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Bilbao, 5 de noviembre de 2007



“Saluberrimi sunt sereni dies”

Auilo Cornelio Celso

(30 b.C.-50 a.C.)



Contents

Preface xi

Acknowledgments xiii

Introduction xv

I Econometric Methods 1

1 The SNJD process 3

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 The Shot Noise process . . . . . . . . . . . . . . . . . 6
1.2.2 A model with shot-noise effects . . . . . . . . . . . . . 9

1.2.3 Main features . . . . . . . . . . . . . . . . . . . . . . . 12
1.3 The distribution of the process . . . . . . . . . . . . . . . . . 18

1.3.1 Characteristic function . . . . . . . . . . . . . . . . . . 18
1.3.2 Moments of the process . . . . . . . . . . . . . . . . . 20

1.3.3 Numerical approximations . . . . . . . . . . . . . . . . 24
1.4 Cross moments and spectra . . . . . . . . . . . . . . . . . . . 25

1.4.1 Autocovariance . . . . . . . . . . . . . . . . . . . . . . 26

1.4.2 Population spectrum . . . . . . . . . . . . . . . . . . . 27
1.5 The exponential decaying function case . . . . . . . . . . . . 29

1.5.1 Moments and autocovariance function . . . . . . . . . 29
1.5.2 The spectrum . . . . . . . . . . . . . . . . . . . . . . . 33

1.6 The economic significance of the SNJD model . . . . . . . . . 35
1.6.1 Long range dependence . . . . . . . . . . . . . . . . . 35

1.6.2 The spikes . . . . . . . . . . . . . . . . . . . . . . . . . 37
1.6.3 Risk management . . . . . . . . . . . . . . . . . . . . 39

1.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

iii



iv CONTENTS

2 Estimation in Time Domain 53

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.2 The GMM estimate . . . . . . . . . . . . . . . . . . . . . . . 57

2.2.1 General setting . . . . . . . . . . . . . . . . . . . . . . 57

2.2.2 The weighting matrix . . . . . . . . . . . . . . . . . . 58

2.3 General setting . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.3.1 Model description . . . . . . . . . . . . . . . . . . . . 59

2.3.2 Simulation details . . . . . . . . . . . . . . . . . . . . 61

2.4 Preliminary check . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.4.1 The restricted SNJD model . . . . . . . . . . . . . . . 63

2.4.2 GMM estimates and results . . . . . . . . . . . . . . . 67

2.5 Monte Carlo study . . . . . . . . . . . . . . . . . . . . . . . . 71

2.5.1 GMM estimates for the JD processes . . . . . . . . . . 74

2.5.2 GMM estimates of SNJD processes . . . . . . . . . . . 82

2.6 Cross samples estimation . . . . . . . . . . . . . . . . . . . . 97

2.6.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . 98

2.6.2 Additional issues on the JD process estimation in sam-
ples with autocorrelation . . . . . . . . . . . . . . . . 100

2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

3 Estimation in the Frequency Domain 105

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

3.2 Econometric Framework . . . . . . . . . . . . . . . . . . . . . 107

3.2.1 The intuition behind . . . . . . . . . . . . . . . . . . . 107

3.2.2 The procedure . . . . . . . . . . . . . . . . . . . . . . 110

3.2.3 The estimates . . . . . . . . . . . . . . . . . . . . . . . 111

3.2.4 The population spectrum of the SNJD model . . . . . 116

3.2.5 A note on the spectral estimation of diffusion processes 119

3.3 Some details on the estimation procedure . . . . . . . . . . . 121

3.4 Monte Carlo study for the naive estimate . . . . . . . . . . . 121

3.4.1 Sensitivity to the bandwidth parameter h . . . . . . . 122

3.4.2 Previous study . . . . . . . . . . . . . . . . . . . . . . 124

3.4.3 Main results . . . . . . . . . . . . . . . . . . . . . . . . 127

3.5 Monte Carlo study for the Whittle estimate . . . . . . . . . . 132

3.5.1 Previous considerations . . . . . . . . . . . . . . . . . 135

3.5.2 Main results . . . . . . . . . . . . . . . . . . . . . . . . 136

3.6 Comments on spectral estimate results . . . . . . . . . . . . . 139

3.6.1 Previous considerations . . . . . . . . . . . . . . . . . 139

3.6.2 Comparison between the spectral estimates . . . . . . 142



CONTENTS v

3.6.3 Comparison between frequency and time domain esti-
mates . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

II Credit Risk Valuation Techniques 147

4 Pricing Tranched Products 149

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

4.2 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

4.2.1 The standard Gaussian model . . . . . . . . . . . . . . 151

4.2.2 A 2-by-2 model . . . . . . . . . . . . . . . . . . . . . . 155

4.2.3 Conditional Default Probabilities . . . . . . . . . . . . 160

4.2.4 Loss distribution . . . . . . . . . . . . . . . . . . . . . 161

4.3 Results for the 2-by-2 model . . . . . . . . . . . . . . . . . . . 162

4.3.1 Numerical results . . . . . . . . . . . . . . . . . . . . . 162

4.3.2 Approximation for n infinite . . . . . . . . . . . . . . . 163

4.4 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . 165

4.4.1 VaR and CVaR . . . . . . . . . . . . . . . . . . . . . . 165

4.4.2 Sensitivity to correlation . . . . . . . . . . . . . . . . . 166

4.5 Econometric Framework . . . . . . . . . . . . . . . . . . . . . 167

4.5.1 Estimation Techniques . . . . . . . . . . . . . . . . . . 167

4.5.2 Variables and estimation . . . . . . . . . . . . . . . . . 170

4.5.3 Interpretation of coefficients . . . . . . . . . . . . . . . 176

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

5 CDO pricing: a Monte Carlo approach 181

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

5.2 CDS indexes . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

5.2.1 CDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

5.2.2 CDS Indexes . . . . . . . . . . . . . . . . . . . . . . . 186

5.2.3 Pricing formulas . . . . . . . . . . . . . . . . . . . . . 187

5.3 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

5.3.1 Previous models . . . . . . . . . . . . . . . . . . . . . 189

5.3.2 A simultaneous default model . . . . . . . . . . . . . . 191

5.4 Monte Carlo study . . . . . . . . . . . . . . . . . . . . . . . . 195

5.4.1 Longstaff and Rajan (2007) model . . . . . . . . . . . 196

5.4.2 Longstaff and Rajan (2007) model with jumps . . . . 198

5.4.3 Longstaff and Rajan (2007) model with jumps and
random losses . . . . . . . . . . . . . . . . . . . . . . . 200



vi CONTENTS

5.4.4 Sectional comparison . . . . . . . . . . . . . . . . . . . 202
5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207



List of Figures

1.1 Representation of a path simulation for the Shot Noise process 7

1.2 Nonparametric estimate of the population spectrum for the
classical Shot noise . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Representation of Geometric Brownian Motion and Jump Dif-
fusion model paths . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 Representation of path simulations for a Shot-Noise Jump
Diffusion process . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.5 Representation of GBM and JD paths against SNJD one . . . 15

1.6 Histogram for a SNJD process . . . . . . . . . . . . . . . . . . 16

1.7 ACF of log-returns, absolute log-returns and square log-returns
for the GBM, JD and SNJD processes . . . . . . . . . . . . . 17

1.8 Sample autocorrelation coefficients for a SNJD process with
exponential response function . . . . . . . . . . . . . . . . . . 34

1.9 Sample and theoretical spectrum for a SNJD and JD process 36

1.10 Sample path and spectrum for the EONIA rate . . . . . . . . 38

2.1 Histogram for the JD estimate parameters µ and σ . . . . . . 77

2.2 Histogram for the JD estimate parameters λ and β . . . . . . 78

2.3 Points clouds for different GMM estimates of JD process . . . 80

2.4 Points clouds for different GMM estimates of JD process . . . 81

2.5 Sample distribution of the parameters σ and λ for a = 0.6 . . 86

2.6 Sample distribution of estimated a SNJD parameter for dif-
ferent weighting matrices. . . . . . . . . . . . . . . . . . . . . 89

2.7 Function values of the GMM estimate at points of conver-
gence for different pairs of variables. . . . . . . . . . . . . . . 91

2.8 Points clouds for different GMM estimates of the SNJD process 96

3.1 Time series path and spectrum for CPI . . . . . . . . . . . . 109

3.2 Sample and theoretical spectrum for a SNJD process . . . . . 110

vii



viii LIST OF FIGURES

3.3 Sensitivity of the sample spectrum to the bandwidth param-
eter h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

3.4 Sample spectra of SNJD model for different values of param-
eter a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

3.5 Nonparametric estimate of the population spectrum for clas-
sical Shot noise and restricted SNJD processes . . . . . . . . 126

3.6 Estimated σ and λ parameters for the different values of a . . 131
3.7 Estimated β and a parameters for the different values of a . . 133
3.8 Distributions for different spectral estimates of the SNJD model134
3.9 Sample distribution for spectral Whittle estimates . . . . . . 138
3.10 Sample distribution for spectral and time domain estimates

(a = 0.60) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
3.11 Sample distribution for spectral and time domain estimates

(a = 1.00) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

4.1 Total loss distribution of a 100-firms portfolio for different
models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

4.2 Default (yearly) rates for Investment and Non-investment grades156
4.3 Correlation coefficients using a moving window of 5 years . . 157
4.4 Total loss distribution of a 100-firms portfolio for standard

Gaussian, Double-t and 2-by-2 Double-t model . . . . . . . . 159
4.5 Spreads under different correlations for a equally weighted

(50%-50%) portfolio . . . . . . . . . . . . . . . . . . . . . . . 168
4.6 Spreads under different correlations for a 25%-75% portfolio. 169
4.7 Non-investment grade rates of default (SG) versus different

explanatory variables . . . . . . . . . . . . . . . . . . . . . . . 173

5.1 Relative frequencies of yearly default rates . . . . . . . . . . . 190
5.2 Evolution of portfolio losses in the Longstaff and Rajan (2007)

model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
5.3 Comparison of spreads for different tranches and different ver-

sions of the Longstaff and Rajan (2007) model with one factor 206
5.4 Comparison of spreads for different tranches and different ver-

sions of the Longstaff and Rajan (2007) model with two factors206
5.5 Comparison of spreads for different tranches and different ver-

sions of the Longstaff and Rajan (2007) model with three factors208



List of Tables

1.1 Autocorrelation function for different values of the parameter
a. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 Skewness and excess of kurtosis in the JD and SNJD processes 23

1.3 Autocorrelation function for different values of the parameter a 32

2.1 Optimization details for a standard estimation case. . . . . . 64

2.2 Autocorrelation values for first few lags. . . . . . . . . . . . . 69

2.3 GMM estimates for the classic Shot noise process. . . . . . . 72

2.4 GMM estimates for the restricted SNJD process (µ = σ = 0). 73

2.5 GMM estimates for the JD process . . . . . . . . . . . . . . . 75

2.6 Correlation matrix for the GMM second stage JD results . . 82

2.7 GMM estimates for the SNJD process . . . . . . . . . . . . . 84

2.8 Percentiles for the third stage GMM estimates of the SNJD
process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

2.9 Correlation matrices for the different SNJD estimates . . . . 94

2.10 Sample and theoretical standard deviation for SNJD process . 97

2.11 Cross sample estimations . . . . . . . . . . . . . . . . . . . . 99

2.12 Percentiles for cross sample estimations . . . . . . . . . . . . 102

3.1 Changes in the estimates with respect to the bandwidth pa-
rameter h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

3.2 Naive estimates for classic Shot noise and SNJD process . . . 128

3.3 Results for the naive spectral estimate with SNJD samples . . 129

3.4 Results for the Whittle estimate with SNJD samples. . . . . 137

4.1 Spreads of different tranches for a 100-names CDO . . . . . 155

4.2 Spreads of different tranches for a 100-names CDO . . . . . . 163

4.3 Spreads of different tranches for a 50-names CDO . . . . . . . 164

4.4 VaR and CVaR measures for a 100-named CDO . . . . . . . 166

4.5 Descriptive Statistics . . . . . . . . . . . . . . . . . . . . . . . 171

ix



x LIST OF TABLES

4.6 Correlation matrix . . . . . . . . . . . . . . . . . . . . . . . . 172
4.7 Regression of SG and IG default rates with respect to different

explanatory variables. . . . . . . . . . . . . . . . . . . . . . . 174
4.8 OLS regressions for SG default rates . . . . . . . . . . . . . . 176
4.9 OLS regressions of IG default rates. . . . . . . . . . . . . . . 177
4.10 Results for the linear probability model. . . . . . . . . . . . . 178
4.11 Estimated coefficients for probit and logit models. . . . . . . 178

5.1 Simulations for the one-factor model of Longstaff and Rajan
(2007) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

5.2 Simulations for the two-factor model of Longstaff and Rajan
(2007) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

5.3 Simulations for the three-factor model of Longstaff and Rajan
(2007). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

5.4 Simulations for the one-factor model with jumps of Rajan and
Longstaff (2006) . . . . . . . . . . . . . . . . . . . . . . . . . 201

5.5 Simulations for the two-factor model with jumps of Rajan
and Longstaff (2006). . . . . . . . . . . . . . . . . . . . . . . . 202

5.6 Simulations for the three-factor model with jumps of Rajan
and Longstaff (2006). . . . . . . . . . . . . . . . . . . . . . . . 203

5.7 Simulations for the one-factor model with jumps and expo-
nential random losses of Longstaff and Rajan (2007) . . . . . 204

5.8 Simulations for the two-factor model with jumps of Rajan
and Longstaff (2006). . . . . . . . . . . . . . . . . . . . . . . . 205

5.9 Simulations for the three-factor model of Longstaff and Rajan
(2007) with jumps and exponential random losses. . . . . . . 207



Preface

This doctoral dissertation focuses on two important areas in Financial Eco-
nomics that use to go in the same direction: the financial econometrics and
the pricing of derivatives. We are interested in some questions concerning
the adequacy of the existing econometric techniques to estimate the pa-
rameters of a certain model, and the model itself currently used for pricing
complex derivatives instruments. We are inclined to believe that this study
explores an alternative way to deal with this type of problems with the aim
of providing several interesting questions and some helpful answers.

This dissertation consists in two main parts:

Part I: Econometric Methods. We study in detail a stochastic process
recently proposed by Altmann et al (2007), describing its main statis-
tical properties and suggesting and illustrating some estimation strate-
gies that can be applied to this process.

Part II: Credit Risk Valuation Techniques. We also explore the cur-
rent pricing techniques for a basket credit derivative named Collateral
Debt Obligations, providing some additional insights.

This thesis is structured in five chapters grouped on these two blocks.
Part I focuses on econometric methods and includes Chapters 1 to 3. This
part studies the statistical properties and some estimation strategies of a
stochastic process recently proposed by Altmann et al (2007). This new
model is named the Shot-Noise Jump-Diffusion (SNJD, hereafter) process

xi



xii PREFACE

and, basically, it introduces some new features into the family of Jump-
Diffusion (JD) models initiated by Merton (1976).

Chapter 1 presents the SNJD model and some of the intuitions underly-
ing this model. We also provide here several features of this model and some
of the statistical tools that will be used on successive chapters. The chapter
concludes by highlighting several of the economic implications of the SNJD
model.

The second chapter in this part is devoted to the estimation of the SNJD
model in the time domain. Basically, it comprises the estimation of this
model by using the Generalized Method of Moments (GMM) technology.
We review the GMM methodology and its properties, illustrating also the
estimation of a JD process. The final part of this chapter develops an
exhaustive Monte Carlo analysis of the estimation for the SNJD process.

Finally, this first part concludes with Chapter 3, which addresses the
estimation of the SNJD model in the frequency domain, analyzing the ad-
equacy of this methodology for the estimation of this type of process. We
justify the econometric framework employed by providing some of the intu-
itions behind. Moreover, we perform an intensive Monte-Carlo study. This
chapter finishes summarizing the main conclusions and suggesting some lines
for further research.

Part II of this dissertation focuses on Credit Risk Valuation Techniques
and comprises Chapters 4 and 5. One of the main goals of this part is to an-
alyze the current pricing techniques of one of the fastest growing segments in
the credit derivatives industry: the Collateral Debt Obligations, or CDO’s.
In this way, this part addresses in a simple and illustrative way some of
the different alternatives that can be used to price and manage this type of
derivatives.

Thus, Chapter 4 (the first one of this part) presents the standard model
used in the industry for pricing CDOs. We generalize some of its assumptions
and provide an empirical application with Moody’s data.

This valuation block finishes with Chapter 5, which explores the CDO
pricing model proposed recently in Longstaff and Rajan (2007). This chap-
ter considers different multi-factor versions and, additionally, proposes some
extensions considering jumps in the default process or a random loss distri-
bution.
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Introduction

This thesis dissertation deals, to a certain extent, with the interplay between
financial models and the econometric tools used for their estimation. On one
hand, we are interested in studying the economic features and implications
of certain models ultimately designed for pricing purposes. On the other
hand, we want to check the capability of some standard econometric tools
for estimating the parameters of some posited models.

Naturally, this previous formulation leads to very different questions that
should be treated separately. Attending to this feature, we have structured
this dissertation in two parts that could be considered independently, taking
into account the issues analyzed in each one.

The first part of this dissertation comprises several econometric issues
and is structured in three chapters. This “econometric” part explores the
availability of some standard econometric techniques for dealing with a
model recently proposed by Altmann et al (2007) (named the Shot-Noise
Jump-Diffusion (SNJD, hereafter). The SNJD process presents some new
features with respect to the family of Jump-Diffusion (JD) models initially
proposed by Merton (1976). Basically, the SNJD model tries to reflect that
sudden, extreme changes in the evolution of asset prices may fade away on
the long run. The intuition underlying this model is clear: If, for instance,
a positive jump in a asset price happens, we expect a profit taking behave
in financial markets, encouraging investors to sell their assets. In a similar
way, an abnormal decrease in the asset price can encourage investors to buy
such asset.

xv



xvi INTRODUCTION

The importance of considering such behavior in asset prices could result
in some interesting implications. For example, as it is mentioned by Ait-
Sahalia (2004) for the case of JD process, decomposing the asset prices
noise in two components (related to a continuous Brownian motion and a
discontinuous jump, respectively) leads to different hedging strategies in a
option pricing context. Moreover, the addition of a persistence component
(the Shot noise part) related to the discrete term responsible of the jumps
events could have unknown consequences on the option prices.

Another important issue concerns the capability of the SNJD model for
generating serial persistence in asset returns that could lead to long-term
memory patterns. This limitation of the current continuous-time models
used in finance has been pointed out by Lo (1991), who refers to the im-
possibility of assessing, for example, the optimal decision sensitivity with
respect to the investment horizon when the returns are long-range depen-
dent.

From an econometric perspective, the estimation of the SNJD process
involves some additional challenges. For example, we could worry about the
necessary tools for its estimation (statistical distribution, moments, etc).
Additionally, an important issue is to analyze its capability to fit market
data better than some of the models previously proposed in the literature,
Moreover, the availability of reliable estimation techniques of the SNJD
process results on additional elements to test the presence of dependence
patterns that can be present in financial data.

Chapter 1 focuses on the analysis of the SNJD model and its main pur-
pose consists on providing the basic statistical tools for analyzing the SNJD
process. We compute the characteristic function of the process as well as
its main moments. We complete the study of this model computing its
cross-moments and its spectrum. In addition to this, we also provide some
numerical approximations and explore some of their economic implications.

Chapters 2 and 3 conduct the estimation in the time and frequency
domain of the SNJD processes, respectively. The main issue addressed in
these chapters concerns to the ability of the different proposed estimates to
capture the parameters of a SNJD process.

Basically, Chapter 2 studies the performance of the GMM estimate pro-
posed by Hansen (1982). We start checking the performance of the GMM
methodology by using different samples not perturbed by Brownian noise,
Secondly, we carry out an estimation of the JD processes with the purpose
of being familiar with the GMM results for this type of processes. Finally,
some results about the SNJD estimation are provided. In addition to this is-
sue, the last section of this Chapter is devoted to analyze possible problems
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of misspecification and overparametrization in the JD and SNJD models
under SNJD and JD simulated samples, respectively.

Chapter 3 is devoted to the estimation of the SNJD process in the fre-
quency domain. In more detail, this chapter presents two main tools for
carrying out this task: firstly, the naive estimate, directly inspired on Bevan
et al (1979), and an alternative technique, based on Whittle (1953). The
first part of this chapter introduces the spectral approach and the intuitions
underlying this method. We also discuss the estimates under study, present-
ing some of their features. To study the ability of the posited estimates to
capture the SNJD parameters, we also perform an exhaustive Monte Carlo
study.

The second part of this dissertation, named credit risk valuation tech-
niques, includes two chapters and analyzes some of the current models for
pricing basket credit derivatives. This part of the dissertation addresses in
a simple and illustrative way some of the different alternatives proposed in
the recent credit risk literature to deal with this type of derivatives.

The motivation for this part arises from the (large) differences between
standard and credit derivatives. The idea is that, in comparison with stan-
dard derivatives, practitioners in credit derivatives markets are dealing with
assets designed to satisfy different requirements and that imply hedging
strategies when compared to standard derivatives.

In more detail, this part focuses on the pricing of credit risk derivatives.
It should be clear that the pricing of derivatives depends on the process
assumed for the underlying asset price. Then, it seems clear that the bet-
ter the description for the underlying asset price, the more accurate the
valuation of the derivative.

In the current successful world of credit derivatives, the classical concept
of derivative still remains. Here, the underlying asset is usually a financial
one (bond, loans, etc) and the holder of the credit derivative also has certain
rights on this underlying. However, the main difference between standard
derivatives and their credit analogues concerns the relevant issue for an
investor. The idea is that a credit derivative investor does not worry on
the asset price and her main interest is on the degree of creditworthiness.
As a consequence, in the credit derivatives world, our interest moves to the
modeling of the losses distribution. Of course, this leads us to new pricing
approaches to price these new credit derivatives families.

In more detail, this part explores the valuation techniques for Collateral
Debt Obligations, or CDOs, a basket credit derivative which has received
an increasing attention by current research. Basically, we are interested
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on the different alternatives posited in the literature to capture the loss
distribution of a portfolio of credit names (loans, bonds, etc.). We approach
to this issue by exploring the main current credit pricing methodologies
available, grouped into the structural and intensity categories.

Jointly with the motivation aforementioned, as second motivation for
this part, we can consider that, in recent years, the appearance of standard-
ized products as the CDX and Itraxx credit indexes has contributed to the
success of CDOs trading. Currently, the market for tranched credit products
(CDOs, Itraxx tranches) is one of the fastest growing segments in the credit
derivatives industry and its numbers may justify our study.

As we have told before, this part includes two chapters, 4 and 5. Chapter
4 addresses a simple question: within the structural framework, is it possi-
ble to relax some implications of the Vasicek (1991) (Gaussian one-factor)
model, the pricing standard widely used in the industry? This chapter points
out how some assumptions underlying this model (homogeneity, single fac-
tor, Normality) are probably too restrictive. Then, the aim of this chapter is
to generalize this standard model by proposing a two by two model (two fac-
tors and two asset classes). We assume two driving factors (business cycle
and industry) with independent t-Student distributions, respectively, and
we allow the model to distinguish among portfolio assets classes. To illus-
trate the estimation of the model parameters, an empirical application with
Moody’s data is also included and potential relationships between default
rates and macroeconomic variables are also analyzed.

Finally, Chapter 5 analyzes (from an intensity based approach) the CDO
pricing model proposed recently in Longstaff and Rajan (2007) considering
different multi-factor versions. This chapter wonders about the robustness of
the results in this model replacing the posited intensity processes by more
flexible extensions as a) considering jumps in the default process or b) a
random loss distribution. In addition to this, we also discuss the usefulness
of considering three factors in CDOs indexes pricing. Thus, a Monte Carlo
simulation provides evidence that a three-factor version of this model with
constant losses impact is flexible enough to reproduce the spreads given by
the market. Finally, it is also shown that an alternative considering random
losses can be helpful when dealing with one- and two-factor models.

To sum up, the main contributions of this dissertation can be summa-
rized as follows:

• With regard to the first part, we analyze the SNJD model from a
theoretical point of view, providing an analytical expression for the
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distribution of the process and several of its statistical properties.

• To our knowledge, this is the first study on analyzing the economic
implications of the SNJD model. This work is also pioneer on providing
many of the statistical tools of the model necessary for its estimation.

• Additionally, from an empirical point of view, we propose different
econometric frameworks for dealing with the SNJD process by ex-
ploring some standard estimation techniques in time and frequency
domain.

• Our results seem to suggest that the GMM methodology is capable of
estimating the parameters of a SNJD model. However, an observed
bias is detected in the parameters associated with the total variance
of the process. Apparently, the inclusion of more efficient weighting
matrices in the estimations does not improve substantially the quality
of the results obtained.

• We explore an alternative econometric methodology based on the spec-
tral analysis to estimate the SNJD model parameters. Two basic spec-
tral estimates are posited, the Naive and Whittle ones. In spite of
their simplicity, our results reveals that the naive estimate could be
an adequate tool for the estimation of the SNJD processes, under the
sample studied. With regard to the Whittle estimate, some numerical
problems concerning to the estimation procedure were encountered.
However, many of its properties -consistence, asymptotical efficiency-
leads to take into consideration this estimate in larger sample studies.

• On the whole, the frequency domain estimates are less biased than the
time domain ones. With regard to their dispersion, this aspect varies
across estimates and parameters. Although the comparison between
time and frequency domain estimates of this part should not be taken
as definite, we think that the obtained results support the idea that
the spectral estimation should be considered as an additional tool for
estimating continuous-time serial dependent processes. In line with
this, our results seem to confirm that this procedure could complement
other time domain alternatives as the GMM ones.

• In general, the numerical approximations involved in the different mo-
ment expressions appear to affect dramatically the results.
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• With respect to the second part, we explore some of the current pricing
techniques for a special type of credit basket derivative: the CDOs.

• We provide more flexible extensions to the Gaussian model proposed
in Vasicek (1991) by considering a family of models that takes into ac-
count the existence of different asset classes or regions of correlation.
We assume two driving factors (business cycle and industry) with in-
dependent t-Student distributions, respectively, and allow the model
to distinguish between portfolio assets classes.

• We analyze the two asset classes models, extended their scope to the
t-Student distribution. We also provide the econometric framework
for assessing the parameters of the posited model. An empirical appli-
cation with Moody’s data has been also presented as an illustration of
the methodology proposed. To the best of our knowledge, no similar
study has been reported yet in this direction.

• In reference to Chapter 5, this is the first work on discussing and
extending the recent proposal of Longstaff and Rajan (2007) to a more
realistic intensity process set up, to the best of our knowledge.

• Our results seem to suggest that a three-factor version of Longstaff
and Rajan (2007) with constant losses impact is flexible enough to
reproduce the spreads given by the market. In addition to this, the
inclusion of jumps to the default process results in an high arrival of
credit events, as corroborated by the high values spreads for equity
tranches.

• The alternative of random losses in the Longstaff and Rajan (2007)
model can be helpful when dealing with one- and two-factor models,
but it seems to be irrelevant in the case of three-factor models. Any-
way, this last point can be developed as a subject for further research.
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Econometric Methods
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Chapter 1

The SNJD process

This chapter1 analyzes the Shot Noise Jump-Diffusion model (SNJD, here-
after) posited by Altmann et al (2007). We study the main features of the
classical Shot Noise process, the origin of the SNJD model. From a theoret-
ical point of view, we provide an analytical expression for the distribution
of the process and several of its statistical properties. Finally, some of the
economic implications of the model are also analyzed.

1.1 Introduction

The irruption of diffusion processes has supposed a major breakout in the
recent financial theory. From the seminal work of Black and Scholes (1973)
up to our days2, the continuous time techniques have revealed as a pow-

1I am sincerely grateful to W. Stute and M. Moreno for their contributions on this
chapter. I would like also to thank to D. Nualart, A. Novales and A. León for his help-
ful comments. Finally, I also acknowledge financial support from the Plan Nacional de
I+D+I (project BEC2003-02084) and especially to José M. Usategui. Previous drafts
of this section have been presented in several congress as EuroWorking Group on Finan-
cial Modelling, 8th Italian-Spanish Meeting on Financial Mathematics, 9th Spanish-Italian
Meeting on Financial Mathematics and XIV Foro de Finanzas. I have also benefited from
the comments of participants in seminars at University of Basque Country, Universidad
Complutense de Madrid, Universitat de les Illes Balears and Universidad Carlos III de
Madrid.

2Black and Scholes (1973) is considered a real milestone in the modern Finance in con-
tinuous time. However, it was not the first in the usage of stochastic processes for modeling
the prices behavior: in this context, the articles of Bachelier (1900), which introduces the
Brownian motion, and Samuelson (1965), which uses the Geometric Brownian Motion for
capturing the distribution of stock prices, are commonly cited as the basis of stochastic
processes applied in Finance.

3
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erful tool in a wide range of areas in finance: the derivatives pricing, risk
management or asset allocation, among others, have been benefited from
the tractability of diffusion processes technology and the reduced number of
assumptions involved in.

Basically, a diffusion process comprises the evolution through time of
a random variable constrained to a statistical distribution (Parzen, 1962).
To put it another way, there is always a statistical distribution behind a
diffusion process. The trade-off between the adequacy of the distribution to
capture the behavior of the economic variable and its analytical tractabil-
ity continues to be an important subject of active research on the current
financial economics area.

Nowadays, the family of the stochastic processes named Affine Jump-
Diffusion processes (AJD) seem to present a useful solution to this compro-
mise. As it was pointed out by Duffie et al (2000), the AJD models pro-
vide analytical solutions to many problems in arbitrage-free pricing theory;
moreover, the existence of a joint econometric theory for their estimation3

leads to the current situation where the wide range use of ADJ process in
financial economics is undoubting. To some extent degree, it would not be
erroneous to consider that the AJD family comprises the most popular con-
tinuous time models in Finance4: for example, the Vasicek (1977) or the
Cox-Ingersoll-Roll (1985) models for interest rates constitute some exam-
ples of the usage of the continuous time based engineering in capturing the
behavior of economic variables.

In this context, the extension to new families of models is clearly needed
when the original model is not able to reflect some empirical features usually
presented in economic series. For instance, the case of the Geometric Brow-
nian Motion (GBM) is often presented as paradigmatic: the most popular
option pricing model introduced in Black and Scholes (1973) assumes that
the price at a certain time of an asset follows a GBM. The assumption be-
hind this process is that the underlying asset returns (prices) are normally
(lognormally) distributed; however, the excess of kurtosis or the volatility
clusters detected in financial prices series (see, for instance, Andersen et al,
2002) lead to misspricing errors in the options pricing (Navas, 2003).

Additional examples of drawbacks on current AJD literature could be

3See Singleton (2001) or Duffie et al (2000).
4Recent financial literature has also focused on the Lévy processes, which exhibits an

infinite number of small jumps in any finite interval (Ait-Sahalia, 2004). Some useful
references about this topic can be found on Chan (1999), Bandorff-Nielsen et al (2002)
and references therein. The textbook of Schoutens (2003) also provides a very extensive
introduction to this subject.
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also reviewed: with reference to the interest rate models, Duffee (2002)
points out the inner restrictions of standard affine models when it comes
to compensate the risk faced by investors5, based on the poor performance
of AJD models on Treasury yields. On the other hand, Lo (1991) and ref-
erences therein stress that the class of continuous time stochastic processes
most commonly employed is inconsistent with the persistence patterns found
on asset returns (Campbell et al, 1997), in view of the fact that current
continuous-time models used in finance are not capable of generate serial
dependence consistent with long-term memory in returns.

All things considered, is it still possible to learn something more about
the empirical features with the existing continuous time models6? Up to a
point, it seems clear that some questions remain open to the appearance of
new models but, is it sufficiently justified the cost of adopting these models
with the knowledge acquired? Needless to say, it is desirable that these new
families would be based, as possible, on the past literature, as well as they
should keep features as the variables parsimony and economic intuition.

This chapter is devoted to introduce a new family of models that fulfill
this trade-off between economic intuition and analytical tractability. In-
serted on the family of the Jump-Diffusion processes (JD, hereafter), we
analyze the main features of the model recently posited by Altmann et al
(2007): the SNJD process. This model is similarly based on traditional JD
processes, where the total variation in the asset price is due to the joint
effect of two types of changes: normal changes, due to the bid-ask cross-
ing of common information, and abnormal ones, where the impact of the
information on the price produces a non-marginal change in the asset price
(see Merton (1976) for details). Basically, the SNJD process introduced by
Altmann et al (2007) extends the model introduced in Merton (1976) by
adding a term (called shot-noise function) to the Poisson process. As we
will see, this additional term tries to reflect some situations that can arise
in stock markets as, for instance, when the effects of a jump fade away on
the long run7.

This chapter contributes to the existing literature on diffusion process
in several directions: from a theoretical point of view, we introduce a brief
treatment of the Shot Noise in the scientific literature. We provide an an-
alytical expression for the distribution of the process and several of its sta-

5An interesting discussion about this feature can be found in Singleton (2006).
6Paraphrase from Duffee (2002).
7An additional advantage of this type of models is that, as discussed in Bondesson

(1988), many statistical distributions appear as marginal distributions for very simple
shot-noise processes.
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tistical properties, analyzing the implications of the model in both time and
frequency domains. Finally, a general discussion of the economic significance
of the model is also included. To our knowledge, this is the first study that
analyzes in detail the applications of the Shot Noise process in Finance.

The structure of the chapter is as follows: firstly, we present a general
treatment of the classical Shot Noise. Secondly, the SNJD is also presented.
Section 3 and Section 4 provide the distribution of the processes, and its cross
moments and population spectrum, respectively. We analyze on Section 5
the most basic example of SNJD process. Finally, Section 6 discusses the
main economic implications of the SNJD model, and some conclusions are
given on Section 7.

1.2 The model

We start introducing the idea of the classical Shot Noise process and, later,
we present the SNJD process and some main features. Finally, we compare
the SNJD process with the GBM and JD processes, analyzing the differences
among these processes.

1.2.1 The Shot Noise process

Let Ht be an stochastic process of the form

Ht =

Nt∑

k=1

Akh (t− τk) , t ≥ 0 (1.1.2.1)

where {Ak, k = 1, · · · , Nt} are i.i.d. random variables, {Nt}t≥0 is an homo-
geneous Poisson process with intensity λ, h (t− τk) represents the reaction
to a possible event with magnitude Ak, and {τk} indicate the different mo-
ments in which the Poisson process appears. It is also assumed that the
variables Ak are independent of the Poisson process, Nt.

Then, Ht is the classical shot-noise process. This type of process has
been previously proposed in different situations as, for example, in mod-
elling arrivals of electrons in a vacuum tube (see Rice, 1954) or earthquake
aftershocks (see Daley and Vere-Jones, 1988). Figure 1.1 represents a simple
path of a Shot Noise process.

An interesting feature of a shot-noise process is that many distributions
appear as marginal ones for this kind of processes (see Bondesson, 1988).
This is the reason why the function h(·) plays an important role in the
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Figure 1.1: Representation of a path simulation for the Shot Noise process of
expression (1.1.2.1). The response function is h(t − τk) = e−a(t−τk). Random

variable Ak is lognormally distributed as A = e−β2/2+βε − 1, with ε ∼ N(0, 1) and
mean E[Ak] = 0. Simulation parameters are λ = 10.00, β = 0.10 and a = 0.50.

process distribution. As an example, if the distribution of the variable {Ak}
is a mixture of exponential distributions and

h(x) =

{
0 x < 0

ce−ax x ≥ 0

Bondesson (1988) shows that the shot-noise distribution is a generalized
gamma convolution.

An additional characteristic of the Shot Noise process is that it is capable
of introducing autocorrelation in data. Table 1.1 displays the autocorrela-
tion values (ACF) for the classical Shot noise process of expression (1.1.2.1)
with exponential decaying response function8. The parameter a controls the
degree of decay of the process. Each column correspond to different values
of this parameter. In order to compare with a known process, the last col-
umn includes the ACF for an AR(1) model. Different lags are disposed in

8Advancing some results that will be presented later, the ACF of this process is given by
Corr[Ht, Ht+n∆t] = e−a n∆t, and can be found in Ross (1996). More general expressions
for the ACF of the Shot noise process are provided later in this chapter.
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Table 1.1: Autocorrelation function for different values of the parameter
a.

Lag (n) a = 0.2 a = 0.6 a = 1.5 AR(1), φ = 0.6

1 0.8187 0.5488 0.2231 0.6000
2 0.6703 0.3012 0.0498 0.3600
3 0.5488 0.1653 0.0111 0.2160
4 0.4493 0.0907 0.0025 0.1296
5 0.3679 0.0498 0.0006 0.0778
10 0.1353 0.0025 3.06 × 10−7 0.0060
25 0.0067 3.06 × 10−7 5.17 × 10−17 2.84 × 10−6

50 4.54 × 10−5 9.35 × 10−14 0.0000 8.08 × 10−12

100 2.06 × 10−9 8.75 × 10−27 0.0000 6.53 × 10−23

This table includes the theoretical autocorrelation coefficients ρ(n) for different
lags and values of the parameter a involved in the response function h(t − τk) =
e−a(t−τk) included in eq. (1.1.2.1). Random variable Ak is lognormally distributed

as A = e−β2/2+βε − 1, with ε ∼ N(0, 1) and mean E[Ak] = 0. Simulation param-
eters are λ = 0.04, β = 0.10 and a = 0.50.

rows. This table is directly inspired on Campbell et al (1997), where we
have employed the Shot Noise model instead of the fractionally differenced
process.

Table 1.1 reflects that the parameter a modulates the persistence of the
process in time: the more we increase parameter a, the more decay is the
ACF at first lags. To put it another way, as a increases, we observe that
serial correlation in time diminishes, as it is observed by direct comparison
with the AR(1) process column. On the whole, we can consider that the
same pattern of decay is observed between the AR(1) process column and
the classical Shot noise.

To provide additional arguments to the serial correlation introduced by
the model (1.1.2.1), Figure 1.2 exhibits the nonparametric estimate of the
spectrum for a Shot noise obtained from a time series created from the values
of 100 simulated paths composed by 1800 data each one. Our final time series
is composed by the mean values of the steps for each path, a procedure which
ensures certain degree of robustness to the results. Simulation parameters
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are displayed in the figure.

With the intention of keeping intuition of the results, let the spectrum
be considered as a tool for capturing the dynamics of the time series, since
a more detailed definition will be given in Chapter 3. Roughly speaking,
the area under the spectrum represents the total variance of the process9;
lower frequencies represent the data linked by yearly, quarterly periods; by
contrast, higher frequencies are related to information contained on weekly,
daily data. If the shape of the spectrum is higher for certain frequencies than
others, it reflects that a bigger portion of the variance of the process could
be explained by what has happened in that time spans (frequencies). To
put it another way, the information contained in some cyclical components
of the series has an important effect in explaining the total behavior of the
process.

As an example of the former, consider a flat spectrum. This means
that there is no special contribution to the variance of the process in any
particular frequency. For instance, a white noise process has a constant
spectrum10. By contrast, as we can see in Figure 1.2, our time series exhibits
power at low frequencies. This must be intended as follows: an important
part of the variability of the process is explained by larger time periods - e.g.
yearly - data. Taking everything into account, the intuition behind is clear:
the addition of a Shot Noise to a stochastic process could lead a source of
serial dependence.

Shot noise processes have been intensively studied by Rice (1954) or
Parzen (1962)11 . Moreover, Bondesson (1988) provides a general treatment
of these processes and includes extensive references.

1.2.2 A model with shot-noise effects

According to Merton (1976), the arrival of abnormal information (for exam-
ple, news about a company default) produces a non-marginal change on the
price of a certain asset. Merton models this component using a compound
Poisson process that reflects the impact of this non-marginal information.
Within the current financial literature, these abrupt changes in prices lead
to the so-named jumps. As a result of this, Merton’s model describes more
realistically the behavior of stock prices.

An additional implication of Merton’s model is that changes in stock

9For a general description of the spectral analysis, see Hamilton (1994).
10Indeed, the spectrum of log-returns of a GBM or a JD process is constant, too.
11The shot noise process is sometimes called Filtered Poisson process, although this

terminology is not standard (Parzen, 1962).
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Figure 1.2: Nonparametric estimate of the population spectrum for a classical
Shot noise of equation (1.1.2.1). The response function is h(t − τk) = e−a(t−τk).

The random variable Ak is lognormally distributed as A = e−β2/2+βε − 1, with
ε ∼ N(0, 1) and mean E[Ak] = 0. Simulation parameters are λ = 0.04, β = 0.10
and a = 0.50. Bandwidth parameter of the estimate has been fixed to 40.

prices have a long-term effect12, that is, the effect of a change in stock prices
does not vanish with time. After a upward jump, prices following a jump
diffusion process (JD) like in Merton (1976) do not return to the initial (pre-
jump) level. Figure 1.3 illustrates graphically this situation: two processes
generated with the same seed, GBM and JD, follow equal trajectories before
a jump event but, after the jump, both processes follow very different paths.

By contrast, it could be thought that these changes fade away on the
long run. An intuitive explanation for this decay is that a positive jump
is followed by a profit taking, encouraging the investors to sell their assets.
Similarly, an abnormal decrease in the asset price can encourage investors
to buy such asset. In terms of the stochastic literature, these impulses can
produce a shot noise effect.

Altmann et al (2007) presents a model that captures some of these effects

12This must not be confused with long-term memory in second moments.
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Figure 1.3: Representation of path simulations for Geometric Brownian Motion
(GBM) and Jump Diffusion (JD) models. Random variable U for JD process is

lognormally distributed as U = e−β2/2+βε−1, with ε ∼ N(0, 1) and mean E[U ] = 0.
Simulation parameters (annualized) are µ = 0.05, σ = 0.20, λ = 5.00 and β = 0.10

and, then, can be an adequate candidate to provide a better fit to market
data than some of the models previously proposed in the literature. This
model is named Shot-noise jump-diffusion (SNJD, hereafter) and assumes
that the process for the stock price is given by the following expression

St = S0 exp

[(
µ− σ2

2

)
t+ σBt

] Nt∏

j=1

[1 + Ujh (t− τj)] (1.1.2.2)

where

• Sj denotes the asset price at time j

• µ, σ are constants

• {Bt}t is a standard Brownian motion

• {Nt}t≥0 is a Poisson process with intensity λ
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• {Uj}j is a sequence of i.i.d. jumps

• h is an arbitrary response function (to be determined)

• τj is the instant in which the j-th jump appears

Additionally, it is assumed that {Bt}t , {Nt}t, and {Uj}j are mutually
independent.

For illustrative purposes, one example of the decay function h(t−τj) can
be the following:

h(t) =

{
0, t < 0

exp (−at) , t ≥ 0
(1.1.2.3)

where a ∈ R+ is the velocity of the jump effect decay.

Figure 1.4 displays the simulation of the SNJD process in equation
(1.1.2.2) with exponential response function of the form (1.1.2.3). As it
will be comment later, this specification of response function is capable of
generate spikes, a common feature in interest rates (Benito et al, 2006) or
electrical price series (Escribano et al, 2002).

Another advantage of the SNJD model is its capability to introduce serial
correlation in returns by means of the Shot noise process, as it was previously
noticed in subsection 2.1. The degree of serial correlation can be modulated,
for example, by modifying the parameter a in equation (1.1.2.3). In this case,
high values of a (fast decaying effect) increase the level of autocorrelation
for the first lag. Finally, with a = 0 we obtain the Merton (1976) process as
a nested version of the model.

1.2.3 Main features

We provide here some results that serve to illustrate some of the main fea-
tures of the model SNJD (see 1.1.2.2). Adopting a position that will be
held through this dissertation, we simulate a SNJD model with exponen-
tial response function as in (1.1.2.3). For simplicity and without loss of
generality, all the simulations are developed for the model in (1.1.2.2) with
jump sizes U = e−β2/2+βǫ − 1, ε ∼ N (0, 1). The assumption of a lognormal
distribution for the jump sizes is common in the jump-diffusion literature
(see, for instance, Merton, 1976)13. To decrease the number of parameters

13Some studies propose exponential distribution for the jump size. See, for instance,
Duffie and Garlenau (2001) in the context of credit risk markets, or Barone-Adesi and
Giggli (2002) and Villaplana (2003) for electricity markets, among others.
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Figure 1.4: Representation of path simulations for a Shot-Noise Jump Diffusion
(Altmann et al, 2004) process. Random variable U is lognormally distributed as

U = e−β2/2+βε − 1, with ε ∼ N(0, 1) and mean E[U ] = 0. Simulation (annualized)
parameters are µ = 0.05, σ = 0.20, λ = 10.00, β = 0.05 and a = 0.05

under estimation, we impose E [U ] = 0, a common assumption also14 (Ait-
Sahalia, 2004). Finally, to our knowledge, the functional form of h (t) has
not been reported yet in the financial literature. Then, for analytical and in-
tuition purposes, we assume an exponential decreasing function of the form
h (t) = e−at.

