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Preface

This doctoral dissertation focuses on three important areas in Financial Economics: the downside
risk modelling, pricing errors and tail financial spillover. These areas have aroused growing interest
from recent episodes of financial crises. First, we are interested in some questions concerning the
role of liquidity in forecasting downside risk measures using quantile regression approach. Second,
we study if the sources of pricing errors are related with the credit market distress conditions.
Finally, we analyze the tail financial spillover for banking system in different states of the economy
using quantile regression methodology.

This dissertation consists in five chapters:

Chapter 1: Introduction. This chapter introduces the main areas of the dissertation and depicts
the motivation and main contributions.

Chapter 2: On Downside Risk Predictability through Liquidity and Trading Activity. A Dy-
namic Quantile Approach. This chapter studies the value of liquidity and trading activity
variables in forecasting Value at Risk using a quantile regression approach for different U.S.
portfolios.

Chapter 3: Market Illiquidity and Pricing Errors in the Term Structure of CDS Spreads. This
chapter explores the sources of the pricing errors in the term structure of CDS Spreads.

Chapter 4: Measuring Tail-Risk Cross-Country Exposures in the Banking Industry. This chap-
ter analyzes the main transmission channels in the international banking system under adverse
market conditions.

Chapter 5: Conclusions. This chapter presents the main results and future research in the different
areas developed in the thesis.
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Resumen

Esta tesis está compuesta por tres artículos de investigación independientes en los que se analiza la
modelización de downside risk (Capítulo 2), errores de valoración y medidas de distress (Capítulo
3) y medición de contagio financiero (Capítulo 4).

En el Capítulo 2, se analiza el contenido informativo de diferentes variables de liquidez y
volumen en la predicción de rendimientos de diferentes carteras de mercado de acciones de
Estados Unidos. Mientras que la mayoría de modelos que miden downside risk asumen que
los rendimientos contienen suficiente información para predecir la distribución condicional de
los rendimientos de una cartera, es posible que existan otras variables que tengan un papel
importante. Así pues, el objetivo del primer capítulo es analizar si las variables relacionadas con
liquidez y actividad negociadora contienen información relevante en la predicción de cuantiles de la
distribución condicional de carteras de mercado representativas. La metodología utilizada se basa
en regresión de cuantiles dinámica usando el modelo condicional autorregresivo CAViaR propuesto
por Engle y Manganelli (2004). Los resultados muestran evidencia de la predicibilidad de la
distribución condicional en términos de variables de liquidez y volumen. Realizando un análisis
de backtesting usando diferentes metodologías, se obtienen mejores resultados de predicción, tanto
dentro como fuera de muestra, que usando modelos basados únicamente en la información de los
rendimientos. Los resultados son robustos para diferentes carteras representativas y medidas de
liquidez y actividad negociadora consideradas de manera independiente y conjunta.

En el Capítulo 3, se estudia si los errores de valoración en la estructura temporal de
Credit Default swaps (CDS) soberanos contienen información relevante acerca de características
relacionadas con el distress en el mercado tales como la liquidez, cantidad de arbitrajistas, etc.
Utilizando los residuos de diferentes modelos de valoración, se construye una medida de volatilidad
de los errores de valoración llamada Noise. Se analiza entonces, si esta medida se puede
considerar como un indicador de distress del mercado que puede reflejar fricciones de mercado

xix



tales como la iliquidez. Mediante una aplicación para países del G20, obtenemos que una parte
importante del riesgo sistemático no se valora utilizando modelos de valoración estándar. Utilizando
la metodología de datos de panel se muestra evidencia de que las discrepancias en el precio
observado y el estimado están relacionadas de forma sistemática con un mayor número de contratos
negociados así como mayores bid-ask spreads. Los resultados sugieren que los flujos de capital de
arbitraje disminuyen durante periodos de distress, lo cual es consistente con la segmentación del
mercado entre inversores y arbitrajistas. Esta evidencia es robusta utilizando diferentes modelos de
valoración de CDS de la industria como Pan y Singleton o Nelson y Siegel.

Finalmente, en el Capítulo 4, se analizan los efectos de contagio financiero entre diferentes
regiones internacionales desarrolladas y emergentes aplicando la metodología de State Dependent

Sensitivity (SDS) desarrollada por Adams, Füss y Gropp (2014). La mayoría de la evidencia
existente sobre contagio financiero se basa en el análisis causal de la media de los rendimientos
y de la volatilidad. En este capítulo, estudiamos si momentos de orden superior podrían aportar
información relevante a la hora de medir posibles contagios. De esta forma, mediante el examen
de contagio en la cola de la distribución condicional de los rendimientos de índices bancarios entre
diferentes regiones, se pretende analizar si existe contagio en diferentes estados de la economía
y en qué medida éste puede depender del estado. El objetivo es analizar la sensibilidad que
caracteriza la vulnerabilidad del sector bancario de una determinada región ante shocks en otras
regiones bajo diferentes estados de la economía. La hipótesis de partida se centra en que en
momentos de gran volatilidad en los mercados los contagios serán mayores que en periodos de
estabilidad. Los resultados obtenidos muestran evidencia de efectos de contagio más elevados y
significativos durante periodos de crisis. La región con mayor capacidad de contagio es Estados
Unidos y las regiones que muestran una mayor respuesta ante shocks en esta región son las europeas
más desarrolladas. Por el contrario, Estados Unidos muestra mayor resistencia antes shocks en el
resto de regiones, luego la baja concentración de prestatarios puede ser un factor determinante para
limitar la propagación del riesgo sistémico entre instituciones financieras. 1

1El resumen se presenta en castellano para cumplir con los requerimientos normativos de la Universidad de Castilla
la Mancha. No obstante, al inicio de cada capítulo, se resume en inglés el contenido del mismo.



Chapter 1
Introduction

The recent market crises highlight the need to provide more accurate measurements of downside
risk. The capacity to accurately identify, measure, control and forecast financial risk is crucial to
ensure a stable financial system. Value at risk (VaR) is the most common downside risk measure
popularized by the Basel Amendments. Regulators have encouraged banks and financial institutions
to implement risk models based on this statistical measure. A number of methods can be found in the
literature to compute this measure but they all rely solely upon returns. Recently, Kuester, Mittnik
and Paolella (2006) showed that most of these procedures do not seem to perform successfully
under current regulatory assessment rules for model adequacy. In this framework, is it possible to
improve VaR performance using variables other than returns? Chapter 2 responds to this interesting
and often overlooked question by providing an alternative downside risk measure which is not based
only on returns information. Specifically, we analyze whether using trade-related variables and bid-
ask spread measures yield improvements over standard approaches based on the returns solely when
forecasting downside risk measures, such as the standard Value at Risk.

From an econometric perspective, the estimation and forecasting of the VaR involves certain
additional challenges. We use quantile regression methodology (Koenker and Basset, 1978) that
implies the assumption of no distribution of the portfolio returns. Additionally, an important issue
is to analyze the capability of exogenous variables to measure downside risk measures better than
some of the models previously proposed in the literature. The central idea is to model directly the
dynamics of the conditional quantile by specifying a functional form that relates the time-varying
dynamics of the (unobservable) conditional VaR process to the predictive variables, building on
the so-called Conditional Autoregressive Value at Risk (CAViaR) model by Engle and Manganelli
(2004). The model evaluation is based not only on the standard backtesting approaches but also on

1
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recent proposals such as a Dynamic Quantile (DQ) test from Engle and Manganelli (2004) and the
quantile regression based test from Gaglianone, Lima, Linton and Smith (2011).

We consider data from different markets, size and book-to-market portfolios in the US market at
the daily frequency and report that using variables such as relative spread or volume largely enhance
the predictive ability of the risk models according to different measures. The empirical evidence
suggests that there exist additional variables with predictive ability in downside risk measures.
Our downside risk model outperforms the traditional models based on the return information using
liquidity and volume related variables. Therefore, Chapter 2 of the dissertation proposes a new
approach to VaR prediction. In contrast to existing methods, not only past returns but a structural
time series model including observable state variables, which reflect market liquidity and trading
activity, is used to forecast VaR. Both in-sample and out-of-sample evaluation are conducted. It is
found that the method leads to a superior forecast performance compared to competing models.

Finding ways to improve market risk assessment has recently become an important topic,
especially considering the failure of many popular quantitative models during the course of the
recent financial crises. Indeed, many of the existing VaR prediction studies only focus on functions
of past returns as conditioning information. The proposed extension in Chapter 2 towards variables
that describe the trading environment seems promising. To the best of our knowledge, this question
has not been addressed before, so this study adds empirical evidence supporting the existence of
a link between returns and microstructure related variables. We strongly believe that the evidence
presented is valuable for both future research and for practitioners that use quantitative methods to
compute VaR measures.

Not only more involved downside risk requirements are consequence of recent instability periods
but also the study of credit derivative innovations plays also a significant role in recent research.
Furthermore, the financial crisis is mostly driven by the illiquidity of credit derivative products such
as Credit Defaults Swaps (CDS). In Chapter 3, we focus on CDS market due to their tremendous
growth in recent years and also to contribute to the literature about how CDS prices are formed.
In this sense, many key aspects of this process remain unsolved in the literature, since active CDS
trading is a relatively new phenomenon. Within this framework, Chapter 3 studies the residuals
from different pricing models in terms of the structure of weekly sovereign CDS spreads. Our aim
is examine the economic determinants that underlie CDS pricing errors as a consequence of market
frictions reflected during periods of distress.

Specifically, we estimate from pricing errors a measure called Noise (see Hu, Pan and Wang,
2013 for a similar measure in the US bond market) and analyze whether it can be interpreted as
a distress indicator that reflects market frictions such as illiquidity. The main research question is:
Are CDS pricing errors related to market illiquidity? The empirical results reveal evidence that there
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exists a part of systematic risk that is not taken into account in default swaps spreads. We show how
these discrepancies measured as the pricing error volatility by computing the Noise indicator are
related with market illiquidity using panel data methodology.

Therefore, to analyze the informational content of CDS pricing errors, we have implemented
different panel-data estimation techniques including two-way cluster errors, fixed-effects panel data,
and instrumental-variable panel data on a broad sample of weekly sovereign default swap spreads
from 16 countries in both advanced and emerging economies from the available dataset in the G20
group. We discover that pricing errors are higher during periods with high instability and panel data
identifies bid-ask spreads and a higher level of offsetting transactions as the key determinants of
these increased errors. In short, pricing errors can contain relevant information about credit market
conditions.

Studying the sources of CDS pricing errors is important for several reasons. From a theoretical
perspective, this study is useful to enhance the understanding of the operating price as these
derivatives trade in a relatively opaque and decentralized market. From a practical perspective,
the issue is important for the trading, pricing, hedging, and risk management of CDS. Finally, from
a regulatory perspective, it is important given the potential systemic nature of the CDS market.

Another important topic arising from the recent global financial crisis is the growing interest in
analyzing the spillover effects between different markets. The main aim is understand the contagion
mechanisms and build efficient spillover measures in order to try to contain and mitigate contagion.
Within this framework, Chapter 4 addresses the tail financial spillover effects between international
regions in different states of the economy. The main research question of this Chapter is: Are
financial spillover effects sensitive to the state of the economy? The analysis aims to identify
the main transmission channels in the international banking system and provide a quantitative risk
assessment of the size of contagion under adverse market conditions.

Furthermore, Chapter 4 is devoted to the estimation of financial spillover effects across
international regions using a quantile regression approach based on a State Dependent Sensitivity
(SDS) method. To this end, this chapter presents an efficient method in spillover measurement
for carrying out this task. Firstly, the SDS model enables the calculation of the spillover for
different states of the economy for different downside risk measurements, directly inspired by
Adams, Füss and Gropp (2014). Secondly, we use as a downside risk measure the expected shortfall
based on expectiles to estimate the risk from daily bank index returns. Finally, we also compute
impulse response functions that determine the rapidity and persistence of contagion of a shock
under different economic scenarios. In short, we study the size, direction and persistence of the
tail spillover effects and study the tail spillover from different downside risk measures rather than
volatility as in the main body of financial spillover literature.



4 CHAPTER 1. INTRODUCTION

Regarding the econometric approach, we estimate an SDS model using a two step quantile
regression (2SQR) method over the expected shortfall from bank index returns using a maximum
entropy algorithm for inference. This method allows us to quantify the tail spillover in different
quantiles of this coherent measurement and obtain correct standard errors by correcting model
endogeneity. Therefore, we compute spillover for all the regions simultaneously for different states
of the economy and provide a complete picture of bilateral relationships that feature transmission
channels. The general evidence shows that the contagion is higher, more significant and persistent
during volatile periods than in tranquil ones. According to our study, the US banking sector is the
greatest source of financial contagion in the international financial industry. However, the US tends
to show more resilience in its banking system against foreign shocks.

The results in Chapter 4, provide evidence about the performance of an involved spillover
method based on the higher moments of the returns distributions. The main advantage is about the
computation of tail spillover in different economic states rather than traditional Granger causality
in mean and volatility existing in the related literature. Moreover, our conclusions are not driven
by any particular assumption on the returns distribution due to the use of expectiles in the expected
shortfall estimation. This issue attract widespread attention from academics, policy makers and
market participants endeavouring to understand the international spillover and thereby mitigate
systemic risk.

The rest of the thesis is organized as follows. Chapter 2 studies the value of liquidity and
trading activity in forecasting Value at Risk. Chapter 3 presents the CDS pricing errors determinants
study. Chapter 4 analyzes the tail spillover effects across international regions. Finally, Chapter 5
summarizes the main conclusions and presents some further research related to the main topics
developed in the thesis.



Chapter 2

On Downside Risk Predictability through
Liquidity and Trading Activity: A Dynamic
Quantile Approach

Most downside risk models implicitly assume that returns are a sufficient statistic with which
to forecast the daily conditional distribution of a portfolio. In this chapter, we analyze if the
variables that proxy for market-wide liquidity and trading conditions convey valid information to
forecast the quantiles of the conditional distribution of several representative market portfolios,
including volume- and value-weighted market portfolios, and several Book-to-Market- and Size-
sorted portfolios. Using dynamic quantile regression techniques, we report evidence of conditional
tail predictability in terms of these variables. A comprehensive backtesting analysis shows that this
link can be exploited in dynamic quantile modelling to considerably improve the performance of
day-ahead Value at Risk forecasts.

5
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2.1 Introduction

Implementing risk control and monitoring systems requires quantitative procedures to capture the
level of underlying uncertainty and make accurate predictions. The Basel Committee on Banking
Supervision (BCBS) has popularized certain international standards in the financial services
industry, known as Basel Accords, which entitle eligible institutions to use internal risk models
based on the Value-at-Risk (VaR) framework for meeting market risk capital requirements. This
statistical methodology has transcended the capital regulatory setting and is now routinely applied
in risk management, investment assessing, and financial statement disclosing even by non-financial
institutions. The recent crisis has shown the necessity of adequate risk-management protocols to
achieve greater resilience and, hence, the need to improve the existing procedures for quantifying
market risk. The present chapter is mainly motivated by this concern.

The extant literature has proposed a number of alternative methods for downside risk
modelling, mainly VaR, which largely differ in the degree of sophistication: From the simple
Exponential Weighting Moving Average (EWMA) popularized by RiskMetrics to the more
advanced probabilistic settings based on the Extreme Value Theory (EVT); see McNeil, Frey and
Embrechts (2005) for a review. Remarkably, several studies have revealed that most of these
procedures do not perform successfully in practice under standard backtesting techniques (e.g.,
Kuester, Mittnik and Paolella, 2006), which underlines the practical complexity that lies behind
downside risk modelling. Why is accurate VaR forecasting so elusive? Whereas most of the
previous literature has attempted to address this question on the grounds of model misspecification,
in this chapter we adopt an alternative view within the framework of model risk and analyze the role
played by the set of conditioning information. In spite of the large methodological differences, the
existing methodologies to model market risk share a common characteristic: They all rely almost
exclusively on historical returns. Naturally, this may turn out to be unnecessarily restrictive, since
the conditional loss function of a portfolio may exhibit non-trivial links with the state variables that
characterize the market environment and trading conditions, and which may help forecasting bursts
in volatility and liquidity shocks, particularly, in times of stress.1

In this chapter, we analyze whether certain state variables related to the market trading process
can predict the tail of the conditional loss distribution of returns and, consequently, be useful for
risk management purposes. Although predictability is not necessarily limited to these variables, our
main focus is on bid-ask spreads and volume measures. Our study is motivated by previous findings

1The implicit belief that returns subsume all the relevant information to forecast downside risk may be originated
in a conservative interpretation of the Efficient Market Hypothesis. This forbids the systematic predictability of returns
on the basis of the available information, i.e., posits an orthogonal condition on the first-order conditional moment.
However, it remains silent about higher-order moments, such as conditional volatility, or other distributional features,
such as conditional percentiles. Furthermore, financial markets largely depart in practice from the complete-market
and symmetric-information hypotheses that underlie a number of theoretical models in the asset pricing literature. In
the presence of asymmetric or imperfect information and other frictions, even the conditional mean of returns may be
predictable.
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and theoretical considerations in the asset pricing and market microstructure literature, which jointly
underline the link between returns and market liquidity, trading activity, and private information
arrivals. Like returns, liquidity- and volume-related variables are available on the trading-basis
and are highly sensitive to information flow. Like volatility, these variables are believed to reflect
collective expectations, environmental conditions and market sentiments that have a major influence
on investor decisions. In contrast to returns and volatility, however, trade-related variables seem
to have been ignored in downside risk modelling, even though there exists previous evidence
supporting the predictive power of trading activity and liquidity on volatility; see, for instance,
Bollerslev and Melvin (1994) and Suominen (2001). The main aim of this chapter, therefore, is
to address whether downside risk forecasts can be improved by using this kind of trade-related
information.

In particular, we analyze predictability at different meaningful quantiles in the left tail of the
conditional distribution of daily returns of several market portfolios, including volume- and value-
weighted, Book-to-Market (B/M)- and Size-sorted market portfolios in the U.S. Stock Exchange.
The predictive variables are different measures of market-wide liquidity and market-wide trading
activity. These variables share a considerable degree of commonality and can be related to liquidity
risk (Chordia, Roll and Subrahmanyam, 2001), but measure different facets of this magnitude.
The simplest way to address predictability is through least squares-based regressions. Conditional
quantiles are unobservable, however, and such an approach is infeasible. Fortunately, the Quantile
Regression theory allows us to analyze tail-predictability without departing significantly from
the intuitive spirit of predictive regressions; see Koenker (2005) for an overview. Applying this
methodology, we model VaR dynamics through a functional form that relates this latent process to
its own past as well as lagged predictors, building on the CAViaR model in Engle and Manganelli
(2004). The main conclusion from the analysis on the significance of estimated coefficients in the
predictive analysis is that bid-ask spreads and volume-related variables can predict the tail of the
conditional distribution of daily returns.

The main practical purpose of VaR models is to construct accurate forecasts. Consequently, we
also analyze the out-of-sample performance of daily VaR forecasts from risk models that account
for microstructure variables in relation to restricted and alternative methodologies that build solely
on return-based information. We consider the return-restricted CAViaR models originally proposed
by Engle and Manganelli (2004), and alternative volatility-based risk models based on EWMA,
EVT and Generalized Autoregressive Conditional Heteroscedastic (GARCH) modelling. Using
these procedures, we construct a series of day-ahead forecasts in a period of market distress and
apply a comprehensive battery of backtesting procedures including the likelihood-ratio tests in
Christoffersen (1998), the conditional hit test in Engle and Manganelli (2004), and the quantile-
regression test recently proposed by Gaglianone, Lima, Linton and Smith (2011). The overall
picture that emerges from this exhaustive analysis agrees with the in-sample predictive results and
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suggests that trade-related variables can largely enhance the performance of return-based VaR risk
models even in a stress scenario.

The analysis on B/M- and Size-sorted portfolios yields meaningful differences, both in the extent
of predictability and the suitability of the different state variables. Quantiles in the left tail of the
conditional distribution can be predicted accurately in portfolios formed by high B/M or small-cap
stocks, using bid-ask spreads and trading activity variables, respectively. This evidence could be
related to how discovery price takes place and to the existence of investment clienteles. Chordia,
Sarkar and Subrahmanyam (2011) argue that informed investors have preferences for large-cap
stocks. Since noise trading activity is the main cause of volatility in small-cap stocks, this may
explain why using volume-related variables enhances VaR forecasts in this particular portfolio. In
short, the main conclusion that consistently emerges from our analysis is that liquidity and trading
activity convey incremental information to forecast daily conditional tail dynamics at different
quantiles. We show that this property can be used for applied purposes to greatly enhance the
forecasting performance of suitable downside risk models.

This chapter can be related to different streams of previous research. First, it belongs to the
literature devoted to VaR modelling in the general context of quantile regression. Previous papers
have addressed predictability using different types of variables and methodologies. Taylor (1999)
forecasted VaR at different horizons in linear quantile regressions, using GARCH-type volatility
estimates and deterministic functions of the forecasting horizon involved. Similarly, Chernozhukov
and Umantsev (2001) used lagged values of stock and market returns to characterize daily VaR in
an individual stock. Engle and Manganelli (2004) use return-restricted CAViaR models at the daily
horizon. Cenesizoglu and Timmerman (2008) analyzed tail predictability in monthly returns using
equity premium predictors, such as valuation and corporate ratios, bond yields, and default and
market risk measures. Adrian and Brunnermeier (2011) model weekly VaR dynamics similarly,
aiming to characterize systemic risk; see, also, Taylor (2000, 2008b), Kouretas and Zarangas
(2005), Bao, Lee and Salto (2006), Kuester et al. (2006), and López-Espinosa, Moreno, Rubia
and Valderrama (2012) for related work. In addition, our study is related to return predictability
and, more precisely, to the literature devoted to the analysis of the links between volatility, liquidity
and trading activity; see, among many others, Clark (1973), French and Roll (1986), Tauchen and
Pitts (1983), Stoll (1989) and Kalimipalli and Warga (2002).

This chapter contributes to these strands of literature in different ways. Our analysis formally
uncovers the existence of a Granger-type causal predictive relationship that links trade-related
variables to the conditional distribution of daily market returns. An immediate practical application
is downside risk modelling. We report consistent evidence that VaR risk models that exploit this link
can exhibit a considerably enhanced out-of-sample performance with respect to return-restricted
alternatives. Hence, this chapter also contributes to expanding the literature on CAViaR modelling.
This general class of models was developed recently, so only a limited number of specifications
constructed in the spirit of GARCH-type models have been analyzed. We show that the conditional



2.2. DATA 9

tail of daily returns exhibits similar stylized features to those characterizing conditional volatility,
but also more complex dynamics that are captured by liquidity and trading activity variables. The
class of CAViaR models discussed in this chapter, in which trade-related variables are distinctively
incorporated, produces more accurate VaR forecasts than the specifications studied in the extant
literature.

The remaining part of the chapter is organized as follows. Section 2.2 describes the dataset used
in the paper and its main characteristics. Section 2.3 reviews the basic elements in VaR modelling,
specifically in CAViaR modelling. Section 2.4 carries out the main empirical analysis, focusing
on the returns of a volume-weighted market portfolio, using both in-sample predictive and out-of-
sample backtesting techniques. Section 2.5 discusses the robustness of the results and analyzes
predictability in others characteristic market portfolios. Section 2.6 summarizes the main results
and concludes. Appendix A briefly summarizes the main features of the alternative risk models
used in this chapter.

2.2 Data

We analyze tail-predictability in the returns of several representative portfolios in the U.S. Stock
Exchange. The choice of portfolio data allows us to eliminate the idiosyncratic noise that may affect
the main conclusions in a study on individual stocks and it is coherent with real practices, since VaR
is normally computed over portfolio returns. Data are obtained from different sources. The main
analysis in Section 2.4 is conducted on daily continuously compounded returns of the volume-
weighted portfolio obtained from Center for Research in Security Prices (CRSP). The sample
spans the period 01-04-1988 to 12-31-2002, totaling 3,782 observations. This period is particularly
interesting for risk management purposes, because it includes a stress scenario originated during the
burst of the technological bubble in 2000. This particular sub-sample shall be used to backtest the
different risk models under market stress conditions. In addition, Section 2.5 checks the robustness
of the main conclusions of this analysis under different modelling considerations and analyzes
predictability in other representative market portfolios. We focus on daily log returns of the value-
weighted portfolio as well as several B/M- and Size-sorted portfolios in the same period. These data
are obtained, respectively, from CRSP and Kenneth French’s website.

The most distinctive feature of this chapter is the analysis of the predictive power of
microstructure variables on daily VaR of several market portfolios, which requires representative
measures of market-wide liquidity and trading activity in the period of interest. Chordia et al. (2001)
constructed several variables in this spirit which have been widely used in a series of subsequent
papers to address different issues. In particular, market-wide liquidity and market-wide trading
activity measures are computed by cross-averaging individual measures at the stock level on each
trading day using a comprehensive sample of NYSE stocks after applying standard filtering rules.
The individual measures of liquidity are constructed by averaging intraday observations from the
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Trade and Quote (TAQ) database over the day. The readers are referred to Chordia et al. (2001) for
further details.

The set of market trade- and order-based variables used as VaR predictors in this chapter, which
we shall collectively refer to as MT T hereafter, is available at Avanadir Subrahmanyam’s website
and includes the following measures of market-wide trading activity and bid-ask spread measures
in the period of interest:

i) Market trading activity (or volume-related) variables: Trading Volume (TV) measured in
thousands of shares; Number of Trades (NT) calculated as the sum of sell and buy trades; Number
of Sell trades (NS); Number of Shares Sold in thousands (NSS) and Traded Volume in Dollars
(TVD). The variables in this group are trade-based measures and, therefore, deemed as indirect
measures of liquidity. Trading activity induces price volatility and, hence, a greater likelihood
of large price movements. Consequently, we expect large trading activity reacting to news and
anticipating increments in the VaR level of the portfolio.

ii) Market bid-ask spreads (or liquidity-related) variables: Quoted Spread (QS) measured as the
dollar difference between ask and bid prices; Effective Spread (ES) given by the signed difference
between trade price and bid-ask midpoint (MP); Relative Quoted Spread (RQS) defined as the ratio
QS/MP, and Relative Effective Spread (RES) defined as the ratio ES/MP. Bid-ask spreads measure
transaction costs and, as such, are order-based measures widely considered as direct measures
of liquidity. When market liquidity dries out, transaction costs increase and prices become more
volatile. Hence, we expect large bid-ask spreads levels anticipating a greater likelihood of a large
market movement.

Table 2.1 shows the usual descriptive statistics for the time-series of daily demeaned returns,
computed as the residuals from a first-order autoregressive process, and all the predictive variables
(in logarithms) used in our analysis. Note that the log-transform yields strictly positive (negative)
series when applied on trading-activity (bid-ask spreads) variables. Returns exhibit the characteristic
stylized features in daily samples: Excess kurtosis, mild degree of skewness and negligible
autocorrelation. Liquidity- and volume-related variables are known to be persistent processes, and
the most salient feature of the predictors is the strong degree of persistence as measured by the first-
order autocorrelation coefficient. The daily conditional quantile of returns is a persistent process
as well because so is volatility. Hence, lagged values of these state variables can be expected to be
good predictors of the VaR process. Returns are contemporaneously correlated to all the variables
analyzed.

Correlations are shown in Table 2.2. We observe that absolute returns are positively correlated
with the variables in the volume group, exhibiting an average correlation around 39%, and
negatively correlated to bid-ask spreads, with an average correlation around −25%. A number
of empirical papers have documented a positive correlation between volume and absolute price
change, while Pastor and Stambaugh (2003) find that periods experiencing adverse liquidity shocks
generally coincide with high market volatility. As usual, the variables within each group are strongly
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correlated among themselves, and largely and negatively correlated with the variables in the other
group. Cross-correlations range from −79%, for TVD and QS, to −88%, for TVD and RES.

Table 2.1: Descriptive statistics of the demeaned return for the portfolios

Panel A.- Returns
Mean Median Max. Min. Var Skew. Kurt. ρ(1)

rt,Vol 0.00 0.01 5.54 -6.70 0.98 -0.20 7.78 -0.06
rt,Value 0.02 0.06 4.97 -6.11 0.49 -0.35 10.84 -0.07
r1t ,LowB/M 0.01 0.02 6.65 -7.85 1.22 -0.11 7.29 -0.07
r2t ,HighB/M 0.00 0.02 4.81 -6.32 0.67 -0.43 8.36 -0.05
r1t,LowSize 0.00 0.05 6.02 -7.56 0.66 -0.71 11.06 -0.05
r2t,HighSize 0.00 0.01 5.73 -6.89 1.05 -0.16 7.39 -0.06

Panel B.- Predictive variables
Mean Median Max. Min. Var Skew. Kurt. ρ(1)

TV 7.39 7.21 9.69 5.52 0.73 0.36 1.86 0.96
NT 6.85 6.69 8.76 5.07 0.65 0.30 1.64 0.98
NS 6.09 5.94 8.02 4.24 0.65 0.29 1.67 0.98
NSS 6.51 6.33 8.80 4.50 0.73 0.35 1.86 0.96
TVD 11.10 11.04 13.00 9.13 0.76 0.17 1.66 0.96
QS -1.89 -1.74 -1.20 -3.40 0.21 -1.64 4.79 0.99
ES -2.29 -2.11 -1.50 -3.80 0.20 -1.53 4.48 0.99
RQS -5.39 -5.39 -4.80 -6.90 0.20 -1.02 3.23 0.99
RES -5.96 -5.76 -5.20 -7.20 0.20 -0.96 3.08 0.99

Descriptive statistics (mean, median, maximum, minimum, variance, skewness and kurtosis) of the demeaned
returns for the volume- and value- weighted market portfolio, B/M- and Size-sorted portfolios corresponding
to Low30 and High30 portfolios. Panel B shows the descriptive analysis for the predictive variables involved
in the analysis (in logarithms). The last column indicates the first-order autocorrelation of the variables. The
variables included are TV (Trading Volume); NT (Number of Trades); NS (Number of Sell trades); NSS
(Number of Shares Sold in thousands); TVD (Traded Volume in Dollars); QS (Quoted Spread); ES (Effective
Spread); RQS (Relative Quoted Spread) and RES (Relative Effective Spread).
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Table 2.2: Correlation variables matrix involved in the analysis between absolute demeaning log-
returns for volume portfolio and liquidity variables in logarithms.

rt TV NT NS NSS TVD QS ES RQS RES
rt 1.00
TV 0.40 1.00
NT 0.39 0.98 1.00
NS 0.39 0.98 0.99 1.00
NSS 0.40 0.99 0.98 0.98 1.00
TVD 0.39 0.99 0.98 0.98 0.98 1.00
QS -0.25 -0.83 -0.82 -0.82 -0.82 -0.79 1.00
ES -0.26 -0.85 -0.85 -0.85 -0.84 -0.81 0.993 1.00
RQS -0.24 -0.86 -0.87 -0.87 -0.86 -0.86 0.957 0.95 1.00
RES -0.25 -0.88 -0.89 -0.89 -0.88 -0.88 0.948 0.95 0.99 1.00

2.3 Modelling and forecasting VaR

Let rt , t = 1, ...,T , be the daily log-return time-series of a portfolio, and let Ft be the natural
filtration including all the available information at time t. This includes the lagged and current
values of any observable variable up to time t, as well as measurable transformations of these.
For ease of exposition, we assume that {rt} is stationary martingale difference sequence (MDS),
verifying E (rt |Ft−1) = 0, with bounded moments E

(
|rt |δ

)
< ∞ for some δ > 2 large enough.

This assumption comes with no practical loss of generality, since in practice it is customary to
demean returns previous to the VaR modelling; see, for instance, Taylor (2008b).

For a certain probability level λ ∈ (0,1), we define the λ ×100% VaR of a financial portfolio as
the maximum loss over a horizon of h ≥ 1 days which is expected at the (1−λ )×100% confidence
level given Ft , i.e., the λ -quantile of the conditional loss distribution of the portfolio. Formally, we
denote:

VaRλ ,t (h) =−{infz ∈ R : Pr(rt (h)≤ z|Ft)≥ λ} (2.1)

where rt (h) = logPt+h − logPt is the h-period return, and the negative sign on the right-hand side
turns the magnitude of the expected loss into a positive measure following standard reporting
practices. In market risk management, h typically ranges from 1 to 10 days, and λ usually
takes values no greater than 0.05; see Section 2.4 for details. Since our empirical analysis refers
specifically to a one-day holding period, h = 1, we shall suppress the h reference for notational
convenience.

The extant literature has suggested different methodologies with which to model and forecast
VaR dynamics. The following subsection discusses the main characteristics of the quantile
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regression approach used in this Chapter. The main features of several alternative procedures that
shall be used together with quantile regression in Section 2.4.2 are sketched in Appendix A.

2.3.1 Dynamic conditional quantile modelling: CAViaR

Quantile regressions, introduced by Koenker and Bassett (1978), are well suited to estimating
conditional VaR dynamics; see, Chernozhukov and Umantsev (2001) for an overview and an
empirical application on this field. This semiparametric technique allows the direct modelling
of the time-varying dynamics of conditional quantiles without imposing strong assumptions about
the distribution function of observations. Engle and Manganelli (2004), EM hereafter, proposed
a general class of nonlinear quantile regression models, the so-called Conditional Autoregressive
Value at Risk (CAViaR), and discussed a number of particular cases which are specifically intended
for VaR modelling at the daily horizon.

The main intuition behind CAViaR models is that the λ -th conditional quantile is treated as a
latent autoregressive process, possibly depending on a number of lagged covariates, according to
the general specification

VaRλ ,t+1 = βλ ,0 +
p

∑
j=1

βλ , jVaRλ ,t+1− j +
q

∑
l=1

γλ ,l f (Xt+1−l) (2.2)

where θλ =
(
βλ ,0,βλ ,1, ...,γλ ,q

)′ is a vector of unknown parameters, possibly depending on λ , Xt is a
m-vector of covariates, and f (·) : Rm → R is a measurable transform of the data. This specification
embeds a large degree of flexibility and generality. Under the restriction βλ ,1 = ... = βλ ,p = 0,
model (2.2) can be reparameterized linearly and renders the well-known quantile regression model
proposed by Bassett and Koenker (1982), widely used to model conditional quantiles directly. Also,
CAViaR models are related to the autoregressive quantile models proposed by Koenker and Zhao
(1996) and Koenker and Xiao (2006), but differ from these in which the autoregressive process is
not directly observable and can depend nonlinearly on θλ . More recently, De Rossi and Harvey
(2009) have proposed an iterative Kalman filter method that can be applied to characterize suitable
CAViaR models. These may provide a reasonable approximation to the filtered estimators of time-
varying quantiles that come from signal plus noise state-space models; see De Rossi and Harvey
(2006) for further details.

