ZTcZ ψ++= −1    t = 1, …, Nt      

where: 
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and )( tVar ψ is the same as in the other models but with a new column:  
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Measurement equation: 

   ttttt ZMdY η++=    t = 1, …, Nt      

where : 
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FIGURE 1 

HENRY HUB NATURAL GAS PRICES. WEEKLY OBSERVATIONS F ROM 

NYMEX 
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FIGURE 2 

 SCALING FACTORS (WEEKLY OBSERVATIONS FROM NYMEX) 
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FIGURE 3: SPECTRUM 

   

 

          FIGURE 4: SPOT PRICE ESTIMATION 

Natural Gas in Henry Hub Spot Price
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FIGURE 5  

FORWARD CURVE 05/27/2002 

Forward Curve: 05/27/2002
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FIGURE 6 

 VOLATILITY OF FUTURES RETURNS 
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TABLE I 

HENRY HUB NATURAL GAS FUTURES PRICES. DESCRIPTIVE STATS 

($/MMBtu) 

 

The table shows the main descriptive stats of Henry Hub natural gas futures prices traded at NYMEX for 

four different data sets.  

 Data-Set 1 Data-Set 2 Data-Set 3  Data-Set 4 

Num. Obs. 438 222 216  216 

Contract Mean  Stand. 
Dev. 

Mean Stand. 
Dev. 

Mean Stand. 
Dev. 

Contract Mean Stand. 
Dev. 

F1 4.57 2.53 3.19 1.51 5.99 2.57 F1 5.99 2.57 

F5 4.61 2.38 3.16 1.10 6.10 2.57 F8 5.96 2.07 

F9 4.50 2.15 3.10 1.05 5.94 2.57 F15 5.81 2.19 

F14 4.42 2.20 3.03 0.89 5.86 2.56 F22 5.51 1.71 

F18 4.28 1.96 2.97 0.82 5.63 2.56 F29 5.34 1.70 

F22 4.20 1.85 2.93 0.78 5.51 2.55 F36 5.22 1.55 

F27 4.17 1.89 2.92 0.72 5.45 2.54 F43 5.07 1.35 

F31 4.06 1.70 2.88 0.70 5.27 2.54 F50 5.08 1.43 

F35 4.03 1.65 2.88 0.68 5.21 2.53 F57 4.92 1.09 
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TABLE II 

HENRY HUB NATURAL GAS  (NYMEX). THREE-FACTOR MODEL 

 

The table presents the results for the three-factor model applied to the four data sets described in the 
chapter. Standard errors in parentheses. The estimated values are reported with * denoting significance at 
10%, **  denoting significance at 5%, and ***  denoting significance at 1%. 

 

 Data-Set 1 Data-Set 2 Data-Set 3 Data-Set 4 

Number obs. 438 222 216 216 

µξ 0.1429***  
(0.0004) 

0.1446***   
(0.0009) 

0.1655***  
(0.0025) 

0.0155**  
(0.0062) 

k 0.4025***  
(0.0046) 

0.4723***   
(0.0062) 

0.5714***  
(0.0143) 

0.1886***  
(0.0058) 

Φ 0.9941***  
(0.0023) 

0.9885***   
(0.0030) 

1.010***   
(0.0034) 

1.0025***  
(0.0027) 

σχ 1.0056***  
(0.0196) 

1.0047***   
(0.0245) 

1.4358***  
(0.0313) 

0.3014***  
(0.0174) 

σα 0.0846***  
(0.0041) 

0.0824***   
(0.0054) 

0.0510***  
(0.0083) 

0.0670***  
(0.0061) 

ρχα 0.2010***  
(0.0310) 

0.1216***   
(0.0359) 

0.6616***  
(0.0390) 

0.1549***  
(0.0316) 

ρχα* 0.5762***  
(0.0275) 

0.6709***   
(0.0312) 

0.3140***  
(0.0406) 

0.0960***  
(0.0250) 

λχ 0.6596** 

(0.2904) 
0.4807  

(0.4299) 
0.6497  

(0.5719) 
0.4470***  
(0.1027) 

λα 0.0025  
(0.0112) 

-0.0135  
(0.0151) 

-0.0351***  
(0.0124) 

0.0008  
(0.0144) 

λα* -0.0084  
(0.0137) 

-0.0042  
(0.0206) 

-0.0121  
(0.0114) 

-0.0317**  
(0.0137) 

ση 0.0544***  
(0.0005) 

0.0497***   
(0.0006) 

0.0592***  
(0.0007) 

0.0680***  
(0.0008) 

Log-likelihood 17849 9387.03 8471.95 8279.9 

AIC 17827 9365.03 8449.95 8257.9 

SIC 17782.1 9327.6 84128.2 82207.7 
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TABLE III 

HENRY HUB NATURAL GAS  (NYMEX). FOUR-FACTOR MODEL 

 

The table presents the results for the four-factor model applied to the four data sets described in the 
chapter. Standard errors in parentheses. The estimated values are reported with * denoting significance at 
10%, **  denoting significance at 5%, and ***  denoting significance at 1%. 

 

 Data-Set 1 Data-Set 2 Data-Set 3 Data-Set 4 
Number obs. 438 222 216 216 

µξ  0.1791***  

(0.0436) 
0.1182  

(0.1220) 
0.2476***  
(0.0674) 

0.2292  
(0.1433) 

k  0.9135***  
(0.0038) 

1.0968***   
(0.0126) 

0.7817***  
(0.0037) 

0.5912***  
(0.0061) 

Φ  0.9973***  
(0.0015) 

0.9937***   
(0.0020) 

0.9999***  
(0.0028) 

1.0008***  
(0.0033) 

σξ 0.1704***  
(0.0015) 

0.1765***   
(0.0038) 

0.1611***  
(0.0020) 

0.1995***  
(0.0020) 

σχ  0.5592***  
(0.0076) 

0.5509***   
(0.0149) 

0.5922***  
(0.0014) 

0.7542***  
(0.0025) 

σα 0.0561***  
(0.0012) 

0.0515***   
(0.0023) 

0.0576***  
(0.0004) 

0.0529***  
(0.0008) 

ρξχ  -0.3908***  
(0.0039) 

-0.2560***   
(0.0063) 

-0.5398***  
(0.0047) 

-0.7236***  
(0.0022) 

ρξα  -0.2617***  
(0.0037) 

-0.2193***   
(0.0048) 

-0.2946***  
(0.0047) 

-0.0729***  
(0.0022) 

ρξα*  -0.1096***  
(0.0041) 

-0.0911***   
(0.0059) 

-0.1760***  
(0.0053) 

-0.1626***  
(0.0023) 

ρχα 0.3942***  
(0.0084) 

0.3956***   
(0.0393) 

0.3735***  
(0.0010) 

0.0540***  
(0.0051) 

ρχα*   0.2716***  
(0.0067) 

0.3006***   
(0.0246) 

0.3072***  
(0.0071) 

0.2618***  
(0.0053) 

µξ’ -0.0479***  
(0.0020) 

-0.0312***   
(0.0016) 

-0.0661***  
(0.0042) 

-0.0264***  
(0.0024) 

λχ 0.0029  
(0.0894) 

-0.0726  
(0.0476) 

0.0791**  
(0.0317) 

0.1926*  
(0.1014) 

λα 0.0019  
(0.0036) 

0.0003  
(0.0102) 

0.0059  
(0.0056) 

0.0081  
(0.0050) 

λα*  -0.0117**  
(0.0057) 

-0.0149  
(0.0121) 

-0.0075  
(0.0072) 

-0.0038  
(0.0201) 

ση   0.0324***  
(0.0002) 

0.0300***   
(0.0004) 

0.0324***  
(0.0004) 

0.0373***  
(0.0004) 

Log-likelihood 21555.9 11150.2 10661.5 10193.6 

AIC 21523.8  11118.2 10629.5 10161.6 

SIC 21458.5 11063.8 10575.5 10107.6 
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TABLE IV 
HENRY HUB NATURAL GAS  (NYMEX). FIVE-FACTOR MODEL 

 
The table presents the results for the five-factor model applied to the four data sets described in the 
chapter. Standard errors in parentheses. The estimated values are reported with * denoting significance at 
10%, **  denoting significance at 5%, and ***  denoting significance at 1%. 
 

 Data-Set 1 Data-Set 2 Data-Set 3 Data-Set 4 
Number obs. 438 222 216 216 

µξ  0.1678***  

(0.0262) 
0.1248  

(0.1270) 
0.2340***  
(0.0539) 

0.0930  
(0.0816) 

k1  0.5660***   
(0.0009) 

7.5352***   
(0.1789) 

6.1064***  
(0.2765) 

3.3543***  
(0.0235) 

k2 5.3633***   
(0.0500) 

0.6259***   
(0.0032) 

0.7001***  
(0.0102) 

0.4411***  
(0.0012) 

Φ  0.9916 ***  
(0.0019) 

0.9923 ***   
(0.0034) 

0.9897 ***  
(0.0019) 

0.9948 ***  
(0.0019) 

σξ 0.1995***   
(0.0044) 

0.2020***   
(0.0060) 

0.1613***  
(0.0013) 

0.1933***  
(0.0022) 

σχ1  0.4550***   
(0.0058) 

0.6390***   
(0.0126) 

0.5568***  
(0.0133) 

0.5195***  
(0.0022) 

σχ2 0.5441***   
(0.0222) 

0.4070***   
(0.0070) 

0.4808***  
(0.0345) 

0.4754***  
(0.0084) 

σα 0.0600***   
(0.0099) 

0.0525***   
(0.0016) 

0.0674***  
(0.0021) 

0.0459***  
(0.0018) 

ρξχ1  -0.6173***   
(0.0043) 

0.1029***   
(0.0022) 

0.2626***  
(0.0064) 

0.3012***  
(0.0027) 

ρξχ2 0.1573***   
(0.0043) 

-0.5064***   
(0.0056) 

-0.5517***  
(0.0049) 

-0.7455***  
(0.0028) 

ρξα  -0.2705***   
(0.0068) 

-0.1820***   
(0.0059) 

-0.3167***  
(0.0043) 

-0.1479***  
(0.0028) 

ρξα* 0.0728***   
(0.0049) 

0.0743***   
(0.0057) 

0.0670***  
(0.0044) 

0.1572***  
(0.0028) 

ρχ1 χ2 -0.0985***   
(0.0057) 

0.0612*  
(0.0332) 

-0.2374***  
(0.0688) 

-0.3005***  
(0.0186) 

ρχ1α 0.3786***   
(0.0437) 

-0.3751***   
(0.0270) 

-0.3277***  
(0.0567) 

-0.0534***  
(0.0153) 

ρχ1α*  -0.0245***  
(0.0040) 

0.0902***   
(0.0329) 

0.0540***  
(0.0122) 

-0.0208  
(0.0206) 

ρχ2α -0.3071***   
(0.1160) 

0.3125***   
(0.0085) 

0.4265***  
(0.0028) 

0.1141***  
(0.0082) 

ρχ2α*  0.0628  
(0.0657) 

-0.0828***   
(0.0091) 

0.0084  
(0.0171) 

-0.0963***  
(0.0100) 

µξ’ -0.0137***   
(0.0048) 

-0.0033  
(0.0039) 

-0.0420***  
(0.0029) 

-0.0056**  
(0.0023) 

λχ1 0.1258  
(0.0901) 

-0.6780***   
(0.0936) 

-0.6910***  
(0.1455) 

-0.6639***  
(0.1110) 

λχ2 -0.5237***   
(0.0605) 

0.0165  
(0.0487) 

0.1992***  
(0.0738) 

0.6836***  
(0.0602) 

λα -0.0051  
(0.0233) 

-0.0046  
(0.0070) 

-0.0004  
(0.0030) 

-0.0085  
(0.0077) 

λα* 0.0124  
(0.0327) 

0.0070  
(0.0051) 

0.0235***  
(0.0067) 

0.0233*  
(0.0139) 

ση   0.0251***  
(0.0003) 

0.0224***   
(0.0004) 

0.0267***  
(0.0002) 

0.0289***  
(0.0002) 

Log-likelihood 22858.2 11917.9 11113.5 10950.1 

AIC 22812.2 11871.9 11167.5 10904.1 

SIC 22718.3 11793.6 10989.8 10826.4 
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TABLE V 

HENRY HUB NATURAL GAS  (NYMEX). SCHWARTZ AND SMITH (2000) TWO-

FACTOR MODEL WITH DETERMINISTIC SEASONALITY 

The table presents the results for the Schwartz and Smith (2000) two-factor model with deterministic 
seasonality, applied to the four data sets described in the chapter. Standard errors in parentheses. The 
estimated values are reported with *  denoting significance at 10%, **  denoting significance at 5%, and ***  
denoting significance at 1%. 