The main advantage of having this specification is that we can relate,
in a simple form, the results obtained for our SNJD model with the two
standard models for stock prices: firstly, the Geometric Brownian Motion
(GBM), posited by Black and Scholes (1973) for describing the movement
of stock prices; secondly, the Jump Diffusion process (JD), introduced by
Merton (1976) as a more realistic description of stock prices behavior. Both
models are nested by the SNJD process15.

14Navas (2003) and references therein offers an interesting discussion about this assump-
tion in the JD process literature.

15According to the proposed response function, if the parameter a is zero, the SNJD
model leads to the JD model of Merton (1976). On the other hand, the GBM is obtained
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Then, the parameter vector results Λ = (µ, σ, λ, β, a)′ ∈ R5, where µ
and σ are the drift and volatility parameters of the Geometric Brownian
motion, λ is the intensity of the Poisson process, β is related to the mean
and variance of the jump size, and the parameter a refers to the speed of
the decaying effect after a jump event.

To show the differences between these models, we simulate the SNJD
model against GBM and JD processes, separately. Basically, we compare
the paths, distribution of log-returns and autocorrelation function (ACF) of
log-returns, absolute log-returns and squared log-returns generated by these
three models.

Some previous intuitions

To keep some intuitions in mind, Figure 1.5 exhibits the sample paths of the
SNJD process against GBM and JD processes, respectively. Notice that all
simulations have been carried out with the same seed, so Figure 1.5 shows
differences among paths introduced by the jumps (and the Shot noise). The
jump magnitude β is a little bit bigger than empirical, but it has been fixed
to 0.10 to clarify the effect of the jump. Moreover, to see the persistence of
the Shot noise on prices, the SNJD process has been represented when the
parameter a equals to 0.5 and 1.5.

Upper graph in Figure 1.5 represents the SNJD trajectories against that
of GBM. As it is possible to see, the three simulated processes share the
trajectories: it is due to the the effect introduced by the Shot noise, where
a change in stock prices fades away with time. By contrast, the lower graph
in Figure 1.5 exhibits the SNJD paths against that of JD. As Figure 1.5
reflects, after a upward/downward jump, prices following a JD process do
not return to the initial (pre-jump) level.

An inspection of the histogram of log-returns in Figure 1.6 reveals that,
as expected, the SNJD model does not perfectly fit to a normal distribution.
As Figure 1.6 exhibits, the SNJD model distribution has fatter tails than
the normal one.

Autocorrelation function coefficients

Figure 1.7 shows the autocorrelation functions for the different processes
under study. The simulation exercise comprises 100 different paths of 1800
data each one. The mean sample autocorrelation values for each trajectory
have been represented in graphs, where the axis X captures the different

in absence of jumps.
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Figure 1.5: Representation of path simulations for a GBM and JD processes
against different specifications of the SNJD process. Simulations parameters (an-
nualized) are µ = 0.05, σ = 0.20, λ = 10.00 and β = 0.10. Parameters a are 0.5 and
1.5, respectively. Response function for SNJD is h(t− τk) = e−a(t−τk) and the ran-

dom variable U is lognormally distributed as U = e−β2/2+βε − 1, with ε ∼ N(0, 1)
and mean E[U ] = 0.
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Figure 1.6: Histogram for a SNJD process. Response function for SNJD model
is h(t − τk) = e−a(t−τk) and the random variable U is lognormally distributed as

U = e−β2/2+βε − 1, with ε ∼ N(0, 1) and mean E[U ] = 0. Simulation (annualized)
parameters are µ = 0.05, σ = 0.20, λ = 10.00, β = 0.05 and a = 0.5.

lags and axis Y represents their magnitude. In this figure, the first, second
and third columns correspond to the autocorrelation coefficients for stan-
dard, absolute and squared log-returns, respectively. GBM, JD and SNJD
processes are displayed in rows. The response function used here for the
SNJD process is h(t− τk) = e−a(t−τk) and the random variable U is lognor-
mally distributed with mean E[U ] = 0. Finally, the simulation (annualized)
parameters are µ = 0.05, σ = 0.20, λ = 10.00, β = 0.05 and a = 0.5.

As we can see, the main feature of the SNJD model with exponential
decay response function is the capability to generate a large persistence
in log-returns, in contrast with GBM and JD models. Needless to say,
different specifications of response function would lead to different patterns
in the serial correlation behavior. Coming back to the exponential SNJD
case, this process generates negative autocorrelation coefficient values, which
decay exponentially with respect to the number of lags, as it will be presented
later.
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Figure 1.7: Autocorrelation functions (ACF) of log-returns, absolute log-returns
and square log-returns for the GBM, JD and SNJD processes. First column corre-
spond to log-returns. Second and third represents autocorrelations for absolute and
squared log-returns. Each row contains ACFs for GBM, JD and SNJD processes,
respectively. Simulation (annualized) parameters are µ = 0.05, σ = 0.20, λ = 10.00,
β = 0.05 and a = 0.5. Response function for SNJD is h(t− τk) = e−a(t−τk) and the
random variable U is lognormally distributed with mean E[U ] = 0.
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1.3 The distribution of the process

This section focuses on computing the characteristic function of the log-
returns of the SNJD process, as a necessary previous step to perform the
empirical analysis of the model with shot noise. We also provide expressions
for the first moments, and compare our results with those obtained for the
JD processes in Das and Sundaram (1999) or Ait-Sahalia (2004).

1.3.1 Characteristic function

Let (Ω,̥t, P ) be a probability space and consider the filtration ̥t. Let
{t ∈ [0, T ]} be the set of trading dates. ∆t (> 0) denotes the length of time
between two price observations. We compute the log-return of the stock
between the times t and t + ∆t as Zt = ln(St+∆t/St). Using (1.1.2.2), Zt

is given by the sum of three independent random variables, Xt, Yt and Ht

where

Xt =

(
µ− σ2

2

)
∆t+ σ (Bt+∆t −Bt) (1.1.3.1)

Yt =

Nt+∆t∑

j=Nt+1

ln [1 + Ujh (t+ ∆t− τj)] (1.1.3.2)

Ht =

Nt∑

j=1

ln

[
1 + Ujh (t+ ∆t− τj)

1 + Ujh (t− τj)

]
(1.1.3.3)

It is worth to say some words for capturing the intuition behind the
former equations. The term Xt in expression (1.1.3.1) is obtained when
we compute the log-returns of a GBM process. Basically, it expresses the
contribution to the total log-returns of the SNJD model in (1.1.2.2) by part
of the GBM term. As we see, this contribution is continuous in time16 and,
due to the independence property among Brownian increments, log-returns
generated by this term are not serially correlated17.

The term Yt in expression (1.1.3.2) reflects the punctual contribution of
a jump event on total log-returns. Remember that Nt is a counter process
that takes values 0, 1, 2, ... and so on. Moreover, the probability of that

16Because of the paths of a Brownian motion are continuous through time.
17The mathematical concepts of continuity and independence are usually connected

with those of completeness and efficiency of the markets on Economics (see, for instance,
Cambpell et al (1997) or Delbaen and Schachermayer (1997) and references therein, among
others). Our intention here is just to notice this point in the equations, but we will come
back to this question more ahead.
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one jump happens in between times t and t + ∆t is P [Nt+∆t − Nt = 1] ≈
λ∆t, with λ the frequency that a jump occurs18. As equation (1.1.3.2)
expresses, this summand term just exists when a new event arises, and it
is zero otherwise. For the above mentioned reasons, it is clear that the
contributions of the term Yt to the total log-returns of the SNJD process
are spread through time, that is to say, they are discontinuous inputs of
the total log-returns. Moreover, this realizations are not connected19, by
independence of increments of the Poisson process.

If we compute the log-returns of a JD process, like Merton (1976), this
just leads to the expressions obtained for Xt and Yt. Not surprisingly, an
additional term appears when it comes to calculate the log-returns of a SNJD
process: the Ht term on equation (1.1.3.3). As we can see, Ht represents
the contribution of a jump event with probability λ∆t through time; to put
it another way, equation (1.1.3.3) captures the addition of the value of the
different shocks that occur in accordance to a Poisson process with rate λ,
assuming that they decrease over time at a deterministic rate (Ross, 1996).
Looking at equation (1.1.3.3), it is clear that this expression retains all the
information about the past history of the process. As it will be pointed
out in the next section, this term is the source of the autocovariance of
the SNJD process. Finally, notice that observations are connected through
time; moreover, regardless of the fact that the contribution of a jump shock
is punctual, their effects are transitory.

The probability law of any stochastic process Vt could be expressed in
terms of its characteristic function, named ΦV (ξ) (Parzen, 1962). The fol-
lowing Lemma summarizes this result for the process Zt.

Lemma 1 The characteristic function of the process Zt is given by

ΦZt (ξ) = exp

(
i

(
µ− σ2

2

)
∆tξ − 1

2
σ2∆tξ2

)

18The actual rate of jumps per year differs across markets (see, for instance, Jorion
(1988) or Das, 2002). For indexes of stock prices, this rate is low (Ait-Sahalia (2004)
assumes a rate of five jumps by year on average, much higher than would be realistic).
This is the reason why the probability that more than one jump happens in a short period
of time will be considered almost insignificant.

19More precisely, the observations are not almost connected. We clarify this point in
the next paragraph.
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× exp

(
λ

∫ t+∆t

t
E
[
eiξ ln[1+Uh(t+∆t−τ)] − 1

]
dτ

)

× exp

(
λ

∫ t

0
E

[
e
iξ ln

[
1+Uh(t+∆t−τ)

1+Uh(t−τ)

]

− 1

]
dτ

)
(1.1.3.4)

Proof. See the Appendix

These results must nest those obtained for simplest processes, as jump-
diffusion processes without shot noise effects. The next example links the
SNJD model with the JD processes.

Example 1.1 In the case of a pure jump process (h = 1), expression (1.1.3.4)
becomes

ΦZt (ξ) = exp

(
i

(
µ− σ2

2

)
∆tξ − 1

2
σ2∆tξ2 + λE

[
eiξ ln[1+U ] − 1

]
∆t

)

As expected, this characteristic function equates that obtained by Das and
Sundaram (1999) for a JD process.

1.3.2 Moments of the process

Once obtained the characteristic function of the log-returns of the stock
price given by model (1.1.2.2), the non-central unconditional moments can
be computed by differentiating expression (1.1.3.4), that is,

µ′n = E [Zn
t ] =

1

in
∂ΦZt

∂ξ

∣∣∣∣
ξ=0

(1.1.3.5)

where µ′n denotes the n-th non-central moment. Given the relationship
between central moments, denoted by µn, and non-central moments (see
Abramowich and Stegun (1968), 26.1.14), the next lemma provides the first
four moments for the log-returns of the SNJD process.

Lemma 2 The first four moments of the log-returns for a SNJD process
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(see (1.1.2.2)) are given by

E [Zt] =

(
µ− σ2

2

)
∆t+ λ

∫ t+∆t

t
E [ln (1 + Uh (t+ ∆t− τ))] dτ

+λ

∫ t

0
E

[
ln

(
1 + Uh (t+ ∆t− τ)

1 + Uh (t− τ)

)]
dτ

V ar [Zt] = E
[
(Zt − E (Zt))

2
]

= µ′2 −
(
µ′1
)2

= σ2∆t+ λ

∫ t+∆t

t
E
[
ln2 (1 + Uh (t+ ∆t− τ))

]
dτ

+λ

∫ t

0
E

[
ln2

(
1 + Uh (t+ ∆t− τ)

1 + Uh (t− τ)

)]
dτ

Skewness =
µ3

µ
3/2
2

=
2 (µ′1)

3 − 3µ′1µ
′
2 + µ′3

µ
3/2
2

=
1

µ
3/2
2

(
C3 +D3

)

Kurtosis =
µ4

µ2
2

=
−3(µ′1)

4 + 6(µ′1)
2µ′2 − 4µ′1µ

′
3 + µ′4

µ2
2

= 3 +
C4 +D4

µ2
2

with

Cn = λ

∫ t+∆t

t
E [{ln (1 + Uh (t+ ∆t− τ))}n] dτ

Dn = λ

∫ t

0
E

[{
ln

(
1 + Uh (t+ ∆t− τ)

1 + Uh (t− τ)

)}n]
dτ

Proof. See the Appendix

Former expressions generalize the results obtained for GBM and JD. As
it was previously shown, it is also possible to connect the moments of a
SNJD process with those of the JD process as the next example shows.

Example 1.2 Let us consider a JD process as that posited by Merton (1976).
In this case, h (t) = 1, and

Cn = λ∆tE [{ln (1 + U)}n]

Dn = 0
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Then, the first moments of the log-returns for a SNJD process are as follows:

E [Zt] =

((
µ− σ2

2

)
+ λE [ln (1 + U)]

)
∆t

V ar [Zt] =
(
σ2 + λE

[
{ln (1 + U)}2

])
∆t

Skewness =
1√
∆t




λE
[
{ln (1 + U)}3

]

(
σ2 + λE

[
{ln (1 + U)}2

])3/2





Kurtosis = 3 +
1

∆t




λE
[
{ln (1 + U)}4

]

(
σ2 + λE

[
{ln (1 + U)}2

])2





as obtained in Das and Sundaram (1999) or Aı̈t-Sahalia (2004)20.

To compare the skewness and excess of kurtosis generated by the JD
and SNJD models, Table 1.2 displays the values obtained in both models21.
Jump returns are normally distributed with ln(1+U) ∼ N(θ, β2). As it will
be our reference through the paper, the SNJD model has been simulated by
using a response function of the form h(·) = e−a(·). Simulation parameters
are also given in Table 1.2.

By and large, Table 1.2 exhibits parameters of skewness and excess of
kurtosis for JD and SNJD process very close each other. In general, this fact
is corroborated across different time periods or different set of parameters.
The causes of this similarities arise in the form of the response function
chosen, as an inspection of the skewness and kurtosis equations for both
models reveals: it seems that an exponential decaying function response
produces a behavior in the first moments equal to those generated by a JD
model22.

Advancing some results that will be provided in next sections, it is worth
to mention that these similarities among the JD and SNJD model with
exponential response function do not happen in cross-moments, as Figure
1.7 reflects: the autocorrelation coefficients for first lags of the SNJD model

20Aı̈t-Sahalia (2004) also provides an expression for the centered, absolute moments of
non-integer order.

21This Table is directly inspired in Das and Sundaram (1999).
22This point will be mathematically clarified by the numerical approximation result of

the next subsection.
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Table 1.2: Skewness and excess of kurtosis in the JD and SNJD processes

Parameters Skewness Excess of kurtosis
1d 1w 1m 1d 1w 1m

σ θ β JD SNJD JD SNJD JD SNJD JD SNJD JD SNJD JD SNJD

0.24 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.33 0.33 0.07 0.07 0.02 0.02
0.24 -0.001 0.02 -0.01 0.00 0.00 0.00 0.00 0.00 0.32 0.33 0.07 0.07 0.02 0.02
0.24 -0.100 0.02 -2.77 -2.60 -1.26 -1.18 -0.60 -0.57 12.07 11.17 2.49 2.31 0.57 0.53

0.20 0.00 0.04 0.00 0.14 0.00 0.06 0.00 0.03 6.17 6.27 1.27 1.29 0.29 0.30
0.20 -0.001 0.04 -0.06 0.08 -0.03 0.04 -0.01 0.02 6.07 6.22 1.25 1.28 0.29 0.30
0.20 -0.100 0.04 -3.81 -3.57 -1.73 -1.62 -0.83 -0.78 19.76 19.02 4.08 3.92 0.94 0.90

0.15 0.00 0.06 0.00 0.66 0.00 0.30 0.00 0.14 28.63 29.53 5.91 6.09 1.36 1.41
0.15 -0.001 0.06 -0.12 0.55 -0.06 0.24 -0.03 0.12 28.32 29.35 5.84 6.06 1.35 1.40
0.15 -0.100 0.06 -5.23 -4.93 -2.38 -2.24 -1.14 -1.08 31.26 32.07 6.45 6.62 1.49 1.53

Skewness and excess of kurtosis for the JD and SNJD process. Jump size in returns is normally distributed with ln(1+U) ∼ N(θ, β2).
Response function in SNJD process is h(·) = e−a(·). The annual volatility has been fixed to σannual = 0.25 for all cases. Parameter
λ (the number of jumps per year) is also constant and equal to 10. Taking into account the expression for the total variance of the

JD process σ2∆t+λ∆tE[{ln (1 + U)}2
] is possible to keep intuition about the results obtained: for example, a parameter β = 0.02

represents about 10% of contribution of the jumps to the total variance; similarly, values of β = 0.04, 0.06 constitutes a 36% and
64% over the total variance of the JD process due to jumps.
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are significant and different from zero; by contrast, the GBM and JD models
are not significant and close to zero value, as Figure 1.7 reveals.

Some additional conclusions arise from Table 1.2. It seems that the
jumps are the source of asymmetries in returns generated by JD and SNJD
processes. This is corroborated by the fact that, generally speaking, no
skewness is produced in the case of symmetric jumps (θ = 0). Additionally,
in the case of negative values for jump means, it is possible to observe how as
the contribution of jumps to the total variance of the process increases (from
10% for β = 0.02 to about 60% of β = 0.06) the magnitude of the skewness
also increases, passing from −2.70 to about −5.00 in daily frequency (the
same applies for weekly and monthly ones).

Similarly to the skewness case, the jumps are also responsible of the
kurtosis in JD and SNJD processes. As expected, the models of jumps
produces excess of kurtosis higher than usual in any set of parameters. For
instance, observe the huge differences of excess of kurtosis among cases with-
out (almost) jump variance contribution (σ = 0.24) and high jump variance
(σ = 0.15).

Finally, Table 1.2 exhibits a decaying in skewness and excess of kurtosis
that tends to the Normal distribution when the time frequency is reduced23.
This fact is interpreted as a direct result of the Central Limit Theorem.

1.3.3 Numerical approximations

Expressions of moments include some integrals of the type

Cn = λ

∫ t+∆t

t
E [{ln (1 + Uh (t+ ∆t− τ))}n] dτ (1.1.3.6)

Dn = λ

∫ t

0
E

[{
ln

(
1 + Uh (t+ ∆t− τ)

1 + Uh (t− τ)

)}n]
dτ (1.1.3.7)

whose computation could be burdensome. To avoid this problem, the next
lemma provides some useful approximations.

23Das and Sundaram (1999) mention that the rate of decaying of skewness and kurtosis
in JD models is faster than that empirically observed. According to this, the authors
notice that implied volatility smiles should not exist at long-periods (three months), as it
is contrary to the market. This could be considered as a drawback of the JD models.
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Lemma 3 The expressions (1.1.3.6) and (1.1.3.7) can be approximated by

Cn ≃ λE [Un]

∫ t+∆t

t
[h(t+ ∆t− τ)]n dτ (1.1.3.8)

Dn ≃ λE [Un] (∆t)n
∫ t

0

[
d

dt
h(t− τ)

]n

dτ (1.1.3.9)

Proof. See the Appendix.

As it will be of interest, the next example provides the numerical approx-
imations for Cn and Dn using the numerical response function in (1.1.2.3)

Example 1.3 In case of h(·) = e−a(·), the terms (1.1.3.6) and (1.1.3.7) can
be approximated by

Cn ≃ λE [Un]∆t (1.1.3.10)

Dn ≃ λE [Un] (−a∆t)n 1

na

(
1 − e−nat

)
(1.1.3.11)

Expressions (1.1.3.10) and (1.1.3.11) justify the results included in Table
1.2: since the term (∆t)n is almost zero for n ≥ 2, equation (1.1.3.11)
vanishes. On the other hand, the form of term Cn reflects that, in this special
response function, the SNJD model behaves as an standard JD model.

1.4 Cross moments and spectra

As was exhibited in Figure 1.7, the term (1.1.3.3) introduces some kind
of serial dependence in log-returns. Then, it is clear that some kind of
information could be presented in the cross moments of the series generated
by the model (1.1.2.2). With regard to the former, it could be interesting
to look carefully to the dynamics of the process, with attention to its cross
moments and its spectrum.

This section computes the autocovariance and population spectrum of
the log-returns of the process (1.1.2.2). The last part of this section il-
lustrates some related intuitions concerning the serial dependence by using
simulations. Some of the ideas presented here will be treated in detail in
Chapter 3.
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1.4.1 Autocovariance

Prior to computing the autocovariance of the log-returns of process (1.1.2.2),
it is important to formalize three assumptions concerning to the term Yt

and Ht (see equations (1.1.3.2) and (1.1.3.3)), respectively, that simplify
enormously the computations involved in.

Assumption 1 The increments of the Poisson process can be approximated
by a Bernoulli variable. If so, we have that24,

Yt =

Nt+∆t∑

j=Nt+1

ln [1 + Ujh (t+ ∆t− τj)] (1.1.4.1)

≃






0, if Nt+∆t −Nt = 0

U1+Nt h(0), if Nt+∆t −Nt = 1, with Nt = 0, 1, 2, . . .
(1.1.4.2)

being ∆t a small time increment.

Now, two more technical assumptions must be added.

Assumption 2 There is no effect of the response function in the moment
of event happens (h(0)).

Assumption 3 The term Ht in equation (1.1.3.3) can be approximated by

Ht =

Nt∑

j=1

Uj(h (t+ ∆t− τj) − h (t− τj)) (1.1.4.3)

Basically, assumption 2 states that the only contribution in the time that
jump event happens is (just) due to the random variable Uj

25. Additionally,

24Basically, we assume that the probability of one jump happened within the interval
[t, t + ∆t] is

P [Nt+∆t − Nt = 0] ≃ 1 − λ∆t

P [Nt+∆t − Nt = 1] ≃ λ∆t

and zero otherwise. For a detailed discussion of this point see Ball and Torous (1983).
Ait-Sahalia (2004) also provides additional insights about this issue.

25Our intention here is to avoid additional contributions to the jump shock in the same
moment that jump triggers. As we will see, by imposing this restriction on the SNJD
process, we will be able to consider as independent random variables the elements in Yt

of equation (1.1.3.2), for small time intervals ∆t.]
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Assumption 3 just introduces a more suitable representation of expression
Ht based on the power expansion of the logarithm. As we will see, this result
will become useful for computing the autocovariance of the process Zt.

The independence between Bt, Nt and Uj simplifies enormously the com-
putation of the autocovariance of a SNJD process. As we refer in the ap-
pendix, we address to the reader to Parzen (1962) for a formal proof of the
autocovariance of the process Ht (see expression (1.1.3.3)).

The next lemma provides the autocovariance for log-returns of the pro-
cess (1.1.2.2).

Lemma 4 The autocovariance of the SNJD process is given by

Cov [Zt+n∆t, Zt] = σ2∆tδ(n) + λE[U2]∆tδ(n)

+λ

∫ t

0
E

[
ln

(
1 + Uh (t+ ∆t− τ)

1 + Uh (t− τ)

)
ln

(
1 + Uh (t+ (n+ 1)∆t− τ)

1 + Uh (t+ n∆t− τ)

)]
dτ

+Cov




Nt+∆t∑

j=Nt+1

Uj,

Nt+n∆t∑

j=Nt+1

Uj(h(t+ n∆t− τj) − h(t− τj))



 (1.1.4.4)

where n = 0, 1, 2, . . . denotes the lag and δ(·) is the usual delta Dirac
function.

Proof. See the Appendix

Notice the fact that the Shot noise is the responsible of the autocovari-
ance of the SNJD process. Again, as expected, this result generalizes those
obtained for standard diffusion process as GBM or JD.

1.4.2 Population spectrum

As it will be developed in Chapter 3, due to the dynamical properties of
process (1.1.2.2) could be interesting to explore the estimation of the Shot
noise process in the frequency domain. According to this, the computation
of an expression for the population spectrum of log-returns is necessary.

Let sZ (w) denote the population spectrum of a covariance-stationary
process Z, where w denotes the set of different frequencies26. As Hamil-
ton (1994) points out, this spectrum is computed by applying the Fourier

26These frequencies w will be defined more precisely in Chapter 3.
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transform to the autocovariance function of the process:

sZ (w) =

∫ +∞

−∞

γ (ε) e−iwεdε (1.1.4.5)

where γ (ε) denotes the autocovariance function Cov [Zt+ε, Zt] of the process
Zt and ε the time lag27.

A previous result (see Hamilton (1994), p. 172) will be useful to estimate
the population spectrum of processes of type (1.1.2.2). This result estab-
lishes that the population spectrum of the sum of uncorrelated processes is
equal to the sum of the corresponding spectra. Then, given the stochastic
process Zt = Xt +Yt +Ht (with no correlation between them), it is possible
to demonstrate that

sZ (w) = sX (w) + sY (w) + sH (w) (1.1.4.6)

Therefore, the expression of the log-returns for the model (1.1.2.2) can be
written as the sum of two white noises (from the Brownian and JD parts,
respectively) plus a Shot noise component.

The following lemma provides the population spectrum of the SNJD
process by means of applying the Fourier transform to (1.1.4.4).

Lemma 5 The population spectrum of the log-returns of the process (1.1.2.2)
is given by

sZ (w) =
σ2

2π
∆t+

λ

2π
E[U2]∆t

+
λ

2π

∫ +∞

−∞

e−iwεdε

×
∫ t

0
E

[
ln

(
1 + Uh (t+ ∆t− τ)

1 + Uh (t− τ)

)
ln

(
1 + Uh (t+ ∆t+ ε− τ)

1 + Uh (t+ ε− τ)

)]
dτ

+
λ

2π

∫ +∞

−∞

e−iwεdε

×Cov




Nt+∆t∑

j=Nt+1

Uj ,

Nt+ε∑

j=Nt+1

Uj(h(t + ε− τj) − h(t− τj))



 (1.1.4.7)

27For the ease of explanation, we will introduce here a new notation for time lags.
Without loss of generality, we denote ε = n∆t, δ(ε) = δ(n) where n = 0, 1, 2, . . .
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Proof. See the Appendix

The last expression seems too general and must be computed individually
for any specification of response function h(·). Anyway, this result shows
that the addition of a shot noise process in standard diffusion processes - as
GBM or JD - may lead to different distribution of power along frequencies28.

1.5 The exponential decaying function case

The SNJD with exponential response function constitutes the paradigm of
the model posited by Altmann et al (2007). It could be considered as the
simplest, most intuitive form of introducing a deterministic behavior after
the jump.

This section provides some results about the SNJD model with expo-
nential decaying function. Most of them have already been mentioned, and
they are just applications of former sections. To the best of our knowledge,
there are no references about other candidates for this function. Anyway,
the results given here will be used in next chapters to check the performance
of the different methodologies proposed for estimating the parameters of a
SNJD model.

1.5.1 Moments and autocovariance function

We present here the main first moments and correlation expressions for the
SNJD model with exponential decaying function.

By replacing the function h(·) = e−a(·) in expression of moments in
Lemma 2, we obtain

E [Zt] =

(
µ− σ2

2

)
∆t (1.1.5.1)

V ar [Zt] =
(
σ2 + λE[U2]

)
∆t (1.1.5.2)

28As we will detail later, this is an aspect that can be relevant to explain the power at
low frequencies that appears in some economic variables (Lo, 1991). Of course, this must
not be intended as the Brownian or jump parts do not contribute to the spectrum of the
process.
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Skewness =
1√
∆t

[
λE[U3]

(V ar[Zt])
3/2

]
(1.1.5.3)

Kurtosis = 3 +
1

∆t

[
λE[U4]

(V ar[Zt])
2

]
(1.1.5.4)

where we have used the approximations for exponential decaying function
of the example 3.

Notice that expressions (1.1.5.1)–(1.1.5.4) reduce to those of the JD pro-
cess in Example 2. At light of the last results, it seems that the SNJD
process with h(·) function of the exponential form is similar to a JD pro-
cess, at least in their first four moments29. This last fact could explain the
results previously obtained in Table 1.2, where results for JD and SNJD
process are close each other.

Although the JD and SNJD with exponential response function processes
are similar in their first four moments, their main differences arise in their
cross moments, as it will be presented in the next lines. For illustrative
purposes, consider the following example where we provide an expression
for the autocovariance of the SNJD process,

Example 1.4 In the case that h (t) = e−at, the autocovariance for the log-
returns of the process (1.1.2.2) is given by

Cov [Zt+n∆t, Zt] = σ2∆tδ(n) + λE
[
U2
]
∆tδ(n)

+λ(e−a∆t − 1)E[U2]∆t e−a n∆t (1.1.5.5)

where n = 0, 1, 2, . . . denotes the lag and δ(·) is the usual delta Dirac func-
tion.

Proof. See the Appendix

The first two terms in equation (1.1.5.5) reflect the contribution of the
GBM and jump parts to the autocovariance of the process. As expression
(1.1.5.5) reflects, these two terms are null for non-zero lags. This means

29More precisely, the SNJD with exponential decaying function and the JD processes
are almost equal in their first four moments. Notice that terms into expectations differ
from E[ln(1 + U)n] for a JD process, with those of E[Un] for a SNJD process. Again, the
origin of these differences is related to using the numerical approximations involved in the
computation of SNJD process.
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that there is no additional contribution in the total variance of the process
through lagged observations. This fact differs from the last term in (1.1.5.5),
where it shows that the covariance has an exponential decaying pattern due
to the shot noise term: in other words, an additional source of variability of
the SNJD process is contained in past information.

Once provided the variance and autocovariance of the SNJD process with
the exponential response function (see expressions (1.1.5.2) and (1.1.5.5)),
the next example gives an expression for the autocorrelation.

Example 1.5 The autocorrelation function for the log-returns of the expo-
nential decaying case is

Corr [Zt+n∆t, Zt] =
Cov [Zt+n∆t, Zt]√

V ar(Zt+n∆t)
√
V ar(Zt)

=






1, if n = 0

(e−a∆t − 1) λE[U2]
σ2+λE[U2]

e−a n∆t, if n ≥ 1

(1.1.5.6)

An inspection of the former result reveals two main results:

• The autocorrelation is always negative for positive values of a.

• The factor λE[U2]
σ2+λE[U2]

, which represents the variance of the jump di-

vided by that of the whole process, modulates the degree of correlation
of the process.

To illustrate numerically the former equation, Table 1.3 includes the sam-
ple (ρ̂n) and theoretical autocorrelation values (ρtheo

n ) of a SNJD model. The
first column contains the number of lags. Each successive pair of columns
exhibit, respectively, the theoretical ACF’s obtained from equation (1.1.5.6)
and the mean of a sample ACF coefficients of 100 simulation paths with
1,800 steps each one. Finally, this experiment is repeated for different val-
ues of the parameter a.

Some conclusions arise from Table 1.3:

1. As expected, the parameter a controls the persistence of the process
over time.
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Table 1.3: Autocorrelation function for different values of the parameter a

The theoretical expression for the autocorrelation functions for the SNJD process
with exponential decaying function is

ρn(Hrst) =

{
1, if n = 0

(e−a∆t − 1) λE[U2]
σ2+λE[U2] e

−a n∆t, if n ≥ 1

SNJD process

a = 0.2 a = 0.6 a = 1.0 a = 10.0
Lag ρtheo

n ρ̂n ρtheo
n ρ̂n ρtheo

n ρ̂n ρtheo
n ρ̂n

1 -0.144 -0.068 -0.240 -0.172 -0.225 -0.250 0.000 -0.416
2 -0.118 -0.057 -0.132 -0.096 -0.083 -0.091 0.000 0.001
3 -0.096 -0.046 -0.072 -0.047 -0.031 -0.031 0.000 -0.000
4 -0.079 -0.038 -0.040 -0.029 -0.011 -0.013 0.000 -0.005
5 -0.065 -0.027 -0.022 -0.016 -0.004 -0.003 0.000 0.005

10 -0.024 -0.013 -0.001 0.005 0.000 -0.001 0.000 0.002
25 -0.001 0.001 0.000 -0.001 0.000 0.005 0.000 -0.003
50 0.000 0.001 0.000 -0.001 0.000 -0.001 0.000 -0.001
100 0.000 -0.003 0.000 -0.001 0.000 -0.001 0.000 -0.003

Comparison of autocorrelation coefficients for different values of the parameter a. Each
column a corresponds to the means of sample autocorrelation coefficients of 100 simula-
tion paths with 1,800 steps each one of a SNJD model with response function h(t−τk) =

e−a(t−τk) and the random variable U lognormally distributed as U = e−β2/2+βε − 1,
with ε ∼ N(0, 1) and mean E[U ] = 0. Simulated (annualized) parameters are µ = 0.05,
σ = 0.20, λ = 10.00, β = 0.10.
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2. The theoretical autocorrelation values for the first few lags of a = 0.6
and 1.0 seem to be closer to those obtained for a = 0.2 and 10.0, which
could be a result of the numerical approximations carried out.

3. Any autocorrelation value for the SNJD process under study exhibits
negative values, in contrast to the classic Shot noise results reported
in Table 1.1.

Lastly, we provide an additional evidence about the degree of persis-
tence generated just by the contribution of the Shot noise part in the SNJD
model: Figure 1.8 displays the mean sample autocorrelation coefficients of
100 simulated paths composed by 1,800 data each one. The autocorrelation
coefficients correspond to the values, absolute values and squared values of
log-returns in the process (1.1.2.2), respectively.

As we can see, the correlation coefficients are negative and significant up
to third order for the case of simulated values of a SNJD with exponential
decay function. Furthermore, (positive) autocorrelation coefficients go even
to order six in case of absolute log-returns. Again, these results seem to
confirm that the SNJD model is capable of generate autocorrelation due to
the Shot noise process.

1.5.2 The spectrum

Traditionally, the statistical tools of Spectral Analysis have not been widely
used in the context of financial econometrics in continuous time. We provide
here some results that seems to evidence the usefulness of considering the
estimation of the SNJD process with exponential decaying function in the
frequency domain30. Some additional insights about the process and the
estimation procedure in the frequency domain will be treated in a larger
detail in Chapter 3.

To start, consider the population spectrum for a SNJD process with
exponential decaying response function,

Example 1.6 If h(·) = e−a(·), the population spectrum of the log-returns
for the model (1.1.2.2) is given by

sZ (w) =
1

2π

(
σ2 + λE[U2] + λ(e−a∆t − 1)E

[
U2
] 2a

a2 + w2

)
∆t (1.1.5.7)

30We are aware that Spectral Analysis tools are not widely known among financial
economists, and its intuition and usefulness must been carefully explained. For the sake
of brevity, we devote the Chapter 3 to this task, and this section just provides some results
that will be used in the future.
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Figure 1.8: Sample autocorrelation coefficients for a SNJD process with response
function h(t − τk) = e−a(t−τk) and random variable Uj is lognormally distributed

as U = e−β2/2+βε − 1, with ε ∼ N(0, 1) and mean E[U ] = 0. Simulated parameters
are σ = 0.00, λ = 10, β = 0.10 and a = 0.50.
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Proof. See the Appendix
The expression of spectrum in (1.1.5.7) splits the total spectrum of the

SNJD process in three different sources of variability or noise:

1. The variance associated to the GBM part, σ2/2π, which is constant
and it does not depend on frequency w.

2. The part linked to the jump event, which is also constant and equal
to λE[U2]/2π

3. The Shot noise part, which depends on the frequency w.

As it will be presented in Chapter 3, the noise whose spectrum is constant
for any frequency is called a white noise process. As a proof of consistency
of the expression (1.1.5.7), we observe that, as expected, the spectrum for a
JD process (the previous one for a = 0) is the sum of two white noises:

sZ (w) =
1

2π

(
σ2 + λE[U2]

)
∆t

Finally, to get a graphical representation of the last issues, Figure 1.9
exhibits the sample and theoretical spectrum for a SNJD and JD process.
Some details about the estimation are given in the figure.

As Figure 1.9 shows, the main difference across the spectra are the pos-
itive slope that we observe in the case of a SNJD model: the spectrum for
the JD process remains constant, as predicted by the theory (blue line); by
contrast, the SNJD process spectrum seems to present a increasing pattern
along different frequencies31.

1.6 The economic significance of the SNJD model

This section briefly addresses some of the possible implications of using a
SNJD model as posited by Altmann et al (2007). Basically, we outline the
possible applications of this type of models.

1.6.1 Long range dependence

Campbell et al (1997) refer as long-range memory as observations in the
remote past that are nontrivially correlated with observations in the distant

31The waved shape observed in both figures results from the sample estimate used.
What we are interested on the figures is the general slope of the curve, and not in the
behavior of local regions.
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Figure 1.9: Sample and theoretical spectrum for a SNJD and JD process. Upper
figure correspond to those spectrum obtained for a SNJD process, and lower one
to those for a JD process. The sample spectrum has been made by using a non-
parametric estimate posited in Hamilton (1994) with bandwidth fixed to h = 100.
SNJD model response function is h(t − τk) = e−a(t−τk) with random variable U

lognormally distributed as U = e−β2/2+βε − 1, ε ∼ N(0, 1) and mean E[U ] = 0.
Simulated parameters (annualized) are σ = 0.05, λ = 10, β = 0.10 and a = 0.60.
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future, even as the time span between the two observations increases. As it
is pointed out by Singleton (2006), an important amount of studies indicate
the presence of some kind of serial dependence in stock returns.

With regard to this issue, Lo (1991) enumerates some possibles implica-
tions of long-range dependence on financial economics. He also emphasized
the inconsistency with long-memory of the most common continuous-time
models. Moreover, Lo (1991) also concludes that stochastic models for short-
range dependence could capture correctly the behavior of asset returns.

Although the previous evidences of the SNJD process suggest the ca-
pability of the model to generate short-range persistence in log-returns (see
expression (1.1.5.6) and figure 1.8), we are inclined to believe that a suitable
specification of function h(·) of equation (1.1.2.2) could lead to produce an
pattern of dependence in long term.

1.6.2 The spikes

Some economic series exhibit abrupt changes in their value in short periods
of time. Visually, we can observe how this type of series exhibits a jump
followed by a instantaneous drop back to the previous level (Weron, 2005).
This kind of effects is often named spikes in the financial literature32. Eco-
nomically, its origin could be due to changes on the monetary policy (Das
(2002) or Benito et al, 2007) or extreme fluctuations among supply and
demand (Barone-Adesi and Gigli (2002) or Lućıa and Schwartz, 2002).

As an example, Figure 1.10 displays two graphs: the upper one exhibits
the sample path of the European Overnight Index Average (EONIA) rate,
rt, and its increments, rt− rt−1; the lower one exhibits the sample spectrum
using the EONIA increments. The sample period ranges from 05/02/2004
to 23/08/2005.

The upper graph in Figure 1.10 remembers the path of the classic Shot
noise process displayed in Figure 1.1. It is possible to observe in this figure
the cited spikes spread on the whole path. It seems that these spikes are
responsible of the higher contribution in the sample variance produced in
higher frequencies observed in the sample spectrum of figure 1.10. The shape
of the curve recalls the theoretical pattern described by a SNJD model with
exponential decaying function exhibited in the upper graph of Figure 1.8.

Taking previous considerations into account, the SNJD model could be
considered as an adequate candidate for dealing with such empirical pat-
terns.

32We reserve the name of jumps for those events that, once triggered, return -or not- to
their previous position at a lower rate than those for the spikes.
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Figure 1.10: Sample path and spectrum for the EONIA rate. The upper graph
displays the sample path (black line) and the increments (blue line) of the EONIA.
The lower graph shows the sample spectrum obtained by using a non-parametric
estimate posited in Hamilton (1994) with bandwidth fixed to h = 50.
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1.6.3 Risk management

On the one hand, the estimation of value at risk (VaR) and other tail statis-
tics depends dramatically on the large price changes. As pointed out by
Ait-Sahalia (2004), the foundations of many of these techniques are ori-
ented to distinguish between the eventual jumps from the daily brownian
noise. The presence of a pattern of serial dependence in asset returns could
leads to a miscalculation in the components of the total volatility of the data
generating process, leading to possible model risk effects.

On the other hand, some standard risk tools in option pricing, as the
delta hedging, are designed for small changes in the prices (Duffie and Sin-
gleton, 2003). To the best of our knowledge, we have no evidence, empirical
or simulated, about the consequences for risk management of the persistence
over the time of jumps effects in the underlying. Concerning this question,
we are inclined to believe that the SNJD model could provide additional
insights on this issue.

1.7 Conclusions

To a certain extent, the formulation of modern finance from Black and
Scholes (1973) to our days is based on continuous-time stochastic processes.
From the whole amount of available processes, the Affine-jump diffusion
model family studied by Duffie et al (2000) seems to offer an optimum
balance between empirical adequacy and analytical tractability. However,
several recent empirical studies raise the question about considering new
models that should be capable of capturing some of the drawbacks present
in the existing models by, of course, keeping the usual requirements about
parsimony on the number of variables and economic intuition.

This chapter has presented a model that adjusts to former requests.
We focuses on the model posited by Altmann et al (2007), the SNJD model.
Basically, it is an extension of the jump-diffusion models proposed by Merton
(1976) where an additional term (named shot-noise function) is added to the
Poisson process. The intuition behind is that after a jump triggers, its effect
can fade away on the long run. As a result of this, the SNJD model is
capable of generate serial persistence in asset returns. As far as we know,
this is the first study that analyzes in detail the main features of the SNJD
model.

We provide a general treatment of the Shot noise processes in the litera-
ture. To the best of our knowledge, no similar references have been found in
the financial literature. We give an expression for log-returns of the SNJD
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model, and we identify the source of autocovariance in the process. Not sur-
prisingly, we find that the SNJD model is capable of nesting former versions
of continuous-time processes as GBM or JD.

We provide the Characteristic function of the SNJD process and derive
some of its main moments, also providing some useful numerical approxi-
mations for computing purposes. Regarding the dynamics of the model, we
provide the covariance function and the spectrum of the SNJD process. As
we have pointed out, we observe that a considerable source of information
is embedded in past information. Moreover, the analysis in the frequency
domain appears to be revealed as a powerful tool when estimating the SNJD
process.

Finally, an extension to the paradigm of this models, the SNJD model
with exponential decaying function, is also studied. Our results seems to
conclude that the SNJD model with exponential decaying function is close
to the JD version if we focus on their central moments, differing in their
autocorrelation function specifications. To sum up, some economic implica-
tions of the usage of the SNJD models are also provided.
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Appendix

Proof of Lemma 1

A previous step to compute the characteristic function is to calculate the
log-return process. Dividing two realizations of the model (1.1.2.2) in times
t and t+ ∆t, we obtain

St+∆t

St
= exp

[(
µ− σ2

2

)
∆t+ σ (Bt+∆t −Bt)

]

×

Nt+∆t∏
j=1

[1 + Ujh (t+ ∆t− τj)]

Nt∏
j=1

[1 + Ujh (t− τj)]

Nt∏
j=1

[1 + Ujh (t+ ∆t− τj)]

Nt∏
j=1

[1 + Ujh (t+ ∆t− τj)]

= exp

[(
µ− σ2

2

)
∆t+ σ (Bt+∆t −Bt)

]

×
Nt+∆t∏

j=Nt+1

[1 + Ujh (t+ ∆t− τj)] ×
Nt∏

j=1

[1 + Ujh (t+ ∆t− τj)]

[1 + Ujh (t− τj)]

Following this, the process for the log-returns (Zt ≡ ln (St+∆t/St)) can be
written as the sum of three independent contributions: a white noise process
Xt, the marked point part Yt and a shot noise contribution Ht, with

Xt =

(
µ− σ2

2

)
∆t+ σ (Bt+∆t −Bt) (1.1.7.1)

Yt =

Nt+∆t∑

j=Nt+1

ln [1 + Ujh (t+ ∆t− τj)] (1.1.7.2)

Ht =

Nt∑

j=1

ln

[
1 + Ujh (t+ ∆t− τj)

1 + Ujh (t− τj)

]
(1.1.7.3)

We will compute the joint characteristic function (CF) of the process (1.1.2.2)
using (1.1.7.1)-(1.1.7.3). Using standard probability theory (see Feller, 1971),
the CF of a sum of independent random variables is equal to the product of
each individual CF’s,

Zt = Xt + Yt +Ht →
ΦZt (ξ) = ΦXt (ξ) × ΦYt (ξ) × ΦHt (ξ) (1.1.7.4)
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where

• ΦR (ξ) is the CF of the random variable R, defined by the Fourier
transform

ΦR (ξ) = E
[
eiξR

]
=

∫
eiξZdF (r)

• ξ is the transform variable and F (r) denotes the cumulative distribu-
tion function (c.d.f.) of the random variable R.