As remarked by EM, a natural choice of Xt in (2.2) is lagged returns. In this chapter, we consider
market returns and trade-related variables in two models with functional forms nested in (2.2). First,
we consider a first-order autoregressive covariate-extended CAViaR model,

VaRλ ,t+1 = βλ ,0 +βλ ,1VaRλ ,t + γλ ,1|rt |+ γλ ,M x∗it (2.3)
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with x∗it ≡ log(xit) , and xit ∈ MT T , denoting the trading-activity and bid-ask spread covariates
described in Section 2.2. Under the restriction γλ ,M = 0, EM dubbed the model Symmetric
Absolute Value (SAV), so we shall refer to the unrestricted specification as SAV-CAViaR similarly.
Also, we denote γλ ,M to emphasize that, although this coefficient is related to a state variable,
it belongs to MT T , a set of microstructure variables different from returns. The log transform
is routinely applied to smooth the underlying series, reducing the statistical problems related to
outliers and heteroskedasticity in financial time-series.

In addition, the dynamics of conditional quantiles in daily returns are strongly related to
volatility, which displays asymmetric responses to the sign of lagged returns. This stylized feature,
known as leverage effect, may feed into the tails of the conditional distribution. Therefore, we
consider a direct extension of (2.3) , say ASYM-CAViaR model, given by

VaRλ ,t+1 = βλ ,0 +βλ ,1VaRλ ,t + γλ ,1|rt |× I(rt≥0)+ γλ ,2|rt |× I(rt<0)+ γλ ,M x∗it (2.4)

to account for this possibility, where I(·) is an indicator function that takes values equal to one if the
condition in brackets is fulfilled and zero otherwise.

Our main aim is to determine if there exists predictability in the conditional tail of returns, and
if a risk model accounting for trade-related market state variables may lead to enhanced forecasting
performance. The CAViaR framework seems particularly well adapted for this purpose for several
reasons. First, model (2.3) and its generalization (2.4) have a clear economic interpretation, since
VaR dynamics are allowed to depend on market risk, via |rt |, and other factors generally related to
market-wide liquidity risk, proxied by xit ∈ MT T . Second, the suitability of these state variables
can be analyzed straightforwardly by addressing H0 : γλ ,M = 0. Hence, this testing approach can
be seen as a Granger-type test of causality, since the latent VaR process is linearly predicted with
its own lags and the lags of other covariates. The problem that VaR is not directly observable
is circumvented by endogenizing the estimation of the process. Third, dynamic quantile models
are intended to construct VaR forecasts, so this framework allows the simultaneous analysis of
in-sample predictability and out-of-sample performance. Finally, autoregressive models extended
with microstructure variables can be seen as a particular class of models in the general CAViaR
framework. The models originally proposed in EM adopt an ARMA-type functional form in
the spirit of GARCH-type equations. While GARCH models are highly successful in volatility
forecasting, conditional quantiles may exhibit more complex dynamics. Therefore, we analyze a
straightforward variation of these models which may lead to large forecasting improvements.

Some additional comments are in order. Models (2.3) and (2.4) attempt to capture the statistical
information conveyed by the past of the VaR process, returns, and other potential covariates. The
autoregressive structure ensures that the dynamics of the conditional quantile change smoothly
over time. Following EM, we consider a single lag, noticing that Kuester et al. (2006) showed
the good performance of this parsimonious specification in relation to higher-order alternatives.
As mentioned previously, the process |rt | introduces a source of stochastic short-term variation
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related to the arrival of news (i.e., the information flow) and is a natural proxy for the unobservable
volatility, a major driver of market uncertainty and downside risk at the daily frequency. Since
VaRλ ,t+1 is a Ft-measurable function, the similarities between the parametric structures of CAViaR
and GARCH-type models are fully evident at this point and, in fact, both settings can be related
upon certain restrictions.2

In addition to lagged returns, VaR could be related to other covariates, noting that there does not
exist a specific theory indicating which state variables are more appropriate to this end. As discussed
previously, the literature in market microstructure and asset pricing provide some guidance. In
imperfect markets, security prices are sensitive to environmental factors that characterize transaction
costs and which determine liquidity and trading activity conditions. Therefore, these variables
may be useful in forecasting conditional quantiles. Since absolute-valued market returns proxy
for volatility, it seems natural to include other variables to proxy for the remaining environmental
factors, noting that liquidity is not directly observable and cannot be linked to a single dimension of
the market. Liquidity generally denotes the ability of investors to trade large volumes quickly, at low
cost, and without substantially moving prices. Therefore, we can observe a number of interrelated
variables that capture different aspects of market-wide liquidity risk (directly or indirectly), such as
those in MT T , and which, in practice, may exhibit different predictive power.

We follow two different approaches to deal with this issue. Firstly, in Section 2.4 we analyze a
sequence of conditional quantile models relying on individual covariates xit ∈ MT T , as stated in
(2.3) and (2.4). Any of the resulting models can be seen as a low-order individual autoregressive
distributed lag model, which are known to be particularly effective in the forecasting analysis (e.g.,
Rapach and Strauss 2009). This allows us to examine how different trade- and order-based extended
models perform in practice. We expect a robust picture to emerge from this analysis because all these
state variables share a strong degree of commonality (Chordia, Roll and Subrahmanyam, 2000).
Additionally, in Section 2.5, we analyze the combined predictive power of multiple regressors
and, furthermore, take advantage of the underlying commonality in these variables, using Principal
Component Analysis (PCA) to identify the main latent factors driving these series. This makes the
overall analysis less sensitive to model specification considerations and may simplify the practical
implementation of the procedure. The overall picture that emerges from this analysis is remarkably
similar and leads us to robust conclusions.

2.3.2 Estimation and inference in CAViaR models

Building on Koenker and Bassett (1978), assume that returns obeys a data generating process such
that rt −VaRλ ,t (θ0) = ελ ,t , where VaRλ ,t (θ0) is a Ft−1-measurable conditional quantile function,

2For instance, under the assumption that returns obey the GARCH-type model suggested by Taylor (1986), rt = σtηt
with σt = ω +α|rt−1|+δσt−1 and ηt ∼ iidN (0,1), then VaRλ ,t =−Zλ σt , where Zλ is the λ -quantile of the standard
normal distribution. In this case, the volatility process leads conditional quantiles to obey SAV dynamics characterized
by VaRλ ,t = βλ ,0 +βλ ,1VaRλ ,t−1 + γλ ,1|rt−1|, with βλ ,0 =−Zλ ω, βλ ,1 = δ and γλ ,1 =−αZλ .
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θ0 ∈ Rn is the true (unknown) parameter vector, and ελ ,t is a stationary innovation term with
continuous density satisfying the usual zero-quantile restriction Quant

(
ελ ,t |Ft−1

)
= 0. Since the

dependence on the λ quantile is now agreed, in the sequel we shall suppress the λ subscript for
notational convenience whenever there is no risk of confusion. For an arbitrary n-vector θ , define
ut (θ) = rt −VaRt (θ) . Then, the unknown parameters that characterize the CAViaR model can be
estimated consistently as

θ̂λ : arg min
θ∈Rn

{
T

∑
t=1

λ |ut (θ)| I(ut(θ)≥0)+
T

∑
t=1

(1−λ ) |ut (θ)| I(ut(θ)<0)

}
(2.5)

under standard regularity conditions which do not impose a particular distribution on the data; see
EM (Thm.1) for details, and Chernozhukov and Umantsev (2001) and Koenker (2005) for a more
general discussion of nonlinear quantile regression models.

Similarly, under fairly general conditions, it is shown that

√
T (θ̂λ −θ0)

d→ N (0,V ) (2.6)

as the sample size is allowed to grow unbounded. The asymptotic covariance matrix
takes the sandwich-type representation that generally characterizes the variance of extremum
estimators, V ≡ D−1AD−1. In this context, A = limT→∞E

[
λ (1−λ )∑T

t=1 ξtξ ′
t /T
]

is mainly
given by the expected value of the outer product of the gradient ξt ≡ ∇θVaRt (θ0) , and D =

limT→∞E
[
∑T

t=1 fεt (0|Ft−1)ξtξ ′
t /T
]
, with fεt (·) denoting the conditional density of εt evaluated

at zero; see EM (Thm. 3). Hence, V can be estimated consistently using the sample analogous
of the matrices involved given θ̂λ . In particular, the estimation of A is straightforward, say
ÂT = λ (1−λ )∑T

t=1 ξ̂t ξ̂ ′
t /T, while D requires dealing with the unknown conditional density of

innovations. A consistent estimator, based on kernel estimation, is generally given by D̂T =

(T hT )
−1 ∑T

t=1 K (ût/hT ) ξ̂t ξ̂ ′
t , where hT is a bandwidth parameter satisfying hT → 0 and

√
T hT →

∞, and K (·) is a suitable weighting function. We shall discuss this issue in greater detail in the
following section.

2.4 Downside risk analysis on volume-weighted returns

In this section, we analyze the predictive ability of trade- and order-based covariates at different
quantiles of the left tail of the volume-weighted portfolio. The focus on day-ahead estimation is
consistent with the holding period considered for internal risk control by most financial firms; see,
among others, Taylor (2008b). The Basel framework requires the 1% conditional percentile to
determine regulatory capital adequacy, but higher quantiles are also applied for different purposes.
For instance, traders in the banking industry are often constrained by the rule that the 5% daily
VaR of their position should not exceed a given bound (McNeil et al., 2005). Furthermore, publicly
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traded firms are required to disclose quantitative market risk measures in their financial statements
under Securities and Exchange Commission (SEC) rules, being VaR one out of three possible
disclosing formats entitled. The SEC rule, effective since June 1998, states a 5% VaR or lower
risk level, but also permits higher rates provided economic justification. Hence, we are particularly
interested in the quantiles {0.01,0.05}, but shall analyze more generally the VaR probabilities
Θλ = {0.01,0.025,0.05,0.075} to characterize predictability along the left tail.

Figure 2.1 shows the time series of volume-weighted returns. The beginning of the sample
corresponds to the period that followed the market crash in October 1987. After the extraordinary
crash, the volatility of the market decreased progressively and reverted to normal levels. In 1998,
Long-Term Capital Management failure in the hedge-fund industry led to a massive bailout by other
major banks and investment houses that, in turn, generated an excess of volatility in the market and
which preceded the burst of the dot-com firms in 2000. Finally, the data from 2000 to 2002 show the
large excess of volatility that characterized the market after the burst of the technological bubble.
This period is particularly interesting for backtesting purposes.

Figure 2.1: Daily returns of the volume-weighted market portfolio
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2.4.1 Predictive analysis

We first analyze tail-predictability in the intuitive spirit that characterizes predictive regressions,
assuming quantile dynamics given by VaRt+1 = βλ ,0 + βλ ,1VaRt + γλ ,1|rt | + γλ ,M x∗it and its
asymmetric generalization (2.4) , given any of the market trade-related variables xit ∈ MT T , and
using the entire sample. Our main aim is to test H0 : γλ ,M = 0 for any λ ∈ Θλ , since rejections of
this test provides formal evidence of predictability at the λ quantile for the state variable involved.

Parameter estimates are obtained by minimizing (2.5) by means of the Simulated Annealing
optimization algorithm (Goffe, Ferrier and Rogers, 1994). This local random-search search
algorithm accepts values that increase the objective function (rather than lower it) with a probability
that decreases as the number of iterations increases. The main purpose is to prevent the search
process from becoming trapped in local optima, which in addition provides low sensitivity to the
choice of the initial values. To minimize the possibility of getting convergence to local optima,
the optimization process was repeated 1,000 times over the whole sample. We also applied the
simplex algorithm described in EM taking the solution from the Simulating-Annealing algorithm as
the initial value, obtaining no significant difference.

The asymptotic covariance matrix V in (2.6) is inferred combining kernel-density estimation
with heteroskedasticity-consistent covariance matrix estimation, as discussed in Section 2.3.2.
Following EM, we implement a k-nearest neighbor (kNN) kernel setting to estimate D, say, D̂1T =(
2T d[k]

)−1 ∑T
t=1 I(dt<d[k])

ξ̂t ξ̂ ′
t , where d[k] is the k-th order statistic of the Euclidean distances dt =

|ût | , and ût is the quantile-regression residual estimates given the optimizer of (2.5). Consistency
in kNN density estimation requires the bandwidth-type parameter k to diverge as does T also such
that k/T → 0; see, for instance, Devroye and Wagner (1977). A common rule of thumb sets k =

√
T

and, therefore, we follow this convention. In addition, we implement a kernel-based estimator
D̂2T = (T hT )

−1 ∑T
t=1 K (ût/hT ) ξ̂t ξ̂ ′

t , where K (·) is the Gaussian density and hT is optimally
selected according to Silverman’s rule, i.e., hT = 0.9×min(σ̂u, IQRu)×T−1/5, where σ̂u and IQRu

denote, respectively, the sample standard deviation and the sample interquartile of the estimated
residuals.

Figure 2.2 shows the 1% and 5% conditional VaR estimates from the SAV- and ASYM-CAViaR
models as a function of Relative Effective Spread (RES) and Number of Trades (NT).
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Figure 2.2: Estimated VaR functions over the entire sample from covariate-extended SAV- and
ASYM-CAViaR model at 1% (dashed blue line) and 5% (red solid line) quantiles using the variables
NT (Number of Trades) and RES (Relative Effective Spread) as predictors for the volume-weighted
market portfolio
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We aim to discuss certain empirical features in these estimates that are common across the
different variables and quantiles considered, so we only present VaR estimates for two representative
variables and those quantiles, noting that complete results are available upon request. Conditional
VaR estimates seem to exhibit the strong persistence that characterizes daily volatility, with VaR
levels increasing considerably in the final part of the sample as consequence of the burst of the
technological bubble. The estimates from the asymmetric models tend to be more volatile owing
to the discontinuous path introduced by the dummy threshold. Finally, the monotonic property
of quantiles, requiring VaRλ1,t < VaRλ2,t for any λ1 > λ2 uniformly on t given definition (2.1) ,
holds for all the models and quantiles λ ∈ Θλ analyzed. This is an important feature because
conditional quantile models are estimated independently and shows that the CAViaR setting is
generally well suited for empirical downside risk modelling. Should it be necessary, monotonicity
may be empirically reinforced by imposing optimization constraints (see, for instance, Fan and
Fan, 2006 for a discussion), but we remark that a significant number of observations at which this
property is violated may be taken as evidence of model misspecification.

Table 2.3 reports the estimated coefficients for all the state variables analyzed. We report
results for λ ∈ {0.01,0.05} in the in-sample analysis, noting that complete results are available.
The table shows parameter estimates and one-sided robust p-values of individual significance tests
based on covariance-matrix estimates given kNN- and kernel-based estimators, as described before.
According to estimations in Table 2.3, there exists a strong degree of persistence in the VaR
dynamics as measured by the autoregressive estimate, β̂λ ,1. The reason is that daily downside
risk measures are driven by volatility, which characteristically exhibit long-range dependence at this
horizon. Persistence tends to be weaker as λ decreases, particularly, in the asymmetric specification.
This is not surprising, since extreme movements are likely driven by the jumping component of daily
returns, which is generally expected to exhibit a more irregular pattern. Accordingly, volatility is
a major driver of the empirical VaR process, with its influence becoming more important as λ
decreases. In addition, we observe strong evidence of volatility-induced asymmetric patterns, since
the estimates of γλ ,2, associated to negative shocks, largely exceed those of γλ ,1 in the asymmetric
model (2.4) . The estimates of γλ ,1 are sometimes not significantly different from zero and tend to
be negative and significant at λ = 0.01, so the restriction H0 : γλ ,1 = γλ ,2 that gives rise to the SAV-
CAViaR in the generalized asymmetric specification is strongly rejected through a standard F-type
test (not reported here), particularly, at lower quantiles. The overall picture that emerges completely
agrees with the qualitative evidence discussed, for instance, in EM.

We carried out a more comprehensive analysis for any λ ∈ Θλ and k ∈ {10,30,50,70,90}. Also
we applied quantile-dependent values of k, setting k = 40 and k = 60 for the 1% and 5% quantiles,
as in EM. The main statistical conclusions from this analysis are similar in every way to those
discussed in the main test and show that the reported results are not particularly sensitive to the
choice of the bandwidth-type parameter k, observing no qualitative difference. Complete results,
particularizing in the symmetric model, are showed in 2.4.
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Table 2.4: Sensitivity analysis of p-values to different k-bandwidth

λ TV NT NS NSS TVD QS ES RQS RES |rt |
10% γ̂λ 0.01 0.01 0.01 0.01 0.01 -0.01 -0.00 -0.01 -0.02 0.06

10 0.04 0.00 0.00 0.00 0.01 0.00 0.05 0.00 0.02 0.00
30 0.00 0.00 0.00 0.00 0.05 0.03 0.00 0.00 0.05 0.00

k 50 0.00 0.00 0.00 0.00 0.00 0.02 0.01 0.07 0.00 0.00
70 0.00 0.01 0.00 0.00 0.00 0.01 0.01 0.08 0.00 0.00
90 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.04 0.01 0.00

7.5% γ̂λ 0.01 0.01 0.01 0.01 0.01 -0.02 -0.00 -0.01 -0.02 0.06
10 0.00 0.00 0.00 0.00 0.24 0.00 0.02 0.00 0.13 0.00
30 0.00 0.01 0.00 0.00 0.00 0.00 0.04 0.07 0.02 0.00

k 50 0.00 0.01 0.00 0.00 0.00 0.00 0.02 0.06 0.06 0.00
70 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.07 0.04 0.00
90 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.04 0.02 0.00

5.0% γ̂λ 0.01 0.01 0.01 0.01 0.01 -0.01 -0.00 -0.01 -0.02 0.05
10 0.02 0.00 0.01 0.03 0.00 0.00 0.00 0.00 0.16 0.00
30 0.00 0.01 0.00 0.00 0.00 0.04 0.00 0.00 0.06 0.00

k 50 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.04 0.00
70 0.00 0.00 0.00 0.01 0.00 0.00 0.02 0.00 0.07 0.00
90 0.01 0.00 0.01 0.01 0.01 0.01 0.00 0.01 0.05 0.00

2.5% γ̂λ 0.02 0.02 0.02 0.03 0.02 -0.01 -0.00 -0.00 -0.03 0.07
10 0.04 0.14 0.43 0.00 0.00 0.04 0.34 0.39 0.46 0.01
30 0.03 0.17 0.10 0.04 0.07 0.10 0.29 0.36 0.08 0.11

k 50 0.02 0.08 0.06 0.02 0.04 0.12 0.26 0.35 0.11 0.09
70 0.03 0.03 0.04 0.02 0.02 0.11 0.27 0.35 0.06 0.07
90 0.03 0.03 0.03 0.02 0.02 0.07 0.28 0.35 0.04 0.07

1.0% γ̂λ 0.01 0.01 0.01 0.01 0.01 -0.01 -0.01 -0.01 -0.03 0.14
10 0.04 0.02 0.05 0.11 0.03 0.24 0.03 0.30 0.00 0.03
30 0.15 0.16 0.12 0.15 0.14 0.34 0.33 0.38 0.24 0.05

k 50 0.12 0.12 0.11 0.14 0.11 0.33 0.28 0.38 0.15 0.03
70 0.14 0.15 0.14 0.16 0.10 0.28 0.24 0.30 0.16 0.03
90 0.11 0.13 0.11 0.12 0.10 0.28 0.24 0.32 0.15 0.03

This table shows the estimated coefficients in bold γ̂λ ,1 and γ̂λ ,M and robust p-values of the test for
individual significance from model (2.3) and the entire sample when the robust asymptotic covariance matrix
is estimated with a kernel-based estimator with values of k ∈ {10, 30, 50, 70, 90} in the covariance matrix
estimation process for a larger set of quantiles. The γ̂λ ,1 estimates (last column) are from model (2.3) with
xit = TV.
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Turning our attention to microstructure-related predictors, the predictive analysis in Table 2.3
suggests that increments in trading activity (which can generally be related to greater volatility)
and bid-ask spreads (related to greater illiquidity) generate larger VaR levels, as expected from the
previous discussion. The overall statistical evidence of predictability tends to be greater for volume-
related variables. More specifically, in the asymmetric specification, we find strong evidence of
predictability through significant estimates at any of the quantiles involved and for any of the
predictive variables. Similarly, H0 : γλ ,M = 0 is largely rejected in the SAV-CAViaR model for
any of the variables analyzed at the 5% VaR level. At λ = 0.01, results are more sensitive to the
estimation of the covariance matrix and the predictor involved. While kNN-based inference tends to
reject predictability at conventional levels, kernel density-based inference finds marginal evidence
for this hypothesis, particularly, for variables in the trading activity group, and some liquidity
variables. It is possible that a variable has predictive power at a given quantile yet not at another, so
these results may indicate a heterogeneous ability to predict the tail of the distribution. Alternatively,
the discrepancies at λ = 0.01 may arise from potential misspecification biases (since this model
neglects meaningful asymmetric patterns in the in-sample fitting), and/or efficiency problems
which are distinctively related to the estimation of the asymptotic covariance matrix at extreme
quantiles. The characteristic low density of observations near these percentiles compromises
accurate estimation, with covariates possibly amplifying this problem; see Chernozhukov and
Umantsev (2001). Therefore, conclusions in near-extreme quantiles should always be interpreted
with caution.

It is also possible to implement non-regular asymptotic approximations that accommodate
extremal or rare data considerations, yet at the cost of a more complex analysis; see, for instance,
Chernozhukov and Umantsev (2001) and Chernozhukov (2005). Owing to the statistical difficulties
in dealing with these percentiles, empirical studies often avoid the analysis for values of λ close
to boundaries; see, for instance, Cenesizoglu and Timmerman (2008). Nevertheless, in the risk
modelling context we have alternative methods with which to study the forecasting ability of the
predictive variables. Indeed, since the main purpose of VaR modelling is to generate accurate
forecasts of market risk, in practice the most important question refers to whether liquidity and
activity-extended risk models show improved out-of-sample predictability or not. Consequently,
the backtesting analysis provides us with a more appropriate framework with which to judge
predictability in this context.

2.4.2 Out-of-sample analysis: backtesting analysis

In this section we address the day-ahead out-of-sample performance of covariate-extended models.
Following EM and Alexander and Sheedy (2008) we consider a rolling-window estimation period
formed with the most recent 2,700 observations available at any day to initialize the risk models
and generate VaR forecasts for any of the target probabilities λ ∈ Θλ . This allows us to construct a
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series of N = 1,000 one-day ahead daily VaR predictions that can be compared with returns realized
in the stress period that followed the burst of the technological bubble in 2000.

Table 2.5 reports the average values of the parameters estimates of equation (2.3) over the out-
of-sample period for λ ∈ {0.01, 0.025, 0.05, 0.075} using volume and spread variables. As with
the whole sample, the average estimates reveal a strongly persistent process and the positive effect
of volatility.

Table 2.5: Averaged estimates out-of-sample analysis for SAV-CAViaR model.

VOLUME EXTENDED CAViaR
xit λ β̂λ ,0 β̂λ ,1 γ̂λ ,1 γ̂λ ,M

TV 7.5% -0.047 0.955 0.056 0.009
5.0% -0.055 0.960 0.046 0.011
2.5% -0.099 0.934 0.076 0.023
1.0% -0.003 0.822 0.331 0.028

NT 7.5% -0.047 0.955 0.055 0.010
5.0% -0.034 0.965 0.045 0.008
2.5% -0.052 0.952 0.058 0.015
1.0% 0.051 0.784 0.399 0.029

NS 7.5% -0.041 0.954 0.056 0.010
5.0% -0.037 0.962 0.046 0.010
2.5% -0.079 0.937 0.065 0.025
1.0% -0.060 0.778 0.382 0.056

NSS 7.5% -0.042 0.954 0.056 0.010
5.0% -0.041 0.963 0.045 0.010
2.5% -0.118 0.920 0.084 0.033
1.0% -0.167 0.775 0.369 0.073

TVD 7.5% -0.074 0.956 0.054 0.008
5.0% -0.039 0.969 0.044 0.005
2.5% -0.072 0.956 0.058 0.010
1.0% 0.059 0.789 0.435 0.015

LIQUIDITY EXTENDED CAViaR
xit β̂λ ,0 β̂λ ,1 γ̂λ ,1 γ̂λ ,M

QS -0.018 0.956 0.061 -0.016
-0.018 0.970 0.046 -0.017
-0.036 0.952 0.068 -0.042
0.044 0.836 0.349 -0.065

ES -0.032 0.954 0.062 -0.020
-0.032 0.968 0.046 -0.021
-0.044 0.955 0.064 -0.036
0.028 0.844 0.308 -0.060

RQS -0.054 0.959 0.059 -0.012
-0.053 0.971 0.044 -0.012
-0.115 0.960 0.054 -0.027
-0.086 0.851 0.300 -0.043

RES -0.088 0.954 0.062 -0.017
-0.062 0.971 0.043 -0.012
-0.079 0.963 0.052 -0.019
-0.006 0.838 0.348 -0.026

This table shows the average value of the out-of-sample parameters from model (2.3) estimates with volume-
extended and liquidity variables for volume weighted portfolio. The column labelled as xit denotes the
volume-related and liquidity variables analyzed.
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To appraise the relative performance of trade-extended risk models, we consider return-restricted
CAViaR models and alternative VaR procedures that rely solely on returns, such as the well-known
EWMA model (VaR-EWMA), the Gaussian GARCH(1,1) model (VaR-GARCH), and a hybrid
approach that combines GARCH estimation with block-maxima estimation in the Extreme Value
Theory (VaR-EVT). The main characteristics of these procedures are sketched in Appendix A; see
also McNeil et al. (2005) for further details.

2.4.2.1 Backtesting procedures

Backtesting is a crucial stage in the validation process of an internal risk model. It simply compares
forecasts from a given risk model against realized returns. Most backtesting techniques analyze
the stochastic properties of an indicator variables, say {Ht}N

t=1, signalling the occurrence of an
exception, i.e., taking value one whenever rt < −VaRt and zero otherwise. Risk models must
exhibit the property known as reliability, or correct unconditional coverage, which implies that the
realized number of exceptions, Nλ = ∑N

t=1 Ht , should represent approximately a λ × 100% of the
total number of out-of-sample forecasts, N. This suggests the testable restriction H0,UC : E(Ht) = λ .
In addition, {Ht}N

t=1 should ideally exhibit i.i.d.-type dynamics, since the risk of bankruptcy is not
evenly distributed otherwise. The conjunction of both characteristics determines the crucial property
of perfect conditional coverage, which posits the testable restriction H0,CC : E(Ht |Ft−1) = λ . We
apply several testing procedures to address both hypotheses, as is briefly described in the sequel.

The most popular and widely used backtesting approach is the sequence of likelihood ratio tests
proposed by Christoffersen (1998). These are intended to test i) correct unconditional coverage,
ii) first-order serial independence, and iii) perfect conditional coverage. In particular, i) the test
for unconditional coverage is the so-called Kupieck’s test, which analyzes H0,UC through the test
statistic,

L RUC = 2(N −Nλ )
[
log(1− λ̂H)− log(1−λ )

]
+2Nλ

[
log λ̂H − logλ

]
(2.7)

where λ̂H = Nλ/N. Under the null hypothesis, this test is distributed asymptotically as a Chi-
squared distribution with one degree of freedom, here denoted χ2

(1); see Kupiec (1995) for details.
In addition, ii) analyzes if exceptions are serially uncorrelated assuming that Ht takes values
in its support according to a binary first-order Markov chain with transition probabilities πi j =

Pr(Ht = j | Ht−1 = i), i, j ∈ {0,1} . The joint likelihood of Ht conditional on H1 is LH(πi j|H1) =

(1−π01)
n00πn01

01 (1−π11)
n10πn11

11 , with ni j representing the number of transitions from state i to state
j. Under the null hypothesis of first-order independence, π01 = π11 ≡ π0, and the likelihood function
reduces accordingly to LH(π0|H1) = (1−π0)

n00+n10πn01+n11
0 . Hence, the test statistic

L RIND = 2
[
logLH(π̂i j|H1)− logLH(π̂0|H1)

] d→ χ2
(1) (2.8)
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determines whether differences between the theoretical and empirical likelihood functions are
significant, with π̂01 = n01/(n00 +n01) , π̂11 = n11/(n10 +n11) and π̂0 = λ̂H . Finally, iii) tests
H0,CC analyzing whether VaR violations are independent and occur with probability λ , i.e., the
joint restriction π01 = π11 = λ , which can be addressed through the test statistic

L RCC = L RUC +L RIND
d→ χ2

(2). (2.9)

The L RCC test has been criticized arguing that it does not have power to detect higher-
order dependence in Ht because it only focuses on first-order correlations. EM introduced
a conditional test that accounts for a more general form of dependence to test H0,CC and
which, therefore, exhibits better properties. In particular, define H̃t = Ht − λ and let Zt−1 =

(H̃t−1, ..., H̃t−p,VaRt−1, ...,VaRt−q)
′ be a vector of instruments, where p,q ≥ 1 are predetermined

lag values. The property E[Ht |Ft−1] = λ implies that H̃t is a MDS, which suggests a testable
hypothesis using Zt−1 as a proxy of the set of available information. In the empirical implementation
of this test, we follow EM, setting p = 4,q = 1 and analyze the MDS property of H̃t through the test
statistic

DQ =
β̂ ′ (∑N

t=2 Zt−1Z′
t−1
)

β̂
λ (1−λ )

d→ χ2
(p+q) (2.10)

where β̂ is the least-square estimate of β in the auxiliary regression H̃t = Z′
t−1β + εt , t = 2, ...,N.

Note that DQ is no less than the joint test of significance for H0 : β = 0 in this equation.

Finally, Gaglianone et al. (2011) have recently suggested a Mincer-Zarnowitz type test to
analyze the optimality of the VaR forecasts. The test is asymptotically equivalent to DQ, but
these authors argued that it may exhibit better properties in finite samples. In particular, the test
addresses H0,CC on the basis of an auxiliary quantile regression rt = α0 +α1VaRt + εt , t = 1, ...,N.

The hypothesis that VaRt is an optimal forecasts of the λ -th conditional of rt implies the joint
restriction H0 : α0 = 0,α1 = −1 or, equivalently, H0 : β = 0 with β ≡ (α0,α1 +1)′. Hence, under
the null hypothesis, and provided standard regularity conditions, it follows that

V QR = N [β̂Ω−1β̂ ] d→ χ2
(2) (2.11)

as the number of forecasts is allowed to diverge, with β̂ and Ω denoting the quantile regression
estimate of β and its asymptotic covariance matrix, respectively. In the implementation of this test,
we used a robust estimation of the asymptotic covariance matrix Ω, as described previously, based
on a Gaussian kernel-based estimation of the unknown density with bandwidth parameter selected
according to Silverman’s rule. Using alternative procedures, such as the kNN estimator, did not lead
to different results.
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2.4.2.2 Backtesting results

We first analyze the backtesting results for returns-based risk models, focusing on volatility-based
models (VaR-GARCH, VaR-EWMA, and VaR-EVT), and the return-restricted SAV-CAViaR and
ASYM-CAViaR models resulting from imposing the restriction γλ ,M = 0 in (2.3) and (2.4). Table
2.6 reports the main outcomes from this analysis, showing the empirical frequency of exceptions
for each model, λ̂H = ∑N

t=1 Ht/N, the test statistics L RUC, L RIND, L RCC, DQ and V QR and
their respective p-values.

Table 2.6: Backtesting analysis for return-restricted VaR models in the volume-weighted market
portfolio

VaR Model λ Exc. L RUC L RIND L RCC DQ V QR

EWMA 7.5% 8.9% 2.68(0.10) 0.67(0.41) 3.38(0.18) 23.45(0.00) 14.11(0.00)
5.0% 5.5% 0.51(0.47) 0.00(0.99) 0.52(0.77) 11.40(0.07) 23.54(0.00)
2.5% 1.5% 4.78(0.02) 0.46(0.49) 5.21(0.07) 18.48(0.00) 84.25(0.00)
1.0% 0.5% 3.09(0.08) 0.05(0.82) 3.13(0.21) 3.45(0.74) 177.84(0.00)

GARCH(1,1) 7.5% 11.3% 18.22(0.00) 0.29(0.59) 18.59(0.00) 44.21(0.00) 20.85(0.00)
5.0% 7.4% 10.63(0.00) 0.46(0.49) 11.15(0.00) 29.44(0.00) 31.05(0.00)
2.5% 2.8% 0.35(0.55) 0.08(0.78) 0.44(0.80) 22.51(0.00) 60.93(0.00)
1.0% 0.9% 0.10(0.75) 0.16(0.69) 0.27(0.87) 11.40(0.07) 23.54(0.00)

EVT-BM 7.5% 10.4% 10.85(0.00) 0.58(0.45) 11.49(0.00) 18.24(0.00) 14.91(0.00)
5.0% 6.1% 2.36(0.12) 0.51(0.48) 2.89(0.23) 9.31(0.15) 10.10(0.01)
2.5% 2.4% 0.04(0.83) 0.31(0.58) 0.35(0.84) 3.32(0.76) 46.30(0.00)
1.0% 0.5% 3.10(0.08) 0.04(0.84) 3.13(0.21) 3.64(0.72) 74.36(0.00)

SAV-CAViaR 7.5% 10.1% 8.86(0.00) 0.46(0.49) 8.74(0.01) 28.14(0.00) 9.53(0.01)
5.0% 7.4% 10.63(0.00) 0.50(0.48) 11.19(0.00) 28.91(0.00) 9.63(0.01)
2.5% 3.2% 1.85(0.17) 0.00(0.99) 1.86(0.39) 10.86(0.09) 11.77(0.00)
1.0% 1.3% 0.83(0.36) 0.31(0.57) 1.15(0.56) 14.05(0.02) 27.28(0.00)

ASYM-CAViaR 7.5% 10.0% 8.21(0.00) 0.00(0.94) 7.65(0.02) 23.12(0.00) 11.62(0.00)
5.0% 7.6% 12.36(0.00) 0.08(0.77) 11.62(0.00) 41.88(0.00) 33.88(0.00)
2.5% 4.8% 17.17(0.00) 1.22(0.26) 18.44(0.00) 54.69(0.00) 100.06(0.00)
1.0% 2.9% 24.12(0.00) 3.82(0.05) 27.98(0.00) 102.03(0.00) 64.43(0.00)

This table shows the backtesting analysis for the one-day forecasts of the VaR given the EWMA, Gaussian
GARCH, EVT and the return-restricted CAViaR models (SAV-CAViaR and ASYM-CAViaR with γλ ,M = 0)
on the volume-weighted market portfolio. The column Exc. shows the estimated frequency of empirical
exceptions, while the columns L RUC, L RIND, L RCC, DQ and V QR show the test statistics of the
respective tests (p-values in brackets).
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For the group of volatility-based VaR models, the empirical unconditional coverages tend to be
greater than the respective nominal level at quantiles λ ≥ 0.05, with λ̂H significantly departing
from λ in most cases. Consequently, H0,UC and H0,CC are mostly rejected. Similar evidence
has been reported previously, for instance, in Taylor (2008b) and Gaglianone et al. (2011).
Turning our attention to return-restricted CAViaR models, we observe similar biases, which are
considerably larger for the asymmetric specification, particularly, at lower probabilities. EM and
Kuester et al. (2006) also report similar biases. On the other hand, for λ < 0.05, the distortions
in unconditional coverages are considerably reduced for all but the EWMA and ASYM-CAViaR
models and, therefore, H0,UC tends not to be rejected. The overall evidence for H0,CC, however,
is mixed. Whereas the conservative L RCC test tends to accept the perfect coverage hypothesis,
the more powerful DQ and V QR tests largely reject it. Among the different return-restricted
risk models analyzed, EVT yields the best performance but, overall, none of these models seem
able to pass the backtesting requirements convincingly. The V QR test largely rejects the correct
performance of all the returns-based models at any of the conditional quantiles analyzed.

