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Abstract

Cornish-Fisher Distributions: Theory and Financial Applications. Ph.D The-

sis 2006. Unai Ansejo Barra. Departamento de Fundamentos del Análisis Económico

II. Universidad del País Vasco.

Every �nancial theory is based on a model about the statistical nature of �uc-

tuations of �nancial variables, being normality the standard statistical assumption in

this area. In this work we propose several improvements to this normality hypoth-

esis in order to incorporate in a better way extremal events, where fundamentally

�nancial risks reside in.

Despite its popularity in empirical and theoretical �nance, standard semi-

parametric distributions based on Cornish-Fisher Expansions (Cornish and Fisher

1937), which allow the introduction of asymmetries and heavy tails, as Gram-

Charlier (Charlier 1905) or Edgeworth (Edgeworth 1905), have long been recog-

nized to be unsatisfactory due to their derivation of negative probabilities and lack

of �exibility. These dif�culties seem to be largely overcome by our new system,

the Cornish-Fisher Density (CFD), which is also based on Cornish-Fisher Expan-

sions. In the �rst Chapter we introduce the CFD functions in both its univariate and

multivariate forms and analyze their contribution to static and dynamic models of

asset price movements, which present stylized facts as conditional heteroskedas-

ticity (GARCH, Bollerslev 1986) and dynamic conditional correlations (DCC, En-

gle 2002). We study the theoretical statistical properties of these distributions and
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analyze the in-sample goodness of �t of the different models to �nancial data as

exchange rates and market indexes, comparing the results with other models stan-

dard in the literature. Our results show that these distributions are highly �exible,

posses properties that are of interest for �nancial series like unimodality and, on the

other hand, present good estimation results providing a good framework to analyze

standard problems in mathematical �nance.

Motivated by the results from Chapter 1, in Chapter 2 we study different

areas of interest in mathematical �nance: option valuation, measure of risk through

the Value at Risk (VaR) and optimal portfolio selection under the assumption that

�nancial variables follow a CFD.

In the optimal portfolio Section we test the Markowitz (Markowitz 1959) hy-

pothesis that a mean-and-variance based analysis to construct optimal portfolios is

enough to maximize investors' expected utility function. Many authors (e.g. Arditti

1967 and Samuelson 1970) have argued that the expected utility function may be

more appropriately approximated by a function of higher moments, where investors

are supposed to like positive skewness and dislike fat-tailedness as measured by kur-

tosis. On the other hand, early empirical evidence (e.g. Levy and Markowitz 1979

and Pulley 1981) suggests that a mean-variance optimization results in allocations

that are similar to the ones obtained using a direct optimization of expected util-

ity. Therefore, in order to provide more evidence on this issue, we have analyzed

whether the inclusion of higher order moments improves the asset allocation in
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terms of utility using a Multivariate CFD model, �nding that in many cases higher

order moments cannot be discarded in the asset allocation process.

In the Value at Risk (Jorion 2000) Section we develop both an analytical

and a simulation based framework to calculate the Value at Risk of portfolios of

assets which follow a CFD, providing a graphic interface to perform easily these

calculations. We compare the quality of these VaR calculations with other standard

market models using a Backtesting, which clearly shows the out-performance of

our model.

In the Options Section we generalize the Black and Scholes option model

(Black and Scholes 1973) to include underlyings which follow a CFD density and

obtain an analytical pricing model for vanilla options, which incorporates stylized

facts as volatility smiles and has a simple interpretation. We also obtain analyti-

cal expression for the hedging parameters, which do not show anomalies present in

other semi-parametric option pricing models (e.g. Corrado and Su 1997b and Jar-

row and Rudd 1982). In addition, we compare in and out-sample estimations of

prices options using Spanish options data, and �nd that our model out-performs the

standard Black-Scholes model.



Resumen

Distribuciones de Cornish-Fisher : Teoría y Aplicaciones Financieras. Tesis

2006. Unai Ansejo Barra. Departamento de Fundamentos del Análisis Económico

II. Universidad del País Vasco.

Toda teoría �nanciera esta basada en un modelo acerca de la naturaleza es-

tadística de las �uctuaciones de las variables �nancieras, siendo la normalidad la

hipótesis estadística estándar en este área. En este trabajo proponemos varias mejo-

ras a esta hipótesis de normalidad para incorporar de una forma más adecuada los

eventos extremos, que es donde residen fundamentalmente los riesgos �nancieros

A pesar de su popularidad en �nanzas, las distribuciones semiparamétricas

estándar basadas en Expansiones de Cornish-Fisher (Cornish and Fisher 1937) que

permiten la existencia de asimetrías y colas pesadas, como Gram-Charlier (Charlier

1905) o Edgeworth (Edgeworth 1905), han sido permanentemente consideradas in-

satisfactorias debido a la presencia de probabilidades negativas y a su carencia de

�exibilidad. Estas di�cultades parecen haber sido superadas por nuestro nuevo sis-

tema, la función de Densidad Cornish-Fisher (CFD), que también están basada en

Expansiones Cornish-Fisher. En el primer capítulo introducimos las funciones CFD

en sus formas univariante y multivariante y analizamos su contribución estática y

dinámica a los movimientos de activos �nancieros, que presentan características
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como la heterocedasticidad condicional (GARCH, Bollerslev 1986) y correlaciones

condicionales dinámicas (DCC, Engle 2002). Estudiamos las propiedades estadís-

ticas teóricas de estas distribuciones y analizamos la capacidad de ajuste de los

diferentes modelos a datos �nancieros como tipos de cambio e índices de mer-

cado bursátiles comparando los resultados con otros modelos estándar en la liter-

atura. Estas distribuciones demuestran ser un buen marco para analizar problemas

en matemáticas �nancieras dado que nuestros resultados muestran que son muy

�exibles, presentan propiedades que son de interés para las series �nancieras como

la unimodalidad y obtienen buenos resultados de estimación.

Motivados por los resultados del Capítulo 1, en el Capítulo 2 estudiamos

diferentes áreas de interés en matemáticas �nancieras: la valoración de opciones,

la medida del riesgo a través del Valor en Riesgo (VaR) y la selección óptima de

carteras bajo la hipótesis de que las variables �nancieras siguen una distribución

CFD.

En la Sección de selección de carteras testeamos la hipótesis de Markowitz

(Markowitz 1959) de que una construcción de carteras óptimas basada en un análi-

sis de media-varianza es su�ciente para maximizar la utilidad esperada de los inver-

sores. Varios autores (por ejemplo Arditti 1967 y Samuelson 1970) han argumen-

tado que la función de utilidad esperada puede ser aproximada más apropiadamente

por una función de los momentos de orden superior, donde se supone que los in-

versores valoran la asimetría positiva y evitan la presencia de eventos extremos,
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medida por el coe�ciente de curtosis. Por otro lado, evidencia empírica (por ejem-

plo Levy and Markowitz 1979 y Pulley 1981) sugiere que los resultados de una

optimización media-varianza proporcionan asignaciones similares a las obtenidas

mediante la optimización directa de la función de utilidad. Por lo tanto, con el �n

de proporcionar más evidencia sobre esta cuestión, hemos analizado si la inclusión

de momentos de orden superior mejora la asignación de activos en términos de util-

idad esperada utilizando una función multivariante CFD, encontrando que en varios

casos los momentos de orden superior no pueden ser descartados en el proceso de

asignación de activos.

En la Sección del Valor en Riesgo (Jorion 2000) desarrollamos dos marcos,

uno analítico y otro basado en simulaciones, para calcular el Valor en Riesgo de

carteras cuyos activos siguen una distribución CFD multivariante, proporcionando

una aplicación informática grá�ca para realizar fácilmente estos cálculos. Com-

paramos la calidad de las estimaciones del VaR con otros modelos estándar de

mercado utilizando un Backtesting que muestra claramente la mejora de nuestro

modelo.

En la Sección de opciones generalizamos el modelo de valoración de Black

y Scholes (Black and Scholes 1973) para incluir subyacentes que posean una den-

sidad CFD y obtenemos una fórmula analítica para la valoración de opciones eu-
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ropeas vanilla, que incorpora características como la sonrisa de volatilidad y tiene

una interpretación simple. Asimismo, obtenemos una expresión analítica para los

parámetros de cobertura o Griegas que no muestran las anomalías presentes en otros

modelos de valoración semiparamétricos (por ejemplo Corrado and Su 1997b y Jar-

row and Rudd 1982). Adicionalmente, comparamos el modelo de valoración con

estimaciones dentro y fuera de la muestra utilizando datos de opciones españoles, y

encontramos que el modelo mejora al modelo estándar de Black-Scholes.
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Introduction

In these thesis we develop a new distributional function family, the so calledCornish-

Fisher Distributions, analyzing their theoretical properties studying their application in

different areas of interest in mathematical �nance: option valuation, measure of risk through

the Value at Risk (VaR) and optimal portfolio selection. The search and development of

new distributional families is an interesting mathematical task in itself and, in particular, the

search of semi-parametric distributions which do not present negative probabilities as the

traditional examples of Gram-Charlier (Charlier 1905) and Edgeworth (Edgeworth 1905).

However, the principal motivation of this work is to analyze the application of this distrib-

utional family to �nancial theory, given that, as we will see next, the potential contribution

of new statistical models in this area is specially signi�cant.

The 1900 dissertation of Louis Bachelier, The Theory of Speculation, was the �rst

attempt to model asset prices movements. He introduced the Brownian motion as the driver

of the dynamics of asset prices, suggesting �rst that prices tended to follow a random walk

and, second, that new prices are governed by a gaussian probability law. Therefore, the

gaussian function was the �rst and became the most important distribution function, as

most models conforming the traditional �nancial theory are based on the assumption of

normally distributed returns. For example, the seminal work of Markowitz 1952, where

the trade-off of risk and reward in the context of a portfolio of �nancial assets was made

explicit, or others such as Sharpe 1966, Lintner 1965, and Ross 1976, who used equilibrium

arguments to develop asset pricing models such as the capital asset pricing model (CAPM)

1
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and the arbitrage pricing theory (APT), relating the expected return of an asset to other risk

factors. Even the classic Black and Scholes option pricing theory (Black and Scholes 1973)

assumes that the return distribution of the underlying asset is normal.

One of the biggest drawbacks of gaussian distributions is that a gaussian variable

bears the statistical characteristic that "large deviations" are extremely rare. For example,

a gaussian variable departs from its most probable value by more than 2� only 5% of the

times, or more than 3� in 0:2% of the times, whereas a �uctuation of 10� has a probability

of less than 2�10�23, in other words, it almost never happens. However, market movements

of 10�; as in the market crash of October 1998, are not so uncommon in reality: one of the

most spectacular examples of non-gaussianity in markets was the default of the hedge fund

called Long Term Capital Management which was managed under gaussian risk models

and did not survive the (for the managers) statistically unexpected 1998 crash, loosing

$100 billions in two months (Lowenstein 2000). Therefore, more general statistical models

allowing for these "large deviations" where needed.

The �rst model including heavy tails in �nance dates from the sixties and is due to

Benoit Mandelbrot (Mandelbrot 1963), where he assumed a Lévy stable distribution for the

independent price changes, and since then there have been numerous studies1 devoted to

overcome limitations imposed by the popular normality assumption for stock returns. Al-

most every known distribution allowing for heavy tails has been proposed to model returns

of �nancial assets given that �nancial data, just from a purely statistical point of view, pro-

vide a rich source of variables with diverse distributional characteristics. Approximations

1 Instead of enumerating a complete list of references we recommend Rachev 2003 for an excellent and
up-to-date revision on the publications and topics related to heavy tails in �nance.
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used in the literature to model the non-normality observed in �nancial time series follow

very different strategies depending on the concrete purpose of the research. Either one can

model the unconditional distribution of returns or the distribution conditioned by past re-

turns2. On the other hand, one can also propose a continuous time model or a discrete time

model and one can focus either on a univariate or on a multivariate model. Actually, it

would be too long to list all possible strategies considered in the literature, but every model

relays in the end on an assumption involving an hypothesis over an unconditional or a con-

ditional distribution function. Actually, even continuous time models have an underlying

distribution governing the behavior of the assets3.

Moreover, when applying this model to a certain �nancial application this ultimate

distributional assumption is generally the one about the researcher is concerned. For exam-

ple, when one is constructing a statistical model to manage market risk via the Value at Risk

(see Section 2.2) one �nally comes up with a particular distribution where the multivariate

gaussian case is the most common assumption. Or when building an optimal portfolio in

some sense (see Section 2.1) one also realizes that independently on the particular model

used (continuous or discrete time) one also ends with a random variable, usually the wealth

portfolio, that follows a particular distribution. The same applies to the �eld of option

valuation (see Section 2.3) where the assumption of a continuous time process for the un-

derlying also derives a (risk neutral) distribution for the underlying at the expiration date

2 Unconditional distributions are very useful when we are interested in the long-term and our investment
horizons are such that far future returns are not determined by recent past ones, because such temporal
dependence will be diluted with passage of time. However, if we have a short-term interest the conditional
dynamic distributions would be more appropriate, where the conditional mean and volatility are very relevant
variables.
3 For example, the Brownian process is based on independent gaussian increments and the stable Lévy
process is based on independent stable increments.
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and this distribution is the necessary input for valuation purposes. Therefore, developing

new distributional families is a good way of giving new answers to old questions in �nance.



Chapter 1

Financial Modeling with Cornish-Fisher
Distributions

In this Chapter we will present the Univariate Cornish-Fisher Density Function,

which will be de�ned in terms of Cornish-Fisher Expansions, and, as we will see, can also

be derived considering a variable transformation to normality. We also propose two Mul-

tivariate Cornish-Fisher Density Functions which incorporate different dependence struc-

tures. Next, we perform a descriptive analysis of the two databases (consisting of twelve

series of exchange rates and �ve market indexes) that will be used along this work. After

analyzing the non-normality of these time series, we will present three different estima-

tion methods to quantify the parameters in the proposed model, where static and dynamic

frameworks will be considered. Finally, our results will be compared with other models

proposed in the literature.