 

 Data-Set 1 Data-Set 2 Data-Set 3 Data-Set 4 

Number obs. 438 222 216 216 

µξ 
0.1781***   
(0.0326) 

0.1160**   
(0.0513) 

0.2512***  
(0.0376) 

0.2283***  
(0.0436) 

k 
1.0292***   
(0.0201) 

1.2208***   
(0.0273) 

0.9726***  
(0.0280) 

0.6358***  
(0.0148) 

Φ 
0.9843***   
(0.0003) 

0.9822***   
(0.0009) 

0.9929***  
(0.0010) 

0.987*** 0 
(0.0007) 

σξ 
0.1688***   
(0.0051) 

0.1769***   
(0.0071) 

0.1476***  
(0.0070) 

0.1864***  
(0.0040) 

σχ 
0.5554***   
(0.0175) 

0.5505***   
(0.0236) 

0.5621***  
(0.0265) 

0.6966***  
(0.0152) 

ρξχ 
-0.3296***   
(0.0409) 

-0.2267*** 

(0.0570) 
-0.3483***   
(0.0626) 

-0.6583***   
(0.0125) 

µξ’ 
-0.0484***   
(0.0017) 

-0.0324***   
(0.0021) 

-0.0665*** 

(0.0024) 
0.0425***   
(0.0005) 

λχ 
-0.0059  
(0.1210) 

-0.0885  
(0.1704) 

0.0773  
(0.1755) 

-0.0306***  
(0.0013) 

λα 
-0.0023  
(0.0027) 

-0.0080**   
(0.0035) 

0.0470***  
(0.0050) 

0.1868   
(0.1892) 

λα* 
0.0260***   
(0.0034) 

0.0271***   
(0.0044) 

-0.0575***  
(0.0048) 

-0.0484***  
(0.0007) 

ση 
0.0362***   
(0.0003) 

0.0336***   
(0.0004) 

0.0368***  
(0.0005) 

0.0526***  
(0.0041) 

Log-likelihood 20988,8 10861,5 10334.1 9831.87          

AIC 20966.7   10839.6   10312  9809.9 

SIC 20921.8    10802.1  10274.9     9727.7 
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TABLE VI 

HENRY HUB NATURAL GAS  (NYMEX).  

IN-SAMPLE PREDICTIVE ABILITY (DATA SET 1) 

 

The table presents several metrics trying to compare the in-sample predictive power ability of the 
Schwartz and Smith (2000) two-factor model with deterministic seasonality and the four-factor 
model with stochastic seasonality. The results are based on the first data set. 

PANEL A: SCHWARTZ AND SMITH (2000) TWO-FACTOR MODEL WITH 
DETERMINISTIC SEASONALITY 

 
Mean error 

(Real-Predicted) 
Std. Dev. Error 

 
 

Std. Dev. error 
(% mean) 

 

Root Mean 
Squared Error 

 

Root Mean 
Squared Error 
(% mean) 

F1 0.011873 0.073741 5.317492 0.074691 0.05386 

F5 -0.01563 0.058013 4.111995 0.06008 0.042585 

F9 -0.00594 0.048836 3.494517 0.049196 0.035203 

F14 0.001658 0.042283 3.05686 0.042315 0.030592 

F18 0.002208 0.037473 2.755082 0.037538 0.027599 

F22 0.007588 0.034945 2.593316 0.035759 0.026537 

F27 0.002152 0.036535 2.727677 0.036599 0.027324 

F31 -0.00175 0.038182 2.887859 0.038222 0.028909 

F35 -0.00205 0.036748 2.7867 0.036805 0.02791 

PANEL B: FOUR-FACTOR MODEL WITH STOCHASTIC SEASONALITY 

F1 0.007864 0.071977 5.190253 0.072405 0.052211 

F5 -0.0092 0.052742 3.738416 0.053538 0.037948 

F9 -0.0056 0.045167 3.231979 0.045513 0.032567 

F14 -0.00239 0.037048 2.678386 0.037125 0.02684 

F18 0.007655 0.035478 2.608369 0.036294 0.026684 

F22 0.005313 0.034116 2.531833 0.034528 0.025623 

F27 -0.00042 0.035255 2.63206 0.035257 0.026322 

F31 0.003122 0.039431 2.982327 0.039554 0.029917 

F35 -0.00615 0.036058 2.734364 0.036579 0.027739 
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TABLE VII 

HENRY HUB NATURAL GAS  (NYMEX) 

OUT-OF-SAMPLE PREDICTIVE ABILITY 

 

The table presents several metrics trying to compare the out-of-sample predictive power ability of the 
Schwartz and Smith (2000) two-factor model with deterministic seasonality and the four-factor 
model with stochastic seasonality. The results are obtained valuing the contracts in data set 3 with the 
parameters obtained estimating the models with data set 2. 

PANEL A: SCHWARTZ AND SMITH (2000) TWO-FACTOR MODEL 

 

Mean error (Real-
Predicted) 

 

Std. Dev. Error 
 
 

Std. Dev. error 
(% mean) 

 

Root Mean 
Squared Error 

 

Root Mean 
Squared Error 

(% mean) 
F1 0.02061 0.070913 6.58469 0.073847 0.068572 

F5 -0.02638 0.062268 5.679274 0.067626 0.061679 

F9 -0.02824 0.050649 4.685677 0.057991 0.053648 

F14 -0.02244 0.047966 4.48428 0.052958 0.049509 

F18 -0.01421 0.041866 3.97686 0.044213 0.041998 

F22 -0.00423 0.037435 3.589902 0.037674 0.036128 

F27 0.003337 0.043051 4.128993 0.04318 0.041414 

F31 0.010411 0.045073 4.373193 0.04626 0.044883 

F35 0.018478 0.04249 4.120222 0.046334 0.04493 

PANEL B: FOUR-FACTOR MODEL WITH STOCHASTIC SEASONALITY 

F1 0.015791 0.070325 6.530147 0.072076 0.066927 

F5 -0.01559 0.054871 5.004566 0.057042 0.052026 

F9 -0.0296 0.044777 4.142435 0.053675 0.049656 

F14 -0.02492 0.0342 3.197334 0.042315 0.03956 

F18 -0.00598 0.034203 3.248993 0.034722 0.032983 

F22 -0.01016 0.031116 2.983895 0.032732 0.031389 

F27 0.003033 0.035621 3.416454 0.03575 0.034288 

F31 0.016003 0.037406 3.629328 0.040686 0.039475 

F35 0.010345 0.037622 3.648209 0.039018 0.037836 
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TABLE VIII 

HEATING OIL (NYMEX). SCHWARTZ AND SMITH (2000) TWO- FACTOR 

MODEL WITH DETERMINISTIC SEASONALITY 

 

The table presents the results for the Schwartz and Smith (2000) two-factor model with deterministic 
seasonality, applied to the three data sets described in the chapter. Standard errors in parentheses. The 
estimated values are reported with *  denoting significance at 10%, **  denoting significance at 5%, and ***  
denoting significance at 1%. 

 

 Data-Set 1 Data-Set 2 Data-Set 3 

Number obs. 524 262 262 

µξ 
0.1361***   
(0.0309) 

0.0576  
(0.0373) 

0.2097***   
(0.0479) 

k 
1.5156***   
(0.0185) 

1.3826***   
(0.0257) 

1.4036***  
(0.0263) 

Φ 
0.9914***   
(0.0002) 

0.9889***   
(0.0007) 

0.9832***  
(0.0005) 

σξ 
0.1506***   
(0.0036) 

0.1378***   
(0.0054) 

0.1583***  
(0.0051) 

σχ 
0.2978***   
(0.0073) 

0.3223***   
(0.0116) 

0.2710***  
(0.0091) 

ρξχ 
0.0552  

(0.0360) 
-0.1707***  
(0.0546) 

0.2426***  
(0.0446) 

µξ’ 
-0.0582***   
(0.0016) 

-0.0460***  
(0.0029) 

-0.0697***  
(0.0018) 

λχ 
-0.0396  
(0.0603) 

-0.0114  
(0.0909) 

-0.0537  
(0.0807) 

λα 
-0.0537***   
(0.0016) 

-0.0538***  
(0.0026) 

0.0007  
(0.0015) 

λα* 
-0.0091***   
(0.0013) 

-0.0025  
(0.0020) 

-0.0061***  
(0.0013) 

ση 
0.0164***   
(0.0001) 

0.0194***   
(0.0002) 

0.0111** * 
(0.0001) 

Log-likelihood 31741,6 15259,5 17407,2 

AIC 31719.6 15237.5 17385.2 

SIC 31672.7 15198.2 17345.9 
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TABLE IX 

HEATING OIL (NYMEX). FOUR-FACTOR MODEL 

The table presents the results for the four-factor model applied to the three data sets described in the 
chapter. Standard errors in parentheses. The estimated values are reported with * denoting significance at 
10%, **  denoting significance at 5%, and ***  denoting significance at 1%. 
 

 Data-Set 1 Data-Set 2 Data-Set 3 

Number obs. 524 262 262 

µξ 0.1435***   
(0.0323) 

0.0651  
(0.0456) 

0.2097***   
(0.0480) 

k 1.1372***   
(0.0170) 

1.0354***   
(0.0250) 

1.3996***   
(0.0223) 

Φ 1.0031***   
(0.0021) 

0.9949***   
(0.0037) 

1.0091***   
(0.0020) 

σξ 0.1462***   
(0.0036) 

0.1254***   
(0.0048) 

0.1493***   
(0.0049) 

σχ 0.3078***   
(0.0076) 

0.3255***   
(0.0120) 

0.2701***   
(0.0092) 

σα 0.0271***   
(0.0010) 

0.0333***   
(0.0018) 

0.0218***   
(0.0009) 

ρξχ  -0.0167***   
(0.0056) 

0.0437***   
(0.0084) 

0.0433***   
(0.0071) 

ρξα  0.0454***   
(0.0059) 

-0.0859***   
(0.0090) 

-0.0056  
(0.0084) 

ρξα* 0.0269***   
(0.0064) 

-0.0368***   
(0.0112) 

-0.0180**   
(0.0081) 

ρχα -0.0614***   
(0.0121) 

0.1148***   
(0.0191) 

0.0016  
(0.0152) 

ρχα* -0.0448***   
(0.0138) 

0.0834***   
(0.0240) 

-0.0172  
(0.0147) 

µξ’ -0.0568***   
(0.0017) 

-0.0450***   
(0.0031) 

-0.0689***   
(0.0015) 

λχ -0.0385  
(0.0664) 

-0.0109  
(0.1040) 

-0.0532  
(0.0822) 

λα -0.0067*  
(0.0040) 

-0.0079  
(0.0076) 

-0.0072  
(0.0045) 

λα* -0.0137***   
(0.0032) 

-0.0072  
(0.0057) 

-0.0185***   
(0.0039) 

ση 0.0128***   
(0.0001) 

0.0156***   
(0.0002) 

0.0087***   
(0.0001) 

Log-likelihood 32972,4 15695,6 18133,6 

AIC 32940.4 15663.6 18101.6 

SIC 32872.2 15606.5 18044.5 
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TABLE X 

HEATING OIL (NYMEX). OUT-OF-SAMPLE PREDICTIVE ABILI TY 

 
 

The table presents several metrics trying to compare the out-of-sample predictive power ability of the 
Schwartz and Smith (2000) two-factor model with deterministic seasonality and the four-factor 
model with stochastic seasonality. The results are obtained valuing the contracts in data set 3 with the 
parameters obtained estimating the models with data set 2. 
 
 

 
PANEL A: SCHWARTZ AND SMITH (2000) TWO-FACTOR MODEL 

 

 

Mean error 
(Real-Predicted) 

 

Std. Dev. Error 
 
 

Std. Dev. error 
(% mean) 

 

Root Mean 
Squared Error 

 

Root Mean 
Squared Error 

(% mean) 
F1 0,002912 0,045427 1,421227 0,04552 0,014241 

F3 -0,00269 0,039435 1,234471 0,039527 0,012373 

F5 -0,00541 0,037057 1,161716 0,037451 0,01174 

F7 -0,01228 0,03582 1,125849 0,037866 0,011902 

F10 -0,01366 0,031593 0,99601 0,034421 0,010852 

F12 -0,00553 0,029557 0,933671 0,030069 0,009498 

F14 0,002676 0,026995 0,854329 0,027127 0,008585 

F16 0,004152 0,024821 0,786907 0,025166 0,007978 

F18 -0,00438 0,025607 0,813414 0,02598 0,008252 

 
PANEL B: FOUR-FACTOR MODEL WITH STOCHASTIC SEASONALITY 

 
F1 0,000999 0,04439 1,388795 0,044401 0,013891 

F3 -0,00543 0,038672 1,210584 0,039051 0,012225 

F5 -0,00201 0,034761 1,089737 0,034819 0,010916 

F7 -0,00136 0,032437 1,019496 0,032465 0,010204 

F10 -0,00336 0,027752 0,874921 0,027954 0,008813 

F12 -0,00336 0,027192 0,858962 0,027398 0,008655 

F14 -0,00166 0,025963 0,821682 0,026016 0,008234 

F16 0,000415 0,024686 0,782607 0,024689 0,007827 

F18 -0,00206 0,025379 0,806161 0,025462 0,008088 
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TABLE XI 

GAS OIL AND NATURAL GAS (ICE FUTURES, LONDON) AND R BOB 
GASOLINE (NYMEX). FOUR-FACTOR MODEL AND SCHWARTZ AN D SMITH 

(2000) TWO-FACTOR MODEL 
 
The table presents the results for the Schwartz and Smith (2000) two-factor model with deterministic 
seasonality and for the four-factor model with stochastic seasonality. Standard errors in parentheses. The 
estimated values are reported with *  denoting significance at 10%, **  denoting significance at 5%, and ***  
denoting significance at 1%. 
 

 
GAS OIL 

IPE 
FOUR-F. 

GAS OIL 
IPE 

DETERM. 

GASOLINE 
NYMEX 
FOUR-F. 

GASOLINE 
NYMEX 

DETERM. 

NATURAL 
GAS 
IPE 

FOUR-F. 