As (1.1.7.1) is the sum of two contributions (deterministic and random,
respectively) and Bt+∆t −Bt ∼ N (0,∆t), we obtain that

ΦXt (ξ) = exp

([
i

(
µ− σ2

2

)
ξ − 1

2
σ2ξ2

]
∆t

)
(1.1.7.5)

We will use the properties of the Poisson process to derive the CF of
the components (1.1.7.2) and (1.1.7.3).33 CF for both process are solved
in the same manner, so we present here the calculations for (1.1.7.3). This
procedure is analogous for (1.1.7.2). Consider a fixed time interval [0, T ].
Let Nt be an homogeneous Poisson process with intensity λ and let m be
the number of jumps in [0, t], Nt − N0 ≡ Nt = m, and τm denotes the
jump times. As pointed out in Parzen (1962) or Klüppelberg and Mikosch
(1995), the random vector [τ1, · · · , τm] has the same distribution as the order
statistics of a sample of m i.i.d. random variables uniformly distributed on
[0, t]. Additionally, each of the m! possible orderings has equal probability
because of the independence between the random variables.

33The characteristic function for shot noise processes has been calculated in Parzen
(1962) and Klüppelberg and Mikosch (1995). The main part of the proof used here has
been borrowed from these two references.
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Using Ht as given in (1.1.7.3), we obtain

ΦHt (ξ) = E
[
eiξHt

]
=

= E



exp




iξ
Nt∑

j=1

ln

[
1 + Ujh (t+ ∆t− τj)

1 + Ujh (t− τj)

]

 |Nt = m



× P (Nt = m)

=

+∞∑

m=0

(λt)m

m!
e−λt

× m!

(t)m

∫ t

0
dτ1

∫ t

τ1

dτ2...

∫ t

τm−1

dτm

×
m∏

j=1

E

[
exp

{
iξ ln

(
1 + Ujh (t+ ∆t− τj)

1 + Ujh (t− τj)

)}]

= e−λt
∞∑

m=0

(λt)m

m!
×
[
1

t

∫ t

0
E

[
exp

{
iξ ln

(
1 + Uh (t+ ∆t− τ)

1 + Uh (t− τ)

)}]
dτ

]m

= e−λte
λt
[

1
t

∫ t
0 E

[
exp

{
iξ ln

(
1+Uh(t+∆t−τ)

1+Uh(t−τ)

)}]
dτ
]

= exp

{
λ

∫ t

0
E

[
exp

{
iξ ln

(
1 + Uh (t+ ∆t− τ)

1 + Uh (t− τ)

)}
− 1

]
dτ

}
(1.1.7.6)

Similarly, using (1.1.7.2) we obtain

ΦYt (ξ) = exp

{
λ

∫ t+∆t

t
E [exp {iξ ln (1 + Uh (t+ ∆t− τ))} − 1] dτ

}

(1.1.7.7)

Finally, substituting (1.1.7.5)-(1.1.7.7) into (1.1.7.4) leads to the desired
result.

Proof of Lemma 2

The first two non-central moments of the process (1.1.2.2) are computed
using (1.1.3.4) and applying (1.1.3.5) for n = 1, 2.
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µ′1 =

(
µ− σ2

2

)
∆t+ λ

∫ t+∆t

t
E [ln (1 + Uh (t+ ∆t− τ))] dτ

+λ

∫ t

0
E

[
ln

(
1 + Uh (t+ ∆t− τ)

1 + Uh (t− τ)

)]
dτ

µ′2 = σ2∆t+ λ

∫ t+∆t

t
E
[
ln2 (1 + Uh (t+ ∆t− τ))

]
dτ

+λ

∫ t

0
E

[
ln2

(
1 + Uh (t+ ∆t− τ)

1 + Uh (t− τ)

)]
dτ +

(
µ′1
)2

Computation of the third and fourth non-central moments could be cum-
bersome. For the ease of explanation, we adopt a more suitable notation.

The third and fourth non-central moments of the process (1.1.2.2) are

µ′3 = C3 +D3 −
[
3 (A+ C +D)

(
2B − C2 −D2

)]
+ (A+ C +D)3

µ′4 = C4 +D4 + 4 (A+ C +D)
(
C3 +D3

)

+3
(
2B − C2 −D2

)2 − 5
(
2B −C2 −D2

)
(A+ C +D)

−
(
2B − C2 −D2

)
(A+ C +D)2 + (A+ C +D)4

with

A =

(
µ− σ2

2

)
∆t

B = −σ
2

2
∆t

Cn = λ

∫ t+∆t

t
E [{ln (1 + Uh (t+ ∆t− τ))}n] dτ

Dn = λ

∫ t

0
E

[{
ln

(
1 + Uh (t+ ∆t− τ)

1 + Uh (t− τ)

)}n]
dτ

Using the relationship between central and non-central moments (see
Abramowich and Stegun, 26.1.14), we can compute the first four non-central
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moments of the process (1.1.2.2):

Mean = µ′1 = A+ C +D

V ariance = µ′2 −
(
µ′1
)2

= −2B + C2 +D2

Skewness =
µ3

µ
3/2
2

=
2 (µ′1)

3 − 3µ′1µ
′
2 + µ′3

µ
3/2
2

=
1

µ
3/2
2

(
C3 +D3

)

Kurtosis =
µ4

µ2
2

=
−3µ′41 + 6µ′21 µ

′
2 − 4µ′1µ

′
3 + µ′4

µ2
2

= 3 +
C4 +D4

µ2
2

Proof of Lemma 3 and Example 3

To obtain the different approximations for expressions (1.1.3.6) and (1.1.3.7)
we will focus on the logarithm terms of the integrals. By using the approx-
imation of the logarithmic function ln (1 + x) ≃ x + O

(
x2
)
, for |x| < 1 we

have

Cn = λ

∫ t+∆t

t
E[{ln(1 + Uh(t+ ∆t− τ))}n]dτ

≃ λE[Un]

∫ t+∆t

t
[h(t+ ∆t− τ)]ndτ

Dn = λ

∫ t

0
E

[{
ln

(
1 + Uh(t+ ∆t− τ)

1 + Uh(t− τ)

)}n]
dτ

≃ λE[Un]

∫ t

0
[h(t+ ∆t− τ) − h(t− τ)]ndτ

≃ λE[Un](∆t)n
∫ t

0

[
d

dt
h(t− τ)

]n

dτ

In the case of the exponential response function of example 3, applying
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the power series for the exponential function ex ≃ 1+x+O
(
x2
)
, we obtain

Cn ≃ λE [Un]

∫ t+∆t

t
e−na(t+∆t−τ)dτ = λE [Un]

1

na

(
1 − e−na∆t

)

≃ λE [Un] ∆t

Dn ≃ λE [Un] (∆t)n
∫ t

0
(−a)ne−na(t−τ)dτ

= λE [Un] (−a∆t)n 1

na

(
1 − e−nat

)

Proof of Lemma 4

Expanding the expression for log-returns Zt of the model (1.1.2.2) in its
three components Xt, Yt and Ht (see (1.1.3.1)-(1.1.3.3)) helps to identify
the possible sources of autocovariance of the process Zt,

Cov [Zt+n∆t, Zt] = Cov[Xt+n∆t + Yt+n∆t +Ht+n∆t, Xt + Yt +Ht]

with n = 0, 1, 2, . . . and so on.

As {Bt}t , {Nt}t, and {Uj}j are mutually independent, it is possible to
isolate the covariance of the elements Xt of the remaining terms, due to the
independence of the increments of the Brownian motion. By contrast, this
turns different when it comes to study the linear relationship between the
jump part Yt and the shot noise part Ht. Following this, the autocovariance
of Zt can be written as

Cov [Zt+n∆t, Zt] = Cov [Xt+n∆t,Xt] + Cov [Yt+n∆t, Yt]

+ Cov [Ht+n∆t,Ht] + Cov [Ht+n∆t, Yt] (1.1.7.8)

where n = 0, 1, 2, . . .. We provide now the autocovariance of each term in
(1.1.7.8) separately:

1. Brownian part. Due to the independence between the increments of
the Brownian motion, the expression (1.1.3.1) has an autocovariance
function of the form,

Cov [Xt+n∆t,Xt] = σ2∆tδ (n) (1.1.7.9)
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where δ (x) is the usual Dirac function, that is

δ(x) =

{
1, if x = 0
0, otherwise

2. Jump part. Considering there is no effect of the response function in
the moment of event happens (assumptions 1 and 2), and noting that
the random variables Uj are i.i.d., the autocovariance function of Yt

turns easily computable,

Cov [Yt+n∆t, Yt] = λE[U2]∆tδ(n) (1.1.7.10)

3. Shot noise part. For a formal proof of the covariance of the Shot
noise, we refer the reader34 to Parzen (1962), pp.147. Using the ex-
pression for Ht as given in (1.1.3.3), we have

Cov [Ht+n∆t,Ht] = λ

∫ t

0
E

[
ln

(
1 + Uh (t+ ∆t− τ)

1 + Uh (t− τ)

)
×

ln

(
1 + Uh (t+ ∆t+ n∆t− τ)

1 + Uh (t+ n∆t− τ)

)]
dτ(1.1.7.11)

4. Jump / Shot-noise part. The persistence in time of the realization
of the random variable Uj produces a cross effect among the Yt and
Ht processes, which contributes to the appearance of a new source of
autocovariance in the process Zt.

Using assumptions 1 and 3, we display here a general expression for
the covariance between the Jump and Shot-noise parts35,

Cov [Ht+n∆t, Yt] =

= Cov




Nt+∆t∑

j=Nt+1

Uj ,

Nt+n∆t∑

j=1

Uj(h(t+ n∆t− τj) − h(t− τj))





= Cov




Nt+∆t∑

j=Nt+1

Uj ,

Nt+n∆t∑

j=Nt+1

Uj(h(t+ n∆t− τj) − h(t− τj))





(1.1.7.12)

34Other alternative sources for computing the autocovariance of the Shot noise are Ross
(1996) or Kluppelberg and Mikosch (1995).

35Weare not able to compute the general expression of the autocovariance in the Jump-
Shot noise part as it differs from one to another specifications of the response function.



48 CHAPTER 1. THE SNJD PROCESS

Finally, replacing equations (1.1.7.9)-(1.1.7.12) into (1.1.7.8) we obtain
the desired expression.

Proof of Lemma 5

As we have previously mentioned, the expression of the log-returns for
the model (1.1.2.2) can be written as the sum of two white noise terms plus
a shot noise component. Again, we apply the Fourier transform to each
term in (1.1.4.4):

1. Brownian part. Here, the Fourier transform of a delta function leads
to a spectrum of the form

sX (w) =
σ2

2π
∆t

which is the usual spectrum of a white noise, constant for all the
frequencies w.

2. Jump part. Former result equally applies to the jump part. For this
case, we also have

sY (w) =
λ

2π
E[U2]∆t

an spectrum where there is no dependence of frequencies w.

3. Shot noise part. Alternative definitions of function h (·) lead to
different population spectrum. We just indicate the general form for
the population spectrum of the shot noise,

sH (w) =
λ

2π

∫ +∞

−∞

e−iwεdε×
∫ t

0
E

[
ln

(
1 + Uh (t+ ∆t− τ)

1 + Uh (t− τ)

)
ln

(
1 + Uh (t+ ∆t+ ε− τ)

1 + Uh (t+ ε− τ)

)]
dτ

4. Jump-Shot noise part. Similarly to the Shot noise part, we present
the procedure to compute the spectrum of the Jump / Shot-noise
part, since this must be calculated for any different specification of
the response function h(·).
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sHY (w) =
λ

2π

∫ +∞

−∞

e−iwεdε

×Cov




Nt+∆t∑

j=Nt+1

Uj,

Nt+ε∑

j=Nt+1

Uj(h(t+ ε− τj) − h(t− τj))





Finally, the population spectrum of the log-returns sZ (w) is given by
the sum of the four contributions, that is

sZ (w) = sX (w) + sY (w) + sH (w) + sHY (w)

Proof of Example 4

As the Brownian and jump parts of the autocovariance are immediately
computed, we just focus on the Shot noise and Jump / Shot-noise terms.

1. Shot noise part. Replacing h(t) = e−at into (1.1.7.11), we obtain

Cov [Ht+n∆t,Ht]

= λ

∫ t

0
E

[
ln

(
1 + Ue−a(t+∆t−τ)

1 + Ue−a(t−τ)

)
ln

(
1 + Ue−a(t+(n+1)∆t−τ)

1 + Ue−a(t+n∆t−τ)

)]
dτ

Applying the Taylor expansion for the logarithmic function, this au-
tocovariance can be approximated as follows:

Cov [Ht+n∆t,Ht] ≃ λE
[
U2
]
(e−a∆t − 1)2

1

2a

(
1 − e−2at

)
e−an∆t

Recognizing that the terms ∆t is “close enough” to zero, we get that

Cov [Ht+n∆t,Ht] ≃ λE
[
U2
] a

2

(
1 − e−2at

)
(∆t)2e−an∆t

Note that this autocovariance vanishes when t→ ∞ as the term (∆t)2

is almost zero.
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2. Jump / Shot-noise part. As noted previously, the persistence in
time of the realizations of the random variable Uj produce a cross effect
between the Yt and Ht processes, which contributes to the appearance
of a new source of autocovariance in the process Zt.

Replacing h(t) = e−at into (1.1.7.12), we obtain

Cov [Ht+n∆t, Yt] = (e−a∆t − 1)Cov




Nt+∆t∑

j=Nt+1

Uj ,

Nt+n∆t∑

j=Nt+1

Uj

(
e−a(t+n∆t−τj )

)




For n = 1, we get

Cov [Ht+∆t, Yt] = (e−a∆t − 1)Cov




Nt+∆t∑

j=Nt+1

Uj,

Nt+∆t∑

j=Nt+1

Uj

(
e−a(t+∆t−τj )

)




= (e−a∆t − 1)λE
[
U2
]
∆te−a∆t

= (e−a∆t − 1)V ar(Yt)e
−a∆t

Similarly, for n = 2, we obtain

Cov [Ht+2∆t, Yt] = (e−a∆t−1)Cov




Nt+∆t∑

j=Nt+1

Uj ,

Nt+2∆t∑

j=Nt+1

Uj

(
e−a(t+2∆t−τj )

)




Applying the linearity of the covariance function, the covariance term
on the right hand side of the equation can be split as

Cov




Nt+∆t∑

j=Nt+1

Uj,

Nt+∆t∑

j=Nt+1

Uj

(
e−a(t+2∆t−τj )

)




︸ ︷︷ ︸
=V ar(Yt) e−2a∆t

+Cov




Nt+∆t∑

j=Nt+1

Uj,

Nt+2∆t∑

j=Nt+∆t+1

Uj

(
e−a(t+2∆t−τj )

)




︸ ︷︷ ︸
=0

where the second equality is a consequence of the independence prop-
erty among Poisson increments.
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So, finally,

Cov [Ht+2∆t, Yt] = (e−a∆t − 1)V ar(Yt) e
−2a∆t

In a similar way to that for n = 2, we iterate until we get

Cov [Ht+n∆t, Yt] = (e−a∆t − 1)V ar(Yt) e
−a n∆t

Proof of Example 6

Changing the notation for the autocovariance in Example 4 leads to

Cov [Zt+ε, Zt] = σ2∆tδ(ε) + λE
[
U2
]
∆tδ(ε)

+ (e−a∆t − 1)λE
[
U2
]
∆t e−a ε

Now, applying the Fourier transform on the previous equation we get

sZ (w) =
1

2π

(
σ2 + λE[U2] + λ(e−a∆t − 1)E

[
U2
] 2a

a2 + w2

)
∆t

which completes the proof.
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Chapter 2

Estimation of the SNJD
process in the Time Domain

This chapter1 is devoted to the estimation in the time domain of the Shot-
Noise Jump-Diffusion process. We discuss several proposals that have al-
ready been done in the literature for estimating jump-diffusion process in
the line of that posited by Merton (1976). Then, we analyze the estimation
of the parameters in the process (1.1.2.2) by means of a Generalized Method
of Moments (GMM) estimate proposed in Hansen (1982)2.

2.1 Introduction

In 1976, Merton (1976) proposed a jump-diffusion process where the re-
turns are approximately distributed as a mixture of normal distributions
conditional on the increments of a random variable that follows a Poisson
distribution. This class of models allows us to capture the high kurtosis
observed in the distribution of daily asset returns.

1I am sincerely grateful to W. Stute and M. Moreno for their contributions on this
chapter. I gratefully acknowledge helpful comments and suggestions from A. Novales
and A. León. Finally, I also acknowledge financial support from the Plan Nacional de
I+D+I (project BEC2003-02084) from the Spanish Government and project GIU 06/53
of the University of the Basque Country and Basque Government, and specially to José
M. Usategui. Previous drafts of this chapter have been presented under the name “Cal-
ibrating Shot Noise Processes” in the 2004 EuroWorking Group on Financial Modelling
and the 8th Italian-Spanish Meeting on Financial Mathematics. I have also benefited from
the comments of participants in seminars at University of Basque Country, Universidad
Complutense de Madrid, Universitat de les Illes Balears, and Universidad Carlos III de
Madrid.

2Notation used in this chapter has been taken from Hamilton (1994).
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In addition, the specification of this jump-diffusion process keeps certain
economic intuition: according to this model, the total change in the asset
price is due to the joint effect of two types of changes: a) the normal ones,
due to the bid-ask crossing of common information, and b) the abnormal
ones, where the impact of the information on the price produces a non-
marginal change in the asset price.

As a result of the Merton (1976) model, an increasing interest in the
estimation of this type of diffusion process in the financial literature has
been observed. We refer here some different approaches for estimating the
parameters of a jump diffusion process. Basically, to our knowledge, the
main attempts can be summarized as follows:

1. The method of cumulants, used by Press (1967), Beckers (1981) or
Ball and Torous (1983)

2. Maximum Likelihood (ML), as those papers of Ball and Torous (1983,
1985), Jorion (1988) or Honoré (1998).

3. Generalized Method of Moments (GMM), as the works of Das and
Sundaram (1999) or Aı̈t-Sahalia (2004).

4. Empirical Characteristic Function (ECF), posited in Duffie, Pan and
Singleton (2000), Singleton (2001) or Carrasco and Florens (2000),
among others.

5. The simulation-based techniques, as the Efficient Moment Method
(EMM) of Gallant and Tauchen (1996) or the Simulated Method of
Moments (SMM) of Duffie and Singleton (1993) or Gorieroux and
Monfort (1996).

Press (1967) and Beckers (1981) consider the parameters of a jump dif-
fusion process using the method of the cumulants, a power series expansion
of the characteristic function logarithm of the process (See Abramowitz and
Stegun (1972) for details). However, both papers obtain negative estima-
tions of the variance of the process and the jump for some assets.

Maybe, the ML procedure constitutes the most direct approach to esti-
mate a JD process. Conditioning on the number of jumps that can happen,
the transition probability density of the process can be easily derived, as
shown in Ball and Torous (1983) or Aı̈t-Sahalia (2004), among others.

Under some assumptions, Ball and Torous (1983, 1985) demonstrate that
a JD process could be approximated by a mixture of normally distributed
variables: Ball and Torous (1983) propose a Bernoulli distribution as an
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approach to the Poisson process that models the arrival of information, esti-
mating the parameters of a JD process by using the method of the cumulants
and ML techniques.

Additionally, Ball and Torous (1985) and Jorion (1988) obtain the ML
estimates of a JD process by maximizing the value of a ML truncated func-
tion. However, the estimation of Ball and Torous (1985) is not consistent
with some of the assumptions indicated in their paper, as was pointed out
by Navas (2003). On the other hand, Honoré (1998) also encounters some
numerical problems in the ML estimations of Merton (1976) type processes
mainly because of the likelihood function is unbounded.

This problem is partially solved in Honoré (1998) by restricting the vari-
ance of the normal distribution with a constant. An alternative solution3

is also provided by Hamilton (1994) by means of using the EM algorithm
of Dempster et al (1977). Finally, the estimation by ML of more complex
JD process that incorporate ARCH-type effects could be found on Jorion
(1988) in a foreign exchange rates context, or Das (2002) or Benito et al
(2007) within an interest rate environment.

Even though the GMM technique proposed by Hansen (1982) has re-
ceived considerably attention in the estimation of continuous-path diffusion
processes4, the application to the jump-diffusion processes area is not as
considerably as in the diffusion cases.

Anyway, it is clear that the GMM approach can provide an alternative
way to the ML estimation of the parameters of a JD process. A classical
reference on this matter is Das and Sundaram (1999), who compute the
characteristic function of a JD process and provide the expressions for the
first few moments of the process.

More recently, Aı̈t-Sahalia (2004) has extended the expression obtained
in Das and Sundaram (1999) to the moments of non-integer order. He also
proves that it is possible to disentangle the jumps from the underlying Brow-
nian noise, without addressing what happens with the remaining parameters
of the jump. For an empirical application of the GMM approach we refer
the reader to Moreno and Peña (1996), who use a GMM estimate inspired
on Aase and Guttorp (1987) for detecting jumps in the Spanish short-term
interbanking interest rates.

Closely linked to the GMM approach, a recent procedure is based on the
Empirical Characteristic Function (ECF) has been used to estimate diffusion

3Hamilton (1994) formulates the problem of the Gaussian mixture estimation in a
context of switching regime models. We refer the reader to Hamilton (1994) and references
therein for a general discussion of the analysis of i.i.d. mixture distributions.

4See Chan et al (1992), Zhou (2001) or Duffee and Stanton (2004), among many others.
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processes5. This method does not require the discretization of the process
and it uses, in an efficient sense, all the information included in the sample.
The basic idea for the estimation of the ECF is the minimization of various
distance measures between the ECF and the Characteristic Function (CF)
of the process. Unfortunately, as discussed in Yu (2004), this methodology
is computationally burdensome in the presence of serial dependence.

During recent years, an increasing amount of literature has applied the
simulation-based econometric methods to the estimation of JD processes.
For instance, Andersen et al (2002) use the EMM approach of Gallant and
Tauchen (1996) for estimating the behavior of equity-index returns under
some different diffusion processes, including a JD process with time-varying
intensity. A second interesting reference is Jiang (1998) who estimates a JD
model for exchange rates using the Indirect Inference method of Gouriéroux
et al (1993).

As many of the above studies subordinate the estimation procedure to
the option pricing performance of the JD models, it might be convenient to
mention a general treatment of this point in the jump-diffusion literature.
Basically, the first reference to this point is Merton (1976), who prices a
European call option assuming a jump-diffusion process for the underlying
asset. Considering this process, the market is incomplete and, therefore,
the payments of the derivative asset can not be replicated. In this set up,
Merton obtains a closed-form expression for the price of the European call
option assuming that the jump risk can be diversified.

Likewise, Ball and Torous (1985), Jorion (1988) and Amin (1993) use the
Merton model for pricing derivatives, although the variance used has been
recently put in doubt when one compares the prices of those options with
those obtained from the Black-Sholes model6. Additionally, Amin (1993)
develops a discretized option pricing model inspired in the model posited
by Cox et al (1979). Finally, greater degrees of sophistication in derivative
pricing with jump processes can be found in Scott (1997), Andersen and
Andreasen (2000) or Andersen et al (2002), among many others.

Other studies have extended the analysis of jump models to other mar-
kets, as foreign exchange or electricity ones. A classical reference of the
former is Jorion (1988), where the empirical distribution of the returns for
the stock exchange market is analyzed using a variant without restrictions
on the density function used by Press (1967). Regarding electricity markets,

5See, for instance, Feuerverger and McDunnough (1981a), Singleton (2001), Jiang and
Knight (2002), Chacko and Viceira (2003) or Yu (2004), among others.

6See, for instance, Das and Sundaram (1999) and Navas (2003).
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Escribano et al (2002) provide an empirical study across different countries
for a time-dependent JD process.

The structure of this chapter is as follows. Section 2 reviews the GMM
methodology and its properties. Section 3 provides some details about the
estimation and Section 4 develops a preliminary study to estimate the SNJD
parameters by using restricted versions of the model. Sections 5 and 6
carry out an exhaustive Monte Carlo analysis of the SNJD process. Finally,
Section 7 summarizes the main conclusions obtained.

2.2 The GMM estimate

This section surveys the GMM approach and is mainly based on Hansen
(1982) and Hamilton (1994). We explain the intuition behind the GMM es-
timate, setting up the mathematical notation employed during this chapter.

2.2.1 General setting

The GMM methodology is based on the asymptotic relationship between
the population moments (µi) and their sample counterparts (µ̂i), where the
term i -denotes the moment order. The intuition behind is simple: given a
large sample size, it is expected that sample moments tend to be close to
population moments, it is said µ̂i

p→ µi. Basically, the main idea of this
method consists on finding the parameters that match, as close as possi-
ble, the population moments with the sample moments. This matching is
obtained by minimizing the quadratic form

JT = min
θ

[g (θ)]′WT [g (θ)] (2.2.2.1)

where g (θ) is a vector function of dimension r × 1 which contains the set
of sample and population moments, and consequently, it also contains the
unknown parameters vector, θ, that we are looking for. The number r is
known as the number of moment conditions and plays a fundamental role
in the GMM estimate, as we will refer. Finally, WT is called the weighting
matrix. The formal definitions of g (θ) and WT are given below7.

The mathematical setup of the GMM framework is as follows: Let yt

denote a random variable, and consider (y1, y2, ..., yT ), a set of i.i.d. ob-
servations of yt. Assuming that yt has a known distribution fyt (θ) and
moments up to order n, define θ as the parameter vector that determines

7The subindex T denotes the sample size. As we will see, it is included in the definition
of the estimate JT .
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completely the distribution fyt . The i-th population moments µi of yt are
given as

E
[
yi

t

]
= µi (θ) , for i = 1, 2, · · · , n

On the other hand, the sample moment estimate, µ̂i, is given by

µ̂i

(
θ̂T

)
=

1

T

T∑

t=1

yi
t

As was previously cited, the idea consists on minimizing the distance be-
tween the population and sample moments, given by

µi (θ) − µ̂i

(
θ̂T

)
= 0

or, to put it another way more conveniently, minimize the error term8 h (θ0)

h (θ0) = µi (θ) − yi
t

where θ0 denotes the true value of θ, whose mean should be zero (see
Cochrane, 2005). This last point is obtained by defining g (θ) as the sample
mean of the errors, that is,

g (θ) ≡ 1

T

T∑

t=1

h (θ0) = E [h (θ0)] = 0 (2.2.2.2)

To keep intuition in equation (2.2.2.1), consider the weighting matrix
WT = I, with I the identity matrix. In this case, we are minimizing the
sum of quadratic errors between the observed sample moments and their
population counterparts. Here, the estimate JT is known as the classical
method of moments(Hamilton, 1994), and is consistent and asymptotically
normal distributed (Cochrane, 2005). Similarly to this author, JT will be
called first stage estimate.

2.2.2 The weighting matrix

Hansen (1982) provides an expression for the weighting matrixWT in (2.2.2.1)
that is efficient, in the sense that the minimum asymptotic variance for the
GMM estimate θ̂T is obtained when

JT = min
θ

[g (θ)]′ S−1
T [g (θ)] (2.2.2.3)

8More precisely, the error term is defined as h (θ, wt) (Hamilton, 1994), where wt is
an (h × 1) vector of variables that are observed at date t . We have focused here on the
univariate extension of the problem, so the term wt has been dropped out for the ease of
explanation.
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This is obtained replacing WT by S−1
T , with ST a variance-covariance matrix

of the form

ST =
1

T

T∑

t=1

[h (θ0)] [h (θ0)]
′ (2.2.2.4)

Now, the estimate JT in equation (2.2.2.3) is a consistent, asymptotically
normal, and asymptotically efficient estimate (Cochrane, 2005) of the pa-
rameter vector (θ), as it was demonstrated in Hansen (1982).

In the presence of serial correlation, Hamilton (1994) suggests to use the
Newey-West (1987) estimate as an alternative to ST ,

ŜT = Γ̂0,T +

q∑

v=1

[
1 −

(
v

(q + 1)

)](
Γ̂v,T + Γ̂′

v,T

)
(2.2.2.5)

with

Γ̂v,T =
1

T

T∑

t=v+1

[
h
(
θ̂, wt

)] [
h
(
θ̂, wt−v

)]′

but other alternatives for the estimates are also possible9.

2.3 General setting

This section provides some details about the estimation. Firstly, we recall
the model under study and its parameters of interest. Additionally, we also
provide the main moments used in the GMM study. Finally, we describe
some simulation features.

2.3.1 Model description

The model under study is a SNJD model of the form specified in equation
(1.1.2.2) in Chapter 1. For analytical and intuition purposes, we have con-
sidered an exponential decreasing function10 of the form h (t) = e−at in our
estimations. The advantages of this specification are the following:

1. The JD process can be nested easily within a SNJD one, just by as-
suming that a = 0.

2. The results obtained in this chapter can be related to the existing
literature on JD processes.

9See Hamilton (1994) or Cliff (2003) and references therein.
10To the best of our knowledge, a functional form for the response function h(t) has not

yet been reported in the financial literature.
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3. The performance of SNJD and JD processes can be compared easily
to that of simulated samples11.

Thus, our model under study results

St = S0 exp

[(
µ− σ2

2

)
t+ σBt

] Nt∏

j=1

[
1 + Uje

−a(t−τj)
]

(2.2.3.1)

where it is assumed that {Bt}t , {Nt}t, and {Uj}j are mutually independent.
For simplicity, we have assumed here that the jump size corresponds to a

realization of a lognormal random variable U of the form U = e−β2/2+βε−1,
with ε ∼ N(0, 1). The assumption of a lognormal distribution for the jump
size is common in the jump-diffusion literature (see, for instance, Merton
(1976)).

Without loss of generality, we have imposed that jumps have zero mean
(E[U ] = 0), which simplifies the number of parameters to estimate. This
is a common assumption also done by Merton (1976) or Ait-Sahalia (2004),
among others.

What it follows is the set of main moment conditions used through this
dissertation:

E [Zt] =

(
µ− σ2

2

)
∆t (2.2.3.2)

V ar [Zt] =
(
σ2 + λE[U2]

)
∆t (2.2.3.3)

Skewness = λ
E[U3]

(V ar[Zt])
3/2

∆t (2.2.3.4)

Kurtosis = λ
E[U4]

(V ar[Zt])
2 ∆t (2.2.3.5)

Corr [Zt+n∆t, Zt] = (e−a∆t − 1)λ
E[U2]

σ2 + λE[U2]
e−a n∆t, if n ≥ 1(2.2.3.6)

Equations (2.2.3.2)-(2.2.3.5) are usually standard in any GMM estimation12.
Moreover, due to the capability of SNJD process to generate serial depen-
dence, it can be interesting to include the information contained in cross
moments by means of the correlation function included in equation (2.2.3.6).

11A SNJD model with exponential decaying function as that assumed here leads to the
Merton (1976) model by doing the parameter a equal to zero.

12Notice the fact that equations (2.2.3.2) to (2.2.3.5) are equal for JD and SNJD process
under the exponential response specification of the SNJD process, which underline the
closeness among the JD and exponential response SNJD process, as it was previously
mentioned in Chapter 1.
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Taking everything into account, the parameter vector of log-returns in
(2.2.3.1) results Λ = (µ, σ, λ, β, a)′ ∈ R5, where µ and σ are the drift and
the volatility of the Brownian motion, respectively; λ is the intensity of the
Poisson process and measures the probability of an extreme event happens;
β is related to the mean and variance of the jump size - its amplitude -, and
the parameter a refers to the speed of the decaying effect after a jump event.

2.3.2 Simulation details

We detail here some aspects of the simulations that will be carried out.
Mainly, each experiment involves the simulations of 3,000 sample paths.
Each path is composed by 1,800 data. Assuming that the frequency of ob-
servation is daily, these results correspond to about seven years of observa-
tions. The assumption of daily returns is common in the jumps literature13.
All the parameters are computed on a daily basis.

We are interested in comparing the performance of the GMM method-
ology for SNJD and JD models so two sets of simulations have been done.
Since the four first moments in equations (2.2.3.2)-(2.2.3.5) are equal in both
models under study, they have been taken as the first few orthogonality con-
ditions.

Concerning to the JD case, the number of moment conditions has also
been fixed to four, matching the set of parameters to estimate, ΛJD =
(µ, σ, λ, β)′ ∈ R4, which results on that the equation system (2.2.2.2) is com-
pletely specified. With respect to the SNJD model, the number of moment
conditions has been fixed to six: the four previous ones plus two additional
conditions referring the first and second autocorrelation coefficients. In this
case, the number of moment conditions exceeds the number of parameters,
ΛSNJD = (µ, σ, λ, β, a)′ ∈ R5, so the system (2.2.2.2) is overidentified.

Some objections could be done to the number of moment conditions used.
Our procedure follows the ideas of Jiang and Knight (2002), who suggest to
select lower order moments, mainly based on two reasons:

1. The trade-off between the estimation of the weighting matrix and the
deterioration of this estimate in finite samples due to the inclusion of
new moments, and

2. The erratic finite sample behave of very high moments because the

13See, for instance, Ball and Torous (1983, 1985) or Jorion (1988), among others. Ad-
ditionally, Ait-Sahalia (2004) provides interesting intuitions about the data frequency in
jump-diffusion estimation.
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presence of fat tails in the distribution14.

We are inclined to believe that increasing the number of conditions on the JD
case falls within those circumstances specified by Jiang and Knight (2002).
By contrast, the addition of the cross moments in the SNJD model could
result on an addition of useful information to the GMM estimate that must
be considered, as it was previously noticed on Chapter 1.

We provide now some details about the optimization procedure. The
GMM estimate has been computed by using a non-least squared routine, the
lsqnonlin function, of the MatLab Optimization Toolboox library15. The
iteration procedure of GMM follows the methodology proposed in Hamilton
(1994). We decide to stop this iteration procedure once the difference be-
tween two successive estimated sets of parameter values is smaller than 10−5

or convergence is achieved. The initial parameters have been chosen by re-
alizations of a uniform distributed random variable vector whose bounds are
those posited for the optimizer. Table 2.1 presents an standard estimation
case and some additional information of the options fixed.

Regarding the set of parameter values used, our simulations are based
on keeping constant some variables µ, σ, λ and β, and just modifying the
parameter a, which controls the degree of serial dependence. Basically, the
values fixed - on a daily basis - correspond to the following:

• Yearly return of 5% (µ = 0.0002).

• Volatility of the Brownian part of 20% (σ = 0.0126).

• (Average) arrival rate of jumps per year is fixed to 10 (λ = 0.0400).

• Finally, a parameter β = 0.1000 makes possible - about 10 times per
year, on average - changes on prices less or equal than ± 7% the 65%
of the times that a jump occurs.

Taking all these parameters into consideration, this leads to a total volatility
of the simulated processes of about 30% per year.

Additionally, it is important to emphasize that it could be interesting to
analyze the performance of our different estimates by means of changes in the
simulation parameters µ, σ, λ and β. However, we have not performed this
“robustness” analysis because our main intention is checking the availability

14Hansen (1982) provides a way of testing the overidentifying restrictions. However,
this test can fail to detect a misspecified model, as it is pointed out in Hamilton (1994).

15All the computations have been carried on a PC 2.0 MHz Core 2 Duo Intel Centrino
processor, with 1Gb of RAM.
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of estimating the parameter a, not yet reported in the financial literature.
As a second reason, for the sake of brevity, we prefer to extract some few
conclusions from a bounded set of parameters better than being lost in a in-
distinguishable set of numbers. Anyway, we are aware of leaving unanswered
a really important issue and it must be tackled in further research.

2.4 Preliminary check

Prior to the estimation of the parameters of a SNJD process (the central
objective of this chapter) it can be of interest to check the ability of the
GMM procedure to estimate the parameters of a restricted version of the log-
returns in the model (2.2.3.1). Basically, the purpose of this previous study
is twofold: firstly, it presents us a first contact with the estimation problem;
secondly, it serves to check the availability of the proposed procedure in the
simplest case.

Then, this section is devoted to analyze the behavior of the GMM esti-
mates under (only) Shot noise samples, that is, samples that have not been
perturbed by a Brownian part. Moreover, we will also present an additional
question concerning the numerical approximations involved in deriving the
moment conditions of the model (2.2.3.1).

2.4.1 The restricted SNJD model

We are interested on estimating the parameters of log-returns in a restricted
version of the SNJD model in equation (2.2.3.1) where the parameters µ and
σ are equal to zero. By direct substitution of expressions (1.1.3.1-1.1.3.3) in
Chapter 1, our model under study results

Hr
t =

Nt+∆t∑

j=Nt+1

ln[1 +Uje
−a(t+∆t−τj )] +

Nt∑

j=1

ln

[
1 + Uje

−a(t+∆t−τj )

1 + Uje−a(t−τj )

]

(2.2.4.1)

where, Hr
t denotes the restricted version of the SNJD model (µ = σ = 0)

and, as usual, we assume that {Nt}t and {Uj}j are mutually independent.

One important feature of expression (2.2.4.1) is that some numerical
approximations have been introduced to compute easily their moment ex-
pressions16. The effect of these approximations on the estimations is an
unavoidable interrogate. To deal with this issue, our strategy is based on

16A complete discussion of this point can be found in Chapter 1.
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Table 2.1: Optimization details for a standard estimation case.

I.- Optimization bounds

Parameters µ σ λ β a
(×10−2) (×10−2) (×10−2) (×10−2)

Lower -0.24 0.13 0.04 1.00 -0.50
Upper 0.20 2.50 40.00 20.00 2.00

II.- Optimization options

Objective function tolerance 10−5 Iterations 2000
Parameters tolerance 10−5 MFEa 4000

a Maximum Function Evaluations

Optimization details for an standard estimation case of the JD and SNJD
models. Panel I refers to the simulation, upper and lower bounds parame-
ters. Panel II displays the tolerances, iterations and the maximum number
of function evaluations allowed. The initial points of the optimization rou-
tine are realizations from an uniform random variable within the fixed
lower and upper bounds. All experiments have been carried out assuming
a jump size U lognormally distributed of the form U = e−β2/2+βε − 1,
with ε ∼ N(0, 1) and mean E[U ] = 0. The response function of the SNJD
model is h(t− τk) = e−a(t−τk).
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looking for a simple, manageable stochastic process whose statistical fea-
tures - moments, autocorrelation function, etc - are as close as possible to
those of equation (2.2.4.1). Then, we use the same econometric approach for
estimating the parameters involved in both processes. Finally, we look at
the results of this manageable stochastic process obtained from both models
to analyze the differences between them.

Of course, analyzing this idea, it could be objected that the processes
under study are not directly comparable as they are not strictly equal. How-
ever, we are looking for a general intuition about the estimation procedure.

Basically, we are wondering about the adequacy of the GMM estimates
in the Shot noise samples, and try to understand how long is the influence on
the approximations taken on the estimations: whether we find substantial
differences in the behavior of the estimations can indicate that “something
is not going well”.

To clarify the former ideas, let us propose a stochastic process of the
form

Hc
t =

Nt∑

i=1

Uie
−a(t−τ) (2.2.4.2)

where, Hc
t denotes the classical Shot noise model17 and, again, {Nt}t and

{Uj}j are mutually independent.

The process in equation (2.2.4.2) will be denoted as the classical Shot
noise process, although this terminology is not standard. This process is
studied in Rice (1954) or Ross (1996), and some of its statistical properties
are also provided there.

Regardless of the fact that equations (2.2.4.1) and (2.2.4.2) are different,
a careful study reveals that they are closer each other than seems at a first
moment.

Computing the Taylor expansion of the logarithm in expression (2.2.4.1),

17This process is defined in Ross (1996). See Chapter 1 for more details.
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we get

Hr
t =

Nt+∆t∑

j=Nt+1

ln[1 + Uje
−a(t+∆t−τj )] +

Nt∑

j=1

ln

[
1 + Uje

−a(t+∆t−τj )

1 + Uje−a(t−τj )

]

≃
Nt+∆t∑

j=Nt+1

Uj e
−a(t+∆t−τj )] + (e−a∆t − 1)

Nt∑

j=1

Uj e
−a(t−τj )

≃
Nt+∆t∑

j=Nt+1

Uj + (e−a∆t − 1)

Nt∑

j=1

Uj e
−a(t−τj ) (2.2.4.3)

where the last expression is obtained assuming that just one jump can appear
with probability λ∆t within the time interval [t, t+∆t], for a “small enough”
increment ∆t.

As deduced from equation (2.2.4.3), the expressions Hc
t and Hr

t seem to
share an equal term18. At light of the last expression, we are inclined to
think that the processes Hc

t and Hr
t could share some features. Two main

reasons can be highlighted19:

1. The contribution of the random variable Uj to the Hr
t process just

appears in certain moments of the life of the process.

2. The second term
∑Nt

j=1 Uj e
−a(t−τj ) extends their influence over the

entire time span.

Additionally, the variances for both processes are

V ar(Hr
t ) = λE

[
U2
]
∆t (2.2.4.4)

V ar(Hc
t ) = λE

[
U2
] 1

2a
(1 − e−2at) (2.2.4.5)

and the expressions for the autocorrelation coefficients ρn result

ρn(Hr
t ) =

{
1, if n = 0
(e−a∆t − 1) e−a n∆t, if n ≥ 1

(2.2.4.6)

ρn(Hc
t ) = e−an∆t (2.2.4.7)

Roughly speaking, the main difference between these two process seems
to be the form that their respective moment conditions have been derived.

18Under the assumptions taken.
19Both arguments support our idea that the joint study of the processes Hc

t and Hr
t

could be relevant when it comes to study the performance of the GMM methodology.
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In the case of the SNJD process, equations (2.2.4.4) and (2.2.4.6) have been
obtained by means of approximations (see Chapter 1). For the case of the
classical Shot noise, equations (2.2.4.5) and (2.2.4.7) can be derived directly
(see, for instance, Ross, 1996).

At light of the former results, it could be thought that the classic Shot
noise process of equation (2.2.4.2) can provide us a naive tool for compar-
ing the performance of the methodology under approximations. Again, we
realize that the moment expressions of the processes (2.2.4.1) and (2.2.4.2)
are not strictly equal, so these processes can not be comparable.

According to the specification that we are adopting in equations (2.2.4.1)-
(2.2.4.2), in both cases, our parameter vector results Λ = (λ, β, a)′ ∈ R3,
where λ is the intensity of the Poisson processes, β is related to the ampli-
tude of the jump and the parameter a refers to the speed of decaying after
a jump20.

2.4.2 GMM estimates and results

As previously mentioned, our experiment consists on the simulation of 3,000
sample paths with 1,800 data each one for the restricted SNJD process
(µ = σ = 0) of equation (2.2.4.1) and the classical Shot noise of expression
(2.2.4.2). To analyze the degree of serial dependence in data, this procedure
has been repeated four times, just changing the value of the parameter a
to 0.2, 0.6,1.0 and 10.0. This generates four subsets of simulated data,
attending to the different a parameters’ value.

Secondly, we have estimated the parameters of each data subset by using
the identity matrix as weighting matrix (our first stage estimate). Moreover,
we also provide the results by taking into account some effects in the sam-
ple as serial correlation which, obviously, affects to the efficiency of the
estimations, by means of the Newey-West (1987) estimate (our third stage
estimate).

Basically, the usage of these two estimates responds to our intention of
examining their behavior in two main cases: in the first place, the identity
weighting matrix, which can be intended as the rudest case because the
estimated parameters are not the best ones possible in terms of efficiency21.

After this, the inclusion of a weighting matrix - Newey-West (1987) -
that takes into account the possible serial correlation effects in sample can

20Again, we have assumed that the jump size corresponds to a realization of a lognormal

random variable U of the form U = e−β2/2+βε − 1, with ε ∼ N(0, 1).
21Cochrane (2005) also suggests to look at the first stage estimates although it is not

so efficient as possible
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reveal additional insights about the estimation (see Hamilton, 1994). Again,
it is worth to notice that this is a first approach to the methodology as a
more detailed study will be presented in the next sections.

Our procedure involves three moment conditions, corresponding to the
variance and the two first autocorrelation coefficients of both restricted
SNJD and classical Shot noise processes. We have just taken two moment
conditions referring to the correlation terms as we have the intention of
limiting as much as possible the set of information that arrives at our esti-
mate22.