1.1 Introduction

There have been numerous studies devoted to overcome the limitations imposed by the

popular normality assumption for stock returns, which is rejected in the empirical �nan-

cial literature. Nonetheless, any extension of the gaussian assumption should satisfy two

crucial requirements: modeling �exibility and analytical tractability. Both needs are sat-

is�ed by the semi-parametric class of distributions, which are based on an expansion-like

5
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augmentation of the normal density through the inclusion of higher order moments such

as skewness or kurtosis. The use of these expansions in this context is conceptually simi-

lar to Taylor expansions but applies to functions. In a conventional Taylor expansion some

function is approximated at a given point by a simpler polynomial. Here, the density is ap-

proximated by an expansion around a, usually, normal density. A further difference is that

expansions are usually made to obtain simpli�cations whereas here the approximation, by

involving parameters which can be varied, allows us to generate more complicated func-

tions. These semi-parametric densities have the theoretical appeal that, in principle, any

density function could be arbitrarily approximated just by adding more terms and para-

meters in the expansion around the gaussian density and, therefore, offer an increasingly

modeling �exibility. This characteristic of being an intrinsically approximative distribu-

tion is of special interest given that, as many authors remark, there could be no best true

distributional model4.

Most popular examples of semi-parametric densities are the Gram-Charlier (Charlier

1905, Jondeau and Rockinger 2001) and Edgeworth distributions (Edgeworth 1905) which

are based on Cornish-Fisher Expansions, being a very useful tool in �nancial analysis, for

example, in the �eld of option pricing by Jarrow and Rudd 1982, Corrado and Su 1997b,

Corrado and Su 1996a, Capelle-Blanchard, Jurczenko, and Maillet 2001 and Jurczenko,

Maillet, and Negrea 2002 or to describe deviations from normality of innovations in a

GARCH framework (Gallant and G.Tauchen 1989). Nevertheless, both approximations,

4 For example, Gourieraux (2000) explains this point: "There does not exist a true model for each market
that yields the best approximation of its price dynamics, captures most of the evidenced stylized facts, is valid
at different frequencies, and provides a unifying framework to portfolio management, derivative pricing,
forecasting, and risk control."
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Gram-Charlier and Edgeworth, share the theoretical drawback of yielding negative density

function values for certain parameter ranges. Besides, they cannot be used with moments

of order higher than four, because estimation of higher order moments corresponding to

observed data are often low accurate and their increasing �exibility characteristic is lost.

This limitation implies a lack of �exibility for capturing high degrees of non-normality, so

that only kurtosis up to six are achievable in practice.

As a solution of the negativeness associated to Gram-Charlier expansions, Jondeau

and Rockinger 2001 propose the restriction of the parametrical space of Gram-Charlier

distributions so that the density remains positive and, recently, León, Mencía, and Sen-

tana 2005 analyze the use of the semi-nonparametric distribution, which is derived from

a transformation of the Edgeworth distribution, which also ensures its positiveness. These

two new approximations, despite of maintaining the analytical �exibility of the Edgeworth-

Gram-Charlier moment expansion while solving the negativeness problem, inherit the lack

of �exibility for capturing high degrees of kurtosis and skewness. León, Mencía, and

Sentana 2005 demonstrate that in absence of skewness the maximal kurtosis that can be

achieved using these expansions is eight, which turns out to be very restrictive.

To solve this problem Rockinger and Jondeau 2002 introduced the so called entropy

densities that increase the modeling �exibility but at the cost of involving computationally

costly optimizations in the density de�nition. Moreover, these approaches derive multi-

modal density functions for certain parameter values and this fact should be treated care-

fully in a �nancial framework as it implies that investors would �nd more than one return

value as expectable.
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In this Chapter we propose the use of a new semi-parametric distribution function,

which turns out to overcome the dif�culties of the traditional Gram-Charlier and Edge-

worth distribution functions. While bearing the same tractability, characteristic of the

semi-parametric class of density functions, it extends their modeling �exibility in terms

of covered range of skewness-kurtosis possibilities and ensures unimodality and positive-

ness, becoming an excellent tool for �nancial modeling.

In particular, we study the parametric properties of the Cornish-Fisher Expansion

(Cornish and Fisher 1937), initially proposed as an approximation method to estimate quan-

tiles for distributions with known moments5. Truncating the Cornish-Fisher Expansion up

to a �xed order we de�ne a new class of densities that will be referred to as univariate

Cornish-Fisher density (CFd). The �rst part of this Chapter will be devoted to the study of

the theoretical properties of the univariate CFd.

In addition, in order to propose a multivariate model with CFD distributed marginals,

we can use the fact that Cornish-Fisher Densities are based on transformations to normal-

ity6. Our proposed Cornish-Fisher density is equivalent to a transformation based on a

Taylor series expansion of the QQ-Plot around normality, which is very appropriate for �-

nancial modeling and indirectly has already been applied in a very different science �eld,

namely, in structural reliability analysis (Hong 1998). However, to our knowledge, no

rigorous analysis and de�nition of the density implied by this transformation have been

5 For example, this expansion has been applied in �nance to approximate the percentile of the pro�t and
loss distribution in delta-gamma approximations for VaR calculation of portfolios containing options (Jorion
2000).
6 The concept of such transformations dates from the end of the XIX-th century and were put forward
by Edgeworth 1898. Although Edgeworth considered only transformations which could be represented by
polynomials, Johnson 1949 extended those transformations to other functions (e.g., the logarithmic one,
proposing the log-normal density function).
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presented yet. In this framework, imposing a multivariate gaussian behavior on the �cti-

tious gaussian variables that arise from the transformation to normality we will propose

the Copula-Based Multivariate Cornish-Fisher density (CB-MCFD), which exhibits non-

gaussian marginals with a gaussian dependence structure. Additionally, we also de�ne and

analyze another multivariate distribution, namely, the Variance-Covariance-Based Multi-

variate Cornish-Fisher density (VCB-MCFD), that presents CFD-like marginals, easily

incorporates standard �rst and second order dynamics models and, in opposition to the

CB-MCFD model, allows for the occurrence of simultaneous extreme events in different

marginal variables.

Many authors have highlighted the importance of incorporating �rst and second or-

der dynamics in order to capture stylized facts of �nancial returns such as volatility cluster-

ing and volatility and correlation persistence, e.g. Engle 1982, Bollerslev 1986, Koedijk,

Campbell, and Kofman 2002 and Engle 2002. In this work, we will choose the Dynamic

Conditional Correlation (DCC) with univariate GARCH processes model to capture these

features, because, as proven by Engle 2002, with this model just two parameters are re-

quired to capture correctly correlation dynamics. However, one dif�culty of those models

is that conditional residuals very often remain heavy tailed. Therefore, in order to cap-

ture both dynamic features and heavy tails, we will introduce two different multivariate

dynamic models: the Dynamic Copula-Based Multivariate Cornish-Fisher density (DCB-

MCFD) which incorporates a gaussian copula model with a DCC model and the Dynamic

Variance-Covariance-Based Multivariate Cornish-Fisher density (DVCB-MCFD) which

incorporates the dependence via a VCB-MCFD model and the dynamics through a DCC
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model. Although we have focused on the DCC model, any other multivariate dynamics,

as the BKKK model proposed by Engle and Kroner 1995, could be easily incorporated as

well.

This Chapter is organized as follows: in Sections 1.2 and 1.3 we will study statisti-

cal properties of the univariate and multivariate CFD distributions, including moments and

standardized versions, and we will show that the CFD covers a more extended region in

the skewness-kurtosis plane than other semi-parametric densities. In Section 1.4 we will

perform a descriptive analysis of the two databases that will be used along this work. In

Section 1.5 we will discuss three methods for the estimation of static models which are

identically distributed as a CFD, and we will analyze the goodness-of-�t performance of

this density using both exchange rates and �nancial indexes data. We also present uni-

variate models with dynamic �rst and second moments and innovations following a CFD,

and illustrate its application also analyzing the performance with respect to other standard

models. Finally, in Section 1.6 we discuss estimation procedures and results for both Mul-

tivariate Cornish-Fisher Densities, the CB-MCFD and the VCB-MCFD, considering both

static and dynamic frameworks.
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1.2 Univariate Cornish-Fisher Density Function

1.2.1 De�nition

In order to introduce the Cornish-Fisher Density Function, �rst we will present the Cornish-

Fisher Expansion as de�ned by Cornish and Fisher 1937 and the Edgeworth and Gram-

Charlier distributions, which are closely related to Cornish-Fisher Expansions.

A Cornish-Fisher Expansion approximates an unknown quantile of a distribution

function F in terms of the quantiles of the gaussian distribution and the cumulants of

the distribution F . This expansion becomes a very useful approximation technique, be-

cause there are available very ef�cient algorithms to calculate the quantiles of the gaussian

distribution.

To be more explicit, let R be a quantile of a non-gaussian variable which we want

to approximate and X the quantile of a gaussian variable. Formally, the Cornish-Fisher

Expansion can be seen as a polynomial expansion of the quantile R in terms of the quantile

X:

R = a0 + a1X + a2X
2 + a3X

3 + ::: (1.1)

where the parameters ai depend on the cumulants of the distribution F . Actually, in order

to obtain the Cornish-Fisher Expansion as can be found on any statistics book one has

to re-group the in�nite series of Equation 1.1 by a criteria motivated by the central limit

theorem7. Consider a variable n that measures the approximation degree to the validity

of the central limit theorem (n can be seen as a "sample size"), so that if variable n tends

7 The central limit theorem states that the limit sum of independent variables with �nite variance converges
to a gaussian variable (Gnedenko and Kolmogorov 1954).
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to in�nity then R becomes a gaussian distributed variable. In terms of this variable n the

expansion can be written as:

R = X +

1X
k=1

n�k=2�k(X) (1.2)

where �k(X) is the collection of all terms corresponding to the k-th power of n�1=2, and

can be written in terms of the cumulants �k of the distribution function R. Therefore, the

�rst terms of the Cornish-Fisher Expansion are:

R = m+ �

�
X +

1

6

�3
�3
(X2 � 1) + 1

24

�4
�4
(X3 � 3X)� 1

36

��3
�3

�2
(2X3 � 5X) + :::

�
(1.3)

wherem and � stand for the mean and standard deviation of the variable R:

In order to be more explicit, let us consider the following example: let R be distrib-

uted with the following gamma distribution, f(R); with parameter p:

f(R) =
1

�(p)
e�RRp�1

where �(p) is the Gamma function (Abramowitz and Stegun 1964). It is easy to derive that

the general expression corresponding to the cumulants of this distribution, �k, is given by

�k = p(k � 1)!. Therefore, in this case Equation 1.3 leads to:

R = p+ p1=2
�
X +

1

3p1=2
(X2 � 1) + 1

4p
(X3 � 3X)� 1

9p
(2X3 � 5X) + :::

�
(1.4)

According to this, as a practical example, if we wish to �nd the value of R whose distrib-

ution function is F (R) = 0:99 when p = 15; the gaussian standard percentile correspond-

ing to such value is found to be 2:326 and replacing this value in Equation 1.4 we �nd

R = 25:45, which is exact to two places of decimals.
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Although Cornish-Fisher Expansions are applied to theoretically determined distri-

butions (with known moments), they are directly related to the Edgeworth form of distri-

bution8. Edgeworth (and Gram-Charlier) distributions are a family of distributions which

provide an explicit relationship between the quantiles of the distribution and the moments

or cumulants (see Appendix A.1 for more details). In practice, it is unusual to use moments

higher than the fourth one in �tting an Edgeworth (or Gram-Charlier) expansion. This is

mainly because the possibility of negative values (and multimodality) becomes more prob-

able as higher terms are added, but also because, with observed data, estimation of higher

moments is often of much lower accuracy. As mentioned in the Introduction, León, Mencía,

and Sentana 2005 demonstrate that, in absence of skewness, the maximal kurtosis that can

be achieved using these expansions up to fourth order is eight, which turns out to be very

restrictive for �nancial modeling.

With the aim of obtaining a semi-parametric distribution, which does not show the

limitations of the traditional ones, in this work, instead of using the expansion as an ap-

proximation method, we propose a parametric use of the Cornish-Fisher Expansion to

develop a new family of distributions: the univariate Cornish-Fisher Distributions. As

it is demonstrated below, besides being always unimodal, these new distributions are much

more �exible than the Edgeworth, Gram-Charlier or semi non-parametric densities of sim-

ilar order.

8 Edgeworth and Gram-Charlier distributions have been implemented in very different �elds to model �-
nancial returns. As an example, in the �eld of option pricing we can cite the works of Jarrow and Rudd
1982, Corrado and Su 1997b, Corrado and Su 1996a, Capelle-Blanchard, Jurczenko, and Maillet 2001 and
Jurczenko, Maillet, and Negrea 2002.
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In order to derive these distributions we will proceed as follows: we truncate the

Cornish-Fisher Expansion up to orderm and consider the coef�cients ai in Equation 1.1 as

the parameters of the distribution. Therefore, in order to �t this new family of distributions

to �nancial data, we will seek the parameters ai in Equation 1.1 that best �t observed data.

With this parametrization, Equation 1.1 can be rewritten as:

R =
mX
i=0

aiX
i � Qm(X) (1.5)

and, as will be demonstrated below, with this formulation and a polynomial degree as small

as three we will be able to capture the main features of unconditional unidimensional �nan-

cial distributions, namely, asymmetry and heavy tails. Basically, this new parametrization

can be understood as a summation of the series made in a different and more ef�cient order.