NATURAL 
GAS 
IPE 

DETERM. 
Number 

obs. 
364 364 

 
113 

 
113 

 
131 

 
131 

 
µξ  

0.1960***  
(0.0389) 

0.1962***  
(0.0387) 

0.4282***  
(0.0782) 

0.5193***  
(0.1093) 

0.1600**  
(0.0626) 

0.1918 
(0.0641) 

k 1.3650***  
(0.0236) 

1.4259***  
(0.0201) 

1.5407***  
(0.3065) 

0.5998***  
(0.0904) 

2.0348***  
(0.4678) 

4.2371***  
(0.2891) 

Φ 1.0217***  
(0.0038) 

0.9950***  
(0.0007) 

0.9580***  
(0.0124) 

0.9733***  
(0.0020) 

1.0142***  
(0.0057) 

0.9907***  
(0.0015) 

σξ 0.1522***  
(0.0042) 

0.1528***  
(0.0042) 

0.1768***  
(0.0095) 

0.2889***  
(0.0475) 

0.1942***  
(0.0148) 

0.1918***  
(0.0097) 

σχ 0.2685***  
(0.0079) 

0.2663***  
(0.0078) 

0.3587***  
(0.0295) 

0.5243***  
(0.0606) 

0.4275***  
(0.0284) 

0.5148***  
(0.0376) 

σα 0.0257***  
(0.0009)  

0.0487***  
(0.0037)  

0.1021***  
(0.0074)  

ρξχ  -0.0117 
(0.0409) 

0.0004 
(0.0407) 

-0.0673 
(0.1960) 

-0.7898***  
(0.0785) 

-0.2348 
(0.1861) 

0.2465**  
(0.1012) 

ρξα  0.1127***  
(0.0427)  

-0.0053 
(0.1297)  

-0.1011 
(0.1452)  

ρξα* 0.1176***  
(0.0428)  

0.1791* 
(0.1041)  

0.2293***  
(0.0885)  

ρχα -0.1630***  
(0.0447)  

0.5269***  
(0.0924)  

0.3204**  
(0.1465)  

ρχα* -0.1842***  
(0.0460)  

-0.3494***  
(0.0790)  

-0.0712 
(0.1016)  

µξ’  -0.0357***  
(0.0012) 

-0.0366***  
(0.0012) 

-0.1470***  
(0.0256) 

-0.2682***  
(0.0814) 

-0.0928***  
(0.0296) 

-0.0309**  
(0.0128) 

λχ  0.0974 
(0.0677) 

0.0970 
(0.0660) 

-0.2805* 
(0.1670) 

-0.4626* 
(0.2507) 

-0.1419 
(0.1430) 

-0.1075 
(0.1885) 

λα 0.0107***  
(0.0041) 

-0.0022 
(0.0015) 

-0.0085 
(0.0195) 

-0.0226***  
(0.0042) 

0.0211 
(0.0280) 

0.1909***  
(0.0135) 

λα* -0.0192***  
(0.0043) 

-0.0044**  
(0.0018) 

0.0377**  
(0.0184) 

0.0191 
(0.0160) 

-0.0430 
(0.0270) 

-0.0263 
(0.0203) 

ση  0.0115***  
(0.0001) 

0.0134***  
(0.0001) 

0.0104***  
(0.0003) 

0.0144***  
(0.0003) 

0.0561***  
(0.0009) 

0.0686***  
(0.0011) 

Log-
likelihood 

23744.84 23190.87 
 

4757.064 
 

4571.973 
 

4732.799 
 

4400.313 
 

AIC 23712.84 23168.87 4725.064 4549.973 4700.799 4378.313 
SIC 23650.49 23126 4681.426 4519.971 4654.796 4346.686 
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CHAPTER 3: CRUDE OIL AND REFINED PRODUCTS. A 

COMMON LONG-TERM TREND 

 

1. Introduction 

In recent years the study of the stochastic behaviour of commodity prices has grown in 

importance among academics and practitioners, since it plays a central role in the valuation and 

hedging of commodity contingent claims and in defining procedures for evaluating natural 

resources investment projects, especially in determining the optimal investment rules. 

In spite of the existing empirical evidence, which suggests that commodity prices show mean-

reversion and the volatility of futures returns is a decreasing function of time, the first works on 

the stochastic behaviour of commodity prices assumed, as in the equity assets context, that 

commodity prices follow a geometric Brownian motion, which implies a constant rate of growth 

in the commodity price and a constant volatility of futures returns (see for example Brennan and 

Schwartz, 1985; Paddock et al., 1988, among others). 

More recently, several authors, such as Laughton and Jacobi (1993) and (1995), Ross (1997) or 

Schwartz (1997), have considered that a mean-reverting process is more appropriate to model 

the stochastic behaviour of commodity prices. Unfortunately, these one-factor mean-reverting 

models are not very suitable, since they generate a volatility of futures returns which goes to 

zero as the time to maturity of the futures contract approaches infinity, which is not a realistic 

assumption.  

In addition, these models, that consider only one source of uncertainty, are not very reasonable 

since they entail that futures prices for different maturities should be perfectly correlated, which 

defies existing evidence. Looking for more realistic results, Schwartz (1997), Schwartz and 

Smith (2000), Cortazar and Schwartz (2003) and Cortazar and Naranjo (2006), among others, 
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have developed multi-factor models. All these multi-factor models assume that the spot price is 

the sum of short-term and long-term components. Long-term factors account for the long-term 

dynamics of commodity prices, which is assumed to be a random walk, whereas the short-term 

factors account for the mean-reversion components in the commodity prices.  

Most of these articles are focused on crude oil prices and not on the refining products derived 

from crude oil. Briefly speaking17, due to the refining process 47% of a crude oil barrel is 

transformed into gasoline, 24% into diesel fuel and heating oil, 13% into jet fuel oil, 4% into 

heavy fuel oil, 4% into liquefied Petroleum Gas (LPG) and 8% into other products like asphalts 

and others more. Each of these products has a market price which quotes in an organized 

market, as crude oil. Therefore, there is a relation between product prices and crude oil prices 

and the difference between refining product and crude oil prices is known as the refining 

margin. 

An interesting question that will not be addressed in this chapter (and has not been taken into 

account in the literature until recently) is the fact that both gasoline and heating oil are seasonal 

whereas crude oil is not. This is because seasonality in these products goes in opposite direction. 

Specifically, heating oil prices are higher in winter months, whereas gasoline prices are higher 

in summer months. The sum of these effects results in non-seasonality for oil prices (see, for 

example, Tolmasky and Hyndanov, 2002, or Chapter 2). 

In order to keep our models parsimonious, we shall use no seasonal models, as they would only 

improve the refined product part. The reader should keep in mind, however, that a seasonal 

model is more realistic and convenient when only gasoline or heating oil are considered (see 

Chapter 2 for a more detailed analysis of seasonal continuous time models). 

This work aims to understand the relationship between crude oil and refining product prices. 

The first issue to take into account is the fact that the refining margin is an stationary series, 

whereas crude oil and refined products prices series are not. Therefore, crude oil and refining 

                                                           
17 See the Oil Market Report (2006) elaborated by the International Energy Agency for more information 
about these issues. 
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products prices should be cointegrated. In this work we present an empirical analysis of the 

relation among crude oil (WTI) prices and the main refining products prices (gasoline and 

heating oil), traded at NYMEX, using unit root and cointegration tests. In previous studies like 

Serletis (1994), Gjolberg and Johnsen (1999), Asche, Gjolberg and Völker (2003) and Lanza, 

Manera and Giovanninni (2005) we can find evidence of unit root and cointegration in crude oil 

and refined product prices, but no evidence of stacionarity in the refining margin is found. 

Nevertheless, these works carry out their studies with more refining products. However, in this 

chapter we demonstrate that these three commodities are not only cointegrated, but they have 

also a common long-term dynamics. The first evidence of it is achieved through a principal 

component analysis. Following the studies carried out by Clewlow and Strickland (2000) or 

Tolmasky and Hyndanov (2002), it can be considered that the first principal component is a 

long-term factor and the second and third ones are short-term factors. In this work we show that 

when we calculate the principal components of two commodities jointly, the sign of the first 

principal component does not change depending on the maturity of the futures contracts, but the 

second and the third do, which is a new evidence of a common long-term dynamics. 

A definitive evidence of this fact is achieved by proposing different factor models to explain the 

dynamics of commodity prices jointly. It is found that the most suitable model in terms of 

simplicity and fit is the one which assumes a common long-term trend for all three 

commodities.  

This fact will have straightforward applications in the valuation and hedging of commodity 

contingent claims and in defining procedures for evaluating investment projects in natural 

resources, especially when determining optimal investment rules. Specifically, we use these 

results to value the so-called crack-spread options quoted at NYMEX, and we find that, 

assuming a common long-term trend for crude oil and refined product prices, option valuation is 

as accurate as using models with more factors and parameters.  
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This chapter is organized as follows. Section 2 presents some preliminary results about the 

existence of a common long-term trend for crude oil prices and the most important refining 

products prices, i.e. the results of the unit root and cointegration tests and the principal 

component analysis. The results of the estimation of the factor models with a common long-

term dynamics are contained in section 3. Section 4 shows the valuation results of the so-called 

crack-spread options quoted at NYMEX, with a model which assumes a common long-term 

trend for crude oil and the main refining product prices, with a model which allows for a long-

term trend for each commodity and with a model which postulates uncorrelated models for each 

commodity. Finally, section 5 concludes with a summary and discussion. 

 

2. Unit Root Tests, Cointegration tests and Principal Component Analysis 

In this section we find evidence of unit root in crude oil, gasoline and heating oil spot prices, but 

not in the refining margin. Taking into account that, as it is said above, the main part of a crude 

oil barrel is transformed into gasoline and heating oil, this fact suggests that these three 

commodities should be cointegrated. In order to check it, cointegration tests have been 

implemented. It is found that these three commodities are not only cointegrated, but they also 

share a common long-term dynamics. The first evidence of it is achieved through a principal 

component analysis. More evidence on these issues will be presented in the next section. 

2.1. Unit Root Tests 

Next we present three unit root tests to show that the refining margin is stationary, whereas 

crude oil, gasoline and heating oil prices are not. The first one is the Augmented Dickey-Fuller 

(ADF) test and the second one is the Phillips-Perron test. Both of them are based on the Dickey-

Fuller test, which is only valid if the series is an AR(1) process and tests if the AR(1) coefficient 

minus one is statistically different from cero (Dickey and Fuller, 1979). 

As the basic Dickey-Fuller test needs a rather concrete specification, several alternatives have 

been proposed. The ADF test allows for higher-order correlation by adding lagged difference 
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terms of the dependent variable. Said and Dickey (1984) demonstrate that the ADF test remains 

valid even when the series has a moving average (MA) component, provided that enough lagged 

difference terms have been added  to the regression. Phillips and Perron (1988) propose a 

nonparametric method to control for higher-order serial autocorrelation. 

The third unit root test is based on the works by Boswijik (2001) and Boswijik and Doornik 

(2005). These authors point out that standard Dickey-Fuller tests based on LS estimators are 

often sensitive in the presence of GARCH errors, which is a typical phenomenon in financial 

high-frequency data. This problem becomes serious when the volatility process is near 

integrated. Therefore, given that our commodity prices series are serious candidates to show 

GARCH errors, the test proposed by Boswijk and Doornik should be implemented. This test is 

based on a likelihood ratio statistic, which substantially improves the asymptotic local power of 

the standard Dickey-Fuller tests. The likelihood ratio test will be based on the following model: 
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Where Xt is a commodity price series and the parameter φ describes the degree of mean-

reversion. The null hypothesis will be H0: (φ 
− 1) = 0, which is tested against the alternative H1: 

(φ 
− 1) < 0. The distribution for the likelihood ratio statistic (under the null) is approximated by 

a gamma distribution (see Boswijk and Doornik, 2005).  

To the best of the author knowledge there are not spot prices for gasoline, heating oil or crude 

oil associated with the futures traded at NYMEX. Therefore, weekly observations for WTI 

(light sweet) crude oil prices, RBOB gasoline and heating oil from 9/9/1996 to 9/4/2006 (522 

observations) of one month futures prices are going to be used to test cointegration relations. 

The refining margin used in the tests below is calculated by subtracting the cost of WTI crude 

oil and the freight cost from the value of oil products produced by a refinery in the US Gulf 

Coast (catalytic cracking refinery). The value of oil products is calculated by adding together a 
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fixed percentage of each refined oil product produced by a refinery. Weekly observations for 

this refining margin from 04/20/2001 to 09/15/2006 (283 observations) are used in the tests. 

The main descriptive statistics of the series are contained in Table 1. Table 2 presents the results 

for the unit root tests for gasoline, heating oil and WTI crude oil prices, together with the 

refining margin described above. Our results indicate significant presence of GARCH errors in 

all the commodity series18, which confirms that the Boswijk and Doornik test should be 

implemented. It is found that at 1% significance level the unit root test hypothesis is rejected for 

the refining margin with the ADF and the Phillips-Perron tests and at 5% significance level it is 

also rejected with the Boskijk-Doornik test19, but it is not possible to reject it for gasoline, 

heating oil and crude oil prices, even at 10% significance level. Thus, the empirical evidence 

already found in previous studies of a unit root in crude oil, heating oil and gasoline prices is 

confirmed in the present work even in the presence of GARCH errors. Therefore, given that the 

refining margin does not show evidence of a unit root, we can conclude that there should be a 

cointegration relation among crude oil prices and the main refining product prices. 