Autocorrelation coefficients

To start, Table 2.2 exhibits the sample and theoretical autocorrelation co-
efficients of the series under study. The sample autocorrelation coefficients
have been computed from the mean values of the first few lag autocorrela-
tion coefficients for the different paths. Theoretical expressions appear in
this table.

Some conclusions arise from the inspection of Table 2.2. In general, the
sample autocorrelation values for the restricted SNJD process are not so
close to that predicted from the theory, specially if we compare with those
obtained for the classical Shot noise. Moreover, looking at the sample and
theoretical values of the coefficients for the SNJD model, it seems that they
are closer in certain values (a = 0.6, 1.0) than in other ones (a = 0.2, 10.0).
These last results can be drawing some features about the adequacy of the
approximations used.

GMM estimates

Results in Tables 2.3 and 2.4 seem to go in the same direction as those
obtained in Table 2.2. Table 2.3 refers the GMM estimates obtained for a
classical Shot noise of equation (2.2.4.2), and Table 2.4 exhibits those re-
ferred to the restricted SNJD model. Both tables display the mean, median,
minimum, maximum, mean squared error (MSE) and root mean squared
error (RMSE) of the GMM estimated values for the parameters λ, β and a
of the restricted SNJD and classic Shot noise processes. For each param-
eter estimate we report four columns corresponding to each different cases
under analysis, i.e., for a = 0.2, 0.6, 1.0 and 10.0. Moreover, each table is

22The number of parameters to estimate (three) indicates the minimum number of
orthogonality conditions that must be included to have correctly determined our problem.
See Hamilton (1994) or Cochrane (2005) for additional insights on the GMM procedure.
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Table 2.2: Autocorrelation values for first few lags.

Theoretical expressions for the autocorrelation functions of the restricted SNJD
and classic Shot noise processes are, respectively,

ρn(Hr) =

{
1, if n = 0
(e−a∆t − 1) e−a n∆t, if n ≥ 1

and

ρn(Hc) = e−an∆t

Restricted SNJD process (µ = σ = 0)

a = 0.2 a = 0.6 a = 1.0 a = 10.0
Lag ρteo ρ̂ ρteo ρ̂ ρteo ρ̂ ρteo ρ̂

1 -0.148 -0.092 -0.247 -0.227 -0.233 -0.316 0.000 -0.500
2 -0.122 -0.075 -0.136 -0.123 -0.086 -0.117 0.000 0.000
3 -0.100 -0.061 -0.075 -0.067 -0.032 -0.042 0.000 0.000
4 -0.081 -0.050 -0.041 -0.037 -0.012 -0.016 0.000 0.000
5 -0.067 -0.041 -0.023 -0.021 -0.004 -0.006 0.000 -0.001

Classical shot noise (Exact moments)

a = 0.2 a = 0.6 a = 1.0 a = 10.0
Lag ρteo ρ̂ ρteo ρ̂ ρteo ρ̂ ρteo ρ̂

1 0.819 0.816 0.549 0.548 0.368 0.367 1.000 1.000
2 0.670 0.665 0.301 0.300 0.135 0.134 0.000 0.000
3 0.549 0.542 0.165 0.163 0.050 0.049 0.000 0.001
4 0.449 0.442 0.091 0.089 0.018 0.018 0.000 -0.001
5 0.368 0.360 0.050 0.048 0.007 0.006 0.000 -0.001

This table reports autocorrelation coefficients for first few lags and different values of the
parameter a. First column displays the number of lags. Each successive pair of columns
corresponds to the theoretical (ρteo) and sample (ρ̂) autocorrelation values, respectively.
The sample autocorrelation values are obtained from the computed mean of the first few
autocorrelation values for 3,000 simulation paths with 1,800 data each one. The response
function of the restricted SNJD model is h(t− τk) = e−a(t−τk) and the random variable
Uj is lognormally distributed with mean E[U ] = 0. Simulated parameters are λ = 0.04
and β = 0.10 for both models.
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also divided in two main blocks, attending to the weighting matrix (identity
or Newey-West (1987) estimate) used. Finally, the true values used in the
simulations for the parameters are also displayed in parenthesis.

In general, in terms of RMSE, the best estimates correspond to those
of the parameter a across models and weighting matrix. This is not unex-
pected as, in general, two out of three moment conditions are referred to this
parameter. It is particularly singular that the addition of the Newey-West
(1987) matrix results in a increasing of efficiency in a estimates of any order
(0.2, 0.6,...) for the classical Shot noise; however, this is just observable in
case of a = 0.6, 1.0 for the restricted SNJD model, if we exclude the case of
a = 10.00 due to their high RMSE value.

On the whole, in terms of RMSE, it seems that the values estimated
for the parameter a in the classical Shot noise are closer to their simulated
values than those obtained for the restricted SNJD model. This result could
be directly related to those obtained in Table 2.2 to the extent that the pa-
rameter a i) affects dramatically to the poorness of the results for restricted
SNJD model for a = 0.2 and 10.0 values and, ii)the former could be a conse-
quence of the numerical approximations done in the restricted SNJD. This
idea is also reinforced by the behavior of the estimated a’s values in the
SNJD model, because they follows the pattern detected in Table 2.2 where
better a’s estimates are obtained for a = 0.6, 1.0 than for a = 0.2, 10.0.

Concerning the parameter λ, it seems to exist a bias with respect to their
simulated values, a feature that is repeated across models and weighting
matrix estimates. This bias tends to increase with the parameter a, with
the only exception of a = 10.0 for the SNJD model.

The same conclusions arise with respect to the parameter β: the more we
increase the a, the more bias we find. These patterns could be also confirmed
by the value of their RMSEs for parameters λ and β, respectively. Finally, in
both models, the observed differences between Mean and Median parameter
with reference to λ and β parameters could be reflecting certain asymmetries
in the estimate distribution.

Can we avoid this bias behavior in the estimates of the parameters λ and
β? Up to a point, whether we have detected a problem with the estimation
methodology is an open question that we must confirm in the next sections.
It is worth to say that this is a first contact with the methodology, so these
results are not definitive mainly because of the following reasons:

1. The efficiency of the estimates can be improved by increasing the set
of information of our estimate, that is, increasing the number of or-
thogonal conditions, specially in the case of the Newey-West (1987)
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weighting matrix for the restricted SNJD23.

2. We must check whether this bias in the parameters λ and β are just
present in the estimations for Shot noise samples or if the bias is also
extensive to more general JD estimations24.

Partially, it seems that the methodology is capable of facing the estima-
tion of the parameters of the restricted SNJD model for a certain range of
values, an affirmation that could be extended to the classical Shot noise in a
wider range. Nevertheless, this conclusion must be still exhaustively proved.

2.5 Monte Carlo study

Once slightly checked the ability of the proposed methodology to capture
the parameters of the process, we proceed now to analyze the performance
of the estimations of the JD and SNJD models using the GMM estimate.
Due to the strong differences between the JD and SNJD models, it could be
interesting to develop two main experiments:

1. To analyze the behavior of the GMM estimate of JD and SNJD models
under JD and SNJD samples, respectively.

2. To study the case of cross samples, that is, data generated by a model
that differs from that one used in the estimation (e.g., to estimate a
JD model by using a simulated SNJD sample).

Since the second study will be performed in the next section, this section
is devoted to the former.

On the whole, this section is developed by considering three versions of
the GMM weighting matrix: to start, we use the classical moment estimate;
this will be our first-stage estimate, following notation used in Cochrane
(2003). Afterwards, we check the procedure using the efficient weighting
matrix of equation (2.2.2.4) posited by Hansen (1982). This estimate will
be named the second-stage estimate. Lastly, due to the presence of serial
correlation in some series under study, we analyze the results obtained by
using the Newey-West (1987) estimate of expression (2.2.2.5).

23Two estimation exercises using 6 moment conditions for a restricted SNJD model
seems to confirm this point. These results are available upon request.

24To our knowledge, there is no study analyzing how the presence of serial correlation
affects the estimation of JD parameters. This point will be discussed in detail later.
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Table 2.3: GMM estimates for the classic Shot noise process.

Parameters λ× 10−2 β × 10−2 a
(True value) (4.00) (10.00) (below)

Parameter a 0.20 0.60 1.00 10.00 0.20 0.60 1.00 10.00 0.20 0.60 1.00 10.00
Identity matrix

Mean 7.20 7.70 8.57 15.81 11.36 12.33 13.48 23.19 0.19 0.57 0.96 7.51
Median 7.45 8.04 8.89 16.79 11.94 13.11 14.24 24.37 0.20 0.60 1.00 7.02

Min 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 -0.01 0.00 0.00 0.00
Max 14.20 14.76 19.98 20.00 22.22 19.53 30.00 30.00 0.29 0.83 1.44 15.60
MSE 0.17 0.21 0.29 1.58 0.13 0.20 0.28 2.09 0.00 0.02 0.05 20.72

RMSE 4.11 4.59 5.40 12.55 3.64 4.44 5.32 14.46 0.06 0.15 0.22 4.55

Newey-West (1987)

Mean 13.80 15.05 16.30 30.47 8.55 9.73 10.80 17.93 0.20 0.60 0.99 6.77
Median 14.84 16.21 17.61 30.77 8.24 9.29 10.38 18.66 0.20 0.60 1.00 6.98

Min 0.85 0.94 0.82 1.62 1.70 1.87 1.68 1.12 0.01 0.01 0.02 0.02
Max 22.97 27.89 28.42 40.00 15.93 18.94 19.21 20.00 0.30 0.82 1.45 12.00
MSE 1.08 1.40 1.72 7.47 0.04 0.03 0.05 0.68 0.00 0.00 0.03 15.19

RMSE 10.41 11.84 13.13 27.34 2.06 1.86 2.15 8.24 0.03 0.09 0.16 3.90

This table reports Monte Carlo study to analyze GMM estimates of a classical Shot noise process (see equation (2.2.4.2))
by using the Identity and Newey-West (1987) estimates as weighting matrices. This table shows mean, median, minimum,
maximum, mean squared error (MSE) and root mean squared error (RMSE) of the estimated parameters, respectively.

Simulation parameters are in brackets. The random variable Uj is lognormally distributed U = e−β2/2+βε − 1, with
ε ∼ N(0, 1) and mean E[U ] = 0.
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Table 2.4: GMM estimates for the restricted SNJD process (µ = σ = 0).

Parameters λ × 10−2 β × 10−2 a
(True value) (4.00) (10.00) (below)

Parameter a 0.20 0.60 1.00 10.00 0.20 0.60 1.00 10.00 0.20 0.60 1.00 10.00
Identity matrix

Mean 6.86 7.23 8.09 5.16 11.66 12.22 12.86 9.07 0.07 0.64 0.71 0.83
Median 6.77 7.12 7.55 5.03 11.55 12.05 13.42 9.26 0.08 0.70 0.72 0.83

Min 0.82 2.52 0.80 0.80 1.22 6.48 1.02 1.00 0.00 0.22 0.49 0.65
Max 12.29 13.97 18.10 19.03 19.80 17.38 21.44 24.56 0.21 1.41 0.93 0.93
MSE 0.12 0.14 0.29 0.09 0.07 0.08 0.24 0.22 0.02 0.06 0.09 84.12

RMSE 3.48 3.79 5.43 3.06 2.61 2.88 4.90 4.69 0.14 0.25 0.30 9.17

Newey-West (1987)

Mean 8.35 19.39 8.33 8.33 8.06 8.90 8.19 8.19 2.16 0.61 0.88 1.62
Median 8.31 12.43 8.25 8.25 8.10 10.50 8.27 8.27 2.61 0.61 0.91 1.56

Min 0.81 0.82 0.81 0.81 1.01 1.00 1.00 1.00 0.00 0.00 0.00 0.00
Max 16.00 40.02 16.00 16.00 15.00 14.99 14.99 14.99 4.00 1.52 1.32 11.18
MSE 0.39 4.73 0.38 0.38 0.20 0.14 0.20 0.20 6.12 0.06 0.06 70.50

RMSE 6.23 21.76 6.20 6.20 4.50 3.68 4.44 4.44 2.47 0.23 0.25 8.40

This table includes Monte Carlo study to analyze GMM estimates of a restricted SNJD process (see equation (2.2.4.1)) by
using the Identity and Newey-West (1987) estimates as weighting matrix. Parameters µ and σ for general SNJD model of
equation (2.2.3.1) have been fixed to zero under the restricted SNJD model. This table shows mean, median, minimum,
maximum, mean squared error (MSE) and root mean squared error (RMSE) of the estimated parameters, respectively.
Simulation parameters are in brackets. The response function of the restricted SNJD model is h(t− τk) = e−a(t−τk), and

the random variable Uj is lognormally distributed U = e−β2/2+βε − 1, with ε ∼ N(0, 1) and mean E[U ] = 0.
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2.5.1 GMM estimates for the JD processes

Results

We report here the results obtained from Monte Carlo simulations for the
JD process. As there is no correlation in the sample25 there is no sense in
using the Newey-West (1987) weighting matrix. Then, we only present the
results for the first and second-stage estimates. In general terms, we expect
that the inclusion of the second stage estimate must lead, a priori, in a bias
reduction of the estimates obtained in the first stage.

To clarify the exposition, just a few words about the process: our study
comprises the simulations of the log-returns in model (2.2.3.1). The vector
of parameters under study is Λ = (µ, σ, λ, β)′ ∈ R4, where µ and σ refer
to the drift and volatility of the Brownian part of the process, λ captures
the (instantaneously) probability that a jump happens and β refers to the
jump amplitude when a jump occurs. The parameter a has been fixed to
zero. As we are using through this chapter, the jump size U is lognormally
distributed of the form U = e−β2/2+βε − 1, with ε ∼ N(0, 1). Finally, the
simulated JD process can be seen as a version of the Merton (1976) process
with a null jump size mean.

Table 2.5 exhibits the GMM estimates for a JD process in a sample of
3,000 paths with 1,800 sample data each one. True simulation values appear
in parenthesis. Each parameter block is divided in two columns, attending to
the weighting matrix used (first or second-stage estimate). Rows in this table
also display the mean, median, minimum, maximum, mean squared error
(MSE) and root mean squared error (RMSE) for the estimated parameters.

Moreover, we provide the P percentiles [2.5%, 97.5%] of each set of esti-
mates obtained. Finally, we also include the Pearson’s variation coefficient
(CV), which indicates the relationship among the standard deviation and
the mean of a distribution, and serves us to compare two distributions with
different means26. Of course, we expect that the inclusion of the second
stage estimate results in a reduction of the CV values computed for any
parameter.

Looking at the results in Table 2.5, the mean values of estimates obtained
are, in general, close to their true values attending to their respective stan-
dard deviation values. Of course, standard deviations decline substantially
when it comes to the estimates results of the second stage estimates. In line

25As previously developed in Chapter 1, a JD process is not capable of generating serial
persistence.

26The higher the CV, the higher the dispersion in the data
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Table 2.5: GMM estimates for the JD process

µ̂× 10−2

(0.02)

σ̂ × 10−2

(1.26)
λ̂× 10−2

(4.00)
β̂ × 10−2

(10.00)

Statistics 1st 2nd 1st 2nd 1st 2nd 1st 2nd

Mean 0.02 0.02 1.33 0.92 7.41 6.49 7.23 8.15
Median 0.02 0.02 1.39 0.96 7.17 6.50 7.19 8.18

Std 0.06 0.04 0.60 0.23 3.64 0.40 2.63 1.02
Min -0.18 -0.14 0.06 0.00 0.50 2.72 1.01 1.02
Max 0.19 0.16 2.66 1.90 17.19 7.96 15.18 12.06
MSE 0.00 0.00 0.00 0.00 0.25 0.06 0.15 0.04

RMSE 0.06 0.04 0.60 0.41 4.99 2.52 3.82 2.11

P[2.5,97.5] [-0.09, 0.13] [-0.06,0.10] [0.26,2.32] [0.37,1.27] [1.59,14.94] [5.71,7.21] [2.22,12.57] [6.12, 10.03]
CV 298.67 203.93 44.80 24.48 49.18 6.20 36.41 12.53

This table shows the GMM first and second stage estimates of the JD process. We assume a jump size U lognormally distributed
of the form U = e−β2/2+βε − 1, with ε ∼ N(0, 1). First row contains the parameters of JD process (true simulation values in
brackets). This table shows mean, median, minimum, maximum, mean square error (MSE) and root mean square error (RMSE)
of the estimated parameters using the GMM methodology, respectively. We also provide the P percentiles [2.5%, 97.5%] and the
Pearson’s variation coefficient (CV) of each set of estimates obtained. CV is defined as the ratio of the standard deviation to the
mean, and it serves us to compare the dispersion of distributions with different means. Finally, the first stage column correspond
to a GMM with the identity as weighting matrix. Second stage column uses the efficient version of weighting matrix of Hansen
(1982).
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with this point, it is possible to observe that the efficient weighting matrix
of Hansen (1982) - our second-stage estimate - improves the efficiency of the
estimates, a point that is also confirmed by the reduction in terms of RMSE
and CV for each pair of parameter estimates. This is particularly notable in
the case of the parameter λ, which initially goes from a RMSE of 4.99×10−2

to 2.52 × 10−2.
Anyway, the estimated values of the parameter λ are bigger (in mean)

than their true simulated values, and this is also evident once taking into
account the small value of the standard deviations registered for the second
stage estimate; consequently, this results in a increasing of the rate of jump
events, going from 10 jumps per year (simulated) to about 16 per year
(estimated). We will go back exhaustively to this point later.

If we attend to the differences among mean and median parameter es-
timates, the distribution for σ and λ parameters seems to be asymmetrical
with respect to its first stage estimate, and only σ with respect to the second
one. This point is also confirmed by the histograms for the first and second
stage estimates for the parameter σ (see Figure 2.1) and the parameters λ
and β (see Figure 2.2).

Moreover, Figures 2.1 and 2.2 show that the variance of the sample
distributions decreases considerably when the efficient weighting matrix of
Hansen (1982) is included. Letting this issue apart, we can consider, as
a general rule, that all the parameter distributions seem to be normally
distributed27.

With respect to the estimation of the parameter σ, Figure 2.1 shows
that the histogram of their estimated values does not seem to be normally
distributed for the first stage estimate and, for the second stage estimate,
it also exhibits a left tail of the distribution that it fatter than that from a
normal distribution. We have repeated the experiment by using other sam-
ples, and results do not change qualitatively. We think that the estimation
of this parameter can be affected of numerical problems, although the next
paragraphs present a general discussion about this point.

Comments on the JD results

Two issues have not been analyzed in the precedent paragraphs: the first
one refers to the observed bias detected in the estimation of the parameter
λ; the second one treats about problems in the asymptotic distribution of
the parameter σ. At a certain extent, both questions could be connected.

27This feature is predicted by the theory. See, for instance, Hansen (1982) or Cochrane
(2005).
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Figure 2.1: Histogram for the JD estimate parameters µ and σ
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Sample and asymptotic distributions for the GMM estimates obtained with Identity
and Hansen (1982) weighting matrix for the parameters µ and σ. The sample is
composed by simulations of 3,000 paths with 1,800 data each one, corresponding to
daily frequency. Simulations parameters are µ = 0.0002, σ = 0.0126, λ = 0.0400 and
β = 0.1000 (parameter a has been fixed to zero). The jump size U is lognormally

distributed of the form U = e−β2/2+βε − 1, with ε ∼ N(0, 1) and mean E[U ] =
0. Notice that figures are equally scaled in the X axis for each pair of estimates
corresponding to the same parameter.
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Figure 2.2: Histogram for the JD estimate parameters λ and β
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Sample and asymptotic distributions for the GMM estimates obtained with Identity
and Hansen (1982) weighting matrix for the parameters λ and β. The sample is
composed by simulations of 3,000 paths with 1,800 data each one, corresponding to
daily frequency. Simulations parameters are µ = 0.0002, σ = 0.0126, λ = 0.0400 and
β = 0.1000 (parameter a has been fixed to zero). The jump size U is lognormally

distributed of the form U = e−β2/2+βε−1, with ε ∼ N(0, 1) and mean E[U ] = 0. Note
that figures are equally scaled in the X axis for each pair of estimates corresponding
to the same parameter.
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Regarding the first issue, a possible explanation to the bias in the param-
eter λ can be given by the observed reduction in the mean value of estimated
σ’s (second-stage column): this might be a consequence of a transference of
volatility from the Brownian to the jump part of the process.

To clarify this idea, let us put some numbers to our discussion: from
the expression of the total variance28 of a JD process, we have that the
theoretical (daily) variance29 is about σ2

theo = 5.59 × 10−4, and the sample
(daily) variance30 obtained is σ2

sample = 5.16 × 10−4. These values imply an
annualized standard deviation of about σtheo = 37% and σsample = 36% for
the theoretical and sample model parameters, respectively. By contrast, the
annual rate of jumps implied from theoretical and sample results are 10 and
16, respectively.

Some additional arguments in favour of this effect on the total JD vari-
ance behavior could be found by looking at the joint behavior of the param-
eters under study. Firstly, we have estimated the correlation matrix of the
results obtained for the second stage estimates31. Table 2.6 reports these
correlation coefficients.

As Table 2.6 exhibits, only the correlation coefficients for the pairs (σ, λ)
and (σ, β) remains significant for a 95%-confidence level. The correlation
values for (σ, λ) and (σ, β) are about 0.45 and −0.73, respectively. Indeed,
it seems to be confirmed the existence of a linear relationship in between
these two terms.

By contrast, this decreasing effect on the total variance of the process
is compensated by an increase on the jump amplitude: there is a negative
correlation between σ and β while the correlation between λ and β remains
insignificant.

Additionally, to have a visual idea of this issue, Figures 2.3 and 2.4
include the point clouds for some pair of the parameters under study (σ, λ,
and β).

As expected, the point clouds in Figures 2.3 and 2.4 confirm the sign
and dependence existing between the pairs (σ, λ) and (σ, β): we observe

28The total variance of a JD process is V ar(Zt) = σ2∆t + λE[U2]∆t, where we have

assumed a jump size U lognormally distributed of the form U = e−β2/2+βε − 1, with
ε ∼ N(0, 1), and E[U2] = β2 + β4/4. See Chapter 1 for a detailed development of this
formula.

29This variance is computed from the true simulation parameters.
30This variance is computed from the mean values for the parameters σ, β and λ of the

second stage estimates in Table 2.5.
31The correlation matrix for the first stage estimates has also been computed and is

available upon request.
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Figure 2.3: Points clouds for different GMM estimates of JD process
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Different point clouds for the GMM estimates of the JD process parameters. The first
(second) column represents the estimates obtained by using the identity (Hansen,
1982) matrix as weighting matrix in the GMM estimates (first and second stage
estimates, respectively). Simulation parameters are µ = 0.0002, σ = 0.0126, λ =
0.0400 and β = 0.1000 (parameter a has been fixed to zero). The jump size U is

lognormally distributed of the form U = e−β2/2+βε − 1, with ε ∼ N(0, 1) and mean

E[U ] = 0. Finally, “σ̂ versus λ̂ (β̂)” refers to parameter σ̂ on the axis OX and

parameter λ̂ (β̂) on the axis OY.



2.5. MONTE CARLO STUDY 81

Figure 2.4: Points clouds for different GMM estimates of JD process
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Different point clouds for the GMM estimates of the JD process parameters. The first
(second) column represents the estimates obtained by using the identity (Hansen,
1982) matrix as weighting matrix in the GMM estimates (first and second stage
estimates, respectively). Simulation parameters are µ = 0.0002, σ = 0.0126, λ =
0.0400 and β = 0.1000 (parameter a has been fixed to zero). The jump size U is

lognormally distributed of the form U = e−β2/2+βε − 1, with ε ∼ N(0, 1) and mean
E[U ] = 0. Finally, “σ̂ versus µ̂” refers to parameter σ̂ on the axis OX and parameter

µ̂ on the axis OY (and similarly for “λ̂ versus β̂”).
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Table 2.6: Correlation matrix for the GMM second stage JD results

µ σ λ β

µ 1.0000
σ -0.0261 1.0000
λ 0.0218 0.4489 1.0000
β 0.0193 -0.7305 -0.0062 1.0000

Correlation matrix of the GMM estimates for the JD process using
Newey-West (1987) as weighting matrix. The parameter vector is Λ =
(µ, σ, λ, β)′ ∈ R4, and the simulation parameter values are µ = 0.0002,
σ = 0.0126, λ = 0.0400 and β = 0.1000. Parameters in bold are not
significant for a 95%-confidence level.

elliptical forms with a clear tendency between variables. By contrast, the
pairs included in Figure 2.4 remain in a circular form, a clear sign of linear
independence.

To a certain degree, these differences on allocating the total variance of
the process seem to explain this bias. To put it another way, the GMM
estimate does not appear to assign completely the correct variance due to
those different contributions, the Brownian and jump ones. Whether this
behave it is due to numerical problems on estimating σ or, by contrast, it
is caused by a possible cross-effect among the remaining parameters in the
total variance expression of the JD process, it is a question that remains
open.

2.5.2 GMM estimates of SNJD processes

We display now the results obtained for the GMM estimations of the SNJD
model under different simulation samples generated by the SNJD process.

Results

As it was extensively shown in Chapter 1, one of the main features of the
SNJD models is their capability to generate serial correlation in returns.
With the purpose of checking whether the GMM approach is able to cap-
ture this dependence in data, we have developed three experiments which
differ in the degree of autocorrelation generated in the sample. Basically, we
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have modified the parameter a among experiments, keeping the remaining
components of the parameter vector (µ, σ, λ, and β) constant across experi-
ments.

Table 2.7 exhibits the GMM estimated parameters for the SNJD model
under study. The two first columns of this table display the parameters
under study and their true values, respectively. Afterwards, three main
column blocks contain the results for Identity (first stage), Hansen (1982)
(second stage) and Newey-West (1987) (third stage) weighting matrix of the
GMM estimates32.

To keep manageable the main results of the process, each block re-
ports the mean, root mean squared error (RMSE) and the P percentiles
[2.5%, 97.5%] of the proposed estimates (percentiles are in brackets below
the mean statistic). Finally, to compare across samples of the different ex-
periments, the Pearson’s coefficient of variation (CV) is also included.

We discuss now in more detail some features derived from Table 2.7:

• Parameter σ On the whole, we observe for equal weighting matrix a
decay pattern in the reported mean value of σ when the parameter a
increases (e.g., the second stage estimate passes from 1.75 × 10−2 to
1.16 × 10−2 for a = 0.20 and 1.00, respectively).

When the parameter a increases, the bias increases for the first stage
estimate and decreases for the second and third stage estimates. In
all the cases, the third stage estimate provides a slightly smaller bias
than the second stage one.

As a general rule, the inclusion of the Newey-West (1987) weighting
matrix increases the efficiency of the estimates, as reflected in the
following facts:

– The CV coefficients decay across different estimates for equal set
of parameter values, mainly due to the fact that the dispersion
in the estimated data decreases.

– The 95%-confidence interval for the third stage estimates are nar-
rower than considering the remaining estimates33.

32For the sake of brevity, we have omitted the mean sample autocorrelation coefficients
for the three developed experiments. Just for keeping an intuition, the mean sample
autocorrelation results are close to those obtained in Table 2.2 for the restricted version
of the SNJD model. On the whole, it can be said that these series exhibit significant
sample autocorrelation values for first and second lags. This justifies the usage of the
Newey-West (1987) weighting matrix estimate. Anyway, the results concerning the sample
autocorrelation of simulated series are available upon request.

33The values obtained for the 2.5%-percentile of the parameter σ from the first and
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Table 2.7: GMM estimates for the SNJD process

First stage Second stage Third stage
Parameter True value Mean RMSE CV Mean RMSE CV Mean RMSE CV

µ× 10−2 0.02 0.02
[−0.12,0.12]

0.06 348.85 0.06
[−0.03,0.14]

0.06 73.06 0.05
[−0.03,0.13]

0.05 72.92

σ × 10−2 1.26 1.54
[0.06,2.93]

0.76 45.59 1.75
[1.38,2.10]

0.54 12.80 1.72
[1.36,2.08]

0.49 10.63

λ× 10−2 4.00 4.99
[1.61,9.10]

2.17 38.69 8.30
[2.17,16.88]

5.94 49.28 8.87
[2.80,16.53]

6.01 39.74

β × 10−2 10.00 11.31
[4.53,19.06]

4.08 34.13 8.01
[5.59,10.59]

2.37 16.02 7.72
[5.53,10.44]

2.60 16.16

a 0.20 0.51
[0.06,2.38]

0.67 1.18 0.38
[0.02,1.45]

0.43 1.00 0.48
[0.04,1.75]

0.60 1.09

µ× 10−2 0.02 0.01
[−0.06,0.09]

0.04 253.35 0.06
[−0.03,0.14]

0.06 73.26 0.05
[−0.03,0.11]

0.04 78.00

σ × 10−2 1.26 0.92
[−0.01,1.65]

0.54 45.34 1.59
[−0.63,2.09]

0.57 29.26 1.55
[1.29,1.81]

0.32 8.42

λ× 10−2 4.00 7.14
[2.94,11.59]

3.75 28.70 15.91
[3.62,36.39]

13.83 44.26 17.15
[10.23,24.45]

13.65 21.26

β × 10−2 10.00 10.49
[5.78,15.69]

2.61 24.39 7.02
[5.20,9.43]

3.16 15.17 6.57
[4.98,8.19]

3.53 12.51

a 0.60 0.63
[0.16,1.31]

0.31 0.49 0.60
[0.03,1.13]

0.26 0.43 0.61
[0.25,1.08]

0.22 0.37

µ× 10−2 0.02 0.01
[−0.05,0.07]

0.03 237.38 0.06
[−0.03,0.14]

0.06 70.86 0.04
[−0.03,0.11]

0.04 80.68

σ × 10−2 1.26 0.30
[−0.03,1.36]

1.05 141.88 1.16
[−0.32,2.00]

0.80 68.84 1.37
[1.04,1.62]

0.18 10.89

λ× 10−2 4.00 9.15
[4.19,13.00]

5.60 24.04 25.78
[8.97,47.99]

24.41 42.71 23.76
[15.07,31.86]

20.28 19.15

β × 10−2 10.00 19.30
[9.30,26.61]

10.32 23.27 6.50
[4.90,8.51]

3.62 14.14 6.18
[4.82,7.65]

3.89 11.57

a 1.00 0.84
[0.04,1.13]

0.27 0.26 0.84
[0.03,1.32]

0.33 0.35 0.83
[0.45,1.20]

0.27 0.25

This Table includes the GMM (first, second and third stage) estimates of the SNJD process for different values of a
parameter. The first stage estimate corresponds to a GMM with the identity as weighting matrix. The second stages
estimate uses the efficient version of the weighting matrix of Hansen (1982). Due to the presence of autocorrelation in
the sample, we use the weighting matrix version of Newey-West (1987) as third stage estimate. We assume a jump size U

lognormally distributed of the form U = e−β2/2+βε − 1, with ε ∼ N(0, 1), and response function of the form h(t) = e−at.
Each row refers the true simulation values, mean, RMSE and CV of first to third stage estimates for each parameter of
the SNJD process, respectively.
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Finally, the decay of the RMSE values across different estimates for
equal set of parameter values might reflect a trade-off between preci-
sion and bias: the Newey-West (1987) estimates present bias but these
estimates are (a little) more precise than the remaining estimates.

• Parameter λ In general, the first stage estimates of λ exhibit sub-
stantially smaller bias than the second and third stage ones, even for
different values of the parameter a. Moreover, the mean λ values seem
to be biased to the right, a pattern that is also repeated across esti-
mates and different degrees of serial correlation.

It is generally remarkable that the more we try to improve the ef-
ficiency of our estimations, the higher is the bias obtained (see, for
instance, the case of a = 0.6 where the λ bias goes from 11.91 to
13.15). Note also that the Identity and Newey-West (1987) matrices
seem to provide more efficient results than the Hansen (1982) matrix34.

Finally, at light of the results obtained, as the smallest RMSE is ob-
tained for the first stage estimates, it seems that something is happen-
ing in the λ estimates when we include the Hansen (1982) or Newey-
West (1987) for the cases under study.

Before analyzing the remaining parameters in Table 2.7, it can be in-
teresting to have a visual idea of the former results. With this aim, Figure
2.5 displays the sample distribution for the first, second and third estimates
of the parameters σ and λ when a = 0.6. The true simulation values are
µ = 0.02×10−2, σ = 1.26×10−2, λ = 4.00×10−2 and β = 10.00×10−2. The
graphs in the same column are scaled on the axis OX with the intention of
observing possible displacements of the sample distribution along this axis.

As Figure 2.5 reveals, the Newey-West (1987) matrix for the parameter
σ seems to offer more efficient results than those obtained with the Identity
or Hansen (1982) matrices. It is also appreciated a bias with respect to its
true value (the simulated value for σ is 0.0126) and this bias is smaller for
the case of the Identity matrix. Regarding this matrix, we can observe that
part of the sample (less than 10%) takes values around zero or even negative,
which can be revealing some numerical problems in the methodology.

second stage estimates for a = 0.6 and a = 1.0 are negative. We put these results down
to numerical problems in the optimization procedure. Anyway, our experiments seem to
indicate a negligible probability of having a negative σ value in the estimations.

34For instance, the coefficients of variation for λ in the case a = 1.0 are 24.04, 42.71 and
19.15 for the first to third stage estimates, respectively.
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Figure 2.5: Sample distribution of the parameters σ and λ for a = 0.6
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Sample distribution of estimated σ and λ SNJD parameters for different weighting
matrices. Simulation values are µ = 0.02 × 10−2, σ = 1.26 × 10−2, λ = 4.00 × 10−2,
β = 10.00 × 10−2 and a = 0.60. The random variable U is lognormally distributed
with mean E[U ] = 0. Note that the axis OX are equally scaled.
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The conclusions regarding the estimates of the parameter λ in Figure
2.5 are almost similar: the results with higher bias correspond to the more
efficient matrices employed (see graphs including the second and third stage
estimates).

Moreover, the sample distributions obtained for the first and second
stage estimates for the parameter λ offer different outlines than the normal
distribution. This point may be due to the presence of autocorrelation in
the sample, which has not been adequately corrected. As in the case of the
parameter σ, it can be seen that the smaller dispersion is obtained for the
sample distribution of the first stage estimate.

After this digression, we continue with the analysis of the remaining
parameters:

• Parameter β Leaving the first estimate results aside, the β estimates
obtained seem to be generally slightly biased to the left. This could
be a sign of negative correlation between the parameters λ and β, a
point that will be discussed later.

On the whole, the efficiency of the estimates is improved by the inclu-
sion of Hansen (1982) and Newey-West (1987) estimates for all cases,
as CV and percentile coefficients seem to reflect. Finally, the mean
values of the parameters β tends to decrease at a small rate as the
parameter a increases.

• Parameter a This parameter is directly connected to the autocorre-
lation of the SNJD model. The worst performance in terms of RMSE
is obtained in the case of small serial dependence (a = 0.2), where the
methodology seems to be slightly biased35.

The mean values for a = 0.6 and a = 1.0 keep almost constant across
estimates, but their efficiency is improved36 as well as their precision37.

Once again, it may be interesting to display the sample distribution
obtained for the parameter a. Figure 2.6 exhibits the sample distributions
obtained for a = 0.6 under different GMM weighting matrices. Basically,
the results for the estimates are similar each other: their distributions are
not normal and all of them present problems in the left tail.

35The computed p-values for a = 0.20 are 0.40, 0.46 and 0.50 from the first to the third
estimates, respectively. The remaining p-values are available upon request

36For instance, the variation coefficients are 0.49, 0.43 and 0.37 for the first, second and
third estimates, respectively.

37For a = 0.6, the RMSE values are 0.31, 0.26 and 0.22 for the first to the third
estimates, respectively.
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Thus, it is possible to appreciate that some observations (less than 5%
of the total amount in the worst case) are around zero. Apparently, there
is no bias in the obtained results. Finally, it seems that the estimates ob-
tained with the Newey-West (1987) matrix present less dispersion than those
obtained with the alternative matrices.

To complete this study, it can be interesting to compare the results
included in Table 2.7 with those displayed for the restricted SNJD model
in Table 2.4. Basically, we believe that the main connecting points are as
follows:

1. In mean, an increase in the parameter a results in larger λ coefficients.

2. The bias of the λ estimates increases when the Newey-West (1987)
estimate is included in the restricted SNJD model, as the restricted
SNJD model one does. This increase in the bias is not accompanied
by a larger efficiency for the λ estimate of the non-restricted SNJD
model.

3. The parameter β tends to increase with the parameter a in the re-
stricted SNJD models. By contrast, the opposite behavior appears in
the non-restricted SNJD models. This fact might result in a negative
correlation pattern between the parameters β and λ.

4. On the whole, the inclusion of the Newey-West (1987) weighting ma-
trix leads to more precise estimates of the parameter β in both re-
stricted and non-restricted SNJD models.

5. The Newey-West (1987) matrix provides the least biased and most pre-
cise estimates of the parameter a in both restricted and non-restricted
SNJD models. Moreover, these results are specially remarkable when
a = 0.6 and a = 1.00.

Finally, to provide some insights about the robustness of the estimates we
have obtained, Figure 2.7 displays the final values of the GMM estimate at
points of convergence under different specifications of the weighting matrix
used. The upper plot of this figure exhibits the objective function value of
the estimate JT on expression (2.2.2.3) as a function of a and σ, while the
lower plot graphs the function value depending on a and λ. Both plots are
related to the parameters for the SNJD model corresponding to the case
a = 1.00 in Table 2.7. We have chosen these variables as our intention is to
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Figure 2.6: Sample distribution of estimated a SNJD parameter for different
weighting matrices. Simulation values are µ = 0.02 × 10−2, σ = 1.26 × 10−2,
λ = 4.00 × 10−2, β = 10.00 × 10−2 and a = 0.60. The random variable U is
lognormally distributed with mean E[U ] = 0. Note that the axes OX are equally
scaled in all the graphs.
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understand, as much as possible, the behavior of the total variance involved
in the process38.

As Figure 2.7 reports, the majority of the observations are clustered on
the lower function values for both pairs of variables in both plots. This
may be intended as a sign of convergence of the numerical procedure used.
It is possible to observe as the Identity matrix produces some clusters of
observations in a function value area (around 0.05) bigger than the minimum
reached (almost zero).

Finally, we can see that the Newey-West (1987) estimate observations
tend to be grouped in a smaller region than the other estimates. This result
can be understood in terms of a) independence between pairs of parameters
and b) efficiency of the estimates employed.

Comments on the SNJD results

Similarly to the equally-named section on JD process, we proceed now to
analyze the results obtained for the SNJD process.

Basically, some questions arise from the results in Table 2.7: firstly, the
observed bias in the λ and σ results; secondly, the lost of efficiency in the
parameter λ when the Hansen (1982) and Newey-West (1987) weighting
matrices are introduced in the GMM estimates.

To provide some additional evidence regarding the bias question, Table
2.8 provides the different percentiles obtained for the SNJD estimates by
using the Newey-West (1987) weighting matrix. Our intention is to offer a
complete description of the behavior of the most suitable weighting matrix
estimate for these cases39.

The first column in this Table displays the parameter and its true value
(in parenthesis) while the second column shows the different values of the
parameter a we are considering in our analysis. Third and fourth columns
report the mean and root mean squared error (RMSE) values, respectively.
Finally, the percentile block displays these values for certain percentage
values.

Some results in Table 2.8 seem to corroborate those included in Table 2.7.
For example, the bias in the parameter σ is reduced when the coefficient a
increases. This result is also accompanied by a substantial increase in the λ

38We do not find substantial differences by using another argument for the function
value as, for instance, β. Anyway, the entire results used to build these and previous
graphs are available upon request.

39As mentioned through the paper, the Newey-West (1987) weighting matrix takes into
account the presence of serial correlation, as happens in these cases
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Figure 2.7: Function values of the GMM estimate at points of convergence for
different pairs of variables. Figure represents the results for a SNJD model estima-
tion under different specifications of the weighting matrix: Identity (blue colour),
Hansen (1982) (red colour) and Newey-West (1987) (green colour). Upper and
lower plots display the function values of the estimate JT on expression (2.2.2.3)
as a function of a, σ and a, λ, respectively. Simulated parameters are µ = 0.0002,
σ = 0.0126, λ = 0.0400, β = 0.1000 and a = 1.00. The jump size U is lognormally
distributed of the form U = e−β2/2+βε − 1, with ε ∼ N(0, 1) and mean E[U ] = 0.
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Table 2.8: Percentiles for the third stage GMM estimates of the SNJD
process

Parameter a Mean RMSE Percentile (×10−2)

(×10−2) (×10−2) (×10−2) 2.5% 5% 10% 50% 90% 95% 97.5%

µ 0.2 0.05 0.05 -0.03 -0.01 0.00 0.05 0.10 0.12 0.13
(0.02) 0.6 0.05 0.04 -0.03 -0.01 0.00 0.05 0.09 0.10 0.11

1.0 0.04 0.04 -0.03 -0.01 0.00 0.04 0.08 0.09 0.11

σ 0.2 1.72 0.49 1.36 1.43 1.50 1.72 1.95 2.03 2.08
(1.26) 0.6 1.55 0.32 1.29 1.34 1.40 1.55 1.71 1.76 1.81

1.0 1.37 0.18 1.04 1.12 1.18 1.38 1.53 1.58 1.62

λ 0.2 8.87 6.01 2.80 3.42 4.34 8.79 13.42 14.89 16.53
(4.00) 0.6 17.15 13.65 10.23 11.62 12.98 17.03 21.77 23.13 24.45

1.0 23.76 20.78 15.07 16.90 18.52 23.81 29.36 30.65 31.86

β 0.2 7.72 2.60 5.53 5.88 6.28 7.63 9.35 9.95 10.44
(10.00) 0.6 6.57 3.53 4.98 5.24 5.55 6.56 7.60 7.92 8.19

1.0 6.18 3.89 4.82 5.07 5.32 6.16 7.06 7.36 7.65

a 0.2 0.48 0.59 0.04 0.06 0.10 0.21 1.39 1.59 1.75
(right) 0.6 0.61 0.22 0.25 0.30 0.35 0.59 0.90 0.99 1.08

1.0 0.83 0.27 0.45 0.52 0.59 0.84 1.07 1.14 1.20

GMM estimates for the SNJD process using Newey-West (1987) as weighting matrix. We

assume a jump size U lognormally distributed of the form U = e−β2/2+βε−1, with ε ∼ N(0, 1).
The first column contains the parameters of the SNJD process (true simulation values in
parenthesis). Second to fourth columns show the a parameter case and the mean and root mean
squared error (RMSE) of the estimated parameters using the GMM methodology, respectively.
Finally, the columns five to the end exhibit the different percentiles from the sample distribution
of the estimates obtained.
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bias; roughly speaking, the whole distribution of the parameter λ is moved
to the right as a increases. It seems that the parameters σ and λ go in
opposite directions.

Regarding the parameter β, Table 2.8 shows that its bias increases with
the parameter a although this increase tends to be small. Finally, the disper-
sion of the parameters σ and β decreases with the parameter a; nevertheless,
an stable pattern for the parameter λ is not detected.

According to Table 2.8, the results about the parameter a do not differ
from those in Table 2.7: the most precise and unbiased estimate is obtained
for a = 0.6 and the smallest dispersion is achieved for a = 1.0. for a = 0.20,
the methodology seems to capture the value of this parameter (the median
is equal to 0.21), but a non-negligible amount of a estimates that are far
from the true value tends to corrupt the results40.

What about the correlation between estimates? Table 2.9 displays the
correlation matrices obtained for the estimates used in Table 2.8, where
the simulation parameters are µ = 0.0002, σ = 0.0126, λ = 0.0400 and
β = 0.1000. The results included in these correlation matrices correspond
to the cases a = 0.20, 0.60, 1.00.

The main features of the results included in this Table are the following:

• A negative correlation between the parameters σ and λ is observed in
the three cases.

• This negative pattern is also observed between the parameters λ and
β whose correlation coefficients are significant at the 95%-confidence
level although they decrease with a.

• The correlation between the parameters σ and β has not a constant
sign and, as previously, it also decreases with the value of a.

• Finally, an increase in the value of the parameter a implies a more
negative correlation with σ in direct contrast to the correlation with
λ that moves from negative (-0.2246) to positive (0.3455) values.