In order to clarify this point, we will consider again the example presented above. First,

Equation 1.4 can be rewritten as:

R =

�
p� 1

3

�
X0 +

�
p
p� 7

36

1
p
p

�
X1 +

�
1

3

�
X2 +

�
1

36

1
p
p

�
X3 + ::: (1.6)

Comparing Equations 1.5 and 1.6 we can �nd the expressions for the coef�cients ai corre-

sponding to the Cornish-Fisher Expansion up to third-order. The main point here is that if

we take more terms in the expansion of Equation 1.2 we would �nd that higher terms in X

appear, likeX4 orX5; but also (and more importantly) more factors containing higher order

cumulants must be added in the coef�cients a0; a1; a2 and a3. Therefore, taking more terms

in the expansion above would be required to improve the accuracy of the �rst coef�cients.

As a conclusion, if we parameterize directly these �rst coef�cients, which interestingly are

supposed to be more important than the higher order ones, we will be gaining ef�ciency in
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terms of the number of parameters used to model the distribution. Therefore, instead of us-

ing the �rst terms of the Cornish-Fisher Expansion to model the distribution of returns as a

function of the �rst momentsm;�; �3 and �4:

R =

�
m� 1

6

�3
�2
+ :::

�
+ �

�
1� 3

24

�4
�4
+
5

36

��3
�3

�2
+ :::

�
X + (1.7)�

1

6

�3
�3
+ :::

�
X2 + �

�
1

24

�4
�4
� 2

36

��3
�3

�2
+ :::

�
X3 + :::

we use a direct parametrization of the �rst coef�cients:

R = a0 + a1X
1 + a2X

2 + a3X
3 + :::

For the following, a variable R that is distributed as a Cornish-Fisher Expansion of order

m will be referred to as a variable with am-th order Cornish-Fisher Distribution (CFD) or

am-th order Cornish-Fisher density (CFd).

1.2.2 Statistical properties

Next, we will discuss statistical properties of the Cornish-Fisher Distribution (CFD). Con-

sidering that X is the standard normal distribution with distribution function � (X):

� (X) =
1p
2�

Z X

�1
e�

1
2
t2dt;

the distribution function of a Cornish-Fisher variable, R; de�ned by Equation 1.5:

R = Qm(X)

will be denoted by CFm(R) and can be expressed in the following way:

CFm (R) = �
�
Q�1m (R)

�
=

1p
2�

Z Q�1m (R)

�1
e�

1
2
t2dt; (1.8)
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where Qm is the m-th order polynomial and Q�1m is the inverse function of Qm9. Further-

more, derivating the later expression with respect to R; one can easily �nd that the density

function of a Cornish-Fisher variable, denoted by cfm(R), is given by:

cfm(R) =
d [Q�1m (R)]

dR

1p
2�
e�

1
2 [Q

�1
m (R)]

2

(1.9)

In this work we will mainly base our analysis on a third-order polynomial, since it is suf-

�ciently appropriate to �t experimental data and it is the �rst non-trivial approximation

that makes sense10. As it will be seen in the Univariate Inference Section 1.5, by means of

a third-order polynomial we already achieve a very high adjusting performance, measured

through the Kolmogorov-Smirnov statistic. On the other hand, the analyticity of the inverse

of a third-order polynomial is also specially interesting, since becomes the basic ingredi-

ent for the density and distribution functions (Equations 1.9 and 1.8). The explicit form of

the third-order CFD function is given in Appendix A11. However, if we wish to consider

higher-order Cornish-Fisher Densities, although no explicit form is available for its den-

sity or distribution function, numeric procedures like Newton-Raphson (Abramowitz and

Stegun 1964) could be used in order to obtain Q�1(R) and its derivative d [Q�1(R)] =dR.

On the other hand, it is also interesting to note that parameters ai of the third-order

CFD have to be restricted in order to ensure that the density is properly de�ned. From

the expression of the density of a CF variable (Equation 1.9) we can see that in order to

9 Q�1 will be always de�ned for any non decreasing continuous function Q:
10 As we are interested in modeling �nancial returns, we have not considered a quadratic polynomial. These
returns are variables de�ned over an in�nite support, which restricts the choose of polynomials to those of
odd order, given that with an even-order polynomial we would map the real line corresponding to the support
of the gaussian variable X onto the positive real segment instead of the entire real line.
11 In the following, if we do not mention the order of the CFD, it will be assumed to be three. Moreover
when writing the polynomial Q function, if we do not maintain the opposite it will be supposed to be a
third-order polynomial Q3:
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be well de�ned it is suf�cient and necessary to impose the existence and uniqueness of

Q�1. For a third-order polynomial this condition is equivalent to have a strictly increasing

polynomial Q12. In the following Lemma we will �nd the conditions on the parameters ai

which guarantee the existence of a third-order CFD. The proof of this and the following

Lemmas and Propositions will be presented in the Appendix B.

Lemma 1 Let cf3(R) be a third-order Cornish-Fisher density function de�ned by Equa-

tion 1.9, with coef�cients ai; (i = 0; 1; 2; 3), then the suf�cient and necessary conditions on

the coef�cients to guarantee the existence of the CFD are

a3 > 0 , a1 > 0 , �
p
3a3a1 < a2 <

p
3a1a3 (1.10)

Therefore, a third-order CFD becomes completely de�ned by Equations 1.5, 1.9 and

1.10. It is interesting to note that third-order CFDs contain as special cases the gaussian

distribution (a3 = a2 = 0), the �2 distribution (a1 = a3 = 0) and the non-central �2

(a3 = 0)13. On the other hand, the following proposition will provide us an analytical

expression to calculate the non-centered moments, �0r, of anym-th order CFD distribution:

Proposition 2 Let cfm(R) be a m-th order Cornish-Fisher density function de�ned by

Equation 1.9 for a random variable R, then non-centered r-th order moments, �0r, are

given by:

�0r = E [Rr] =

�
Q

�
@

@J

��r
e
1
2
J2

?????
J=0

where Q
�
@
@J

�
=
Pm

i=1 ai
@i

@Ji
is a differential operator.

12 Indeed, this is also true for any even polynomial.
13 In the latter cases, although density functions will be given by Equation 1.9, it is important to note that
variables X and R would not have the same support, i.e. X would be de�ned on the real segment (�1 ,1)
while R only on the positive real segment (0,1).
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Using this expression we can easily derive that the �rst four non-centered moments

of a third-order CFD are:

�01 = a2 + a0

�02 = 15a23 + a20 + 2a2a0 + 6a3a1 + a21 + 3a
2
2

�03 = 9a2a
2
1 + 15a

3
2 + a30 + 45a

2
3a0 + 3a

2
1a0 + 315a

2
3a2 + 9a

2
2a0 + 18a3a1a0 + 90a3a2a1 + 3a2a

2
0

�04 =

0@ 105a42 + 60a0a
3
2 + 18a

2
0a
2
2 + 4a

3
0a2 + 3a

4
1 + 10 395a

4
3 + 6a

2
0a
2
1 + 1260a1a

2
2a3+

36a0a
2
1a2 + 90a

2
0a
2
3 + 3780a1a

3
3 + 36a

2
0a1a3 + 60a

3
1a3 + 90a

2
2a
2
1+

630a21a
2
3 + 1260a0a2a

2
3 + 5670a

2
2a
2
3 + 360a0a1a2a3 + a40

1A
Accordingly to these expressions, the �rst four centered moments, �r, are given by:

�1 = 0 (1.11a)

�2 = 6a3a1 + 15a
2
3 + 2a

2
2 + a21 (1.11b)

�3 = 72a3a2a1 + 8a
3
2 + 270a

2
3a2 + 6a2a

2
1 (1.11c)

�4 =

�
10 395a43 + 60a

4
2 + 3a

4
1 + 60a3a

3
1 + 3780a

3
3a1+

936a3a
2
2a1 + 4500a

2
3a
2
2 + 630a

2
3a
2
1 + 60a

2
2a
2
1

�
(1.11d)

Henceforth, skewness and kurtosis coef�cients are given by:

�(R) =
72a3a2a1 + 8a

3
2 + 270a

2
3a2 + 6a2a

2
1

(6a3a1 + 15a23 + 2a
2
2 + a21)

3=2

�(R) =

�
10 395a43 + 60a

4
2 + 3a

4
1 + 60a3a

3
1 + 3780a

3
3a1+

936a3a
2
2a1 + 4500a

2
3a
2
2 + 630a

2
3a
2
1 + 60a

2
2a
2
1

�
(6a3a1 + 15a23 + 2a

2
2 + a21)

2

These Equations can be used to introduce the standardized third-order CFD, i.e. a CFD

with zero mean and unit variance, and the corresponding conditions for its existence.

Lemma 3 Let cf3(R) be a third-order Cornish-Fisher density function de�ned by Equa-

tion 1.9 for the random variable R, with coef�cients ai (i = 0; 1; 2; 3). Then, one can
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Fig. 1.1. The range of validity for the coef�cients a2 and a3 of a standardized third-order
CFD is represented by the region bounded by the blue line. The boundary corresponds to
the Equations 1.13 and 1.14.

construct a standardized variable R�with zero mean and unit variance imposing

a0 = �a2 , a1 =
q
1� 6a23 � 3a22 � 3a3 (1.12)

with the following conditions on a2 and a3 to guarantee the existence of the cf3(R):

0 < a3 <
1p
15

(1.13)

�

s
3a3

�q
21a23 + 1� 6a3

�
< a2 <

s
3a3

�q
21a23 + 1� 6a3

�
(1.14)

The validity region bounded by the limit cases of Equations 1.13 and 1.14 is plot-

ted in Figure 1.1. Therefore, the standardized third-order CFD is completely de�ned by

Equations 1.5, 1.9, 1.12, 1.13, 1.14. Although the permitted parameter range is bounded

with just two shape parameters, a2 and a3, we are able to capture a kurtosis as high as



1.2 Univariate Cornish-Fisher Density Function 20

Fig. 1.2. Range of the skewness and kurtosis possibilities of the third-order Cornish-Fisher
density. The blue line represents the skewness and kurtosis coef�cients for the boundary
plotted in Figure 1.1. We also present the limit for all distributions (� � �2�2;where � and
� are the kurtosis and skewness coef�cients), and the regions covered by the Gram-Charlier
distribution of Jondeau and Rockinger 2001 and the semi non-parametric distribution of
León, Mencía, and Sentana 2005 of similar order. According to this Figure it is clear that
the CFD is much more �exible than other semi-parametric approaches.
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forty and a skewness up to a value of three as shown in Figure 1.214. In this Figure we

also plot the equivalent expanded region for two different semi-parametric distributions,

the semi non-parametric one of León, Mencía, and Sentana 2005 and the Gram-Charlier

distribution of Jondeau and Rockinger 2001, as well as the boundary limit for any distri-

bution15. According to this Figure, it is interesting to observe that the extended region in

the skewness-kurtosis plane that can be covered with the CFD model is much wider than

the Gram-Charlier distribution or the semi non-parametric distribution and allows us to

conclude that the CFD is much more �exible than other semi-parametric approaches.

The following transformation rule allows us to de�ne a reparametrization of the third-

order CFD in terms of the mean, �, the volatility, �; and the parameters a2 and a3.

Lemma 4 Let R be a m-th order CFD distributed variable with parameters faigmi=1 and

consider the variable Z = � + �R: Then, the new variable Z is also distributed as a CFD

with parameters fa0igmi=1 given by

a0i = �ai i = 1; :::;m

a00 = �a0 + �

With this transformation rule we can re-de�ne the function Q(X) and, therefore, the

Cornish-Fisher Density, using a new parametrization set, namely,m, �; a2 and a3:

R = �a3X
3 + �a2X

2 + �

�q
1� 6a23 � 3a22 � 3a3

�
X +m� �a2 (1.15)

14 The corresponding values of kurtosis and skewness coef�cients for the boundary of the region in the a2-a3
plane given by Equations 1.13 and 1.14 are plotted in Figure 1.2.
15 It is easy to see, that for every skewness coef�cient � = �3=�

3=2
2 and every kurtosis coef�cient � =

�4=�
2
2 � 3, the inequality � � �2 � 2 must hold.
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This speci�cation will be of special interest when modeling the dynamic behaviour of the

conditional mean and volatility, as both parameters appear explicitly in the de�nition of the

density function.

As mentioned in the Introduction, unimodality is a very desirable property for mod-

eling �nancial returns that the other semi-parametric models do not share. In the following

proposition we will demonstrate the unimodality of the CFD:

Proposition 5 Third-order Cornish-Fisher Densities are unimodal.

Figure 1.3 presents some possible shapes of the standardized third-order Cornish-

Fisher Densities showing their �exibility to adjust different degrees of skewness and kurto-

sis. It is also interesting to point out that CFD includes the presence of heavy tails. Figure

1.4 shows the detail of the tails of the distribution in logarithmic scale. It can be observed

that the CFD presents an almost linear behavior in the tails, as it corresponds to an expo-

nential distribution. Besides that, it is also remarkable that the rate of decrease is lower

than in the gaussian approximation (parabolic), so that a higher weight is assigned to the

tails.

1.2.3 Relation of CFD with transformations and QQ-Plots

In order to gain some insight on the characteristics of the CFD one can view Equation 1.5:

R = Qm(X)

as a percentile-percentile relation between a �ctitious normal variable, X , and the non-

normal variable, R, that we want to describe. We can consider that the value of the variable
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Fig. 1.3. Different shapes of the third-order CFD. All densities are standardized to zero
mean and unit variance and, therefore, we only have two free parameters: a2, which de�nes
the skewness, and a3, which incorporates the kurtosis.
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Fig. 1.4. Logarithmic scale graph of the �tted third-order Cornish-Fisher Density to the se-
ries of daily returns of the YEN/USD exchange rate for the period 04/01/1988-15/08/1997.
The horizontal lines are the observations of the histogram, the green line is a �tted gaussian
function density and the blue line is the �tted CFD.