Table 2.7 displays the main backtesting results for the covariate-extended CAViaR models, now
allowing γλ ,M ̸= 0. We first discuss the evidence from the SAV-CAViaR model (2.3). Whereas
its return-restricted counterpart exhibits large biases, the inclusion of trade-related variables largely
improves the out-of-sample performance. The estimated VaR dynamics are shifted (see Figure
2.3 below) in the correct direction such that most of the empirical departures from the theoretical
coverage are removed. The empirical exception rates tend to stabilize around the nominal levels
without generating clusters in the exception variable. As a result, all covariate-extended SAV-
CAViaR models are able to amply pass Christoffersen’s (1998) backtests at any of the usual
confidence levels. Similarly, the DQ test tends to largely support the suitability of the extended
models, showing sizeable statistical gains with respect to the restricted case. The V QR test
now yields supportive evidence for H0,CC, which is in sharp contrast to returns-restricted models,
particularly for the set of variables in the volume group and for quantiles larger than 1%. At
λ = 0.01, however, V QR still rejects the perfect coverage hypothesis.3

3Hence, none of the different models analyzed are able to pass the backtest at the 1% VaR level. Gaglianone et al.
(2011) analyzed the small-sample properties of the test through Monte Carlo simulation, finding that V QR tends to
overreject for small quantiles. At extreme quantiles and finite samples, the evidence based on quantile regression should
be interpreted with some caution.
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Table 2.7: Backtesting VaR analysis for covariate-extended SAV-CAViaR model in the volume-
weighted market portfolio. See details in 2.6.

λ Exc. L RUC L RIND L RCC DQ V QR

TV 7.5% 8.1% 0.51(0.48) 0.06(0.80) 0.43(0.81) 8.03(0.24) 1.72(0.42)
5.0% 5.5% 0.51(0.47) 0.36(0.55) 0.88(0.64) 7.98(0.23) 1.69(0.43)
2.5% 2.2% 0.38(0.53) 0.94(0.33) 1.32(0.51) 6.02(0.42) 5.36(0.07)
1.0% 0.7% 1.02(0.31) 0.08(0.77) 1.09(0.58) 1.38(0.96) 29.78(0.00)

NT 7.5% 8.1% 0.51(0.48) 0.06(0.80) 0.43(0.81) 7.50(0.27) 1.10(0.58)
5.0% 6.0% 1.98(0.16) 0.61(0.43) 2.61(0.27) 10.92(0.09) 3.15(0.21)
2.5% 2.3% 0.17(0.68) 1.03(0.30) 1.20(0.55) 4.02(0.67) 2.13(0.34)
1.0% 0.9% 0.10(0.75) 0.14(0.70) 0.25(0.88) 2.30(0.88) 33.69(0.00)

NS 7.5% 8.2% 0.69(0.41) 0.03(0.85) 0.55(0.76) 7.06(0.31) 1.42(0.49)
5.0% 5.5% 0.51(0.47) 0.36(0.55) 0.88(0.64) 7.63(0.26) 1.56(0.46)
2.5% 2.0% 1.10(0.29) 0.78(0.38) 1.87(0.39) 5.24(0.51) 5.29(0.07)
1.0% 0.6% 1.89(0.17) 0.06(0.81) 1.94(0.38) 1.99(0.92) 32.95(0.00)

NSS 7.5% 8.0% 0.35(0.55) 0.01(0.91) 0.25(0.88) 6.29(0.39) 1.72(0.42)
5.0% 5.6% 0.73(0.39) 0.28(0.59) 1.03(0.60) 9.53(0.16) 3.39(0.18)
2.5% 1.9% 1.61(0.20) 0.70(0.40) 2.29(0.32) 5.63(0.46) 7.44(0.02)
1.0% 0.6% 1.89(0.17) 0.06(0.81) 1.94(0.38) 2.15(0.90) 53.83(0.00)

TVD 7.5% 8.3% 0.89(0.34) 0.01(0.91) 0.71(0.69) 6.96(0.32) 2.50(0.29)
5.0% 6.1% 2.39(0.12) 1.44(0.23) 3.86(0.14) 13.58(0.03) 3.97(0.14)
2.5% 2.8% 0.36(0.55) 0.08(0.78) 0.44(0.80) 4.47(0.61) 2.13(0.34)
1.0% 1.2% 0.38(0.54) 2.45(0.12) 2.83(0.24) 21.14(0.00) 47.69(0.00)

QS 7.5% 8.6% 0.51(0.48) 0.06(0.80) 0.43(0.81) 8.21(0.22) 5.53(0.06)
5.0% 5.3% 0.18(0.67) 0.55(0.46) 0.75(0.69) 10.34(0.11) 5.39(0.07)
2.5% 2.1% 0.69(0.40) 0.86(0.35) 1.54(0.46) 8.57(0.19) 21.89(0.00)
1.0% 1.0% 0.00(1.00) 0.18(0.67) 0.18(0.91) 14.68(0.02) 95.41(0.00)

ES 7.5% 8.0% 0.35(0.55) 0.10(0.75) 0.34(0.84) 9.02(0.17) 5.26(0.07)
5.0% 5.0% 0.00(1.00) 0.92(0.34) 0.92(0.63) 8.89(0.17) 4.56(0.10)
2.5% 2.2% 0.38(0.53) 0.94(0.33) 1.32(0.51) 7.96(0.24) 23.53(0.00)
1.0% 0.9% 0.10(0.75) 0.14(0.70) 0.25(0.88) 13.84(0.03) 37.52(0.00)

RQS 7.5% 8.6% 1.67(0.19) 0.09(0.75) 1.50(0.47) 0.08(0.08) 3.93(0.14)
5.0% 5.5% 0.51(0.47) 0.36(0.55) 0.88(0.64) 12.46(0.05) 2.68(0.26)
2.5% 2.4% 0.04(0.84) 1.13(0.28) 1.17(0.55) 13.43(0.03) 12.78(0.00)
1.0% 0.7% 1.02(0.31) 0.08(0.28) 1.09(0.58) 1.56(0.95) 32.18(0.00)

RES 7.5% 7.9% 0.23(0.63) 0.00(0.97) 0.13(0.93) 9.02(0.17) 5.46(0.07)
5.0% 5.5% 0.51(0.47) 0.36(0.55) 0.88(0.64) 10.94(0.09) 1.44(0.46)
2.5% 2.4% 0.04(0.84) 1.13(0.29) 1.17(0.56) 7.53(0.27) 4.71(0.10)
1.0% 1.0% 0.00(1.00) 0.18(0.67) 0.18(0.91) 12.59(0.05) 38.64(0.00)
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Turning to the ASYM-CAViaR model, allowing for γλ ,M ̸= 0 considerably improves results over
the return-restricted specification, but the overall performance is not as good as that from the SAV-
CAViaR model. This is not surprising in view of the poor performance of the return-based models.
Table 2.8 shows the results of backtesting for Asymmetric extended model. As discussed in EM, the
asymmetric CAViaR model tends to overfit in-sample, which may partially offset the potential out-
of-sample gains from using further covariates; see also Kuester et al. (2006) for similar findings.
Note that similar evidence has been reported in the literature related to volatility forecasting, which
is relevant in this context because conditional quantiles are tied to volatility dynamics. Whereas
asymmetric generalizations of the GARCH(1,1) model overperform in-sample, the simpler GARCH
model tends to show a superior performance out-of-sample; see, for instance, Hansen and Lunde
(2005).
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Table 2.8: Backtesting VaR analysis for covariate-extended ASYM-CAViaR model in the volume-
weighted market portfolio. See details in 2.6.

λ Exc. L RUC L RIND L RCC DQ V QR

TV 7.5% 7.8% 0.12(0.72) 0.82(0.36) 0.88(0.64) 9.89(0.12) 11.47(0.00)
5.0% 5.2% 0.08(0.77) 0.06(0.79) 0.08(0.95) 9.59(0.14) 30.89(0.00)
2.5% 3.3% 2.38(0.12) 2.75(0.09) 4.61(0.09) 18.83(0.00) 82.02(0.00)
1.0% 2.0% 7.82(0.01) 3.86(0.05) 10.35(0.01) 49.15(0.00) 46.56(0.00)

NT 7.5% 7.9% 0.23(0.63) 0.94(0.33) 1.07(0.58) 8.91(0.17) 10.01(0.01)
5.0% 5.1% 0.02(0.88) 0.10(0.74) 0.10(0.94) 10.34(0.11) 31.59(0.00)
2.5% 3.4% 2.99(0.08) 2.49(0.11) 4.89(0.08) 20.95(0.00) 75.74(0.00)
1.0% 1.8% 5.22(0.02) 4.46(0.03) 9.70(0.00) 47.86(0.00) 52.92(0.00)

NS 7.5% 7.9% 0.22(0.63) 0.94(0.33) 1.07(0.58) 8.34(0.21) 9.51(0.01)
5.0% 5.1% 0.02(0.88) 0.10(0.74) 0.10(0.94) 10.75(0.09) 34.36(0.00)
2.5% 3.4% 2.99(0.08) 2.49(0.11) 4.89(0.08) 20.99(0.00) 77.83(0.00)
1.0% 2.0% 7.82(0.01) 0.80(0.37) 7.29(0.02) 34.83(0.00) 70.12(0.00)

NSS 7.5% 7.8% 0.12(0.72) 2.02(0.15) 2.08(0.35) 11.54(0.07) 9.29(0.01)
5.0% 5.2% 0.08(0.77) 0.06(0.79) 0.08(0.95) 9.83(0.13) 39.82(0.00)
2.5% 3.0% 0.96(0.32) 1.24(0.26) 1.87(0.39) 10.60(0.10) 82.50(0.00)
1.0% 2.1% 9.28(0.00) 3.50(0.06) 11.35(0.00) 51.95(0.00) 57.93(0.00)

TVD 7.5% 10.2% 0.89(0.34) 1.50(0.22) 2.20(0.33) 12.75(0.04) 13.22(0.00)
5.0% 5.5% 0.51(0.47) 0.00(0.95) 0.33(0.84) 13.45(0.03) 35.11(0.00)
2.5% 3.8% 5.99(0.01) 1.59(0.20) 6.78(0.03) 28.65(0.00) 78.78(0.00)
1.0% 2.3% 12.48(0.00) 0.44(0.50) 11.30(0.00) 35.54(0.00) 36.63(0.00)

QS 7.5% 7.5% 0.00(1.00) 0.50(0.48) 0.52(0.77) 16.81(0.01) 9.89(0.01)
5.0% 5.6% 0.52(0.77) 0.00(0.98) 0.52(0.77) 19.28(0.00) 34.48(0.00)
2.5% 3.1% 1.37(0.24) 1.07(0.30) 2.05(0.35) 15.93(0.01) 97.51(0.00)
1.0% 1.4% 1.43(0.23) 0.34(0.55) 1.17(0.55) 15.92(0.01) 36.27(0.00)

ES 7.5% 7.4% 0.01(0.90) 0.42(0.51) 0.47(0.78) 17.68(0.00) 12.09(0.00)
5.0% 5.2% 0.08(0.77) 0.06(0.80) 0.08(0.95) 16.76(0.01) 34.62(0.00)
2.5% 2.9% 0.62(0.43) 1.33(0.25) 1.96(0.37) 16.25(0.01) 97.75(0.00)
1.0% 1.6% 3.07(0.08) 1.51(0.22) 3.71(0.15) 28.86(0.00) 37.09(0.00)

RQS 7.5% 8.1% 0.50(0.47) 1.20(0.27) 1.57(0.45) 15.21(0.02) 12.15(0.00)
5.0% 6.0% 1.98(0.15) 0.07(0.77) 1.71(0.42) 21.99(0.00) 34.36(0.00)
2.5% 3.3% 2.38(0.12) 0.78(0.37) 2.65(0.26) 20.54(0.00) 67.46(0.00)
1.0% 1.9% 6.47(0.01) 0.95(0.32) 6.19(0.04) 34.28(0.00) 31.73(0.00)

RES 7.5% 7.5% 0.00(1.00) 1.53(0.21) 1.54(0.46) 12.99(0.04) 7.68(0.02)
5.0% 5.6% 0.73(0.39) 0.00(0.98) 0.52(0.77) 19.17(0.00) 19.17(0.00)
2.5% 3.0% 0.96(0.32) 1.24(0.26) 1.87(0.39) 15.65(0.02) 91.13(0.00)
1.0% 2.8% 21.98(0.00) 4.35(0.03) 24.31(0.00) 93.32(0.00) 38.23(0.00)
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2.4.3 Discussion

According to our analysis, return-restricted risk models for VaR forecasting show a poor out-of-
sample performance. This feature can probably be explained by the fact that the out-of-sample
period corresponds to a backdrop of greater market volatility in relation to the in-sample period,
leading return-based risk models estimated in a lower-volatile period to generate conservative
estimates. Obviously, it is precisely during periods of market distress when risk models are most
needed to ensure correct risk management. The VaR framework has largely been criticized because
it may produce a good risk assessment in ‘normal’ periods, but generates wrong estimates in times
of distress. The new dispositions in Basel III attempt to correct this shortcoming in different ways.
Financial institutions are now required to validate the accuracy and consistency of their internal
risk models periodically, especially, whenever a significant structural change occurs in the market.
In addition, financial institutions must compute the so-called stressed VaR under conditions of
significant financial stress, which, together with the standard VaR estimates, jointly determine the
total regulatory capital surcharge.

In sharp contrast with return-restricted risk models, dynamic quantile risk models that
simultaneously account for volatility and trade-related conditions seem to capture downside
risk dynamics more accurately, producing risk forecasts that exhibit a considerably enhanced
performance in a stressed scenario. Liquidity and trading activity are highly sensitive to the flow of
information that conditions investment decisions and determines prices. According to our analysis,
these variables prove able to anticipate dynamics of the conditional tail which are not entirely
captured by market volatility. The empirical links between market conditions and large market
swings have been noticed in different contexts. For instance, the SEC and the Commodity Futures
Trading Commission (CFTC) staff carried out a joint investigation to analyze the causes of the so-
called flash crash, a market event that, on May 6th 2010, led to the biggest one-day point decline
in the history of the Dow Jones Industrial Average index. The report issued by the federal agencies
on September 2010 remarks that the market conditions that immediately preceded this extreme
event were characterized by “...unusually high volatility and thinning liquidity”, and stresses the
major role played by a conjunction of microstructure factors, among which large trading activity
of institutional investors and high-frequency traders played a fundamental role; see SEC (2010) for
further details. More generally, large shocks in the stock market have historically been related to
poor market-wide liquidity conditions, and trading activity is known to generate volatility, see, for
instance, French and Roll (1986).

Whereas the link between price changes and liquidity and activity conditions have long been
noted in asset pricing and market microstructure, this feature has not been exploited for risk
management purposes. The main conclusion from our analysis, therefore, is that liquidity and
trading activity conditions, as proxied by the different variables analyzed, are predictors of the tail
of the daily conditional distribution of market returns and, consequently, can be used to considerably
improve the out-of-sample forecasting performance of a suitably extended risk model.
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It is interesting to illustrate and discuss in greater detail the differences between returns-
restricted and unrestricted CAViaR forecasts. To this end, Figure 2.3 displays the series of one-
day 5% VaR forecasts from the SAV-CAViaR model restricted with γλ ,M = 0 in the out-of-sample
period against the respective forecasts of unrestricted models extended with either RES or NT. As
discussed previously, the actual proportion of VaR exceptions from the return-restricted model is
much higher than the expected 5% and, consequently, it is biased towards underestimating the actual
level of market risk. This is consistent with the notion that the risk model is mainly calibrated in a
low-volatility regime, yet it has to produce VaR forecasts in a high-volatility regime. By contrast,
including market liquidity or trading activity in the model generates an upward shift in the dynamics
of the predicted VaR process and introduces further variability in the forecasts, see Figure 2.3,
since VaR forecasts now reflect further dynamics which were not entirely captured by volatility
dynamics in absolute returns. The main result is that the gap between the expected and the actual
ratio of exceptions is eliminated, without generating clusters or patches in the exception process,
as is formally demonstrated by the backtesting analysis. In view of the combined results from the
predictive and backtesting analyses, we must conclude that the SAV-CAViaR model extended with
trade-related variables are able to track the dynamics followed by true VaR process more closely
than its return-restricted counterpart, largely improving the predictive performance.

Figure 2.3: Forecasts VaR at nominal level 5% of Restricted SAV-CAViaR model (blue solid line)
and Unrestricted CAViaR model extended with Number of Trades (NT) and Relative effective
Spread (RES) variable (red dotted and green dashed line respectively) in the volume-weighted
portfolio
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2.5 Robustness checks

2.5.1 Dealing with liquidity and activity simultaneously

In the previous section, we adopted a univariate perspective to uncover the predictive ability of
the individual variables xit ∈ MT T . This analysis has shown a pattern of predictability in the
conditional tail of the market portfolio that can be successfully captured in the quantile-regression
setting. It is remarkable that these results are not particularly sensitive to the choice of the variable
used to proxy for liquidity or trading activity, although the best results are observed for variables in
the volume group.

More generally, it may be possible to apply different predictors in a multivariate analysis
attempting to improve univariate results. We addressed this question combining different variables
of the liquidity and trading activity groups as a direct extension of (2.3) and (2.4). We discuss
the main evidence from this analysis without reporting results in tables, mentioning that complete
results are available upon request. The in-sample predictive analysis on the entire sample shows that
volume-related variables tend to be significant at most quantiles, while bid-ask spreads are either
significant or add little incremental power in relation to volume-related variables, particularly, at
lower VaR levels. Nevertheless, the out-of-sample analysis reveals that none of the models in which
multiple variables were included was able to improve the out-of-sample results discussed previously.
This is not particularly surprising, since the predictive variables are largely correlated among
themselves, as discussed in Section 2.2, and adding unnecessary information reduces efficiency
and the forecasting ability of the model.

An alternative approach to combine parsimoniously the information provided by trading activity
and liquidity is to extract the common source of variation from the data. The strong correlation in
the variables suggests the existence of common underlying systematic influences, (or “risk drivers”
or “factors”), as noted by Chordia et al. (2000); see also Hasbrouck and Seppi (2001). PCA
is an appealing procedure because it allows us to obtain latent factors that subsume the relevant
information in a simply way and facilitates the practical implementation of the procedure. However,
we note that this is not the only possible approach. The literature has suggested more sophisticated
alternatives, which may provide a more efficient analysis, at the cost of greater complexity; see, for
instance, the generalized dynamic factor model proposed by Hallin, Mathias, Pirotte, and Veredas
(2011) to capture commonality in volume-related and liquidity measures.

We applied PCA because of its simplicity, proceeding as follows. First, paralleling the predictive
analysis in Section 2.4.1, we identified the main latent factor in the system of predictors using the
whole sample, replacing the individual predictors in the CAViaR models in (2.3) and (2.4) with
this factor. The principal components matrix is given by P = E ′ × Z′

M , with ZM denoting the
matrix with demeaned and standardized predictors xit , and E being the eigenvector matrix. The
first principal component is the row of P corresponding to the largest eigenvalue in the system, and
explains the greatest portion of joint variability. Second, paralleling Section 2.4.2, we implemented
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a dynamic version of PCA in a rolling-window approach to avoid the possibility of forward-looking
biases in the out-of-sample analysis. We computed the main latent factor given the most recent
2,700 observations at any time, then estimated the CAViaR models given the resultant series, and
finally generated a day-ahead VaR forecast at the target probabilities λ ∈ Θλ , repeating the whole
process in the rolling-window approach.

As expected, the PCA analysis revealed a strong degree of commonality in the covariates, with
the first component roughly explaining 90% of joint variability. Recall that the state variables are
cross-averages from individual stocks measures and, hence, are free of idiosyncratic noise, which
facilitates identifying a common factor with a high explanatory power. The results in the predictive
analysis were remarkably similar to those reported in Section 2.4. Apart from strong persistence,
volatility dependence, and significant asymmetric patterns, the latent factor, most likely related to
liquidity risk, emerged as a significant predictor of the left tail of the distribution. Whereas this
evidence was particularly strong at most of the quantiles, statistical significance at the 1% VaR level
was only marginally accepted. Similarly, the backtesting analysis revealed the same out-of-sample
performance described previously. Table 2.9 depics the results for both symmetric and asymmetric
CAViaR extended specifications. The symmetric specification largely overperformed its asymmetric
generalization, with all backtests supporting the suitability of this model at all quantiles, except the
V QR at test at lower quantiles. The overall evidence based on the latent factor is similar to that
of the individual analysis and supports the hypothesis that the conditional tail of market returns is
driven by market and liquidity risk sources.
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2.5.2 Other representative market portfolios
We also analyzed predictability in other market representative portfolios, still using the same market-wide
predictors. We firstly addressed predictability in a value-weighted market portfolio, finding no remarkable
differences with the previous results. Similarly, we analyzed predictability for B/M- and Size-sorted market
portfolios. Fama and French (1992) point out that these characteristics seem to capture most of the cross-
section of average stock returns, and it is usual that investors consider risk profiles based in growth/value and
large-cap/small-cap stocks to make financial decisions. Consequently, we analyzed predictability in Low30
and High30 B/M-sorted and Size-sorted portfolios.

We briefly summarize the main results in the most interesting context of out-of-sample predictability.
Table 2.10 shows the backtesting results of the SAV-CAViaR model particularizing in the High30 B/M and
Low30 Size portfolios, for which the evidence of predictability is stronger. A detailed analysis for all the
portfolios with all the variables is available in a working paper with a previous version of this chapter.

The out-of-sample backtesting shows that the tail of the conditional distribution is predictable, noting
that meaningful differences arise depending on the portfolio characteristics. For the High30 B/M portfolio
(formed by the stocks with higher value profile), the evidence of out-of-sample predictability is considerably
stronger than that discussed for the market portfolio: All the back tests, including V QR, suggest that bid-
ask spreads and, particularly, Effective and Relative Effective Spread, predict the tail of the distribution
at the quantiles analyzed; see 2.10 for details. Similarly, for the Low30 Size portfolio (formed by stocks
with smaller capitalization), we observe that volume-related variables exhibit a remarkable good predictive
performance. All the back tests, including V QR, accept perfect conditional coverage at all quantiles,
showing that tail movements in small-cap stocks can be predicted accurately. In contrast, the results (not
reported) for the Low30 B/M and High30 Size portfolios are much more conservative. While the L RUC and
L RCC tests tend to accept the correct performance of covariate-extended models, the DQ and, particularly,
the V QR test led to a conservative picture, rejecting at the 1% VaR level. Similarly, forecasts from return-
restricted models lead to large biases according to the backtesting analysis. Whereas volatility-based model
do a better job in the case of the Low30 Size portfolio (particularly, EVT), the V QR test rejects the suitability
of any of these models at any of the quantiles analyzed.
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Table 2.10: Backtesting VaR analysis for covariate-extended SAV-CAViaR model on High30 B/M
and Low30 Size portfolios. See details in 2.6.

λ Exc. L RUC L RCC DQ V QR

High30 B/M Portfolio
QS 7.5% 8.6% 1.67(0.19) 1.89(0.38) 2.69(0.84) 3.54(0.17)

5.0% 6.1% 2.38(0.12) 2.91(0.23) 7.51(0.27) 4.89(0.09)
2.5% 2.8% 0.35(0.55) 0.43(0.80) 17.05(0.01) 1.11(0.57)
1.0% 0.8% 0.43(0.51) 0.55(0.75) 12.28(0.06) 0.14(0.93)

ES 7.5% 8.2% 0.68(0.40) 1.49(0.47) 2.83(0.83) 2.56(0.28)
5.0% 5.7% 0.98(0.32) 1.99(0.36) 6.58(0.36) 3.92(0.14)
2.5% 2.4% 0.04(0.83) 0.34(0.83) 4.76(0.57) 2.62(0.27)
1.0% 0.9% 0.10(0.74) 0.26(0.87) 20.00(0.00) 0.18(0.91)

RQS 7.5% 8.9% 2.67(0.10) 3.07(0.21) 4.40(0.62) 5.45(0.07)
5.0% 6.3% 3.29(0.06) 3.65(0.16) 7.16(0.31) 7.67(0.02)
2.5% 2.9% 0.62(0.42) 0.67(0.71) 16.10(0.01) 3.41(0.18)
1.0% 1.0% 0.00(1.00) 0.18(0.91) 21.14(0.00) 6.25(0.04)

RES 7.5% 8.8% 2.31(0.12) 2.87(0.23) 4.09(0.66) 3.67(0.16)
5.0% 6.3% 3.29(0.06) 4.44(0.11) 7.06(0.32) 8.77(0.01)
2.5% 2.4% 0.04(0.83) 0.34(0.84) 11.77(0.07) 4.37(0.11)
1.0% 1.3% 0.83(0.36) 1.15(0.56) 19.21(0.00) 2.53(0.28)

Low30 Size Portfolio
TV 7.5% 7.2% 0.13(0.71) 0.29(0.86) 3.77(0.71) 1.41(0.49)

5.0% 3.8% 3.29(0.06) 3.50(0.17) 8.75(0.19) 1.90(0.39)
2.5% 2.3% 0.16(0.68) 1.24(0.53) 2.00(0.92) 1.90(0.39)
1.0% 1.4% 1.43(0.23) 1.84(0.39) 2.84(0.83) 6.13(0.05)

NT 7.5% 7.4% 0.50(0.47) 0.51(0.77) 7.10(7.11) 2.65(0.27)
5.0% 3.9% 2.74(0.09) 2.90(0.23) 7.79(0.25) 2.75(0.25)
2.5% 2.2% 0.38(0.53) 1.36(0.50) 2.25(0.89) 6.01(0.05)
1.0% 1.2% 0.37(0.53) 0.67(0.71) 1.19(0.98) 3.99(0.14)

NS 7.5% 7.3% 0.05(0.80) 0.17(0.91) 4.25(0.64) 4.72(0.09)
5.0% 3.8% 3.29(0.06) 3.50(0.17) 8.72(0.19) 2.80(0.25)
2.5% 2.2% 0.38(0.53) 1.36(0.50) 2.26(0.90) 2.80(0.25)
1.0% 1.2% 0.37(0.53) 0.67(0.71) 1.16(0.98) 7.95(0.02)

NSS 7.5% 7.3% 0.05(0.80) 0.17(0.91) 3.36(0.76) 5.89(0.05)
5.0% 3.8% 3.29(0.06) 0.62(0.17) 8.75(0.19) 3.26(0.20)
2.5% 2.1% 0.69(0.40) 1.58(0.45) 2.68(0.85) 6.16(0.05)
1.0% 1.3% 1.17(0.55) 1.17(0.55) 1.93(0.92) 1.92(0.38)

TVD 7.5% 7.5% 0.00(1.00) 0.04(0.97) 5.15(0.52) 5.10(0.08)
5.0% 3.6% 4.55(0.03) 4.92(0.08) 9.62(0.14) 2.29(0.32)
2.5% 2.3% 0.16(0.68) 1.24(0.53) 2.00(0.92) 7.17(0.03)
1.0% 1.2% 0.37(0.53) 0.67(0.71) 1.16(0.98) 1.01(0.60)
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The overall evidence suggests that the extent of tail-predictability varies according to different portfolio
characteristics and that certain predictors may be more appropriate than others. Interestingly, both features
may be related to differences in which price discovery occurs and the existence of investment preferences.
At the daily horizon, Chordia et al. (2011) argue that information is firstly traded upon in the large-cap
sector, and subsequently incorporated into prices of small-cap stocks with a lag, with large-cap returns
driving small-cap returns. The existence of lagging effects makes the conditional distribution of small-cap
stocks more predictable, which explains why even return-restricted models show a better performance in this
portfolio. The existence of clienteles helps to explain why including trading activity variables leads to further
improvements. Chordia et al. (2011) argue that, while institutional investors prefer to trade large-cap stocks,
small-cap trading is mostly dominated by retail investors, who are mostly deemed as unsophisticated, noise
traders. Since return volatility in this class of stocks is mainly related to trading activity, adding information
about this variable boosts the performance of conditional quantile regression models in the Low30 Size
portfolio. Our findings are consistent with this notion and, more generally, with the hypothesis that more
illiquid stocks (such small-cap stocks) exhibit more predictability patterns; see Chordia et al. (2011).

2.5.3 Further checks

We conducted a number of further analyses focused on the volume-weighted market portfolio. Because
the CAViaR setting is so general, it is possible that other functional forms of the conditional quantile
model may lead to better results. Of course, the question then turns to which alternative specification
may be better than the linear specification analyzed in Section 2.4. Given that conditional quantiles of
daily returns are tied to volatility, and motivated by the success of the GARCH(1,1) model to forecast
volatility, EM proposed the so-called Indirect GARCH-CAViaR specification, which characterizes VaR
dynamics as VaR2

t+1 = βλ ,0 + βλ ,1VaR2
t + γλ ,1r2

t . Here, the (squared) VaR process obeys the characteristic
GARCH equation. We estimated univariate covariate-extended versions of this model, namely, VaR2

t+1 =

βλ ,0 +βλ ,1VaR2
t + γλ ,1r2

t + γλ ,M x∗it , as in Section 2.4.1, and analyzed their out-of-sample performance, as in
Section 2.4.2. While the predictive analysis showed that parameter estimates associated to the covariates were
highly significant, even at lower quantiles, the out-of-sample performance of these models was considerably
worse than those of covariate-extended SAV-CAViaR models. While the former suggests that VaR dynamics
depend on trading variables associated to liquidity risk, the latter indicates that the underlying relation that
links conditional VaR to this source of uncertainty is better captured by a linear functional form.

Additionally, we studied the performance of alternative VaR models based on different parametric
specifications of the volatility process, σt . Among these, it is of particular interest the linear GARCH-
type model proposed by Taylor (1986), which assumes that volatility evolves according to the equation
σt+1 = ω +α |rt |+βσt , ω > 0; α,β ≥ 0. The reason is that if returns are driven by this volatility process,
then the conditional quantile function of the series is necessarily driven by SAV-CAViaR dynamics – although
the converse is not necessarily true. Consequently, we aim to shed light on the extent in which the forecasting
gains reported previously can be related to the precise specification of the volatility process, or if they arise
as a consequence of including state variables in the direct modelling of the conditional quantile, as discussed
previously. To this end, we implemented two different econometric techniques to estimate the unknown
parameters that characterize the linear GARCH model. In a similar spirit as the remaining volatility-based
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models considered in the previous section, we firstly used quasi-maximum likelihood (QML) to estimate
(ω,α,β )′, generating subsequent VaR forecasts without imposing normality in that stage (see Appendix A
for a general description). Alternatively, we also implemented the two-step quantile-regression estimation
of this model as proposed by Xiao and Koenker (2009). This procedure is much more demanding from
a computational perspective, as it involves estimation at different quantiles, but it has the advantage of
producing estimates and forecast which are robust against outliers. Furthermore, estimation can be carried out
without making any particular assumption on the distribution of the data.4 None of the resulting VaR forecasts
was able to improve the results discussed previously. These results are consistent with the previous evidence
reported in Xiao and Koenker (2009) for different international stock indexes. In addition, we also estimated
a covariate-extended specification of the linear GARCH(1,1) model, namely, σt+1 = ω +α |rt |+βσt + γx∗it ,
using QML. Again, this approach did not lead to improvements over the results reported previously. This
analysis shows that using covariates in the modelling of dynamic quantiles is the key to improve VaR
forecasts.

Similarly, we analyzed the performance of covariate-extended VaR-GARCH(1,1) models, allowing the
volatility process to depend on trade-related variables, e.g., σ 2

t+1 =ω+αr2
t +βσ 2

t +γx∗it . Including covariates
in the GARCH equation led to a considerable improvement of the unconditional performance of the model,
making the unconditional frequency of rejections closer to the nominal levels. However, the DQ and V QR

conditional tests largely rejected the correct forecasting performance of these models, in contrast to dynamic
quantile regression models. The main conclusion, therefore, is that modelling directly VaR dynamics in
dynamic quantile models using variables related to the trading process largely improves the out-of-sample
performance in relation to other alternatives.

2.6 Concluding remarks

In this chapter, we have analyzed the predictability of the tail of the conditional distribution of daily market
returns. The most distinctive feature of our analysis is that we use different variables which are related to
market-wide measures of trading activity and liquidity building on the general nonlinear CAViaR quantile
regression setting proposed by Engle and Manganelli (2004). This strategy allows us to study in a simple and
direct way the forecasting ability of a number of risk models extended with trade-related variables in relation
to return-restricted models, using both predictive regressions and out-of-sample backtesting techniques.

The overall evidence suggests that the tail of the conditional distribution of portfolio returns is predictable
on a basis of observable information not necessarily limited to returns. Quantitative downside measures, such
as VaR, may largely be improved by using liquidity and trading activity variables. Models constructed in this
spirit may be used, for instance, to comply with SEC financial disclosing rules or to produce improved VaR
forecasts. This evidence is robust against the choice of different representative market portfolios and different
testing procedures, both in the in-sample and the out-of-sample analysis. The extent of predictability may
vary along the different quantiles in the left tail and the particular portfolio involved. Our analysis suggests

4In the implementation of this procedure, we set a bandwidth-type parameter m = logT following Xiao and Koenker
(2009), and considered the estimation of the parameters that characterize the model using a cross-section of quantile-
regression estimates at the deciles. VaR forecasts where generated at the quantiles λ ∈ Θλ .
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that volume-related variables are particularly good predictors of well-diversified portfolios, such as the market
portfolio, and small-cap stocks, while market liquidity seems to be the best option when forecasting the tail
of value portfolios.

This chapter extends the models in Engle and Manganelli (2004) and complement previous findings in
the previous literature. Our analysis also provides empirical support to the literature in market microstructure
concerned with the relation between market environmental variables and large price movements. For instance,
Easley, Lopez de Prado and O’Hara (2011) argue that the flash-crash on May 2010 arose as a consequence of
a market liquidity problem that was slowly developing in the hours and days before the collapse. The central
point is that by tracking liquidity and activity conditions, large movements may be predictable. The findings
in this chapter support this hypothesis and suggest that, at the daily horizon, the information provided by
liquidity and activity is useful to determine a greater likelihood of large price movements.