2.2. Cointegration Tests 

Cointegration is the phenomenon that occurs when each component, Yi,t (i = 1,...,k), of a vector 

time series process Yt is a unit root process, possibly with drift, but certain linear combinations 

of theses components are stationary. In the previous section it was found that gasoline, heating 

oil and crude oil prices have a unit root, but the refining margin has not. As stated above, the 

refining margin is a linear combination of these commodity prices and other more like jet fuel 

oil, heavy fuel oil, liquefied petroleum gas (LPG), asphalts, etc. These two facts together 

suggest a cointegration relation among all the refining products and the crude oil. However, it is 

not possible to conclude that there is a cointegration relation among crude oil, heating oil and 

gasoline. In this section we show that this cointegration relation indeed exists, even more, there 

                                                           
18 For short, the results of the estimation of the GARCH models are not presented in the paper, although 
they are available from the authors upon request. 
19 It should be noted that at 1% significance level the unit root test hypothesis is almost rejected with the 
Boswijk-Doornik test, for the refining margin. 
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are also cointegration relations between crude oil and heating oil, crude oil and gasoline, heating 

oil and gasoline and also among heating oil, gasoline and crude oil. This is a first evidence of a 

common long-term dynamics among the three commodity prices. 

In order to demonstrate that these cointegration relations exist, the Johansen test (Johansen, 

1988) will be used. The approach by Johansen consists in estimating the Vector Error 

Correction Model (VECM), which is a model for the vector time series in first differences, 

including the cointegration relation. The model is estimated by maximum likelihood, under 

various assumptions about the trend or intercept parameters and the number “r” of cointegrating 

vectors. Once the model has been estimated, we can conduct likelihood ratio tests. Assuming 

that the VECM errors are independently distributed, and given the cointegrating restrictions on 

the trend or intercept parameters, the maximum likelihood is a function of the cointegration rank 

r. Johansen proposes two types of tests for r: The lambda-max test and the trace test.  

The first one is based on the log-likelihood ratio ln[Lmax(r)/Lmax(r+1)], and is conducted 

sequentially for r = 0,1,..,k-1. In this test the null hypothesis is that the cointegration rank is 

equal to r and the alternative is that the cointegration rank is equal to r + 1. The second one is 

based on the log-likelihood ratio ln[Lmax(r)/Lmax(k)], and is conducted sequentially for r = k-

1,...,1,0. In this test the null hypothesis is that the cointegration rank is equal to r and the 

alternative is that the cointegration rank is k. In this study we will present the results from the 

first one, however it has been checked that the same results are obtained using the second one. 

Johansen´s test also dispatches the cointegration relations if it exists.  

As in the previous section, weekly observations from 9/9/1996 to 9/4/2006 (522 observations) 

of one month futures prices for crude oil, gasoline and heating oil, traded at NYMEX, are going 

to be used to test cointegration relations. 

Tables 3, 4, 5 and 6 present the results for the cointegration test and the normalized 

cointegrating coefficients for gasoline and crude oil, heating oil and crude oil, gasoline and 

crude oil and, finally, for gasoline, heating oil and crude oil. All the tests have been performed 
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assuming that it is possible to find a deterministic trend in the cointegration equation. However, 

similar results have been obtained when we repeated the tests assuming that this kind of trend is 

not feasible. 

As can be seen in the tables, the results suggest that crude oil, gasoline and heating oil prices 

have a common trend. At 1% significance level, there are cointegration relations between 

gasoline and heating oil prices, between gasoline and crude oil prices and between heating oil 

and crude oil prices, and the (normalized) cointegrating coefficients are, more or less, 1 and -1 

in all cases. There is also a cointegration relation among gasoline, heating oil and crude oil 

prices at the same significance level. 

2.3. Principal Component Analysis 

In this section we carry out a principal component analysis with the three commodities 

presented above trying to find more evidence of a common trend. As in the previous sub-

sections, we use weekly observations for WTI (light sweet) crude oil prices, RBOB gasoline 

and heating oil from 9/9/1996 to 9/4/2006, traded at NYMEX. However, given that we need to 

analyze the term structure of futures contracts prices, the twelve futures contracts closest to 

expiration will be employed (522 weekly observations). The principal component analysis will 

be based on the eigenvalue decomposition of the covariance matrix of the weekly log-returns.  

Figure 1 shows the results of the principal component analysis for each commodity separately. 

The first three principal components are depicted in the charts. The first component and, 

therefore, the primary dynamics of the forward curve, the shift, is a roughly parallel shift of the 

whole curve either up or down depending on the direction of the random shock. The fact that the 

function is not flat indicates that the volatility of the short end of the forward curve is greater 

than the long end one. The second and third components represent tilts and bendings of the 

forward curve respectively. The tilt is a movement of the short end of the forward curve either 

up or down depending on the direction of the random shock and a movement of the long end of 

the curve in the opposite direction. The bending is a movement of the short end and the long end 
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of the forward curve either up or down depending on the direction of the random shock and a 

movement of the middle end of the curve in the opposite direction.  

Moreover, it should be noted that the first component has the same sign for all maturities and 

does not go to zero as maturity goes to infinity, implying that a random shock following this 

component has the same direction for all maturities and does not vanish with time. However, the 

second and third components have a certain sign for some maturities and the opposite sign for 

the other ones, implying that a random shock following these components has a certain direction 

in some periods and the opposite direction in other periods and, therefore, in the long-term its 

effect tends to vanish. For these reasons we can consider that the first principal component is a 

long-term component, whereas the second and third components are short-term ones.  

The same conclusion is derived from Table 7. These results are similar to those obtained by 

Clewlow and Stricland (2000) and Tolmasky and Hyndanov (2002). It can be appreciated from 

Table 7 that the first component explains more than 90% of the volatility (more than 98% in the 

case of the crude oil). This evidence is consistent with the extant literature about modelling the 

stochastic behaviour of commodity prices, where it is always considered one long-term factor 

and one or more short-term factors (see for example Cortazar and Schwartz, 2003; Cortazar and 

Naranjo, 2006). As in Clewlow and Stricland (2000) or Tolmasky and Hyndanov (2002), the 

first three components explain almost 100% of the volatility.  

In spite of the fact that in all cases the first principal component explains more than the 90% of 

the volatility, as can be appreciated in the first panel of Table 7, this explanatory power is 

greater for crude oil than for the other two commodities. This means that short-term shocks 

have more importance in refining product prices than in crude oil prices. This is coherent with 

previous papers, see for example Radchenko (2005a) and (2005b), who state that in the case of 

refining products, particularly in the case of gasoline, there are short-term imperfections in the 

markets like lags and asymmetries in response to movements in crude oil prices. Other cause 

could be the fact that, as explained in the Introduction Section and as can be seen in Tolmasky 
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and Hyndanov (2002) or in Chapter 2, gasoline and heating oil prices are seasonal whereas 

crude oil prices are not, and therefore as the principal components are calculated without 

considering this fact, seasonality could be taken as a short-term shock. Moreover, the lack of 

liquidity of the refining products long maturity futures prices quotation, especially in the case of 

gasoline, could be other explanation. Other possible explanation could be related with the fact 

that gasoline is more volatile than the other two commodities, as can be appreciated in Figure 1 

and also in Table 1. 

Figure 2 shows the results of the principal component analysis with the three commodities 

considered in this study joined in pairs. In this case, given that the estimation is performed with 

more than one commodity, the same number of futures contracts have been used for each 

commodity, in order not to upset the balance of each commodity.  Similar maturities were also 

taken for each commodity futures, so that short-term and long-term relationships were not 

decompensated20. Thus, we take the first, third, fifth, seventh, ninth and eleventh maturating 

futures contracts for the first commodity and the second, fourth, sixth, eighth, tenth and twelfth 

maturating futures contracts for the second one, and we carry out the principal component 

analysis in the same way as before. 

Looking at Figure 2 we can appreciate that the first component follows the same pattern as in 

Figure 1, but the second and the third principal components do not. This is new evidence in 

favour of a common long-term trend for these three commodities, despite of their differences in 

the short-term. Moreover, from the second panel of Table 7 it can be appreciated that the 

percentage of the volatility explained by each component, with the three commodities joined in 

pairs, is broadly the same than in the case of each commodity separately, which confirms the 

evidence of only one long-term trend for all commodities, since the first principal component 

explains more than the 90% of the volatility. 

The same conclusion is obtained when we perform the principal component analysis with the 

three commodities jointly (Figure 3). Specifically, we take the first, fourth, seventh and tenth 
                                                           
20 Similar results have been obtained with futures with different maturities.  
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maturating futures contracts for heating oil, the second, fifth, eighth and eleventh for WTI crude 

oil and the third, sixth, ninth, and twelfth maturating futures contracts for unleaded gasoline, 

and carried out the principal component analysis. In this case the first component explains 

92.93% of the volatility, the first two components 94.90% and the first three 96.25%.  

 Given these first signs of a common long-term for the three commodities considered in this 

study, the next section tries to shed more light on these issues by proposing different factor 

models for the stochastic behaviour of commodity prices, including models assuming a common 

long-term trend for all three commodities. 

As it is said above, the previous studies about the relation among crude oil and refining product 

prices were focused on the cointegration relations among them. However, as we will see in the 

following sections, in this chapter we also find evidence of a common long-term trend among 

crude oil and refining product prices.  

 

3. Factor Models 

In order to find definitive evidence of a common long-term trend among crude oil, gasoline and 

heating oil prices, we are going to fit the data to different factor models. It seems clear that 

modelling each commodity separately is the way to get the best fit to data. However, if we get a 

similar goodness of fit when modelling the three commodities jointly with a common long-term 

trend, the conclusion is a definitive evidence of a common long-term trend. Of course, it is also 

possible to compare the results of modelling the commodities jointly with and without a 

common long-term trend. If there is a common long-term trend the results must be comparable.  

3.1. Theoretical Models 

In order to model each commodity separately, we shall use the two factor model proposed by 

Schwartz and Smith (2000). Given the existing empirical evidence (see for example Schwartz, 

1997), this is a reasonable approach for this kind of commodities. In this model the log-spot 
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price (Xt) is assumed to be the sum of two stochastic factors: a short-term deviation (χt) and a 

long-term equilibrium price level (ξt): 

                                                             tttX χξ +=                                                 (1) 

The stochastic differential equations (SDE) of these factors are: 
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where dWξt and dWχt can be correlated (dWξtdWχt = ρξχdt). 

In order to test the existence of a common long-term trend for each pair of commodities, we will 

compare the model goodness of fit for each commodity separately in the context of the two 

factor model presented above, and the goodness of fit for the commodities in pairs in a joint 

model in which the log-spot price (Xit) of the commodity “i” is assumed to be the sum of two 

stochastic factors: a short-term deviation (χit), different for each commodity, and a common 

long-term equilibrium price level (ξt) for both commodities: ittitX χξ +=   (i = 1,2). We shall 

also compare this joint model, which possesses a common long-term trend for the pair of 

commodities, with another joint model without a common long-term trend in which the log-spot 

price (Xit) of each commodity is taken as the sum of two stochastic factors: a short-term 

deviation (χit) and a different long-term equilibrium price level (ξit) for each commodity: 

itititX χξ +=   (i = 1,2). 

The SDE of the factors are the same as the ones presented above. For the model with common 

long-term trend they are: 
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where any correlation structure can exits among dWξt, dWχ1t and dWχ2t (dWξtdWχ1t = ρξχ1dt, 

dWξtdWχ2t = ρξχ2dt and dWχ1tdWχ2t = ρχ1χ2dt). 

For the model without common long-term trend the SDE are: 
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where again dWξ1t, dWξ1t, dWχ1t and dWχ2t can show any correlation structure (dWξ1tdWξ2t = 

ρξ1ξ2dt, dWξ1tdWχ1t = ρξ1χ1dt, dWξ1tdWχ2t = ρξ1χ2dt, dWξ2tdWχ1t = ρξ2χ1dt, dWξ2tdWχ2t = ρξ2χ2dt and 

dWχ1tdWχ2t = ρχ1χ2dt). 

As can be appreciated, the model for each commodity separately and the model for pairs of 

commodities jointly have the same SDE. However in the first case, there is no correlation 

between factors of different commodities, which is, clearly, an undesirable property in valuing 

commodity contingent claims, as shall be discussed below. 

If there is a common long-term trend for pairs of commodities, the log-likelihood for these three 

methodologies (one model for each commodity separately, the joint model with common long-

term trend and the joint model without common long-term trend) must be similar. In this case, 

the most suitable model for pairs of commodities is the joint model with common long-term 

trend. This model is preferable to the joint model without common long-term trend as it 

contains less parameters (being, therefore, simpler) and because it has only one long-term 

factor, which is an advantage in valuing long-term commodity contingent claims. From our 

point of view, the economic interpretation of both commodities to be common long term 

trended is also quite appealing in qualitative terms. The point is that, all things equal, a model 

whose parameters are interpretable is better. Let us briefly compare our models from a 

qualitative point of view. 
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In a standard two factor model framework each commodity factors are, by design, uncorrelated 

to the other commodity ones. So nothing can be said about the relationship between both series. 

Should we impose or estimate a correlation structure among different commodities factors we 

would end up with 4 more parameters and therefore the model would be equivalent to a four 

factor model. Four factor models, such as the model in (4), i.e. the joint model without common 

long term trend for commodities in pairs, do account for the relationship between both series but 

they do so in a rather ambiguous way. We have 6 correlations to look at, and none of them is 

negligible, in general. We have two correlated long term trends but the relationship between 

both series does not stop here. We can not take this correlation as the only measure, as the long 

term trend for crude oil is also correlated with the short term trend for refined products. 