X that we are �xing is the one that corresponds to a certain percentile � of the distrib-

ution16. In this way, Equation 1.5 relates percentiles of the non-normal distribution with

percentiles of the normal distribution. Therefore, in order to estimate the parameters of

the function Q(X) in Equation 1.5 it will be reasonable to �t the function that relates the

value of the percentile � of the empirical distribution in the ordered axis with the value

of the same percentile of the standard normal distribution in the abscissas axis. As it is

well-known, in statistical literature this representation is commonly denominated QQ-Plot

and, therefore, the CFD function will be an appropriate model for �nancial series if they

present a normal QQ-Plot polynomially shaped, which is generally the case, as we will see

in the following example. In Figure 1.5 we present the QQ-Plot of the series of daily returns

in the YEN/USD exchange rate for the period 04/01/1988-15/08/1997 against a standard

16 For example, for a standard gaussian variable if � = 0:01 then X = �2:33.
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Fig. 1.5. QQ-Plot of the series of daily returns of the YEN/USD exchange rate for the
period 04/01/1988-15/08/1997 against a standard normal. Crosses represent experimental
data and the solid line represents the least squares �t by means of a third-order polynomial:
R = Q(X) = 0:06757X3 + 0:01227X2 + 0:3370X � 0:01077.

normal one. Crosses represent experimental data and the full line corresponds to the �t

of a third-order polynomial using the minimum least squares algorithm. As can be ob-

served, it is remarkable the non-linear shape of the QQ-Plot that discards gaussianity and

the high adjusting performance that can be reached with a third-order polynomial. In ad-

dition, in Figure 1.6 we present the histogram that corresponds to the USD/YEN exchange

rate variable, whose QQ-Plot has been presented in Figure 1.5, along with the �tting of a

third-order CFD and a gaussian. The series has been standarized so that it presents zero

mean and unitary variance. In this Figure we can observe how the non-linear shape of the

QQ-Plot derives in a leptokurtic distribution which is more peaked than the gaussian and
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Fig. 1.6. Comparison between the �tting of a normal density function and the one corre-
sponding to a third-order Cornish-Fisher Density. The �tting has been done by means of
the QQ-Plot that appears in Figure 1.5. The data corresponds to the series of daily changes
of the YEN/USD exchange rate for the period 04/01/1988-15/08/1997.

presents heavier tails. It is easy to observe that the CFD function is more adequate than the

gaussian to model the USD/YEN exchange rate, as in real distributions intermediate events

are less probable than in normal distributions. These intermediate events are distributed

between near values very close to the mean and also around the tails. Therefore, the main

effect of the kurtosis coef�cient consists on assigning more probability to the tails.

Another point of view, that will be very interesting for proposing a multivariate dis-

tribution where the marginals are Cornish-Fisher distributed, is to interpret Equation 1.5 as

a variable transformation in the style of Johnson 1949. The function Q contains the non-

perturbative deviation with respect to the gaussian distribution, which is recovered whenQ
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is equal to the identity function. De�ning a particular parametric form for the function Q,

we will be supposing implicitly a certain parametric distribution function through Equa-

tion 1.5. Therefore, one can interpret the variable transformation as an alternative form

of de�ning distribution functions, as pointed out by Johnson 1949 or Kendall, Stuart, and

Ord 199417. As it is shown in Figure 1.5, QQ-Plot of �nancial series, generally leptokurtic,

show a clear deviation from the identity function, as corresponds to normally distributed

variables. Actually, our starting point of using polynomials to represent the function Q

came from the intuitive idea that considering the simple shape of the QQ-Plot, although

containing strong deviation from normality, it would be possible to make a Taylor series

expansion of the functionQ around the identity function, where the terms with order higher

than one contain the deviation from normality. Actually, as we will see in the Univariate

Inference Section 1.4, third-order polynomials are enough to describe highly non-linear

�nancial variables as interest rates or market indexes. This characteristic is of special inter-

est, since the transformation based on a series expansion of powers of the QQ-Plot allows

us to make a non-perturbative approximation of the distribution function that we want to

model.

1.2.4 Simulation of Univariate Cornish-Fisher Variables

Equation 1.5 gives us a very simple way of simulatingm-th order Cornish-Fisher variables

R using the function Q. The algorithm is very simple:

1. First we simulate standard gaussian variables X;

17 Something similar happens when one de�nes a density function f(x) in terms of its characteristic function
g(k) = E(eikx). For example, the �-stable distribution is de�ned through its characteristic function.



1.2 Univariate Cornish-Fisher Density Function 28

2. And second, we apply Equation 1.5, R = Qm(X), to each simulated observation. The

so obtained variable R will be CF distributed.

This algorithm is standard to simulate non-normal market variables with distribution

function F . First, one estimates the parameters describing F , and second, calculates the

function Q(X) using the expression:

Q (X) = F�1 [� (X)]

and after simulating standard gaussian variables X; then applies Q (X) to these observa-

tions to obtain the variables with distribution function F: It is easy to see that the function

Q (X), as it involves the inverse of the considered distribution function, F; will not be an-

alytic for the most commonly used distribution functions and, therefore, in these cases the

calculation of the transformation Q (X) will add more time process to the already "expen-

sive" Montecarlo method. For example, Hull and White 1998, used a density function of a

mixture of two gaussians of parameters (p; �1; �2; �1; �2), whose density function is given

by:

f(x) = p
1p
2�
e
� 1
2

�
x��1
�1

�2
+ (1� p)

1p
2�
e
� 1
2

�
x��2
�2

�2

and presents the disadvantage of being a transcendent equation so that it is not possible

to obtain the inverse function, x = f�1(y); analytically. However, this is not the case of

the third-order CFD that we are considering in this work, given that the function Q(X) is

directly modeled as a third-order polynomial.
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1.3 Multivariate Cornish-Fisher Density Functions

In many �nancial applications, like portfolio selection or risk management, we are inter-

ested in modeling the distribution function of returns of security portfolios. Let us consider

a portfolio with n assets and let R1; :::; Rn be their daily returns, Fi , the marginal distrib-

ution function for the i-th variable, so that Fi (�) = Prob(Ri � �) ; and !i the weight of

asset i in the portfolio. Given that the Pro�t and Loss function of a portfolio is de�ned

as P =
Pn

i=1 !iRi, when considering a portfolio the statistical variable of interest will be

the one formed by a linear combination of random variables Ri. Therefore, we have to

make some hypothesis on the structural dependencies of variables Ri that will allow us to

consider a joint distribution function for them.

When marginal distributions are normal the most common approach to the problem is

to suppose that variables come from a multivariate normal distribution, in such a way that

the sum of normal variables is again a normal variable whose variance is given in terms

of the variance and covariance matrix of the normal variables. However, in more general

non-normal contexts, it is well-known that a zero linear correlation between two variables

does not imply that they are independent.

In this work, we propose two different multivariate distributions for non-normal vari-

ables. First, we consider a joint distribution with a structural dependence given by a

gaussian copula whose marginals are Cornish-Fisher distributed. Secondly, we will de-

scribe a multivariate generalization specially valid to incorporate �rst and second order

dynamics and tail dependence whose marginals are being described by Cornish-Fisher dis-

tributions. Basically, these two multivariate densities differ in the way to capture the depen-
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dence between the variables. In the �rst case it is done by considering the normal rank cor-

relation matrix and in the second one through the variance-covariance matrix. In the follow-

ing, distributions considering both approximations will be referred as a Copula-Based Mul-

tivariate Cornish-Fisher Distribution (CB-MCFD) and as a Variance-Covariance-Based

Multivariate Cornish-Fisher Distribution (VCB-MCFD). Main properties of both density

functions will be analyzed in this Section.

1.3.1 Copula-Based Multivariate Cornish-Fisher Density

De�nition

Before describing the CB-MCFD we will outline some basic concepts, properties

and results related to the copula theory. Basically, copula functions describe the part of a

multivariate density function that univariate density functions do not include. A function

C : [0; 1]n ! [0; 1] is de�ned as an n-copula if it satis�es the following mathematical

properties:

� 8u 2 [0; 1]; C (1; :::; 1; u; 1; :::; 1) = u.

� 8ui 2 [0; 1]; C (u1; :::; un) = 0 if at least any ui is equal to zero.

� C is grounded (has a minimum) and is n-increasing, i.e., dC (:::; ui; ::) =ui � 0:

It is clear from this de�nition that a copula is nothing but a multivariate distribution

with support in [0,1] and with uniform marginals. The fact that such copulas can be very

useful for representing multivariate distributions with arbitrary marginals is explained next.
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Intuitively, a copula function C is de�ned in such a way that if Pi(Ri) are marginal distri-

bution functions and P (R1; :::; Rn) is the joint distribution function of these variables, the

copula function C connects both of them in the following way:

P (R1; :::; Rn) = C (P1 (R1) ; :::; Pn (Rn)) (1.16)

Given the marginals Pi(Ri) and the joint distributions, P (R1; :::; Rn), the copula function

is unique if the distributions are continuous as determined by the theorem of Sklar (Sklar

1959, Malevergne and Sornette 2001). Therefore, copulas allow us to separate the model-

ing of joint distributions in two parts: a �rst one only related to the marginals and a second

which only captures the structure of dependencies. Many different copulas have been pro-

posed and tested in the �nancial literature. For a quite complete list of copula functions and

their mathematical properties see Nelsen 1999, and for an up-to-date revision of the publi-

cations on copula theory in �nance read Cherubini, Luciano, and Vecchiato 2004 and Frees

and Valdez 1998.

For our purposes, we will only focus on one of the most well-known copulas, the

gaussian copula, which is derived from the multivariate Gaussian distribution. Let � de-

note the standard normal distribution and �n;� the n-dimensional normal distribution with

correlation matrix �. Then, the gaussian n-copula with normal rank correlation matrix18 �,

18 Some authors refer to the correlation matrix of the gaussian copula as to the normal rank correlation
(Buckley, Comezaña, Djerroud, and Seco 2005) while others (Nelsen 1999) refer to it as a generalized cor-
relation matrix. The notion of normal rank correlation is a speci�c case from a generalization of the concept
of correlation. The idea of this generalization consists on calculating the correlation, not between the real
variables Si and Sj with distributions Pi and Pj , but between a transformation of these into other �ctitious
random variables with cumulative distribution functions Fi and Fj , respectively:

�(Fi; Fj ; Si; Sj) = E
�
F�1i (Pi (Si)) � F�1j (Pj (Sj))

�
Choosing different functions Fi and Fj this generalization includes the most usual structural dependence
measures. For example, for Fi = Pi Fj = Pj we recover the standard correlation or correlation coef�cient



1.3 Multivariate Cornish-Fisher Density Functions 32

denoted by G� (u1; :::; un), is de�ned as:

G�(u) = �n;�
�
��1(u1); :::;�

�1(un)
�

(1.17)

One basic property of the gaussian copula is that it does not exhibit tail dependence.

Loosely speaking, tail dependence describes the limiting proportion that one margin ex-

ceeds a certain threshold given that the other margin has already exceeded that threshold19.

The question whether �nancial returns present non zero tail dependence is still not clear.

For example, Malevergne and Sornette 2003 �nd that most pairs of exchange rates and ma-

jor stocks are compatible with the gaussian copula hypothesis, while this hypothesis can

be rejected for the dependence between pairs of commodities. On the other hand, Chen,

Fan, and Patton 2004 in its study with equity and exchange rates return data �nd strong ev-

idence against the gaussian copula, and little evidence against the more �exible Student's

copula20. Considering the main role that the paradigm of the gaussianity has played and still

does in �nance, it is natural to begin with the simplest structure of dependencies between

of Pearson:
�(Pi; Pj ; Si; Sj) = corr(Si; Sj)

If we choose for the functions Fi and Fj the identity function we obtain the Spearman's rho:

�(1; 1; Si; Sj) = E(Pi(Si); Pj(Sj))

where 1 denote the cumulative distribution function of the uniform distribution. The normal rank correlation
in then de�ned as:

�(Si; Sj) = �(�;�; Si; Sj) = E
�
��1 [Pi (Si)] � ��1 [Pj(Sj)]

�
Notice, that the normal rank correlation for a gaussian variable coincides with the usual correlation. Each
of these measures, together with others like Kendall's tau (Kendall, Stuart, and Ord 1994), provide different
alternatives of estimating the intuitive idea of dependence.
19 See Nelsen 1999 for more details on the de�nition of tail dependence.
20 The Student-t n-Copula is de�ned analogously to the gaussian counterpart:

Student�(u) = T�;�
�
T�1� (u1); :::; T

�1
� (un)

�
where T�;� and T are the multivariate and univariate student-t distribution functions with � degrees of free-
dom and generalized correlation �. This Copula presents a non-zero tail dependence coef�cient, characteristic
that has been put forward by some authors (Nelsen 1999, Demarta and McNeil 2004) as desirable.
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different random variables: the gaussian copula. This election being specially attractive if

we keep in mind the theorem that assures that this hypothesis maximizes entropy among

a big group of possibilities in the sense of Shannon21 (Buckley, Comezaña, Djerroud, and

Seco 2005, Sornette, Andersen, and Simonetti 2000b, Sornette, Andersen, and Simonetti

2000a). Intuitively, we can also consider that one is choosing the hypothesis that makes less

assumptions. By means of the normal rank correlation or the gaussian copula we will be

picking up a more general structural dependence than just keeping the standard correlation.