The methodological approach used in this chapter could be used to address a number of questions in
future research. The increasing availability of high-frequency data allows the use of quantitative models
based on information on a real time basis which may be useful to design risk controls and to implement
investment rule decisions. The procedures discussed in this chapter can be implemented to forecast intraday
VaR. While previous papers dealing with this issue have focused on standard volatility models (see, for
instance, Ergün and Jun, 2010), the evidence in this chapter suggests that quantile regression-based risk
models that account for volatility and other market conditions may easily overperform these approaches.
More generally, tail predictability may vary across different horizons involving several days. Characterizing
the term predictability pattern seems an interesting topic for further research. Finally, although our analysis
has focused on quantiles, thereby allowing us to obtain direct conclusions for the VaR risk methodology,
the main conclusions may be extrapolated to other quantile-based downside risk measures, among which
expected shortfall (conditional VaR) is the most representative. If the dynamics of conditional quantiles are
predictable, trivial transformations such as the mean of quantiles, should be predictable as well. The formal
analysis of this interesting issue is left for future research.
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Chapter 3
Market Illiquidity and Pricing Errors in the
Term Structure of CDS Spreads

This chapter studies the informational content of the pricing errors in the term structure of sovereign CDS
spreads. The residuals from a non-arbitrage model are employed to construct a price discrepancy estimate, or
noise measure. The noise estimate is understood as an indicator of market distress and reflects frictions such
as illiquidity. Empirically, the noise measure is computed for an extensive panel of CDS spreads. Our results
reveal an important fraction of systematic risk is not priced in default swap contracts. When projecting the
noise measure onto a set of financial variables, the panel-data estimates show that greater price discrepancies
are systematically related to a higher level of offsetting transactions of CDS contracts. This evidence suggests
that arbitrage capital flows exit the marketplace during times of distress, and this is consistent with a market
segmentation among investors and arbitrageurs where professional arbitrageurs are particularly ineffective at
bringing prices to their fundamental values during turbulent periods. Our empirical findings are robust for the
most common CDS pricing models employed in the industry.

43
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3.1 Introduction

The literature in asset pricing has discussed the crucial role played by arbitrage capital in removing
price deviations from fundamental values. Trading frictions, such as illiquidity and information
asymmetries, can lead transaction prices to depart substantially from their theoretical counterparts;
see, among others, Merton (1987), Brunnermeier and Pedersen (2009), and Duffie (2010). Although
price discrepancies are mostly a transient phenomenon, they can be systematically related to the
latent forces that characterize the market environmental conditions to which investors in general,
and arbitrageurs in particular, are extremely sensitive. The recent literature has provided empirical
evidence of these links, placing particular emphasis on the term-structure of fixed-income securities.
Hu, Pan and Wang (2013) show that deviations from a smooth zero-coupon yield curve in sovereign
bonds are associated to illiquidity in the US Treasury bond market. Similarly, Berenguer, Gimeno
and Nave (2013) find that differences in the liquidity of bonds with the same creditworthiness lead
to yields that may depart from their expected level in a theoretical liquidity-free term structure of
interest rates.

In this chapter, we examine the informational content of pricing errors from non-arbitrage
models in the term structure of sovereign Credit Default Swaps (CDS). Default swaps are a well-
known class of over-the-counter (OTC) derivatives traded for investing and speculating single name
default risk at different maturities. The CDS market has undergone tremendous growth over recent
years, now accounting for more than two thirds of all outstanding credit derivatives (Goldstein, Li
and Yang, 2013). In parallel to the increasing importance of this market, significant effort has been
devoted to understand how CDS prices are formed. However, many key aspects of this process
remain unsolved in the literature, since active CDS trading is a relatively new phenomenon.

The main aim of this chapter is to examine the economic determinants that underlie CDS pricing
errors as a consequence of market frictions, seeking to characterize the existence of systematic
patterns generally related to illiquidity and transaction costs in temporary price deviations. The
central hypothesis is that a decline in capital arbitrage, typically observed during periods of distress,
increases market-wide illiquidity and leads to greater deviations from fundamental values. As
discussed by Garman and Ohlson (1981), Tuckman and Vila (1992), or Schleifer and Vishny
(1997), arbitrage is an inherently risky and costly activity due to market inefficiencies. Professional
arbitrageurs are reluctant to trade under circumstances in which the cost of identifying and
successfully implementing arbitrage operations can be prohibitive. In turn, the lack of sufficient
arbitrage capital limits the strength of arbitrage, breaking the general agreement about pricing and
enabling assets to be traded in equilibrium at prices significantly different from their fundamental
values. Accordingly, the observable variables that generally capture trading and holding costs and
which are expected to have a sharp influence on arbitrage capital could be used to explain and even
predict fundamental-value discrepancies. The empirical evidence may be particularly significant in
markets which are usually characterized by intense professional arbitrage activity, such as the CDS
market.
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To analyze the informational content of CDS pricing errors we implement robust panel-data
techniques (including two-way cluster errors, fixed-effect panel data, and instrumental-variable
panel data) on a broad sample of weekly sovereign default swap spreads from 16 countries in
both advanced and emerging economies in the period 2008 to 2012. A suitable measure of CDS
term-structure price discrepancy is regressed on either contemporaneous or lagged illiquidity-related
variables at the country level. The right-hand side variables in this analysis capture transaction costs
which may proxy for changes in arbitrage capital after controlling for other potential drivers. The
dependent variable is the log-transform of a price-discrepancy statistical measure, adapted from
Hu et al. (2013), and defined as the root mean square deviation between the market and model-
implied CDS term structure spreads. While this measure was originally implemented in Treasury
bond markets, its foundations are so general that it can be extrapolated directly to the CDS market.
For robustness, we consider a number of theoretical CDS pricing models that vary considerably in
complexity and the underlying assumptions behind them to generate pricing errors, all of which
are widely used by applied researchers and practitioners. Although the main discussion follows
under the arbitrage-free default-intensity model in Pan and Singleton (2008), we also implement the
spline-type model suggested by Nelson and Siegel (1987), and a deterministic quadratic function
for the conditional default probability curve as in Houweling and Vorst (2005) .1

The evidence from this analysis allows us to draw several important conclusions. The
most important result is that there exists a strong empirical connection between market-wide
illiquidity factors and sovereign CDS missvaluation as is generally predicted by the arbitrage-capital
hypothesis. Accordingly, bid-ask spreads –the most usual proxy for illiquidity and transaction costs
in asset pricing and market microstructure– and the outstanding net notional position –defined
as the net funds transference between sellers and buyers, a measure of effective trading activity–
are major drivers of pricing errors and significant short-term predictors of their variability. More
specifically, larger bid-ask spreads and increments in the number of CDS offsetting transactions can
systematically be related to larger CDS pricing errors, both contemporaneously and in one-week
ahead periods. The rationale for this finding lies in the existence of a link that ties arbitrage activity
to market illiquidity and, hence, greater price discrepancies, as discussed previously. Consequently,
the main empirical evidence in this chapter provides empirical support for the general theoretical
claims of this literature in the specific context of CDS markets.

In addition, the analysis provides a clear insight into the systematic patterns –both in the time-
series and in the cross-section– that characterize pricing errors in sovereign CDS markets over
the period analyzed. As expected under the arbitrage capital hypothesis, CDS price deviations

1There exists several methods for pricing default swaps. On the one hand, a common practice in the industry is
to bootstrap the survival probabilities from the observed quotes. To this end, both nonparametric (piecewise constant
hazard rates) and parametric (Nelson and Siegel, 1987) interpolation methods are commonly used in practice. On the
other hand, the intensity modeling approach has been extensively accepted among researches for pricing fixed income
instruments such as corporate bonds (Lando 1998, Duffie and Singleton, 1999 or Duffee, 1999) and default swaps
(Longstaff, Mithal and Neis, 2005, Berndt, Douglas, Duffie, Ferguson and Schranz, 2005, Pan and Singleton, 2008 and
Longstaff, Pan, Pedersen and Singleton, 2011).
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substantially increase during periods of financial distress such as Lehman’s collapse in September
2008, or the Greek bailout in March 2010. Furthermore, pricing errors exhibit strong cross-country
commonalities that can be captured by market-wide factors, more prominently, illiquidity- and
volatility-related factors. This evidence strongly suggests the existence of global trends that lead
to systematic mispricing in the CDS market. A simple principal component analysis reveals that
about 50% of the total variation in pricing errors can be explained by two principal components.
The projection of the first component on different proxies of global market-wide illiquidity and
volatility results in statistically significant coefficients and R2 measures of about 26%. The panel-
data analysis shows that the noise measure significantly covariates with local illiquidity measures
after controlling for other potential drivers, leading to R2 measures of about 95%. Similarly,
heterogeneity in creditworthiness between advanced and emerging economies lead to systematic
differences in pricing errors. The immediate implication of all this evidence is that CDS prices must
be driven by different risk factors which include, at least, a time-varying source of non-diversifiable
illiquidity risk. This interpretation is consistent with the increasing evidence about the existence of
an illiquidity component in credit markets in general, and CDS in particular. The main conclusions
hold after controlling for a number of macroeconomic and financial state variables, using different
estimation techniques, and different pricing models.

This chapter belongs to the increasing stream of literature devoted to CDS pricing and illiquidity.
A non-exhaustive review of this literature includes the papers by Longstaff et al. (2005), Chen,
Cheng and Wu (2005), Chen, Cheng, Fabozzi and Liu (2008), Pan and Singleton (2008), Tang
and Yan (2008), Bühler and Trapp (2009), Lin, Liu and Wu (2009), Bongaerts, Jong and Driessen
(2011), Nashikkar, Subrahmanyam and Mahanti (2011), Arakelyan, Rubio and Serrano (2013), and
Coro, Dufour and Varotto (2013); see also Xing, Zhang and Zhou (2007), Bao, Pan and Wang
(2011), Lin, Wang and Wu (2011), and Acharya, Amihud and Bharath (2013) for related work.
Earlier studies in this field argued that CDS prices may not be significantly affected by liquidity
because their specific contractual nature makes it possible to easily trade large notional amounts
compared to bond markets, implying that CDS spreads may better reflect default risk premium; see,
for instance, Longstaff et al. (2005) and Blanco, Brennan and Marsh (2005). However, the recent
literature largely supports the hypothesis that CDS prices are not just driven by a default risk factor,
but also by (at least) a component related to illiquidity risk; see, for instance, Berndt et al. (2005),
Pan and Singleton (2008), Tang and Yan (2008), and Bongaerts et al. (2011). In a recent analysis
on corporate CDS spreads, Coro et al. (2013) conclude that liquidity risk is even more important
than firm-specific credit risk regardless of market conditions. The empirical evidence in the current
chapter largely supports the claims of this branch of the literature. The additional compensation
required for market maker risk seems to play a crucial role in CDS transaction prices, particularly
during periods of distress. As a result, illiquidity-related factors are largely responsible of pricing
errors in non-arbitrage default intensity models.
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This chapter also belongs to the literature centered on the analysis of the economic determinants
of pricing errors from arbitrage-free pricing models and its diverse implications, particularly in
derivative markets. Jarrow, Li and Ye (2011) characterize arbitrage opportunities from a non-
arbitrage pricing model under a Cox, Ingersoll and Ross (CIR) specification, showing how to
implement profitable strategies in this context; see also Duffie (1999). This chapter adopts a
different approach and examines the systematic sources of CDS mispricing. The idea of comparing
market prices with theoretical prices obtained from a non-arbitrage model to inform about market
liquidity is implicitly contained in Nashikkar et al. (2011), who construct an estimate of the CDS-
bond basis by computing the difference between market and a hypothetical CDS spread. While
we are not aware of other papers dealing with mispricing in CDS markets, several studies in the
extant literature have analyzed the drivers of pricing errors in other derivative exchanges. Peña,
Rubio and Serna (1999) characterize the determinants of the implied volatility function in European
options under the Black-Scholes (BS) model. The distinctive U-shaped pattern that emerges, known
as ‘smile’, suggests that the BS model systematically misprices deep in-the-money and out-of-
the-money options. Since none of the generalizations of the BS formula can remove this pattern
completely, Peña et al. (1999) argue that the apparent failure of the BS model is (partially) due to
transaction costs and liquidity effects, as proxied by bid-ask spreads. These authors show that the
curvature of the implied-volatility function increases on the size of bid-ask spreads, which implies
a clear link between pricing errors and transaction costs in the BS setting. Similar results have
been reported for other derivative products, such as interest-rate options; see Deuskar, Gupta and
Subrahmanyam (2008) and references therein. The evidence in Deuskar et al. (2008) is particularly
relevant for our paper because, like CDS contracts, interest-rate options are traded in OTC markets,
where liquidity-providers are more sensitive to market conditions. Although our methodological
approach differs substantially, the overall results in this chapter completely agree with the evidence
reported in these studies, suggesting that pricing errors in derivative contracts are generally sensitive
to market-wide illiquidity. Finally, this chapter builds on the price discrepancy measure of Hu et
al. (2013) and complements their paper in two main ways. First, by discussing the generality and
suitability of this measure, originally implemented in the context of Treasury bond exchanges, in
other markets. Secondly, by reporting evidence showing that this measure does indeed correlate
with market-wide liquidity conditions from a different methodological approach. While Hu et al.
(2013) use the measure in an asset-pricing analysis, we analyze the determinants that ultimately
underlie greater price discrepancies.

The rest of the chapter is organized as follows. Section 3.2 introduces the noise or pricing
discrepancy measure and discusses its suitability for the CDS market. Section 3.3 presents the
dataset employed in this chapter and explores its main statistical features. Section 3.4 presents the
econometric framework and discusses the main results that characterize the noise measure. Section
3.5 analyzes the determinants of pricing errors, considering a broad set of market-wide indicators.
Section 3.6 conducts several robustness checks. Finally, Section 3.7 summarizes and concludes.
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3.2 Pricing errors in the CDS term structure

This section formalizes the theoretical relation between pricing errors and market frictions with the
main purpose of introducing the notation and the main concepts used throughout the chapter. It
also examines the link between arbitrage capital and pricing errors in CDS markets, introducing
the discrepancy or noise measure proposed by Hu et al. (2013) and a discussion on its general
suitability in the context of this chapter.

3.2.1 Mispricing and arbitrage opportunities

The theoretical arguments used here are primarily taken from Jarrow et al. (2011), who provide
a formal demonstration on how the residuals from a term structure pricing model can be related
to the existence of arbitrage opportunities. The central point is to construct a portfolio immune to
changes in the underlying asset, longing a given maturity contract (e.g., 5-year) and shorting other
different maturities (for example, the 3- and 7-year).2 Under standard arbitrage arguments, this
strategy is self-financed and the prices of the credit instruments must be consistent across maturities.
Consequently, the (expected) value of this portfolio is zero when employing suitable weights whose
composition is detailed in Jarrow et al. (2011). As a result, whenever the value of the portfolio
differs from zero, an arbitrage opportunity emerges.

To introduce the notation and outline the formal demonstration, consider the price at time
t of a CDS with maturity m, denoted CDSt(m), defined as certain function of the risk-neutral
default probability, λQ

t , say CDSt(m) = f m
t (λQ

t ). Under usual assumptions, a second-order Taylor
expansion of the theoretical CDS price function at time s = t +∆t yields

f m
t (λQ

s ) = f m
t (λQ

t )+(λQ
s −λQ

t )Hm
1t +

1
2
(λQ

s −λQ
t )2Hm

2t +O
((

λ̃Q
s

)3
)
, (3.1)

where ∆t denotes a short period of time, λ̃Q
s is a midpoint in the line that joins λQ

s and λQ
t , and O(·)

is a (bounded) remaining term. The terms Hm
1t and Hm

2t are the first- and second-order derivatives of
the pricing function with respect to the default probability, respectively.

According to Jarrow et al. (2011), the current price of a CDS at time s approximates its price at
time t, i.e. f m−∆t

s (λQ
s ) ≈ f m

t (λQ
s ), with m−∆t denoting the correction for the maturity time lapse.

This assumption enables a connection between the future price of a CDS contract with its current
price and certain correcting terms. In particular,

f m−∆t
s (λQ

s )≈ f m
t (λQ

t )+(λQ
s −λQ

t )Hm
t +

1
2
(λQ

s −λQ
t )2Hm

2t . (3.2)

2The default probability of the reference entity is essentially the underlying asset of a default swap contract.
Nevertheless, the results of Jarrow et al. (2011) are also extensible to other term structure derivatives such as interest
rate options or commodity futures.
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and, hence, investors could build a delta and gamma-neutral hedging portfolio formed by three
default swaps with different maturities, say m0, m1 and m2, such that

f m0
t (λQ

t )+n1t f m1
t (λQ

t )+n2t f m2
t (λQ

t )≈ f m0−∆t
s (λQ

s )+n1t f m1−∆t
s (λQ

s )+n2t f m2−∆t
s (λQ

s ), (3.3)

where the portfolio weights n1t and n2t are explicitly chosen to form the market neutral portfolio.
On average, the theoretical value of portfolio (3.3) must equal the market price of the portfolio, from
which the following relation emerges:(

f m0
t (λQ

t )−CDSt(m0)
)
+n1t

(
f m1
t (λQ

t )−CDSt(m1)
)
+n2t

(
f m2
t (λQ

t )−CDSt(m2)
)

≈ εm0
t +n1tεm1

t +n2tεm2
t , (3.4)

with CDSt(mi) denoting the observed market prices, and εmi
t = f mi

t (λQ
t )−CDSt(mi) defined

implicitly.

Apart from the tracking error of the strategy, equation (3.4) shows that discrepancies between the
observed and theoretical prices in the CDS curve are directly informative of arbitrage opportunities
in the CDS market. Similarly, Duffie (1999) shows that the condition of no arbitrage binds the
value of a CDS contract to the prices of a risky bond and a riskless par bond of the same maturity.
In the absence of market frictions, the yield of the risk-free bond must be equal to the difference
between the yield of the risky bond and the value of the CDS contract, expressed as a percentage of
the risky bond nominal value. Consequently, arbitrageurs can trade in the CDS market when they
detect profitable opportunities involving mispricing in bond markets, since buying a CDS contract
is similar to shorting the underlying bond. Indeed, a great deal of professional arbitrage activity,
such as that of hedge funds and proprietary trading desks of investment banks, is concentrated in
the bond and CDS markets; see, for instance, Nashikkar et al. (2011), Goldstein et al. (2013) and
Oehmke and Zawadowsky (2013).

3.2.2 Market frictions and prices discrepancies

The differences between observed and theoretical prices may not necessarily appear as a
consequence of a temporary misappraisal of the fundamental value, but also as a consequence
of market frictions. Among others, Schleifer and Vishny (1997) argue that arbitrage is often a
risky investment activity that requires capital. These authors show that professional arbitrageurs
are reluctant to trade under extreme market circumstances as the cost of identifying or successfully
implementing arbitrage operations can be prohibitive. The main reason is that volatility increases
informational asymmetries and exposes arbitrageurs to unwind their positions prematurely, possibly
incurring substantial losses. As a result, risk-averse specialized arbitrageurs avoid extremely volatile
markets, which reduces the market effectiveness in eliminating differences between fundamental
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and transaction prices.3 It is worth mentioning that, while many well-known theoretical asset pricing
models do not acknowledge the impact of transaction costs on prices, in practice these may have
substantial effects. This seems to be particularly true in OTC markets, as these are characterized
by a high degree of illiquidity, irregular trading, asymmetric information, and greater counterparty-
search costs relative to stock markets; see Tang and Yan (2008) for a discussion. For instance,
search costs largely affect market liquidity and market prices, as theoretically discussed by Duffie,
Garleanu and Pedersen (2005), leading to higher transactions costs and preventing potential liquidity
providers from participating in the market.

The existence of a relationship between market frictions and pricing deviations brings up
the issue of capturing these discrepancies empirically. With the purpose of aggregating all the
information provided by the CDS curve, let us define m1,m2, ...,mN as an increasing sequence
of maturities, and denote as CDSt(mi) and CDS∗t (mi) the observed CDS spread for the i-th
maturity and the corresponding model-implied theoretical price at time t, respectively. Let CDSt =

(CDSt(m1), ...,CDSt(mN))
′ be a (N×1) vector collecting the observed CDS spreads representative

of the CDS term structure at time t, and define CDS∗t analogously. The most natural measure
for the existence of pricing discrepancies is given by the Euclidean distance between both curves,
δt = ||CDS∗t −CDSt ||, namely,

δt =

√
N

∑
i=1

(CDSt (mi)−CDS∗t (mi))
2 (3.5)

such that δt = 0 if and only if all the prices along the curve CDSt match with the fundamental values,
and δt > 0 captures the distance between both curves otherwise. While a number of transformations
can be defined on the norm δt , in this chapter we shall consider the log-transformation of the re-
scaled distance noiseCDS,t ≡ δt/

√
N proposed in Hu et al. (2013). Note that noiseCDS,t may also be

seen as a sample-based measure of the mean cross-sectional dispersion of the pricing error at time
t. The term noise was coined by Hu et al. (2013) since, in the fixed-income literature, it is usual to
refer to deviations from a given pricing model as noise.

Some comments on (3.5) follow. First, Hu et al. (2013) originally proposed the noise measure in
the different context of Treasury bonds. The main premise is that the abundance of arbitrage capital
during normal times helps smooth out the Treasury yield curve and keep the average dispersion
low. In periods of stress, arbitrage capital vanishes and, hence, the average dispersion increases.
On the basis of the corresponding noise measure, say noiseT Bond,t , these authors show indeed
that the deviations between market yields on Treasury bonds and their model-based yields are
characteristically low –and liquidity correspondingly high– in normal periods, but generally tend

3Goldstein et al. (2013) argue that in highly segmented markets, such as the CDS market, the existence of investors
with fairly heterogeneous trading opportunities can lead to multiplicity of equilibria, causing instability in prices. This
feature may explain jumps and excess volatility in the CDS markets.
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to increase during crises, as arbitrage capital exits the marketplace. The noise measure successfully
captures, therefore, an empirical link between price deviations and arbitrage capital.4

Second, the Euclidean norm δt depends on the prices generated by a theoretical term-structure
pricing model, and so does noiseCDS,t . Although we shall consider different approaches, we focus
initially on the continuous-time, arbitrage-free CDS pricing model of Pan and Singleton (2008).
The distinctive characteristic of this model is that it yields a full theoretical term structure of CDS
spreads consistent with the no arbitrage condition that overperforms other alternative approaches;
see, for example, Longstaff et al. (2011). A priori, it seems reasonable to expect that sensible
choices of alternative pricing models would lead to similar patterns in the resultant pricing errors.
However, since this is ultimately an empirical issue, we shall address the robustness of the main
conclusions based on Pan and Singleton (2008) by focusing on alternative term structure pricing
models that differ in complexity and underlying assumptions. This will be extensively discussed in
Section 3.6.2.

3.3 The data

CDS are contracts where one party (protection seller) shorts credit risk to another (protection buyer)
against the default of a certain bond (reference entity). The CDS spread represents the annual
percentage over the total amount of the bond (notional) paid to the insurer for obtaining protection
in case of a credit event. The dataset analyzed in this chapter consists of an unbalanced panel
of weekly sovereign CDS spreads from 16 economies of the G-20 group: Argentina, Australia,
Brazil, China, France, Germany, Indonesia, Italy, Japan, Mexico, Saudi Arabia, South Africa, South
Korea, Spain, the UK and the US. The final composition of this sample was solely dictated by
the availability of the data. The choice of the weekly frequency aims to avoid potential caveats
related to the low trading activity at daily frequency of most sovereign CDS contracts.5 The sample
initially available spans the period from January 1st, 2006 to November 9th, 2012 and includes 358
weekly observations for most of these countries. The data for some countries (Saudi Arabia, the
UK, and the US) is available on a shorter period and includes a smaller number of observations,

4This measure has been used subsequently in a number of applied studies; see, for instance, Filipovic and Trolle
(2013). Because the price of sovereign CDS contracts are not independent of the price of a Treasury bond of the
same maturity (Duffie, 1999), and since professional arbitrageurs such as hedge funds and proprietary trading desks of
investment banks are particularly active in CDS markets, we may expect that arbitrage capital features noiseCDS,t in a
similar way as it does with noiseT Bond,t . Therefore, the average dispersion of CDS spreads should be expected to be low
during normal periods, when arbitrage capital actively contributes to align CDS spreads, and high in turmoil periods,
when arbitrage capital exits the market. In that case, abnormally high values of noiseCDS,t may be related to episodes
of market illiquidity and local or global shortage of arbitrage capital. This is the central hypothesis analyzed in this
Chapter.

5Chen, Fleming, Jackson, Li and Sarkar (2011) analyze the distribution of total trading frequency of sovereign CDS
contracts across all maturities. From a total of 74 reference entities, just 4 are actively traded on average 30 times
daily; and 14 out of 74 are less actively traded, at 15 times per day on average. The remaining sovereign references are
infrequently traded at an average of twice daily.



ranging from 228 (Saudi Arabia) to 257 (US) data. The maturity spectrum of CDS contracts in the
sample comprises all available maturities from one to ten years. All contracts are denominated in
US dollars and written under the Complete Restructuring (CR) clause. Data have been provided by
Credit Market Analysis (CMA), a quote provider integrated in the Datastream platform.6

Together with CDS spreads, we observe different variables related to trading activity and
liquidity. These variables are provided by the Depository Trust & Clearing Corporation (DTCC),
which reports public information about real transactions of CDS contracts since November 2008. In
particular, we observe both the gross and net notional CDS positions, and the number of outstanding
contracts in the CDS market. The gross notional value is the aggregate sum of the CDS contracts
bought or sold for a single reference entity. The net notional values represents the aggregate net
funds transference between protection sellers and buyers that could be required upon the occurrence
of a credit event relating to a particular reference entity. Finally, the number of contracts reports the
outstanding number of contracts for a given reference.

3.3.1 Descriptive analysis

3.3.1.1 CDS spreads

Figure 3.1 shows the time series dynamics of the cross-sectional medians of the sovereign CDS
spreads at 1-, 5- and 10-year maturities over the total available sample, from January 1st, 2006 to
November 9th, 2012. To account for likely structural differences across countries, we split the total
sample into two subsamples. A first group is characterized by Advanced Economies (henceforth
AE) and includes Australia, France, Germany, Italy, Japan, Spain, the UK, and the US. A second
group is characterized by Emerging Economies (henceforth EE) and is formed by the remaining
countries in the sample.

For both subsamples, the cross-sectional medians increase monotonically from 1- to 10-year
maturities, thereby revealing an upward slope in the CDS spreads term-structure over the period. In
addition, CDS spreads exhibit time-varying dynamics with considerable sensitivity to episodes of
financial distress. More specifically, CDS spreads show similar responses to the largest systemic
shocks over the period, peaking after the defaults of Bear Stearns (March 2008) and Lehman
Brothers (September 2008). Although this pattern is clearly visible for both AE and EE groups,
there are idiosyncratic patterns across countries that can be related to creditworthiness differences
and that are worth discussing in detail. In particular, while the average CDS spreads in the AE group
exhibit moderate values before the default of Bear Stearns at the different maturities, they increase
steadily until mid 2011 as a consequence of the European debt crisis. These series exhibit a mean-

6The CMA database collects daily CDS spreads from a robust consortium that consists of approximately 40 members
from the buy-side community (hedge funds, asset managers, and major investment banks), which are active participants
in the CDS market. Daily reports on bid, ask and mid-quotes are available to us. Mayordomo, Peña and Schwart (2013)
state that the quoted CDS spreads provided by CMA led the credit risk price discovery process with respect to the quotes
provided by other databases.
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Figure 3.1: Cross-sectional median of sovereign CDS for different maturities
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Cross-sectional medians of sovereign CDS spreads of different maturities for advanced
(upper graph) and emerging (lower graph) economies. Advanced economies are
Australia, France, Germany, Italy, Japan, Spain, the UK and the US. The maturities
of CDS contracts are 1-, 5- and 10-year, respectively. Vertical bars denote some crisis
events. The sample period spans from January 2006 to November 2012. Data frequency
is weekly.
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reverting behavior in the final part of the sample, when the concerns in the Eurozone dissipated
and default probabilities reverted to lower levels. On the other hand, while CDS spreads in the EE
group largely increased around the collapse of Lehman Brothers, they show resilience against the
idiosyncratic shocks that featured the European debt crisis. Lastly, CDS spreads in the AE group
have a lower median and lower volatility than CDS spreads in EE group. The maximum cross-
sectional median value rose to 450 basis points for emerging countries after Lehman Brother’s
collapse, while the peak in advanced economies was around 200 basis points in the midst of the
European crisis.

Table 3.1 reports the usual descriptive statistics (mean, median and standard deviation) of CDS
spreads for each country in the sample. For the ease of exposition, we report these statistics
for the representative cases of 1-, 5-, and 10-year maturities, noting that a complete analysis is
available upon request. As expected from the previous discussion, there are significant differences
in average spreads across maturities, consistent with the upward slope of the term structure discussed
previously. Argentina is the economy with the lowest creditworthiness in the sample. Accordingly,
the mean 5-year maturity CDS spread is 964.41, considerably greater than the spread of any other
country in the sample. This series also exhibits a massive degree of volatility, given by a standard
deviation of 897.20, which is caused by extreme observations in the upper tail recorded after the
Lehman Brother’s collapse. As discussed previously, there is a meaningful mean-volatility pattern
in CDS spreads such that countries with higher spreads tend to consistently exhibit higher volatility
levels as well. This result suggests that investors are more sensitive to news affecting default
probabilities when creditworthiness is low. Not surprisingly Germany, widely seen as the safe haven
by investors, is the economy with the overall best credit creditworthiness in the sample. The mean
spread values for the 5-year German CDS contract is 33.20, with a standard deviation of 30.68, the
smallest among the different countries analyzed.



3.3. THE DATA 55

Ta
bl

e
3.

1:
D

es
cr

ip
tiv

e
st

at
is

tic
s

of
so

ve
re

ig
n

C
D

S
sp

re
ad

s

1
Y

ea
r

5
Y

ea
r

10
Y

ea
r

C
ou

nt
ry

M
ea

n
M

ed
ia

n
St

d.
M

ea
n

M
ed

ia
n

St
d.

M
ea

n
M

ed
ia

n
St

d.
O

bs
.

A
rg

en
tin

a
85

5.
99

41
7.

60
12

13
.6

8
96

4.
41

74
1.

90
89

7.
20

97
1.

81
75

2.
33

81
8.

27
35

8
A

us
tr

al
ia

25
.2

8
23

.2
6

21
.3

4
44

.4
4

44
.1

2
33

.3
1

52
.8

3
49

.8
6

38
.4

2
35

8
B

ra
zi

l
66

.6
8

54
.8

9
58

.4
4

14
5.

45
12

5.
15

68
.6

6
18

3.
24

15
9.

82
65

.9
4

35
8

C
hi

na
36

.4
0

28
.0

2
34

.5
6

75
.0

8
70

.6
6

52
.2

0
91

.3
3

85
.8

7
56

.9
6

35
8

Fr
an

ce
28

.4
3

18
.6

4
34

.5
6

58
.6

8
36

.5
9

63
.7

3
67

.9
5

40
.0

1
72

.1
0

35
8

G
er

m
an

y
13

.7
0

10
.1

2
14

.0
9

33
.2

0
30

.3
4

30
.6

8
41

.8
7

32
.9

8
38

.5
9

35
8

In
do

ne
si

a
11

5.
81

69
.6

5
13

5.
04

22
0.

09
17

4.
77

14
6.

64
26

7.
99

22
7.

39
13

4.
62

35
8

It
al

y
10

5.
96

51
.3

8
13

6.
00

14
8.

06
99

.3
6

15
7.

39
15

2.
20

10
3.

43
14

9.
60

35
8

Ja
pa

n
18

.7
4

13
.7

8
18

.4
8

51
.6

8
49

.8
4

40
.5

6
67

.7
4

61
.6

9
53

.2
3

35
8

M
ex

ic
o

65
.2

3
43

.2
5

70
.0

5
12

6.
82

11
3.

81
83

.6
1

15
2.

74
14

4.
02

82
.7

1
35

8
Sa

ud
iA

ra
bi

a
80

.4
6

78
.0

8
33

.4
6

11
5.

66
10

5.
33

52
.1

8
12

6.
61

11
6.

90
54

.0
3

22
8

So
ut

h
A

fr
ic

a
76

.6
8

50
.8

3
95

.1
7

14
5.

58
14

0.
81

97
.3

0
16

8.
30

16
2.

69
90

.9
1

35
8

So
ut

h
K

or
ea

72
.1

4
45

.6
2

90
.3

6
10

7.
71

97
.7

1
91

.4
3

12
2.

58
11

5.
01

89
.5

0
35

8
Sp

ai
n

11
5.

71
61

.4
1

13
0.

30
15

4.
04

93
.0

8
16

3.
13

15
3.

47
94

.3
6

15
4.

73
35

8
U

K
30

.1
7

25
.5

7
22

.8
6

63
.1

6
65

.9
5

30
.8

1
72

.7
0

77
.9

6
31

.3
2

26
1

U
S

18
.7

2
19

.2
3

13
.9

0
38

.3
4

40
.2

5
16

.7
2

40
.0

9
42

.0
0

22
.5

0
33

4

Su
m

m
ar

y
of

th
e

m
ai

n
de

sc
ri

pt
iv

e
st

at
is

tic
s

of
C

D
S

sp
re

ad
s

in
le

ve
ls

fo
r

ea
ch

co
un

tr
y.

M
at

ur
iti

es
ar

e
1-

,5
-

an
d

10
-y

ea
r,

re
sp

ec
tiv

el
y.

Sa
m

pl
e

co
m

pr
is

es
fr

om
Ja

nu
ar

y
20

06
to

N
ov

em
be

r2
01

2,
w

ith
th

e
ex

ce
pt

io
n

of
Sa

ud
iA

ra
bi

a,
th

e
U

K
an

d
th

e
U

S,
w

hi
ch

co
ve

rs
fr

om
D

ec
em

be
r2

00
7

to
N

ov
em

be
r2

01
2.

D
at

a
fr

eq
ue

nc
y

is
w

ee
kl

y.



56 Chapter 3.

Previous literature on CDS have put forward the existence of a strong degree of commonality
in sovereign CDS spreads. Principal Component Analysis (PCA) on the standardized CDS spread
series confirms the existence of a strong commonality in the behavior of sovereign spreads. In
particular, the first principal component (PC1) of the system explains approximately 74% of the
total cross-country variation, which increases to nearly 88% when a second principal component
(PC2) is included. Interestingly, the previous literature has not discussed whether the degree of
commonality tends to be stable over time or exhibits time-varying patterns. Note that, for instance,
a sharp reduction in the explanatory power of the first principal component will be indicative of
idiosyncratic patterns that would likely lead to greater pricing errors. Because this question is
particularly relevant in the context of this chapter, we perform a dynamic PCA analysis, computing
the principal components on the basis of the 100 most recent observations at any time in the sample
on the basis of a rolling-window approach.