Moreover, one cannot answer to questions like, what is the market general trend? This question 

is meaningless in our model without common long term trend unless we assume some 

combination of both long term trends as “representative”. 

In contrast, with only one long term trend this question can be fully answered, as the general 

trend is the common long term trend. We can even see the relationship between the general 

trend and each of the series, just looking at its long run-short run correlation coefficient. 

Moreover, the (isolated) influence of a series on the other can be directly seen just looking at the 

short term-short term correlation coefficient. 

Finally, the joint model with a common long-term trend is also more suitable than a model for 

each commodity separately (without correlation among different commodities factors) as the 

first one has less parameters and factors and because, as stated above, it takes into account the 

correlation between different commodities factors, which is essential in valuing commodity 

contingent claims, a fact that will be discussed below.  

To test the existence of a common long-term trend for the three commodities jointly we shall 

compare the goodness of fit if we estimate each commodity separately (using a two factor 

model as presented above) and the goodness of fit for a joint model (for the three commodities 
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together) in which the log-spot price (Xit) of the commodity “i” is assumed to be the sum of two 

stochastic factors: a short-term deviation (χit), which is different for each commodity, and a 

common long-term equilibrium price level (ξt), which is equal for all commodities21: 

ittitX χξ +=   (i = 1,2,3). 

The SDE of the factors for the joint model with common long term trend for all three 

commodities are the same as before: 
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where dWξt, dWχ1t, dWχ2t and dWχ3t can show any correlation structure (dWξtdWχ1t = ρξχ1dt, 

dWξtdWχ2t = ρξχ2dt, dWξtdWχ3t = ρξχ3dt, dWχ1tdWχ2t = ρχ1χ2dt, dWχ1tdWχ3t = ρχ1χ3dt and 

dWχ1tdWχ3t = ρχ1χ3dt). 

As in the previous case, if there is a common long-term trend for the three commodities, the log-

likelihood for both methodologies (one model for each commodity separately and the joint 

model with common long-term trend) must be similar. Should this be the case, the most suitable 

model for the three commodities will be the joint model with common long-term trend, because 

it is simpler (it has less structure) and because it takes into account the correlation between 

different commodities factors, which is essential in valuing commodities contingent claims, as 

we will discuss below. 

In all models presented in this sub-section, the log-spot price of each commodity is the sum of 

two factors: a short-term deviation (χt) and a long-term equilibrium price level (ξt) 

( tttX χξ += ). Therefore, the expression for the log-price of a futures contract for each 

                                                           
21 Of course, we could also estimate a joint model without common long term trend for all three 
commodities. However, apart from the fact that this model would have a high number of parameters, its 
interpretation would be ambiguous, as said above for the case of the joint model without common long 
term trend for commodities in pairs. 
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commodity with maturity at time “T+t” traded at time t is the one obtained by Schwartz and 

Smith (2000)22: 

[ ] )(),(ln 00 TAetTXF kT
t ++=+ − χξ         (6) 

where: 

kekekeTTA kTkTkT /)1(25.0/)1(/)1()5.0'()( 222 −−− −+−+−−+= χξχχξχξξ σρσσλσµ  

As explained in Schwartz and Smith (2000), the risk-neutral version of the model is necessary 

to calculate this expression. This is the reason why there is a risk-premium for the short-term 

deviation (λχ) and also a long-term drift corrected by risk (µξ’) instead of the original one for the 

long-term equilibrium price level. 

Finally, it should be noted that the differences between the models presented above lay on the 

number of factors and in the correlation assumed among them.   

3.2. Estimation Methodology 

Given that the factors (or state variables) are not directly observable, the model’s parameters 

must be estimated using the Kalman Filter. This methodology enables the estimation of the 

likelihood of a data series, given a particular set of model parameters and a prior distribution of 

the variables, which allows the estimation of the parameters by maximum likelihood 

techniques23.  

The Kalman filter technique is a recursive methodology that estimates the unobservable time 

series, the state variables or factors (Zt), based on an observable time series (Yt) which depends 

on these state variables. The measurement equation accounts for the relationship between the 

observable time series and the state variables:    

                                                           
22 For the same reason the volatility of the futures returns has the same expression as in Schwartz and 
Smith (2000). 
23

 Detailed accounts of Kalman filtering are given in Harvey (1989). 
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    ttttt ZMdY η++=    t = 1, …, Nt       (7) 

where h
t

nxn
t

n
tt ZMdY ℜ∈ℜ∈ℜ∈ ,,, , h is the number of state variables, or factors,  in the 

model, and n
t ℜ∈η  is a vector of serially uncorrelated Gaussian disturbances with zero mean 

and covariance matrix Ht. 

The transition equation accounts for the evolution of the state variables:  

    ttttt ZTcZ ψ++= −1    t = 1, …, Nt       (8) 

where h
t

hxh
t

h
t andTc ℜ∈ℜ∈ℜ∈ ψ,  is a vector of serially uncorrelated Gaussian 

disturbances with zero mean and covariance matrix Qt. 

Let 1| −ttY  be the conditional expectation of Yt and let tΞ  be the covariance matrix of Yt 

conditional on all information available at time t – 1. Then, after omitting unessential constants, 

the log-likelihood function can be expressed as: 
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Two conditions need to be fulfilled in the original version of this methodology. Firstly, the data 

must have no missing points and, secondly, the length of vector Yt must be independent of “t”. 

Cortazar and Naranjo (2006) introduce a new version of this methodology to handle with 

incomplete data sets and vectors Yt whose length depends on “t”. However, with a data set with 

a lot of missing points in the futures contracts with longer maturities, we face the problem of the 

unbalance in the relationship between long and short effects. As explained below, the data set 

employed in this chapter has not missing points and all vectors have the same length. Therefore 

in this work the traditional version of the Kalman filter methodology can be used. 

A discrete-time version of the models is needed in order to estimate the parameters of the 

models through the Kalman filter methodology. Given that the expression for the log-price of a 

futures contract for each commodity is independent of the model, the discrete time version of 
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each model will be similar to the ones obtained by Schwartz and Smith (2000). The differences 

are due to the correlation among factors. The discrete time versions of the models presented 

above are developed in the Appendix.  

3.3. Data 

The data set employed in the estimation procedure consists on weekly observations of unleaded 

gasoline, heating oil and WTI crude oil futures prices traded at NYMEX24. 

There are currently futures traded at NYMEX for WTI crude oil from one month to seven years, 

for heating oil from one to eighteen months and for gasoline from one to twelve months. 

However, in the case of the gasoline there is not enough liquidity for the futures of longer 

maturities. In the estimations presented in this work, for models with more than one commodity, 

we have chosen to use futures contracts with the same maturities for all commodities, in order 

not to decompensate the short-term-long-term relations25. Therefore, to estimate the parameters 

for the different models presented above the following data sets have been set up:  

• The data set for the joint model with common long-term trend for the three commodities is 

made of contracts F1, F3, F5, F7 and F9 from 06/30/1997 to 04/24/2006, which implies 461 

quotations of each contract, where F1 is the contract for the month closest to maturity, F2 is 

the contract for the second month closest to maturity and so on. 

• The data set for the joint model for WTI crude oil and heating oil (with and without 

common long-term trend) is made of contracts F1, F4, F7, F11, F15 and F18 from 

09/09/1996 to 09/18/2006, which implies 522 quotations of each contract. 

• The data set for the joint model for WTI crude oil and gasoline (with and without common 

long-term trend) is made of contracts F1, F3, F5, F7 and F9 from 06/30/1997 to 04/24/2006, 

which implies 461 quotations of each contract. 

                                                           
24 Details about the contracts can be found in the NYMEX homepage. 
25 Similar results have been obtained with futures with different maturities.  
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• The data set for the joint model for heating oil and gasoline (with and without common 

long-term trend) is made of contracts F1, F3, F5, F7 and F9 from 06/30/1997 to 04/24/2006, 

which implies 461 quotations of each contract. 

• The data set for the two factor model for gasoline is made of contracts F1, F3, F5, F7 and 

F9 from 06/30/1997 to 04/24/2006, which implies 461 quotations of each contract. 

• There are two data sets for the two factor model for WTI crude oil. The first one is made of 

contracts F1, F3, F5, F7 and F9 from 06/30/1997 to 04/24/2006, which implies 461 

quotations of each contract. The second one is made of F1, F4, F7, F11, F15 and F18 from 

09/09/1996 to 09/18/2006, which implies 522 quotations of each contract. Depending of the 

case we will employ one or the other. The first data set is employed when crude oil is used 

jointly with gasoline, whereas the second one will be used in all other cases. 

• There are also two data sets for the two factor model for WTI heating oil. The first one is 

made of contracts F1, F3, F5, F7 and F9 from 06/30/1997 to 04/24/2006, which implies 461 

quotations of each contract. The second one is made of F1, F4, F7, F11, F15 and F18 from 

09/09/1996 to 09/18/2006, which implies 522 quotations of each contract. As in the 

previous case we shall employ one or the other depending on the situation, the first data set 

when heating oil is used jointly with gasoline, the second one in all other situations. 

The use of different data sets for gasoline and the other two commodities is due to liquidity 

constrains. Specifically, as stated above, in the case of gasoline the available futures contracts 

are less liquid and their maturities are shorter than the other two commodities contracts. 

Therefore, given that in the case of heating oil there are futures contracts with enough liquidity 

until eighteen months of maturity, we have decided to use a data set with more futures contracts 

and with futures contracts with longer maturities than in the case of gasoline, in which there are 

not enough liquidity for futures with maturities longer than nine months. In the case of crude oil 

there are available futures contracts until seven years of maturity. However, as it is said above, 

it has been decided to use crude oil futures contracts with the same maturity as the ones used for 

the other commodities, in order to not decompensate the short-term-long-term effects. Schwartz 
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(1997) realized that mean reversion effects tend to be lower for contracts with longer maturities. 

The same evidence in the case of the natural gas has been presented in chapter 2. Therefore, to 

avoid undesirable effects, for models with more than one commodity, it has been decided to use 

futures contracts with the same maturities for all commodities.  

As explained in Schwartz (1997), since futures contracts have a fixed maturity date, the time to 

maturity changes as time progresses, but remains in a narrow time interval. This is the reason 

why, as in Schwartz (1997), it is assumed that the time to maturity does not change with time 

and it is equal to one month for F1, two months for F2 and so on.  

3.4. Results 

Table 8 presents the results for the two factor model applied to each commodity (WTI crude oil, 

heating oil and gasoline) separately and for all data sets described above. Tables 9 and 10 

present the results for the joint model for pairs of commodities with and without common long-

term trend respectively. Finally, Table 11 presents the results for the joint model with common 

long-term trend for all three commodities. As stated above, for models with more than one 

commodity, we have chosen to use futures contracts with the same maturities for each 

commodity.  

The first notable issue is the fact that the gasoline price is more volatile than the other two 

commodity prices, since in Tables 8, 9, 10 and 11 the volatility coefficients are higher when the 

gasoline appears in the model. It can be also appreciated in Table 1 and in Figure 1.  

If we define the Schwartz Information Criterion (SIC) as )ln()ln( TqLML − , where q is the 

number of estimated parameters, T is the number of observations and LML is the value of the 

likelihood function, defined in (9), using the q estimated parameters, then the higher the SIC the 

better the fit. The same conclusions are obtained with the Akaike Information Criterion (AIC), 

which is defined as qLML 2)ln( − . 
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The main result of this part of the work is the fact that there is a common long-term trend for 

these three commodities. To reach this conclusion, first of all we can appreciate that the SIC and 

the AIC values in the joint model with common long-term trend for pairs of commodities (Table 

9) are more or less the same as the ones obtained with the joint model without common long-

term trend (Table 10), and are also more or less the same as the sum of the SICs or the AICs 

values obtained with the two factor model for each commodity separately (Table 8). 

Specifically, in the case of heating oil and WTI crude oil, in the in the joint model with common 

long-term trend, for the period time from 09/09/1996 to 09/18/2006 and using the contracts F1, 

F4, F7, F11, F15 and F18, the SIC is 39195.4 (Table 9), whereas in the joint model without 

common long-term trend the SIC is 39456.3 (Table 10). The sum of the SICs estimated in the 

two factor model for each commodity separately is 23444.8 + 17761.8 = 41206.6 (Table 8). 

Therefore, we can conclude that all the models fit more or less the same and, consequently, as 

the joint model with common long-term trend is the simplest one, we don’t need a second long-

term factor in modelling heating oil and WTI crude oil jointly. They have the same long-term 

trend.  

Similar results are obtained for gasoline and WTI crude oil and for gasoline and heating oil for 

the period 06/30/1997 to 04/24/2006 and using contracts F1, F3, F5, F7 and F9 in both cases. In 

the case of gasoline and WTI crude oil the SIC in the joint model with common long-term trend 

is 26436.2 (Table 9) whereas in the joint model without common long-term trend and adding 

the SICs of the two factor models separately we obtain 27672.7 (Table 10) and 30113.9 (Table 

8) respectively. In the case of gasoline and heating oil these figures are: 24306.2 (Table 9), 

26313 (Table 10) and 25912.4 (Table 8) respectively.  