Therefore, we would be interested in a density with Cornish-Fisher distributed mar-

ginals with a gaussian copula. We can obtain the Copula-Based Multivariate Cornish-

Fisher Distribution (CB-MCFD) substituting in Equation 1.16 the gaussian copula given

by Equation 1.17 and the Cornish-Fisher distribution functions de�ned in Equation 1.8:

CB-MCFD (R1; :::; Rn) = G� [CF1 (R1) ; :::; CFn (Rn)]

= �n;�
�
��1(�

�
Q�11 (R1

�
)); :::;��1

�
�
�
Q�1n (Rn)

���
= �n;�

�
Q�11 (R1) ; :::; Q

�1
n (Rn)

�
(1.18)

Derivating with respect to Ri we obtain the Copula-Based Multivariate Cornish-Fisher

Density (cb-mcfd):

cb-mcfd(R) =
1p

(2�)n det [�]

nY
i=1

@
�
Q�1i (Ri)

�
@Ri

exp

 
�1
2

nX
i;j=1

Q�1i (Ri)
�
��1
�
ij
Q�1j (Rj)

!
(1.19)

21 Consider a random vector (Si; Sj) such that maximizes the entropy among all random vectors with Si
and Sj as marginal. Then the random variables Si and Sj are independent if and alone if the normal rank
correlation is zero.
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where (��1)ij is the i; j element of the inverse of the normal rank correlation matrix, �,

and R is the vector (R1; :::; Rn). One of the most interesting properties of this distribution

is that captures both skewness and kurtosis through marginal Cornish-Fisher densities and

the non-linear dependence via the gaussian copula, while maintaining an analytical form

which allows us to characterize any property of the distribution. To our knowledge, except

for the trivial case of multivariate gaussian variables22, the gaussian copula has only been

used with marginal distributions that do not derive analytical results.

Statistical Properties

Next, we will present some results and properties of the Copula-Based Multivariate

Cornish-Fisher Density that will be useful in consequential applications. The following

proposition gives an analytical formula for the non-centered moments of a portfolio includ-

ing assets which follow am-th order CB-MCFD distribution:

Proposition 6 Let (Ri)ni=1 be the daily returns of n assets that follow a Copula-Based

Multivariate Cornish-Fisher Density CB-MCFDm and � be the normal rank correlation

matrix of these assets. The Pro�t and Loss (P&L) distribution of a portfolio with weights

(!i)
n
i=1 corresponding to this assets, constrained to

Pn
i=1 !i = 1, is given by:

P =

nX
i=1

!iRi (1.20)

22 For example, Hull and White 1998 use the gaussian copula with a gaussian mixture, and Malevergne and
Sornette 2004 use it with a family of modi�ed Weibull distributions, they where are able to calculate formulas
for the moments and cumulants but not for the density function.
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Then, the k-order non-centered moments of the aleatory variable P are given by:

E
�
P k
�
=

"X
i

!iQi(
@

@Ji
)

#k
� e 12J�Jt

?????
J=0

(1.21)

where J = (Ji)ni=1 is an auxiliary n-dimensional vector.

The relation between the linear or Pearson correlation coef�cient � and the normal

rank correlation � for a third-order CB-MCFD is given by the following Lemma:

Lemma 7 Let �ij be the linear correlation coef�cient and �ij the normal rank correlation

between the variables Ri and Rj which follow a CB-MCFD3, and ai;j the i-th coef�cient

in Equation 1.5 corresponding to the asset j determining the transformation. The relation

between both correlation coef�cients is given by:

�ij =
6a3;ia3;j�

3
ij + 2a2;ia2;j�

2
ij + (3a1;ia3;j + a1;ia1;j + 9a3;ia3;j + 3a3;ia1;j)�ijq�

6a3;ia1;i + 15a22;i + 2a
2
2;i + a21;i

� �
6a3;ja1;j + 15a23;j + 2a

2
2;j + a21;j

� (1.22)

According to this result, it is easy to deduce that the bigger the non gaussian char-

acter of the assets the bigger will be the difference between the Pearson coef�cient and

the normal rank correlation. If both assets are gaussian, i.e. a3;i = a2;i = 0; the CB-

MCFD reduces to a multivariate gaussian distribution and the Pearson coef�cient and the

normal rank correlation will be the same. Therefore, this distribution is not adequate for

modeling data displaying univariate gaussian distributions but not a multivariate gaussian

dependence.

Considering the Equations de�ned above, we can introduce the independent and stan-

dardized CB-MCFD3, (i.e. a CB-MCFD with zero mean and unitary variance-covariance

matrix) and the corresponding conditions for its existence. This new distribution will be

denoted as I-MCFD.
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Lemma 8 Let CB-MCFD3 be a third-order Copula-Based Multivariate Cornish-Fisher

density de�ned by Equation 1.19 for the random vector of variables Ri, with coef�cients

ai; i = 0; 1; 2; 3: Then, one can de�ne a new vector of variables Ri�with zero mean and

unitary variance-covariance matrix imposing � to be the identity matrix and:

ai;0 = �ai;2 , ai;1 =
q
1� 6a2i;3 � 3a2i;2 � 3ai;3 (1.23)

Actually, ai;2 and ai;3 need to satisfy the following conditions in order to guarantee the

existence of the distribution:

0 < ai;3 <
1p
15

(1.24)

�
r
3ai;3

�q
21a2i;3 + 1� 6ai;3

�
< ai;2 <

r
3ai;3

�q
21a2i;3 + 1� 6ai;3

�
(1.25)

In Figure 1.7 we present some possible shapes for the bivariate third-order CB-MCFD

showing its �exibility to describe rather different distribution patterns. In all the Figures the

parameters ai;2 are �xed to 0:25, so that both univariate distributions are positively skewed.

In the two upper Figures we present two independent CB-MCFD (� = 0) with different

degrees of kurtosis. It is interesting to note that contour plots of independent multivariate

gaussian distributions are circles and, therefore, we can see how the positive skew and

heavy tails of the CFD modify these circles. The other four Figures show contour plots

of CB-MCFD with positive and negative normal rank correlation, which as we can see are

much more general than the multivariate gaussian ellipses.
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Fig. 1.7. Contour plots corresponding to different shapes of the bivariate third-order CB-M-
CFD. All densities are standardized to zero mean and unit variance and, therefore, we only
have three free parameters de�ning the distribution: a2, which de�nes the skewness, a3,
which incorporates kurtosis, and the normal rank correlation �: In all the �gures the para-
meter a2 is set to 0.25, so that both marginal densities are positively skewed.
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Simulation of CB-MCFD Variables

Equation 1.5 gives us a very simple way of simulating m-th CB-MCFD variables

(Ri)
n
i=1 using the functions Qi and the normal rank correlation, �. The algorithm is as

follows:

1. First, we simulate n-dimensional multivariate standard gaussian variables Xi; with

correlation matrix equal to the normal rank correlation, �:

2. And second, we apply Equation 1.5 to each variable Ri; Ri = Qi(Xi).

These algorithm is very fast, as very ef�cient multivariate gaussian random genera-

tors are available in each computation package.

1.3.2 Variance�Covariance-Based Multivariate Cornish-Fisher Density

De�nition

In this Section we will present and describe basic properties of the Variance-Covariance-

Based Multivariate Cornish-Fisher Distribution, which will be denoted as VCB-MCFD.

Before going into the details of its de�nition, we will motivate brie�y its introduction. Fi-

nancial return series present dynamics in its second-order moments: correlations and vari-

ances are not constant over time and show stylized facts as persistence, i.e. periods with

high(low) correlations or variances tend to predict high(low) correlations or variances23.

23 In Section 1.4 we analyze descriptive characteristics of our database and �nd signi�cant conditional het-
eroskedasticity. Many authors have also pointed out this feature, see for example Engle 1982. On the other
hand, Engle 2002 and Engle and Kroner 1995 show how correlation between returns is not constant over
time.
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Much of the research concerning the dynamics on the dependence between returns has fo-

cused on modeling the dynamics of the second-order moments (see for example, Engle

2002 where he analyzes different benchmark models). Therefore, it would be interesting to

have a multivariate distribution with the variance-covariance matrix as input to allow us to

incorporate easily these models, that, as we will next, the VCB-MCFD distribution does.

Additionally, the VCB-MCFD presents marginal distributions which allow for incorporat-

ing asymmetry and heavy tails through the univariate Cornish-Fisher Density making and

the occurrence of simultaneous extreme events (tail dependence) making this distribution

specially interesting24.

Now, letm and � be the mean vector and the variance-covariance matrix of variables

R. Consider �rst the third-order Independent Multivariate Cornish-Fisher Density (i-mcfd)

introduced above:

i-mcfd3(z) =
1p
(2�)n

nY
i=1

@
�
Q�1i (zi)

�
@zi

exp

 
�1
2

nX
i=1

�
Q�1i (zi)

�2! (1.26a)

Qi(zi) = a3;iz
3
i + a2;iz

2
i +

�q
1� 6a23;i � 3a22;i � 3a3;i

�
zi � a2;i (1.26b)

where variables zi have by de�nition zero mean and unitary variance-covariance matrix.

We introduce the Variance-Covariance-Based Multivariate Cornish-Fisher Dis-

tribution (VCB-MCFD) as the distribution followed by variables R de�ned by:

R = �1=2 � z +m (1.27)

24 In Section 1.6.2 we will discuss and implement the Dynamic Conditional Correlation model (DCC),
proposed by Engle 2002, to model second-order dynamics with the VCB-MCFD.
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where �1=2 denotes the Cholesky decomposition of �25 and the vector z = (z1; :::; zn)

follows an i-mcfd. From this de�nition it is easy to see that the variables R have mean

equal tom and variance-covariance matrix equal to �:

E [R] = E
�
�1=2 � z +m

�
= �1=2 � E [z] +m = m

E [(R�m)(R�m)0] = E
h�
�1=2 � z

� �
�1=2 � z

�0i
= E

h
�1=2 � z � z0

�
�1=2

�0i
=

h
�1=2 � E [z � z0]

�
�1=2

�0i
=
h
�1=2 �

�
�1=2

�0i
= �

We can calculate the density function of the vcb-mcfd considering that variables zi follow

an i-mcfd3 and using the relationship between the variables R and z of Equation 1.27 mak-

ing use of the density transformation theorem (see Johnson and Kotz 1972a). The density

transformation theorem states that given a vector z with multivariate density function fz(z);

then the multivariate density function fR(R) of a variable R de�ned by a transformation

R = g(z) = Az +m; where A is a matrix is given by:

fR(R) =
1

det [A]
� fz(g�1(R))

where det [A] denotes the determinant of matrixA: Therefore, applying this result to Equa-

tion 1.27 and considering that det
�
�1=2

�
= det [�]1=2 we obtain directly the expression for

the vcb-mcfd3:

vcb-mcfd3(R) =
1p
det[�]

i-mcfd3(��1=2 (R�m)) (1.28)

25 The Cholesky decomposition B of a matrix A is given by:

A = B �B0

The Cholesky decomposition exists only if A is de�nite positive.
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Statistical Properties

The �rst interesting property of this multivariate density is that it is closed under

convolution, i.e. the sum of two VCB-MCFD variables is also a VCB-MCFD26.

Proposition 9 Let (Ri)ni=1 be variables that follow a VCB-MCFD with parameters of the

distribution given by a3;i, a2;i; � and �. Then, any variable W de�ned as a sum of variables

Ri is also a VCB-MCFD variable.

This result is of special interest for �nancial applications, as portfolio management

or portfolio risk assessment, where the sum of aleatory variables is usually involved. It is

important to note here that the marginals of the VCB-MCFD are not exactly Cornish-Fisher

distributed, only in the independent case (when � is diagonal) the marginal distributions

are Cornish-Fisher. In order to check this consider two VCB-MCFD variables, R1 and R2,

which are de�ned in terms of the I-MCFD variables, z1 and z2 with parameters a3;i and

a2;i. From Equation 1.27 we have:

R1 = w11 � z1(a1;3; a1;2) + w12 � z2(a2;3; a2;2) +m1

R2 = w21 � z1(a1;3; a1;2) + w22 � z2(a2;3; a2;2) +m2

with wij = �
1=2
ij and where we have written explicitly the dependence of the variables zi:

From this Equation it is obvious that the variableR1 depends not only on the parameters a1;j

but also on the parameters a2;j and, therefore, it cannot be distributed as univariate CFD.

Only in the independent case (w12 = w21 = 0) we have R1 = R1(a1;3; a1;2). Although

26 The better known example of a density closed under convolution is the case of the multivariate normal
distribution but other distributions, as the multivariate �-stable distribution or the multivariate hyperbolic
distributions, also exhibit this property.
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no explicit expression is available for the density function of this marginal distribution,

analytical formula for its multivariate moments are easy to calculate using tensor calculus:

Proposition 10 Let (Ri)ni=1 be variables that follow a VCB-MCFD with parameters of the

distribution given by a3;i, a2;i; � and �. Then, the mean vectorM1 and the second, third

and fourth centered multivariate moments, given by the variance-covariance matrix, M2

the skewness tensor,M3, and the kurtosis tensor,M4, respectively, are given by:

M1;i = �i

M2;ij = �ij

M3;ijk =
nX
r=1

wirwjrwkr�3;r

M4;ijkl =
nX
r=1

wirwjrwkrwlr�4;r

+
nX
r=1

nX
s=1
s 6=r

�
wirwjrwkswls + wirwjswkrwls

+wirwjswkswlr

�

where �3;r and �4;r are the third and fourth order centered univariate moments for the

variable r of the Cornish-Fisher Density, given by Equations 1.11, and wij denotes the

ij-element of the Cholesky decomposition of the covariance matrix, i.e, �1=2 = (wij),

i; j = 1; :::; n:

The Proposition above demonstrates that the higher centered moments depend on

the variance-covariance matrix, �; and the individual higher moments, �i. For example,

following the above bivariate example, the kurtosis coef�cient of variable R1 depends on

the kurtosis coef�cients of the variables z1 and z2. Therefore, through this speci�cation,

the structure of dependencies is not only captured through the covariance matrix � but also



1.3 Multivariate Cornish-Fisher Density Functions 43

through the coef�cients ai;j of each variable zi. Therefore, this multivariate density allows

for the occurrence of simultaneous extreme events (in opposition to the CB-MCFD) as can

be seen from its de�nition: �rst we permit univariate extreme events (through z) and then

we "mix" the �ctitious independent CFD variables z to model the vector R (see Equation

1.27). In this way, the variables R may present simultaneous extreme events.