Figure 3.2 shows the time series dynamics of the proportions of explained cross-country
variability which are related to either the conditional PC1, or PC1 and PC2, given the 1-, 5- and
10-year maturities. Some interesting results emerge from this analysis. First, the share of variability
explained by PC1 sharply declined from 90% to approximately 40% during the summer of 2011.
This sheer decay affected all maturities and can be related to the European sovereign debt crisis.
Adding a second factor reduces the magnitude of this decline, allowing the share total variability
explained to reach about 65%, but still far from the average level achieved before this episode.
Figure 3.2 also shows that the proportion of explained variance over the total tends to be higher as
the maturity increases, especially after August 2011. Finally, the levels of total variability explained
by the first two principal components eventually reverted to the level observed before July 2011,
with the exception of the 1-year maturity. Overall, this simple descriptive analysis suggests that
a single factor (roughly corresponding with PC1) may not be able to consistently capture the full
variation in the term structure of sovereign CDS spreads over time. Furthermore, there are important
differences across the maturities that characterize the term structure, with the 1-year CDS contract
exhibiting a more idiosyncratic behavior. As discussed in Pan and Singleton (2008), the most likely
reason being that liquidity is lower at this maturity.
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Figure 3.2: Time series dynamics of the proportions of variance explained related to either the
conditional PC1, or PC1 and PC2, given the 1-, 5- and 10-year maturities.
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3.3.1.2 Trading activity and liquidity-related data

The sovereign CDS market has become one of the most active markets in the aftermath of the
financial crisis. The relative volume of the sovereign CDS contracts traded is particularly sizeable.
According to DTCC, the gross notational outstanding ranges from USD 0.71 trillions in November
14th, 2008 to USD 1.70 trillions in November 9th, 2012, showing the sharp increase in trading
activity in CDS markets over recent years as a consequence of the financial crisis. Similarly, the
net notional outstanding ranges from USD 0.08 trillions to USD 0.15 trillions over the same period.
These series show a considerably degree of commonality across countries, reflecting the existence
of common world-wide trends. For instance, the PC1 on either the gross or net notional outstanding
series accounts for nearly 76% of the total variation of these series (a complete analysis is available
upon request). Because the central premise in this chapter is that mispricing in CDS markets can be
related to illiquidity, Tables 3.2 and 3.3 report descriptive statistics on trading activity and liquidity
based on these variables.

Table 3.2 provides a summary of the weekly increments of the number of outstanding contracts,
and the gross and net notional positions of the sovereign CDS written on the countries under study.
For comparative purposes, we also include the relative position of the contracts with respect to the
remaining G20 countries, i.e., the ratio of each country over the total G-20 group. The sample
available spans the period November 14th, 2008 to November 9th, 2012. Note that, since trade-
related information is not available for Saudi Arabia, this country has been excluded from the
analysis. The weekly average increment in the number of contracts over the sample period is of
approximately 20 contracts, with the mean gross and net position sizes reaching USD 318.23 and
20.63 millions, respectively. Trading activity is far from being homogeneous across the different
countries in the period analyzed. In particular, Italy and Spain show the highest increments in
the number of contracts and gross outstanding volumes, reflecting the financial tensions of these
countries during the European debt crisis. Similarly, the overall net position on CDS has largely
increased for other advanced economies in the EMU area, particularly, France, suggesting effects
related to financial contagion. The average of net notional CDS positions over the period is
negative for Argentina and Spain, and tends to exhibit larger positive values for the economies with
better creditworthiness in the sample. Negative values of this variable can be related to offsetting
transactions in the CDS market. In this way, the net volume can be taken as a crude proxy for
professional arbitrage activity and will play a major role in the analysis of determinants in Section
3.5.
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Table 3.3 reports descriptive statistics (mean, median, and standard deviation) for the bid-ask
spreads of CDS contracts for each country. For conciseness, we report these descriptives at 1-, 5-
and 10-year maturities, noting that a complete study on all maturities is available upon request.
In addition, Table 3.3 reports descriptive statistics for the so-called veracity index, an indicator
of data reliability at each maturity elaborated directly by the data provider. The analysis on bid-
ask spreads essentially reveals the same features discussed previously. Clearly, there exists a
negative relationship between bid-ask spread and creditworthiness. Countries with lower default
probabilities exhibit smaller bid-ask spreads uniformly over the maturities. Similarly, and consistent
with the previous discussion, the CDS with higher average bid-ask spreads are also the more volatile,
showing a greater disagreement on fundamental values. In particular, while Germany and France are
the countries with the lowest bid-ask averages and standard deviations, Argentina and Saudi Arabia
in the EE group exhibit the highest values of these statistics in the sample. Interestingly, the average
bid-ask spreads are higher at the 1-year maturity, suggesting that sovereign CDS investors seem
to incorporate their liquidity concerns about a country in the short-term maturities of the curve, as
pointed out by Pan and Singleton (2008). Finally, the analysis on the veracity index reveals similar
values with no particular pattern across countries, indicating that the CDS sample is representative
of the real trade quotes finally traded in the market.
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3.4 Estimating the noise measure

3.4.1 Theoretical CDS spreads and econometric estimation

The empirical implementation of the noise measure requires model-implied theoretical prices. Most
of the pricing models for CDS spreads in the extant literature strive essentially to capture default
risk and the potential loss upon default, similarly to that of credit spreads for corporate bonds. The
intensity framework of Duffie and Singleton (1999) and Lando (1998) seems to be the most popular
pricing framework. Under this approach, the default event is modeled as the first jump of a Poisson
process with stochastic default intensity λQ

t , where Q denotes the risk-neutral measure. Then, the
(annualized) price of a CDS contract for maturity m at time t obeys the relation:

1
4

CDSt(m)
4m

∑
i=1

EQ
t

[
exp

(
−
∫ t+ i

4

t
(rs +λQ

s )ds

)]
=(1−RQ)

∫ t+m

t
EQ

t

[
λQ

u exp
(
−
∫ u

t
(rs +λQ

s )ds
)]

du,

(3.6)
where rt and RQ denote, respectively, the risk-free interest rate and the recovery of face value (in
percentage) of the referenced bond under the risk-neutral measure; see Longstaff, et al. (2005) and
Pan and Singleton (2008), among others. The left-hand side of this equation represents the premium
on the sum of expected discounted cash-flows paid by the protection buyer under the risk-neutral
measure. This premium is the CDS spread and is quarterly. The right-hand side accounts for the
expected discounted payoff received by the protection buyer in case of a default event. Single-name
CDS contracts are written without up-front payments, which equals both sides of expression (3.6).

In this setting, Pan and Singleton (2008) propose an intensity model, referred to as PS in the
sequel, which presents remarkable advantages over other affine pricing models for CDS spreads.
While the CIR process has been extensively employed for modeling the default intensity λQ

t , as it
provides closed-form formulas (e.g., Duffee, 1999, Driessen, 2005 or Longstaff et al., 2005), the
Feller condition bounds the long-term mean of the CIR-based intensity to the square-root of its long-
term variance, a requirement frequently violated in practice. The PS model not only overcomes this
drawback, but also provides a good compromise between model parsimony and performance in a
comparison of several one-factor intensity models; see, for instance, Berndt (2006) for a discussion
on a related approach. For these reasons, and although we stress that we shall consider alternative
modeling approaches later on, the arbitrage-free PS model is the pricing benchmark chosen for
characterizing empirically price discrepancies in CDS markets. We provide a brief discussion on
the implementation of this model below.

The PS model assumes that the logarithm of the risk-neutral default intensity λQ
t follows an

Ornstein-Uhlenbeck diffusion process characterized by

d lnλQ
t = κP

(
θP− lnλQ

t

)
dt +σQdWP

t , (3.7)
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where κP and θP are the long-run mean, and mean-reversion rate of the process under the actual or
historical measure P, respectively, with σQ denoting the volatility of the process and WP

t a standard
Wiener process. The model also characterizes the dynamics of (3.7) under the risk-neutral measure
Q,

d lnλQ
t = κQ

(
θQ− lnλQ

t

)
dt +σQdWQ

t , (3.8)

and the market price of risk, say Λt , can be defined through the affine function φ0 + φ1 lnλQ
t ,

where φ0 and φ1 denote constant parameters. The process (3.8) ensures the positiveness of risk-
neutral default intensity. However, the expectations in CDS formula (3.6) are not in closed-form, so
numerical techniques as the Crank-Nicholson scheme are required.

The parameters that characterize the PS model can be estimated by maximum likelihood, given
a number of additional assumptions. The reader is referred to the original paper for details, but we
briefly sketch the main steps involved in the estimation of this model in the sequel. In particular, the
PS procedure requires the assumption that CDS contracts at a certain maturity are priced with no
error, whereas prices at the remaining maturities can be freely determined. Since the 5-year CDS
contract is widely considered as the more liquid maturity, we make the same assumption as Pan and
Singleton (2008) and consider this contract is free of pricing errors. Then, a series of the probability
of default λQ can be obtained by solving the pricing formula (3.6) for this coefficient. This involves
non-linear numerical techniques, using the 3-, 6-, 9- and 12-month USD Libor and 2-, 3-, 4-, 5-, 7-
and 10-year USD interest rate swaps to construct the risk-free curve that characterizes (3.6). The
remaining CDS contract maturities are assumed to be priced with random errors εm,t that obey a
normal multivariate distribution with zero mean vector and covariance matrix σ2

MIN−1, where IN−1

denotes the N − 1 dimensional identity matrix and N is the number of different maturities. For
parsimony and computational tractability, we assume that σM is constant across maturities, noting
however that results do not qualitatively differ from more general specifications.7 The estimation
of the model also requires the discretization of λQ in expression (3.7), for which we adopt the
Euler’s approach setting ∆t = 1/52. The unknown parameters of the model ψ = (ψP,ψQ,σM)′,
with ψP = (κP,θP)′, ψQ = (κQ,θQ,σQ,RQ)′, can be estimated by maximizing the conditional log-
likelihood function ∑T

t=2 ln f P(εm,t |ψ,Ft−1), with Ft−1 denoting the set of available information
up to t, and

f P(εm,t |ψ,Ft−1) = ϕP(εm,t |σM,Ft−1)×ϕP(lnλQ
t |ψP,σQ,Ft−1)×

∣∣∣∣∣∂CDSQ(λQ|ψQ,Ft−1)

∂λQ
t

∣∣∣∣∣
−1

(3.9)

7The assumption of homoskedasticity of the pricing errors across maturities is introduced to reduce the number of
parameters of the model and simplify the computational estimation. The existence of an average level of common
volatility across maturities can be expected not to have a major effect on the estimations. This observation has
been confirmed by conducting the estimations of the model assuming heteroskedasticity in the pricing errors across
maturities. These results are not presented for the sake of conciseness, but are available upon request. In Section 3.6 we
shall consider alternative specifications that do not impose assumptions on the distribution of pricing errors.



64 Chapter 3.

where ϕP(·) denotes the probability density function of the Normal distribution, λQ
t as given by

expression (3.7), and CDSQ(·) in formula (3.6).
Table 3.4 reports the maximum-likelihood estimates of ψ (robust standard errors in parenthesis).

The mean-reversion speed estimates under the actual measure, κP, are higher than the mean-
reversion speed coefficients under the risk-neutral measure, κQ, indicating that the arrival of credit
events last longer under this measure. Moreover, the long-run mean estimates are also higher under
the risk-neutral measure (κQθQ > κPθP), suggesting that the arrival of events in the risk-neutral
scenario is more probable than in the actual one. In other words, a positive risk premium related to
changes in the credit environment seems to be priced in the CDS market. Finally, the recovery rate
RQ is closely related to the creditworthiness of the country: South Korea, South Africa, Germany,
France and the UK exhibit the highest value (around 80%), in contrast to Argentina and Spain
(around 3%). Overall, the model yields reasonable estimates that are coherent with related studies
in the extant literature; see, for instance, Pan and Singleton (2008) and Longstaff et al. (2011).
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Table 3.4: Maximum likelihood estimates

Firm κQ κQθQ σ κP κPθP σG RQ LogLk
Argentina 0.0977 -0.3111 1.1515 0.4100 -1.3947 0.0158 0.0100 10055.49

(0.0109) (0.0345) (0.0054) (0.4271) (1.4933) (0.0000) (0.0032)
Australia -0.1576 0.5665 0.8519 2.0488 -9.7753 0.0006 0.6568 14361.35

(0.0055) (0.0253) (0.0086) (1.0181) (4.9049) (0.0000) (0.0246)
Brazil -0.0372 0.3160 0.9967 1.4271 -6.0946 0.0015 0.7120 18082.42

(0.0046) (0.0235) (0.0058) (0.5463) (2.2478) (0.0000) (0.0065)
China -0.0725 0.2836 1.0452 0.6028 -3.2016 0.0010 0.6741 19873.02

(0.0051) (0.0270) (0.0048) (0.5508) (2.7026) (0.0000) (0.0124)
France -0.3077 1.2479 0.7489 0.7476 -3.9226 0.0008 0.7792 20549.94

(0.0044) (0.0180) (0.0026) (0.2650) (1.4954) (0.0000) (0.0050)
Germany -0.3294 1.4366 0.7977 0.3122 -1.8284 0.0006 0.7966 21590.77

(0.0049) (0.0226) (0.0046) (0.4622) (2.6673) (0.0000) (0.0075)
Indonesia 0.0262 -0.0780 1.0802 0.8218 -3.6363 0.0026 0.3690 16292.05

(0.0029) (0.0152) (0.0064) (0.5350) (2.2836) (0.0000) (0.0129)
Italy -0.1439 0.4858 0.8729 0.0935 -0.3948 0.0016 0.7069 18222.76

(0.0065) (0.0231) (0.0044) (0.3268) (1.2389) (0.0000) (0.0049)
Japan -0.2444 1.0591 1.0024 0.6477 -3.9007 0.0008 0.4715 20608.46

(0.0037) (0.0181) (0.0060) (0.5088) (3.3369) (0.0000) (0.0139)
Mexico -0.0637 0.3664 0.9337 0.1722 -0.8381 0.0009 0.7454 19782.02

(0.0031) (0.0140) (0.0050) (0.3099) (1.2314) (0.0000) (0.0030)
Saudi Arabia -0.1952 0.6712 0.6739 0.9137 -3.8040 0.0007 0.5927 13230.57

(0.0027) (0.0093) (0.0068) (1.0620) (4.2584) (0.0000) (0.0124)
South Africa 0.2871 -1.2749 1.9191 0.5267 -2.9677 0.0012 0.7046 18922.40

(0.0061) (0.0393) (0.0076) (0.5213) (2.6152) (0.0000) (0.0061)
South Korea -0.0087 0.1557 0.8793 0.3607 -1.6318 0.0011 0.8246 19178.13

(0.0017) (0.0066) (0.0019) (0.2136) (0.7573) (0.0000) (0.0015)
Spain -0.0720 0.0833 0.8929 0.1361 -0.8052 0.0014 0.0335 18550.07

(0.0018) (0.0063) (0.0039) (0.1944) (1.1928) (0.0000) (0.0066)
UK 0.2227 -1.2409 1.7872 0.4324 -2.8469 0.0008 0.7695 14987.91

(0.0236) (0.1769) (0.0105) (0.8604) (4.8489) (0.0000) (0.0350)
US 0.0176 -0.1397 0.8465 0.2009 -1.1237 0.0005 0.7390 15755.24

(0.0028) (0.0151) (0.0047) (0.3980) (2.1537) (0.0000) (0.0138)

Maximum likelihood estimates for the Pan and Singleton (2008) model. Standard errors are in parenthesis. κQ, θQ and
σQ denote the mean-reversion, long-run mean and instantaneous volatility of default intensity process λQ under the Q
probability measure, respectively. Similar convention applies for the parameters of the objective measure P. σM is the
standard deviation mispricing errors, and RQ the recovery rate. LogLk is the log-likelihood. Data frequency is weekly
and it comprises from January 2006 to November 2012, with the exception of Saudi Arabia, the UK and the US, which
covers from December 2007 to November 2012.
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3.4.2 Main results

Given the maximum-likelihood estimates of ψ, we can readily determine the theoretical prices
implied by the PS model and the resultant estimates of the noise measure, noiseCDS,t . Figure 3.3
shows the time series variation of the 25%, 50%, and 75% percentiles of noiseCDS,t given the
sovereign CDS belonging to either the AE or EE groups. The median time-series tend to be
relatively low during normal periods, consistent with a low dispersion in the CDS spread term
structure. Nevertheless, the noise measure largely increases during stress periods, showing a sharp
increment in price dispersion. Note, for instance, that the median time-series for both AE and EE
groups peak after systemic episodes such as the collapse of Lehman Brothers in September, 2008,
or the Greek bailout in March, 2010. Clearly, the average values of noiseCDS,t in both groups is
characterized by a strongly non-linear, globally mean-reverting pattern which can be associated to
latent dynamics that determine whether the economy is a normal or stressed regime. This evidence
completely agrees with the results reported by Hu et al. (2013) for the noise measure in the US
Treasury bond market.8 Although, on average, pricing discrepancies tend to be greater and much
more volatile in the EE group (thereby suggesting the existence of an idiosyncratic component in the
series), it is clear that the AE and EE noise measures exhibit common patterns and follow a similar
trend, which strongly suggests the existence of a source of global commonalities in mispricing.

Table 3.5 reports standard descriptive statistics of the estimates of the noise measure for any
of the sovereign CDS analyzed. The overall mean value is 13.08 basis points, but there is a
strong heterogeneity across countries. The individual averages range from 4.52 (Germany) to 85.70
basis points (Argentina). Furthermore, the volatility of noiseCDS,t largely varies from distressed
to resilient economies, showing the largest differences for Argentina, Indonesia, Italy and Spain.
In contrast, solid economies, such as the US or Germany, show the smallest degree of average
dispersion in pricing errors. The largest value of the noise measure in Argentina reaches 1111.39
basis points, whereas the US peaks at 17.22 basis points. Clearly, the noise measure is related to the
factors that characterize whether the CDS spread has a large mean value and high dispersion or not.

8The non-linear, mean-reverting path of the noise series is even more evident in the analysis of noiseT Bond,t in Hu
et al. (2013) because the sample analyzed therein spans a longer period, from 1987 through 2011. Over this period,
noiseT Bond,t is shown to spike prominently as a consequence of shocks related to crises, and revert to the mean level
afterwards.
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Figure 3.3: The noise measure
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This Figure displays the evolution of different percentiles of the noise
measure using Pan and Singleton (2008) model model as pricing
model. The noise measure is computed for advanced (upper graph)
and emerging (lower graph) economies. Advanced countries comprise
Australia, France, Germany, Italy, Japan, Spain, the United Kingdom
and the US. The sample period spans from January 2006 to November
2012. Data frequency is weekly.
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Table 3.5: Descriptive statistics of the noise measure

Percentiles
Country Mean Median Std Min Max 5% 95% N
Argentina 85.70 43.87 136.40 4.41 1111.39 7.84 472.10 358
Australia 4.42 2.66 4.67 0.33 21.44 1.28 17.47 244
Brazil 12.11 10.78 9.46 1.06 57.31 2.54 32.18 358
China 7.44 4.96 6.10 0.40 27.90 1.22 18.76 358
France 5.80 3.80 5.89 0.42 28.09 1.18 19.51 358
Germany 4.52 3.11 4.37 0.37 18.75 0.61 15.08 358
Indonesia 17.79 12.47 19.06 1.39 219.45 4.77 59.08 358
Italy 11.37 5.85 11.13 1.62 66.65 2.88 59.08 358
Japan 5.80 4.66 4.91 0.41 26.19 0.82 15.18 358
Mexico 7.87 6.68 4.93 1.49 56.84 2.36 16.25 358
Saudi Arabia 5.58 4.92 3.91 0.85 18.24 1.05 14.62 228
South Africa 9.91 7.90 7.01 2.02 56.34 3.01 21.92 358
South Korea 9.48 7.80 6.45 2.21 43.66 2.97 21.58 358
Spain 10.11 6.33 10.19 1.09 62.43 1.60 30.39 358
UK 6.84 5.33 3.83 1.40 17.75 2.52 13.65 261
US 4.57 3.87 2.73 0.53 17.22 1.12 10.52 257

Main descriptive statistics of the noise measure. Sample period comprises from January
2006 to November 2012, with the exception of Australia, Saudi Arabia, the UK and the
US, which covers from December 2007 to November 2012.

Since, as discussed previously, short-term maturities exhibit larger idiosyncratic patterns, an
important question is whether CDS maturities contribute equally to the noise measure. This is an
economically important concern because the existence of a systematic mispricing of CDS contracts
of a given maturity could indicate the existence of pricing factors not captured by the model (Pan
and Singleton, 2008). To address this question, we can define the relative contribution of maturity
mτ to the noise measure as ωt(mτ) = |CDSt(mτ)−CDS∗t (mτ)|/δt , τ = 1, ...,10, with δt as defined
in (3.5), noting that 0 ≤ ωt(mτ)≤ 1, and ∑10

τ=1 ωt(mτ) = 1. Recalling that the PS model assumes no
pricing error at the 5-year maturity by initial assumption, it follows by construction ωt(5) = 0, and
it should be understood that the relative contributions of the remaining maturities are conditional to
this assumption.
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Table 3.6 reports basic time-series statistics (mean, median and standard deviations) of ωt(mτ)

for each maturity and each country in the sample, and the maturity for which the relative contribution
ωt(mτ) is the largest. According to these results, the 1-year contract systematically exhibits the
highest contribution to the noise measure.9 The relative contributions of the pricing errors to the
total range from 26.93% in the US to 59.20% in Argentina. Larger mispricing errors in the 1-year
maturity suggest the existence of common factors across countries that are driving the dynamics of
the residuals at shortest maturities. A possible interpretation of this behavior is pointed out by Pan
and Singleton (2008), who suggest that large institutions might employ short-term CDS contracts
as primary trading vehicles for expressing their views on sovereign bonds, inducing illiquidity
or trading pressures in these maturities. These authors argue that 1-year (and perhaps 10-year)
contracts include an idiosyncratic liquidity component due to the short/long-term nature of these
instruments. The main evidence from this simple analysis supports this claim.

Before a more formal analysis is conducted, it is worth analyzing the existence of commonalities
in pricing errors. The PCA on the standardized noise series across countries reveals that the first
principal component is able to capture approximately 33% of the total variation of these series.
The share of explained variance increases to 56% and 65% when second and third components
are included, respectively. In order to gain insight into the economic interpretation of these latent
components, Figure 3.4 shows the loadings of PC1 and PC2. Clearly, PC1 can be interpreted as a
world-wide market trend, since all the countries except Brazil and China exhibit positive loadings.
These are uniformly distributed across advanced economies, pivoting around an average coefficient
of 0.70. On the other hand, the loadings of emerging markets are significantly smaller, but still
positive in most cases. Turning our attention to the loadings of PC2, these exhibit a heterogeneous
behavior that, once more, can be related to creditworthiness heterogeneity in the sample. In
particular, the estimated loadings tend to be positive or mildly negative for the countries in which
the noise measure exhibits low mean values and low volatility, such as Australia, France, Germany,
UK, and US. Conversely, loadings are mostly negative for countries in which pricing errors have
a relatively high mean and high volatility, such as most countries in the EE group and distressed
economies in Southern Europe such as Spain.

9Australia, China and the US seem to be rare exceptions. Even though the noise is concentrated at longer maturities
for these countries, the standard deviation of the noise contribution to the 1-year maturity is still the highest across
maturities.
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Figure 3.4: Loading coefficients for principal components of the noise measure
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The strong degree of commonality in the residuals of the pricing model strongly suggests the
existence of risk factors which are not properly captured by the model but which, nevertheless, are
systematically priced in the CDS market. To gain further insight into the sources of commonality
and their economic interpretation, we project the time series increments of PC1 and PC2, denoted
as ∆PC1 and ∆PC2, respectively, on the increments of a set of market-wide global state variables
sampled from the US market over the period December 2007 to November 2012. Using variables
from the US market to proxy for global conditions in this preliminary analysis seems reasonable
because of the strong degree of globalization in financial markets, and the predominance of the US
economy (see, among others, López-Espinosa, Moreno, Rubia and Valderrama, 2012 and Rapach,
Strauss and Zhou, 2013). Nevertheless, we stress that a more detailed analysis, building on country-
specific variables, shall be conducted in the next section. The explanatory variables used in this
preliminary analysis are the changes in the volatility index of the Chicago Board Options Exchange
(VIX), used as an indicator of global uncertainty; the change in Moody’s bond spread index between
AAA and BBB bonds (Default), used as a proxy for corporate default spread; the return of the Dow
Jones Index (DJIndex), used as a natural indicator of stock market performance and market risk; the
change in the first PC of net notional volumes (PC1netvol), and the first PC of bid-ask spreads at
5-year maturity (PC1BA5y), both of which are used as proxies of aggregate market liquidity. All
these variables are sampled weekly.

Table 3.7 reports the OLS estimates for the individual regression of ∆PC1 (Panel A) and ∆PC2
(Panel B) on a constant and any of the state variables. The Table also reports the main outcomes
from the OLS regression on all these variables. For conciseness, we only discuss the results for the
regressions involving ∆PC1, since this factor captures the main source of common variation in cross-
country mispricing, and the results of ∆PC2 follow along the same lines. In individual regressions,
all the state variables are highly significant, with the sole exception of the first principal component
of net volumes (PC1netvol). Hence, the global trend that seems to underlie PC1 is positively related
to market-wide increments in volatility and default probabilities, and it is negatively related to
market-wide returns and liquidity. The joint regression of ∆PC1 on all the explanatory variables
simultaneously yields a significantly and positive association with VIX, and a significantly and
negative association with returns and the principal component of net volume. The remaining
variables (Default and PC1BA5y) no longer provide incremental information over these variables.
The adjusted-R2 in this regression is approximately 26%.
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Table 3.7: OLS regressions of principal components of the noise measure

Constant VIX Default DJIndex PC1netvol PC1BA5y Adj-R2 N
Panel A.- PC1 vs Global variables

0.0397 0.0616∗∗∗ 18.20 227
(0.0353) (0.0086)
0.0413 1.8627∗∗∗ 5.00 227
(0.0381) (0.5188)
0.0415 -0.0027∗∗∗ 21.79 227
(0.0346) (0.0003)
0.0426 -0.4468 1.38 185
(0.0410) (0.2366)
0.0371 -0.2316∗∗∗ 10.99 227
(0.0369) (0.0431)
0.0633 0.0366∗ -0.0273 -0.0016∗ -0.4358∗ -0.1173 25.75 185
(0.0364) (0.0183) (0.7145) (0.0007) (0.2107) (0.0778)

Panel B.- PC2 vs Global variables
0.0074 -0.0676∗∗∗ 10.59 227
(0.0527) (0.0128)
0.0032 -3.3799∗∗∗ 8.35 227
(0.0534) (0.7273)
0.0062 0.0024∗∗∗ 8.06 227
(0.0535) (0.0005)
0.0113 0.1716 -0.17 185
(0.0356) (0.2058)
0.0108 0.4195∗∗∗ 17.96 227
(0.0505) (0.0590)
0.0033 -0.0128 0.2222 0.0010 0.1786 0.0030 4.56 185
(0.0356) (0.0179) (0.6990) (0.0007) (0.2061) (0.0761)

Standard errors in parentheses
∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001

OLS estimates for the first (PC1) and second (PC2) principal components of the noise measure
against a set of regressors. Panels A and B report the beta estimates for the individual and jointly
regressions of PC1 and PC2, respectively. Last column includes the adjusted R-squared. Sample
period spans from July 2008 to November 2012.
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The main conclusions from the preliminary analysis conducted in this section allows us to
conclude that price discrepancies exhibit a strong time-varying pattern which increases substantially
during distress periods. Pricing errors are mainly contributed by discrepancies at the 1-year maturity,
so they must be related to short-term fluctuations. Furthermore, the PCA analysis reveals a strong
source of commonality that can be related to market-wide stress conditions, with a first component
able to explain nearly 33% of the total variability that can be related to state variables that define
a scenario of high volatility, negative market performance, and liquidity withdraws. This evidence
shows a characteristic scenario which fits squarely with the theoretical predictions in Schleifer and
Vishny (1997), showing that larger pricing errors can systematically be related to adverse economic
scenarios. These conclusions, based on a simple and direct analysis, shall be confirmed in a more
rigorous analysis based on panel-data regressions in the next section.

3.5 Determinants of pricing errors in CDS markets

The main objective of this chapter is to examine the economic determinants of pricing errors in the
CDS term structure. To this end, we implement different estimation procedures within the panel-
data methodology that regress a log-transform of the noise measure on either contemporaneous
or lagged values of illiquidity-related variables. Our main aim is to parsimoniously address the
existence of an empirical relationship between price discrepancies and market-wide illiquidity,
considering mainly country-specific variables that capture local information on the liquidity
conditions in the CDS market as well as other potential global control variables.

3.5.1 State variables

We consider a panel of country-specific and global variables that can be grouped into the categories
of market-wide illiquidity and market uncertainty. The set of illiquidity-related variables include
i) the 5-year maturity bid-ask spreads (Bidask), ii) Number of Traded CDS contracts (Contracts),
and iii) Net Notional Outstanding Volume (Netvol). All these variables are country-specific and are
availabe from DTCC. The set of of market uncertainty-related variables include iv) a local proxy
of market volatility (Marketvol), as measured by the absolute value of the weekly market index
return, and v) a global indicator of default premium (Default), characterized as the price spread
between AAA and BBB rated US investment. This set of variables suffices to explain a remarkably
large proportion of variability, since price discrepancies turn out to be strongly related to country-
specific drivers which characterize liquidity. As discussed in the robustness section, taking further
macroeconomic and financial variables into account, most of which are only available at the global
level, does not seem to improve results nor lead to qualitative differences in the main results. We
discuss the variables used in the panel-data regressions in the remainder of this subsection.
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All the variables in the liquidity group are strongly correlated and share a considerable degree
of commonality. Although they all can be related to liquidity risk, they measure different facets
of this magnitude (Chordia, Roll and Subrahmanyam, 2001). In particular, Bidask, the most
popular indicator of illiquidity in security markets, is a measure of the tightness of asset prices.
According to the literature in market microstructure, bid-ask spreads include two components. One
is the compensation required by market-makers for inventory costs, clearing fees, and/or monopoly
profits. The second one results from a characteristic adverse-selection problem faced by market-
makers in a context of asymmetric information. It mainly represents the additional compensation
for the expected costs caused by informed-trading activity. Hence, in periods of greater price
uncertainty in which informed investors can profit from their superior information, bid-ask spreads
tend to widen and lead to greater transaction costs. Acharya and Johnson (2007) report evidence
of informed-trading activity in the CDS market. Furthermore, this information flows to equity
markets in response to negative credit news, suggesting that price discovery for those events tends
to happen in CDS markets. Consequently, we expect a positive relation with mispricing, since
liquidity providers can exit the market when transaction costs are high; see Longstaff et al. (2005),
Chen et al. (2007), and Tang and Yan (2008).

The variable Contracts is a measure of market-wide trading activity and, therefore, can be
deemed to be an indirect measure of liquidity; see Berg and Streitz (2012). In general terms, trading
activity induces price volatility, so the number of trades has been often related to noise trading.
Furthermore, Tang and Yan (2008) use this variable to proxy for the overall inventory in the CDS
market, which could also be related to holding costs. In the inter-dealer market, inventory control
may be a major concern for dealers under funding constraints, as this may impair the capacity for
dealers to take sides in additional contracts and thereby affect the liquidity of the related contracts;
see Brunnermeier and Pedersen (2009). Finally, Oehmke and Zawadowsky (2013) argue that the
illiquidity of the bond market increases the amount of CDSs outstanding, since CDS contracts
should be more heavily used when the underlying bond is illiquid – and thus hard or expensive
to trade. According to all these considerations, we should expect a positive relation with the noise
measure.

The variable Netvol reflects the net total amount exchanged in case of default. In contrast to
the gross notional outstanding volume, which increases with every trade, the net notional volume
adjusts the gross notional amount for offsetting positions; see Berg and Streitz (2012). In this
way, the net notional turns out to be an excellent indicator of the overall amount of credit risk
transfer in the CDS market. As discussed by Oehmke and Zawadowsky (2013), an intuitive way
to interpret the Netvol variable is to consider it as the maximum amount of payments that need
to be made between counterparties in the case of a credit event on a particular reference entity.
As in other derivative markets, such as the futures market, entering offsetting trades in the CDS
markets is a more common way to reduce exposures than canceling an existing CDS contract.
Because arbitrageurs unwind positions during extreme circumstances, effective reductions in net



76 Chapter 3.

traded volumes should be related to larger pricing errors. This variable could inversely proxy for the
unobservable holding costs (including, for example, the opportunity cost of capital, the opportunity
cost of not receiving full interest on short-sale proceeds, and idiosyncratic risk exposures), with
arbitrageurs closing positions when these costs increase excessively.

Together with these variables, we consider the country-specific variable Marketvol to capture
market-wide volatility in the local stock market. Market volatility is a latent factor particularly
sensitive to the information flow which subsumes information relative to collective expectations,
environmental conditions, and market sentiment. Consistent with the results reported in the previous
section and the theoretical considerations in Schleifer and Vishny (1997) and others, we expect
volatility to be a natural driver of the noise measure. For instance, asset volatility is a key driver of
default probabilities according to Merton (1974) model. Accordingly, larger levels of volatility lead
to greater pricing errors. Additionally, the variable Default is a global proxy to control for default
premium. This variable is calculated using the Moody’s bond spread index for 3-5 year maturity
bonds; see Hu et al. (2013). A greater default is naturally associated with greater pricing errors.