Using the previous evidence we can conclude that the three commodities have the same long-

term trend when we analyse them in pairs. Using the transitive property we could conclude that 

all three commodities have the same long-term trend. However, in order to reach a definitive 

evidence of this fact, we can just compare the SIC for the joint model with common long-term 

trend for the three commodities, which is 39033.7 (Table 11), and the sum of the SICs of the 
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two factor model for each of these three commodities separately, which is 17812.6 + 13611.1 + 

12301.3 = 43725 (Table 8). The period used goes from 06/30/1997 to 04/24/2006 and the 

contracts used are F1, F3, F5, F7 and F9. As the figures are similar, we can conclude 

definitively that the three commodities have the same long-term trend. 

Moreover, it is worth noting that in Table 8 the values of the SIC and the AIC are higher for 

crude oil than for the other two commodities, using the same time period (06/30/1997 to 

04/24/2006) and the same contracts (F1, F3, F5, F7 and F9)26. As in the case of the principal 

component analysis, the better fit to crude oil data could be related with the short term 

imperfections in the refining product markets, with the fact that the two factor models do not 

account for seasonality, whereas gasoline and heating oil prices are seasonal and, especially in 

the case of gasoline, or the lack of liquidity in longer maturity futures prices quotations. 

Nevertheless, in all cases the fit is well enough for the purpose of this study.  

The relative fit of the models to our three commodity prices series can be assed more formally 

looking at their in-sample predictive ability. The in-sample predictive ability of the Schwartz 

and Smith (2000) two-factor model is presented for each commodity separately (Table 12), for 

pairs of commodities with common long-term trend (Table 13), and for pairs of commodities 

without common long-term trend (Table 14). It is found that, whenever the results are 

comparable (i.e. contracts F1, F3, F5, F7 and F9), although the model for each commodity 

separately performs slightly better (Table 12) in terms of the root mean squared error than the 

other two models, the differences, in general, are low. Therefore, given that the predictive 

ability of all three models is very similar, as before, we can conclude that all three commodities 

have the same long-term trend. Moreover, looking at the results in Table 12, it can be 

appreciated that the root mean squared error values for crude oil are lower than the 

corresponding values obtained with the other two commodities, which confirms our previous 

guess. 
                                                           
26 It should be pointed out that, although in principle the values of the SIC and the AIC are not directly 
comparable whenever the series are different, our three commodity prices series have the same order of 
magnitude, the time period (06/30/1997 to 04/24/2006) and the futures contracts used in the estimation 
procedure (F1, F3, F5, F7 and F9) are the same. 
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Finally, it is also noticeable that previous studies have already found that crude oil and the main 

refined product prices are cointegrated but in the present work this conclusion is extended, as 

we find out that they have also a common long-term trend. Moreover, to the best of our 

knowledge this is the first time that a factor model with a common long-term trend for crude oil 

and its main refined product prices is proposed and estimated. 

In the next section we shall use these results to value the so-called crack-spread options quoted 

at NYMEX, assuming a common long-term trend for crude oil and the main refining product 

prices.  

 

4. Crack Spread Option Valuation 

It is well known that commodity markets have been growing fast during the last years. 

According to the Hedge Funds Review (2008), we can distinguish three types of investors in 

commodity markets. Firstly, investors looking for a portfolio diversification tool, especially 

pension funds. Secondly, investors looking for a source of alpha, especially hedge funds. And 

thirdly, European banks, which use commodity derivatives to structure products that they retail 

to their customers. Therefore, in this context it is important to have techniques which can be 

implemented easily to value commodity derivatives, such as the so called crack spread options. 

In this section we present a technique to value these crack spread options assuming a common 

long-term trend, for WTI crude oil and gasoline and for WTI and heating oil, which can be 

implemented relatively easy and is simpler than the standard techniques. 

4.1. Data 

The data set employed in the estimation procedure consists on two sets of daily observations of 

crack-spread put and call options quoted at NYMEX. The first one contains Heating Oil vs. 

WTI and the second one Gasoline vs. WTI.  
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In NYMEX there are only quotations for these two sorts of crack spread options (Heating Oil 

vs. WTI and Gasoline vs. WTI) and contracts maturity occurs each month for the following 

eighteen months for different strike prices. Specifically, the strike prices are the at-the-money 

one, five additional strikes both above and below the established "at-the-money" strike price at 

$0.25 (25¢) increments, three additional out-of-the-money strike prices are added above and 

below those strikes at $1.00 intervals, and two additional strikes will be added above and below 

at $2.00 intervals. Options traded at NYMEX are American style, so the holder can exercise his 

right at any time. 

The market for this kind of options is much less liquid than the one for futures. Due to the 

scarcity of data, we have chosen to use daily instead of weekly data. This fact has forced us to 

do same minor changes in the model, as we shall see bellow. Even more, these liquidity 

constrains are the cause of the lack of data for many dates in many contracts. As a result, our 

data set includes daily quotations from January 2004 to January 2007. However, there are many 

missing dates or contracts. Specifically, for the case of the Gasoline vs. WTI crack-spread 

options we have data corresponding to four maturating dates: March, April, August 2006 and 

January 2007, with twelve exercise prices, from 5 to 16 dollars.  In the case of the Heating Oil 

vs. WTI crack spread option we have data corresponding to contracts maturating from January 

2004 to January 2007, with only two exercise prices available, which are 5 and 8 dollars. A 

brief summary of these options is given in table 15. 

Let us give a brief review of the option description. Crack spread options are used to protect the 

refining margin, while at the same time allowing market participants to take advantages of 

favourable changes in the spread. A crack-spread call option is a contract that gives the holder 

the right (not the obligation) to buy a refined product futures contract from the writer and sell 

him a crude oil futures contract, paying a previously agreed crack spread price. Note that these 

three actions are simultaneous and can not be split, i.e. the holder is unable to just buy the 

contract and leave the rest of the transaction for later. Conversely, a crack spread put allows to 



 135

sell a refined product futures contract and to buy a crude oil futures contract, paying a crack 

spread price.  

4.2. Option Valuation Methodology 

In order to value crack spread options, we shall follow the methodology described in 

Barraquand and Martineau (1995).  

First of all, let us keep in mind what the problem is. We have a set of crack-spread American 

options that we would like to replicate. Of course, there is no close analytic expression for their 

price so one has to resort to simulation. In addition to that, our models are three dimensional 

(common trended one) or four dimensional (when we consider one trend for each commodity) 

which severely narrows down the methods we can use. 

There are several ways to value an American option. All of them involve discretization of the 

state space, so at each point of time and each value of the factors, the holder of the option must 

decide whether to exercise his right or not and that decision can only be based on future 

dynamics. However, when the number of factors increases, one can not help finding the “course 

of dimensionality” (a concept due to Bellman) as full discretization is almost infeasible due to 

computational complexity for more than three factors.  

In order to reduce this problem, three are the main approaches (Bally, Caramellino and Zanette, 

2005). One idea is to perform state aggregation in order to develop a “synthetic indicator” in 

fewer dimensions, so that the holder of the option decides whether to exercise or not just 

depending on it and not on the three or more factors. This is the idea in Barraquand and 

Martineau (1995), which we shall follow because its simplicity. The other ones use either base 

functions (Longstaff and Schwartz, 2001 or Tsitsiklis and VanRoy, 1999) or compute 

conditional expectations via Malliavin Calculus, see Fournié, et al. (1999) for numerical 

applications and Bouchard and Touzi (2004) for general theory and variance reduction.  

The basic idea in the Barraquand and Martineu (BM) method is to construct a one-dimensional 

indicator summarizing all states. The synthetic indicator will be the difference between the 
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values of the refined product and the crude oil futures. We shall sum up the algorithm in the 

following scheme. 

1. Divide the time interval [0,T] into k subintervals Nttt k =<<<= ...0 10  (uniformly 

spaced). The value of an American option will be approximated by a Bermuda option 

that can only be exercised at these intervals. Let ii ttt −=∆ +1 . 

2.  Start at t = 0 and simulate N trajectories of the process starting at 0X .  For each instant 

of time, one can measure the difference in futures pricess, ( )
it

XD , which is one-

dimensional. Discretize this quantity in r intervals ( ) ( ){ }iri tPtP ,...,1 , so that each 

interval contains 
r

1
 of probability.  

3. Using simulation, compute the transition probabilities given by the formula:  

( ) ( ) ( )( )tPXtPXPt itjttij ∈∈= ∆+ /π     (10) 

4. Compute a mean for each interval: 

( ) ( ) ( )[ ]tPXXDEtf itti ∈= /                                (11) 

5. Solve the problem by backwards iteration, i.e. for the interval r – 1, the value of not 

exercising is ( )∑
=

∆−
r

j
rjij

tr tfe
1

π , so the value of the option at that interval is given by the 

maximum: 

( ) ( ) ( )








= ∑

=

∆−
−−

r

j
rjij

tr
rir tfetftiC

1
11 ,max, π     (12) 

6. Repeat 5 until reaching : 

0X , i.e. ( ) ( ) ( )








= ∑

=

∆−
−−

r

j
kij

tr
kik tjCetftiC

1
11 ,,max, π   (13) 
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Note that for each valuation, one has to compute0X , which means that we must have an 

estimation of the state for each instant in time. This is done via an aliasing algorithm, which 

computes the expectation of the state tX  conditional on the information of the futures at time t 

(see Harvey, 1989, for details). This is  the most reasonable choice, as there is no reason why a 

practitioner would not employ the (already available) futures price at time t, but future prices at 

times t+h, t+2h… can never be observed  prior to time t in a real application. 

All parameters and dynamics were estimated using weekly data. However, changing the model 

to daily dynamics is not really an issue in continuous time. We have just resampled the model 

(we did not estimate parameters again) and used an aliasing algorithm to get daily states. The 

RMSE is a bit higher, but the difference is small. 

Finally, once we have an estimation of the option price, we must keep in mind the possibility of 

direct exercise, this is, buying the option and exercising it right away, thus obtaining the 

differences in futures prices minus the strike price. Should this quantity be higher than our 

estimated price, the real price would be the former, as we would exercise the option 

immediately. 

 4.3. Commodity Price Dynamics 

In order to value an option, we need a full description of the model. In matrix form, the state 

dynamics can be described as: 

                                                ( ) ttt dWdtAXdX ++= µ                                         (14)  

In order to clarify matters, let us take tU  to be a unit Brownian motion (i.e. dtIdUdU T
tt = ) 

and rewrite (14) as:  

                                        ( ) ttt RdUdtAXdX ++= µ                                         (15) 
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If we just consider the models in equations (3) and (4) the only thing that is left to do is to 

estimate the states via an aliasing algorithm. In the case of two models put together, we have 

two equations in matrix form:  

                                     ( ) )2,1( =++= idWRdtXAdX itiitiiit µ                                 (16) 

Therefore, if we assume uncorrelation the global model is: 
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Whereas if we allow a free correlation structure the model is: 
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4.4. Results 

Table 16 presents several metrics in order to analyze the in-sample predictive power ability of 

the models, for both types of options: the heating oil vs. WTI and the gasoline vs. WTI crack-

spread options. The models considered are the (three-factor) joint model with common long-

term trend, the (four-factor) joint model without common long-term trend, and the (two-factor) 

model for both commodities separately. 

What we see is that we get better results with the four and three factor models. Even in some 

cases our model with common long-term trend gives better results than the model without 

common long-term trend. The difference between the joint models with and without common 

long-term trend is rather small when compared with the difference between each one of them 

and the uncorrelated model, which gives the worst results. This confirms our hypothesis of 

common trend. 

Finally, we can conclude that, given that our joint model with common long-trend is simpler 

and easier to implement for the purposes of option valuation, and given that the valuation errors 
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obtained with the joint models with and without common trend are quite similar and lower than 

those obtained with the uncorrelated model, the preferred model is the one with common long-

term trend. This is further evidence of the convenience of using a common trend for both series, 

as soundness is always a prerequisite for accuracy. 

 

5. Conclusion 

In this chapter we have found evidence of a common long-term trend for crude oil (WTI) prices 

and the prices of the most important refined products (gasoline and heating oil), traded at 

NYMEX. This evidence was obtained from three independent sources, which makes our 

findings even more convincing.  

First of all, studies on stationarity and Johansen tests show a cointegration relation. This fact 

would suggest common non-stationary dynamics but we have been able to go further. 

Secondly, a principal component analysis shows that these three commodities are not only 

cointegrated, but they have also a common long-term dynamics, which can be obtained from 

one of these components (the first one). 

Our next step was to propose a model that takes this fact into account and to compare it with 

independent models. In order to do so, we have proposed a joint model with common long-term 

trend for two or three commodities, within the framework of the factor models proposed by 

Schwartz (1997) and Schwartz and Smith (2000). The results indicate that our joint model with 

common long-term trend gives similar results in terms of goodness of fit and Schwartz and 

Akaike information criteria than a joint model without common long-term trend and a standard 

model for the commodities separately, suggesting that there is a common long-term trend. 

These three models have also been used to value crack-spread options traded at NYMEX. 

Specifically, we have used Heating Oil vs. WTI and Gasoline vs. WTI crack-spread options 

traded at NYMEX. The results indicate that the valuation errors obtained with our common 
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long-term model are quite similar to the results obtained with the model without common trend, 

and lower than those obtained with the uncorrelated model. Therefore, we can conclude that, 

given that our joint model with common long-trend is simpler and easier to implement for the 

purposes of option valuation, the preferred model is the one with common long-term trend. 

Finally, we can conclude that crude oil and its main refined products have a common long-term 

trend and therefore a model taking into account this fact is the most useful. This model can be 

used not only for valuation of claims, but also for qualitative analysis. 