In Figure 1.8 we present some possible shapes for standardized third-order VCB-

MCFD showing its �exibility to adjust rather different distribution patterns. It is interesting

to note that with the same parameters as in Figures 1.7 we obtain very different contour

plots compared with the CB-MCFD model: only for the independent case (� = 0) both

densities are equivalent, as can be seen in the two upper Figures. When the variables are

positively (�ij > 0) or negatively (�ij < 0) correlated, we observe that the VCB-MCFD is

able to capture more extreme events than the CB-MCFD.

Simulation of VCB-MCFD Variables

Equation 1.27 along with the de�nition of an Independent MCFD gives us a very

simple way of simulating m-th VCB-MCFD variables (Ri)ni=1 using the functions Qi, the

variance-covariance matrix, �; and the mean vectorm. The algorithm is as follows:

1. First, we simulate n independent univariate standard gaussian variables X:

2. Second, we apply Equation 1.5, zi = Qi(Xi); for each variable Xi to obtain variables

the Independent MCFD variables, zi.
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Fig. 1.8. Contour plots corresponding to different shapes of the bivariate third-order
VCB-MCFD. All densities are standardized to zero mean and unit variance and, there-
fore, we only have three free parameters de�ning the distribution: a2, which de�nes the
skewness, a3, which incorporates kurtosis, and the normal rank correlation �: In all the �g-
ures the parameter a2 is set to 0.25, so that both marginal densities are positively skewed.
The upper Figures show that this distribution is equivalent to the CB-MCFD when vari-
ables are independent (� = 0). The other Figures show that the VCB-MCFD captures
more dependence on the tails than the CB-MCFD.



1.4 Descriptive Data Analysis 45

3. And �nally, we calculate the Cholesky decomposition, �1=2, of the variance-covariance

matrix and apply Equation 1.27, R = �1=2 � z +m; to the whole vector z to obtain the

VCB-MCFD variables.

Again, this algorithm is very fast, as very ef�cient algorithms to calculate the Cholesky

decomposition are available in each computation package.

1.4 Descriptive Data Analysis

Daily returns of the great majority of variables in �nancial markets, in particular those

of exchange rates and market indexes, present a positive excess kurtosis (Bouchaud and

Potters 2000). This behavior implies that extreme movements in market variables are much

more frequent compared to predictions of a normal distribution. It is relatively common to

�nd each year, that some data in daily series are over 10 standard deviations of the mean.

A normal distribution would assign to this phenomenon a probability of order 10�23, and

in many cases the observed empirical probability can be of the order of 10�4.

To illustrate the problem of non-normality in market variables we will analyze two

different data bases27. The �rst one consists on daily exchange returns against the USD

(United States dollar), for the twelve mayor currencies between January 4 of 1988 and the

August 15 of 1997, making in total 2.245 observations. Foreign currencies are the Aus-

tralian dollar (AUD), the Belgian franc (BEF), the Swiss franc (CHF), the German mark

(DEM), the Danish crown (DKK), the Spanish peseta (ESP), the French franc (FRF), the

27 Both data bases have been collected from a Bloomberg terminal and we are thankful to Consulnor for
giving us access to it.
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English pound (GBP), the Italian lira (ITL), the Japanese yen (JPY), the Dutch guilder

(NGL) and the Swedish crown (SEK). The second data base consists on weekly returns

(from Wednesday to Wednesday) for dollar denominated stock indexes for the main ge-

ographical areas: North America, Japan, Europe, Emerging Markets and Eastern Europe

Emerging Markets, represented by the Standard and Poor's 500 Index (S&P) , the Nikkei-

225 Stock Average (NKI), the Dow Jones EURO STOXX (STX), MSCI Emerging Markets

Index (EM) and the MSCI Eastern Europe Emerging Market Index (EME)28. This data set

consists of total logarithmic return indexes from January 4 of 1995 to the March 23 of 2005,

making in total 519 observations.

As a preliminary investigation of the data, Table 1.1 presents a summary of the most

important univariate statistics of the twelve exchange rates and the �ve index Series. For

both data sets we begin estimating the �rst four moments and three tests of the null hypoth-

esis of normality of univariate distributions. Standard errors of the moments are computed

with the Generalized Moments Method (GMM) based procedure proposed by Bekaert and

Harvey 199729. Since the normality hypothesis is crucial to our analysis, we paid a par-

ticular attention to this test. Although a large number of test have been proposed in the

28 Standard and Poor's 500 Index is an index consisting of 500 US stocks that have been selected because
of the market size, liquidity and industry group representation, among other factors. The Nikkei-225 Stock
Average is a price-weighted average of 225 top-rated Japanese companies listed in the First Section of the
Tokyo Stock Exchange. Dow Jones EURO STOXX is a sub index of the Dow Jones STOXX 600 and
it covers most of the European countries. The MSCI Emerging Markets Index is a �oat-adjusted market
capitalization index. As of May 2005, it consisted of indices in 26 emerging economies: Argentina, Brazil,
Chile, China, Colombia, Czech Republic, Egypt, Hungary, India, Indonesia, Israel, Jordan, Korea, Malaysia,
Mexico, Morocco, Pakistan, Peru, Philippines, Poland, Russia, South Africa, Taiwan, Thailand, Turkey and
Venezuela. The Eastern Europe MSCI Index captures the capital markets behavior of Poland, Hungary,
Russia and Czech Republic.
29 The coef�cients of skewness and kurtosis are jointly estimated along with the mean and variance in an
exactly identi�ed GMM system with four orthogonality conditions. The variance-covariance matrix of the
parameters is heteroscedasticity consistent and corrects for serial correlation using a Bartlett kernel with an
optimal band as in Andrews 1991.



1.4 Descriptive Data Analysis 47

literature, we focus on three well-known procedures: �rst the Jarque-Bera (JB) statistic

proposed by Bera and Jarque 1982, which test whether skewness and excess kurtosis are

jointly zero. This test is known to be suitable for large samples only, because skewness and

kurtosis approach normality only very slowly. Second, a Wald test of the null hypothesis

that the skewness and excess kurtosis coef�cients are zero based on the GMM estimates, as

proposed by Bekaert and Harvey 1997, which incorporates the approximated �nite-sample

distribution of skewness and kurtosis. Third, the Kolmogorov-Smirnov (KS) statistic which

is based on the comparison between the theoretical and the empirical cumulative distribu-

tion functions.

Exchange rates data. Parameter estimates for the means are not signi�cant for any

of the daily series. The Jarque-Bera and Wald tests indicate that in none of the series the

gaussianity hypothesis can be sustained. Daily variance ranges from 0.3136 for the Aus-

tralian dollar to 0.5852 for the Swedish crown. Skewness for the exchange rates against the

dollar tend to present a negative sign (9 negative and 3 positive) and are in general not sig-

ni�cant at a 5% signi�cance level. However, in the Australian dollar or the Japanese yen

a signi�cant skewness is observed. It is interesting to note that the AUD is the only series

presenting positive skewness. On the other hand, the kurtosis coef�cient reveals that the

unconditional distribution of returns has heavier tails than the normal one for all exchange

rates. This coef�cient ranges from 14.46 for the Swedish crown to 5.05 for the Swiss franc.

The Jarque-Bera, Wald and KS tests indicate that in none of the series the gaussianity hy-

pothesis can be sustained with p-values close to zero. Therefore, it is necessary to consider

a model that picks up both observed deviations with respect to normality.
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Index data. Parameter estimates for the mean are only signi�cant for the S&P and

the STX. The weekly (annualized) return ranges from 9.36 for the S&P Index and a -5.148

for the Japan zone. Annualized standard deviations range from 21.237 for the S&P Index

to 31.289 for the MSCI Emerging Markets Index. As we would expect, the most volatile

indexes are those corresponding to Emerging Markets. The Jarque-Bera and Wald tests in-

dicate that in none of the series the gaussianity hypothesis can be sustained. Although only

Emerging Markets present signi�cant negative skewness, with values -0.718 and -0.443, in

general we �nd that the skewness coef�cient is negative, indicating that crashes are more

likely to occur than booms. The kurtosis coef�cient, ranges from 3.9228 for the Nikkei

to 5.997 for the E-STOXX. It is interesting to note that daily returns present heavier tails

than weekly returns as should be expected considering the central limit theorem. Neverthe-

less, as in the exchange rates database presented above, the Jarque-Bera, Wald and KS tests

indicate that the gaussianity hypothesis cannot be accepted with p-values close to zero.

For a better characterization of the data, a test for serial correlation of returns is also

considered. We use the Q Ljung-Box statistic (Ljung and Box 1978) to test the null hy-

pothesis of no serial correlation. Inspection of the Q statistics in Table 1.2 reveals that

daily returns of exchange rates do not exhibit in general serial correlation (only two series,

namely, ESP and ITL present signi�cant correlation) in contrast to weekly returns of in-

dexes, where in four of �ve series we �nd that the null hypothesis cannot be rejected. Next,

we also test for heteroskedasticity by regressing squared returns on lagged squared returns

using the Engle 1982 test. Table 1.2 provides evidence of second-order dynamics for all
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AUD BEF CHF DEM DKK ESP FRF GBP ITL

Mean -0.0010 -0.0050 -0.0065 -0.0056 -0.0050 -0.0142 -0.0054 -0.0062 -0.0172
0.0108 0.0138 0.0154 0.0139 0.0136 0.0146 0.0134 0.0145 0.0139

�2 0.3136 0.4844 0.5852 0.4719 0.4597 0.5258 0.4295 0.4626 0.4889
0.0178 0.0285 0.0254 0.0246 0.0253 0.0513 0.0233 0.0326 0.0477

� 0.7808 -0.1158 0.0323 -0.1301 -0.1012 -0.6084 -0.1305 -0.2532 -1.0396
0.2000 0.1166 0.1238 0.1102 0.1138 0.4598 0.1271 0.1553 0.4703

� 7.3163 5.6157 5.0500 5.0835 5.1153 11.2490 5.3087 6.0214 11.8247
1.1286 0.3411 0.3577 0.2938 0.2777 4.6166 0.3101 0.4887 3.4787

Max 4.0870 3.0035 3.6436 2.8963 3.1232 3.8475 2.8195 4.1319 6.8213
Median -0.0256 0.0000 -0.0160 0.0000 -0.0069 -0.0078 0.0000 0.0000 0.0000
Min -2.0482 -3.6037 -4.0268 -3.3817 -3.1391 -7.9446 -3.3503 -3.2446 -2.9514

JB 2158 706 430 451 462 7122 552 960 8421
p-val 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Wald 15.52 60.20 37.62 52.15 58.02 4.96 56.09 42.34 7.40
p-val 0.000 0.000 0.000 0.000 0.000 0.083 0.000 0.000 0.024
KS 0.5091 0.3152 0.1418 0.5608 0.2800 0.2589 0.5447 0.4002 0.3297
p-val 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

JPY NGL SEK S&P NKI STX EM EME

Mean 0.0018 -0.0056 -0.0128 0.180 -0.099 0.150 0.027 0.110
0.0137 0.0139 0.0140 0.0974 0.1282 0.1277 0.1494 0.2161

�2 0.4689 0.4739 0.5026 5.6148 9.3441 8.6719 8.1140 18.832
0.0259 0.0258 0.0433 0.6436 0.7498 1.4039 0.8541 3.0010

� 0.2019 -0.1049 -0.8023 -0.085 -0.147 -0.414 -0.718 -0.443
0.2444 0.1142 0.6548 0.1851 0.1462 0.2438 0.2291 0.2002

� 7.9843 5.2630 14.4600 4.509 3.928 5.997 5.098 5.604
1.0354 0.3048 6.8039 0.4064 0.3084 0.7616 0.7744 0.6794

Max 4.8744 3.0456 4.5953 10.182 11.307 14.461 8.589 21.236
Median 0.0000 0.0000 0.0000 0.332 -0.024 0.519 0.176 0.512
Min -4.6809 -3.2734 -8.5299 -9.041 -10.281 -12.636 -13.978 -17.122

JB 2561 528 13720 49 21 209 140 164
p-val 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Wald 24.20 56.69 6.59 14.67 9.10 28.74 9.98 29.26
p-val 0.000 0.000 0.037 0.000 0.010 0.000 0.006 0.000
KS 0.4111 0.4057 0.4452 0.3430 0.1843 0.4473 0.4236 0.2916
p-val 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table 1.1. Descriptive univariate statistics on returns. Mean, �2, � and � denote the mean,
variance, skewness, and kurtosis of returns, respectively. Estimates are not annualized and
standard errors are computed with the GMM-based procedure proposed by Bekaert and
Harvey 1997. Signi�cant parameters at a 5% are in bold. Max, Median and Min, stand for
the Maximum, Median and Minimum observation. JB, Wald and KS are the Jarque-Bera
statistic (Bera and Jarque 1982), the Wald test of joint signi�cance of skewness and kurtosis
(Bekaert and Harvey 1997) and the Kolmogorov-Smirnov statistic under the null hypothesis
of normality, respectively.
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data sets expected for the Nikkei, con�rming that there is a large amount of heteroskedas-

ticity in both daily and weekly returns.