3.5.2 Analysis of determinants

Let lnnoiseCDS,it denote the natural logarithm of the sample estimate of the noiseCDS measure for the
i-th country at time t. We model the conditional mean of this process as a linear function of the state
variables building on a panel-data model specification. Acharya and Johnson (2007), Tang and Yan
(2008), Pires, Pereira and Martins (2013) use a similar approach to identify the main determinants
of CDS spreads, rather than CDS spread pricing errors; see also Peltonen, Scheicher and Vuillemey
(2013) and Chiaramonte and Casu (2013). The specification is similar in spirit to the determinant
models used, for instance, in Peña et al. (1999) and Deuskar et al. (2008), although our approach
builds on direct estimates of pricing errors. In particular, we consider the following regression
specification, referred to as Model I in the sequel,

lnnoiseCDS,it = α +ϕ lnBidaskit +β1 lnContractsit +β2 lnNetvolit
+ β3Marketvolatilityit +β4De f aultt +ηi + εit (3.10)

or, using a more convenient notation,

lnnoiseCDS,it = α +ϕ lnBidaskit +X ′
itβ +ηi + εit , (3.11)

where ηi represents country-specific effects that are constant over time but can vary across countries,
θ =(α,ϕ ,β ′)′ , with β =(β1, ...,β4)

′ , denotes the vector of unknown parameters, εit is a disturbance
assumed to obey standard assumptions, and Xit is a vector of explanatory variables defined
implicitly.
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Some brief comments follow. While bid-ask spreads are stationary series, the vector Xit includes
strongly-persistent variables which may be driven by stochastic or deterministic trends, such as
lnContracts, lnNetvol, Marketvolatility and Default. In order to ensure that this feature does
not impose any meaningful distortion in the main conclusions from (3.11) , we will consider an
alternative specification in which these variables are differentiated. The log-transform is applied
to reduce the effects of outliers and heteroskedasticity in the series. Note that, as a result, the
coefficients associated to regressors in logarithms can be interpreted as the elasticity of noiseCDS,it

with respect to the related variable. Finally, this specification does not include gross volume,
available in DTCC, because this variable has a correlation coefficient of 85% with Contracts.
We exclude that variable to avoid colinearity-related concerns, noting that Contracts shows a
greater sample correlation to the dependent variable (36%), and a smaller correlation to the other
explanatory variables than gross contracts.

Since Xit is a strongly persistent vector process with high first-order autocorrelation coefficients,
for the sake of robustness, we consider an alternative specification to (3.11) in which persistent
variables are plugged in differences, namely,

lnnoiseCDS,it = α∗+ϕ∗ lnBidaskit +∆X ′
t β ∗+ηi +uit (3.12)

with ∆Xit = Xit −Xit−1. Since bid-ask spreads and the dependent variable are stationary, they are
left in levels. The resultant model shall be referred to as Model II in the sequel.

The parameters that characterize equations (3.11) and (3.12) are estimated using three
different procedures aiming to control for cluster errors, unobservable individual heterogeneity and
endogeneity. In particular, we first consider pooled time-series cross-sectional regressions with two-
way cluster-robust standard errors accounting for country and week clusters. This methodology
allows us to carry out statistical inference which is robust to fairly general simultaneous
dependences of unknown form in both the cross-sectional and time-series dimensions of the panel;
see Petersen (2009), Gow, Ormazabal and Taylor (2010), Cameron, Gelbach and Miller(2011)
and Thompson (2011). Furthermore, this methodology seems particularly useful in the empirical
context of this chapter, characterized by a panel with a larger number of time-series observations
than individuals, because we can readily control for unobservable heterogeneity using individual
dummies to estimate the coefficients ηi, since the Haussman test largely favors fixed-effect over
random errors. Second, consistent with model specification testing, and as is common in the related
literature, we consider fixed-effects panel-data regressions with robust errors to autocorrelation and
heteroskedasticity.10 The resultant estimates are remarkably similar to those obtained under the first

10Panel data with random errors can be seen as a more general specification than fixed errors. We implemented both
approaches, noticing no qualitative difference in the main conclusions discussed below. However, since the Haussman
test largely favors fixed-effect over random errors in our sample, we report and discuss the resultant estimates from this
model.
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approach. Lastly, we consider instrumental variables in the fixed-effects panel data, using a single
lag of the variables as an instrument in order to mitigate concerns related to endogeneity.

In addition, we analyze the predictive ability of the variables in Model I and II to forecast the
dependent variable. To this end, we regress lnnoiseCDS,it on lagged values of all the right-hand
side variables in equations (3.11) and (3.12), i.e., we consider predictive panel-data regressions.
We adopt this approach for two main reasons. First, the analysis on the parameters estimates
from these regressions allows us to determine whether the state variables are useful to predict
price discrepancies given the set of available information. Second, since the dependent variable
is regressed on predetermined variables in this analysis, endogeneity can no longer be a serious
concern. Of course, this form of robustness comes at the expense that parameter significance may
be considerably weakened , but the comparative analysis between contemporaneous and predictive
regressions allows us to determine whether endogeneity introduces significant biases. Consequently,
and paralleling equations (3.11) and (3.12), we consider the following predictive specifications

lnnoiseCDS,it = αl +ϕl lnBidaskit−1 +X ′
it−1βl +ηi + vit (3.13)

and
lnnoiseCDS,it = α∗

l +ϕ∗
l lnBidaskit−1 +∆X ′

t−1β ∗
l +ηi +wit (3.14)

with θl =
(
αl,ϕl,β ′

l

)′ and θ ∗
l =

(
α∗

l ,ϕ
∗
l ,β

∗′
l

)′ denoting the main parametes of interest, and vit and
wit being random disturbances. For ease of exposition, we shall present and discuss the parameter
estimates from the two-way cluster methodology with country dummies and robust standard errors
to unknown heteroskedasticity and correlation. Because (3.13) and (3.14) are trivial variations of
Models I and II, respectively, we shall simply refer to this approach as predictive two-way cluster
when reporting the main results.

3.5.3 Main results

Table 3.8 reports the main outcomes from the regression analysis (estimated parameters, robust p-
values of the t-statistic for individual significance, and R2), using the different estimation techniques
discussed previously and the model specifications (3.11) to (3.14). Let us first discuss the results
for Model I and its predictive variation, corresponding to equation (3.11) and (3.13) , respectively.
These are reported in the top part of the table (Panel A). Independently of the estimation technique,
the results show that larger bid-ask spreads, greater trading activity, and greater netting activity
within counterparties are systematically related to greater pricing errors. A relative increment of
100 basis points in the bid-ask spread leads, on average, to an increment of nearly 50 basis points
in the dispersion of pricing error, everything else being equal. Similarly, the noise measure has
a elasticity coefficient of 0.58 and −0.32 with respect to the number of contracts and net notional
CDS positions, respectively. These estimates are both statistically and economically significant, and
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confirm a unmitigated influence of liquidity-related factors on pricing errors in the CDS markets.
Owing to the importance of this result, we shall discuss its implications in detail later on, after
presenting the remaining estimates.

As expected, the proxy variables for local market volatility in stock markets, used mainly
as controls in our analysis, are positively related to price discrepancies in the CDS markets.
The evidence of statistical significance of these coefficients is marginal in the contemporaneous
regression, and non-significant in the predictive model. While using a robust, but noisy proxy
of the unobservable volatility based on absolute-valued weekly returns is likely to increase the
standard error of the resultant estimate, the apparent lack of significance is actually related to the
(positive) correlation that volatility shows with the Bidask variable. If the latter is omitted from
the analysis (results not presented for the sake of saving space), then the coefficient on market
volatility is positive and strongly significant in all cases, suggesting the Bidask partially overrides
the information conveyed by volatility. Similarly, Default is positively related to the noise measure,
as expected, but the statistical evidence supporting the inclusion of this variable is considerably
weaker. The tests of significance cannot be rejected in most cases. This result probably indicates
that the potential information conveyed by this variable is subsumed in the remaining variables,
which is not particularly surprising in view that Default is a global variable. The analysis on the
predictive regression shows that illiquidity-related variables can be used as short-term predictors
of future mispricing. The strong similarity in the main conclusions shows that endogeneity does
not cause meaningful distortions on the least-squares based estimates of model (3.11). Finally, the
analysis of the R2 shows that the models are extremely parsimonious, since a reduced number of
country-specific variables, mainly related to market-wide illiquidity, are able to achieve a R2 of
approximately 95% of price discrepancies.

The main results from the estimation of Model II are reported in the bottom part of Table 3.8, see
Panel B. Recall that the only difference with respect to the previous models is that the dependent
variable is regressed on Bidaskit and ∆Xit in the contemporaneous regression, and on Bidaskit−1

and ∆Xit−1 in the predictive regression. The resultant estimates show that relative increments in
bid-ask spreads, as well as relative reduction in net notional CDS volumes, can be consistently
related to larger dispersion in the CDS curve. Once more, Bidask turns out to be a particularly
significant determinant. However, Netvol tends to be marginally significant in this context. The
variables Contracts and Default do not seem to play any role, and market volatility is positively
but not significantly related to the noise measure. As in Panel A, this evidence is robust to
different estimation techniques and remains valid even when considering lagged values of these
state variables in a predictive regression.
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In short, the price discrepancies of observed CDS spreads with respect to the theoretical prices
implied by the PS model do significantly covariate with state variables that characterize illiquidity
in the CDS market. This relation is so strong that illiquidity-related variables can be used even as
reliable predictors of mispricing in the short-term. The evidence is particularly significant for bid-
ask spreads, as generally expected from the theoretical and empirical considerations in the previous
literature. In addition, our analysis reveals a significant relation with outstanding net volumes, a
variable at our disposal which has not been used in previous literature. This evidence merits a special
mention because a significant relation of CDS pricing errors with Netvol reinforces the empirical
suitability of the arbitrage-capital hypothesis in Schleifer and Vishny (1997). The estimates of the
elasticity coefficient on this variable are negative and highly significant in most cases, implying that
a relative reduction in net volume is systematically associated with increments in the variability
of pricing errors. This result is particularly meaningful because reductions in net volume can be
interpreted as increments of offsetting transactions, which is consistent with a greater number of
market participants unwinding positions, particularly, during times of distress. Hence, consistent
with the theoretical claims in Schleifer and Vishny (1997), larger price discrepancies can be caused
by the temporary exit of market participants.

This result provides empirical support to the generality of the measure proposed by Hu et al.
(2013) in the context of CDS markets, as it essentially agrees with the main conclusions drawn
by these authors in the context of Treasury bonds. Finally, it should be noted that the overall
evidence reported in this section strongly suggests that single-factor intensity models, specifically
intended to capture default risk, may systematically lead to large pricing errors in a distress scenario
characterized by high illiquidity risk; as these neglect the influence of this risk-factor. As in the case
of the BS model discussed in Peña et al. (1999), extensions of this models that do not accommodate
liquidity risk may lead to substantial pricing errors.

3.6 Robustness checks

This section shows the results from various robustness checks grouped into two main categories.
On the one hand, we discuss the general suitability of the model specifications when taking into
account various considerations. We firstly analyze if the overall evidence can be extended to both
AE and EE, or if there are heterogeneous patterns attending to creditworthiness. We also discuss if
the estimated models could be improved significantly by adding further variables, or if the results
are robust to alternative definitions of the main proxy variables involved in the analysis. On the
other hand, we analyze whether using alternative pricing models could lead to substantial changes
in the main qualitative results discussed previously. The main conclusion from this analysis is that
the overall evidence is robust to all these considerations.
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3.6.1 Model specification

A) Differences between advanced and emerging economies
Paralleling the analysis in the main section, Table 3.9 reports the main outcomes from the panel-

data analysis on the subsamples of emerging countries (Panel A) and advanced economies (Panel
B). The main aim of this analysis is to determine if the conclusions apply uniformly over all the
countries, of if there are differences attending to this consideration. For conciseness, we display the
results corresponding to Model II, in which the dependent variable is regressed against Bidask and
∆Xit . The main qualitative conclusions are fairly similar for the remaining models, but we report the
results for a specification that tends to yield more conservative results.

For both groups of countries, the bid-ask spread variable is always positive and strongly
significant, independently of the estimation technique. Interestingly, the coefficient on net volume,
Netvol, is negative and remains highly significant in statistical terms, but only for the countries in
the advanced economies groups (see Panel B). The estimates for emerging markets are highly non-
significant. In our view, this evidence shows important differences in CDS pricing in advanced and
emerging contracts during the sample period analyzed which is consistent with the fragmentation
hypothesis in the CDS market suggested by Goldstein et al. (2013). CDS are contracts used
essentially for either speculative or hedging purposes. The evidence that relative changes in net
volume is not significant on the group of emerging markets over the period analyzed suggests
that trading activity on these markets is primarily intended for hedging purposes. Conversely, the
evidence of illiquidity-related mispricing in the CDS written on the AE group, mostly composed
of European countries, would be consistent with speculative activity. This interpretation is also
consistent with the view of the European banking crisis as a ‘carry trade’ behavior of banks; see
Acharya and Steffen (2013).
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B) Additional explanatory variables.
Together with the set of variables discussed previously, we included a number of additional

explanatory variables. Most of these variables are global, i.e., variables that are common for all
the countries, and that reflect major trends in the global economy. These variables include i) the
1-day LIBOR, since this represents the unsecured rate at which banks lend to each other and it is
sensitive to default conditions; ii) the slope of the US term structure of interest rates, calculated as
the difference between the 10- and 2- year constant maturity Treasury bond yields; iii) the noise
measure of Hu et al. (2013), representative of illiquidity proxy of the US sovereign bond market;
iv) the local stock market index returns, as a measure of short-term market performance; v) the
spread between the three-month LIBOR rate and the Overnight Index Swap rates, as a proxy of
counterparty risk, since this variable captures the market expectations of future official interest
rates set by central banks, and aggregates the perceptions of counterparty risk in credit markets.
There exists a strong degree of correlation between these variables. Not surprisingly, therefore,
in the estimation of Model I and II extended with these variables, most of the related coefficients
were not significant, which suggests that a simpler model that mainly exploits local information is
parsimonious enough and subsumes all the relevant information to explain systematic trends in CDS
mispricing. The main results, underlining the crucial role played by illiquidity-related variables on
price biases, remain unaltered. We do not present these results for the sake of saving space, noting
that they are available upon request.

C) Financial distress-related deterministic indicators.
We include time dummies signaling the occurrence of major sovereign events in the sample,

such as the Greek and Ireland bailouts, and the downgrade of Portugal. The main aim is to isolate
the estimates of the main parameters from the influence of these events. To this end, we considered
an extended model with dummies in the unconditional mean and cross-effects with all the local
variables in our model. The main qualitative results from the analysis do not differ substantially
from those discussed previously, suggesting that bid-ask spreads and net volumes are major drivers
and even predictors of the noise measure in the sample. Interestingly in this analysis, some variables
such as trading activity and default seem to gain statistical significance, with the crossing-effects
being particularly significant for the bid-ask spreads, net volumes and default in nearly all model
specifications. As a further check, we repeated this exercise by extending the time window effect
of the dummies until one, two, three and four weeks after the event, noting that the main qualitative
conclusions are essentially the same as those reported previously.

D) Definitions of proxy variables.
We also analyzed the sensitivity of the results to the way in which the main proxy variables

were constructed. In particular, the bid-ask is defined as the 5-year maturity bid-ask. This particular
choice was motivated by a criterion of homogeneity, since the trading-related variables facilitated
by DTCC mainly refer to this maturity. Nevertheless, since bid-ask spreads are available at different
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maturities, we analyzed the sensitivity of the results to this consideration, considering bid-ask
spreads at any of the available maturities and even a sample average. Additionally, we consider a
different proxy for market-wide volatility in the stock market, using a measure of realized volatility
defined as the weekly sum of absolute-valued daily returns. The evidence discussed previously is
not affected in any significant way by these considerations.

3.6.2 Alternative pricing models

The main results discussed in the previous sections build on the PS pricing model. Other
pricing approaches are possible, since the definitive functional form of the default process λQ

remains an open question in this literature. Consequently, we consider two alternative pricing
models, namely, a quadratic intensity function (QIF) suggested by Houweling and Vorst (2005),
and the semi-parametric (NS) model suggested by Nelson and Siegel (1987). Like PS, these
alternative approaches rely on CDS spreads to directly measure the credit risk attributable to
default risk and do not explicitly accommodate other risk factors, such as liquidity risk. The main
methodological difference, however, is that the theoretical term-structure is characterized on cross-
sectional estimates at a particular date, whereas PS uses maximum-likelihood in the time-series
context. The advantage is that QIF and NS build on flexible semi-parametric specifications that do
not impose distributional assumptions on the data. This feature allows us to ensure that the main
qualitative conclusions are not driven by the assumptions implied in Pan and Singleton (2008).

The QIF approach builds on a second-order degree polynomial to model the term-structure of
the risk-neutral default intensity at maturity mτ at time t, namely,

λQ
t (mτ) = lt + stmτ + ctm2

τ , (3.15)

where the parameters lt , st and ct capture the level, slope and curvature of the default term structure,
respectively, with mτ denoting the time to maturity. Houweling and Vorst (2005) argue that
this approach works reasonably in practice. The main advantage of this specification lies on its
methodological tractability, but some readers may deem it as excessively simplistic.

The NS approach is a more sophisticated pricing model that attempts to capture the default
spread term structure at time t by parsimoniously fitting a smooth curve to the cross-sectional data,
namely,

λQ
t (mτ) = ξ1t +ξ2t

1− e−γtmτ

γtmτ
+ξ3t

1− e−γtmτ

γtmτ
− exp(−γtmτ) , (3.16)

where the parameters (ξ1t ,ξ2t ,γt)
′ are latent dynamic factors that admit a precise economic

interpretation. In particular, ξ1t can be viewed as the long-term mean of the default intensity; ξ2t is
related to the slope of the spread term-structure, since −ξ2t = λQ

t (∞)−λQ
t (0); ξ3t is closely related

to the curvature of the shape. Finally, γt is related to the convexity of the curve and controls the
position, magnitude and direction of the hump of the spread curve. Remarkably, the NS approach
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provides the corresponding default rate for a continuous of maturities, so additional interpolation
is not necessary. Moreover, this modeling approach avoids the over-parametrization, allowing
for monotonically increasing or decreasing and hump shaped default term curves. Jankowitsch,
Pullirsch and Veza (2008) set an extensive comparison of the pricing properties in the bond market
for several parametrizations of the default intensity, concluding that the Nelson and Siegel (1987)
specification turned out to be optimal.

Recalling that the (annualized) price of a CDS contract for maturity m at time t obeys (3.6) , we
can use the following discretized version of this formula for computing the spreads under both the
QIF and NS approaches,

1
4

4m

∑
j=1

e−
j
4

(
rt+λQ

t ( j)
)
CDSt(m) = (1−RQ)

4m

∑
j=1

e−
j
4 rt
[
e−

( j−1)
4 λQ

t ( j)− e−
j
4 λQ

t ( j)
]
, (3.17)

where λQ
t (mτ) denotes the risk-neutral default intensity at maturity mτ , and RQ is the recovery

rate. Consistent with previous literature, we set the risk-neutral recovery rate to 40%; see, for
instance, Berndt and Obreja (2010). We also assume a constant default intensity λQ

t , which results
in CDS∗t (mτ) ≈ λQ

t (mτ)(1−RQ). The parameters (lt ,st ,ct)
′ and (ξ1t ,ξ2t ,ξ3t ,γt)

′ that characterize
the QIF and NS models are estimated using linear and non-linear least squares, respectively, given
the observable curve CDSt ; see, for instance, Okane and Turnbull (2003) and Houweling and Vorst
(2005). Since γt in the NS model should be positive in order to assure convergence to the long-term
value ξ1t , we impose the constraints ξ1t > 0, ξ1t +ξ2t > 0 and γt > 0 in the numerical optimization
of the objective loss-function of this model. Given the resultant estimates, it is straightforward to
compute theoretical term-structure CDS prices and, hence, determine the noise measure with respect
to the observed prices CDSt .

Figure 3.5 shows the time series of the cross-country median of the theoretical CDS spreads
implied by the three different pricing models considered in this chapter. For comparative purposes,
the figure also reports the qq-plots of these series in logarithms. Clearly, all these model-implied
CDS spreads tend to exhibit similar time series features on average. The pairwise correlation
between the model-implied prices from PS and those from QIF and NS are about 76% and 74%,
respectively. Similarly, the correlation between the theoretical prices generated with the QIF and
NS models is nearly 80%. Note that the CDS spreads implied by PS and NS have a similar level
and tend to overlap, but the latter display a considerably degree of additional volatility. Theoretical
prices from the QIF model exhibit similar time series properties as the other two methodologies, but
the average is downward shifted, i.e., prices are systematically smaller.
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Figure 3.5: Cross-sectional median of sovereign CDS and qq-plots for different models
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Table 3.10 reports the main results from the analysis of determinants of the QIF- and NS-based
noise measures. For ease of exposition, we report the estimates of Table 3.10 noting that the
dependent variable lnnoiseCDS,it is now computed according to the residuals of either the QIF or
the NS models. Not surprisingly, the strong correlation between the theoretical prices generated by
these pricing methodologies is consistent with the main qualitative evidence discussed in Section
3.5.2, and it is not affected in qualitative terms. Independently of the pricing framework, all the
different proxy variables for market-wide liquidity in the CDS market exhibit the expected signs
and are statistically significant. Broadly speaking, the estimates in the QIF-implied noise equation
are closer to those reported previously, as should be expected in view of the correlation between
these series. The main conclusion, therefore, is that pricing errors from default single-factor models
can be consistently related to market-wide illiquidity variables as well as other indicators of financial
distress.
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3.7 Concluding remarks

The term structure of fixed-income derivative products must be consistently priced across maturities
under the absence of arbitrage opportunities. In practice, however, temporary discrepancies
between observed prices and theoretical values can arise as a consequence of market frictions
such as illiquidity. While the extant literature has documented both theoretically and empirically
the unmitigated influence of illiquidity-related costs on arbitrage-free option pricing models, the
evidence for other derivative markets is generally scarce, and plainly nonexistent for CDS. The
main objective of this chapter has been to contribute to this literature by documenting the existence
of systematic illiquidity-related patterns in the pricing errors implied by some of the most popular
pricing models used to value CDS spreads. To this end, we have implemented different panel-data
estimation techniques on a broad sample of sovereign CDS in 16 countries.

The main evidence in this chapter is remarkably robust and suggests that price discrepancies in
CDS markets can systematically be related to illiquidity factors. Pricing errors tend to be greater
during periods of significant distress, such as the collapse of Lehman Brothers or the European
debt crisis, as expected under the general arbitrage capital hypothesis. The panel-data analysis
identifies bid-ask spreads and a higher level of offsetting transactions as key economic determinants,
and even predictors, of greater pricing errors. The overall evidence is largely consistent with the
hypothesis that arbitrage capital exits the market during times of distress, causing assets to be traded
at prices significantly different to their fundamental value. Accordingly, theoretical pricing models
that fail to properly accommodate the additional compensation required for market maker risks can
systematically lead to pricing errors in this context.

This evidence is important for different agents, including investors who trade in the CDS market
and supervisory organisms that use CDS transaction prices as reliable indicators of the underlying
economic conditions. On the one hand, most investors trade in the CDS market for either speculative
or hedging purposes. For both types of agents, the evidence that state-of-the-art CDS pricing
models can generate prices that systematically depart from real prices is particularly relevant for
its economic implications. Investment decisions based on the theoretical prices generated by these
models may lead to suboptimal results in a distress scenario. On the other hand, regulators and
supervisory organisms often closely monitor financial and economic time series looking for signals
that may anticipate a financial weakening. The CDS market provides natural indicators for this end,
since CDS spreads convey information on market expectations of creditworthiness. However, if
CDS spreads are wrongly assumed to solely reflect default risk, the severity of the underlying market
conditions could be largely overestimated, particularly, during periods of distress. In this context,
transaction prices may no longer reflect fundamental values, but also include large illiquidity-
risk premiums, as directly suggested by the recent literature on the field, and confirmed from the
empirical findings in this chapter. The case of peripheral European countries in the midst of the
European sovereign crisis perhaps illustrates this point accurately, since sovereign CDS contracts
were traded at excessively high prices to solely reflect credit default risk premiums.



Chapter 4
Measuring Tail-Risk Cross-Country Exposures
in the Banking Industry

In this chapter we analyze the state-dependent risk-spillover in different economic areas. To this end,
we apply the quantile regression-based methodology developed in Adams, Füss and Gropp (2014)
approach to examine the spillover in conditional tails of daily returns of indices of the banking
industry in the US, BRICs, Peripheral EMU, Core EMU, Scandinavia, the UK and Emerging
Markets. This methodology allow us to characterize size, direction and strength of financial
contagion in a network of bilateral exposures to address cross-border vulnerabilities under different
states of the economy. The general evidence shows as the spillover effects are higher and more
significant in volatile periods than in tranquil ones. There is evidence of tail spillovers of which
much is attributable to a spillover from the US on the rest of the analyzed regions, specially on
European countries. In sharp contrast, the US banking system show more financial resilience against
foreign shocks.
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4.1 Introduction

Financial contagion has received considerable attention in empirical finance, particularly, after the
recurrent episodes of financial crisis that have followed the October 1987 stock market crash. The
main interest in this literature is to analyze how shocks to prices of certain financial assets are
transmitted into prices of other financial assets. Early papers analyzed the existence of Granger-
type causal relationships in the conditional mean of returns during periods of distress; see, for
instance, Eun and Shim (1989) and Becker, Finnerty and Gupta (1990); see also Longstaff (2010)
and Cheung, Fung and Tsai (2010) for recent analyses. In a similar vein, a considerable body
of research has analyzed causality in variance and time-varying conditional correlations aiming
to characterize the existence of volatility spillovers; see, among others, Hamao, Masulis and
Ng (1990), Engle, Ito and Lin (1990), King and Wadhwani (1990), Susmel and Engle (1994),
Baele (2005), and Dungey, Gonzalez-Hermosillo and Martin (2005). More recently, the severity
of the global recession has motivated a considerable interest in understanding the linkages that
interconnect financial losses during periods of distress, particularly, in financial institutions. This
systemic crisis, albeit initiated in the US subprime mortgage-backed securities market, resulted in
the collapse of major financial institutions, bankruptcies, declines in credit availability, and sharp
drops in global real Gross Domestic Product (GDP). This has motivated a new regulatory setting
in the banking industry in the aftermath of the crisis, and a rapidly-growing literature devoted to
systemic risk and tail-spillover modelling; see, among others, Segoviano and Goodhart (2009),
Acharya, Pedersen, Philippon and Richardson (2010), Adrian and Brunnermeier (2011), Brownlees
and Engle (2012), López-Espinosa, Moreno, Rubia and Valderrama (2012), Diebold and Yilmaz
(2012), Kim and Hwang (2012), and Rodríguez-Moreno and Peña (2013).

In this chapter, we characterize the existence of state-dependent risk-spillovers in the daily
returns of representative indices of the banking industry in different economic areas. The main aim
is to appraise the sensitivity that characterizes the local vulnerability of domestic banking sectors
to shocks originated in or transmitted by banks in a foreign area under different (stressed and non-
stressed) characteristic scenarios. This analysis allows us to formally identify the main transmission
channels in the international banking system and provide a quantitative risk assessment of the size
of contagion. Cross-country contagion in the banking industry typically occurs because large-scale
banks usually hold an important proportion of claims on foreign borrowers over total assets in
their balance sheets. A shock in a foreign counterparty that decreases the market value of these
claims leads to a balance-sheet contraction which may be further transmitted (and even amplified)
into the domestic system through the local interbank network. In this context, we can assess the
vulnerability to cross-country shocks in foreign countries by measuring the sensitivity of expected
losses in domestic banks to contemporaneous changes in the expected losses of foreign banks. In
this study, we consider different economic scenarios, all of which are endogenously determined by
the empirical distribution of expected losses in the local industry. Our main interest is to analyze
contagion under adverse market conditions.
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To this end, we focus on representative indices of the banking industry in the US, the UK,
peripheral and non-peripheral countries in Europe, and emerging-country economies. All these data,
focused on most of the major financial areas of the world, are directly available from Datastream.
The sample spans December 1999 through November 2013 and includes periods of expansion and
financial recession that caused considerable distress in the banking sector, more prominently, during
the 2007-2009 global recession, and the 2010 European sovereign debt crisis. Using these data, we
characterize the empirical links in the lower tails of the bank-industry portfolio returns building
on a variant of the two-stage quantile-regression methodology (henceforth 2SQR) implemented in
Adams, et al. (2014). The most distinctive feature of this methodology is that it generates state-
dependent estimates that are robust to endogeneity bias. Hence, we can consistently estimate the
coefficients that characterize the direction and the strength of financial contagion in a network of
bilateral exposures using a contemporaneous equation system. Based on these estimates, we address
the existence of significant cross-border vulnerabilities whose intensity can vary as a function of the
underlying economic conditions. Furthermore, we characterize impulse-response functions that
determine the rapidity and persistence of contagion of a shock under different economic scenarios.

Analyzing tail-interdependences requires suitable estimates of conditional expected losses, a
latent process that cannot be observed directly. While the analysis in Adams et al. (2014) is
conducted on GARCH-type based estimates of the VaR process of US institutions, we rely on
estimates of the Expected Shortfall (ES henceforth) process in our international sample. In the
financial industry, VaR is an important measure because it is normally computed to meet regulatory
capital. However, it has been widely criticized because it is not a coherent measure of risk (Artzner,
Delbaen, Eber and Heath, 1999) and, more importantly, it may be completely insensitive to extreme,
but infrequent market movements. In contrast, ES is a coherent risk measure that overcomes all
these critiques. We proceed to estimate ES at the usual 1% shortfall probability using the expectile-
based approach suggested by Taylor (2008a). Although other alternative estimation procedures are
available, expectile-based modelling does not require specification of the underlying distribution of
the data. This property is particularly appealing in the current context because it preserves the semi-
parametric nature of the 2SQR methodology. As a result, the main conclusions from our analysis are
not driven by any particular assumption concerning the formally unknown distribution of returns.

Our analysis provides specific insight into the degree of vulnerability of the banking industry in
the main economic areas in a global context. While previous studies have shown the existence
of tail-interconnections between individual banks and the global financial system (e.g., López-
Espinosa et al. 2012), our analysis provides a complete picture of bilateral relationships that feature
transmission channels. Consistent with the previous literature, the main results from our analysis
suggest that the degree of interconnectedness and, hence, financial vulnerability, largely increases
during periods of distress; see also King and Wadhwani (1990) and Ang, Chen and Xing (2006).
For instance, under normal market conditions, a one percent increase in the expected losses in the
US banking system increases the ES of core EMU banks by approximately 0.01 percentage points.
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Under adverse market circumstances, however, the same shock increases the expected losses by
nearly 0.072 percentage points. Similar results hold consistently on the remaining areas, showing
that cross-border contagion increases systematically and significantly during periods of distress.

This study also reveals directionality in cross-border contagion. According to our estimates, the
US banking sector is the greatest source of financial contagion in the financial industry. In a stressed
scenario, the largest estimates of cross-country spillover coefficients are systematically related to
this country. While previous literature in contagion agrees that shocks that originate in the US are
larger and more persistent (Hamao et al., 1990), and that the US is a major exporter of volatility in
financial markets (Theodossiou and Lee, 1993), there are specific reasons that explain the systemic
relevance of the US banking industry. The global vulnerability to the US stems from the fact
that large-scale local banks with a specific weight in the local sector are typically internationally-
diversified institutions for which, characteristically, a large portion of their foreign exposures and
cross-border activities over total assets are held on US-issued financial instruments; see, among
others, Weistroffer and Möbert (2010) and Degryse, Elahi and Penas (2010). Hence, write-downs
can have a direct impact on the balance sheets of these banks, which are further transmitted to
other domestic banks through the local network. As a result, most financial sectors are particularly
vulnerable to idiosyncratic shocks originating either directly or indirectly in the US.

On the other hand, and in sharp contrast, the US banking system tends to show more financial
resilience against foreign shocks. When compared to European banks, the characteristic business
model in US banks is featured by a combination of low foreign lending to total assets ratio and low
borrower concentration (Weistroffer and Möbert 2010). As a result, US banks use local lending
more intensively than European banks and, simultaneously, their foreign lending activities are more
diversified across different countries. While our analysis makes clear that the US banking sector
is vulnerable to shocks in European countries (particularly, the UK) as well as emerging-market
economies, this characteristic business model would make the system more resilient to these shocks.
This evidence seems particularly relevant for central banks and international supervisors concerned
with macroprudential policies to mitigate systemic risk, since low borrower concentration could be
a determinant factor to limit the systemic importance of financial institutions. This issue merits
attention in further research.

The remainder of this is chapter organized as follows. Section 4.2 introduces the methodology
implemented to estimate ES and characterize risk spillovers through 2SQR. Section 4.3 presents the
data and discusses the main stylized features. Section 4.4 discusses the estimation of the ES process
on the data. Section 4.5 presents the main results from the 2SQR analysis. Finally, Section 4.6
summarizes and concludes.
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4.2 Measuring tail interdependences

We start our analysis by introducing mathematical notation and technical definitions in order to
characterize risk spillovers. Since our modelling approach relies mainly on the expectile-based
methodology proposed by Taylor (2008a) to estimate ES, we first introduce this semi-parametric
procedure. We then discuss the main features of the 2SQR methodology used to characterize tail
spillovers in the global banking industry.

4.2.1 Estimating Expected Shortfall: an expectile-based approach

VaR, defined as the conditional quantile of the loss-function of a portfolio at a certain horizon, is
a fundamental tool for downside-risk measurement and risk management in the financial industry.
However, this statistic has been widely criticized because is not a coherent measure of risk. It is
not sub-additive and, more importantly, is insensitive to the magnitude of extreme losses as it only
accounts for their probability; see, among others, Artzner et al. (1999) and Acerbi and Tasche
(2002). The ES, proposed by Artzner et al. (1999), constitutes a valid alternative to VaR which has
gained increasing prominence.

Formally, ES is defined as the conditional expectation of the return of certain portfolio, rt , when
it exceeds the VaR threshold VaRt (λ ) associated to a certain shortfall probability λ ∈ (0,1) , i.e.,

ESt (λ ) = E (rt | rt <VaRt (λ )) (4.1)

noticing that VaRt (λ ) denotes the λ -quantile of the conditional distribution of rt , i.e., it verifies
Pr(rt ≤VaRt (λ ) |Ft−1) = λ , where Ft is the set of available information up to time t.

The estimation of the ES process can be more demanding than VaR and typically requires
explicit assumptions on the conditional distribution of the data; see McNeil, Frey and Embrechts
(2005). Taylor (2008a) introduced a procedure based on the expectile theory developed by Aigner,
Amemiya and Poirier (1976) and Newey and Powell (1987) that seems well suited for modelling
both ES and VaR. The distinctive characteristic of this methodology is that it builds on estimates
of the conditional dynamics of expectiles, a quantile-related statistic that can be related to ES.
The main advantage of this procedure is that it yields estimates of the ES process without relying
on a particular distribution; see Kuan, Yeh and Hsu (2009), and De Rossi and Harvey (2009) for
related approaches. In the remainder of this subsection, we review the concept of expectiles and its
connection with ES, introducing the procedure suggested by Taylor (2008a).