           

           

APPENDIX 

The Two-Factor Model for Each Commodity Separately 

Transition equation: 

ttttt ZTcZ ψ++= −1    t = 1, …, Nt      

where 
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 and FT1 is the price of a futures contract on the 

commodity with maturity at time “T1+t” traded at time t. 



 141

This model is the two factor model presented in Schwartz and Smith (2000). 

The Joint Model With Common Long-Term Trend for Pairs of Commodities  

Transition equation: 

ttttt ZTcZ ψ++= −1    t = 1, …, Nt      
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Measurement equation: 
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TF 1 is the price of a futures 

contract on the commodity “i” ( i=1,2) with maturity at time “T1+t” traded at time t. In principle, 

it would be possible to use a different number of futures contracts for each commodity, but in 

this work we consider more suitable to use the same number (“n”) of futures contracts for both 

commodities. 

The Joint Model Without Common Long-Term Trend for Pairs of Commodities  

Transition equation: 

ttttt ZTcZ ψ++= −1    t = 1, …, Nt      
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Measurement equation: 
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i is the price of a futures 

contract on the commodity “i” (i=1,2) with maturity at time “T1+t” traded at time t. As in the 

previous case, in principle, it would be possible to use a different number of futures contracts 

for each commodity, but in this work we consider more suitable to use the same number (“n”) 

of futures contracts for both commodities. 

The Joint Model With Common Long-Term Trend for the Three Commodities  

Transition equation: 
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Measurement equation: 
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 and i
TF 1 is the price of a futures 

contract on the commodity “i” ( i=1,2,3) with maturity at time “T1+t” traded at time t. As in the 

previous cases, in principle, it would be possible to use a different number of futures contracts 

for each commodity, but in this work we consider more suitable to use the same number (“n”) 

of futures contracts for all the commodities. 
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TABLE 1 

DESCRIPTIVE STATISTICS 

 

The table shows the mean and volatility of the four commodity series prices. F1 is the futures 

contract closest to maturity, F2 is the second contract closest to maturity and so on. 

 WTI cruce oil Heating Oil Gasoline Ref. Margin 

 Mean Volatility Mean Volatility Mean Volatility Mean Stand.Dev. 

Spot - - - - - - 4.02 4.99 

F1 32.07 30% 37.10 31% 39.26 35% - - 

F2 32.05 27% 37.16 28% 38.98 30% - - 

F3 31.94 26% 37.12 26% 38.63 27% - - 

F4 31.78 24% 37.01 25% 38.28 24% - - 

F5 31.60 22% 36.85 23% 37.90 22% - - 

F6 31.42 21% 36.69 22% 37.31 22% - - 

F7 31.23 20% 36.52 21% 36.62 21% - - 

F8 31.05 19% 36.34 19% 36.08 21% - - 

F9 30.88 18% 36.16 18% 35.50 20% - - 

F10 30.71 18% 35.99 18% 35.15 20% - - 

F11 30.55 17% 35.82 17% 34.89 19% - - 

F12 30.40 17% 35.67 16% 34.73 19% - - 

 



 148

TABLE 2 

UNIT ROOT TESTS 

The Table shows the results of the Augmented Dickey-Fuller (ADF), Phillips-Perron and Boswijk-

Doornik unit root tests. The reported critical values for the ADF and Phillips-Perron tests are the 

MacKinnon critical values for rejection of the null hypothesis of a unit root. In the case of the Boswijk-

Doornik test the reported critical values are asymptotic p-values obtained by the gamma approximation 

proposed by Boswijk and Doornik (2005). 

WTI CRUDE OIL ADF PHILLIPS-PERRON BOSWIJK-DOORNIK 

Test statistic -0.0062 0.1460 3.2198 

1% Critical value -3.4427 3.4427 12.5284 

5% Critical value -2.8669 -2.8669 9.1422 

10% Critical Value -2.5697 -2.5697 7.5999 

HEATING OIL ADF PHILLIPS-PERRON BOSWIJK-DOORNIK 

Test statistic 0.2975 0.0117 1.5572 

1% Critical value -3.4427 -3.4427 12.5642 

5% Critical value -2.8669 -2.8669 9.0843 

10% Critical Value -2.5697 -2.5697 7.5063 

GASOLINE ADF PHILLIPS-PERRON BOSWIJK-DOORNIK 

Test statistic -1.1137 -1.1564 0.9192 

1% Critical value -3.4427 -3.4427 12.5406 

5% Critical value -2.8669 -2.8669 9.1284 

10% Critical Value -2.5697 -2.5697 7.5761 

REFINING MARGIN ADF PHILLIPS-PERRON BOSWIJK-DOORNIK 

Test statistic -3.9437 -4.5629 11.4066 

1% Critical value -3.4537 -3.4535 11.8653 

5% Critical value -2.8717 -2.8716 8.0008 

10% Critical Value -2.5723 -2.5722 6.3071 
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TABLE 3 

 JOHANSEN COINTEGRATION TEST FOR GASOLINE AND HEATI NG OIL 

 

Hypothesized Number of 
Cointegration Equations 

Likelihood 

Ratio 

5 Percent 

Critical Value 

1 Percent 

Critical Value 

None **  38.67195  15.41  20.04 

At most 1  0.041342   3.76   6.65 

Normalized Cointegrating Coefficients: 1 Cointegrating Equation 

Gasoline Heating Oil Trend Coefficient Log likelihood 

1.00000 -0.913957 -5.41611 -1983.337 

 *(**) denotes rejection of the hypothesis at 5%(1%) significance level 

 

TABLE 4 

 JOHANSEN COINTEGRATION TEST FOR GASOLINE AND CRUDE  OIL  

 

Hypothesized Number of 
Cointegration Equations 

Likelihood 

Ratio 

5 Percent 

Critical Value 

1 Percent 

Critical Value 

None **  41.69961  15.41  20.04 

At most 1  0.311977   3.76   6.65 

Normalized Cointegrating Coefficients: 1 Cointegrating Equation 

Gasoline Crude Oil Trend Coefficient Log likelihood 

1.00000 -1.134830 -2.919235 -1813.967 

*(**) denotes rejection of the hypothesis at 5%(1%) significance level 
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TABLE 5 

JOHANSEN COINTEGRATION TEST FOR HEATING OIL AND CRU DE OIL  

Hypothesized Number of 
Cointegration Equations 

Likelihood 

Ratio 

5 Percent 

Critical Value 

1 Percent 

Critical Value 

None **  42.03124  15.41  20.04 

At most 1  0.040317   3.76   6.65 

Normalized Cointegrating Coefficients: 1 Cointegrating Equation 

Gasoline Crude Oil Trend Coefficient Log likelihood 

 1.00000 -1.22888 2.321953 -1598.295 

*(**) denotes rejection of the hypothesis at 5%(1%) significance level  

 

TABLE 6 

 JOHANSEN COINTEGRATION TEST FOR GASOLINE, HEATING OIL AND 

CRUDE OIL  

Hypothesized Number of 
Cointegration Equations 

Likelihood 

Ratio 

5 Percent 

Critical Value 

1 Percent 

Critical Value 

None **  87.88729  29.68  35.65 

At most 1 **  37.97700  15.41  20.04 

At most 2  0.215044   3.76   6.65 

Normalized Cointegrating Coefficients: 1 Cointegrating Equation 

Gasoline Heating Oil Crude Oil Trend Coefficient Log likelihood 

1.000000 1.42074 -2.881141 0.39226 -2527.315 

Normalized Cointegrating Coefficients: 2 Cointegrating Equations 

Gasoline Heating Oil Crude Oil Trend Coefficient Log likelihood 

 1.000000   -1.130430 -3.060284 
-2508.434 

 1.000000 -1.232253 2.430102 

*(**) denotes rejection of the hypothesis at 5%(1%) significance level 
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TABLE 7  

PRINCIPAL COMPONENT ANALYSIS 

 

The Table shows the percentage of the volatility explained by each principal component. 

Panel 1: Gasoline, Heating Oil and Crude Oil separately 

 Gasoline Heating Oil Crude Oil 

First Component 91,25% 95,05% 98,01% 

First Two Components 94,55% 97,70% 99,74% 

First Three Components 96,99% 99,19% 99,95% 

Panel 2: Gasoline, Heating Oil and Crude Oil in pairs 

 Gasoline and Heating 

Oil 

Gasoline and 

Crude Oil 

Heating Oil and Crude 

Oil 

First Component 92,27% 92,87% 94,74% 

First Two Components 94,21% 95,67% 97,11% 

First Three Components 96,41% 97,08% 98,26% 
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TABLE 8 

 THE TWO FACTOR MODEL FOR EACH COMMODITY SEPARATELY  

The table presents the results for the Schwartz and Smith (2000) two-factor model for each commodity 

separately. Standard errors in parentheses.  

 WTI Crude 
Oil 

WTI Crude 
Oil  

Heating Oil Heating Oil Gasoline 

Contracts F1, F3, F5, 
F7 and F9 

F1, F4, F7, 
F11, F15 and 

F18 

F1, F3, F5, 
F7 and F9 

F1, F4, F7, 
F11, F15 and 

F18 

F1, F3, F5, 
F7 and F9 

Period 06/30/1997 to 
04/24/2006 

09/09/1996 to 
09/18/2006 

06/30/1997 to 
04/24/2006 

09/09/1996 to 
09/18/2006 

06/30/1997 to 
04/24/2006 

Number obs. 461 522 461 522 461 

µξ 0.1536 
(0.0383) 

0.1488 
(0.0293) 

0.1579 
(0.0494) 

0.1471 
(0.0284) 

0.1321 
(0.0429) 

k 1.4996 
(0.0302) 

1.1304 
(0.0124) 

1.0678 
(0.0829) 

1.3624 
(0.0402) 

1.5505 
(0.1166) 

σξ 0.1712 
(0.0042) 

0.1403 
(0.0033) 

0.2957 
(0.0194) 

0.1652 
(0.0042) 

0.2707 
(0.0164) 

σχ 0.3037 
(0.0081) 

0.3089 
(0.0078) 

0.4929 
(0.0262) 

0.3337 
(0.0091) 

0.5267 
(0.0226) 

ρξχ -0.0640 
(0.0398) 

-0.0666 
(0.0351) 

-0.7163 
(0.0443) 

-0.1974 
(0.0408) 

-0.6450 
(0.0515) 

µξ’ -0.1198 
(0.0031) 

-0.0531 
(0.0013) 

-0.1330 
(0.0149) 

-0.0522 
(0.0030) 

-0.0624 
(0.0141) 

λχ -0.0543 
(0.0689) 

0.0142 
(0.0660) 

-0.1077 
(0.0939) 

-0.0241 
(0.0586) 

0.0955 
(0.0986) 

ση 0.0066 
(0.0001) 

0.0089 
(0.0001) 

0.0231 
(0.0003) 

0.0289 
(0.0003) 

0.0329 
(0.0004) 

Log-
likelihood 

17861.6 23494.9 13660.2 17811.9 12350.4 

AIC 17845.6 23478.9 13644.2 17795.9 12334.4 

SIC 17812.6 23444.8 13611.1 17761.8 12301.3 
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TABLE 9 

 THE JOINT MODEL WITH COMMON LONG-TERM TREND FOR PA IRS 

OF COMMODITIES  

The table presents the results for the Schwartz and Smith (2000) two-factor model assuming a common 

long-term trend for pairs of commodities. Standard errors in parentheses.  

 WTI Crude Oil and 
Gasoline 

WTI Crude Oil and 
Heating Oil 

Heating Oil and 
Gasoline 

Contracts 
F1, F3, F5, F7 and F9 

F1, F4, F7, F11, F15 
and F18 

F1, F3, F5, F7 and F9 

Period 06/30/1997 to 
04/24/2006 

09/09/1996 to 
09/18/2006 

06/30/1997 to 
04/24/2006 

Number obs. 461 522 461 

µξ 0.2334 (0.0399) 0.1771 (0.0296) 0.1553 (0.0358) 

k1 1.1533 (0.0535) 1.1349 (0.0181) 2.1553 (0.0764) 

k2 1.7312 (0.0761) 1.3854 (0.0242) 2.2657 (0.0749) 

σξ 0.1962 (0.0066) 0.1433 (0.0034) 0.1819 (0.0050) 

σχ1 0.3233 (0.0127) 0.2768 (0.0072) 0.3097 (0.0104) 

σχ2 0.4308 (0.0132) 0.3182 (0.0080) 0.3637 (0.0110) 

ρξχ1 -0.3035 (0.0580) 0.0043 (0.0368) 0.0726 (0.0474) 

ρξχ2 -0.3792 (0.0506) -0.0342 (0.0362) -0.0026 (0.0453) 

ρχ1χ2 0.8614 (0.0166) 0.8537 (0.0110) 0.6264 (0.0298) 

µξ’ -0.0857 (0.0089) -0.0522 (0.0018) -0.0857 (0.0078) 

λχ1 0.2387 (0.0693) 0.1373 (0.0552) 0.0193 (0.0570) 

λχ2 0.0055 (0.1080) -0.0697 (0.0670) -0.0861 (0.0593) 

ση 0.0282 (0.0002) 0.0220 (0.0001) 0.0368 (0.0003) 

Log-likelihood 26516.0 39276.7 24425.9 

AIC 26490.0 39250.7 24399.9 

SIC 26436.2 39195.4 24346.2 
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TABLE 10 

 THE JOINT MODEL WITHOUT COMMON LONG-TERM TREND FOR  
PAIRS OF COMMODITIES  

The table presents the results for the Schwartz and Smith (2000) two-factor model for pairs of 

commodities without common long-term trend. Standard errors in parentheses.  