After analyzing preliminary univariate statistics, we will next turn to the multivari-

ate analysis. In Tables 1.3 and 1.4 we show the correlation matrix of both data sets and the

GMM-estimates of the �nite sample standard deviation, below and above the diagonal re-

spectively. Table 1.3 indicates that all exchange series are positively correlated except the

Australian Dollar, which presents a non signi�cant negative correlation coef�cient. With

respect to the indexes, all series are also positively correlated ranging from 0.2650 for the

Japan and Eastern Europe areas to 0.7576 from the North American and European areas.

Finally, we perform several multivariate normality tests. As compared to the univariate

tests discussed above, these multivariate tests incorporate hypothesis on the co-skewness

and co-kurtosis matrices. We consider �ve different tests for multivariate normality: the

Shapiro-Wilk statistic (Royston 1982), the Mardia A and B statistics (Mardia 1985) which

measure deviations in skewness and kurtosis matrices, respectively, the omnibus statistic

(Doornick and Hansen 1994) based on the approximated �nite-sample distribution of skew-

ness and kurtosis, and a test proposed by Malevergne and Sornette 2003 which is based on

the property that a sum of squared gaussian variables are �2 distributed. These tests are

brie�y described in Appendix C.1. As Table 1.5 shows, according to all the tests none of

the data sets present a multivariate gaussian behavior.
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AUD BEF CHF DEM DKK ESP FRF GBP ITL

Q(1) 2.0672 1.2036 0.0069 0.0839 0.5618 5.5558 0.1054 0.1420 5.3298
0.1505 0.2726 0.9338 0.7721 0.4535 0.0184 0.7454 0.7063 0.0210

Q(4) 9.3010 1.3448 0.6354 0.2815 0.7764 12.5780 1.9332 3.7215 6.5554
0.0540 0.8537 0.9591 0.9910 0.9416 0.0135 0.7480 0.4450 0.1613

Q(10) 14.828 10.994 4.773 6.188 9.006 16.678 7.047 14.071 15.872
0.1384 0.3580 0.9058 0.7992 0.5315 0.0818 0.7210 0.1698 0.1033

LM(1) 24.15 42.52 26.61 31.52 15.62 6.34 30.99 10.25 18.76
0.0000 0.0000 0.0000 0.0000 0.0001 0.0118 0.0000 0.0014 0.0000

LM(5) 56.96 75.37 32.42 54.75 53.65 167.32 63.76 104.40 208.11
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

LM(10) 118.25 92.43 82.60 86.93 77.73 200.33 109.44 137.15 225.57
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

JPY NGL SEK S&P NKI STX EM EME

Q(1) 0.3403 0.3960 1.0272 3.1854 0.9820 7.4716 2.9898 2.8533
0.5597 0.5292 0.3108 0.0743 0.3217 0.0063 0.0838 0.0912

Q(4) 0.6746 0.6722 1.8337 5.0531 3.3629 17.263 16.503 12.153
0.9544 0.9547 0.7663 0.2819 0.4990 0.0017 0.0024 0.0162

Q(10) 13.073 6.184 12.192 17.766 25.907 25.537 22.049 17.468
0.2196 0.7995 0.2724 0.0590 0.0039 0.0044 0.0149 0.0646

LM(1) 17.06 31.79 102.10 17.51 0.7483 52.03 1.3503 9.40
0.0000 0.0000 0.0000 0.0000 0.3870 0.0000 0.2452 0.0022

LM(5) 30.60 58.26 119.75 41.65 7.1681 73.44 29.39 53.24
0.0000 0.0000 0.0000 0.0000 0.2084 0.0000 0.0000 0.0000

LM(10) 43.61 81.57 124.75 43.59 12.0315 89.74 39.51 84.86
0.0000 0.0000 0.0000 0.0000 0.2830 0.0000 0.0000 0.0000

Table 1.2. Descriptive univariate statistics on returns (cont.). Q(1), Q(4), and Q(10) denote
the Box-Ljung statistic for serial correlation, corrected for heteroscedasticity, computed
with 1, 4 and 10 lags, respectively. Under the null hypothesis of no serial correlation, it is
distributed as a �2(i). LM(1), LM(5) and LM(10) stand for the Engle 1982 test with 1, 4
and 10 squared lags. Under the null of no serial correlation of squared returns, the statistics
are distributed as a �2(i). Signi�cant not acceptance at a 5% are in bold.



1.4 Descriptive Data Analysis 52

AUD BEF CHF DEM DKK ESP FRF GBP ITL JPY NGL SEK
AUD 0.0310 0.0334 0.0328 0.0322 0.0221 0.0343 0.0354 0.0356 0.0367 0.0320 0.0267

BEF -0.0529 0.0473 0.0553 0.0569 0.0584 0.0583 0.0490 0.0576 0.0402 0.0592 0.0482

CHF -0.0570 0.8740 0.0497 0.0452 0.0409 0.0471 0.0454 0.0461 0.0411 0.0483 0.0380

DEM -0.0457 0.9367 0.9204 0.0538 0.0479 0.0568 0.0505 0.0574 0.0414 0.0565 0.0455

DKK -0.0450 0.9172 0.8599 0.9249 0.0559 0.0553 0.0489 0.0555 0.0396 0.0558 0.0489

ESP 0.0277 0.4315 0.3825 0.4164 0.4447 0.0591 0.0567 0.0664 0.0330 0.0588 0.0488

FRF -0.0532 0.9413 0.8904 0.9554 0.9300 0.4388 0.0507 0.0606 0.0409 0.0580 0.0483

GBP -0.1645 0.6505 0.6604 0.6920 0.6588 0.3116 0.6862 0.0663 0.0349 0.0494 0.0429

ITL -0.1020 0.6710 0.6306 0.6869 0.6678 0.3886 0.7077 0.6228 0.0315 0.0577 0.0490

JPY -0.0188 0.5885 0.6127 0.6201 0.5826 0.2456 0.6002 0.4438 0.3969 0.0405 0.0286

NGL -0.0485 0.9532 0.9062 0.9757 0.9367 0.4429 0.9598 0.6807 0.6910 0.6113 0.0477

SEK -0.0561 0.7140 0.6755 0.7254 0.7621 0.3693 0.7300 0.5571 0.5917 0.4537 0.7288

Table 1.3. Correlations between the different exchange rates. Correlation estimates are un-
der the diagonal and standard deviations are shown over the diagonal. Standard errors are
computed with the GMM-based method (Bekaert and Harvey 1997).

S&P NKI STX EM EME

S&P 0.0522 0.1217 0.0767 0.0696
STX 0.4037 0.0535 0.0545 0.0585
NKI 0.7576 0.4332 0.0866 0.0895
EM 0.5871 0.4543 0.6391 0.0993
EME 0.3733 0.2650 0.4230 0.6264

Table 1.4. Correlations between indexes. Correlation estimates are below the diagonal and
standard deviations are shown above the diagonal. Standard errors are computed with the
GMM-based (Bekaert and Harvey 1997).

Shapiro-Wilk Mardia A Mardia B Omnibus KS-�2

Exchange rate 0.7681 (0.000) 21221 (0.000) 649 (0.000) 39479 (0.000) 0.2527 (0.000)
Indexes 0.9591 (0.000) 159 (0.000) 24.04 (0.000) 335.0 (0.000) 0.1672 (0.000)

Table 1.5. Multivariate tests for normality. According to �ve different tests described in
Appendix C.1, in this table we report the statistic value under the null hypothesis and its
p-value, which show that none of the series present a multivariate gaussian behavior.
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1.5 Univariate Inference

In this Section we will describe different methods that we have used to �t the univariate

Cornish-Fisher function introduced in Section 1.2 and we will also analyze the goodness

of �t of the CFD to the data sets presented in Section 1.4. First, we will describe three

different estimation methods, namely, a quantile-quantile based estimation, the moments

method and the Maximum Likelihood method. Next, we will analyze a static CFD model

and analyze the in-sample performance of the CFD compared to other models. Finally,

we will estimate a dynamic GARCH model with innovations distributed as CFD and also

compare the in-sample results with other models.

1.5.1 Methods of Estimation

As we have already mentioned above, in this work we propose a third-order polynomial to

model the function Qi(X) of Equation 1.5:

Qi(X) = a3;iX
3 + a2;iX

2 + a1;iX + a0;i (1.29)

We analyze different methodologies to �t the coef�cients in the transformation function:

1. Perform a least square �tting of the experimental functionQi arising from the QQ-Plot

(QQ-estimates).

2. Fit the �rst four moments of the theoretical distribution to the experimental ones

(MM-estimates).
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3. Choose the Maximum Likelihood estimates that maximizes the logarithm of the

likelihood function of the distribution CF3 (ML-estimates).

It is interesting to point out that the �rst one is the most direct or computationally less

expensive of the three methodologies because it only involves a least-squares algorithm

that consists basically in matrix calculations. On the other hand, the fact that the density

function, cf3(R), is de�ned through the function Qi(X) makes this methodology specially

appropriate. The number of available points to make the regression will depend directly on

the number of available historical data. In principle, the number of points in a QQ-Plot is

chosen by the researcher but the most appropriate one consists on considering the interval

for the percentiles de�ned by each one of the points of the QQ-Plot in such a way that it

is the inverse of the number of sample data in the series. For example, if we had 100 data,

the �rst point would correspond to the percentile of 1%, and if we had 1000 data it would

correspond to the percentile of 0.1%.

In the second method we carry out the �tting based on the moments method, which

basically consists on comparing the sample moments to the theoretical ones by means with

relations derived in Equations 1.11, that relate the �rst four moments of the distribution

with the coef�cients in the third-order polynomial. However, this estimate involves a non-

linear process of optimization, because Equations 1.11 show the moments as a function

of the coef�cients and the inverse would be required in order to estimate the coef�cients

as a function of the moments associated to the distribution. For this purpose, we have

applied the macro FMINSEARCH of the MATLAB optimization toolbox and we use the
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QQ-estimates as initial estimates in the iterative process for the search algorithm. It is inter-

esting to point out that in all the cases considered the obtained convergence has always been

fast. In Appendix C.1 we analyze in detail the developed algorithm for the optimization

Finally, the third method based on a maximum-likelihood �tting would not be in

principle well adapted in our case, since, as can be seen in Equation A.1, coef�cients of

the third-order polynomial enter in the density function in a highly non-linear way, which

greatly complicates the numeric process of optimization. However, we have seen that using

adequate starting parameters for the non-linear optimization algorithm, namely the QQ-

estimates, we have been able to achieve global maxima for the log-likelihood functions

easily and quickly.

On the other hand, it has to be remembered that the function Qi(X) has to be invert-

ible and, therefore, restrictions shown in Equation 1.10 must hold. Given that historical

data present a positive excess kurtosis, as is generally veri�ed in �nancial series, these con-

ditions will be naturally satis�ed when using the QQ-Plot based method. For the other two

methods it is necessary to impose explicitly the restrictions in the optimization procedures.

Nevertheless, using the estimates of the quantile-quantile based method and given the high

�exibility of the third-order CFD (see Section 1.2) we always get inner solutions to the

optimization problems. In contrast, Jondeau and Rockinger 2001 who use Gram-Charlier

Densities, which are not so �exible, obtain many frontier solutions.

In Appendix C.2 these algorithms are tested and we also investigate the properties of

the maximum-likelihood, moments and QQ-estimates when Cornish-Fisher Densities are

used in an attempt to directly obtain higher moments that differ from the ones of the normal
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distribution using Montecarlo experiments. We consider the �t of CFDs to data generated

with a Cornish-Fisher distribution and to data generated with a mixture of normals. Fur-

thermore, in the latter type of simulation we distinguish the situation where parameters for

the simulated data are in or out of the restricted domain given by the Figure 1.1. In our

simulations we simulate N=100 series of length T=2000 of data standardized CF with zero

mean and unit variance. According to these experiments we can conclude that in general

the three algorithms are well behaved and that the estimations of the QQ and ML are sensi-

bly better than the ones corresponding to the MM. Besides that, we �nd that ML-estimates

are the most ef�cient when the true distribution is CFD. In addition, with the second exper-

iments we �nd that the estimates errors and dispersions are very similar in the whole region

of permitted values.

1.5.2 Static Framework

In this Section a �rst approach to the empirical analysis will be described. We estimate

the parameters under the hypothesis that both data bases described in Section 1.4 are in-

dependent CFD distributed and the three estimation methods de�ned above will be con-

sidered. In each case we will test the kindness of the �t using four different statistics.

The �rst one is the classical Kolmogorov-Smirnov statistic, that tests for the similarity be-

tween the empirical distribution function and the CFD distribution. For the other three tests

we take advantage of the property that if R is a CFD variable, the variable X de�ned as

X = Q�1(R) (see Equation 1.5) should be normal if the CFD speci�cation is suf�ciently

correct. Therefore, we can apply on these �ctitious X variables any of the usual normality
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tests to analyze if returns are CFD distributed or not. In particular, we use three different

test: (1) the Jarque-Bera test that checks if the third and fourth moments of the sample are

equal to the normal ones , (2) the Liliefors test, which is a KS-like test specially meant for

testing normality and, therefore, looks at the central part of the cumulative distribution, and

(3) the Anderson-Darling test which gives special attention on the tails of the distribution.

In Appendix C.3 these tests are presented brie�y.