Just to provide a visual idea of former results, Figure 2.8 exhibits the
point clouds of different pairs of parameters. The graphs in Figure 2.8
correspond to the GMM results of the SNJD process using the Newey-West
(1987) weighting matrix.

As can be seen, the negative correlation between σ and λ and between λ
and β is clear as we can appreciate a negative slope in both cases. Regarding

40This fact seems to be confirmed by a mean value of a that is bigger than the median
one.
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Table 2.9: Correlation matrices for the different SNJD estimates

a = 0.20 µ σ λ β a

µ 1.0000
σ 0.0968 1.0000
λ -0.0112 -0.6748 1.0000
β -0.0832 0.6603 -0.6031 1.0000
a 0.0333 0.1993 -0.2246 0.1422 1.0000

a = 0.60 µ σ λ β a

µ 1.0000
σ 0.1426 1.0000
λ 0.0396 -0.3521 1.0000
β -0.1314 0.2185 -0.3255 1.0000
a 0.0034 -0.1643 0.2248 -0.0763 1.0000

a = 1.00 µ σ λ β a

µ 1.0000
σ 0.1438 1.0000
λ 0.0094 -0.3619 1.0000
β -0.0728 -0.0714 -0.2386 1.0000
a -0.0323 -0.4971 0.3476 -0.0474 1.0000

Correlation matrices of the GMM estimates for the SNJD process using Newey-
West (1987) as weighting matrix. The parameter vector is Λ = (µ, σ, λ, β, a)

′ ∈ R5,
and the simulation parameter values are µ = 0.0002, σ = 0.0126, λ = 0.0400 and
β = 0.1000. Results correspond to the cases a = 0.20, 0.60, 1.00. Parameters in
bold are not significant at a 95%-confidence level.
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the correlation between a and σ (λ), we can see a negative (positive) slope
although this pattern is not so clear as in the previous cases. Finally, it
seems that the correlation of a with any of these parameters presents a
higher dispersion than that in the remaining pairs.

Up to this point, it seems that there exists enough evidences about the
joint behavior of the parameters σ and λ in the sample under study. This
may reveal a similar effect to that previously cited in the JD process: a
volatility transference pattern appears to be detected from the Brownian
part of the process to its jump part. One possible explanation to this fact
can be that the higher the increase in the parameter a, the higher the total
variance of the SNJD process.

Then, in some sense, the GMM estimate tends to allocate the variance
to the jump part at cost of the Brownian component, an argument that
was found in the results for the first stage estimate in Table 2.7. Then, in
absence of an efficient weighting matrix, the GMM estimate tends to assign
the variance of the process to the jump part (the value of λ increases with
the parameter a).

This last result may seem paradoxical: as equation (2.2.3.3) reveals,
the total variance of a SNJD process does not depend on the parameter
a. However, it should be intuitive that a higher value of the parameter a
introduces more variance to the process41.

But remember that the moment expressions (2.2.3.2)-(2.2.3.5) have been
obtained by using numerical approximations42: the higher a, the worst re-
sults. Table 2.10 illustrates this effect: we are comparing the sample annual
volatility of the SNJD process simulated with its theoretical values for differ-
ent values of a. As this Table exhibits, the sample volatility tends to increase
with the parameter a. Additionally, the difference between estimated and
theoretical volatility increases with the parameter a.

It seems that the key point to understand this puzzle comes from different
sources: firstly, the numerical approximations done to derive the moments,
as previously deduced from Tables 2.3 and 2.4; secondly, the GMM itself.

41A possible explanation can be that a higher value of the parameter a leads to a higher
decay. In the extreme case of a huge value for a, our sample is mainly constituted by
Brownian data with infrequent, successive (and with opposite sign) jump observations
spread in. To put it another way, a SNJD sample histogram with a high value of a
(a = 1.0, for instance) will include many observations clustered around the mean of the
process and many infrequent observations far away this mean (almost the double than in a
JD process). For example, an upward jump will be followed by a downward response with
almost the same value. As a result, more anomalous data is introduced in the sample,
leading to an increase in the total variance of the process.

42See Chapter 1 for details.
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Figure 2.8: Points clouds for different GMM estimates of the SNJD process

Newey-West (1987) weighting matrix -third stage estimate-

0 0.005 0.01 0.015 0.02 0.025
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 0.005 0.01 0.015 0.02 0.025
0

0.5

1

1.5

σ̂ versus λ̂ σ̂ versus â
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Different point clouds for GMM estimates of SNJD process parameters. Graphs
correspond to the estimates obtained by using the Newey-West (1987) matrix as
weighting one in the GMM estimates (third stage estimate). Simulation parameters
are µ = 0.0002, σ = 0.0126, λ = 0.0400, β = 0.1000 and a = 0.60. The jump size U
is lognormally distributed of the form U = e−β2/2+βε − 1, with ε ∼ N(0, 1) and mean

E[U ] = 0. Finally, “σ̂ versus λ̂” refers to the parameter σ̂ on the axis OX and the

parameter λ̂ on the axis OY (and similarly in the remaining graphs).
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Table 2.10: Sample and theoretical standard deviation for SNJD process

Std deviation a
(%) 0.20 0.60 1.00

σtheo 45.44 49.55 52.37
σsample 38.63 41.10 43.08

Diff 6.81 8.45 9.29

Sample and theoretical annualized standard deviation for the SNJD process.
Daily variance has been computed as basis to yearly standard deviation. σtheo

has been computed by substituting the mean values of the GMM (third stage)
estimates of the SNJD process(see Table 2.7) in expression (2.2.3.3). σsample

has been computed from the mean daily variance of the SNJD sample used.
Simulation parameters are µ = 0.0002, σ = 0.0126, λ = 0.0400 and β = 0.1000.
The jump size U is lognormally distributed of the form U = e−β2/2+βε − 1,
with ε ∼ N(0, 1) and mean E[U ] = 0.

Regarding this second issue, we can mention the following potential sources
of problems:

• The choice of the moment conditions set (Zhou, 2001).

• The efficiency of the estimates under the joint estimation of data (Ait-
Sahalia, 2004).

• The weighting matrices (Zhou, 2001): it seems evident that the inclu-
sion of these matrices leads to re-allocate the total variance, but this
is not efficient, as deduced from Table 2.7.

2.6 Cross samples estimation

Once studied the ability of the GMM methodology to estimate the param-
eters of process in expression (2.2.3.1), it can be interesting to analyze the
case where the simulated sample differs from the model that we try to es-
timate. For example, imagine a sample generated by a SNJD model, what
will be the parameter values obtained if we estimate a JD model?

To answer this question, we have carried out two main experiments:
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1. We have simulated a SNJD sample and we have looked for the values
of a JD model.

2. We have proceeded in a inverse manner, generating a JD sample and
estimating the parameters of a SNJD model.

Our intention here is to understand the behavior of the estimate in two
alternative cases of what is commonly known as model error:

1. Misspecification of the theoretical model (SNJD sample - JD model
estimation).

2. Overparametrization of the theoretical model (JD sample - SNJD
model estimation).

The purpose of this section is to check the ability of the GMM estimate
to deal with samples that differ slightly from the model under estimation.
Although it is not directly tackled here, the question addressed here is con-
nected with the consequences, in terms of the estimation parameters, of a
myopic investor who firmly believes that the market follows a specific model
when actually it does not happen.

2.6.1 Results

As it was previously noticed, we have carried out two main experiments: in
first place, a JD model has been estimated from a simulated SNJD sample.
Secondly, a simulated JD sample has been used for estimating the param-
eters of a SNJD model. Table 2.11 presents the results obtained for those
experiments.

For both experiments, the first column in Table 2.11 displays the sample
statistics obtained. The remaining columns exhibit the results obtained for
different variables under study.We have used the efficient weighting matrix
in both experiments (the Newey-West (1987) matrix for the SNJD sample
and the Hansen (1982) weighting matrix for the JD samples). Again, as it is
becoming standard through the text, our experiments comprise simulations
of 3,000 paths with 1,800 data each one. Finally, the simulation true values
are displayed into parenthesis.

Before presenting the results obtained in both experiments, it can be
interesting to discuss, as much as possible, what we expect. In principle,
it seems to be plausible that the estimates of the different parameters will
not be far away from their simulation values. This closeness can be deduced
from equations (2.2.3.2)-(2.2.3.5), showing that JD and SNJD models have
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Table 2.11: Cross sample estimations

First experiment: JD model - SNJD sample

Parameters

Statistic
µ× 10−2

(0.02)

σ × 10−2

(1.26)
λ× 10−2

(4.00)
β × 10−2

(10.00)

a
(0.06)

Mean 0.04 1.24 7.45 8.03 –
Median 0.04 1.26 7.42 8.03 –

Min -0.11 0.38 5.45 3.63 –
Max 0.16 1.83 10.38 11.35 –
MSE 0.00 0.00 0.12 0.05 –

RMSE 0.04 0.17 3.49 2.17 –

Second experiment: SNJD model - JD sample

Parameters

Statistic
µ× 10−2

(0.02)

σ × 10−2

(1.26)
λ× 10−2

(4.00)
β × 10−2

(10.00)

a
(0.06)

Mean 0.03 1.79 3.93 7.24 0.34
Median 0.03 1.78 3.39 8.16 0.04

Min -0.09 1.18 0.00 0.00 -1.00
Max 0.17 2.37 14.69 16.86 1.00
MSE 0.00 0.00 0.09 0.19 0.30

RMSE 0.04 0.55 3.02 4.39 0.54

GMM estimations for the JD and SNJD models under SNJD and JD samples, respectively.
The first and second experiments have been carried out by using the Newey-West (1987)
and the Hansen (1982) efficient weighting matrices, respectively. True simulation values
are in parenthesis. This Table shows mean, median, minimum, maximum, mean squared
error (MSE) and root mean squared error (RMSE). The response function for the SNJD
model is h(t− τk) = e−a(t−τk). We have assumed a jump size U lognormally distributed

of the form U = e−β2/2+βε − 1, with ε ∼ N(0, 1) with mean E[U ] = 0.
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similar central moments for a certain range of a values43. The further away
from these approximations we are, the worse results we will have.

Results from Table 2.11 seem to confirm our guess. Focusing on the first
experiment, we observe that the estimates obtained for a JD process under
presence of serial correlation44 are close to the true SNJD simulation values.
Looking at the mean and median values obtained, the sample distributions
for all the variables seem to be symmetrical45. On the whole, the results ob-
tained here apparently confirm our previous expectations: within the range
of values for which the numerical approximations work, the results are not
extremely different. We will come back to this point in the next subsection.

Concerning the second experiment in Table 2.11, the results go in the
same direction that those obtained for cases of low serial dependence (for
instance, a = 0.2) in Table 2.7. For instance, we observe an asymmet-
ric distribution for the sample estimates, confirmed by the huge differences
among median and min-max values. Additionally, high values of σ are also
detected. In general, we are inclined to think that in the cases of low (or
null) autocorrelation in the sample, the estimate is not capable of distin-
guishing between extremely low (a = 0.00) or high (a = 10.00) values of
the parameter a. This circumstance may be explained by the order of the
a parameter involved in: we have defined some moment equations based on
a certain range of values for the parameter a, and a = 0.00, 10.00 could be
considered outside that interval.

2.6.2 Additional issues on the JD process estimation in sam-
ples with autocorrelation

Once examined the results in Table 2.11, it can be interesting to analyze how
the serial dependence in the sample affects the estimation of a JD model.
The conditions to develop such an experiment are optimal because we have
a model (the SNJD one) that permits us to control the degree of persistence
in returns. To our knowledge, this question has not yet been addressed in
the financial literature.

Table 2.12 shows the results of the estimation for a JD process using
a SNJD simulated sample. Basically, this table is an extension to more

43Chapter 1 shows that the first moments of JD and SNJD models are equal under a
set of numerical approximations. See Section 5 on Chapter 1 for a complete discussion
about this point

44A value of the parameter a equal to 0.6 implies that first and second lags autocorre-
lation values are, on average, significant.

45This is not the case for the σ value, that presents a slightly asymmetrical sample
distribution
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cases of the first experiment in Table 2.11. Again, we have used the Newey-
West (1987) estimate in all our estimations, due to the presence of serial
correlation in data. The simulated sample comprises 3,000 paths of 1,800
data each one.

The first column in Table 2.12 displays the different variables under
study and their simulated values in parenthesis. The second column shows
the different values for the parameter a. Third and fourth columns exhibit
the mean and root mean squared error (RMSE) obtained. Finally, columns
fifth to eleventh show different percentiles from the estimates distribution.

Some conclusions arise from inspection of Table 2.12. Firstly, it seems
that the estimate distributions are symmetrical, as it is deduced from the
mean and median values and the distance between the pairs of percentiles 10-
90%, 5-95% and 2.5-97.5% with respect to their median value. Secondly, it
is observed a general displacement to the right of the estimates distributions
as the parameter a increases46. This general tendency does not appear to
apply to the first percentiles of the parameter σ when a = 10.00.

In line with this last feature, a possible explanation to our results could
be that as a increases, the total variance in the sample also increases47. From
our point of view, the JD estimates tend to capture this excess of variance
by increasing the parameters associated to the JD variance, as those of the
volatility of the Brownian process σ, and the number of jumps λ and their
amplitudes β.

2.7 Conclusions

This chapter has analyzed the estimation in the time domain of the SNJD
model. We have used an standard methodology, the GMM procedure posited
by Hansen (1982), to estimate the parameters of a SNJD process. To our
knowledge, this is the first study that tackles the estimation of a SNJD
model by using the GMM estimate.

We have followed a sequentially procedure to estimate the SNJD model,
from simplest to more complicated cases. In a first stage, we have checked
the performance of the GMM methodology by using samples not perturbed
by Brownian noise; secondly, we have carried out an estimation of the JD

46The parameter µ is an exception, but it will not be analyzed here. This is mainly due
to our interest through this chapter on the terms that affect the total variance of the JD
or SNJD processes.

47Unfortunately, this increment in the total variance in the SNJD sample is not de-
tected by our equations (see expression (2.2.3.3) on this chapter) because of the numerical
approximations involved in.



102 CHAPTER 2. ESTIMATION IN TIME DOMAIN

Table 2.12: Percentiles for cross sample estimations

Parameter a Mean RMSE Percentile (×10−2)

(×10−2) (×10−2) (×10−2) 2.5% 5% 10% 50% 90% 95% 97.5%

µ 0.2 0.04 0.05 -0.04 -0.03 -0.01 0.04 0.10 0.11 0.12
(0.02) 0.6 0.04 0.04 -0.03 -0.02 -0.01 0.04 0.09 0.11 0.12

1.0 0.04 0.04 -0.03 -0.02 0.00 0.04 0.09 0.10 0.12
10.0 0.04 0.04 -0.02 -0.01 0.00 0.04 0.08 0.09 0.10

σ 0.2 1.05 0.30 0.54 0.67 0.79 1.08 1.26 1.31 1.36
(1.26) 0.6 1.24 0.17 0.84 0.93 1.03 1.26 1.43 1.47 1.51

1.0 1.32 0.19 0.89 1.00 1.10 1.35 1.50 1.55 1.58
10.0 1.30 0.24 0.72 0.85 1.01 1.35 1.54 1.59 1.61

λ 0.2 6.88 2.91 6.06 6.20 6.38 6.90 7.36 7.49 7.61
(4.00) 0.6 7.45 3.49 6.50 6.67 6.87 7.42 8.10 8.28 8.52

1.0 7.89 3.94 6.74 6.96 7.16 7.82 8.74 9.08 9.40
10.0 8.48 4.55 7.10 7.32 7.53 8.39 9.54 9.95 10.23

β 0.2 8.06 2.18 6.17 6.49 6.83 8.05 9.30 9.63 9.96
(10.00) 0.6 8.03 2.17 6.32 6.55 6.87 8.03 9.16 9.51 9.80

1.0 8.20 2.03 6.52 6.79 7.02 8.18 9.40 9.74 10.10
10.0 9.38 1.10 7.68 7.94 8.26 9.33 10.57 10.92 11.25

Percentiles for GMM estimations for a JD model under SNJD sample. All the estimations
have been carried out by using the Newey-West (1987) weighting matrix. The first col-
umn displays the variables under study and their true simulation values (in parenthesis).
Additionally, this table contains four blocks of parameters, each one containing four rows.
For the different a cases, each row displays the sample statistics (mean, root mean squared
error and percentiles) obtained. Finally, the response function used in the SNJD model is
h(t− τk) = e−a(t−τk). We have assumed a jump size U lognormally distributed of the form

U = e−β2/2+βε − 1, with ε ∼ N(0, 1) with mean E[U ] = 0.
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processes with the purpose of being familiar with the GMM results for this
type of processes; finally, some results about the SNJD estimation are pro-
vided. In addition to this issue, the last section of this chapter has been de-
voted to analyze possible problems of misspecification and overparametriza-
tion in the JD and SNJD models under SNJD and JD simulated samples,
respectively.

As an overall conclusion, the results obtained in this chapter seem to
suggest that the GMM methodology is capable of estimating the parameters
of a SNJD model. However, this performance of the GMM technique must
be taken carefully, because of the following reasons:

• An observed bias is detected in the parameters associated with the
total variance of the process.

• The numerical approximations involved in the different moment ex-
pressions appear to affect dramatically the results.

• Apparently, the inclusion of more efficient weighting matrices in the
SNJD estimation does not improve substantially the quality of the
estimates obtained.

• Unfortunately, with the intention of focusing on a controllable set of
experiments, we have not extended our study to changes in other pa-
rameters of the SNJD model than the a parameter.

As a final remark, it can be worthy to remark that the GMM methodology
is a numerically stable procedure in all the computations carried out.
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Chapter 3

Estimation of the SNJD
process in the Frequency
Domain

This chapter1 is devoted to the estimation of the SNJD process in the fre-
quency domain. We introduce the basic theory of Spectral Analysis, provid-
ing some useful tools for carrying out the estimation using this technique.
Finally, an intensive Monte Carlo study is provided to explore the capability
of the posited procedure to estimate the parameters of the SNJD model.

3.1 Introduction

The basic question that addresses this chapter is the estimation of the SNJD
process in the frequency domain. In more detail, we are interested in the
kind of solutions that could provide to our estimations a commonly used
methodology among econometricians: the estimation in the frequency do-
main, also named Spectral Analysis.

1We want to thank Jose M. Vidal and Alfonso Novales for their helpful comments. I
also acknowledges financial support from the Plan Nacional de I+D+I (project BEC2003-
02084) and project GIU 06/53 of the University of the Basque Country and Basque Gov-
ernment, and especially to Jose M. Usategui. A previous draft of this chapter have been
presented under the name “Estimation of Jump-Diffusion Processes with Shot-Noise Ef-
fects” in the XIV Foro de Finanzas AEFIN. I have also benefited from the comments of
participants in seminars at Universidad Complutense de Madrid, Universitat de les Illes
Balears and Universidad Carlos III de Madrid. Finally, part of this chapter was developed
while I was visiting the Department of Business Administration at Universidad Carlos III.
I am sincerely grateful to them.
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Intuitively, it is clear that a stochastic process can be understood as a
sequence of innovations over the time (Hamilton, 1994). Many economic
variables are provided as series of events happening in some equally spaced
time intervals. For example, the Growth Domestic Product (GDP) or the
Consumer Price Index (CPI) are reported with quarterly or monthly fre-
quencies, respectively. In Finance, it is common to show the evolution of
a stock index as the time series path of daily or weekly closing prices. We
name as time domain this kind of approach where the economic variables
are displayed as a sequence of data through time.

An alternative way of thinking about the time series is provided by the
Spectral Analysis or analysis in the frequency domain. Roughly speaking,
the idea consists on decomposing a time series extracting their repeated
(“common”) components and, next, ordering these components in a certain
manner. As we will see, these periodic elements will be grouped attending to
the information content within a particular time span, it is said, attending to
their frequencies. Providing some insights that will be detailed later, these
cycles can be interpreted as the contribution of each cyclical component to
the total variance of the process.

Actually, former idea of understanding the behavior of a time series in
this way is not new. In Economics, we are used to hear many expressions
related to the “business cycle” or the “procyclicality” of some activities
or goods. The Spectral Analysis provides useful tools for adopting this
particular scheme.

Regarding the financial area, we can wonder about the interest of this
methodology. Basically, two main questions arise:

1. Firstly, we can question about what is the gain of using this approach,
especially when compared with the existing (and developed) econo-
metric theory in the time domain.

2. Moreover, to a certain degree, the tools of time domain analysis are
usually employed in the financial econometrics of continuous-time pro-
cesses. So, can we learn something with the Spectral Analysis that we
have not yet known?

Concerning to the former question, this is a point that we will try to answer
during this chapter. With respect to the second one, we think that some
interesting questions on the empirics have not been completely solved in the
previous chapter, and the analysis in the frequency domain could result in
a interesting answer.
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This chapter analyzes the SNJD model using a Spectral Analysis method-
ology. From a theoretical point of view, we propose an econometric frame-
work based on the frequency analysis to estimate the SNJD processes, by
taking profit of their ability to exhibit serial dependence. Additionally, from
an empirical point of view, we provide some results about the performance
of this technique by means of a extensive Monte Carlo study.

The literature on the Spectral Analysis procedure is quite large. For
example, Hamilton (1994) provides an useful and extensive introduction to
the spectral theory while more details can be found in some reference text-
books as those of Hannan (1970) or Priestley (1981), which also contains
several references about the estimation in the frequency domain. By con-
trast, the literature about estimation of shot noise processes is not so large
and, basically, our work is inspired in the results of Bevan et al (1979).

The structure of this chapter is as follows. Section 2 introduces the
econometric framework and provides some of the intuitions behind this
framework. Section 3 performs an intensive Monte-Carlo study. Some com-
ments and results are included in Section 4. Finally, Section 5 summarizes
the main conclusions and suggests some lines for further research.

3.2 Econometric Framework

This section describes the econometric framework proposed. Firstly, we
provide some additional intuitions about the spectrum without any special
mathematical formulation, with the purpose of fixing some ideas. Then, we
define the estimate and some necessary mathematical tools employed2.

3.2.1 The intuition behind

As it was previously cited, the frequency domain methodology tackles the
problem of the estimation of an stochastic process from another point of
view. Here, the idea consists on analyzing the contributions of the cyclical
components of the series: by means of using certain mathematical transfor-
mations, we will be able to extract from a certain time series those patterns
that are repeated in a periodical way. To put it another words, we will dis-
play in an ordered form the contributions of the repeated information that
appears over time. Mainly, this information is presented using a useful tool
in Spectral Analysis named sample spectrum.

2This section is mainly based on Hamilton (1994) and Hannan (1970). The idea about
the estimate employed here is taken from Bevan et al (1979).
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With the purpose of clarifying former ideas, Figure 3.1 displays the
time and frequency domain representation of an economic variable, the ad-
justed Consumer Price Index (CPI) for Spain3. The sample is composed by
monthly observations from 01/01/1997 to 01/08/2007. The time series path
for the level of the CPI is displayed in the upper graph in Figure 3.1. Addi-
tionally, the sample spectrum4 of log-increments of CPI series is represented
in the lower graph.

The lecture of the CPI series through time is usual in Economics: Fig-
ure 3.1 shows that CPI increases (upper figure) over time and that, from
observation 60 to the end, the CPI path seems to exhibit a waved effect,
with successive up-down movements, keeping the upward trend.

On the other hand, the lower graph displays the sample spectrum. The
goal here is to determine how important cycles are in accounting for the
behavior of the series (Hamilton, 1994). In other words, we are interested
in looking at the contributions of the different cyclical components of the
series.

To analyze the data, we have decomposed the total sample T of data
on small pieces of different lengths; basically, we have ordered the data
in periodical parts named frequencies, denoted by wj , of size 2πj/T , with
j = 1, 2, ..., (T − 1)/2. The lower frequency we have, the higher the time
span is: for example, frequencies closer to zero correspond to the information
contained in yearly, quarterly observations, and so on.

The axis OX represents this ordered set of frequencies. Finally, the axis
OY of the sample spectrum plot in this figure just establishes the degree
of importance of each frequency to the total part of the spectrum. More
specifically, the interpretation is as follows: the higher the area under the
graph around a certain frequency, the higher portion of the global variance
of the process is explained by that frequency.

To illustrate former ideas, we will come back to the sample spectrum
graph in Figure 3.1. For example, looking at this figure it is observed how
the first peak happens around the value j = 12 and is also followed by the
maximum peak in the figure, that happens around j = 21. This last would
say that something is happening at j = 21 case that partially explains the
variability of the series. As w = 2πj/T , the period corresponds to T/j. The
sample includes monthly data with length T = 128, so it corresponds to
a period of 128/21 ≃ 6.09 months. One possible explanation to our result

3For the sake of the exposition, we have chosen a macro variable. The data has been
taken from the Instituto Nacional de Estad́ıstica (INE), the national bureau of statistical
services for Spain. Web page http://www.ine.es.

4Details about the sample spectrum estimate will be provided later.
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Figure 3.1: Time series path and spectrum for Consumer Price Index (CPI) of
Spain. Upper graph displays the evolution over time of the CPI in Spain for the
period 01/01/1997 to 01/08/2007. Lower graph exhibits the sample spectrum for
CPI log-increments.
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Figure 3.2: Sample and theoretical spectrum for a SNJD process. The sample
spectrum has been obtained using a non-parametric estimate posited in Hamilton
(1994) with bandwidth parameter fixed to h = 100. The SNJD model response
function is h(t−τk) = e−a(t−τk) with the random variable U lognormally distributed

as U = e−β2/2+βε − 1, ε ∼ N(0, 1) and mean E[U ] = 0. Simulated (annualized)
parameters are σ = 0.05, λ = 10, β = 0.10 and a = 0.60.

seems to be that a big part of the total variation of the CPI for the Spanish
case could be explained in the semi-annual periods5.

As it has been presented, the spectrum could provide us an additional
source of information of what is happening within the dynamics of the pro-
cess. Concerning to the SNJD model (and, more specifically, to their ex-
ponential decay response version), the type of related spectrum is similar
to that displayed in Figure 3.2, where the spectrum is clustered on higher
frequencies. This may reflect that contribution of short range effects to the
global variance of the process must be taken into account when analyzing
the behavior of the process.

3.2.2 The procedure

The spectral analysis describes the value of a stochastic process as a weighted
sum of periodical functions6. These functions are of the sine- or cosine-type
(denoted as sin (wt) and cos (wt), respectively) where w denotes a particular

5For the Spanish case, this issue coincides with the sales periods in January and July
and, then, with semi-annual periodicity.

6Mathematically, the spectral analysis can be considered as a change of basis from a
canonical space to the Fourier one.
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frequency, defined as wj = 2πj/T, j = 1, 2, ..., (T − 1)/2 (see Hamilton
(1994) for details).

In short, the approach used here involves the following steps:

1. The autocovariance function of the process is computed.

2. The Fourier transform of the autocovariance function must be calcu-
lated to obtain the population spectrum.

3. Then, an estimate of the population spectrum must be introduced.

4. Finally, the population spectrum and its sample counterpart must be
related by any kind of estimate.

Concerning to the first and second points, let Θ ⊂ Rn be a n-parameter
vector of the model. Given the process Z(t), we define the τ-autocovariance
of the process Z (t) as

c (τ ; Θ) = Cov (Z (t) , Z (t+ τ)) = E[Z (t)Z (t+ τ)],

Then, the population spectrum is given by the Fourier transform of the
autocovariance function c (τ ; Θ)

s (w; Θ) =
1

2π

∫ +∞

−∞

e−iwτc (τ ; Θ) dτ

Focusing on the third and fourth points aforementioned, our estimated
parameters will be obtained by two different ways: firstly, our strategy will
be to minimize the (squared) distance between the population spectrum and
a kind of non-parametric spectrum estimate for all frequencies; this will be
our naive estimate. Secondly, we will use the Whittle (1953) estimate as an
alternative to the former non-parametric estimate.

3.2.3 The estimates

We detail now the two estimates (naive and Whittle) used, explaining their
main features and providing also additional references about them.

The naive estimate

As its name denotes, the naive estimate is simple: basically, it consists on
minimizing the population spectrum s (wi; Θ) with any class of estimated
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spectrum7, ŝZ (wi), over a set of n frequencies w = {w1, w2, · · · , wn} for a
certain parameter vector Θ,

min
θ
ϕ = min

θ

n∑

j=1

[ ŝZ (wj) − s (wj ; Θ) ]2 (3.3.2.1)

This approach is inspired on Bevan et al (1979). However, our estimate
differs on that from Bevan et al (1979) in

1. The minimization problem, since they minimize the logarithm of the
spectra, instead of the spectra directly, and

2. The class of the population spectrum estimate employed.

Concerning to the minimization problem, Bevan et al (1979) point out
(among other reasons) that applying logarithms to the spectra is a pro-
cedure to stabilize their variance. However, we encountered some numerical
problems due to the negative sign of the theoretical population spectrum
for a given set of parameters. This situation led us to modify the form of
the naive estimate.

Regarding the class of the population spectrum estimate used here, we
should introduce a previous estimate (the periodogram) to distinguish be-
tween our procedure and that of Bevan et al (1979).

The periodogram, denoted by ŝz (wj), is the simplest version of the pop-
ulation spectrum estimate. It is computed for any frequency wj as

ŝz (wj) =
1

2πT






[
T∑

t=1

yt cos [wj (t− 1)]

]2

+

[
T∑

t=1

yt sin [wj (t− 1)]

]2





where

• wj = 2πj
T , j = 1, 2, · · · , T−1

2 are the defined frequencies.

• {y1, y2, ..., yT } is the set of observations and

• T denotes the sample size.

It is well known (Hamilton, 1994) that the sample periodogram ŝz (w) is
an asymptotically unbiased estimate of the population spectrum, s (w; Θ).
However, the variance of the sample periodogram does not decrease as the

7In a form that will be defined in the next paragraph.
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sample size increases. As a result, the periodogram is not a consistent
estimate8. To obtain consistency, it is common to average the periodograms
in a set of neighbourhood frequencies around w (Priestley, 1981). As shown
in Bevan et al (1979), the periodogram is approximately distributed as a
chi-square variable with 2 degrees of freedom; if periodograms of sucessive
frequencies are averaged, the asymptotic distribution of estimates ϕ are
approximately independent gamma variables (Bevan et al, 1979).

Mainly, our study differs from Bevan et al (1979) in the class of the pop-
ulation spectrum estimate employed. To compute the population spectrum,
these authors average the periodograms estimated using the Fast Fourier
Transform (FFT) algorithm over a set of different time series intervals.

Alternatively, we use a non-parametric estimate specified in Hamilton
(1994), which represents a weighted average of frequencies around any fixed
frequency wj,

ŝZ (wj) =

h∑

m=−h

[
h+ 1 − |m|

(h+ 1)2

]
ŝz (wj+m) (3.3.2.2)

The value h is a bandwidth parameter, which indicates the number of fre-
quencies that are taken for estimating ŝZ .

To illustrate the behavior of our non-parametric estimate, Figure 3.3
plots the different representations of the population spectrum estimate under
different degrees of smoothness, just by changing the bandwidth parameter
h. Figure 3.3 exhibits the population spectrum estimate for h = 0, 50, 100
and 200. The case h = 0 is equivalent to the spectrum obtained by the
sample periodogram ŝz (wi).

As Figure 3.3 reveals, the higher the parameter h, the smoother the
spectrum. For example, some waves presented on the cases h = 50, 100
around frequencies 400 and 600 become regular when h = 200, as a direct
consequence of the increase in the number of neighbourhood frequencies
averaged. Finally, the graph for h = 0 displays the irregular shape for any
frequency of the spectrum obtained by using the sample periodogram as an
estimate of the population spectrum.

Coming back to the discussion of the population spectrum estimate cho-
sen in this chapter, Priestley (1981, p. 582) points out the equivalence
between the two alternatives of population spectrum estimates, that is, the
averaged FFT of Bevan et al (1979) and our non-parametric estimate. Re-
garding our case, the election of the non-parametric estimate has been de-
termined by two main reasons:

8A more detailed discussion about this point can be found in Priestey (1981), p. 432.
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Figure 3.3: Sensitivity of the sample spectrum to the bandwidth parameter h.
This figure displays different spectra obtained for h = 0, 50, 100, 200. Simulation
(annualized) parameters are µ = 0.05, σ = 0.20, λ = 10.00, β = 0.10 and a = 0.60
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1. It is more intuitive to select the level of smoothness of the population
spectrum estimate, just taking different sets of frequencies around w.

2. This new approach provides no substantial computing cost.

Taking into account the nature of our estimate due to the arbitrary
selection of the bandwidth parameter, some objections could be made to
the distribution of the estimates. In prevision to this, some care has been
taken when computing the distribution of the estimates. Thus, to deal with
possible problems related to the finite sample distribution, we have simulated
numerically this distribution. This is a standard problem that involves the
following steps:

1. We simulate N different paths of the posited model with a certain
parameter vector Θ0 -true values-

2. We obtain a vector of estimates Θ̂i of the posited model for each i-path

3. Then, we build the histograms of the variables in the vector Θ̂i by
using the N estimated values obtained for each variable.

4. With the empirical distribution of estimates at hand it is possible to
compute the desired confidence intervals.

A detailed analysis of the distribution of the estimates we have obtained
will be provided in the Monte Carlo study section.

The Whittle estimate (1953)

The Whittle estimate9 (1953) is based on minimizing the function

Lw(Θ) =
1

2π

∫ ∞

−∞

{
ln f(w; Θ) +

ŝz (w)

f(w; Θ)

}
dw (3.3.2.3)

where w denotes the set of frequencies, f(w; Θ) is the (theoretical) popula-
tion spectrum and ŝz (w) is the periodogram previously defined.

Generally speaking, the Whittle estimates Θ̂ are consistent, efficient and
follow asymptotically a normal distribution. Moreover, it can be shown that
minimizing Lw is an alternative to maximum likelihood, as it was pointed
out by Robinson and Vidal (2005).

9This estimate was suggested by J. Vidal Sanz. We are very grateful to him.
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Instead of using the estimate in (3.3.2.3), we will use a discrete estimation
procedure inspired on Casas and Gao (2004) or Robinson and Vidal (2005).
Basically, it consists on considering an approximation of the integral Lw of
the form

Lw(Θ) =
1

2π

(T−1)/2∑

j=1

{
ln f(wj; Θ) +

ŝz (wj)

f(wj; Θ)

}
(3.3.2.4)

with

wj =
2πj

T
, j = 1, 2, · · · , T − 1

2

where T denotes the sample size.
Again, some objections could be done due to the discrete nature of the

estimate (3.3.2.4). To avoid this kind of problems, we will proceed similarly
to the previous section, where we have simulated numerically the distribu-
tion of the estimates10. At the same time, this will be a form of checking
the distributional behavior of the estimate on a finite sample experiment11.

Taking into account all the previous considerations, our estimation prob-
lem results on the following optimization expression

min
Θ
Lw(Θ) = min

Θ

(T−1)/2∑

j=1

{
ln f(wj; Θ) +

ŝz (wi)

f(wj; Θ)

}
(3.3.2.5)

To the best of our knowledge, the literature about estimation of con-
tinuous time processes using the Whittle estimate is scarce. As far as we
know, just two papers have dealt with this issue: Gao (2004), which consid-
ers an estimation procedure based on the Whittle estimate for long-range
dependent Gaussian processes, and Casas and Gao (2004), which could be
considered as an application of the former article to real data.

3.2.4 The population spectrum of the SNJD model

We recall here some details of the SNJD model under study. As it was previ-
ously developed in Chapter 1, we are interested on estimate the parameters
of the SNJD model with exponential decaying function of the form,

St = S0 exp

[(
µ− σ2

2

)
t+ σBt

] Nt∏

j=1

[
1 + Uje

−a(t−τj)
]

(3.3.2.6)

10For the sake of brevity, we address the reader to the previous subsection for a detailed
exposition of this point.

11To the best of our knowledge, this issue has not yet been reported in the literature.
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where

• Sj denotes the asset price at time j.

• µ, σ are constants.

• {Bt}t is a standard Brownian motion.

• {Nt}t≥0 is a Poisson process with intensity λ.

• {Uj}j is a sequence of i.i.d. jumps.

• τj is the instant in which the j-th jump appears.

The population spectrum of the SNJD model was also computed in
Chapter 1 and takes the following form

sZ (w) =
1

2π

(
σ2 + λE[U2] + λ(e−a∆t − 1)E

[
U2
] 2a

a2 + w2

)
∆t (3.3.2.7)

As it is deduced from last expression, the SNJD spectrum depends on
the set of frequencies chosen. To get a visual idea of what equation (3.3.2.7)
represents, Figure 3.4 displays the spectra (blue line) obtained for simula-
tions12 of the SNJD model with different values of the parameter a. The
bandwidth parameter has been fixed to h = 100 for all cases.

As it is exhibited in Figure 3.4, the higher the parameter a, the bigger
the spectrum on higher frequencies is. This fact seem to be confirmed by
the slope of the curve, which increases with a.It is worth to mention the flat
spectrum obtained for the case a = 0.00, which corresponds to the spectrum
of a JD process.

Another interesting consequence of expression (3.3.2.7) is that the spec-
trum of the SNJD process for “large enough” frequencies (w → ∞) converges
to

sZ (w) =
1

2π

(
σ2 + λE[U2]

)
∆t (3.3.2.8)

that is, the spectrum of the JD model. This result suggests that the SNJD
model behaves similarly to a JD model in small time spans13. However, the
main contribution to the SNJD spectrum is done at lower frequencies, that
is, by observations related to long-time horizons.

12All the simulations have been carried out with the same seed, just modifying the
decaying parameter.

13This could explain the similar expressions we have obtained for the centered moments
of the JD and SNJD process for small ∆t.
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Figure 3.4: Sample spectra, for different values of the parameter a, of a SNJD
model with exponential decaying function. We consider the case h = 100. The
response function of the restricted SNJD model is h(t − τk) = e−a(t−τk) and the
random variable U is lognormally distributed with mean E[U ] = 0. Simulation
parameters are µ = 0.0005, σ = 0.0126, λ = 0.0400 and β = 0.10.
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This result might be consistent with many empirical findings of the lit-
erature, as the presence of long-memory in asset returns cited by Lo (1991).
Anyway, this affirmation must be taken carefully, in the sense that the prob-
lem of identifying long (or short) memory components in the financial series
is not obvious, and it calls for a deep study, a matter that is beyond the
scope of this dissertation.

Finally, the parameter vector for log-returns in expression (3.3.2.7) re-
sults Θ = (σ, λ, β, a)′ ∈ R4, where

• σ is the volatility of the Brownian motion.

• λ is the intensity of the Poisson process, measuring the probability of
appearance of an extreme event.

• β is related to the mean and variance of the jump size (its amplitude).

• The parameter a refers to the speed of the decaying effect after a jump
event.

It is worth to note that the parameter µ does not appear in the parameter
vector Θ. This is because the mean of the observations has been subtracted
from the observations, a common practice in Spectral Analysis.

3.2.5 A note on the spectral estimation of diffusion processes

Since the spectral analysis has not been extensively employed in finan-
cial econometrics, it could be convenient to spend a few lines discussing
the approach that will be adopted here. Mainly, we address the question
about what could be the gain by using the Spectral Analysis approach in
continuous-time finance.

Basically, the analysis in the frequency domain consists on a transforma-
tion of the autocovariance function of the stochastic process that provides
us an alternative way of capturing the dynamics of the process. To a certain
degree, the richer structure of autocovariance, the more useful this tech-
nique.

As it was pointed out by Lo (1991) in a context of long-term memory,
we are inclined to believe that most of the current models employed in
finance are not consistent with the serial dependence evidences suggested in
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some financial series14, which seems to support the idea of getting rid of the
frequency domain tools.

To put it another way, a wide range of current continuous-time models
does not impose enough structure on cross moments to capture the empirical
features. This situation does not incite to adopt the spectral analysis ap-
proach, which reveals potentially usefulness when dealing with the dynamics
of the process.

On the other hand, the spectral analysis does not overcome the difficul-
ties on solving some standard problems in continuous-time finance as the
estimation of JD processes15. Traditionally, the maximum likelihood es-
timation of JD processes has revealed inconsistent (Honoré, 1998) due to
problems with the boundaries of the likelihood function16. This problem is
not solved by the spectral analysis, as equation (3.3.2.8) reveals: assuming
that the terms σ, λ and β are constants, the spectrum of a JD process is
also constant independently of the frequency chosen. Indeed, we are facing
an indetermination problem since an infinite set of parameter values lead to
a solution of expression (3.3.2.8).

To the best of our knowledge, just some recent papers have pointed
out the estimation of continuous-time processes with spectral tools with the
ability of generating serial dependence. For example, this is the case of
the fractional Brownian motion (fBm)17, a generalization of the standard
Brownian motion that is able to introduce autocovariance in the increments
of the process. Gao (2004) and Casas and Gao (2004) consider two versions

14See, for instance, Benito et al (2007) for evidences of autocorrelation in daily changes
in EONIA rates; Campbell et al (1997) find statistically significant correlation coefficients
for the few first lags of Value and Equal Weighted stock Indexes of the Center for Re-
search of Security Prices (CRSP), respectively, at different sampling frequencies. Finally,
Singleton (2006) provides an interesting discussion about the testing of serial correlation
in asset returns

15This point was generously noticed by E. Sentana. We are grateful to him for this
comment.

16Currently, the estimation of JD processes could be tackled by different techniques, as
GMM (Das and Sundaram, 1999), spectral GMM (Chacko and Viceira, 2003) or Efficient
Moment Methods (Andersen et al, 2002). A more extensive discussion about this point
can be found in Chapter 2.

17The fractional Brownian motion BH(t), with t ∈ [0, T ] is a Gaussian, continuous-time
process with zero mean and covariance function equal to

E[BH(t),BH(s)] =
1

2
(|t|2H + |s|2H − |t − s|2H )

where the real number H ∈ [0, 1] is called the Hurst index. For H = 1/2, the process
is an standard Brownian motion. The cases H > 1/2 and H < 1/2 generate positive or
negative serial dependence, respectively.
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(discrete and continuous, respectively) of a spectral estimate, the Whittle
estimate, for capturing the parameters of a fBm18.

On the other hand, the continuous-time autorregressive moving average
(CARMA) model seems to be also an alternative to generate serial persis-
tence, but its treatment is beyond the scope of this dissertation.

3.3 Some details on the estimation procedure

Similarly to Chapter 2, we detail here some aspects about the estimation
procedure employed. Basically, we refer some characteristics of the model
employed and the optimization routine.

All the experiments are developed for the SNJD model (see (3.3.2.6))
with lognormally distributed jump sizes U = e−β2/2+βǫ − 1, ε ∼ N (0, 1).
Some remarks also mentioned in previous Chapters 1 and 2: the assump-
tion of a lognormal distribution for the jump sizes is common in the jump-
diffusion literature (see, for instance, Merton (1976)). To decrease the num-
ber of parameters under estimation, we impose E [U ] = 0, another common
assumption. As usual through this dissertation, the response function con-
sidered is h (t) = e−at, which nests the Merton (1976) model19. To the best
of our knowledge, the functional form of h (t) has not been reported yet
in the financial literature. Then, for analytical and intuition purposes, we
assume an exponential decreasing form for this function.

For simplicity and without loss of generality, the estimation of the param-
eter µ in the model (3.3.2.6) has been omitted. As a standard procedure in
spectral analysis, the parameter vector results Λ = (σ, λ, β, a)′ ∈ R4, where
σ is the volatility of the Brownian motion, λ is the intensity of the Poisson
process, β is related to the mean and variance of the jump size, and the
parameter a refers to the speed of the decaying effect after a jump event.

3.4 Monte Carlo study for the naive estimate

This section analyzes the capacity of the naive estimate proposed previously
to estimate the parameters of the SNJD process. To check the estimation
procedure, we implement some Monte Carlo experiments: firstly, we study
the estimation methodology considering different values for the smoothness
parameter of the nonparametric spectrum estimate, with the aim of selecting

18For a more detailed treatment of fBm we address the reader to Gao and Casas (2004)
and references therein.

19The parameter a is zero in Merton (1976).
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a suitable value of the bandwidth parameter h. Once fixed the h value for
the subsequent experiments, we reproduce the experiment for the classical
Shot Noise and restricted SNJD process, similarly to that carried out on
Chapter 2. Finally, we extend the Monte Carlo study for the naive estimate
to different values of the SNJD process itself.

This section is partially based on Bevan et al (1979). We refer the reader
to section 2.3.1. for a detailed discussion about the estimate employed here.