Let {yt} , t = 1, ...,T, be a stochastic process with finite moments E (|yt |κ) for some positive
large enough κ . For ease of exposition, we assume that {yt} is a martingale difference sequence
(MDS) such that E (yt |Ft−1) = 0. This assumption implies no loss of generality in practice, since
we can consider the residuals from a demeaned process otherwise, as is customary in the literature
devoted to downside risk modelling. For certain constant parameter θ ∈ (0,1) , the population θ -
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expectile can be defined as the minimizer of an asymmetrically-weighted sum of squared errors,
namely,

min
mθ∈R

T

∑
t=1

[
θ(yt −mθ )

2I(yt ≥ mθ )+(1−θ)(yt −mθ )
2I(yt < mθ )

]
(4.2)

where I(·) denotes the indicator function.1 It is easy to see that when θ = 1/2, the so-called
Asymmetric Least-Squares (ALS) estimate of mθ reduces to the sample mean. Therefore, in the
same way in which quantiles generalize the median for θ ̸= 1/2 (in the sense that the θ -quantile
specifies the position below which 100θ% of the probability mass of the random process Y lies),
expectiles generalize the mean for θ ̸= 1/2. In particular, the expectile function (4.2) determines the
value point such that 100θ% of the mean distance between this value and Y comes from the mass
below it; see Yao and Tong (1996). Kuan et al. (2009) provide an additional economic interpretation
for expectiles in a financial risk setting. According to these authors, mθ can be seen as the ratio of
expected margin shortfall to the expected total cost of the capital requirement and, hence, represents
the relative cost of the expected margin shortfall in the derivative contracts framework.

Expression (4.2) can be generalized straightforwardly to allow for time-varying conditional
dynamics, considering a measurable function, say m(xt ;βθ ) , with xt denoting a k-dimensional
vector of covariates and βθ a conformable vector of unknown parameters. Setting m(xt ;βθ ) = x′tβθ ,

Newey and Powell (1987) show the consistency and asymptotic normality under the i.i.d condition
of the ALS estimator β̂θ , defined as the solution of

min
b∈Rk

T

∑
t=1

[
θ u2

t
(b) I(ut (b)≥ 0)+(1−θ)u2

t
(b) I(ut (b)< 0)

]
(4.3)

with ut (b) := yt −m(xt ;b). Kuan et al. (2009) generalize this setting, permitting stationary and
weakly-dependent data under suitable regularity conditions.

As pointed out by Koenker (2005), linear conditional quantile functions in a location-scale
setting imply linear conditional expectile functions, and so there is a convenient rescaling of the
expectiles to obtain the quantiles and vice versa. The existence of a one-to-one mapping implies that
the conditional θ -expectile is equivalent to the, say, λθ -quantile, where the latter is characterized
by the probability with which observations would lie below the conditional expectile, noting that
typically θ < λθ for values in the lower tail (Efron 1991). Because any expectile is also a quantile,
conditional expectile functions can be used to estimate VaR functions given a suitable choice of
θ that ensures the desired λ -coverage level; see, for example, Taylor (2008a) and Kuan et al.
(2009). The advantage of conditional expectile regressions over quantile regressions is that the ALS
loss-function (4.3) is absolutely differentiable, so computing conditional expectiles is considerably

1Note the similitude between expectiles mθ and quantiles, say qθ , since the latter arise as the solution of the objective
function minqθ ∑T

t=1 [θ |yt −qθ | I(yt ≥ qθ )+(1−θ)|yt −qθ | I(yt < qθ )] .
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simpler. More importantly, as shown by Newey and Powell (1987), the asymptotic covariance
matrix of the parameters can be determined without estimation of the density function of the errors.

Newey and Powell (1987) and Taylor (2008a) discuss the theoretical relationship between
expectiles and ES. In particular, for a MDS process, it follows that

ESt (λθ ) =

(
1+

θ
(1−2θ)λθ

)
mt (θ) (4.4)

where the short-hand notation mt (θ) := m(xt ;βθ ) shall be conveniently used in the sequel to
simplify notation. Hence, the ES at certain shortfall level λθ is proportional to the λθ -th empirical
quantile, which in turn could be estimated as the θ -th conditional expectile. The fact that ES can be
seen as a simple rescaling of a suitable expectile is not surprising since, as pointed out by Newey
and Powell (1987), mt (θ) is determined by the properties of the expectation of the random variable
Y conditional on Y being in a tail of the distribution. Consequently, expression (4.4) allows us
to generate estimates of the ES process without making any explicit assumption on the particular
distribution of the data, only specifying the functional form that characterizes mt (θ) as a function
of (unknown) parameters. More generally, Yao and Tong (1996) have discussed non-parametric
techniques to infer this process.

In the same spirit as the class of non-linear quantile models introduced by Engle and Manganelli
(2004), Taylor (2008a) considers a non-linear autoregressive-type specification for the conditional
expectile function. In this class of models, mt (θ) varies smoothly over time and depends on the
lagged values of the volatility process as proxied by |yt |. For instance, the so-called Symmetric
Absolute Value (SAV) model assumes

mt (θ) = β0 +β1mt−1 (θ)+β2|yt−1| (4.5)

which implies that the ES process is driven by

ESt(λθ ) = γ0 + γ1ESt−1(λθ )+ γ2|yt−1| (4.6)

with γ1 = β1, and γi = βi

[
1+ θ

(1−2θ)λθ

]
, i ∈ {0,2} .

This parametric specification is strongly reminiscent of the characteristic GARCH-type equation
used to model the conditional variance of returns, widely known because of its parsimony and
superior forecasting power in practice. In fact, if {yt} is an MDS with conditional volatility σt

driven by the linear GARCH model of Taylor (1986) (namely, σt = ω0 +ω1σt−1 +ω2 |rt−1|; ω0 >

0, ω1,ω2 ≥ 0), then both the conditional quantile and the expectile functions are driven by SAV-type
dynamics, and so is the ES process, although the contrary is not necessarily true. Because of the
simplicity, we shall estimate ES using (4.6), noting that the main conclusions are not qualitatively
different from other alternative specifications that involve further parameters such as asymmetric
expectile-based model.
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4.2.2 Two-stage quantile regression

Given the shortfall probability λ , let ES∗it (λ ) t = 1, ...,T, i ∈ S , denote the estimates of the ES
process related to the banking sector in the economic area i, with S representing a certain set of
such areas. The superscript emphasizes that we build on feasible estimates of the unobservable latent
process obtained, for instance, by applying the procedures described in the previous section. Recall
that our main interest is to characterize the bilateral relationships that may arise contemporaneously
between the tails of the conditional distributions of the domestic indices included in S .

To this end, we may run a system of linear regressions. Thus, for any i ∈ S , we may regress
ES∗it (λ ) on the estimates of the remaining ES processes in S , possibly accounting for persistence
through lags of the dependent variable, and additionally including a number of controlling variables,
say (z1t , ...,zkt)

′. For instance, if we assume first-order autoregressive dynamics, our interest is to
estimate the system of equations:

ES∗it (λ ) = αi +ϕiES∗it−1 (λ )+ ∑
s∈S
s ̸=i

δi|sES∗st (λ )+
k

∑
l=1

ξilzlt + εit (4.7)

for all i ∈ S , where εit is a random error term, and the parameters δi|s would capture the intensity
of the tail spillover in portfolio i given portfolio s. Note that the analysis recognizes bidirectionality
in tail spillovers, since it may generally follow that δi| j ̸= δ j|i, for any i, j ∈ S , i ̸= j.

In the estimation of this system, two important features should be noted. First, the size of the
cross-border risk-spillover coefficients δi|s are likely to vary depending on the underlying economic
conditions. During normal or tranquil periods, tail-interrelations may be of little or no economic
importance, yet become largely significant in periods of financial distress, particularly when dealing
with portfolios related to the banking industry; see, for instance, Adrian and Brunnermeier (2011),
López-Espinosa et al. (2012). More importantly, the ES processes involved in (4.7) are generated
simultaneously, so least-squares (LS) and other standard estimation procedures may not render
consistent estimates in this context owing to endogeneity.

While a number of alternative procedures are possible, the 2SQR methodology implemented in
Adams et al. (2014) overcomes both challenges in a simple and particularly tractable way. First, the
procedure builds on the quantile-regression (QR) methodology at different quantiles τ ∈ (0,1) of the
distribution of the left-hand side ES process in (4.7) to endogenously capture state-related effects
on the coefficients δi|s; see Koenker (2005) for an outstanding overview of the QR methodology.2

Note that, while the shortfall probability λ that defines the ES process is fixed in our analysis (e.g.,

2The LS methodology is useful to characterize the conditional mean of the dependent variable in a (linear) regression
given the set of regressors. When the series take values that depart from the center of the distribution, LS-based estimates
may not capture accurately the underlying relationship between the dependent variable and the regressors, leading to
misleading conclusions. When the main interest is to characterize the relationship during extreme or ’abnormal’ periods,
the quantile-regression methodology is better suited, as it is specifically intended to characterize parameters at any
quantile of the conditional distribution of the data.
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λ = 0.01), we can consider a sequence of quantiles {τn} that characterize the sample distribution of
ES∗it (λ ) to capture the effects of different economic scenarios on the coefficients δi|s. Normal and
tranquil periods would feature the upper tail of the conditional distribution of ES∗it (λ ), whereas low
percentiles in the left tail would be determined by the excess of volatility observed during periods
of financial distress. Second, the 2SQR procedure uses the same estimating strategy as the well-
known two-stage least squares (2SLS) in order to correct the endogeneity bias. In particular, the
endogenous right-hand side variables, ES∗st (λ ), are replaced with suitable predictions from ancillary
equations based on (weakly) exogenous variables; see, Amemiya (1982), Powell (1983), and Kim
and Muller (2004).

Consequently, in the spirit of Adams et al. (2014), we consider the system of quantile-regression
equations

ES∗it (λ ) = αi (τ)+ϕi (τ)ES∗it−1 (λ )+ ∑
s∈S
s ̸=i

δi|s (τ)ES∗st (λ )+
k

∑
l=1

ξil (τ)zlt + εit (4.8)

for all i ∈ S , and estimate the parameters involved in these equations using the 2SQR procedure.
Note that the size of all parameters may vary on the τ quantile. While we shall consider a broad
range of quantiles τ ∈ [0.1,0.9] in a general estimation of this equation system, for the sake of
conciseness we shall report and discuss the results focusing on the representative quantiles τ = 0.15,
τ = 0.5, and τ = 0.85. These quantiles in the left, center, and right tail of the empirical distribution
of ES∗it (λ ) characterize the local banking sector during volatile (or excited), normal (or average),
and tranquil (or low-volatile) periods, respectively.

The 2SQR methodology proceeds as follows. In the first stage, the right-hand side variables
ES∗st (λ ) that characterize the i equation in (4.8), s ∈ S , s ̸= i, are regressed on a set of instruments
to generate predicted values, say ES∗∗st (λ ) , which are computed as the fitted values from LS
instrumental estimation. Following standard practices, we take a constant and a number of lags
from the right-hand side variables ES∗st (λ ) as instruments. Note that, in order to ensure that the
system is identified, the set of instruments does not include lags from the left-hand side variable,
ES∗it−l (λ ) , l ≥ 1; see Adams et al. (2014).3

In the second stage, the set of equations (4.8) are estimated individually using QR, treating
the first-stage predicted values ES∗∗st (λ ) as regressors. Under sufficient conditions, this procedure
yields consistent and asympotically-normal distributed estimates of the main coefficients in (4.8);
see, for instance, Powell (1983) and Kim and Muller (2004). The estimation of the covariance
matrix in this context, however, may not be trivial, because it depends on a number of nuisance
terms that characterize both the variability of the main parameter estimates in the main equation as

3This restriction implies that lags of the dependent variable only affect the ES of the i region. In other words, after
controlling for contemporaneous spillovers from other areas, there is no additional spillover effect in a certain area
related to the lagged values of the ES in other areas.
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well as the parameter uncertainty stemming from the first-stage estimation. To deal with this issue,
we implement a bootstrapping scheme based on the maximum entropy algorithm proposed in Vinod
and López-de-Lacalle (2009); see also Chevapatrakul and Paez-Farrel (2014) for related work.

4.3 Data

The dataset used in this chapter is formed by daily continuously compounded returns from value-
weighted portfolios representative of the local banking industry in different economic regions. The
choice of portfolio data allows us to eliminate the idiosyncratic noise that may affect the main
conclusions in a study on individual firms. The sample comprises the period from 31/12/1999
through 07/11/2013, with 3,596 daily observations. Data are directly available from Datastream,
which provides closing prices of different banking-industry indices in the following economic
regions: US, UK, Peripheral EMU area (PE), Core EMU area (CE), Scandinavia area (SC), the
so-called BRICs area (BR), and Emerging Markets (EM). Together with this regions, we consider
a Global Banking index (GB) to control for exposures to global shocks. All these indices are
formed by the main banks which are publicly traded in the countries that make up the different
economic areas. In turn, publicly-traded banks are usually bank-holding companies characterized
by a representative size in the local industry, sophisticated business models, and intense cross-border
activities. All these characteristics are commonly associated to systemic importance. As in other
studies concerned with systemic risk in the global banking industry, returns are computed from
prices denominated in US dollars; see López-Espinosa et al. (2012).

The PE index, referred to as PIIGS index in Datastream, is formed by the main banks in
Greece, Ireland, Italy, Portugal, and Spain. The CE index includes the main banks in countries
that belong to the EMU, but not to the PE area, namely, Austria, Belgium, Cyprus, Finland, France,
Germany, Luxembourg, Malta, Netherlands, and Slovenia. Scandinavia is formed by banks based
in Denmark, Finland, Norway, and Sweden. We distinguish between PE and CE because both
areas are characterized by different macroeconomic drivers and because these areas exhibited a
considerable heterogeneity in response to the systemic shocks. The Scandinavian countries and
the UK have local currencies, which provides them with an invaluable tool to handle an adverse
economic scenario through currency devaluation.4 The BR index is formed by banks in the so-
called BRIC area, namely, Brazil, China, India, and Russia. It represents a subarea of emerging
economies that has undergone remarkably strong development over the recent years. The EM is
a global banking index formed by 300 banks operating in emerging-market economies, mainly,
Central and Eastern Europe, Asia, and Latin America. Similarly, the GB is an index representative
of the global banking industry. It pools data from 536 banks around the world. Appendix B provides
a list with the banks included in any of these areas.

4Note that the SC index includes Finland, a country in the EMU area. Nevertheless, this country contributes with
two banks to the total index. In our view, this is unlikely to introduce any form of bias.
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Table 4.1 reports the usual descriptive statistics on the returns of all these indices. Returns at the
daily frequency exhibit the usual stylized features, such as time-varying volatility, skewness, and
excess kurtosis. Analysis of the (annualized) mean and volatility reveals the consequences of the
financial crises in the banking sector, particularly, in advanced economies. Returns in the banking
industry of the US and EMU areas over the period analyzed are characterized by large levels of
volatility –mainly, in the second half of the sample– and low average returns. More specifically, the
annualized mean return is approximately zero in the US (0.09%), and negative in the CE (-3.50%)
and the UK (-4.02%). Countries in the peripheral EMU area have suffered the consequences of
the crises more intensely, and exhibit the lowest mean annualized return (-5.04%) in the sample.
On the other hand, banks in emerging countries have shown more resilience to the global financial
recession and the subsequent European sovereign debt crisis. The returns in emerging countries
over the period are characterized by lower volatility levels and higher mean returns.5

Table 4.1: Descriptive statistics for daily returns of representative indices of the local banking-
industry in different economic regions

Region Meana Mediana Std.a Min. Max. Skew. Kurt.
US 0.0960 0.9463 32.4195 -0.1774 0.1602 0.0903 17.1664
BR 12.1923 25.9466 26.7714 -0.1062 0.1434 0.0154 9.7893
PE -5.0453 4.4639 31.2875 -0.1061 0.1860 0.1738 10.0923
CE -3.5099 12.0845 34.2854 -0.1338 0.1641 0.0716 9.9634
UK -4.0268 12.0845 33.8417 -0.2161 0.1954 -0.1537 16.0296
SC 7.1017 4.6113 32.2620 -0.1462 0.1489 0.1792 10.6774
EM 8.2132 25.4218 20.4843 -0.0928 0.1130 -0.3839 10.9448
GB 0.9145 16.3191 20.5831 -0.0865 0.1244 -0.0792 16.0296

This table shows the main descriptive statistics for bank portfolio daily returns in the set of regions
considered: US (United States), BR (BRICs), PE (Peripheral EMU), CE (Core EMU), UK (United
Kingdom), SC (Scandinavia), EM (Emerging Markets), GB (Global Banking). Mean, median and
standard deviation are computed by annualizing return data. Minimum, maximum, skewness,
kurtosis and sample size are computed from daily return data.

4.4 Estimating Expected Shortfall

To estimate the ES process of the returns, we set λ = 0.01, the regulatory shortfall probability level
required by Basel disposals and the most common choice in downside-risk analysis. The daily

5Some caution should be applied when comparing the mean-variance profile across these areas because of the
influence of cross-country diverisfication. Whereas the US- and UK-related ones are country specific indices, the other
series represent the banking industries in different countries, which introduces a certain level of diversification.



102 Chapter 4.

frequency is consistent with the holding period targeted for internal risk control by most financial
firms; see, among others, Taylor (2008b). Consistent with standard procedures in downside-
risk analysis, we compute ES on demeaned returns, r̃t , determined as the residuals from a first-
order autoregression; see, for instance, Poon and Granger (2003). The ES processes are then
estimated individually for any of the economic areas using the expectile-based model discussed
in the previous section. In particular, given λ = 0.01, the latent conditional expectile in the i-th
area is assumed to obey time-varying dynamics given by mit (θ) = βi0 +βi1mit−1 (θi)+βi2|r̃it−1|,
t = 1, ...,T. In the same spirit as Engle and Manganelli (2004), we initialize mi0 (θi) to the empirical
θi-expectile based on the first 300 observations in the sample for each series. Giving θi, the unknown
parameters (βi0,βi1,βi2)

′ that characterize the time-varying dynamics of ES are determined as the
numerical solution of the ALS problem (4.3) . Following Efron (1991) and Taylor (2008a), θ̂i is
optimally determined as the value for which the proportion of in-sample observations lying below
the conditional expectile, say λ̂i,T , matches the shortfall probability λ = 0.01 that characterizes
exceptions in the ES. To this end, we estimated the model for different values of this parameter,
using the optimization procedure described in Engle and Manganelli (2004) and Taylor (2008a)6, in
a trial-and-error algorithm with stopping rule |λi− λ̂i,T |< 10−06. Note, therefore, that the estimates
of ζi = (βi0,βi1,βi2;θi)

′ are determined simultaneously in this context, and the values ensure that
the empirical coverage probability λ̂i is approximately 0.01.

Table 4.2 reports the ALS estimates for the different economic areas analyzed. Since the
latent ES is a volatility-related process, the estimates of the ES are strongly persistent, with the
autoregressive coefficient β1 = γ1 ranging from 0.69 (UK) to nearly 0.90 (PE). Similarly, absolute-
valued returns, the most common proxy of volatility in practice, have a strong influence on ES.7

On average, the value of the optimal expectile θ is 0.002, which as expected, is smaller than the
target quantile, λ = 0.01. Table 4.2 also reports the p-values of several test statistics which are
routinely implemented to backtest VaR-type forecasts. Since expectiles can be used to estimate
VaR, as discussed previously, we can analyze if the resultant estimates provide a reasonable fitting
to the data using backtesting procedures on the in-sample estimates m̂t (θ) , t = 1, ...,T . More
specifically, we implement the unconditional coverage test by Kupiec (1995) and the conditional
coverage test by Christoffersen (1998). The Kupiec test requires the empirical coverage λ̂ to be
close enough to the nominal λ = 0.01. Since the optimal value of θ is chosen under the condition
that λ̂ must match λ , correct conditional coverage is trivially ensured. The conditional tests by
Christoffersen (1998) address simultaneously the hypotheses of correct unconditional coverage and
first-order independence in the sequence of VaR exceptions. Table 4.2 shows massive p-values

6We randomly generate 1000 parameter vectors in order to evaluate the ALS loss-function. The ten vectors that
produced the lowest values were then used as initial values in a Quasi-Newton algorithm. The estimates from the vector
producing the lowest value in the loss-function is to be chosen as the final parameter vector.

7Note that the estimates of β2 in the expectile-related equation (and, hence, γ2 in the ES-related equation) are
negative, reflecting that higher levels of volatility give rise to a greater ES. While it is costumary to report both VaR in
ES in absolute levels (as it is understood that they refer to losses), we respect the negative sign that characterizes both
downside-risk measures according to the definitions in Section 4.2.
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associated to both test statistics. The overall evidence suggests that expectiles do not generate
unreliable estimates for downside risk modelling; see also Taylor (2008a). 8

Table 4.2: Expected Shortfall processes parameters estimation from the expectile-based SAV model
in equations (4.5) and (4.6) for the set of analyzed regions

Region βi0 βi1 βi2 γi2 θi λ̂i pvTUC pvT I pvTCC

US -0.0010 0.8645 -0.3804 -0.4867 0.0028 0.0100 0.9947 0.3934 0.6948
BR -0.0033 0.7952 -0.4080 -0.4809 0.0018 0.0100 0.9947 0.4001 0.6930
PE -0.0009 0.8975 -0.2561 -0.3153 0.0023 0.0100 0.9947 0.3934 0.6948
CE -0.0017 0.8507 -0.3757 -0.4304 0.0014 0.0100 0.9947 0.3757 0.6754
UK -0.0034 0.6900 -0.8902 -1.0932 0.0023 0.0100 0.9947 0.3646 0.6545
SC -0.0010 0.8874 -0.2897 -0.3557 0.0023 0.0100 0.9947 0.3934 0.6948
EM -0.0022 0.8043 -0.4165 -0.5337 0.0028 0.0100 0.9947 0.3934 0.6948
GB -0.0008 0.8815 -0.2849 -0.3487 0.0022 0.0100 0.9947 0.4001 0.6930

This table presents the ALS ES parameter estimation from the expectile-based SAV-model in
the entire set of regions considered for equations (4.5) and (4.6) and the main backtesting tests.
The last three columns present the p-value for TUC, TI and TCC that denote the results for
Unconditional Coverage, Independence and Conditional Coverage test. ES are estimated from
daily demeaned returns of bank indices.

Table 4.3 reports the usual descriptive statistics for the estimates of the expectile-based ES
processes as well as the sample correlation between these series. The daily average ranges from
-3.84%, for the emerging market index EM, to -6.24%, in UK, the country with the lowest daily
return in the sample. These series show a considerable degree of dispersion, with minimum values
that, for instance, reached -38.57% in the UK in March 2009. The analysis on sample correlations
shows that extreme expected losses in the banking industry are largely correlated across different
countries and economic areas, with correlations ranging from 51% (for the pair PE and BR) to 91%
(for the pair PE and CE). This evidence suggests a considerable degree of commonality and the
existence of global trends or common factors that propitiate systemic risk in the banking industry.9

Finally, Figure 4.1 shows the time-series of (demeaned) returns and the expectile-based
estimates of the ES for each economic area in the sample. As expected, ES exhibit persistent
time-varying dynamics characterized by massive bursts of volatility which are directly related to the
events that characterized a backdrop of extreme volatility associated to the episodes of crises in the
sample.

8We obtain similar conclusions using alternative ES models such asymmetric expectile-based model and different
parametric specifications based on GARCH model volatility estimates.

9Several papers have exploited commonality to characterize systemic risk. For instance, Rodríguez-Moreno and
Peña (2013), who use the first principal component in CDS spreads to measure systemic risk.
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Table 4.3: Descriptive statistics and correlations for the estimates of the expectile-based Expected
Shortfall processes from equation (4.6) for the set of analyzed regions

Panel A.- ES Descriptives Statistics
Region Mean Median Std. Min. Max. Skew. Kurt.
US -0.0537 -0.0423 0.0377 -0.2563 -0.0155 -2.5469 10.5655
BR -0.0462 -0.0429 0.0159 -0.1931 -0.0250 -3.6073 23.3516
PE -0.0517 -0.0439 0.0245 -0.1804 -0.0198 -1.4161 5.2391
CE -0.0544 -0.0455 0.0279 -0.1997 -0.0211 -1.8280 6.8485
UK -0.0624 -0.0520 0.0382 -0.3857 -0.0178 -2.8131 14.9801
SC -0.0533 -0.0440 0.0282 -0.1972 -0.0219 -2.2824 8.9210
EM -0.0384 -0.0344 0.0151 -0.1802 -0.0197 -3.5055 22.7557
GB -0.0337 -0.0296 0.0163 -0.1353 -0.0161 -2.4042 14.9801

Panel B.- ES Correlations
Region US BR PE CE UK SC EM GB
US 1.00
BR 0.65 1.00
PE 0.66 0.52 1.00
CE 0.77 0.64 0.91 1.00
UK 0.82 0.65 0.71 0.82 1.00
SC 0.85 0.67 0.84 0.91 0.83 1.00
EM 0.70 0.87 0.62 0.72 0.71 0.76 1.00
GB 0.91 0.77 0.80 0.90 0.86 0.93 0.83 1.00

Panel A presents the main descriptive statistics (mean, median, standard deviation, maximum,
minimum, skewness and kurtosis) of the Expected Shortfall processes at the shortfall probability
λ=0.01 for the daily demeaned returns banks portfolios corresponding to the whole set of regions
considered. Panel B shows the cross correlations between the Expected Shortfall estimations.
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4.5 Risk spillovers in the global banking industry: 2SQR
estimation

Given the expectile-based estimates, we now discuss the main results from 2SQR estimation. In the
implementation of this methodology, we follow Adams et al. (2014) and estimate equation system
(4.8) , controlling for variables that may systematically affect the left-hand side variables. Because
the banking industry is vulnerable to global trends, as discussed previously, we use the ES of the
global banking index GB to capture the exposure of banks in domestic areas to this class of shocks.
This ensures that the spillover coefficients δi|s that relates bank losses in two economic areas can be
interpreted in a causal way, as they characterize vis-à-vis the cross-border transmission of downside
risk once global-related effects are controlled for.10 Furthermore, the inclusion of a global variables
allows us to circumvent potential concerns related to neglected variables, for instance, associated to
economic areas or individual countries which are not explicitly acknowledged in our analysis. The
potential influence of all these areas is briefly resumed in the global index.

In addition, we consider two sets of economic regions. The first one focuses on tail
interdependences in the US, peripheral and non-peripheral EMU countries, and emerging markets,
namely, SB = {US,CE,PE,EM} . While this baseline set includes a reduced number of economic
areas, these are of major global economic relevance and have been subject to considerable financial
stress. This analysis allows us to present a detailed analysis, focused on the main interactions of this
limited set. This discussion shall be completed later by considering an extended set which includes
all the economic regions considered in this chapter, SE = {SB,UK,SC,BR}. This analysis not only
provides a more complete picture, but also allows us to address whether conclusions are generally
sensitive to the omission of potentially economic regions.

4.5.1 Basic equation system

4.5.1.1 Main results

Table 4.4 reports the parameter estimates from equation system (4.8) given the set of countries
SB = {US,CE,PE,EM} , the shortfall probability λ = 0.01, and the representative quantiles
τ ∈ {0.15,0.50,0.85} that characterize the underlying economic conditions in the local industry
that receives the spillover. In this system, we allow the global banking index GB to have feedback
effects with the areas in SB by modelling in the same way, i.e., the full system is estimated with 5
equations. Our main interest is in the coefficients δi|s (τ) and ξi (τ) in these equations. The former
capture the contemporaneous response in the ES of the banking system in area i against a one percent

10In the literature of financial contagion, it is usual to distinguish between shock transmission through common
channels, which affect multiple countries at the same time (e.g., through blanket withdrawals by common lenders),
or through country-specific channels, which depend on variables that characterize country-specific financial and trade
linkages. Our modelling approach implicitly captures both channels.
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change in the ES of the banking system in area s. Similarly, the latter capture the exposure of the
domestic banking system to systematic shocks in the global financial system. Statistical significance
at the usual confidence levels is determined on the basis of maximum entropy bootstrap of Vinod
and López-de-Lacalle (2009).

The estimates of ξi (τ) are positive and significant during normal periods (τ = 0.50). This result
shows that the conditional median of expected losses in the banking industry is driven by a global
component, which essentially agrees with the correlation analysis discussed previously (see Table
4.3). For instance, the parameter estimates ξ̂PE and ξ̂CE in EMU areas show that, during normal
market periods, a one percent shock in the ES in the global system will increase the average ES of
banks in PE and CE by 0.036% and 0.017%, respectively. Clearly, the exposure to global shocks
under normal market conditions tends to be smaller for economies with better macroeconomic
fundamental (US and CE), while economies which traditionally have had greater inflation ratios
and higher unemployment rates (PE and EM) are more vulnerable to systemic shocks.

The picture that emerges under the two extreme scenarios in the tails is different. During tranquil
periods (τ = 0.85), the estimates of the slope ξ are not significant in any of the areas except
in the US.11 Hence, the small bank losses that typically occur during calm periods tend to obey
idiosyncratic patterns which, in general, are not related to other areas. On the other hand, during
periods of financial distress (τ = 0.15), the local vulnerability to global systematic shocks largely
increases and becomes highly significant in all the areas. Note, for intance, that the relative ratio
ξ̂ (0.15)/ξ̂ (0.5) is 4.15 on average, showing a sizeable increment in the overall sensitivity. This
ratio is particularly large (7.46) in non-peripheral EMU countries. According to Table 4.4, banks
in the Eurozone are more vulnerable to global shocks under a stressed scenario than banks in other
areas. This general pattern is fully evident in Figure 4.2, which shows the shapes of the estimated
coefficient functions ξ̂i(τ), i ∈ SB, as a function of the quantiles τ ∈ [0.10,0.90]. Clearly, banks
in both peripheral and core EMU exhibit the largest vulnerabilities to global shocks under adverse
market circumstances. The lack of a common regulatory setting and a banking supervisory system,
as well as the absence of effective instruments to handle the consequences of a systemic crisis (e.g.,
the collapse of large-scale banks), have been pointed out as major weaknesses of the European
financial industry. It was not until June 2012 when EU authorities committed to making decisive
steps towards creating an effective Banking Union, adopting measures that, among others, will lead
to the implementation of a single supervisory mechanism and a common bank resolution program.

The estimates of the autoregressive coefficient ϕi lie in the neighborhood of unit. This is
expected because, as shown in the previous section (see Table 4.2), ES is a persistent process.
Consistent with the evidence reported by Adams et al. (2014), these estimates are strictly smaller
than unit during tranquil and normal periods, characterizing mean-reverting paths, and tend to be
slightly greater than one during periods of distress, suggesting non-linear or explossive patterns.

11The coefficient remains positive and significant at the 95% confidence level. In contrast to other countries, the
US shows significant links to the global system even during calm periods. This evidence is probably related to the
importance and relative weight of the US banking system in the global financial system.
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Although explosive patterns are often related to model misspecification, in our view this evidence
is not particularly surprising in the current context. The dynamics of the 1% ES process during the
more volatile days that characterize lower quantiles are distinctively driven by the largest outliers in
the sample. An autoregressive coefficient equal to or greater than one is the only way in which an
autoregressive process can accommodate the non-linear patterns which are usually associated with
large volatility bursts that cause extreme market movements.

We now turn our attention to the coefficients δi|s that characterize cross-border tail contagion
between different economic areas. Consistent with the hypothesis that the conditional tails of
financial returns are prone to commove, the estimates δ̂i|s are mostly positive and highly significant,
particularly, in the excited state. Furthermore, and with regard to global shocks, the size of cross-
country spillovers are characterized by state-dependencies that lead to a great deal of variability
as a function of τ. In particular, cross-country spillovers are greater during periods of distress, but
tend to weaken and eventually vanish during calm periods. This general pattern is fully evident in
Figure 4.3, which shows the shapes of the estimated coefficient functions δ̂i|s(τ) for τ ∈ [0.10,0.90] .
This figure and the estimates of Table 4.4 make clear that the severity of financial contagions
under adverse conditions can be largely underestimated under normal market circumstances.
Consequently, and as noted in Adams et al. (2014), standard analyses that merely focus on the
conditional mean or the median analysis may lead to potentially misleading conclusions.

It is interesting to discuss the size of cross-border spillovers in the different banking systems as
a response to a shock in a certain economic area, i.e., analyzing the coefficients reported by columns
(second to sixth) in Table 4.4. For ease of exposition, we comment on the results in the most relevant
context characterized by stressed conditions (τ = 0.15). Under these conditions, all the regions –
including the global financial sector– become particularly sensitive to shocks in the US banking
system. In particular, during periods of local stress, a one percent increase in the ES of US banks
directly increases the local ES by 0.072% (CE), 0.043% (PE), and 0.041% (EM). US banks are the
main contributors to the ES of the global financial system under stressed conditions, noting that a
one percent increment in the expected losses of US bank increases the ES of the global financial
system by 0.041%. The idiosyncratic shocks originated in a country are further amplified indirectly
through the feedback effects caused by the network of cross-border exposures. For instance, every
percentage point increase in the ES of the global system caused by the shock in the US is further
transmitted into the local banking areas (including the US) with an intensity which ranges from
0.070% in emerging markets, to 0.127% in the CE.

Consequently, and according to the 2SQR estimates, the US banking system is the most
important source of financial contagion in the sample. Idiosyncratic shocks originated in this
country can affect all the other banking systems (particularly, those in European countries) which
are under stressed conditions. The main reason for the global systemic importance of this country is
that, when considering the international network of global cross-border exposures, the US banking
system has a central and predominant position, since the remaining countries typically hold large
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portions of US-issued financial assets, particularly, European countries. For instance, according
to the statistics elaborated by Degryse et al. (2010) on annual data from Bank for International
Settlements (BIS) Consolidated Banking statistics on reporting countries in the period 1996-2006,
the bank credits to the US represent, on average, 25%, 28%, and 30% of the total foreign credits
held by Germany, France, and Netherlands on reporting countries, respectively. The same ratio
ranges from 10% (Ireland) to 16% (Italy) in the PE area, showing a smaller exposition to the US.
European banks kept large holdings of illiquid US dollar assets which were financed with short-
term wholesale fundings and heavy reliance on cross-currency swaps; see McGuire and Von Peter
(2009). When the market value of these claims collapsed as a consequence of the subprime crisis,
European banks suffered massive losses, which were further amplified when the interbank and swap
markets became impaired in 2008; see Acharya and Schnabl (2010). The estimates in our analysis
successfully capture the sensitivity of EMU banks to the US and, furthermore, identify a greater
sensitivity in the core EMU area, characterized by a greater reliance on US lending.

The analysis of the spillover coefficients related to the PE banking system shows that the shocks
originated in this area –mainly associated to the European sovereign debt crisis– essentially had
a more local nature than those originated in the early stages of US subprime crisis. The system
with the largest vulnerability to shocks in the PE area is the one formed by the remaining banks
in the EMU area. The main economies in CE keep large holdings of debt issued by European
peripheral countries. Note, in Figure 3, that the exposure of CE to PE is highly significant for a
large range of percentiles τ but, once more, the interdependence seems stronger in the low quantiles
that characterized stressed conditions. In particular, for τ = 0.15, the average response of expected
losses of CE banks against a one percent shock in the ES of PE is 0.051%. In contrast, banks in
the US and emerging-market economies exhibit weaker exposures to this area. For instance, the
spillover coefficient of US on PE is 0.017. Although this coefficient is statistically significant, it
seems of little economic relevance. In a similar vein, the exposure of the global banking system
to the PE area is not significant. This evidence suggests that idiosyncratic shocks originating as a
consequence of the European sovereign debt crisis in peripheral Europe did not affect the remaining
banking systems systematically.