 WTI Crude Oil and 
Gasoline 

WTI Crude Oil and 
Heating Oil 

Heating Oil and 
Gasoline 

Contracts F1, F3, F5, F7, F9 F1, F4, F7, F11, F15, F18 F1, F3, F5, F7, F9 

Period 06/30/1997 to 
04/24/2006 

09/09/1996 to 09/18/2006 
06/30/1997 to 
04/24/2006 

Number obs. 461 522 461 

µξ1 0.1519 (0.0354) 0.1474 (0.0272) 0.1602 (0.0489) 

µξ2 0.1305 (0.0449) 0.1476 (0.0292) 0.1306 (0.0428) 

k1 1.4839 (0.0980) 1.1543 (0.0292) 1.0777 (0.1033) 

k2 1.4855 (0.0846) 1.3473 (0.0292) 1.5721 (0.1025) 

σξ1 0.1975 (0.0065) 0.1459 (0.0037) 0.3055 (0.0240) 

σξ2 0.3193 (0.0136) 0.2992 (0.0083) 0.5043 (0.0319) 

σχ1 0.2505 (0.0121) 0.1520 (0.0037) 0.2498 (0.0129) 

σχ2 0.5021 (0.0186) 0.3180 (0.0081) 0.4947 (0.0198) 

ρξ1ξ2 -0.2521 (0.0666) -0.1000 (0.0422) -0.7273 (0.0496) 

ρξ1χ1 0.3307 (0.0431) 0.8215 (0.0178) -0.0828 (0.0597) 

ρξ1χ2 0.2101 (0.0436) 0.0050 (0.0372) 0.3624 (0.0502) 

ρξ2χ1 0.1010 (0.0477) 0.1281 (0.0368) 0.3513 (0.0523) 

ρξ2χ2 0.3279 (0.0365) 0.7310 (0.0207) -0.0285 (0.0511) 

ρχ1χ2 -0.6186 (0.0440) -0.0924 (0.0370) -0.5888 (0.0512) 

µξ1’ -0.1235 (0.0105) -0.0550 (0.0026) -0.1330 (0.0177) 

µξ2’ -0.0589 (0.0107) -0.0508 (0.0022) -0.0625 (0.0118) 

λχ1 -0.0586 (0.0593) 0.0126 (0.0575) -0.1105 (0.0921) 

λχ2 0.0979 (0.1007) -0.0231 (0.0615) 0.0952 (0.0958) 

ση 0.0235 (0.0002) 0.0212 (0.0001) 0.0277 (0.0002) 

Log-likelihood 27789.2 39575.2 26429.1 

AIC 27751.2 39537.2 26391.1 

SIC 27672.7 39456.3 26313 
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TABLE 11 

 THE JOINT MODEL WITH COMMON LONG-TERM TREND FOR TH E 

THREE COMMODITIES  

The table presents the results for the Schwartz and Smith (2000) two-factor model assuming a common 

long-term trend for all three commodities. Standard errors in parentheses.  

 WTI Crude Oil, Gasoline and Heating Oil 

Contracts F1, F3, F5, F7 and F9 

Period 06/30/1997 to 04/24/2006 

Number obs. 461 

µξ1 0.2062 (0.0432) 

k1 1.7671 (0.0470) 

k2 2.2432 (0.0629) 

k2 2.0721 (0.0554) 

σξ1 0.1730 (0.0045) 

σξ1 0.2642 (0.0086) 

σχ1 0.3138 (0.0094) 

σχ2 0.3398 (0.0099) 

ρξ1ξ2 0.1504 (0.0433) 

ρξ1χ1 0.1186 (0.0415) 

ρξ1χ2 0.0558 (0.0415) 

ρξ2χ1 0.7164 (0.0227) 

ρξ2χ2 0.6639 (0.0248) 

ρχ1χ2 0.6564 (0.0255) 

µξ1’ -0.0935 (0.0058) 

µξ2’ 0.1705 (0.0591) 

λχ1 -0.1312 (0.0741) 

λχ2 -0.2183 (0.0682) 

ση 0.0308 (0.0002 

Log-likelihood 39150.2 

AIC 39112.2 

SIC 39033.7 
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TABLE 12 

IN-SAMPLE PREDICTIVE ABILITY 

TWO-FACTOR MODEL FOR EACH COMMODITY SEPARATELY 

 

The table presents the mean error (real minus predicted value) and the root mean squared error 

(RMSE) in order to analyze the in-sample predictive power ability of the Schwartz and Smith (2000) 

two-factor model for the three commodities separately. The time period is 06/30/1997 to 04/24/2006 

(461 weekly observations for each commodity). 

WTI Heating Oil Gasoline 

Contract Mean RMSE Contract Mean RMSE Contract Mean RMSE 

F1 0.0005 0.0428 F1 0.0004 0.0469 F1 -0.0001 0.0528 

F3 -0.0012 0.0369 F3 -0.0010 0.0413 F3 0.0004 0.0502 

F5 0.0003 0.0319 F5 0.0001 0.0397 F5 -0.0003 0.0449 

F7 0.0009 0.0283 F7 0.0010 0.0328 F7 0.0000 0.0324 

F9 -0.0006 0.0267 F9 -0.0006 0.0392 F9 0.0001 0.0503 
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TABLE 13 

IN-SAMPLE PREDICTIVE ABILITY 

TWO-FACTOR MODEL FOR PAIRS OF COMMODITIES WITH 

COMMON LONG-TERM TREND  

The table presents the mean error (real minus predicted value) and the root mean squared error 

(RMSE) in order to analyze the in-sample predictive power ability of the Schwartz and Smith (2000) 

two-factor model for pairs of commodities assuming a common long-term trend. The time period is 

06/30/1997 to 04/24/2006 (461 weekly observations for each commodity) when using the contracts 

F1, F3, F5, F7 and F9 and 09/09/1996 to 09/18/2006 (522 weekly observations for each commodity) 

when using the contracts F1, F4, F7, F11, F15 and F18. 

 

WTI AND HEATING OIL WTI AND GASOLINE HEAT. OIL AND GASOLINE 

WTIL CRUDE OIL WTI CRUDE OIL HEATING OIL 

Contract Mean RMSE Contract Mean RMSE Contract Mean RMSE 

F1 0.0066 0.0452 F1 0.0104 0.0502 F1 0.0034 0.0513 

F4 -0.0002 0.0344 F3 0.0048 0.0381 F3 0.0004 0.0435 

F7 0.0022 0.0276 F5 0.0047 0.0340 F5 0.0007 0.0459 

F11 0.0033 0.0255 F7 0.0054 0.0349 F7 0.0017 0.0500 

F15 0.0026 0.0239 F9 0.0051 0.0377 F9 0.0011 0.0509 

F18 0.0003 0.0238 - - - - - - 

HEATING OIL GASOLINE GASOLINE 

Contract Mean RMSE Contract Mean RMSE Contract Mean RMSE 

F1 -0.0003 0.0460 F1 -0.0017 0.0542 F1 -0.0042 0.0564 

F4 -0.0043 0.0441 F3 0.0008 0.0495 F3 -0.0015 0.0516 

F7 0.0003 0.0431 F5 0.0008 0.0464 F5 -0.0010 0.0517 

F11 0.0016 0.0378 F7 0.0007 0.0374 F7 -0.0005 0.0453 

F15 0.0015 0.0310 F9 -0.0008 0.0460 F9 -0.0013 0.0435 

F18 -0.0020 0.0298 - - - - - - 
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TABLE 14 

IN-SAMPLE PREDICTIVE ABILITY 

TWO-FACTOR MODEL FOR PAIRS OF COMMODITIES WITHOUT 

COMMON LONG-TERM TREND  

The table presents the mean error (real minus predicted value) and the root mean squared error 

(RMSE) in order to analyze the in-sample predictive power ability of the Schwartz and Smith (2000) 

two-factor model for pairs of commodities without common long-term trend. The time period is 

06/30/1997 to 04/24/2006 (461 weekly observations for each commodity) when using the contracts 

F1, F3, F5, F7 and F9 and 09/09/1996 to 09/18/2006 (522 weekly observations for each commodity) 

when using the contracts F1, F4, F7, F11, F15 and F18. 

 

WTI AND HEATING OIL WTI AND GASOLINE HEAT. OIL AND GASOLINE 

WTIL CRUDE OIL WTI CRUDE OIL HEATING OIL 

Contract Mean RMSE Contract Mean RMSE Contract Mean RMSE 

F1 0.0018 0.0440 F1 0.0005 0.0443 F1 0.0004 0.0474 

F4 -0.0034 0.0345 F3 -0.0012 0.0375 F3 -0.0010 0.0417 

F7 0.0002 0.0272 F5 0.0003 0.0324 F5 0.0001 0.0396 

F11 0.0017 0.0245 F7 0.0009 0.0291 F7 0.0010 0.0327 

F15 0.0011 0.0224 F9 -0.0006 0.0277 F9 -0.0005 0.0397 

F18 -0.0014 0.0225 - - - - - - 

HEATING OIL GASOLINE GASOLINE 

Contract Mean RMSE Contract Mean RMSE Contract Mean RMSE 

F1 0.0018 0.0455 F1 -0.0001 0.0525 F1 -0.0001 0.0528 

F4 -0.0035 0.0440 F3 0.0003 0.0485 F3 0.0003 0.0492 

F7 0.0004 0.0434 F5 -0.0003 0.0443 F5 -0.0003 0.0442 

F11 0.0015 0.0393 F7 0.0000 0.0314 F7 0.0000 0.0313 

F15 0.0016 0.0302 F9 -0.0000 0.0489 F9 -0.0000 0.0499 

F18 -0.0017 0.0280 - - - - - - 
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TABLE 15 

DESCRIPTIVE STATISTICS FOR CRACK SPREAD OPTIONS  

 

The Table shows the main descriptive stats of the crack-spread options. The time period is January 2004 

to January 2007. For gasoline vs. WTI crack-spread options there are four maturating dates: March, April, 

August 2006 and January 2007, with twelve exercise prices, from 5 to 16 dollars.  For heating oil vs. WTI 

crack spread options there are data corresponding to contracts maturating from January 2004 to January 

2007, with only two exercises prices available: 5 and 8 dollars. 

 

PANEL A:  HEATING OIL VS WTI (35 SERIES, 1735 OBSERVATIONS) 

 % sample Mean number of 
observations/series 

Mean K  

($)  

Mean price  

($) 

Put options 62.86 48.5 7.45 0.6 

Call options 

 

37.14 51.38 7.31 1.67 

PANEL B: GASOLINE VS WTI (18 SERIES, 820 OBSERVATIONS) 

 % sample Mean number of 
observations/series 

Mean K  

($)  

Mean price  

($) 

Put options 22.22 57.75 10.00 2.31 

Call options 77.78 42.07 10.86 2.73 
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TABLE 16 

CRACK-SPREAD OPTION VALUATION RESULTS 

 ERROR DESCRIPTIVE STATISTICS  

The table presents several metrics in order to analyze the in-sample predictive power ability of the 

models under study: the joint model with common trend, the joint model without common trend and 

the model for commodities separately. The time period is 2004-2007 for gasoline vs WTI crack 

spread options and 2006-2007 for heating oil vs WTI crack spread options (daily observations). 

 

PANEL A: HEATING OIL VS WTI CRACK SPREAD OPTIONS 

STATISTIC 

3 Factor Model 

(Joint Model with 
Common Trend) 

4 Factor Model 

(Joint Model without 
Common Trend) 

2 Factor Model 

(Uncorrelated 
Model) 

Mean Bias (real – predicted) 0.7925 -0.1670 1.7083 

RMSE 0.4347 1.9728 2.0784 

Bias Standard Deviation 1.8066 0.4013 1.1837 

Median Bias 0.0036 0.1640 1.4912 

Root Median Squared Error 0.3937 0.2619 1.4912 

PANEL B: GASOLINE VS WTI CRACK SPREAD OPTIONS 

STATISTIC 

3 Factor Model 

(Joint Model with 
Common Trend) 

4 Factor Model 

(Joint Model without 
Common Trend) 

2 Factor Model 

(Uncorrelated 
Model) 

Mean Bias (real – predicted) -0.5950 -0.6609 0.9696 

RMSE 1.0751 0.9381 1.3856 

Bias Standard Deviation 0.8954 0.6657 0.9899 

Median Bias -0.4704 -0.5250 0.8522 

Root Median Squared Error 0.5580 0.5565 0.8607 
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FIGURE 1. PRINCIPAL COMPONENT ANALYSIS FOR GASOLINE , HEATING OIL 

AND CRUDE OIL SEPARATELY  

Unleaded Gasoline (NYMEX)
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Heating Oil NYMEX
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WTI Crude Oil NYMEX
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FIGURE 2. PRINCIPAL COMPONENT ANALYSIS FOR GASOLINE , HEATING OIL 

AND CRUDE OIL IN PAIRS  

 

Heating Oil and Unleaded Gasoline NYMEX
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Unleaded Gasoline and WTI Crude Oil NYMEX
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Heating Oil and WTI Crude Oil NYMEX
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FIGURE 3. PRINCIPAL COMPONENT ANALYSIS FOR GASOLINE , HEATING OIL 

AND CRUDE OIL JOINTLY 

 

Heating Oil, WTI Crude Oil and Unleaded Gasoline NYMEX
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