3.4.1 Sensitivity to the bandwidth parameter h

Due to the non-parametric nature of our estimate, it is necessary to check
the response of the non-parametric spectrum estimate (3.3.2.2) to changes
in the bandwidth parameter h. This subsection carries out this analysis.

Previous work20 indicate that the SNJD model with exponential response
function presents statistically significant autocorrelation coefficients on lags
1 and 2 for the values a = 0.60, 1.00. To make things easier, we have
simulated a sample of SNJD processes with a = 0.60 and estimated their
parameters for a set of different values of the coefficient h. The results
obtained are shown in Table 3.1.

Table 3.1 exhibits the mean, median, minimum, maximum, mean squared
error (MSE) and root mean squared error (RMSE) obtained for a SNJD sam-
ple of 3,000 paths with 1,800 data each one. To control as much as possible
the effects of the bandwidth parameter h in the estimation, we have used
the same sample in all experiments carried out. Finally, the set of values
of h we have chosen are h = 0, 25, 50, 100 and 200. The case for h = 0
corresponds to the sample periodogram estimate.

Some interesting results arise from Table 3.1. For example, the best
estimates in terms of RMSE errors are obtained for the highest values of
h. Moreover, the estimates for σ and λ parameters seem to present a con-
siderably bias with respect to their true simulation values, being worth to
mention that the magnitude of this bias is slightly reduced when we increase
the bandwidth parameter h. Finally, just mention that the periodogram es-
timate for h = 0 could provide negative estimates of the Brownian motion
volatility σ, as it is reflected in the minimum value for the parameter σ in
this case.

From the inspection of Table 3.1, it seems that the smoother the spec-
trum, the better results are obtained on the whole. However, an important
bias is detected on the parameters σ and λ. Regarding the former, the better

20These results are available upon request.
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Table 3.1: Changes in the estimates with respect to bandwidth parameter
h.

h σ̂ × 10−2 λ̂× 10−2 β̂ × 10−2 â
(1.26) (4.00) (10.00) (0.60)

Mean 0
25
50
100
200

1.36
1.98
1.97
1.95
1.95

11.24
10.67
10.76
10.56
10.11

11.80
9.84
9.73
9.65
9.43

1.29
0.62
0.59
0.56
0.54

Median 0
25
50
100
200

1.92
1.97
1.96
1.94
1.94

9.86
10.36
10.35
10.13
9.74

11.12
9.53
9.41
9.33
9.17

0.75
0.59
0.57
0.54
0.52

Min 0
25
50
100
200

−2.23
1.37
1.47
1.39
1.46

1.58
2.42
2.24
2.01
2.15

5.01
4.97
4.62
2.12
1.71

0.01
0.30
0.31
0.29
0.30

Max 0
25
50
100
200

2.46
2.41
2.41
2.80
2.48

26.31
20.00
20.00
20.00
20.00

23.09
18.90
19.84
18.82
16.98

3.43
2.00
1.96
2.00
2.00

MSE 0
25
50
100
200

0.01
0.01
0.01
0.00
0.00

0.76
0.59
0.61
0.58
0.50

0.18
0.04
0.04
0.04
0.04

1.32
0.02
0.02
0.01
0.02

RMSE 0
25
50
100
200

1.06
0.72
0.71
0.70
0.70

8.73
7.71
7.82
7.63
7.07

4.19
2.08
2.11
2.11
2.03

1.15
0.15
0.14
0.12
0.14

Estimation results for the non-parametric estimates (3.3.2.2) with respect to changes
in the bandwidth parameter h. The first row contains the parameters of the SNJD
model as given by expression (3.3.2.6). True simulation values are in parenthesis.
This table contains six blocks corresponding to the following statistics for these es-
timates: mean, median, minimum, maximum, mean squared error (MSE) and root
mean squared error (RMSE).Each block comprises five rows, attending to the different
values of the parameter h under study.
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results could be easily understood taking into account that by smoothing
the spectrum, we are reducing the variability of the sample spectrum, that
is, we are using a sample estimate with “less noise”, as Figure 3.3 reflects.

Regarding the bias, Hamilton (1994) mentions that, when the peri-
odograms are averaged at different frequencies, the estimates obtained re-
duce the variance of the periodogram but they tend to introduce some bias,
depending on the size of the bandwidth. This author suggests a complemen-
tary experiment to that realized here, mainly based on a subjective election
of the bandwidth parameter21.

Finally, we do not find substantial differences between using h = 100
or 200 instead. Then, we will select (arbitrarily) a bandwidth parameter
h = 100 to carry out our estimations.

3.4.2 Previous study

Some details

Directly inspired on Chapter 2, we start by analyzing the performance of
the naive estimate under two different experiments:

1. First, we study the estimation results for a simulated sample of the
classical shot noise process referred on section 4.1 of Chapter 2.

2. Then, we repeat the analysis for a restricted version of the SNJD
model, denoted as restricted SNJD model, where the µ and σ param-
eters have been fixed to zero.

Before showing the results of the estimations for the classical shot and
restricted shot noise processes, we provide here the expressions of their pop-
ulation spectra. Again, we address the reader to section 4.1 of Chapter 2
for a more detailed discussion about the reasons why both processes have
been selected for our study.

On one hand, the classical shot noise is defined as

Hc
t =

Nt∑

i=1

Uie
−a(t−τ) (3.3.4.1)

21Implicitly, this idea has been already developed in Figure 3.3, where we have repre-
sented the spectra under different bandwidth (smoothing) parameters.
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where {Nt}t and {Uj}j are mutually independent. The population spectrum

for this process22 takes the form

sc
Z(w) =

λE[U2]

a2 + w2
(3.3.4.2)

where w denotes the set of frequencies under study.Note from equation
(3.3.4.2) that the spectrum of a classical shot noise exhibits a concentration
of power in lower frequencies and tends to zero as w parameter increases23.
A simulation of the typical shape of the spectrum for a classical shot noise
model (blue line) is provided in Figure 3.5.

Regarding the restricted version of the SNJD model, we recall that its
expression is

Hr
t =

Nt+∆t∑

j=Nt+1

ln[1 + Uje
−a(t+∆t−τj )] +

Nt∑

j=1

ln

[
1 + Uje

−a(t+∆t−τj )

1 + Uje−a(t−τj )

]

(3.3.4.3)

The spectrum for this process is easily obtained by substituting µ = σ = 0
in equation (3.3.2.7), which leads to the following expression

sr
Z (w) =

1

2π

(
1 + (e−a∆t − 1)

2a

a2 + w2

)
λE[U2]∆t (3.3.4.4)

with w is the usual frequencies set.

Some remarks should be done about former equation (3.3.4.4):

1. Note this expression leads to negative values of the spectrum for a
certain set of parameters a and w, a problem that could be easily
avoided by a careful selection of boundary values and frequencies.

2. Contrary to the spectrum of the classical shot noise, this expression
allocates the main part of power in higher frequencies, instead of lower
ones.

Figure 3.5 also includes the graphical representation of the spectrum (red
line) obtained with a restricted version of the SNJD model.

22This population spectrum has been obtained by computing the Fourier transform over
the autocovariance function of the classical shot noise. For a detailed derivation of the
autocovariance of the classical shot noise, see Ross (1996).

23Such a concentration of power in lower frequencies is usually put down to the presence
of long-memory components in the series (Lo, 1991).
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Figure 3.5: Nonparametric estimate of the population spectrum for classical Shot
noise (blue line) and restricted SNJD processes (red line). The response function
is h(t − τk) = e−a(t−τk) in both cases. The random variable Uk is lognormally

distributed as U = e−β2/2+βε−1, with ε ∼ N(0, 1) and mean E[Uk] = 0. Simulation
parameters are λ = 0.04, β = 0.10 and a = 0.50. The bandwidth parameter h of
the estimate has been fixed to 100.

Results

Table 3.2 exhibits the results obtained for the two main experiments car-
ried out: the estimation of classical and restricted shot noise, respectively.
As it is usual in this dissertation, the results correspond to sets of 3,000
paths composed by 1,800 simulations each one. This table is structured
in two different blocks, corresponding to the first and second experiments,
respectively.

The first column in Table 3.2 displays the mean, median, minimum,
maximum, mean squared error (MSE) and root mean squared error (RMSE).
The three next column blocks comprise the results for the three parameters
of each model (λ, β and a). At the same time, each column blocks is divided
into four columns, corresponding to each of the different degrees of serial
dependence (a = 0.20, 0.60, 1.00 and 10.00). Finally, the true simulation
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values are given in parenthesis.
Concerning to the first experiment, parameters λ and β exhibit a higher

bias as parameter a increases, which results in a loss of efficiency of the
estimates. With respect to parameter a, their estimates are slightly biased
to the right; anyway, in terms of efficiency and bias, these results seem much
better than those obtained for the remaining parameters.

With regard to the restricted SNJD model, Table 3.2 seems to present
slightly different conclusions compared to those for the classical Shot noise
model: it seems to be clear the shifted (to the right) behavior of the pa-
rameters λ and β, which generally present smaller bias than the classical
Shot noise ones. By contrast, the observed bias for the estimates of the
parameter a is much bigger (cases of a = 0.20, 0.60 and 10.00) than that for
the classical Shot noise ones.

3.4.3 Main results

We present now the central result of this section: the estimation of the SNJD
model with exponential response function by using the naive estimate of
expression (3.3.2.2). The estimates we have obtained are displayed in Table
3.3.

Table 3.3 is structured in four vertical blocks. The first and second
columns display the parameters under study and their true values. The third
vertical block is divided into seven columns, containing the mean, median,
standard deviation (Std), minimum (Min), maximum (Max), mean squared
error (MSE) and root mean squared error (RMSE) for the spectral estimates
of the SNJD model. Finally, the last block includes some percentiles of the
estimates distribution.

To keep tractable our study, we detail separately the main features of
the obtained results:

• Parameter σ: A bias for this parameter is observed in all the cases.
Letting the a = 10.00 case aside, the observed bias in this parame-
ter decreases slightly with the parameter a. Additionally, the most
efficient estimates are obtained for a = 0.60 and a = 1.00, as it is de-
duced from their RMSE and the percentiles values. Finally, negative
estimates for σ have been encountered in no more than 10% of the
obtained results.

• Parameter λ: Results in Table 3.3 seem to exhibit a detectable pat-
tern for λ parameter: the higher the parameter a, the less efficient
and more biased the λ value. This behavior is confirmed by a general
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Table 3.2: Naive estimates for classic Shot noise and SNJD process

Parameters λ× 10−2 β × 10−2 a
(True value) (4.00) (10.00) (below)

a 0.20 0.60 1.00 10.00 0.20 0.60 1.00 10.00 0.20 0.60 1.00 10.00

I.- Classic Shot noise model

Mean 11.36 14.61 15.92 24.20 13.33 12.80 15.36 49.25 0.38 0.86 1.42 8.66
Median 11.40 14.25 15.24 21.96 12.55 12.37 15.04 48.52 0.38 0.86 1.43 8.35

Min 1.98 1.48 1.57 2.06 7.28 5.21 4.57 1.07 0.31 0.58 0.68 2.24
Max 20.00 30.00 32.00 62.00 27.90 28.04 30.00 99.76 0.49 1.19 1.92 15.00
MSE 0.73 1.40 1.78 5.07 0.23 0.15 0.41 18.17 0.03 0.07 0.20 11.68

RMSE 8.56 11.83 13.33 22.51 4.82 3.91 6.37 42.63 0.18 0.27 0.44 3.42

II.- Restricted SNJD model

Mean 8.81 10.19 10.37 13.80 10.61 11.28 14.23 17.27 0.10 0.29 1.21 2.14
Median 8.99 10.32 10.48 11.96 10.16 10.96 14.24 16.76 0.09 0.29 1.15 1.52

Min 2.36 2.94 3.92 2.42 6.20 6.54 8.53 8.84 0.06 0.18 0.33 1.37
Max 15.02 16.77 16.19 30.00 15.00 15.00 20.64 30.00 3.50 2.12 2.20 14.49
MSE 0.31 0.46 0.44 1.39 0.04 0.05 0.22 0.72 0.02 0.10 0.43 68.39

RMSE 5.59 6.81 6.66 11.81 2.06 2.15 4.64 8.50 0.15 0.32 0.66 8.27

Naive estimates for classic Shot noise and SNJD processes. This table shows the mean, median, minimum, maximum,
mean square error (MSE) and root mean square error (RMSE) of the estimated parameters, respectively. Simulation
parameters are in parenthesis. The response function is h(t− τk) = e−a(t−τk) in both cases. The random variable Uj

is lognormally distributed U = e−β2/2+βε − 1, with ε ∼ N(0, 1) and mean E[U ] = 0.
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Table 3.3: Results for the naive spectral estimate with SNJD samples

Statistics Percentiles
Parameter True value Mean Median Std Min Max MSE RMSE 2.5% 5% 10% 50% 90% 95% 97.5%

σ × 10−2 1.26 1.98 1.98 0.23 0.29 2.50 0.01 0.75 1.57 1.68 1.77 1.98 2.22 2.31 2.46
λ× 10−2 4.00 9.17 8.60 3.96 1.40 25.53 0.42 6.51 3.08 3.63 4.50 8.60 14.73 16.56 17.98
β × 10−2 10.00 8.09 7.79 2.10 2.43 17.53 0.08 2.84 4.81 5.24 5.66 7.79 10.92 12.04 13.02

a 0.20 0.80 0.28 0.92 1.20 3.00 1.21 1.10 0.13 0.15 0.17 0.28 2.49 2.72 2.94

σ × 10−2 1.26 1.95 1.95 0.13 1.26 2.40 0.00 0.69 1.69 1.73 1.78 1.95 2.11 2.16 2.21
λ× 10−2 4.00 10.54 10.22 3.86 2.44 22.28 0.58 7.59 4.22 5.00 5.84 10.22 15.99 17.58 18.76
β × 10−2 10.00 9.68 9.38 2.00 5.17 17.76 0.04 2.03 6.52 6.84 7.32 9.38 12.44 13.36 14.18

a 0.60 0.57 0.54 0.18 0.31 2.00 0.03 0.18 0.38 0.41 0.43 0.54 0.71 0.81 0.93

σ × 10−2 1.26 1.91 1.91 0.15 0.34 2.43 0.00 0.66 1.66 1.71 1.75 1.91 2.07 2.13 2.17
λ× 10−2 4.00 11.64 11.16 3.86 3.38 28.15 0.73 8.53 5.45 6.15 6.95 11.16 17.24 18.55 19.39
β × 10−2 10.00 11.22 11.03 2.17 5.29 19.02 0.06 2.49 7.61 8.05 8.60 11.03 14.21 15.20 15.80

a 1.00 0.86 0.83 0.18 0.41 2.46 0.05 0.23 0.62 0.65 0.69 0.83 1.04 1.12 1.18

σ × 10−2 1.26 0.13 0.01 0.47 -1.77 2.41 0.02 1.23 -0.61 -0.44 -0.29 0.01 0.89 1.13 1.29
λ× 10−2 4.00 15.99 15.55 4.34 5.31 29.98 1.63 12.75 9.04 9.91 10.81 15.55 22.21 23.52 24.70
β × 10−2 10.00 16.27 16.14 2.50 5.19 24.55 0.46 6.75 11.84 12.50 13.15 16.14 19.67 20.43 21.12

a 10.00 1.75 1.70 0.72 1.20 11.61 68.55 8.28 1.46 1.54 1.60 1.70 1.78 1.81 1.84

Results for the naive spectral estimates with SNJD samples for some values of the parameter a. The first two columns display the
parameters under study and their true values. Third to ninth columns exhibit the mean, median, standard deviation, minimum, maximum,
mean squared error and root mean squared errors, respectively. The tenth to the last columns provide different percentile values of the
estimate distribution. We have assumed a jump size U lognormally distributed of the form U = e−β2/2+βε − 1, with ε ∼ N(0, 1), and
response function of the form h(t) = e−at.
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displacement of the estimate distributions (percentiles increase with
the parameter a) to the right. Moreover, the estimate distributions
appear not to be symmetrical and they exhibit a fatter right tail, as
deduced from the percentile values for each value of a.

• Parameter β: At light of results displayed, the β estimates show the
most stable behavior among the different set of parameter under study.
For the sample analyzed, the higher the parameter a, the more biased
β. By contrast, the RMSE values do not exhibit the same pattern as
the bias, since the better results (in terms of RMSE) are obtained for
a = 0.6 and a = 1.00.

• Parameter a: Maybe, the central parameter in this study. As Table
3.3 exhibits, the more efficient and less biased results are obtained for
a = 0.60 and a = 1.00. The methodology seems to capture the case
of a = 0.2, but a high percentage of the results (at least the 10%) are
clustered on values bigger than 2.00, as the percentile values indicate.

Moreover, the clear differences between the mean and median values
obtained for a = 0.20 and the high value of the standard deviation (the
biggest one across the a estimates) suggest us that, when a = 0.20, the
estimate distribution has not a regular shape, probably asymmetric or
even with two modes. Finally, concerning to the a = 10.00 case, the
estimation values seem to be bounded around the point 2.00, as the
minimum, median and percentile values confirm.

With the intention of presenting additional insights on former results,
Figures 3.6 and 3.7 represent graphically, for each parameter, the true sim-
ulation value and the estimates obtained under the different a cases.

Figure 3.6 represents the estimates for the parameters σ and λ (upper
and lower graphs, respectively) obtained for the different degrees of serial
correlation we are considering (a = 0.20, 0.60, 1.00 and 10.00). The true
simulation values are represented by a black horizontal line. On the whole,
the closer the point clouds to the black line, the better the performance of
the estimations.

Concerning to the parameter σ (upper graph), the existing bias is clearly
observed in this figure. Moreover, we can also appreciate how the best σ
estimates are obtained when a = 0.20 and a = 0.60. For a = 10, we observe
negative estimates of the σ value and a higher dispersion in these estimates.

With respect to the λ value (lower graph in Figure 3.6), all the points
are concentrated on the upper area of the graph, indicating a general bias
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Figure 3.6: Estimated σ and λ parameters using spectral analysis for the different
values of a. Upper graph results correspond to σ = 1.26× 10−2 and lower graph to
λ = 4.00 × 10−2, respectively. The true simulation value is represented by a black
horizontal line. Different point colours correspond to the estimations obtained for
the different cases of the parameter a under study.
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to the right. Moreover, it seems to be observed that higher the parameter
a, the more biased results. Contrary to the graph for the parameter σ, it is
hard to distinguish the dispersion of the estimates for the different a cases.

In a similar way, Figure 3.7 represents the point clouds of the estimates
for the parameters β (upper graph) and a (lower) parameters. As it was
previously noted, the estimates of β seem to exhibit the most stable behavior
across the different parameters under study: lower dispersion and clustered
disposition around the true value (black line).

Regarding the lower graph in Figure 3.6, the different black horizontal
lines correspond to the simulation values of the parameter a done. Moreover,
the horizontal line corresponding to the a = 10.00 case has been dropped
from this figure as it is far away from their estimates, confusing considerably
the results obtained.

As Figure 3.7 reveals, the same conclusions of former figures apply here:
the better estimates (less biased, less dispersed) correspond to the a =
0.60, 1.00 values. Although the case of a = 0.20 is almost placed around
its true value (green points), we detect a higher dispersion on its estimated
values up to value 3.00, corresponding with the optimization upper bound for
this case. Finally, the methodology does not capture correctly the a = 10.00
case as we observe that points are located around the 1.60 value24.

Finally, we also provide a representation of the histograms for the differ-
ent estimates obtained for the SNJD process. For the sake of brevity, Figure
3.8 just displays the histogram for a = 1.00 parameter25. This figure also
shows the normal distribution fit (red line) to the obtained results.

As Figure 3.8 exhibits, the estimates λ, β and a do not seem to be
normally distributed: we observe that the different distributions show a
certain asymmetry to the left, with right tails fatter than normal distribution
ones. By contrast, these observations are not fully appreciated in the σ
parameter case.

3.5 Monte Carlo study for the Whittle estimate

We present now the results concerning to the optimization of the Whittle
estimate in expression (3.3.2.4). We start by detailing some of the problems
encountered during the estimation procedure; then, we comment the main
results obtained for the SNJD model.

24The upper bound of the optimization routine for this parameter has been placed in
12.00.

25The histograms for the remaining a cases are available upon request.
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Figure 3.7: Estimated β and a parameters using spectral analysis for the different
values of a. Upper graph results correspond to β = 10.00 × 10−2 and lower graph
to different values of the parameter a, respectively. The true simulation values are
represented by a black horizontal line. Different point colours correspond to the
estimations obtained for the different cases of the parameter a under study. Finally,
note that the black line corresponding to a = 10.00 case does not appear because
it is outside the figure limits.
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Figure 3.8: Sample distribution for spectral naive estimates. The red line cor-
responds to the normal distribution fit of the data. The sample is composed by
estimations over 3,000 paths with 1,800 data each one, corresponding to daily fre-
quency. Simulations parameters are µ = 0.0002, σ = 0.0126, λ = 0.0400 and
β = 0.1000. The parameter a has been fixed to 1.00. The jump size U is log-
normally distributed of the form U = e−β2/2+βε − 1, with ε ∼ N(0, 1) and mean
E[U ] = 0.
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3.5.1 Previous considerations

Contrary to the general procedure in this dissertation, this section just pro-
vides some results about the SNJD process itself, without passing through
the previous studies offered for the different estimates proposed. The main
reason for this is because of some numerical problems encountered during
the computation of the estimate (3.3.2.4).

Until now, every estimate used here comprises the minimization of a
quadratic form. For instance, the method of moments with identity weight-
ing matrix of Chapter 2 does not differ much from the naive estimate posited
in this chapter: both methods minimize the sum of quadratic errors be-
tween certain sample and population estimates26. All these computations
were carried out by means of an ad hoc algorithm suitable for this kind of
procedures.

By contrast, the optimization problem of the Whittle estimate (1953) in
expression (3.3.2.4) differs substantially from that employed in the quadratic
form environments: instead of using a non-least squared procedure, we are
forced to use more suitable routines as the Simplex method or gradient
techniques as the Newton-Raphson algorithm one, among others27.

Focusing on the estimate employed here, we have chosen the Newton-
Raphson routine. Basically, this election has been done attending to the
computational time criteria28.

Mainly forced by the expensive computing time, we have restricted our
experiments to 1,000 paths with 1,800 data each one. Although this amount
of sample is not enough to test the asymptotic properties of our estimate, we
think it can us some idea of its behavior. Again, although our results might
not be conclusive, it could give us some intuitions about the performance of
the Whittle (1953) estimate.

26In the same line, the generalized moment method (GMM) of Hansen (1982) could
be intended as the optimization of a quadratic form whose terms have been conveniently
weighted

27Many standard textbooks of econometrics include some chapters devoted to these
topics. See, for instance, Hamilton (1994) or Green (1998) and references therein.

28Taking into account that each optimization spent about 30 seconds for a tolerance
level on the parameters variation of 10−5, 3000 optimizations lead to about 25 hours (!).
We are not considering here simulation procedure, which is also time-consuming. With
respect the Simplex method, the optimizations work even worse than the Newton-Raphson
procedure, unfortunately.
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3.5.2 Main results

Table 3.4 summarizes the results obtained for the SNJD model using the
Whittle (1953) estimate. The structure of this table is as follows: the
first two columns display the parameters and their true (simulation) val-
ues. Then, we have a block of columns named ’Statistics’, divided in seven
columns, containing the mean, median, standard deviation (std), minimum,
maximum, mean squared error (MSE) and root mean squared error (RMSE)
of the estimates distribution. Finally, the block ’Percentiles’ provides differ-
ent percentiles of the estimates distribution. The sample size is composed
by 1,000 paths composed by 1,800 data each one.

For the sake of exposition, we focus separately on the different parame-
ters of the SNJD model:

• Parameter σ: The estimate distributions are clearly asymmetrical
for a = 0.20 and 10.00, at light of their respective lower percentile
values. This circumstance leads us to doubt about the performance
of the estimate for this pair of values. By contrast, the distribution
of the parameter σ seems to be symmetrical (a = 1.00) or almost
symmetrical (a = 0.60). Again, σ parameters for the former a cases
are biased and present equal RMSE values.

• Parameter λ: Once again, it seems to be clear the behavior for this
parameter: the higher the parameter a, the higher the λ parameter .
With respect to the bias behavior of the estimates, it seems to be clear
that for a 95%-confidence level, the estimate is completely biased in
almost all the a cases.

• Parameter β: For the lower a cases (a = 0.20, 0.60 and 1.00) we ob-
serve that the true value falls within the 95%-confidence interval. The
closeness about the mean and median values, jointly with the almost
symmetrical behavior of the percentiles, seem to indicate that the es-
timate distribution are symmetrical or almost symmetrical. Again, an
observed increasing bias is reported when the parameter a increases.

• Parameter a: On the whole, the standard deviation of the estimates
are much lower for the a parameters than in the previous cases. It
is detected a different behavior for lower values of the parameter a
(0.20, 0.60) with respect to the higher ones (1.00, 10.00). Thus, we can
see that the former cases have estimate distributions that seem to be
clustered on the same point, at light of their percentile values. Just
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Table 3.4: Results for the Whittle estimate with SNJD samples.

Statistics Percentiles
Parameter True value Mean Median Std Min Max MSE RMSE 2.5% 5% 10% 50% 90% 95% 97.5%

σ × 10−2 1.26 1.24 1.15 0.30 0.95 2.60 0.00 0.30 0.95 0.95 0.95 1.15 1.71 1.80 1.94
λ× 10−2 4.00 7.52 7.62 1.11 1.00 11.00 0.14 3.69 3.55 5.44 7.05 7.62 8.37 8.77 8.94
β × 10−2 10.00 11.72 11.72 1.09 5.30 14.21 0.04 2.04 9.43 10.00 10.49 11.72 12.97 13.03 13.16

a 0.20 0.40 0.41 0.04 0.09 0.45 0.04 0.20 0.25 0.34 0.38 0.41 0.42 0.42 0.43

σ × 10−2 1.26 2.03 2.05 0.31 0.96 2.60 0.01 0.83 1.37 1.54 1.62 2.05 2.46 2.55 2.60
λ× 10−2 4.00 7.97 8.01 1.60 1.00 11.00 0.18 4.28 3.77 4.86 6.27 8.01 10.09 10.82 11.00
β × 10−2 10.00 10.98 11.14 1.87 1.08 15.00 0.04 2.11 6.71 7.54 8.56 11.14 13.05 13.37 13.91

a 0.60 0.85 0.89 0.09 0.33 0.95 0.07 0.26 0.57 0.64 0.72 0.89 0.91 0.91 0.92

σ × 10−2 1.26 2.08 2.08 0.28 0.95 3.17 0.01 0.87 1.51 1.62 1.75 2.08 2.48 2.55 2.63
λ× 10−2 4.00 8.75 8.79 0.95 1.20 13.51 0.23 4.84 6.70 7.20 7.70 8.79 9.86 10.15 10.62
β × 10−2 10.00 13.03 13.17 1.49 1.21 17.27 0.11 3.38 9.81 10.22 11.20 13.17 14.73 15.06 15.56

a 1.00 1.40 1.40 0.27 1.39 1.41 0.16 0.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40

σ × 10−2 1.26 1.41 0.95 0.54 0.95 2.69 0.00 0.56 0.95 0.95 0.95 0.95 2.18 2.35 2.44
λ× 10−2 4.00 11.20 11.67 1.53 7.40 14.28 0.54 7.36 7.58 7.91 8.85 11.67 13.01 13.28 13.47
β × 10−2 10.00 15.20 15.29 1.04 12.29 20.57 0.29 5.38 13.31 13.51 13.88 15.29 16.39 16.68 17.13

a 10.00 8.00 8.00 0.09 8.00 8.00 4.00 2.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00

Results for the Whittle spectral estimate with SNJD samples for some values of the parameter a. The first two columns display the
parameters under study and their true values. Third to ninth columns exhibit the mean, median, standard deviation, minimum, maximum,
mean squared error and root mean squared errors, respectively. The tenth to the last columns provide different percentile values of the
estimate distribution. We have assumed a jump size U lognormally distributed of the form U = e−β2/2+βε − 1, with ε ∼ N(0, 1), and
response function of the form h(t) = e−at.
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Figure 3.9: Sample distribution for spectral Whittle estimates. The red line
corresponds to the normal distribution fit of the data. The sample is composed
by estimations over 3,000 paths with 1,800 data each one, corresponding to daily
frequency. Simulation parameters are µ = 0.0002, σ = 0.0126, λ = 0.0400 and
β = 0.1000. The parameter a has been fixed to 1.00. The jump size U is lognormally
distributed of the form U = e−β2/2+βε − 1, with ε ∼ N(0, 1) and mean E[U ] = 0.

for the case of a = 0.60, the true value of the estimate falls into a
95%-confidence interval.

Although the sample under study is not large enough to infer the asymp-
totic distribution of the estimates, it could be interesting to look at their
sample distribution. To provide additional tools for analyzing the results,
Figure 3.9 shows the sample distribution of the Whittle estimates for the
case of a = 1.00. We have also included the fitted normal distribution plot
of the data (red line).

As Figure 3.9 reflects, the sample estimate distributions do not seem
to be far away from the normal one: almost every histogram in this Figure
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appears to be symmetrical. Moreover, the normal fit appears to offer a good
fit to the estimate sample distributions, just observing a clear deviation from
the normal distribution in the case of the a parameter. Again, these results
must be taken carefully, due to the short size of the sample used.

3.6 Comments on spectral estimate results

Once checked the individual performance of the spectral estimates under
study, it could be interesting to compare them by looking at their sample
distributions. In addition to this, since the results for the time domain
estimate on Chapter 2 are at our disposal, a more global perspective can
be provided by comparing the results obtained in the frequency domain
estimates with those results obtained in Chapter 2.

Then, this section compares the main results obtained for the frequency
and time domain chapters. Firstly, we focus on the case of the frequency do-
main estimates (naive, Whittle) and, then, we extend our study by including
the GMM estimates of Chapter 2.

3.6.1 Previous considerations

As it was previously cited, we start by analyzing the obtained results across
spectral estimates. Our procedure simply consists on computing the his-
tograms for each sample distribution of the different estimates -two fre-
quency domain and one time domain estimates-, and fitting the obtained
data by means of a cubic spline data interpolation. The obtained results are
represented in Figures 3.10 and 3.11, respectively.

Figures 3.10 and 3.11 display the sample distribution for the spectral
and time domain estimates obtained for a SNJD process with exponential
response function with parameters a = 0.60 and 1.00, respectively. Each
graph in these figures exhibit the fitted histograms for the Whittle (red
line), naive (blue line) and GMM (black line) estimates29.

Moreover, each graph also corresponds to the different parameter esti-
mates under study: upper graphs, from left to right, correspond to σ and λ
values; lower graphs, also from left to right, correspond to β and a parame-
ters, respectively.

Before discussing these figures, some considerations should be taken into
account:

29The GMM estimate results correspond to those obtained by using the Newey-West
(1987) estimate as weighting matrix. We have chosen this estimate as it is the suitable
election in presence of serial correlation in the sample.
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Figure 3.10: Sample distribution for spectral and time domain estimates. Red,
blue and black lines correspond to Whittle, Naive and GMM estimate distributions,
respectively. The sample is composed by estimations over 3,000 paths with 1,800
data each one, corresponding to daily frequency, unless the Whittle estimate, which
are estimations over 1,000 paths. Simulations parameters are µ = 0.0002, σ =
0.0126, λ = 0.0400 and β = 0.1000. Parameter a has been fixed to 0.60. The jump
size U is lognormally distributed of the form U = e−β2/2+βε − 1, with ε ∼ N(0, 1)
and mean E[U ] = 0.
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Figure 3.11: Sample distribution for spectral and time domain estimates. Red,
blue and black lines correspond to Whittle, Naive and GMM estimate distributions,
respectively. The sample is composed by estimations over 3,000 paths with 1,800
data each one, corresponding to daily frequency, unless the Whittle estimate, which
are estimations over 1,000 paths. Simulations parameters are µ = 0.0002, σ =
0.0126, λ = 0.0400 and β = 0.1000. Parameter a has been fixed to 1.00. The jump
size U is lognormally distributed of the form U = e−β2/2+βε − 1, with ε ∼ N(0, 1)
and mean E[U ] = 0.



142 CHAPTER 3. ESTIMATION IN THE FREQUENCY DOMAIN

1. First, as mentioned previously in Section 5, the problems encountered
during the computation of the Whittle estimate forced us to restrict
the number of optimizations to 1,000 values, instead of the 3,000 ones
obtained for the naive and GMM estimates.

Nevertheless, we are inclined to believe that the inclusion of the Whit-
tle estimate results in Figures 3.10 and 3.11 could be useful, even
though these results are not conclusive30.

2. Second, the cases that we will compare directly are those corresponding
to the SNJD processes with exponential response function for the cases
a = 0.60 and 1.00. Two main reasons motivate this approach:

(a) Due to the numerical approximations involved when computing
the moments and spectra of the SNJD process (see Chapter 1), we
think that the SNJD process with exponential decaying function
is reasonably well approximated in a certain range of parameter
a values.

(b) As a consequence of the former, the results for the restricted
SNJD processes in chapters 2 and 3 may indicate that the best
performance of the estimates is achieved for a = 0.60 and 1.00
values.

Of course, some objections could be done to this procedure, as we are
just taking the cases with best performance. Although this affirmation could
be true, we believe that by analyzing these cases we can learn more about
the estimates under study, since it is the best we can do for estimating the
SNJD process, at light of the results obtained in the previous chapter. In our
opinion, exploring the regions where we have evidences that the model par-
tially (or even not) goes well instead of those situations with better behavior
just could lead us to erroneous conclusions.

3.6.2 Comparison between the spectral estimates

We start by analyzing the two spectral estimates under study in this chapter:
the naive and Whittle estimates. Some interesting points about the behavior
of both estimates are revealed in Figures 3.10 and 3.11.

On the whole, we observe that the naive and Whittle estimates seem
to present (almost) the same mode for the parameters σ and λ although it

30Again, although the Whittle sample is not very large, these results could indicate how
things might go in larger samples.
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considerable differs on the β and a cases. This fact could be reflecting an
equal pattern behavior in the case of the former parameters, contrary to the
last ones.

Secondly, the parameters σ and λ appear to be biased in both a =
0.60, 1.00 cases across estimates. Contrary to this point, the observed bias
in the case of the β and a parameters is considerably smaller (almost non-
existing) for the naive estimate than for the Whittle one.

This last issue refers to the dispersion of the different sample distribu-
tions. For example, the sample distribution for the Whittle estimate tends
to be smaller than the naive one in the cases of λ and a parameters. By
contrast, the Whittle estimate presents a higher dispersion than the naive
estimate in the σ parameter. Regarding the parameter β, we are not able
to obtain additional conclusions.

Taking everything into account, the naive estimate reveals as a simple
and adequate tool for the estimation in the frequency domain, under the
sample studied. Noting the simplicity of its implementation, we are inclined
to think that it should be considered as a previous step on any kind of
spectral estimation, in a similar way as the Identity matrix does in GMM
estimations, a suggestion done by Cochrane (2005).

With a similar importance, although results are not conclusive, our es-
timations seem to show that the Whittle estimate could be a candidate for
the spectral estimation, as many of its properties -consistence, asymptot-
ical efficiency- seem to be reflected even in a short sample study as that
presented here.

3.6.3 Comparison between frequency and time domain esti-
mates

We analyze now the results concerning both frequency and time domain
estimates. As it was previously cited, we will focus on the naive and Whittle
estimates (frequency domain) and the GMM estimate (time domain). Due
to the presence of serial dependence, we have chosen the GMM results based
on the Newey-West (1987) weighting matrix.

The main interesting features that arise from Figures 3.10 and 3.11 can
be summarized as follows:

1. Firstly, the GMM estimate seems to be a considerably less biased es-
timate that those of the frequency domain in the case of σ. Moreover,
we do not appreciate a bias reduction when the parameter a increases.
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Apparently, it is not noticeable a reduction on the distribution disper-
sion of GMM estimate with reference to the naive estimate.

2. Secondly, regarding the parameter λ, the GMM estimate presents a
higher bias than their frequency domain competitors. Moreover, the
bias of the GMM estimate tends to increase with the parameter a.
Finally, the GMM estimate dispersion is comparable with that of the
naive estimate in both a cases under study, and much higher than the
Whittle estimate.

3. Concerning to the parameter β, the dispersion of the GMM estimate is
lower than the other spectral estimates. By contrast, its bias is higher,
again.

4. Finally, the GMM estimate and naive estimates seem to present a sim-
ilar performance for the parameter a, in terms of bias and dispersion.
By contrast, the Whittle estimate presents a higher bias and a lower
dispersion than its competitors.

All things considered, the most interesting conclusions concern the use-
fulness of the spectral analysis tools when dealing with serial dependent
process. As Figures 3.10 and 3.11 reveals, the behavior of the Whittle and
(specially) the naive estimates seem to be more stable (the modes remain
almost constant under changes in the parameter a than their time domain
competitor. On the whole, the frequency domain estimates are less biased
in all cases except when considering the parameter σ. With regard to their
dispersion, this aspect varies across estimates and parameters.

As it was noticed in the previous subsection, the naive estimate reveals
again as an interesting tool for estimating the parameters of the SNJD pro-
cess. However, due to the simple nature of this estimate, we think that
its efficiency could be improved. Finally, the Whittle estimate may provide
interesting results (although not conclusive) on larger sample studies.

Once again, we would like to point out that the comparison among the
time and frequency domain estimates of this subsection should not be taken
as definite, as the samples under study must be enlarged to capture other
possible scenarios in the simulation data. However, as far as we are con-
cerned, we tend to interpret the following results as a starting point for
further studies.
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3.7 Conclusions

This chapter explores the estimation in the frequency domain of the SNJD
process posited by Altmann et al (2007). In this way, this chapter presents
two main tools for carrying out this task: firstly, the naive estimate, di-
rectly inspired on Bevan et al (1979), and an alternative technique, based
on Whittle (1953).

The first part of this chapter is devoted to introduce the spectral ap-
proach and its intuitions behind. We also discuss the estimates under study,
presenting some of their features. To study the ability of the posited esti-
mates to capture the SNJD parameters, we have also performed an exhaus-
tive Monte Carlo study.

To sum up, the main results of this paper are threefold: firstly, by using
the analytical expression for the spectrum of the SNJD process of Chapter
1, we provide an econometric methodology based on the spectral analysis
to estimate their parameters. Secondly, the spectral approach reveals as a
useful tool for the estimation of the posited process and its extension to
more general continuous-time models should be explored. Thirdly, by a
direct comparison with the GMM results obtained in Chapter 2, our results
seem to confirm the suitability of this procedure against other time domain
alternatives as GMM ones.

It should be emphasized that this chapter must be intended as a first
attempt to deal with this kind of processes, since the financial literature
about shot noise effects and its estimation has not been previously reported.
Although the comparison between time and frequency domain estimates of
this chapter should not be taken as definite, we think that the obtained
results support the idea that the spectral estimation should be considered
as an additional tool for estimating continuous-time dependent processes.
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Chapter 4

Pricing Tranched Credit
Products with Generalized
Multifactor Models

This chapter1 is devoted to pricing a very recent type of credit derivative
named Collateral Debt Obligation, or CDO. We present some of their main
features, focusing on its valuation. We will also discuss the standard model
used for the pricing of CDO, generalyzing some of their assumptions. Finally,
an empirical application with Moody’s data is also included.

4.1 Introduction

The market of credit tranched products is one of the fastest growing seg-
ments in the credit derivative industry. As an example, Tavakoli (2003)
reports an increase in market size from almost $19 billions in 1996, to $200
billions in 2001. Recent reports estimate market size to be $20 trillions in

1I would like to thank to A. Novales and J.I. Peña for their helpful comments and
suggestions. I also acknowledges financial support from the Plan Nacional de I+D+I
(project BEC2003-02084) and the Gobierno Vasco-UPV project (GIU 06/53), especially
to Jose M. Usategui. Previous drafts of this chapter have been accepted to be presented
on XV Foro Finanzas AEFIN, 15th-16th November 2007, Palma de Mallorca, Spain, and
XXXII Simposio de Análisis Económico, 13rd-15th December 2007, Granada, Spain. I
have also benefit from the comments of participants in seminars at University of Murcia,
Murcia, Spain and Universidad Complutense, Madrid, Spain. Finally, part of this work
was developed during a visiting scholar position at Business Administration department
at University Carlos III, Madrid, Spain. I am sincerely grateful to them.
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2006.2 As a result, an increasing attention of the financial sector audience
has focused on the pricing of these new products.

The development of pricing models for multiname derivatives is relatively
recent. As pointed out by Hull and White (2004), the standard approach
on the credit risk literature tends to subdivide the pricing models for multi-
name derivatives in two groups: structural models, which are those inspired
in Merton’s (1974) model or Black and Cox (1976), or the intensity based ap-
proach, like Duffie and Garlenau (2001). Roughly speaking, their differences
remain on how the probability of default of a firm is obtained: using their
fundamental variables - assets and liabilities - as in the case of the struc-
tural models, or using directly market spreads, as in the intensity models
approach. Up to a point, the structural based approach has been exten-
sively implemented by the financial sector, maybe due to the extended use
of industrial models like Vasicek (1991) or Creditmetrics model of Gupton et
al (1997).3 However, recent academic literature analyze the prices of CDO
tranches using intensity models, as Longstaff and Rajan (2006). We refer to
Bielecki and Rutkowski (2002) for a general presentation of structural and
intensity based models.

This paper presents an extension of the standard Gaussian model of
Vasicek (1991), in line with the structural models literature. Basically, Va-
sicek’s (1991) model assumes that the value of a firm is explained by the
weighted average of one common factor for every asset plus an independent
idiosyncratic factor. By means of linking the realization of one systematic
factor to every firm’s values, Vasicek (1991) provides a simple way to reduce
the complexity of dealing with dependence relationships between firms. Gib-
son (2004) or Gregory and Laurent (2004, 2005) provide additional insights
about risk features of this model.

Our approach relies on the connection between the changes of value of a
firm and the sum of two factors: systematic and idiosyncratic. Our approach
overcomes the limitations of the standard Gaussian model: the different
areas or regions of correlation that could compose a credit portfolio (see
Gregory and Laurent, 2004). This article presents a model that captures
some of the facts found in real data. Motivated by this fact, this article
proposes an extension to the two Gaussian asset classes as in Schönbucher
(2003). Our paper extends the existing literature in three ways: firstly, the

2See BBA Credit Derivatives Report (2006).
3It is worth mentioning that the appearance of techniques within the Structural frame-

work that diminishes the traditional high computing cost of multiname credit derivatives
(see Andersen et al (2003) or Glasserman and Suchitabandid (2006), among others) has
contributed to the widely usage of structural models.
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assumption of asset homogeneity is relaxed by introducing two asset classes.
Secondly, we consider an additional source of systematic risk by including
another common factor related with industry factors. Finally the normality
assumption on common factors is relaxed.

This paper is divided as follows: Section 2 presents the model. Section
3 studies the sensitivity to correlation and to changes in credit spreads.
Section 4 addresses the econometric modelling. Finally, some conclusions
are presented on section 5.

4.2 The model

To motivate our model we discuss some empirical features found in CDO
data that are not captured by the standard Gaussian models and propose an
extension to the asset class models posited by Schönbucher (2003). Notation
is taken from Mardia et al (1979).

4.2.1 The standard Gaussian model

The Gaussian model introduced by Vasicek (1991) has become a standard
in the industry. Basically, it addresses in a simple and elegant way the key
input in CDOs price: the correlation in default probabilities between firms
affects the price of the CDO.

Usually a CDO is based on a large portfolio of firms bonds or CDS.4

Let Vn×1 (subscript denotes matrix dimension) be a random vector with
mean zero and covariance matrix Σ. As standard notation in multivariate
analysis, we will define the p-factor model as

Vn×1 = Λn×pFp×1 + un×1 (4.4.2.1)

where Fp×1 and un×1 are random variables with different distributions.
The interpretation of the model (4.4.2.1) is the following:

• The vector Vn×1 represents the value of the assets for each of the
individual n-obligors.

• The vector Fp×1 captures the effect of systematic factors - business
cycle, industry, etc. - that affect to the whole economy.

• By contrast, un×1 represents the idiosyncratic factors that affect each
of the n-companies.

4CDO tranches of NYME are composed by 100 firms.
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• Finally, Λn×p is called the loading matrix, and determines the corre-
lation between each of the n-firms.