On the other hand, the systemic exposures of international banks to banks in the core EMU area
are much more important and largely significant in all cases. Among the different areas considered,
the US banking sector, with a tail spillover coefficient of 0.061, is the most vulnerable country to
shocks originating in the CE. This sensitivity is nearly twice as big as that in the remaining areas.
The reason underlying the vulnerability of US banks to CE banks relative to PE banks can be related
to the existence of strong bilateral borrowing activities between these areas. According to Degryse
et al. (2010), the aggregate claims on the reporting countries in the CE area (Austria, Belgium,
Finland, France, Germany and Netherlands) represent around 34% of the total foreign claims held
by US. Among these countries, Germany is the largest borrower, representing 17% of the foreign
bank credits issued by the US. In contrast, Italy, Portugal and Spain together represent 6% of foreign
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claims in the US system. Note that although the direct exposure of US to PE is relatively moderate
(the estimated spillover coefficient is 0.017), as discussed previously, the network of cross-border
interconnections within the EMU defines a powerful indirect channel of contagion through the CE
such that idiosyncratic shocks originated in peripheral EMU countries could spread to CE and, from
here, to other economic areas, particularly, the US.

Finally, the 2SQR estimates reveal that, under adverse market conditions, the banking sectors
in the US and the Eurozone are sensitive to shocks in emerging-market economies. Over the
last decades, emerging-market economies have evolved from being peripheral players to become
systemically important trade and financial centers (IMF, 2011a). Financial linkages between
advanced and emerging economies are now stronger and as a result advanced economies are more
exposed to the latter group. In the years preceding the global recession, the bigger banks of these
areas increased their participation in emerging markets through local affiliates, which resulted in
increased networks of bilateral exposures; see Tressel (2010). Financial exposures to emerging
markets are mainly concentrated in foreign bank claims (IMF, 2014). According to our analysis, the
exposure to emerging-market risk spillovers varies in importance across the three different regions
analyzed, with the US being the banking sector with the largest vulnerability. The size of the US
spillover coefficient is 0.065, which nearly doubles the size of the two EMU countries.

The relative sensitivity of the US economy to emerging-country economies poses a serious threat
that has been recently outlined by an International Monetary Fund report. This report estimates that
a current drop of one percentage point in emerging-market GDP could hit US GDP by around a
fifth of a percentage point; see IMF (2014). This estimate is, nevertheless, conservative, as it does
not account for direct financial spillovers through the financial sector. As their own report remarks,
if risk premiums react further to the growth shock –due to balance-sheet exposures of financial
intermediaries– financial channels would come into play and the size of the spillover in the real
economy could be larger. Indeed, the analysis in this chapter reveals the existence of financial
channels that can introduce contagion in advanced economies from shocks in emerging economies
under adverse market conditions.
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4.5.1.2 Expected duration of risk spillovers

Given the estimates of the equation system (4.8), we can characterize the expected duration of a
shock through the Impulse Response Function (IRF) analysis. We adopt the same identification
strategy as Adams et al. (2014), orthogonalizing IRF using the standard Cholesky decomposition,
and ordering the shock transmitting variable last, since there is no theoretical guidance for a priori
ordering. Note that this implies that a shock on the ES of certain region at time t will only affect
this region at that time, spreading to the remaining areas in the following periods. Although this
approach may lead to conservative IRF (which, consequently, can be regarded as the smallest
estimated response given a shock), the main benefit is that it is not necessary to impose a potentially
ad-hoc ordering because all economies are treated equally; see Adams et al. (2014) for details. As
usual in this literature, we assume a unit shock of one standard deviation.

Figure 4.4 depicts the time-profile of the IRFs, characterizing the reaction of the domestic
banking sector in each economic region in SB against a unit shock in the ES of the global financial
system. We consider tranquil, normal, and volatile market conditions. In this context, the size
the immediate response depends on the spillover coefficients ξi (τ), whereas the persistence that
characterizes the IRF depends on the size of these coefficients and the autoregressive coefficients
ϕi (τ). As expected from the analysis reported in the previous section, the IRF characterize
heterogenous responses across the economic regimes analyzed. In particular, during tranquil
periods, a systematic shock in the global financial industry tends to cause minor or no significant
impact in the domestic areas, being quickly absorbed by the local systems. Under normal market
conditions, however, systematic shocks trigger a more pronounced response in the local areas which,
furthermore, tend to last over a considerably larger period of time. On average, a one-standard-
deviation shock in the global system increases the domestic ES in absolute terms in an amount
which ranges from 9.27% (US) to 12.81% (CE) of the size of the shock. The half-life of the IRF,
defined as the number of periods required for the IRF to dissipate the response to a unit shock by
half, ranges from 45 days (PE) to 130 days (EM). Nevertheless, the IRFs are strongly persistent, and
it takes around 400 days to dissipate completely the effect of the shock.12 While the shock seems
to cause a greater impact on CE, the overall response under normal circumstances is very similar in
all the areas analyzed.

In a stressed scenario, the overall reaction against systematic shocks in the global banking
industry is more pronounced. Furthermore, the differences across countries are now much more
evident. In particular, the most vulnerable area to systematic shocks is the Eurozone. The peaks
of the IRFs in CE and PE lead to spillovers of about 20.91% and 16.64% of the size of the global
shock. These represent substantial increments in the size of the spillover with respect to the normal

12We are not aware of any other paper characterizing the IRF of the expected shortfall process. However, previous
literature has characterized IRF to address volatility spillovers in different markets. The papers dealing with contagion
in financial and commodity market show strongly persistent IRFs in which it takes considerable time (between two and
four years of trading days) for volatility to revert completely after a large shock; see, for instance, Panopoulou and
Pantelidis (2009) and Jin, Lin and Tamvakis (2012).
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scenario, particularly, in the CE area, although we stress that estimates should be regarded as
potentially conservative in our approach. Interestingly, while the immediate response to a global
shock is greater in CE, the IRF of PE decays at a slower rate, suggesting that the effects of a
systematic shock in that area tend to remain significant over an extended period. Indeed, the half-
life in the CE and PE areas is 87 and 133 days, respectively. On the other hand, systematic shocks
cause a more moderate response in emerging-market economies, particularly, in the US, for which
the peak of the IRF of US is located at 9.32% the size of the unit shock. Clearly, the IRF of the US is
dominated by the remaining IRFs, suggesting that, broadly speaking, the US banking system has a
stronger resilience to global shocks. This empirical evidence essentially agrees with the simulation-
based results shown in Degryse et al. (2010). This chapter provides further evidence using a formal
econometric approach.
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Figures 4.5 to 4.7 show the IRFs that characterize the response of banks in each economic
region in SB against an (idiosyncratic) unit shock in each of the remaining areas under the three
economic scenarios analyzed. In the stressed scenario, the long-term persistence of a shock would
be characterized by explosive patterns (see Table 4.4), implying that ES becomes more and more
negative in the long-term. In practice, however, the extreme outliers that give rise to non-linearities
and bursts of volatility in low quantiles only occur during very short periods of time. Consequently,
we adopt the same approach as Adams et al. (2014), and assume that, although a shock occurs under
stressed conditions (which characterize the size of the spillovers at the time of the shock), long-term
persistence is better characterized by the estimates under the a normal state. We, therefore, assume
in the characterization of the IRF that the market returns to normal state coefficients after the day of
the shock.

The main picture that emerges under country-specific idiosyncratic shocks is completely similar
to that discussed under systematic shocks, showing large differences in both the intensity and the
duration of contagion across the different economic scenarios. In particular, foreign shocks trigger
a larger cross-country response in the expected losses of local banks in a stressed scenario in the
domestic economy. For ease of exposition, we briefly discuss the main results for this scenario, as it
poses the most relevant case. The largest response against a country-specific idiosyncratic shock is
triggered by the US, which causes the ES of CE banks to increase in absolute terms about 20.9% the
size of the standard shock. The half-life of the spillover in this area is 93 days. Nevertheless, the IRF
exhibits a considerable persistence characterized by a low-decay to zero, and it takes over 500 days
to completely remove the effects of the shock. In addition, the CE banking area is very sensitive
to idosyncratic shocks originating in the PE area. A unit shock in peripheral EMU countries leads
the ES of banks in the remaining EMU countries to increase the size of this shock by about 14.75%
as a consequence of cross-border contagion. Persistence, as measured by the half-life, is 107 days.
Shocks initiated in the PE area trigger a smaller response in the US (11.78%) with a shorter half-life
(97 days). According to these estimates, the US is more sensitive to the other regions, since shocks
in the CE and EM area increase the ES in the US banking system in about 15.2% and 14.5% the
size of this shock, respectively, with half-lives of 95 and 109 days, respectively.
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4.5.2 Extended equation system

In this section, we discuss the main results from the analysis based on an extended set of economic
areas. Together with the areas in SB, we consider the banking sectors in the UK, Scandinavian
countries, and the BRICs subset of emerging-market economies. This analysis offers a more
complete picture and, furthemore, offers us insight into the robustness of the overall conclusions to
omitted variables. As we discuss below, adding new representative countries (UK) or new economic
regions in both advanced and emerging areas (BR and SC) does not lead to any significant change
in the main conclusions. From a robustness perspective, this result is important because it shows
that the global index is able to control for the effects of omitted areas in the analysis.

Parameter estimates from the 2SQR estimation of the extended equation system and
bootstrapped significance through the maximum-entropy algorithm are presented in Table 4.5. The
overall analysis of the parameter estimates leads to the same conclusions discussed previously.
Cross-country exposures largely increase and become highly significant in both economic and
statistical terms during periods of distress. Financial vulnerabilities show a considerable degree
of heterogeneity across the different areas involved, which can be related to the network of bilateral
exposures that characterize international diversification in these areas. Since none of the main
conclusions discussed previously change, we discuss directly the evidence related to the new areas
included in the analysis, focusing particularly on the UK.

While all the economic areas exhibit significant exposures to US shocks in stressed conditions,
the most vulnerable financial system to idiosyncratic shocks originating in this area is the UK.
According to the 2SQR estimates, a one percent change in the expected losses of US increases
expected losses in UK banks by 0.324 percentage points. While it is a well-known fact that the US
and UK stock markets show strong similarities (Shiller, 1989), the ultimate reason for this remarked
sensitivity in the banking-industry may be related to the fact that US-issued claims account for the
largest portion of total foreign holdings within the UK banking system. According to Degryse et al.
(2010), US claims represent, on average, about 52% of the total foreign claims held by the UK over
BIS reporting countries. More generally, since large-scale banks in the UK have engaged actively in
international diversification since late 1990, the British system shows large relative vulnerabilities to
any of the remaining areas, particularly, the CE. The vulnerability to this area is characterized by a
contemporaneous spillover coefficient of 0.119. Not surprisingly, therefore, the UK financial system
turns out to be the most vulnerable area to global shocks in the sample, exhibiting a global spillover
coefficient ξ of 0.224. Note that the size of this coefficient nearly doubles the size of the estimated
coefficients in the European regions. Finally, regarding the vulnerability of other economic areas to
shocks originating in the UK financial system, the US exhibits the largest tail spillover coefficient
(0.054). This is not surprising, in the light that the UK represents about 30% of US-held foreign
liabilities in other advanced economies (Degryse et al., 2010). Once more, this result underlines
the importance of cross-border diversification in defining the strength of financial contagion across
international areas.
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4.6 Concluding Remarks

We investigate size, direction and persistence of tail risk spillover in the banking sector for
international regions by applying the state dependent system developed in Adams et al. (2014). The
main evidence states that cross-country exposures largely increase and become highly significant
in both economic and statistical terms during periods of distress. Financial vulnerabilities show a
considerable degree of heterogeneity across the different areas involved, which can be related to
the network of bilateral exposures that characterize international diversification in these areas. We
obtain strong spillover effects from the US market to the rest of the regions considered, specially to
Core Europe and UK. This result implies that downside movements in values of banks index returns
caused increase in the contagion from US market to Europe due to the strong bilateral borrowing
activities between these areas.

The impulse response analysis shows large differences in both the intensity and the duration
of contagion across the different economic scenarios. In particular, foreign shocks trigger a larger
cross-country response in the expected losses of local banks in a stressed scenario in the domestic
economy. The largest response against a country-specific idiosyncratic shock is triggered by the
US. The most vulnerable area to systematic shocks is Europe in stressed scenario and US banking
system has stronger resilience to global shocks. The empirical results show that not only does a
volatility spillover exist but there is also an important spillover effects in bank returns distribution
tails that still remain an unexplored area in spillover research.

The results of this chapter are of particular interest for both policy makers and investors. The
latter can improve their hedging and portfolio diversification strategies exploiting the knowledge
regarding the way the financial markets influence one another. For policy makers an understanding
of financial contagion would clearly be beneficial, providing them useful information about the
formulation of possible decoupling strategies to insulate the economy from contagious effects and
thus avoiding future spreading of crises and preserving the stability of the financial system.
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Chapter 5
Conclusiones

En este capítulo se enumeran las principales conclusiones derivadas de los tres artículos que
componen la tesis resumiendo así los principales resultados obtenidos.

En el Capítulo 2 se analiza la predictibilidad de la cola de la distribución condicional de
los rendimientos de diferentes carteras de mercado representativas de Estados Unidos utilizando
información más allá del propio rendimiento. El uso del modelo CAViaR para modelizar el Valor en
Riesgo (VeR) nos permite analizar el efecto de variables diferentes al rendimiento relacionadas
con liquidez a través de regresiones predictivas y backtesting dentro y fuera de muestra. Esta
metodología nos permite estudiar la habilidad predictiva de una serie de modelos extendidos para
el cálculo de downside risk con diferentes variables comparándolos con modelos que solo usan la
información de los rendimientos.

La evidencia empírica mostrada sugiere que la medida de VeR puede ser mejorada usando
variables de liquidez y volumen de forma que se puedan incorporar informaciones diferentes a las
del rendimiento para obtener mejores predicciones. Los modelos construidos bajo esta idea cumplen
con las reglas de SEC y mejorarían las metodologías de VeR existentes. Los resultados muestran
como variables relacionadas con volumen son buenas predictoras para carteras diversificadas como
la cartera de mercado de pequeña capitalización mientras que las variables de liquidez parecen
predecir mejor la cola de las carteras ponderadas por valor. Se extienden pues los modelos CAViaR
propuestos por Engle y Manganelli (2004) y se complementan resultados previos de la literatura.

El análisis también está relacionado con la literatura de microestructura de mercado en cuanto
a la relación entre variables de mercado y movimientos en los precios. La principal hipótesis se
centra en que la liquidez y las condiciones de negociación pueden ayudar a predecir movimientos
en la cola de las distribuciones. Se podría ampliar el estudio usando datos intradiarios y diseñar así
controles de riesgo más eficientes basados en las predicciones intradiarias. De esta forma, mientras
que la literatura se centra en modelos de volatilidad estándar, la evidencia mostrada en este capítulo
sugiere que los modelos basados en regresión de cuantiles pueden ofrecer un mejor desempeño.
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Una de las extensiones naturales del trabajo de este capítulo sería analizar el máximo horizonte
al que se puede explotar la información condicional para predicciones de downside risk. Tal y
como argumentan Christoffersen y Diebold (2000), el riesgo depende del horizonte considerado, de
manera que se pueden considerar la relevancia de utilizar diferentes horizontes para predicción de
VeR. Sin embargo, no encontramos apenas en la literatura análisis sobre la habilidad de predicción
del VaR para diferentes horizontes.

De la misma forma, sería interesante para futuras investigaciones, modelizar también otras
medidas de downside risk, como por ejemplo el Expected Shortfall con modelos autorregresivos
similares al CAViaR que estimen la media condicional. A este respecto, Taylor (2008a) propone
diferentes modelos para estimar esta medida con modelos autoregresivos usando expectiles. A
la vista de la evidencia mostrada en este capítulos, sería interesante poder extender estas nuevas
medidas de riesgo con variables de liquidez y volumen con el fin de mejorar su desempeño en la
predicción de riesgo.

En el Capítulo 3 se analizan las fuentes de las discrepancias entre los precios observados y
teóricos a partir de diferentes modelos de valoración en el mercado soberano de CDS de países del
G20. El objetivo es analizar si los errores de valoración contienen información relevante acerca del
mercado de CDS. La metodología se basa en la medición de la volatilidad de los errores a través de
una medida llamada Noise que capta la dispersión entre el precio observado y teórico. En concreto,
mediante una simple transformación de la distancia euclídea, obtenemos una medida de distress
de mercado similar a la utilizada por Hu et al. (2013) para el mercado de bonos soberanos de
Estados Unidos. Los resultados muestran que los errores de valoración pueden estar relacionados
con deficiencias en los modelos, así como también, por la existencia de fricciones en el mercado.
La principal evidencia muestra que, tanto el modelo de Pan y Singleton (2008) como el semi-
paramétrico de Nelson y Siegel (1987) y una estimación simple de la curva de la probabilidad de
insolvencia, dan lugar a errores altos en momentos de distress.

Mediante la metodología de datos de panel, obtenemos que los errores de valoración están
relacionados con la iliquidez o la volatilidad del mercado (variables como bid ask spread, volumen
neto negociado, default de mercado o volatilidad de acciones de mercado) y tienden a ser más
elevados cuando las condiciones de mercado son más inestables. Esta evidencia apoya la tesis
de la medida de Noise de Hu et al. (2013) como medida de distress y liquidez del mercado la
cual aumenta conforme el capital de arbitraje disminuye causando discrepancias entre los precios
observados y teóricos. Este resultado es importante para los inversores con propósitos de cobertura
o especulativos ya que las decisiones basadas en modelos de un solo factor pueden subestimar el
riesgo en estos mercados. También es importante para reguladores y supervisores para anticipar
posibles crisis financieras a través de las expectativas del mercado de CDS. Los spread de CDS
contienen información sobre expectativas del mercado más allá de las condiciones de crédito. De
esta forma, la severidad de las condiciones de mercado puede ser sobreestimada en momentos de
distress ya que los precios de transacciones no se corresponden con los teóricos sobre todo en
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momentos de crisis. La ausencia de capital de arbitraje y otras ineficiencias asociadas con periodos
volátiles podrían llevar a incrementos en el riesgo de iliquidez que se pueden traducir en errores de
valoración más altos.

Finalmente, en el Capítulo 4, se investigan los efectos de contagio en las colas de la
distribución condicional de rendimientos de diferentes índices bancarios internacionales utilizando
la metodología basada en regresión de cuantiles propuesta por Adams et al. (2014). Esta
metodología llamada State Dependent State (SDS), nos permite analizar los efectos de contagio
dependiendo del estado de la economía al calcular cuantiles sobre medidas de downside risk como
el Expected Shortfall en lugar de analizar el contagio a partir de la media o la volatilidad de los
rendimientos. Se obtiene que los contagios en las colas de las distribuciones son más elevados y
más significativos en momentos volátiles y de gran inestabilidad financiera. La región que lidera los
contagios al resto de las regiones es Estados Unidos sobre todo hacia Reino Unido y Europa central,
si bien se muestra evidencia de contagios bidireccionales entre todas las regiones consideradas en
periodos de inestabilidad en el mercado, siendo US la región con mayor resistencia ante shocks en
el resto de regiones.

A la vista de la evidencia mostrada en el Capítulo 4, no solo existe contagio en volatilidades
sino que también existe contagio en las colas de la distribución de los rendimientos bancarios
en momentos de inestabilidad financiera. Los resultados son particularmente interesantes tanto
para inversores como para los responsables de política monetaria ya que, los primeros, pueden
aprovechar este resultados en sus estrategias de diversificación y cobertura y los segundos pueden
establecer estrategias de desacople para poder aislar a las economías de los efectos de contagio y
poder evitar así las consecuencias de crisis futuras y preservar la estabilidad financiera del sistema.
En futuras investigaciones sería interesante aplicar esta metodología a otros mercados y utilizar
otras medidas de downside risk alternativas que capten el riesgo financiero de manera más eficiente.

En conclusión, los tres capítulos de esta tesis pretenden dar respuesta a nuevas necesidades en
las áreas de modelización de downside risk, errores de valoración y contagio financiero puestas
de manifiesto a partir de diferentes episodios de crisis financiera. En primer lugar, variables
relacionadas con la liquidez y la actividad negociadora, nos pueden ayudar a mejorar la capacidad
predictiva de los modelos de riesgo existentes en el mercado de acciones en momentos de
inestabilidad financiera. En segundo lugar, se muestra evidencia de que la liquidez en el mercado
de crédito tiene poder explicativo y predictivo sobre los errores de modelos de valoración y podría
ser clave en el proceso de formación de precios de este nuevo producto derivado surgido durante la
reciente crisis financiera. En tercer y último lugar, las medidas de contagio financiero en las colas
de la distribución de los rendimientos bancarios son sensibles al estado de la economía en cuanto
a tamaño, persistencia y dirección, resultado que nos ayuda a entender mejor las conexiones en el



128 CHAPTER 5. CONCLUSIONES

sector bancario de diferentes regiones internacionales y poder de esta forma protegerlas frente a
futuras crisis.1

1Las conclusiones se presentan en castellano para cumplir con los requerimientos normativos de la Universidad de
Castilla la Mancha. No obstante, al final de cada capítulo, se resumen en inglés las principales conclusiones.



Appendix A
Alternative VaR Models

In Section 2.4.2 we compare the relative performance of several CAViaR models with respect to
standard alternative VaR models which are based solely on returns, including the EWMA, GARCH
and EVT methods. The common setting in these parametric models assumes that returns obey
dynamics given by

rt = σtηt , ηt |Ft−1 ∼ iid(0,1) (A.1)

where σt denotes the conditional volatility of the process. We briefly discuss the main settings of
these approaches in the sequel.

A. VaR EWMA
RiskMetrics popularized the EWMA procedure as an easy way to model the volatility process.

The latent volatility dynamics are assumed to obey the recursive dynamics:

σ2
t = φ σ2

t−1 +(1−φ)r2
t−1, t = 1, ...,T (A.2)

with the initial condition σ2
0 = r2

0 = E
(
r2
t
)
. The smoothing parameter 0 < φ < 1 can be estimated,

although RiskMetrics advises the setting φ = 0.95 for data recorded on a daily basis. Then, the
one-day ahead forecast given FT is simply σ̂2

T+1|T = φ σ2
T +(1−φ)r2

T .

RiskMetrics assumes the particularly strong assumption that the innovations ηt are conditionally
normal distributed. The one-period ahead VaR forecast is then given by −Zλ σ̂T+1|T , with Zλ
denoting the λ -quantile of the standard normal distribution. To ensure robustness against Gaussian
departures, we proceed in a slightly different way. Let η̂t = rt/σ̂t be the estimated innovations given
the EWMA estimates, and let Qη̂t

(λ ) be the unconditional λ -quantile of the empirical distribution
of η̂t . Then, a more robust VaR forecast that does not rely upon distributional assumption is given
by:

VaRλ ,t+1 =−Qη̂t
(λ )σ̂T+1|T (A.3)

noting that, as long as the model is correctly specified, Qη̂t
(λ ) is a consistent estimator of Qηt (λ ).
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B. VaR GARCH
The simplest GARCH (1,1) model is the most popular approach to model and forecast market

risk in practice due to its impressive performance and statistical properties (Hansen and Lunde,
2005). The standard GARCH(1,1) model assumes that daily returns obey dynamics given by:

rt = σtηt , ηt |Ft−1 ∼ iidN (0,1) (A.4)

σ2
t = ω +αε2

t−1 +βσ2
t−1

with ω > 0, α, β ≥ 0 ensuring that the
{

σ2
t
}

process is well-defined. Although daily returns are
known to be non-normally distributed, the Gaussian assumption is particularly convenient because it
ensures parameter consistency under certain regularity conditions even in the absence of normality.
Parameters can thus be estimated by (quasi) maximum likelihood estimation, yielding a consistent
estimate of the conditional variance process. The day-ahead forecast is then computed as:

σ̂2
T+1|T = ω̂ + α̂r2

T + β̂ σ̂2
T (A.5)

given the resultant estimates. Then, paralleling the EWMA approach, given the GARCH estimates
σ̂t and the resultant standardized innovations, η̂t = rt/σ̂t , the robust day-ahead GARCH forecast is
determined as:

VaRλ ,T+1 =−Qη̂t
(λ )σ̂T+1|T . (A.6)

given (A.5) and the corresponding GARCH estimates η̂t and Qη̂t
(λ ).

C. VaR Extreme Value Theory
This method can be seen as a parametric refinement of the previous approaches. Essentially,

the procedure requires the characterization of the tail behavior of the set of i.i.d. innovations ηt

in the return process. To circumvent the problem that ηt is not observable directly, the estimated
residuals η̂t = rt/σ̂t can be used instead, with σ̂t determined according to some volatility model.
Since GARCH estimates tend to outperform any other procedure, we estimate the empirical process
η̂t on the basis of the GARCH(1,1) model.

The rest of the procedure is described as follows. Given the series −η̂t , the total sample period
is divided into, say, B = 740 blocks of length l = 5 observations to record the maximum value of
each block (i.e., the maximum loss in the period), say mb, b = 1, ...,B, in a time-series process.
The Extreme Value Theory suggests fitting the Generalized Extreme Value distribution (GEV, also
known as Fisher–Tippett distribution) to this series. The GEV arises as the limit distribution of
properly normalized maxima of a sequence of i.i.d. random variables, and is characterized by the
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density function

f (z;ρ1,ρ2,ρ3) =

[
1
ρ2

[1+ρ3z]
]−1−1/ρ3

exp
{
− [1+ρ3z]−1/ρ3

}
(A.7)

if z > −1, where z = (mb −ρ1)/ρ2 denotes the standardized variable. The (unknown) parameters
that characterize the shape (ρ1), scale (ρ2) and location (ρ3) of the distribution can then be estimated
consistently by different methods, such as maximum-likelihood. The importance of this approach
is that by inverting this distribution (with the unknown parameters replaced by their consistent
estimates), we can go from the asymptotic GEV distribution of maxima to the distribution of the
observations themselves and obtain a closed-form expression for the unconditional VaR of η̂t given
λ , namely,

Qη̂t
(λ ) = ρ̂3 −

ρ̂2

ρ̂1

[
1−
{
− log

(
1− 1

λ l

)}−ρ̂1
]

(A.8)

Finally, as in the EWMA and GARCH approaches, we generate the one-day ahead VaR forecast as

VaRλ ,T+1 =−Qη̂t
(λ )σ̂T+1|T (A.9)

with σ̂T+1|T determined from (A.5).
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Appendix B
Bank Index details

In Section 4.3 we describe the dataset formed by international banking portfolios. This appendix
contains several tables that report the banks and countries that form the representative indices of the
local banking-industry in different economic regions such as the US, BRICs, Peripheral EMU, Core
EMU, Scandinavia, the UK, Emerging Markets and the Global Banking index. This information is
available in Datastream for the DS Banks Index construction of each region. We report the banks and
countries for specific regional and country indices. In order to save space, we report the main areas
and number of banks in emerging and global indices. Complete lists are available upon request.

Therefore, the following tables provide a list with the banks and countries or areas included in
every index.

Table B.1: United States Index.

Table B.2: BRICS Index.

Table B.3: Peripheral EMU Index.

Table B.4: Core EMU Index.

Table B.5: United Kingdom Index.

Table B.6: Scandinavia Index.

Table B.7: Emerging Markets Index.

Table B.8: Global Banking Index
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Table B.1: Banks included in the United States Index

Bank Country

Bank of America US
Bankunited US
BB&T US
Bok Financial US
Citigroup US
City National US
Comerica US
Commerce Bancshares US
Credicorp US
Cullen Frost Bankers US
East West Bancorp US
Fifth Third Bancorp US
First Niagara Financial Group US
First Republic Bank US
Firstmerit US
Hudson City Bancorp US
Huntington Bancshares US
JP Morgan Chase and Company US
Keycorp US
M&T Bank US
New York Community Bancorp US
Peoples United Financial US
PNC Financial Services Group US
Prosperity Bancshares US
Regions Financial New US
Signature Bank US
Suntrust Banks US
SVB Financial Group US
Synovus Financial US
TFS Financial US
United States Bancorp US
Wells Fargo and Company US
Zions Bancorporation US
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Table B.2: Banks and countries included in the BRICs Index

Bank Country

Banco Brasil On Brazil
Bradesco On Brazil
Bradesco PN Brazil
Itauunibanco On Brazil
Itauunibanco PN Brazil
Santander Bearer On Brazil
Santander Bearer PN Brazil
Agricultural Bank of China ’H’ China
Bank of China ’H’ China
Bank of Communications ’H’ China
China Citic Bank ’H’ China
China Construction Bank ’H’ China
China Everbright Bank ’H’ China
China Merchants Bank ’H’ China
China Minsheng Banking ’H’ China
Industrial and Commercial Bank of China ’H’ China
Allahabad Bank India
Axis Bank India
Bank of Baroda India
Bank of India India
Canara Bank India
Central Bank of India India
Corporation Bank India
Federal Bank India
HDFC Bank India
I N G Vysya Bank India
Icici Bank India
Idbi Bank India
Indian Bank India
Indian Overseas Bank India
Indusind Bank India
Jammu and Kashmir Bank India
Oriental Bank of Commerce India
Punjab National Bank India
State Bank of India India
Syndicate Bank India
UCO Bank India
Union Bank of India India
Yes Bank India
Moscow Municipal Bank Moscow Russian Federation
Mosobl Bank Russian Federation
Rosbank Russian Federation
Sberbank of Russia Russian Federation
Sberbank Russia Preference Russian Federation
VTB Bank Russian Federation
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Table B.3: Banks and countries included in the Peripheral EMU Index

Bank Country

Alpha Bank Greece
Attica Bank Greece
Bank of Greece Greece
Bank of Piraeus Greece
Eurobank Ergasias Greece
General Bank of Greece Greece
National Bank of Greece Greece
Bank of Ireland Ireland
Banca Carige Italy
Banca Finnat Euramerica Italy
Banca Monte dei Paschi Italy
Banca Piccolo Credito Valtell Italy
Banca Popolare di Milano Italy
Banca Popolare di Sondrio Italy
Banca Popolare Emilia Romagna Italy
Banca Popolare Etruria Lazio Italy
Banca Profilo Italy
Banco di Desio E Della Brianza Italy
Banco Popolare Italy
Credito Bergamasco Italy
Credito Emiliano Italy
Intesa Sanpaolo Italy
Intesa Sanpaolo RSP Italy
Mediobanca Banca di Credito Financial Italy
Unicredit Italy
Unione di Banche Italian Italy
Banco BPI Portugal
Banco Comercial Portugues ’R’ Portugal
Banco Espirito Santo Portugal
Banif Portugal
Montepio Portugal
Banco Bilbao Vizcaya Argentaria Spain
Banco de Sabadell Spain
Banco Intercontinental Espanol ’R’ Spain
Banco Popular Espanol Spain
Banco Santander Spain
Bankia Spain
Caixabank Spain
Liberbank Spain
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Table B.4: Banks and countries included in the Core EMU Index

Bank Country

Bank FUR Tirol und Vorarlberg Austria
Banks Bank Austria
Erste Group Bank Austria
Oberbank Austria
Oberbank Preference Austria
Raiffeisen Bank International Austria
Banque Nationale de Belgique Belgium
KBC Ancora Belgium
KBC Group Belgium
Hellenic Bank Cyprus
USB Bank Cyprus
Aktia ’A’ Finland
Pohjola Pankki A Finland
Banque Nationale de Paris Paribas France
CIC ’A’ France
Crcam Nord de France CCI France
Credit Agricole France
Credit Agricole Brie Picardie France
Credit Agricole Ile de France France
Credit Foncier de Monaco France
Natixis France
Societe Generale France
Commerzbank Germany
Deutsche Bank Germany
Deutsche Postbank Germany
IKB Deutsche Industriebank Germany
Oldenburgische Landesbank Germany
Umweltbank Germany
Espirito Santo Financial Group Luxembourg
Espirito Santo Financial Group Registered Luxembourg
Bank of Valletta Malta
Fimbank Malta
HSBC Bank Malta Malta
Lombard Bank Malta
American Hypobank Netherlands
Van Lanschot Netherlands
Abanka Vipa Slovenia
Nova Kreditna Banka Maribor Slovenia
Probanka Prednostne Preference Slovenia
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Table B.5: Banks included in the United Kingdom Index

Bank Country

Bank of Georgia Holdings UK
Barclays UK
HSBC Holdings (Ordinary $0.50) UK
Lloyds Banking Group UK
Standard Chartered UK
Royal Bank of Scotland Group UK

Table B.6: Banks and countries included in the Scandinavian Index

Bank Country

Danske Bank Denmark
Jyske Bank Denmark
Ringkjobing Landbobank Denmark
Spar Nord Bank Denmark
Sydbank Denmark
Aktia ’A’ Finland
Pohjola Pankki A Finland
DNB Norway
Sparebank 1 Series Bank Norway
Sparebank 1 SMN Norway
Nordea Bank Sweden
SEB ’A’ Sweden
Svenska Handelsbanken ’A’ Sweden
Swedbank ’A’ Sweden
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Table B.7: Number of banks and areas included in the Emerging Markets Index

Number of Banks Area

33 Africa
118 Asia
45 BRICs
41 Europe
51 Latin America

This table reports the main areas in the emerging markets index and the corresponding
number of banks. Africa is formed by Egypt, Morocco, Nigeria and South Africa;
Asia contains Bahrain, Dubai, Indonesia, Jordan, Kuwait, Malasya, Oman, Pakistan,
Philippines, Qatar, Sri Lanka, Taiwan and Thailand; Europe is formed by Bulgaria,
Croatia, Czech Republic, Hungary, Poland, Romania, Slovenia and Turkey. Finally, Latin
America is composed of Argentina, Chile, Colombia, Mejico, Peru and Venezuela.

Table B.8: Number of banks and areas included in the Global Banking Index

Number of Banks Area

33 Africa
213 Asia
6 Australia
45 BRICs
8 Canada
38 Core EMU
51 Latin America
39 Peripheral EMU
57 Rest of Europe
14 Scandinavia
6 United kingdom
33 United States

This table reports the main areas in the global banking index and the corresponding
number of banks. Africa is formed by Egypt, Morocco, Nigeria and South Africa; Asia
covers Abu Dabi, Bahrain, Dubai, Dubai, Hong Kong, Indonesia, Israel, Japan, Jordan,
Kuwait, Malasya, Oman, Pakistan, Philippines, Qatar, Singapur, South Korea, Sri Lanka,
Taiwan and Thailand; Latin America is comprised of Argentina, Chile, Colombia, Mejico,
Peru and Venezuela. Finally, rest of Europe is made up of Bulgaria, Croatia, Czech
Republic, Hungary, Poland, Romania, Slovenia Switzerland and Turkey.
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