By assumption, we have that

E(F) = 0, V ar(F) = I, (4.4.2.2)

E(u) = 0, cov(ui,uj) = 0, i 6= j, (4.4.2.3)

and

cov(F,u) = 0 (4.4.2.4)

where I is the identity matrix.
We will also assume that vector un×1 is standardized to have zero mean

and unit variance.
Using a simplified form of equation (4.4.2.1), Vasicek (1991) assumes

that firm’s values in the asset pool backing the CDO are affected by the
sum of two elements: on one hand, a common factor to every firm which
represents the systematic component represented by the factor F ; on the
other hand, an idiosyncratic component modelled by a noise εi. Both are
assumed to be standard N(0,1) random variables

Vi = ρi1F1 +
√

1 − ρi1
2εi, with i ≤ n (4.4.2.5)

By means of equation (4.4.2.5) it is possible to capture the correlation
between different firms in a portfolio. As equation (4.4.2.5) reveals, Vasicek
(1991) assumes that correlation coefficient is homogeneous for each pair
of firms.5 Additionally, the simplicity of their assumptions permits a fast
computation of CDO prices under this framework.

As an immediate consequence of equation (4.4.2.5), a further step is
given by generalizing the number of factors that affects firms values. Thus,
Lucas et al (2001) consider the following factor model

Vi =

p∑

j=1

ρijFj +

√√√√1 −
p∑

j=1

ρij
2ui, with i ≤ n (4.4.2.6)

where Vi represents the value of the i-company, Fj , j = 1, ..., p capture the
effect of p-systematic factors and ui is the idiosyncratic factor associated

5For a detailed exposition of assumptions in structural models see Bielecki and
Rutkowski (2002).
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to the i-firm. Needless to say, assumptions on the distribution of common
and idiosyncratic factors (F and u, respectively) could be imposed. Hull
and White (2004) also includes an extension to many factors, including the
t-Student distributed case. Finally, Glasserman and Suchitabandid (2006)
implements in a recent paper numerical approximations to deal with these
multifactor structures within a Gaussian framework.

With the purpose of getting intuition about the behaviour of these dif-
ferent models, Figure 1 exhibits the loss distribution generated by three
alternative models:

• The standard Gaussian model (Vasicek, 1991),

V G
i = ρi1F1 +

√
1 − ρi1

2εi, and F1, εi ∼ N (0, 1)

• The one factor double-t model (Hull and White, 2004),

V S
i = ρi1F1 +

√
1 − ρi1

2εi,

where F1 and εi follows t-Student distributions, with 6 degrees of free-
dom.

• The two-factor Gaussian model (Hull and White (2004), or Glasserman
and Suchitabandid, 2006),

V DG
i = ρi1F1 + ρi2F2 +

√
1 − ρi1

2 − ρi2
2εi

with F1, F2, εi ∼ N (0, 1) and ρ2
i1 + ρ2

i2 < 1.

As we will see later, the loss distribution plays a role crucial in the CDO
pricing. Different distributions are computed for a portfolio of 100 firms,
with constant default intensities of 1% per year. Correlation parameters
are 0.3 for all models, except for two-Gaussian factor, with 0.1 and 0.3.
The double-t model considers a common and idiosyncratic factors each dis-
tributed as t-Student with 6 degrees of freedom. The picture shows that,
under the same correlation parameters, the standard Gaussian model as-
signs lower probability to high losses (see for instance the case of 20 firms)
than the double-t model. By considering an additional factor, as in the 2-
Gaussian case, the probability of high losses is substantially higher than in
previous cases.

Table 1 presents the spreads (in basis points) of a 5-years CDO portfolio
composed by 100 firms. The individual default probabilities are constant and
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Figure 4.1: Total loss distribution of a 100-firms portfolio for different models.
Individual default probabilities are fixed at 1%. Correlation for the Standard Gaus-
sian and t-Student distribution (with 6 degrees of freedom) is 0.3. Correlations for
the Double Gaussian model are 0.1, 0.3.



4.2. THE MODEL 155

Table 4.1: Spreads of different tranches for a 100-names CDO

Tranche Spread (basis points)
Model Standard Gaussian 2 Gaussian factors t-Student

Correlation 0.1 0.3 0.1/0.1 0.1/0.3 0.1 0.3

0–3 2117 1320 2186 1656 2485 2135
3–10 86 110 508 653 131 233

10–100 0.02 1 7 29 1 9

Spreads of different tranches for a 100-names CDO under different correlation pa-
rameters. Attachment points (in percentage) are in bold.

fixed at 1%. The recovery rate is 40%, a standard in the market. Finally, the
different correlation parameters are displayed in the table. We remember
that all spreads are obtained considering only one asset class. As Table
1 shows, results are consistent with the loss distribution lines presented in
Figure 1: the double t-Student distribution gives prices systematically bigger
than those obtained for the standard Gaussian model, keeping constant the
correlation. In the 2 Gaussian factor model prices, we observe a mixture of
effects due to different combinations of correlations in the portfolio.

4.2.2 A 2-by-2 model

Generally, as considered by Schonbucher (2003) or Lando (2004), a credit
portfolio is composed by different asset classes or buckets, attending to cri-
teria of investment grade, non-investment grade assets or industry, among
others. The exposure of a credit portfolio to a set of common risk fac-
tors could be significant between groups, but should be homogeneous within
them. In line with this, the idea of two groups of assets treated in different
ways is a more realistic assumption.

As pointed out by Gregory and Laurent (2004), the one-factor model
imposes a limited correlation structure on the credit portfolio, which is not
realistic. Initially, one can argue that increasing the number of factors could
be enough to capture a richer structure of correlation within the portfolio.
However, this is not yet consistent with the idea of heterogeneity correlation
among groups, due to the fact that every asset is exposed to the same degree
of correlation. By contrast, a richer correlation structure could be imposed
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Figure 4.2: Default (yearly) rates for Investment and Non-investment grades.
Rates for investment data have been multiplied by ten with the purpose of com-
paring the data. Source: Moody’s.

in the portfolio if these two groups are treated in different ways.

To illustrate these ideas, Figure 2 shows the yearly percentage default
rates for investment and non-investment grades. Rates for investment data
have been multiplied by ten with the intention of clarifying the exposition.
Figure 2 reveals that correlation between these two assets groups varies
through time: periods with high degree of default in non-investment grade
assets do not match with high default rates for investment grade. With ref-
erence to this idea, Figure 3 displays the correlation coefficients computed
using a moving window of five years. This also provides some additional in-
sights on the degree of correlation between asset classes: the picture shows
how the correlation among different groups changes during the sample pe-
riod, from negative correlation (1975, 1977 or 1990), to zero (1993, 1996)
or highly positive (1982, 1995 or 2000). These differences in default rates
through time could reveal the existence of an idiosyncratic component be-
tween asset classes. This fact could support the idea of modelling in a
different way the behaviour of different assets.

This article considers a family of models that take account the existence
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Figure 4.3: Correlation coefficients using a moving window of 5 years. Sample
period comprises from 01/01/1975 to 31/12/2004. Source: Moody’s.

of these different asset classes or regions, in line with the suggestions of Gre-
gory and Laurent (2004). We analyze a model in the line of the two assets-
two Gaussian factor model of Schonbucher (2003), where no distinction is
made between the obligors which belongs to the same class. Our model
generalizes that posited by Schonbucher (2003) by considering a t-Student
distribution, which assigns a higher probability to high default events. Em-
pirical evidence seems to go in this direction.6 Our work contributes to the
existing literature in the analysis of these asset class models. To the best of
our knowledge, no similar studies has been reported yet in this direction.

The model we propose is a two-by-two factor model as follows7

Vi1 = α11F1 + α12F2 + β1ui1

Vi2 = α21F1 + α22F2 + β2ui2 (4.4.2.7)

where

6See, for example, Mashal and Naldi (2002).
7For the sake of brevity, we omit the graph of th loss distribution implied by this model.
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• Vi1, Vi2 (i < n) represents the value of the i-company which belongs
to the different asset class

• Fj , j = 1, 2 captures the effect of systematic factors - business cycle
and industry - with independent t- distributions with nj degrees of
freedom, and

• ui1, ui2 are idiosyncratic factors distributed also with ni1, ni2 degrees
of freedom, respectively.

Under the assumptions of factor models, Fj are scaled to have variance

1, then α11 = ρ11

√
n1−2

n1
and so on. Idiosyncratic errors are also scaled, for

instance β1 =
√

ni1−2
ni1

√
1 − α2

11 − α2
12. Finally, we assume the same default

barriers Ki1, Ki2 for the obligors of the same class.

Figure 4 displays the simulated distribution for a portfolio of 100 obligors
under the standard Gaussian model of Vasicek (1991), the double-t model of
Hull and White (2004) and the 2-by-2 double-t model proposed in equation
(4.4.2.7). Risk neutral default intensities have been fixed at 10% for asset
class A and 15% for asset class B. We consider homogeneous firms of class
A for Gaussian and double-t models. The portfolio in the 2-by-2 Double-
t model is equally composed of asset classes A and B. Finally, correlation
parameters are 0.2 for the standard Gaussian and double-t models, and 0.1,
0.2 for the 2-by-2 double-t model, respectively. As Figure 4 exhibits, the
2-by-2 model allocates more probability in the tail of the loss distribution
than one factor models, which results in an increasing (decreasing) value for
risky (safe) tranches.

Needless to say that the model could be easily generalized to the case of
m-asset classes, as follows:

Vi,m =

p∑

h=1

ρmhFh + ui,m

√√√√1 −
p∑

h=1

ρmh
2

where Vi,m represents the value of the i-company which belong to them-asset
class, Fj , j = 1, ..., p capture the effect of systematic factors and ui,m is the
idiosyncratic factor corresponded to i-firm of the m−asset class. Generally
speaking, assumptions relying on distribution factors or more asset classes
could also be proposed. However, a trade-off between accuracy, parsimony
and computing efficiency must be considered.
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Figure 4.4: Total loss distribution of a 100-firms portfolio for standard Gaussian,
Double-t and 2-by-2 Double-t model. Degrees of freedom in the double-t models
have been fixed at six for every variable. Individual default probabilities are fixed at
10% for asset class A and 15% for asset class B. All firms in Gaussian and Double-t
cases belong to asset class A. The portfolio in the 2-by-2 Double-t model is equally
composed of asset classes A and B. Finally, correlation for the standard Gaussian
model and Double-t is 0.2, and correlations for the Double-t model are 0.1, 0.2,
respectively.
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4.2.3 Conditional Default Probabilities

Without loss of generality we omit the subscript that refers to the i-firm for
the ease of exposition. We want to study the probability of default for the
i-firm which belongs to an asset class m, with m = 1, 2,

P [Vm ≤ K|F = f ] = P

[
um ≤ K − αF

βm
|F = f

]
= Tm

(
K − αf

βm

)

where Tm denotes the distribution function of a t-student with nm degrees
of freedom for the i-firm, and F, α are the common vector factors and their
coefficients, respectively.

It is usual to calculate the probability of having k default events, condi-
tional to realization of vector factor F as

P [X = k|F] =
k∑

l=0

b (l,N1, T1) b (k − l,N2, T2)

where b (l,N, T ) denotes the binomial frequency function, which gives the
probability of observing l successes with probability T , where N represents
the number of firms which belong to each asset class. In the same manner,
the unconditional probability of k default events is obtained considering all
possible realizations of factors F

P [X = k] =

k∑

l=0

∫ +∞

−∞

∫ +∞

−∞

b (l,N1, T1) b (k − l,N2, T2)ψ (f) df

where ψ (f) denotes the probability density function of F.
Finally, the total failure distribution is just obtained as the sum of all

the defaults up to level k,

P [X ≤ k] =

k∑

r=0

P [X = r]

=

k∑

r=0

r∑

l=0

∫ +∞

−∞

∫ +∞

−∞

b (l,N1, T1) b (r − l,N2, T2)ψ (f) df(4.4.2.8)

Lando (2004) refers to this problem as a different buckets problem in
sense that by means of multinomial distributions we compute the total loss
distribution of the portfolio. Our approach to this point would be the com-
putation of this set of bucket probabilities but we will adopt a different
approach.
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4.2.4 Loss distribution

As is pointed out in Lando (2004), calculation of multinomial expressions
like (4.4.2.8) is burdensome. Instead of computing (4.4.2.8) by brute force,
we will use a simple idea due to Andersen et al (2003) that could improve
the efficiency in terms of computing cost.8

Andersen et al (2003) provides an efficient algorithm which has become
widely used by the industry. Roughly speaking, the main idea behind is to
observe what happens to the total loss distribution of a portfolio when we
increase its size by one firm.

Consider a portfolio that includes n credit references and let pn (i|f) be
the probability of default of i firms in this portfolio conditional on factors
f . Let qn+1 (f) be the default probability of an individual firm that is added
to this portfolio. These two probabilities are conditional on the realization
of the common factor vector f .

Consider the total Loss Distribution (LD) in this portfolio. Intuition
says that the probability of i-defaults in this portfolio - conditional on f -
can be written as

LD (i|f) = pn(i|f) × (1 − qn+1 (f)) + pn(i− 1|f) × qn+1(f), 0 < i < n+ 1

where the first term reflects that default is due to i-firms included in the
initial portfolio while the new reference (just included in the portfolio) sur-
vives. In a similar way, the second term reflects the new firm (just included
in the portfolio) defaults while the other i−1 defaulted firms were previously
included in the original portfolio.

Moreover, for the extreme cases of default firms, we have

pn+1(0|f) = pn(0|f) × (1 − qn+1 (f))

pn+1(n+ 1|f) = pn(n|f) × qn+1(f)

Then, taking into account the last firm just included in the portfolio, these
equations reflect that no firm defaults or all of them default, respectively.

As an example, consider an initial portfolio including two firms. Adding
a third firm, the total default probabilities are given by

p3 (0|f) = p2 (0|f) (1 − q3 (f))

p3 (1|f) = p2 (1|f) (1 − q3 (f)) + p2 (0|f) q3 (f)

p3 (2|f) = p2 (2|f) (1 − q3 (f)) + p2 (1|f) q3 (f)

p3 (3|f) = p2 (2|f) q3 (f)

8Their contribution has been also explored and extended in Hull and White (2004).
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Using this iterative procedure, we can compute the unconditional total Loss
Distribution by considering all possible realizations of f .9

4.3 Results for the 2-by-2 model

In this section we present some results of the model (4.4.2.7). Firstly, we dis-
cuss the spreads obtained using the two-by-two approach. Secondly, we give
an approach useful for cases of high degrees of freedom based on Cornish-
Fisher expansions, which is useful in terms of computing cost.

4.3.1 Numerical results

To give some results of model (4.4.2.7), we analyze different cases for a
two asset classes, 5-year CDO with 100 firms with quarterly payments. We
also assume that the recovery rate is fixed and equal at 40%. Risk-neutral
default individual default probabilities are fixed at 1% and 5% for assets
which belong to class 1 and 2, respectively. For ease of explanation, the size
of each asset class in the portfolio is the same (50% for each one). More
results concerning the size of the portfolio will be provided in Section 4.

Table 2 displays the main results obtained. First row corresponds to
the three simulated base cases: the standard Gaussian model10 with one
factor, two asset classes; the two assets-two Gaussian factor; finally, the two
assets-two t-Student factors.11 t-Student distributions have been fixed at
5 degrees of freedom for idiosyncratic and systematic factors. Second row
displays the correlation parameters of each asset class with both factors. For
example, 0.1/0.3 in the two Gaussian case refers to a correlation of 0.1 (0.3)
for elements of class 1 (2) with the two systematic factors. In line with
Gregory and Laurent (2004), our idea is to check the behaviour of the CDO
to a portfolio exposed to two different degrees of correlation.

All the simulations have been carried on for different tranches values.
Looking at the riskier tranche (equity tranche), we observe that, for the
same degree of correlation, its spread is systematically bigger for the two t-
Student case than for the 2 Gaussian factors. One conclusion that arises from
Table 2 is that the two assets-one Gaussian factor spreads for equity tranche
are close to those values obtained for two assets-two t-Student factors.

9See Andersen et al (2003) or Gibson (2004) for more details.
10The standard Gaussian model has been computed using a Gauss-Hermite quadrature

with 8 nodes.
11The t-Student simulations have been computed using a Simpson’s quadrature with 25

points.
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Table 4.2: Spreads of different tranches for a 100-names CDO

Tranche Spread (basis points)
Model Standard Gaussian 2 Gaussian factors t-Student

Correlation 0.1/0.1 0.1/0.3 0.1/0.1 0.1/0.3 0.1/0.1 0.1/0.3

0–3 7166 5016 5421 3154 6899 4977
3–10 1040 929 1581 1401 1254 1302

10–100 5 11 43 122 27 65

Spreads of different tranches for a 100-names CDO under different correlation pa-
rameters. Attachment points (in percentage) are in bold.

As expected, the same does not apply for mezzanine tranches: the addi-
tion of more factors provides more weight to extreme default events, which
results in an increase in spread of mezzanine tranches. The same conclusions
apply to senior tranche.

4.3.2 Approximation for n infinite

The asymptotic relationship between a t-distributed random variable and
a normal random variable by means of the Cornish-Fisher expansion could
be interesting for cases of big degrees of freedom. Shaw (2006) provides
the Cornish-Fisher expansion for a t-distributed random variable, with zero
mean and unit variance, in terms of a standard normal random variable
distribution. This reduces considerably the computational time as, in this
case, it is possible to use a double Gauss-Hermite quadrature, instead of a
Simpson quadrature. Basically, Shaw (2006) provides the relationship

s = z +
1

4n
z
(
z2 − 3

)
+

1

96n2
z
(
5z4 − 8z2 − 69

)
+ ... (4.4.3.1)

where s is the t-distributed random variable with n degrees of freedom,
and z is a standard normal random variable. To check the accuracy of the
approximation (4.4.3.1), Table 3 displays the spreads (in basis points) for
different tranches in a two asset classes, 50-named CDO with quarterly pay-
ments under different correlation parameters for various degrees of freedom.
As in the previous section, correlation parameters correspond to factors of
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Table 4.3: Spreads of different tranches for a 50-names CDO

Tranche Spread (basis points)
Model 2 Gaussian factors t-Student CF t-Student

Correlation 0.1/0.3 0.1/0.3 0.1/0.3 0.1/0.3 0.1/0.3

n1/n2 ∞/∞ 10/10 15/15 10/10 15/15

0–3 3015 3924 3711 3270 3296
3–10 1380 1236 1198 1025 1083

10–100 289 160 160 166 160

Spreads of different tranches for a 50-names CDO under different correlation param-
eters. Attachment points (in percentage) are in bold. Coefficients n1/n2 correspond
to the number of degrees of freedom.

each asset classes. As in previous examples, risk neutral default probabilities
have been also fixed at 0.1 and 0.3 for each asset class. The recovery rate is
fixed at 40%.

Basically, two general models have been computed: two Gaussian fac-
tors and a two t-Student factor. The last column refers to the two t-Student
factor approximation using the Cornish-Fisher expansion. Correlation co-
efficients and degrees of freedom for each one are displayed in the table.12

The Gaussian case is presented to get intuition of how far we are from the
asymptotic result. As expected, the larger the degree of freedom, the higher
the accuracy of the results. The differences between the equity tranche range
from 20% for 10 degrees of freedom to 12% for a 15 degrees of freedom case.
In a similar way, considering the mezzanine cases, differences go from 21%
to 11%. There are no substantial changes in the case of senior tranche. It is
worth to remember that computations under the exact t-Student distribu-
tion have been done using a numerical quadrature and, so, they are exposed
to numerical errors.

12The two Gaussian factor model is equivalent to a two t-Student factor model with
infinite degrees of freedom.
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4.4 Sensitivity analysis

Now, we are interested in the prices of the CDO under two different sce-
narios: changes in portfolio size and correlation. Firstly, we present some
standard measures in risk management as the Value at Risk and the Condi-
tional Value at Risk ones. Secondly, we analyze the sensitivity of different
tranches to changes in correlation.

4.4.1 VaR and CVaR

Value at Risk (VaR) and Conditional Value at Risk (CVaR) are usually
taken as representative risk measures for a portfolio. VaR is defined as
the percentile of the distribution of portfolio losses given a certain level of
confidence.13 Artzner, Delbaen, Eber and Heath (1999) enumerates some
limitations of the VaR measure and discuss some interesting properties of
a proper measure of risk. According to this, we also include the CVaR
measure,14 defined as the expected loss in a portfolio conditional to a certain
loss threshold u, that is,

CV aRu = E [x|x > u]

where the sign of the inequality has been changed because we are working
directly with the total loss distribution.

Table 4 includes the VaR and CVaR measures for a 100-named CDO
composed by two different risky asset classes under different correlation pa-
rameters and different proportions in the portfolio. The (yearly) risk-neutral
default probabilities for each obligor of asset class 1 have been fixed at 0.01,
and 0.05 for those which belong to asset class 2. For the sake of simplicity,
all the factors - systematic and idiosyncratic - in the model (4.4.2.7) have
been fixed at 5 degrees of freedom. The first column includes the correlation
coefficients corresponding to both factors of each class (i.e. 0.1/0.3 means
a correlation coefficient of 0.1 (0.3) for both factors in asset class 1 (2)).
Correlation coefficients equal to zero refers to independence case between
obligors. With the purpose of analyze the response of the loss distribution
generated by the model (4.4.2.7) with respect to different sizes of the port-
folio, the remaining columns show different percentage sizes of the portfolio.
The first term refers to the portfolio percentage of class 1, and so on.

Needles to say that two main results arise form Table 4. Firstly, the
higher the correlation the higher expected extreme loss as measured by VaR

13See Duffie and Pan (1997) for details.
14This measure was posited by Acerbi, Nordio and Sirtori (2001).
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Table 4.4: VaR and CVaR measures for a 100-named CDO

VaR 99% CVaR 99%
Correlation 25/75 50/50 75/25 25/75 50/50 75/25

0.0/0.0 10 9 7 18 9 9
0.1/0.1 25 19 13 35 27 19
0.1/0.3 57 40 23 67 48 30
0.3/0.3 61 47 33 72 61 50

VaR and CVaR measures for a 100-named CDO composed by two different risky
asset classes under different correlation parameters and different proportions in the
portfolio. Degrees of freedom are fixed at 5 for all factors. The first (second)
coefficient refers to the percentage proportion of Asset Class 1 (2) in the portfolio.
Yearly risk-neutral probabilities have been fixed to 0.01 for each obligor of Asset
Class 1, and 0.05 for those of Asset Class 2.

and CVaR, as expected. Secondly, an increase in the percentage of the risky
asset (asset class 2) produces an increase in the losses of the portfolio.

4.4.2 Sensitivity to correlation

To analyze the sensitivity to correlation of the model (4.4.2.7) we have cre-
ated a CDO based on a portfolio of 50 names. Individual default proba-
bilities have been fixed at 1% for asset class 1 and 5% for asset class 2,
respectively. To reduce the computational cost of the implementation, we
have set the distribution of the two systematic factors as t-Student ones
with 15 degrees of freedom. We have used the results of Shaw (2006) de-
veloped in Section 2.5, without loss of generality. All simulations have been
performed using a double Hermite quadrature with 64 nodes. Idiosyncratic
factors have been fixed at 5 for each asset class. To search differences in
the portfolio composition, we have applied our study to two different sized
portfolio: equally weighted portfolio (50% asset class 1, 50% asset class 2)
and risky portfolio (25% asset class 1, 75% asset class 2).

Figures 5 and 6 display the spreads obtained under different sets of
correlations for the equally weighted and risky portfolios. In general, the
convexity pattern of the equity-senior curves remains constant in both cases,
which is consistent with the preference (aversion) for risk on equity (senior)
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tranche investors, as expected.

Regarding changes in correlation, Figure 5 reveals that correlation with
risky asset classes are, by large, responsible of changes in the value of equity
spreads. When it comes to the risky portfolio (Figure 6), it is interesting to
observe how changes produced by the correlation in asset class 1 or 2 (see
Equity and Mezzanine tranches) produce almost the same effects.

As also expected, an increase in global correlation raises the spreads of
senior tranche. A higher correlation increases the probability of big losses,
which is reflected in the senior spreads. This feature could be also mentioned
(in a different scale) to the case of the risky portfolio in Figure 6.

4.5 Econometric Framework

This section focuses on the parameters estimation of the model (4.4.2.7). As
pointed out in Embretchs, Frey and McNeil (2005), the statistical estimation
of parameters in many industrial models are simply assigned by means of
economic arguments or proxies variables. We will develop an exercise of
formal estimation using some well known econometric tools as logit-probit
regressions.15 Due to the features of our data, some cautions must be taken
to understand our results. This is due to the shortage of relevant data (for
instance, rates of default of high-rated companies) or the sample size, as
was also noticed by Embretchs, Frey and McNeil (2005). These authors also
provide a more general discussion on the statistical estimation of portfolio
credit risk models.

4.5.1 Estimation Techniques

As suggested by Schonbucher (2003) or Embretchs, Frey and McNeil (2005),
the estimation of parameters in the expression (4.4.2.7) will be carried on
using the models for discrete choice of proportions data. Basically, the
idea consists in explaining the sample rates of default pi (where i refers to
the asset class or group) as an approximation to the population rates of
default Pi plus an error term, εi. The idea behind is to link the population
probability with some function F (·) over a set of explanatory factors xi and
their coefficients β, as follows:

pi = Pi + εi = F
(
x′

iβ
)

+ εi (4.4.5.1)

15Standard references on this type of regressions using grouped data can be found in
Novales (1993) or Greene (2003).
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Figure 4.5: Spreads under different correlations for a equally weighted (50%-50%)
portfolio.
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Figure 4.6: Spreads under different correlations for a 25%-75% portfolio.
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To be interpreted as a probability, the function F (·) must be bounded
and monotonically increasing in the interval [0, 1]. Some widely used func-
tions for F are the standard Normal distribution, which corresponds to the
probit model, or the uniform distribution, which results in the linear prob-
ability model.

As suggested by Greene (2003), we could use regression methods as well
as maximum likelihood procedures to estimate the set of coefficients β of
the expression (4.4.5.1). For example, in the case of the probit regression,
the relationship between the sample rates of default pi and their population
counterparts are

pi = Pi + εi → Φ−1 (pi) = Φ−1 (Pi + εi)

which could be aproximated by (Novales, 1993)

Φ−1 (pi) ≃ x′
iβ+

εi
f (x′

iβ)

where Φ (·) denotes the distribution function of a standard Normal variable.
As mentioned in Novales (1993), the last expression suggests that we can
estimate the parameter vector β by regressing the sample probits Φ−1 (pi) on
the variables x. Considerations about the heteroskedasticity of the residual
can be found in the cited reference.

To check the model’s goodness of fit, Novales (1993) also provides a
comparison of different regressions (probit, logit or lineal) in terms of the
mean square error (MSE) . The statistic s is defined as

s =

T∑

1

ni

(
pi − P̂i

)2

P̂i

(
1 − P̂i

) ∼ χ2
T−k (4.4.5.2)

where ni represents the sample size of the data (subscript i refers to asset
class or group) and pi, P̂i are the observed and estimated frequencies, respec-
tively. The statistic s follows a chi-square distribution with T − k degrees
of freedom, sample length T and k restrictions.

4.5.2 Variables and estimation

With the intention of illustrating the estimation of the model (4.4.2.7), we
have chosen a set of six explanatory variables for the rates of default: the
real Growth Domestic Product (GDP), the Consumers Price Index (CPI),
the annual return on the S&P500 index (SP ret), its annualized standard
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Table 4.5: Descriptive Statistics

Statistics Mean Median Std Skew Kurtosis Max Min

IG 0.00 0.00 0.00 2.25 8.21 0.01 0.00
SG 0.04 0.04 0.03 1.02 3.10 0.11 0.00

SP ret 0.03 0.04 0.07 -0.61 2.51 0.13 -0.12
SP std 89.47 39.40 106.34 1.42 3.72 390.19 7.55
GDP 0.01 0.02 0.01 -0.61 2.88 0.03 -0.01
CPI 0.02 0.02 0.01 1.23 3.78 0.06 0.01

10 rate 7.76 7.42 2.42 0.84 3.23 13.92 4.01
IPI 0.01 0.01 0.02 -0.46 3.29 13.92 -0.04

Descriptive statistics for the set of explanatory variables. Table exhibits the mean,
median, standard deviation, skewness, kurtosis, maximum and minimum of the
variables under study.

deviation (SP std), the 10-year Treasury Constant Maturity Rate (10 rate)
and the Industrial Production Index (IPI).16 As dependent variables we have
the annual rates of default for two investment grades: non investment grade
(SG) and investment grade (IG), both collected from Hamilton et al (2005)
. Due to the availability of default rate data, the sample period has been
taken from 1970 to 2004, which results in 35 observations. A summary of
the main statistics and the correlation coefficients is presented in Tables 5
and 6, respectively.

To visualize the influence of the proposed explanatory variables in the
default rates, Figure 7 represents the scatter plots of non-investment grade
rates of default versus different explanatory variables. This figure seems to
corroborate what we could guess departing from the correlation parameters
included in Table 6: the standard deviation of the S&P 500 returns, the
GDP and the CPI can be good candidates for explaining the default rate in
the case of the non-investment firms. Additionally, at a certain degree, the
S&P 500 return can be added to this list as a possible explanatory variable
in the case of the investment firms.17

16All data are available from the Federal Reserve Bank of St. Louis webpage
(www.stlouisfed.org) except the S&P 500 index level, which has been taken from
Bloomberg.

17A similar figure, available upon request, with investment grade rates of default was
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Table 4.6: Correlation matrix

IG SG SP ret SP std GDP CPI 10 rate IPI

IG 1.00
SG 0.41 1.00

SP ret -0.24 -0.22 1.00
SP std 0.18 0.35 -0.04 1.00
GDP -0.1431 -0.35 0.50 0.00 1.00
CPI -0.1847 -0.32 -0.28 -0.50 -0.49 1.00

10 rate -0.10 -0.23 0.06 -0.61 -0.11 0.61 1.00
IPI -0.15 -0.29 0.27 -0.04 0.67 -0.33 -0.13 1.00

One step ahead is to compute how much of the sample can be explained
by the set of variables under study. To answer this question, we regress the
non-investment and investment rates on these explanatory variables. Table
7 shows the results. The first row corresponds to the different independent
variables under study. The first column contains the model under study
- linear, probit, logit - and the different regressed variables (SG and IG
default rates). Second to eighth columns display different betas obtained
under different models. Finally, the last column shows the s statistic defined
in (4.4.5.2), which will be used as a naive benchmark: if the whole set of
independent variables explains some quantity of the sample, two variables
would explain “less”: the pair of variables whose s value are closest to
the benchmark could be good candidates as common factors in the model
(4.4.2.7).

We start with regressions on SG rates. One main reason recommends
this procedure: their data are more relevant to determine which factors may
cause default. Up to a point, conclusions on the factors will be more ro-
bust. Previous regressions suggest choosing the variables GDP, CPI, IPI and
SP stdas common factors in the model (4.4.2.7). These variables minimize
the statistic (4.4.5.2) with respect to other pairs of alternatives. Finally, we
select GDP and CPI as common factors according to two main reasons:

built but is omitted for the sake of brevity. However, this figure reveals that, due to the
high number of null observations in the IG sample, conclusions about the factors affecting
IG rates should be taken carefully.
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Table 4.7: Regression of SG and IG default rates with respect to different explanatory variables.

Model β0 SP ret SP std GDP 10 rate CPI IPI s

linear
SG 0.08

[0.03 0.12]
−0.05

[−0.19 0.09]
0.00

[−0.00 0.00]
−1.96

[−3.44 −0.47]
0.00

[−0.00 0.01]
−1.69

[−2.67 −0.71]
−0.12

[−0.71 0.46]
11.55

IG 0.00
[−0.00 0.00]

−0.01
[−0.01 0.00]

0.00
[−0.00 0.00]

−0.018
[−0.09 0.05]

0.00
[−0.00 0.00]

−0.04
[−0.09 0.01]

−0.01
[−0.03 0.02]

1.78

probit
SG −1.38

[−1.86 −0.90]
−0.88

[−2.38 0.62]
0.00

[−0.00 0.00]
−23.74

[−39.74 −7.73]
0.05

[−0.00 0.10]
−26.80

[−37.34 −16.25]
−1.37

[−7.65 4.92]
13.94

IG −3.40
[−4.32 −2.47]

−1.21
[−4.08 1.66]

0.00
[−0.00 0.00]

−17.15
[−47.79 13.49]

0.05
[−0.05 0.15]

−16.66
[−36.85 13.53]

3.63
[−8.40 15.66]

6.05

logit
SG −2.34

[−3.46 −1.23]
−2.16

[−5.62 1.30]
0.00

[−0.00 0.00]
−54.85

[−91.78 −17.91]
0.12

[−0.00 0.24]
−64.76

[−89.09 −40.42]
−3.25

[−17.75 11.25]
15.04

IG −8.12
[−11.49 −4.74]

−4.20
[−14.67 6.27]

0.00
[−0.01 0.01]

−64.24
[−176.03 47.55]

0.18
[−0.18 0.54]

−60.29
[−133.94 13.36]

14.57
[−29.33 58.46]

6.79

Regression of Non-investment (SG) and Investment (IG) default rates with respect to different explanatory variables. SP ret
and SP std are the yearly returns and standard deviation of the S&P500 Index. GDP, 10 rate, CPI and IPI are the Growth
Domestic Product, ten year constant maturity rate, Consumer Price Index and Industrial Production Index, respectively.
Finally, s is the fit statistic defined in (4.4.5.2).
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1. Firstly, the Industrial Production Index could be seen as a proxy of
the GDP and its information could result redundant. Moreover, re-
gressions of probit-logit models using these two variables support the
choice of GDP against the IPI.

2. Secondly, regressions on the parameter SP std give a beta close to the
precision imposed to our estimated parameters (10−4).

Table 8 presents in columns the OLS18 estimates for betas of indepen-
dent term, GDP variable and CPI variable, respectively, using the SG rates.
Confidence intervals at the 95% level are displayed into brackets. The rows
in this table also display regression results for linear, probit and logit mod-
els. The last row contains the value of the statistic (4.4.5.2) obtained for
each case. Attending to the goodness-of-fit criteria using s, the OLS pro-
bit model regression provides the best fit to the sample19. Overall, all the
beta estimates corresponding to OLS regressions are negative, except for
the independent term of the linear model, which leads to higher s statistic.
Results concerning to OLS regressions can be interpreted as follows: a nega-
tive beta implies an increasing on default probabilities. In line with this, as
expected, a decrease in GDP rates may produce an increase on SG default
rates. Surprisingly, an increase in the CPI rate could diminish the rates of
default, which might result counter-intuitive.

Table 9 shows regression results for linear, probit and logit models using
IG rates as dependent variable. It is worth to notice that results are not
conclusive as 63% of the sample under study are zeros. GLS estimations
do not make sense in this context. In order to avoid numerical problems
in the estimation, we have added the quantity 0.00005 to the sample, as
suggested by Greene (2003). The first row displays the independent term
and explanatory variables. Each pair of the following rows contains firstly
the different values of betas obtained using two variables (GDP and CPI);
secondly, their values using only the GDP variable. Maximum likelihood
estimates (available upon request) for the probit and logit models are close
to those parameters obtained for respective OLS models. We have estimated
GDP variable alone with the intention of analyzing the explanatory power
of the GDP on IG rates. First to second rows show the model and procedure
used. The last column displays the value for the statistic s. At a certain
degree, results on Table 8 could support the inverse relationship between

18GLS estimates have not been computed due to the sample size.
19Maximum Likelihood estimates (available upon request) for models probit and logit

are close to those parameters obtained for respective OLS models.
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Table 4.8: OLS regressions for SG default rates

SG Model β0 GDP CPI s

linear OLS 0.10
[0.07 0.12]

−2.24
[−3.25 −1.23]

−1.47
[−2.16 −0.78]

21.80

probit OLS −1.08
[−1.36 −0.80]

−26.77
[−38.18 −15.36]

−21.63
[−29.37 −13.89]

14.77

logit OLS −1.63
[−2.28 −0.98]

−61.90
[−88.46 −35.34]

−51.78
[−69.80 −33.76]

15.40

Results for regressions of Non-investment (SG) default rates on real Growth Do-
mestic Product (GDP) and Consumer Price Index (CPI) as explanatory variables.
s correspond to the fit statistic defined on expression (4.4.5.2).

the explanatory variables and the IG rates of default, as previously noted
for the SG case.

4.5.3 Interpretation of coefficients

As pointed out by Elizalde (2005), due to the difficulty of interpreting what
the correlation term represents, estimating the correlation term in factor
models is not an evident task. Looking at equation (4.4.5.1), the estimate
β describes the effect from the explanatory factor x through a non-linear
transformation of the firm’s asset value, which itself is unobserved, as it
is also noticed by Elizalde (2005). As this fact complicates understanding
the proper correlation term, the author enumerates some measures used ad
hoc by practitioners, as equity return correlations, to conclude about the
insufficiency (and scarcity) of papers that deals with this problem.

Our interpretation of coefficients in the model (4.4.2.7) goes in the di-
rection of the econometric explanation for the coefficients of the linear, logit
and probit models, that is, the influence of the exogenous variables on the
endogenous one. In other words, the (relative) impact of the explanatory
variables on the probability of default. Following Novales (1993), this inter-
pretation of estimates for the linear model must differ to that for the logit
and probit models.20 This is the main reason why we split our results in

20For example, the relationship between the explanatory and explained variables in the
probit model is non-linear while the linear probability model implies linearity between
dependent and independent variables.
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Table 4.9: OLS regressions of IG default rates.

IG Model β0 GDP CPI s

linear OLS 0.00
[0.00 0.00]

−0.04
[−0.09 0.01]

−0.03
[−0.06 0.01]

5.09

OLS 0.00
[0.00 0.00]

−0.02
[−0.06 0.03]

– 2.26

probit OLS −3.14
[−3.65 −2.64]

−14.16
[−34.97 6.65]

−11.24
[−25.36 2.89]

6.44

OLS −3.48
[−3.77 −3.19]

−5.99
[−24.52 12.54]

– 8.63

logit OLS −7.18
[−9.03 −5.33]

−50.80
[−126.73 25.13]

−40.74
[−92.26 10.79]

7.17

OLS −8.40
[−9.45 −7.35]

−21.16
[−88.75 46.43]

– 9.64

Results for regressions of Investment (IG) default rates on real Growth Domes-
tic Product (GDP) and Consumer Price Index (CPI) as explanatory variables. s
correspond to the fit statistic defined on expression (4.4.5.2).

two tables, Tables 10 and 11, that include - respectively - the estimation of
the linear and logit-probit models.

Regarding the estimates of the linear probability model, Table 10 reflects
the contribution of the two explanatory random variables to the probability
of default. The main conclusions are obtained from the default probabilities
of non-investment grade assets (SG), but can also be extended to the invest-
ment grade (IG) ones. Looking at Table 10, it is interesting to observe the
sign of the coefficients, which is negative: the more we decrease the GDP or
the CPI, the more we increase the rates of default. Given the value of the
coefficients, the variables have the same contribution to the default prob-
ability. With reference to the fit of the model to the data, under the null
hypothesis that the goodness-of-fit to the sample is good, we cannot reject
that the linear probability model could explain the results obtained.

Table 11 includes the ratio between estimates for SG and IG series for
probit and logit models, respectively. By and large, the conclusions are the
same for all the series under study. According to Novales (1993), the ra-
tio between the estimated betas measures the relative contribution of the
explanatory variables on the default probability. Results are consistent to
those obtained for the linear probability model: the negative sign of the ex-
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Table 4.10: Results for the linear probability model.

Linear model β0 GDP CPI s χ2
95% (32) χ2

99% (32)

SG 0.10 -2.24 -1.47 21.80 No reject No reject
IG 0.00 -0.04 -0.03 5.09 No reject No reject

Estimated coefficients for the linear probability model. s correspond to the fit
statistic defined on expression (4.4.5.2).

Table 4.11: Estimated coefficients for probit and logit models.

β0
GDP
CPI s χ2

95% (32) χ2
99% (32)

Probit model
SG -1.0785 1.2377 14.7653 No reject No reject
IG -3.1421 1.2606 6.4347 No reject No reject

Logit model
SG -1.6293 1.1954 15.4018 No reject No reject
IG -7.1801 1.2470 7.1658 No reject No reject

Estimated coefficients for probit and logit models. s correspond to the fit statistic
defined on expression (4.4.5.2).

planatory variables, which reflects an opposite effect between default ratios
and the macroeconomic variables. Moreover, the relative contribution of
the explanatory variables remains equal, as was also derived from Table 10.
Finally, we do not reject the goodness-of-fit of the model using confidence
levels of 95% and 99%.

4.6 Conclusions

The current success of the credit derivatives market for tranched products
is one of the biggest ones seen within the financial industry. The standard
pricing model, widely used by the practitioners, is the Gaussian one-factor
model (Vasicek, 1991). However, some assumptions underlying this model
are probably too restrictive. These features concern, among others, to those
of homogeneity of asset classes involved, or the exposure to one sources of



4.6. CONCLUSIONS 179

systematic risk.
In a more realistic setting, Schonbucher (2003) or Lando (2004) pointed

out that a credit portfolio is composed by different asset classes or buck-
ets, attending to criteria as, for example, investment grade, non-investment
grade assets or industry. The exposure of a credit portfolio to a set of
common risk factors could be significant between groups, but should be ho-
mogeneous within them. In line with this, the idea of two groups of assets
treated in different ways could become a more realistic assumption than that
used previously in the literature.

With the aim of contributing to the current literature, this article has
considered a family of models that takes into account the existence of dif-
ferent asset classes or regions of correlation. In more detail, this paper has
generalized the two assets-two Gaussian factor model of Schonbucher (2003)
by proposing a two by two model (two factors and two asset classes). We
assume two driving factors (business cycle and industry) with independent
t-Student distributions, respectively, and allow the model to distinguish be-
tween portfolio assets classes. It may be worth noting that one of the main
implications from considering the t-Student distribution is that we assign a
higher probability to high default events.

Our work contributes to the existing literature in the analysis of these
asset class models. To the best of our knowledge, no similar study has been
reported yet in this direction. Regarding the distributional assumptions, we
have extended the standard Gaussian model by considering the t-Student
distribution. In this way, we have dealt with a more general model with the
additional advantage that includes the Gaussian model as a particular case.
We have also provided the econometric framework for assessing the param-
eters of the posited model. Finally, an empirical application with Moody’s
data has been presented as an illustration of the methodology proposed.

After proposing several explanatory variables, it seems that the standard
deviation of the S&P 500 returns, the GDP and the CPI can be good candi-
dates for explaining the default rates in non-investment firms. Additionally,
at a certain degree, the S&P 500 return can be added to the previous ones to
explain the default rates for investment firms. Additionally, a more detailed
study leads to select GDP and CPI as common factors.

Focusing on OLS estimates, it is seen that - as expected - a decrease in
GDP rates may produce an increase on SG default rates. Surprisingly, it
is also obtained that an increase in the CPI rate can diminish the default
rates Regarding the estimates of the linear probability model, we see that
the more we decrease the GDP or the CPI, the more we increase the rates
of default.
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Finally, the ratio between estimates for SG and IG series for probit and
logit models has been analyzed. The conclusions are the same for all the
series under study and the results are consistent to those for the linear
probability model: there is a negative relationship between default ratios
and the macroeconomic variables. Deeper explanation for these empirical
findings will be the subject of further research.



Chapter 5

Numerical Pricing of
Collateral Debt Obligations:
A Monte Carlo Approach

This chapter1 addresses in a simple and illustrative way one of the different
alternatives that can be used to price and manage this type of derivatives.
In more detail, we explore the CDO pricing model proposed recently in
Longstaff and Rajan (2007). Then, this chapter analyzes this model consid-
ering different multi-factor versions and, additionally, some extensions are
proposed considering jumps in the default process or a random loss distri-
bution.

Our simulation analysis shows evidence that a three-factor version of
this model with constant losses impact is flexible enough to reproduce the
spreads given by the market. In addition to this, the inclusion of jumps
to the default process results in an high arrival of credit events. Finally, it
is shown that the alternative of random losses can be helpful when dealing
with one- and two-factor models.

1I would like to thank to J.I. Peña for his helpful comments and suggestions. I also
acknowledges financial support from the Plan Nacional de I+D+I (project BEC2003-
02084) and the Gobierno Vasco-UPV project (GIU 06/53), especially to Jose M. Usategui.
Previous drafts of this chapter have been accepted to be presented on XV Foro Finanzas
AEFIN, 15th-16th November 2007, Palma de Mallorca, Spain, and XXXII Simposio de
Análisis Económico, 13rd-15th December 2007, Granada, Spain. I have also benefit from
the comments of participants in a seminar at Universidad Complutense, Madrid, Spain.
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5.1 Introduction

The pricing of derivatives based on portfolios composed by assets with de-
fault risk has received an increasing attention during the last years. Up to
a point, this may be due to the recent appearance of the highly successful
Credit Default Swap (CDS) market, where the irruption of indexes like the
DJ iTraxx or DJ CDX, and their tradable tranches series have contributed
to their fast growing over the last years. For example, the International
Swaps and Derivatives Association (ISDA) reports an increase in the no-
tional principal outstanding volume2 of CDS from $26.0 trillion at June 30,
2006 to $34.5 trillion at December 31, 2006, which represents a 33% in-
crease during the second half of 2006.3 In view of this fast development of
standardized credit markets, the recent financial literature has focused their
interests on the pricing of these new credit linked products, with attention
to the modelling of some interesting features presented in these assets.

Probably, the main characteristic in basked credit derivatives products
is their exposure to default correlation, intended as the different relation-
ships of dependence between defaults that could be given among firms: the
higher the correlation between the assets in a credit portfolio, the higher
the probability of suffering a big loss in the portfolio. Then, the role of the
correlation is crucial to price assets as, for instance, First-to-Default Swaps
(FtD) or Collateral Debt Obligations (CDO).

The recent literature on credit risk refers, at least, four main approaches
to achieve correlation among different obligors. As pointed out by textbooks
of Schönbucher (2003), Lando (2004) or Duffie and Singleton (2003), the
academic literature provides different frameworks to introduce correlation.
Those more cited in the literature are the following:

• Structural models

• Intensity models

• Copulas

• Mixture models

2ISDA news release, April 18, 2007. Available at http://www.isda.org. This report
refers to credit default swaps on single-names, baskets and portfolios of credits, baskets
and index trades.

3CDS notional volume growth rates were 52 percent during the first half of 2006. Those
reported for the whole years 2006 and 2005 were 102 percent, and 103 percent, respectively.
Source: www.isda.org.
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Roughly speaking, the main difference between these different pricing
models for CDOs consists on the form that they use to achieve correlation
among different obligors. We will focus here in the two main approaches
to introduce default dependence between assets, in line with the two main
paradigms for analyzing credit risk:4

1. On one hand, the structural based models, which take into account the
capital structure of a firm by relating the value of the issuing company
to its liabilities (Schmidt and Stute, 2004). This family of models
includes those of Merton (1974), Black and Cox (1976) or Leland and
Toft (1996), among others.

2. On the other hand, the reduced form approach is based on the relative
valuation of credit derivatives by means of market data, with no care
about any firm features. Jarrow and Turnbull (1995) or Duffie and
Singleton (1999), among others, can be included within this second
group.

To put it briefly, the main basic difference between structural and re-
duced form models consists on how they consider the causes of default:

1. The structural models explain the event of default as the impossibility
of the firm to respond to their liabilities, that is, in an endogeneous
form.

2. By contrast, the intensity based model analyze the dynamics of default
from an “exogenous” point of view, extracting directly the probabili-
ties of default from the observation of market prices (Giesecke, 2004).5

Due to its direct connection with the literature of bond pricing, the inten-
sity approach has became an standard in the valuation of corporate bonds
and their credit derivatives counterparts (CDS, for example). Although, the
intensity based literature has not been capable to extend its influence to
the pricing of credit basket derivatives, and specially to tranched products
like the Collateral Debt Obligations (CDOs). Some remarkable contribu-
tions are those of Duffie and Garlenau (2001), which basically considers
correlations between the default times of individual firms. Nevertheless, as

4See Schönbucher (2003) or Duffie and Singleton (2003) for an overview of additional
alternatives for modelling default dependencies.

5Recently, Duffie and Lando (2001) has demonstrated that both approach are connected
by information asymmetries.
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pointed out by Hull and White (2004) or Mortensen (2006), this procedure
is computationally burdensome.6

In addition to the lack of tractability of intensity models, another plau-
sible reason that may explain the wide-range usage of factors models by the
practitioners may be given by the popularity of some models like the Credit
+ of Moody’s or the KMV (see Schönbucher (2003) or Schmidt and Stute
(2004) for a digression of these models). Directly inspired in Merton (1974),
both models formalize the CDO pricing under an individual level firm frame-
work by modelling the default of individual firms that trigger some threshold
previously determined, and combining their different possibilities. Further-
more, the development of techniques that improve the computation times of
former models (usually highly time consuming) has contributed to extend
the scope of these models.7

In contrast to this individual approach, where the total number of de-
faulted firms is conditioned by the level of correlation among the obligors,
Longstaff and Rajan (2007) posited a joint default approach for the pricing of
CDOs: basically, they assume that defaults could be clustered, in the sense
that joint defaults could happen simultaneously, an approach closely linked
to the contagious scheme of Davis and Lo (1999). Contrary to Duffie and
Garlenau (2001) approach, where defaults are considered at an individual
level, the assumption of joint default simplifies dramatically the computation
of CDOs prices, as will be shown later.

The aim of this chapter is to study the pricing of CDO tranches us-
ing the intensity based scheme of clustered defaults developed by Longstaff
and Rajan (2006). Our intention is to explore the capability of the model to
generate reasonable values for CDOs tranches under different sets of circum-
tances, particularly those referred to the number of factors used and their
impact in the loss distribution. We also explore some natural extensions of
the original model, extending its range mainly in two directions: firstly, by
analyzing the consequences of adding jumps to the default process; then, by
randomizing the impact of defaults in the loss distribution. To the best of
our knowledge, no similar studies has yet been reported.

This chapter is organized as follows. Section 2 reviews the mechanics of
the CDS and their related indexed products like Itraxx or CDX. Section 3
describes the model posited in Longstaff and Rajan (2007) and introduces

6Recently, Mortensen (2006) has implemented a tractable extension of the Duffie and
Garlenau (2001) framework by considering the algorithm of Andersen, Sidenius and Basu
(2003) for factor models.

7We can mention the algorithm of Andersen, Sidenius and Basu (2003) as an example
of this type of methods.
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some modifications in that paper. Section 4 performs a Monte Carlo study
to illustrate numerically some extensions we propose in the original model by
Longstaff and Rajan (2007). Finally, the main conclusions are summarized
in Section 5.

5.2 CDS indexes

This section is devoted to the CDS indexes. We outline here their main
features, beginning with their most basic component, the Credit Default
Swap; then, we review their pricing mechanics, and provide some standard
pricing formulas. This part is mainly based on Felsenheimer, Gisdakis and
Zaiser (2004), Jakola (2006) and references therein.

5.2.1 CDS

Prior to show the mechanism of a CDX index, it is necessary to describe
briefly the main component of this index, the Credit Default Swap (CDS). A
CDS is a financial product used to hedge mainly fixed income assets (for in-
stance, bonds) against certain types of credit events.8 Then, a CDS is based
on an agreement between two parties where one of them - the protection
buyer - pays a defined, periodical amount to the other - the protection seller
- contingent to the occurrence of a given credit event (usually a default). If
there is no default, the protection buyer must pay a defined premium until
maturity. By contrast, if default happens, the protection seller must pay
to the protection buyer an amount equal to the difference between the face
value of the asset (for instance, a bond) and its market value after default.
As pointed out by Duffie and Singleton (2003), a CDS can be seen as a
default insurance on loans or bonds.9

Up to a point, the success of the CDS market could be explained as these
assets provide to investors with a simple, liquid tool to remove the credit
risk exposure of their portfolios in an easy way. Blanco, Brennan and Marsh
(2006) underlines that the cost of shorting credit risk in the corporate bond
market is high, mainly due to illiquidity costs. By using CDS, investors
can short credit risk over a longer time period at a known cost by buying
protection.

8For instance, Moody’s refers bankruptcy, delayed disbursement of principal or some
legal distresses, among others.

9As noted by Blanco, Brennan and Marsh (2006), the difference between a CDS and
an insurance contract is of legal type: under a CDS, holding an insured asset to claim
compensation is not necessary.
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5.2.2 CDS Indexes

The product

A direct consequence of the fast growing of the credit market has been the
appearance of standardized products that diminish the hedging cost of port-
folios composed by a large number of firms, by means of transferring their
credit risk without necessity of buying CDS contracts on each individual
firm. An example of these kind of products is the Credit Default Swap
Index.

A CDS index is a basket of equally weighted CDS single names that
serves as underlying for some tranched products, swaps, etc. Felsenheimer,
Gisdakis and Zaiser (2004) refers that a CDS index can not be characterized
as a classical index, in the sense that no index level is computed. They also
noticed that quoted prices for these products are a result of supply and
demand within credit markets.

Jakola (2006) refers two main tradable index families: the Dow Jones
CDX and the International Index Company Itraxx. Basically, both indices
are portfolios that present similar features as, for instance, the following:10

• Both indices are composed by the 125 most liquid firms in the CDS
market.

• These firms are investment grade rated.

• The index composition is revised every six months.

With respect to differences between these indices, we can mention that
the Dow Jones CDX only include US-names while the Itraxx only takes into
account European names.

The Mechanism

To explain the payment mechanism in a CDS index, we illustrate briefly
here its two main situations, depending whether there is default or not.
We address the reader to Felsenheimer et al (2004) for a more detailed
exposition.

Investors on CDS index can find any of the following alternative situa-
tions:

10See Jakola (2006) for references to the Dow Jones CDX and Felsenheimer, Gisdakis
and Zaiser (2004) for the Itraxx Index.
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• No credit event happens. Here, the protection buyer pays to the
protection seller a constant premium. This premium is computed as
a percentage (named the spread) on a definite notional amount and is
paid on a quarterly basis until maturity.

• A credit event happens. Now, the magnitude of the event and the
recovery value determines the cash payment between the parties in-
volved. As an example, we will assume that 1.6% of the firms included
in the total portfolio default (2 over 125) and a recovery rate of 50%.
Here, the protection seller pays the amount of 1.6% × notional × 50%
to the protection buyer. As could be intended, the protection seller
is exposed to recovery risk. With respect to the protection buyer,
he continues paying the constant premium on the remaining notional
amount, which is now 98.4% of the original. This quantity should be
paid until maturity or until other credit event.

The existence of a tranched products market besides each CDS index
has provided a liquid, simple way of removing the credit exposure associ-
ated to fixed, standardized fractions - tranches - of the underlying portfolio
losses. In other words, without necessity of creating the full capital struc-
ture, an investor can hold individual index tranches according to their needs.
Longstaff and Rajan (2007) argues that this huge flexibility has contributed
to the fast increase in the trading volume of the index tranches.

5.2.3 Pricing formulas

To complete this overview of tranched products, this section outlines the
basic formulas for pricing a CDO. For a more detailed exposition, we refer
the reader to Gibson (2004) or Elizalde (2005) and references therein.

Roughly speaking, pricing a CDO means to compute the fair value of
the percentage on a definite notional that must be paid for the CDO issuer
- protection buyer - to their counterpart, the CDO investor or protection
seller. As previously mentioned, this percentage is called the spread. With
small differences with respect to a swap, a CDO is a contract between two
parties where the CDO issuer pays periodically a fixed coupon - based on
the spread - to her counterparty. This payoff scheme is close to that of a
Credit Default Swap in the sense that the payments are contingent to the
occurrence of a credit event on the underlying. However, its difference comes
from the following facts:
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1. We operate over a pool of firms in the case of a CDO, instead of a
single name as in a CDS

2. We can define the loss amount of the underlying portfolio in percentage
terms (tranches) that the protection seller agrees to offer protection,
in contrast to a CDS, where the protection seller must face to the total
amount of the (single) loss.

Usually, a CDO is issued over a portfolio of bonds, loans, CDS or other
defaultable instruments (Elizalde, 2005). The exposure to the losses in the
portfolio is sold in tranches, that is, percentages on the total portfolio losses.
Their bounds are usually standardized and called attachment points. For
instance, usual attachment points are 0%-3% for the equity tranche - riskier
- and 15%-30% for the senior tranche - smaller risk.11 Intermediate tranches
are called mezzanine and their attachment points vary from 3%-7%, 7%-10%,
and 10%-15%.

An additional feature of a CDOs is the hierarchy in the payoffs: cash-
flows generated by the pool of firms are assigned by seniority to the different
tranches of the CDO; first, the owners of senior tranches, and mezzanine and
equity tranches subsequently. It is worth to say that equity investors receive
the last payments of the credit portfolio. As a result, these investors are
highly exposed to the first losses that may occur in the underlying portfolio.

As pointed out by Elizalde (2005), the pricing of a CDO is similar to
that of a swap contract in the sense that the spread is fixed as there is no
up-front payment between the parties. In line with this argument, we must
compute the cash flows received for each part and equate - in present value
terms - both amounts.

Let s be the spread of the CDO, and let U and L be the upper and
lower attachment points that define the tranche, respectively. Let R also be
the recovery rate, and let Xt be a random variable which defines the total
distribution of losses in the portfolio at time t. For the ease of the exposition
we will define later the function f (·) that defines the losses of the tranche
holders over the total losses in the portfolio.12

On one hand, the cash flows received by the protection seller will be the
(unknown) spread s over their associate tranche (U − L) computed on a
principal amount. If any firm of the portfolio defaults, the protection seller
will receive the same spread but over the new (reduced) notional amount,

11Bespoke tranches are also available in Over-The-Counter markets.
12To be consistent with our notation, recovery rates, attachment points and the losses

in the portfolio are given in percentage terms.
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U − L − E[f (Xt)].
13 The accrual factor for the payment t is given by ∆t.

Computing the corresponding present value for each date of payment, this
results

Pseller = s

T∑

t=1

e−rt∆t (U − L− E[f (Xt)]) (5.5.2.1)

On the other hand, the protection buyer expects to receive the discounted
amount of the total losses produced on the tranche during the different
periods, which are

Pbuyer =
T∑

t=1

e−rj (E[f (Xt)] − E[f (Xt−1)]) (5.5.2.2)

By equating expressions (5.5.2.1) and (5.5.2.2), we get the spread

s =

∑T
t=1 e

−rj (E[f (Xt)] − E[f (Xt−1)])∑T
t=1 e

−rt∆t (U − L− E[f (Xt)])
(5.5.2.3)

Finally, the exposure to the total portfolio losses faced by the tranche
investors is given by

f (Xt) = min [(1 −R)Xt, U ] − min [(1 −R)Xt, L]

= max [min [(1 −R)Xt, U ] − L, 0] (5.5.2.4)

where, of course, the recovery rate affects directly the total portfolio losses.

5.3 The model

This section is devoted to the model. First of all, we justify the idea of
correlation among firms, and cite the main approaches presented in the
literature to model it. Secondly, we analyze some interesting aspects of the
Longstaff and Rajan (2007) model, incorporating also some extensions.

5.3.1 Previous models

The distribution of losses in basket products like CDS indexes or tranches
plays a crucial role, because of the amount of cash flows delivered between
the protection seller and the protection buyer depends dramatically on the
number of default events occurred during the contract: the higher thee

13Of course, until the total losses of the portfolio overcome the tranche.
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Figure 5.1: Relative frequencies of yearly default rates. The empirical yearly de-
fault rates are represented in bars. The dashed-line corresponds to simulated default
rates for a portfolio of one hundred independent obligors. The solid line represents
the default rates obtained with the Vasicek (1991) model for the same portfolio but
considering a correlation parameter of 10.00%. Individual default probabilities are
fixed at 1.20%. Simulation parameters have been previously estimated from real
data.

number of firm defaults in the portfolio, the higher the losses. In some cases
where the prioritization schemes are embedded in some products like the
standard tranches, the losses on a definite percentage of the portfolio can
be viewed as a call spread on the total losses of the portfolio.14

One of the stylized facts generally assumed in the credit risk literature is
that firms usually default together, in the sense that a default in an individual
firm seems to increase the risk of default in some others. A simple empirical
exercise can illustrate this idea.

With the intention of checking this effect in real data, Figure 1 shows
(with an histogram) the distribution of default rates for US firms from 1970
to 2004.15

Figure 1 also displays the default rate distribution obtained in a simu-

14See Duffie and Singleton (2003) or Longstaff and Rajan (2007).
15The data has been taking from Hamilton et al (2005).
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lated portfolio (dashed line) composed by one hundred independent obligors.
For the sake of simplicity, all firms within the portfolio have the same char-
acteristics -even the same probability of default. This is usually called the
homogeneous portfolio assumption. It is clear that, in absence of correlation
among firms, the total distribution losses will be described by a binomial
distribution with parameters N = 100 and p equal to the individual default
probability of each obligors. To put it another way, it reduces to an exper-
iment repeated (independently) N times with probability of success equal
to p. Finally, this figure also exhibits the simulated rates of default for a
portfolio taking into account correlation among firms (solid line).

Simulations of default rates have been carried on using the Vasicek (1991)
model, an standard model used by the industry for pricing CDOs. Simula-
tion parameters for yhe independent (ρ = 0) and dependent cases correspond
to those previously obtained from the yearly default rates sample of Hamil-
ton, Varma, Ou and Cantor (2005). Estimated parameters of correlation
and individual default probability for the Vasicek (1991) model are respec-
tively ρ = 10.73%, p = 1.27%. Finally, parameters have been estimated
using the Large Homogeneous Portfolio hypothesis (LHP).16

As figure 1 reveals, a model that incorporates correlation among firms
seems to offer a better fit to the sample data than a model without corre-
lation. Additionally, Schönbucher (2003) also presents evidence of default
clustering through time. The intuition behind this fact is that default cor-
relation among entities results in a higher risk of joint default. That is to
say, the correlation between firms affects crucially to the total number of
defaults. As a result, models used for pricing portfolios of firms should take
into account this empirical feature of data.

Our work is focused on the recent proposal of Longstaff and Rajan
(2007), which is inserted within the intensity models family. The next sec-
tion analyzes some of its main features.

5.3.2 A simultaneous default model

Longstaff and Rajan (2007) assumes the occurrence of simultaneous defaults
within the obligors of the credit portfolio. The main idea behind this ap-
proach consists on modelling the loss distribution directly, by using a mono-
tonically decreasing process. The intuition underlying this approach is that
the arrival of a credit event (usually triggered by an underlying intensity
process) produces a fractional loss in the portfolio. Longstaff and Rajan

16See Schönbucher (2003) for a detailed discussion of the former points.



192 CHAPTER 5. CDO PRICING: A MONTE CARLO APPROACH

(2006) posit that the impact of credit events on portfolio losses are constant
through time, with a range that implies defaults from one to various tens of
firms.

In view of the former, three main components could be noticed in the
Longstaff and Rajan (2007) model: first of all, the loss process; secondly,
the process that activates the losses; and finally, the magnitude of the losses
themselves. What follows is a more detailed exposition of this point, where
we also include some extensions to the original model.

The loss process

Using the notation given in Longstaff and Rajan (2007), let Lt denote the
total portfolio losses per $1 notional amount, with L0 = 0. The dynamics
of the loss distribution is given by the expression

dLt

1 − Lt
=

n∑

i=1

γidNit, (5.5.3.1)

where

• Nit is a Poisson process with time-varying intensity λt

• γi is the magnitude of the jump size

• n represents the number of factors that affects the losses.

As shown in Longstaff and Rajan (2007), the solution of equation (5.5.3.1)
is given as

Lt = 1 − exp

(

−
n∑

i=1

γidNit

)

(5.5.3.2)

The mechanism of the model is simple: an underlying intensity process,
which captures the instantaneous default probabilities given by the market,
causes a jump in the Poisson process, which takes value 1. This activates a
(percentage) loss in the portfolio of magnitude e−γ .

Figure 2 illustrates the evolution through the time of the losses based
on a extended version of Longstaff and Rajan (2007) model for different pa-
rameters.17 We have simulated one thousand different scenarios of portfolio
losses and have collected in different histograms their evolution. As Figure

17Particularly, we have considered jumps in the intensity process. Moreover, we have
taken the impact of losses as a random variable.
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2 exhibits, the number of bigger losses in the portfolio increases when times
goes by, with a high number of zero counts in the early stages that decreases
with time.

Based on Principal Component Analysis over the CDX index and its
associated tranches, Longstaff and Rajan (2007) consider that a three factor
model is enough to capture the whole variability of prices in the CDX index
tranches. This point is also tested by Longstaff and Rajan (2007) analyzing
simplest versions of the model. Their results suggest that the three factor
model version presents a close fit to the data.

Intensity process

To capture the instantaneous default probability observed in the market,
we assume a stochastic process for the intensity of the Poisson process, λt.
By definition, the process must be guarantee positive values. Then, it is
common to assume an squared-root type process as that proposed by Cox,
Ingersoll and Roll (1985) for interest rates. We also consider in our study
the potential appearance of jumps in the intensity process, as previously
used by Duffie and Garlenau (2001) in the context of individual firms:

dλit = (αi − βiλit) dt+ σi

√
λitdZit + Jidπ (5.5.3.3)

where

• β is the mean-reversion speed of the process

• α/β determines the long-run mean value at which the intensity con-
verges

• σ is the volatility of the intensity process

Finally, we assume that jumps are driven by a Poisson process dπ with
constant intensity δi. The size of the jump is given by a random variable J
exponentially distributed with mean µi.

The objective that we pursue by adding jumps is to increase the volatility
of the intensity process. The intuition, is that, in line with that posited
by Merton (1976) for stock markets, the arrival of abnormal information
- modelled by the Poisson process dπ - could produce an increasing, non-
marginal change of magnitude J in the instantaneous default probability.
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Figure 5.2: Evolution of portfolio losses in the Longstaff and Rajan (2007) frame-
work for two different parameter sets. Notice that portfolio losses axes have different
scales.
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Impact of losses

The impact of a credit event in the total portfolio losses is given by the
parameter γi in equation (5.5.3.1). The estimations given for a three factor
model in Longstaff and Rajan (2007) suggest an economic interpretation of
the different parameters γ in terms of percentage of losses in the portfolio:
the market seems to be pricing three main credit events:

1. The default of a single obligor.

2. An industry-specific event that affects one sector of the economy (about
10 firms).

3. A wide crisis that affects the whole economy (about 75 firms).

As the authors pointed out, this interpretation is consistent with that
mentioned by Duffie and Garlenau (2001) that considers default events in
three categories: firm-specific events, industry events and recessions of the
entire economy.

Again, we adopt here a different approach by randomizing the impact
of losses after a credit event. Thus, we consider that losses are distributed
as non-negative random variables. In more detail, we assume exponentially
distributed variables with mean γ. Our pourpose is to relax the assumption
of fixed impact, in order to allow for more flexibility to the total losses
portfolio distribution.

5.4 Monte Carlo study

This section analyzes the different models posited in the previos section by
means of simulations.18 We start exploring the original model of Longstaff
and Rajan (2007), and extend the study in order to consider two possible
alternatives: in the first place by introducing jumps in the intensity process,
as previously specified; secondly, by randomizing the losses or the jumps.

Before starting this simulation study, some general considerations must
be taken into account. The simplest form of the model proposed by Longstaff
and Rajan (2006) (one factor and constant loss size) needs a four-parameter
vector Θ = (α, β, σ, γ) including three parameters for the intensity process

18Our study comprises 5000 paths simulations with 1,250 steps each one. Initial pa-
rameters for the intensity process of expression (5.5.3.3) have been fixed to those of their
long-run means. All computations have been carried on a 2.8 Mhz Pentium IV computer
with 500 Mb of RAM.
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and one for the loss impact. This means that any extension of the model
implies adding more parameters; what is more, the different combinations
of parameters that we must introduce to analyze the responses of the model
increase the difficulties of interpretation.

On account of this, some restrictions on the study must be imposed,
with the intention of extracting some reasonable conclusions about the pa-
rameters and their cross interrelationship. For this reason, we will proceed
in a sequential form by detecting (in the early stages of the model) the set of
parameters that could be of interest in subsequent extensions of the model.

As a general rule, our Monte Carlo study tries to identify the changes
on the spread of tranches in two main directions:

1. Changes on the parameters of the intensity process

2. Changes on the losses size

In line with this idea, all the following tables mainly address variations
on one of these alternative ways.

5.4.1 Longstaff and Rajan (2007) model

As a first step, we analyze the model presented in Longstaff and Rajan
(2006) with a constant impact losses γ and intensity process (5.5.3.3) without
jumps (J = 0). We start by using the parameters obtained therein due to
the inexistence of similar studies, a point that will be discussed later when
necessary.

We begin by simulating the one factor model. Table 1 displays the results
we have obtained. The first column indicates the set of parameters for the
intensity process under analysis. The second column displays the different
impacts on the portfolio losses. Finally, the last column exhibits the spreads
obtained for each of the different tranches.

Firstly, it can be seen that variations in the losses size, given by the
parameter γ, seem to produce a high variability on the tranche spreads
obtained. For instance, considering the lower impact on losses (γ = 0.005),
we obtain the same values independently of the set of parameters used.19

The influence of the volatility parameter σ seems to be irrelevant: likewise,
those differences could be explained by the numerical implementation of the
model.

19Differences in basis points of some spreads are explained by the variance of the simu-
lation procedure used.
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Table 5.1: Simulations for the one-factor model of Longstaff and Rajan
(2007)

Parameters Size losses Tranches (basis points)
α β σ γ 0–3 3–7 7–10 10–15 15–30

0.50 0.60 0.05 0.005 94 0 0 0 0
0.050 1,839 355 0 0 0
0.100 1,852 1,852 1,079 0 0
0.350 1,828 1,828 1,828 1,828 1,634

0.50 0.60 0.15 0.005 94 0 0 0 0
0.050 1,843 355 0 0 0
0.100 1,862 1,862 1,084 0 0
0.350 1,842 1,842 1,842 1,842 1,634

1.50 0.60 0.15 0.005 102 0 0 0 0
0.050 4,577 421 0 0 0
0.100 4,550 4,550 1,704 0 0
0.350 4,549 4,549 4,549 4,549 3,553

8.33 10.00 0.35 0.005 94 0 0 0 0
0.050 1,860 357 0 0 0
0.100 1,815 1,815 1,067 0 0
0.350 1,828 1,828 1,828 1,828 1,627

Simulations for the one-factor model of Longstaff and Rajan (2007). First three
columns display the diffusion parameters, respectively. Fourth column exhibits the
size losses. Finally, the table displays the different tranches values in basis points from
fifth to the end columns.
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The increase of the parameter α, related with the actual mean arrival
probability of credit events (α/β) produces large variations on tranche credit
spreads, as is also displayed in Table 1: proportional increases in α, β pa-
rameters (from α = 1.50, β = 0.60 to α = 8.33, β = 10.00) keep the long-run
mean of the intensity process constant. As a result, no changes are observed
with respect to previous cases.

Table 2 displays the simulations for the two-factor version of Longstaff
and Rajan (2007). The frst main column refers to parameters of the intensity
process (5.5.3.3) for i = 1, 2. Values under the “ Paramenters” named
column must be intended as follows: values under the α column correspond
to α1 = 0.50, α2 = 0.02; values under the β column correspond to β1 =
0.60, β2 = 0.60 and so on. Second and third main columns are those of Size
losses and Tranches, in a similar way to those in Table 1.

As expected from observing the expression (5.5.2.3), the magnitude of
losses are determinant when it comes to price the tranches: to a certain
degree, lower γ results on lower prices for tranches. This last begins to be
conditioned to the combination of losses of the two processes. For instance,
considering low losses ( γ1 = 0.005, γ2 = 0.100 or γ1 = 0.005, γ2 = 0.035)
seems not to generate as a richiest variety of spreads as higher ones (for
example, γ1 = 0.050, γ2 = 0.050).

Again, an increase in the α parameter (that controls the long-run mean
of the process (5.5.3.3)), results on higher tranches spreads.

Finally, Table 3 shows the simulations for the three-factor model. Ba-
sically, this table reveals that the addition of a third factor enhances the
spreads obtained for the one- and two-factor versions of the model. Partic-
ularly, in addition to bespoke intensity processes, the heterogeneity in the
losses impact results in a diversity of spreads for all tranches.

To put it briefly, results of this section seem to address that changes
in the σ (volatility) parameter seem not to produce changes in tranches
values. By contrast, variations in a) the long-run mean and b) the impact
of the portfolio sizes must be taken into account. This is the purpose of the
subsequent sections.

5.4.2 Longstaff and Rajan (2007) model with jumps

Here, we extend the model of Longstaff and Rajan (2007) by adding jumps
in the background processes that control the arrival of credit events. As pre-
viously cited, the underlying idea is to introduce discontinuities - jumps -in
the paths of the intensity process that could be explained as non-marginal
changes in the instantaneous probability of default. The arrival of unex-
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Table 5.2: Simulations for the two-factor model of Longstaff and Rajan (2007)

Parameters Size losses Tranches (basis points)

α β σ γ1 γ2 0–3 3–7 7–10 10–15 15–30

0.50 0.02 0.60 0.60 0.15 0.20 0.005 0.100 110 0 0 0 0
0.005 0.350 109 0 0 0 0
0.050 0.050 1,890 436 61 0 0
0.100 0.350 1,905 1,905 1,162 75 15

1.50 0.02 0.60 0.60 0.15 0.20 0.005 0.100 117 0 0 0 0
0.005 0.350 117 0 0 0 0
0.050 0.050 4,641 519 62 0 0
0.100 0.350 4,637 4,637 1,849 77 15

0.50 0.20 0.60 0.60 0.15 0.20 0.005 0.100 185 0 0 0 0
0.005 0.350 185 0 0 0 0
0.050 0.050 2,507 1,099 493 0 0
0.100 0.350 2,475 2,475 1,825 636 85

Simulations for the two-factor model of Longstaff and Rajan (2007). First block of columns displays the
different sets of diffusion parameters used on the simulations. Second block of columns describes the magnitude
of the size loses. Finally, the third block contains the different tranches values in basis points obtained.
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Table 5.3: Simulations for the three-factor model of Longstaff and Rajan
(2007).

Size losses Tranches (basis points)
Set γ1 γ2 γ3 0–3 3–7 7–10 10–15 15–30

1 0.005 0.050 0.350 143 50 7 7 7
2 0.150 0.050 0.350 1,911 1,897 1,865 975 19
3 0.050 0.150 0.350 1,891 788 51 51 16
4 0.350 0.150 0.050 1,871 1,870 1,868 1,860 1,422

Simulations for the three-factor model of Longstaff and Rajan (2007). Parameters
are fixed at α1 = 0.50, α2 = 0.02, α3 = 0.001, β1 = β2 = β3 = 0.60, σ1 = 0.15,
σ2 = 0.20 and σ3 = 0.15.

pected information could cause these kind of effects.

To keep manageable the number of parameters under study, those which
correspond to jumps in the intensity processes (the arrival intensity δ and the
mean µ of the jump amplitude) will be considered equal for all the intensity
process. All the tables in this and subsequent sections that contain these
parameters must be intended in this form.

Tables 4 to 6 display the simulations for the one-, two- and three-factors
of the Longstaff and Rajan (2007) model with jumps. By and large, same
qualitative conclusions than aforementioned in the previous section arise:
the addition of jumps results in a high value of tranche spreads. Basi-
cally, jumps introduce more volatility in the default process, which results
in higher probability of default. As result of this, the more we increase the
probability of a credit event, the more credit events we have. Another fact
arises from these tables: considering the parameters under study, it seems
that higher frequencies of relatively small jumps produce bigger impacts on
the tranche spreads than lower frequencies with large leaps.

5.4.3 Longstaff and Rajan (2007) model with jumps and ran-
dom losses

In view of the important role of the parameter γ in the total portfolio losses,
we analyze now the consequences of randomizing the impact of losses in
the Longstaff and Rajan (2007) model. We will also include jumps in the
intensity process with the intention of studying simultaneously the joint
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Table 5.4: Simulations for the one-factor model with jumps of Rajan and
Longstaff (2006)

Jump Parameters Size losses Tranches (basis points)

δ µ γ 0–3 3–7 7–10 10–15 15–30

0.02 0.10 0.005 98 0 0 0 0
0.050 2,342 378 0 0 0
0.100 2,336 2,336 1,243 0 0
0.350 2,336 2,336 2,336 2,336 2,035

0.02 0.20 0.005 99 0 0 0 0
0.050 2,653 388 0 0 0
0.100 2,673 2,673 1,337 0 0
0.350 2,633 2,633 2,633 2,633 2,260

0.10 0.10 0.005 100 0 0 0 0
0.050 3,430 405 0 0 0
0.100 3,421 3,421 1,509 0 0
0.350 3,397 3,397 3,397 3,397 2,805

Simulations for the one-factor model with jumps of Longstaff and Rajan (2007).
Diffusion parameters are fixed at α = 0.50, β = 0.60 and σ = 0.15 for the three
cases under study.

effect on the spreads.

Tables 7 to 9 show the simulations for the one-, two- and three-factors
of the Longstaff and Rajan (2007) model with jumps in the background
default process and random losses. The variables that model the size losses
are exponentially distributed with mean γ.

By and large, we can observe that considering a random impact of credit
events results in a richest diversity of spreads for all tranches. When it comes
to comparing against the previous results for the Longstaff and Rajan (2007)
model with constant γ, this is more evident. A possible explanation can be
related to the fact that taking γ as random provides a wide range of different
losses without necessity of considering combinations of fixed values for this
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Table 5.5: Simulations for the two-factor model with jumps of Rajan and
Longstaff (2006).

Jump param Size losses Tranches (basis points)

δ µ γ1 γ2 0–3 3–7 7–10 10–15 15–30

0.02 0.10 0.005 0.100 1,068 937 907 0 0
0.005 0.350 1,075 946 946 946 929
0.050 0.050 2,737 1,330 631 0 0
0.100 0.350 2,720 2,720 2,131 928 926

0.02 0.20 0.005 0.100 1,553 1,402 1,340 0 0
0.005 0.350 1,556 1,407 1,407 1,407 1,373
0.050 0.050 3,184 1,791 845 0 0
0.100 0.350 3,145 3,145 2,623 1,370 1,367

0.10 0.10 0.005 0.100 2,575 2,387 2,227 0 0
0.005 0.350 2,574 2,388 2,388 2,388 2,296
0.050 0.050 4,218 2,749 1,166 0 0
0.100 0.350 4,159 4,159 3,705 2,345 2,335

Simulations for the two-factor model with jumps of Rajan and Longstaff (2006).
Parameters are fixed at α1 = 0.50, α2 = 0.02, β1 = β2 = 0.60, σ1 = 0.15 and
σ2 = 0.20. For ease of exposition, jump parameters are equal for both processes.

parameter.

As revealed by the simulations in Table 1 for the mean value of size losses
γ = 0.005, it is also important to notice that the magnitude of the impact
in losses continues being important. Moreover, the effect of introducing γ as
random produces an smoothness of tranches values with respect to previous
cases, a point that will be discussed in the next section.

5.4.4 Sectional comparison

Finally, we study in detail the individual effects of adding jumps and ran-
domizing the losses in the Longstaff and Rajan (2007) for one, two, and
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Table 5.6: Simulations for the three-factor model with jumps of Rajan and
Longstaff (2006).

Size losses Tranches (basis points)
Set γ1 γ2 γ3 0–3 3–7 7–10 10–15 15–30

1 0.005 0.050 0.350 1,595 1,155 881 881 878
2 0.150 0.050 0.350 3,050 2,871 2,728 2,275 975
3 0.050 0.150 0.350 3,001 1,948 1,471 1,449 954
4 0.350 0.150 0.050 3,047 2,900 2,782 2,714 2,322

Simulations for the three-factor model with jumps of Rajan and Longstaff (2006).
Parameters are fixed at α1 = 0.50, α2 = 0.02, α3 = 0.001, β1 = β2 = β3 = 0.60,
σ1 = 0.15, σ2 = 0.20 and σ3 = 0.15. For ease of exposition, jump parameters are
equal for the processes, δ = 0.02 and µ = 0.10.

three factors, respectively.

Figures 3 to 5 show respectively the different versions of the model under
study. LR represents the Longstaff and Rajan (2007) model and it refers to
its simplest version. Then, we display the “jumps” and “jumps plus random
variable” versions of the model. Finally, we include the mean spreads cited
in their article with the purpose of comparing the performance of the models.
It is important to notice that we are interested in comparing the different
models (one, two or three factors) to their extended versions, taking the
empirical spreads just as an order reference.20

We begin the study for the one-factor version of Longstaff and Rajan
(2007). Figure 3 displays the spreads obtained for various tranches under
different models. As expected, the one-factor versions of Longstaff and Ra-
jan (2007) with constant loss size produces spreads so far from mean values.
Naturally, the version with jumps shows higher spreads, due to the fact
that jumps in the default process generate higher probability of arrivals of
default events. Finally, it is important to note that a single factor version
with random losses can capture the spreads given in the market, attending
at bars on Figure 1.21

20To put it in other words, there is no intention here of doing an empirical analysis of
the model. An study on this direction overcomes the objectives of this chapter.

21How to intend the default process in this context can be a subject of further research.
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Table 5.7: Simulations for the one-factor model with jumps and exponential random losses of Longstaff and
Rajan (2007)

Diffusion Parameters Jump Parameters Size losses Tranches (basis points)
α β σ δ µ γ 0–3 3–7 7–10 10–15 15–30

0.50 0.60 0.15 0.02 0.10 0.005 98 0 0 0 0
0.050 934 269 104 39 7
0.100 1,323 570 309 168 46
0.350 1,938 1,328 981 732 392

0.50 0.60 0.15 0.02 0.20 0.005 96 0 0 0 0
0.050 943 253 96 34 4
0.100 1,434 595 311 169 51
0.350 2,152 1,467 1,068 774 415

0.50 0.60 0.15 0.10 0.10 0.005 98 0 0 0 0
0.050 1,079 279 107 43 6
0.100 1,640 637 333 181 49
0.350 2,645 1,671 1,188 847 431

Simulations for the one-factor model with jumps and exponential random losses of Longstaff and Rajan (2007).
First block of columns displays the different sets of diffusion parameters used on the simulations. Second and third
blocks of columns describe the jump parameters and the magnitude of the size loses, respectively. Finally, the fourth
block contains the different tranches values in basis points obtained.
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Table 5.8: Simulations for the two-factor model with jumps of Rajan and
Longstaff (2006).

Jump Parameters Size losses (mean) Tranches (basis points)

δ µ γ1 γ2 0–3 3–7 7–10 10–15 15–30

0.02 0.10 0.005 0.100 863 427 258 148 46
0.005 0.350 1,006 731 600 492 304
0.050 0.050 1,625 662 308 144 25
0.100 0.350 2,190 1,485 1,110 823 451

0.02 0.20 0.005 0.100 1,157 529 302 169 51
0.005 0.350 1,412 997 782 618 360
0.050 0.050 1,968 774 347 157 27
0.100 0.350 2,677 1,862 1,388 1,056 555

0.10 0.10 0.005 0.100 1,647 631 331 182 53
0.005 0.350 2,201 1,448 1,087 803 419
0.050 0.050 2,622 926 386 165 28
0.100 0.350 3,716 2,662 1,978 1,416 675

Simulations for the two-factor model with jumps of Rajan and Longstaff (2006).
Parameters are fixed at α1 = 0.50, α2 = 0.02, β1 = β2 = 0.60, σ1 = 0.15 and
σ2 = 0.20. Jump parameters are equal for both processes. Parameter in Size losses
correspond to the mean of an exponential distributed random variable.
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Figure 5.3: Comparison of spreads for different tranches and different versions of
the Longstaff and Rajan (2007) model with one factor. Parameters are α1 = 0.50,
β1 = 0.60, σ1 = 0.15, γ1 = 0.10, δ1 = 0.20 and µ1 = 0.10. Finally, the γ1 parameter
corresponds to the mean of an exponential distributed random variable for the
“random losses” version of the model.
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Figure 5.4: Comparison of spreads for different tranches and different versions of
the Longstaff and Rajan (2007) model with two factors. Parameters are α1 = 0.50,
α2 = 0.02, β1 = β2 = 0.60, σ1 = 0.15, σ2 = 0.20, γ1 = 0.05, γ2 = 0.05, δ1 =
δ2 = 0.20 and µ1 = µ2 = 0.10. Finally, the parameters γi, i = 1, 2 correspond to
the mean of an exponential distributed random variable for the “random losses”
version of the model.
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Table 5.9: Simulations for the three-factor model of Longstaff and Rajan
(2007) with jumps and exponential random losses.

Size losses Tranches (basis points)
Set γ1 γ2 γ3 0–3 3–7 7–10 10–15 15–30

1 0.005 0.050 0.350 1,404 939 733 580 347
2 0.150 0.050 0.350 2,610 1,929 1,471 1,141 645
3 0.050 0.150 0.350 2,345 1,590 1,232 982 598
4 0.350 0.150 0.050 2,772 2,272 1,863 1,468 830

Simulations for the three-factor model of Longstaff and Rajan (2007) with jumps
and exponential random losses. Parameters are fixed at α1 = 0.50, α2 = 0.02,
α3 = 0.001, β1 = β2 = β3 = 0.60, σ1 = 0.15, σ2 = 0.20 and σ3 = 0.15. For
ease of exposition, jump parameters are equal for the three processes, δ = 0.02
and µ = 0.10. Finally, parameters in Size losses correspond to the mean of an
exponential distributed random variable.

Figure 4 compares the spreads for alternative versions of a two- factor
model in (5.5.3.2). Again, the model with jumps and constant γ generates
the highest spreads in equity-mezzanine tranches. We observe here that
the addition of a second factor results in spreads obtained by the constant
size loss model closer to those obtained with random size losses for every
tranches.

Finally, Figure 5 shows the spreads for the three-factor version of Longstaff
and Rajan (2006) under study. As previously deduced in Figure 2, the ad-
dition of a third factor serves to provide spreads close to those observed
empirically. The extensions that consider “jumps” and “jumps with ran-
dom losses” seem to produce spreads far away from those observed in the
market.

5.5 Conclusions

The development of markets where investors are able to trade their exposure
to credit events has contributed to the appareance of a huge diversity of
standardized financial assets. A wide range of these new products such as
First-to-Default Swaps (FtD) or Credit Default Swap Indexes are examples
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Figure 5.5: Comparison of spreads for different tranches and different versions of
the Longstaff and Rajan (2007) model with three factors. Parameters are α1 = 0.50,
α2 = 0.02, α3 = 0.001, β1 = β2 = β3 = 0.60, σ1 = 0.15, σ2 = 0.20, σ3 = 0.15,
γ1 = 0.050, γ2 = 0.15, γ2 = 0.35, δ1 = δ2 = δ3 = 0.20 and µ1 = µ2 = µ3 = 0.10.
Finally, the parameters γi, i = 1, 2, 3 correspond to the mean of an exponential
distributed random variable for the “random losses” version of the model.

of how the investors can reduce the hedging cost of portfolios including a
large number of firms without necessity of buying insurance contracts on
each individual firm.

This chapter has focused on these families of basket credit derivatives
with special emphasis on Credit Default Swap Indexes, where the role of
the default correlation (intended as the different relationship of dependence
between defaults that can be given among firms) is crucial to price these
assets.

Then, the aim of this chapter has been to study the pricing of stan-
dardized CDO tranches using the intensity based framework of clustered
defaults developed by Longstaff and Rajan (2007). These authors assume
that defaults can be bursted, that is, that joint defaults can happen simul-
taneously, an approach linked to the contagious scheme of Davis and Lo
(1999). Then, this model contrasts to the individual approach of Duffie and
Garlenau (2001), where the total number of defaulted firms is conditioned
by the level of correlation among the obligors,

We have performed a Monte Carlo study to explore numerically the
capability of this model to generate values for standardized CDOs tranches
under two different circumstances, particularly those referred to the number
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of factors used and the impact of credit events on the loss distribution.
We have also extended the original model in two directions: firstly, by

adding jumps to the default process; then, by randomizing the impact of
defaults on the loss distribution. To the best of our knowledge, no similar
study has yet been reported.

Our results seem to suggest that a three-factor version of Longstaff and
Rajan (2006) with constant losses impact is flexible enough to reproduce the
spreads given by the market. In addition to this, the inclusion of jumps to
the default process results in an high arrival of credit events, as corroborated
by the high values spreads for equity tranches. Finally, the alternative of
random losses can be helpful when dealing with one- and two-factor models,
but it seems to be irrelevant in the case of three-factor models. Anyway,
this last point can be developed as a subject for futher research.
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