Table 1.6 shows the QQ-estimates and the four different statistics while Table 1.7

and Table 1.8 report the results for the MM and ML methods. In each Table we report

the estimates for the coef�cients ai with their standard errors, which have been calculated

using a bootstrap method with 1000 simulations for the QQ and MM-estimates, and using

the Hessian matrix evaluated at the Maximum Likelihood estimates for the ML method.

We also present the Kolmogorov-Smirnov, Jarque Bera, Liliefors and Anderson-Darling

statistics with their p-values, and non rejection of the null hypothesis that unconditional

returns are samples of a CFD at a 5% signi�cance level are in bold.

First, in general it should be noticed the high degree of non-rejection of the CFD hy-

pothesis, which indicates that in almost all cases we have considered just four parameters

are required to capture the non-normal (unconditional) behavior of �nancial series. Com-

paring the results obtained with the different methods, �rst we observe that the p-values for

the KS test of the MM-estimates are systematically smaller than the p-values of the QQ-

estimates and that both are smaller than the ML-estimates. As a consequence, using the

KS statistic at a 5% signi�cance level, only �ve, one and none of the 17 series considering

the MM, QQ and ML-estimates, respectively, the null hypothesis that the data are Cornish-
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0.0035

-0.0073
0.0056

0.5241
0.0083

0.0028
0.0109

0.013
0.75

0.293
0.86

0.013
>
0.2

0.360
0.44

C
H
F

0.0474
0.0042

0.0036
0.0063

0.6166
0.0107

-0.0103
0.0131

0.015
0.57

0.175
0.91

0.015
0.13

0.346
0.48

D
E
M

0.0475
0.0032

-0.0093
0.0047

0.5387
0.0074

0.0040
0.0112

0.009
0.97

0.416
0.81

0.009
>
0.2

0.273
0.66

D
K
K

0.0482
0.0034

-0.0065
0.0053

0.5275
0.0086

0.0037
0.0110

0.012
0.81

0.422
0.80

0.011
>
0.2

0.353
0.46

E
SP

0.0618
0.0058

-0.0081
0.0090

0.5168
0.0136

-0.0038
0.0119

0.012
0.81

0.729
0.69

0.012
>
0.2

0.345
0.48

FR
F

0.0479
0.0032

-0.0074
0.0048

0.5044
0.0074

0.0026
0.0105

0.012
0.80

0.282
0.86

0.012
>
0.2

0.273
0.66

G
B
P

0.0653
0.0057

-0.0104
0.0081

0.4760
0.0122

0.0061
0.0107

0.011
0.92

1.621
0.44

0.011
>
0.2

0.353
0.46

IT
L

0.0573
0.0049

-0.0090
0.0078

0.5020
0.0119

-0.0029
0.0112

0.021
0.20

4.069
0.13

0.021
<
0.01

0.520
0.18

JPY
0.0597

0.0051
0.0146

0.0083
0.4860

0.0122
-0.0137

0.0110
0.012

0.80
0.186

0.91
0.012

>
0.2

0.188
0.90

N
G
L

0.0496
0.0031

-0.0071
0.0047

0.5327
0.0072

0.0018
0.0110

0.008
0.99

0.332
0.84

0.008
>
0.2

0.216
0.84

SE
K

0.0548
0.0043

-0.0131
0.0076

0.5184
0.0114

0.0015
0.0113

0.011
0.89

1.135
0.56

0.011
>
0.2

0.239
0.77

S&
P

0.1217
0.0324

-0.0926
0.0560

1.9908
0.0941

0.2654
0.0955

0.026
0.86

0.316
0.85

0.025
>
0.2

0.349
0.47

N
K
I

0.1127
0.0378

0.0239
0.0706

2.7063
0.1268

-0.1271
0.1319

0.022
0.96

0.112
0.94

0.021
>
0.2

0.304
0.56

ST
X

0.2200
0.0418

-0.3220
0.0837

2.2358
0.1057

0.4475
0.1080

0.028
0.77

1.153
0.56

0.028
>
0.2

0.365
0.43

E
M

0.1376
0.0380

-0.2239
0.0626

2.3839
0.1114

0.2560
0.1146

0.020
0.97

0.114
0.94

0.020
>
0.2

0.207
0.86

E
M
E

0.4829
0.0912

-0.3516
0.1250

2.8760
0.1804

0.4610
0.1448

0.021
0.97

1.143
0.56

0.021
>
0.2

0.231
0.80
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Fisher distributed is rejected. For example, observing the characteristics of the exchange

rate ITL/USD, which is the only not well captured by the QQ method, it is interesting to

see (Table 1.1) that although the SEK/USD exchange rate presents the highest kurtosis ITL

is the one with the highest skewness. On the other hand, considering the Jarque-Bera sta-

tistic similar results can be observed. According to this test we �nd a rejection of the CFD

assumption in none of the series for the QQ and ML-estimates and in �ve for the MM,

the latter being the same as the KS statistic. The p-values of the QQ and ML suggest that

according to the Jarque-Bera statistic the QQ estimation method derives the best results,

actually, in 14 out of 17 cases the p-value of the QQ is higher than in the ML method. The

Liliefors test, which is a version of the Kolmogorov test, becomes the most restrictive of

the four tests in order to characterize the �tting. According to this test, we �nd a rejec-

tion in one, six and nine cases for the ML, QQ and MM- estimates, respectively. Again we

can conclude that the best estimation method in terms of p-values is the ML, where only

the ITL series is rejected. Finally, the Anderson-Darling test gives also very similar re-

sults as only none, �ve and nine cases are rejected for the ML, QQ and MM- estimates,

respectively.

According to the results presented above, it is easy to conclude that the Maximum

Likelihood method (ML) is the most �exible in �nding good �ts and that the assumption of

the Cornish-Fisher density becomes a great starting point to simulate �nancial data series

from a statistical point of view. Therefore, from now on, just the ML will be considered for

estimation purposes.
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Next, in order to have a more intuitive and graphical representation of the advan-

tage of considering CFD to simulate �nancial series, CFD in-sample performance will

be compared, both graphically and analytically, with other distributional models. Table 1.9

presents the values of the Maximum Likelihood function for the exchange rates and indexes

databases considering four different distributions: gaussian, Johnson distribution (Appen-

dix A), the third-order Cornish-Fisher Expansion (CFE, see Equation 1.7) and the CFD.

We compare our model with these distributions for the following reasons: the gaussian dis-

tribution is a special case of the CFD (when a3 = a2 = 0) and is a standard market model,

so that in our comparison it might be used as the �rst order approximation. The John-

son distribution, as the third-order CFD, is also a four parametrical distribution and is also

very �exible allowing for heavy tails and asymmetry. Therefore, it is used to compare the

CFD with a distribution with the same number of parameters (degrees of freedom). Fi-

nally, given that the CFD is related to the Cornish-Fisher Expansion, we use the expansion

as a distribution although it is not usual30 and compare the results with the CFD. In this ta-

ble, we also report the Akaike and Bayesian model selection criteria, which penalize for an

increase in complexity through the inclusion of more parameters. First, we �nd an over-

all improvement of the CFD compared to the Gaussian or the Johnson distribution. Given

that the CFD nests the gaussian one imposing ai = 0 for i > 1; we can perform a likeli-

hood ratio test. For every exchange rate we �nd that we can reject the null hypothesis that

the restricted model (gaussian) is the correct model relative to the unrestricted CFD model

30 See the comments on the relationship between the CFE and the CFD in Section 1.2. Basically, to construct
a distribution from the CFE we truncate the expansion up to order three and calculate the coef�cients of the
polynomial with the empirical moments of the data-series (see Equation 1.7). The resulting distribution is a
CFD but with different coef�cients ai. To our knowledge, this is the �rst time that the CFE is used directly
as a distribution.
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with p-values almost equal to zero. It is interesting to note that both the Akaike and the

Bayesian criteria suggest that the CFD �ts better in-sample returns than the Johnson distri-

bution and the CFE. Indeed, in some cases (i.e., the ESP, ITL or SEK) which correspond to

series with higher kurtosis coef�cients, we �nd that the CFE is the worst model, even worse

than the gaussian. Therefore, we can conclude that considering directly the coef�cients ai

as parameters instead of the moments or cumulants implies a signi�cant improvement in

terms of goodness of �t. It is also interesting to note that although CFD behaves better than

Johnson distributions both have the same number of parameters allows to get and similar

results everywhere but in the tails, where the CFD becomes more �exible and tractable to

describe higher deviations from normality. Finally, we also �nd that the bigger the devi-

ation from normality the bigger the out-performance of the CFD with respect to the other

distributions. This conclusion can be drawn from the fact that the strongest differences are

found in the exchange rates database where the deviation with respect to normality are the

biggest (see Section 1.4).

On the other hand, Tables of Figures 1.10-1.13 show graphical representations cor-

responding to the �t for all twelve exchange rates series of the QQ-Plot for the CFD, the

Johnson distribution, the CFE and a cubic spline �tted with a penalization parameter of

0.8. The spline function, as an example of a non-parametrical estimation method, is also

included for comparison purposes. Besides the QQ-Plot, we also present histograms and

the corresponding �tted density functions for both the gaussian and the CFD case. Because

the Johnson and polynomial models have the same number of degrees of freedom, their

respective graphical representations for the QQ-Plot are almost identical in all the cases,
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although the Akaike and Bayesian criteria select the CFD as the best model. The plot us-

ing splines is sometimes apparently different (as in the AUD or ITL series), but they do not

posses statistical signi�cance given the above test results.

1.5.3 Dynamic Framework

In this Section we estimate a dynamic GARCH model with innovations distributed as CFD

and compare the �tting with different dynamic benchmark models. In spite of the good

results obtained in the previous Section 1.5.2 with the static CFD model, we consider the

inclusion of �rst and second order dynamics for the following two reasons. Descriptive re-

sults on the dynamic behavior of return series in Section 1.4 have shown statistical evidence

on the existence of autocorrelation and volatility clustering and, therefore, we notice that

our static model remains misspeci�ed. And second, in the Multivariate Inference Section

1.6 we will �nd that static multivariate models are not enough �exible to model multivari-

ate returns and introducing �rst and second order dynamics will be required to improve the

�tting.

As a result of this, we make mean and variance of the series time varying, for

example using an ARMA-GARCH type model as they include the possibility of time-

changing volatility and mean. First, Engle 1982 proposed his ARCH (AutoRegressive

Conditional Heteroskedasticity) model and Bollerslev 1986 extended it to GARCH (Gen-

eralized ARCH). Time varying volatility has led to a signi�cant amount of literature, sum-

marized in Bollerslev, Chou, and Kroner 1992. However, one dif�culty of those models is

that conditional residuals very often remain heavy tailed. In the model that we will present
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Table 1.10. Graphical representations of the experimental QQ-Plots and density functions
for the AUD, BEF and CHF, with the corresponding �ttings by using different distribu-
tions: the Cornish-Fisher (CFD), the Johnson, the spline and the Cornish-Fisher Expansion
(CFE).
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Table 1.11. Graphical representations of the experimental QQ-Plots and density functions
for the DEM, DKK and ESP, with the corresponding �ttings by using different distribu-
tions: the Cornish-Fisher (CFD), the Johnson, the spline and the Cornish-Fisher Expansion
(CFE).
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Table 1.12. Graphical representations of the experimental QQ-Plots and density functions
for the FRF, GBP and ITL, with the corresponding �ttings by using different distribu-
tions: the Cornish-Fisher (CFD), the Johnson, the spline and the Cornish-Fisher Expansion
(CFE).
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Table 1.13. Graphical representations of the experimental QQ-Plots and density functions
for the JPY, NGL and SEK, with the corresponding �ttings by using different distribu-
tions: the Cornish-Fisher (CFD), the Johnson, the spline and the Cornish-Fisher Expansion
(CFE).
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in this Section we will keep the usual GARCH-type parametrization of volatility, but we

will allow a more general distribution than the gaussian to characterize the innovations. As

has been described before, we propose that innovations follow a distribution which can be

approximated by using a Cornish-Fisher Density.

Formally, we assume that the model for the prices returns, Rt, may be described by

the following equations:

Rt = mt + yt (1.30)

mt = c+ AR �Rt�1 (1.31)

yt = �tzt (1.32)

�2t = w + py2t�1 + q�2t�1 (1.33)

zt � CF (a3; a2) (1.34)

The term mt in Equation 1.30 corresponds to the conditional mean, which in our

model will be described by a �rst order autoregressive model AR(1) presented in Equa-

tion 1.3131. Autoregressive models suppose that past returns tend to predict future ones

and much literature (e.g. Lo and MacKinlay 1988, Lo and MacKinlay 1990) has high-

lighted that weekly or monthly returns of equities and indexes present an autoregressive

pattern. On the other hand, the term yt in Equation 1.30 represents the unexpected part of

returns and is modeled by Equation 1.32. The variable �t is the conditional volatility and it

will be described by a GARCH(1,1) representation given by Equation 1.33, although more

31 Actually, we model separately the exchange rates and the indexes databases. Weekly series in the indexes
database present autocorrelation, as veri�ed in Table 1.2, while for the exchange rates database the conditional
mean of the series do not present any dynamics. Therefore, we will only consider an AR(1) model for the
index series while for the exchange rate we will consider a constant mean �t = c: (i.e. AR = 0).
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complicated processes could be trivially accommodated. In the GARCH(1,1) setting the

parameter p captures the sensibility of present volatility to past returns (high or low returns

tend to predict volatility) and the parameter q captures the volatility clustering phenom-

enon, i.e. high past volatility tends to predict high present volatility. However, in standard

GARCH models it is assumed that the innovation, zt, follows a normal standardized dis-

tribution, but in our model we will assume that innovations are distributed as a standard

third-order Cornish-Fisher Density de�ned in Equation 1.12 with parameters a3 and a2.

Therefore, in this new model mean and variance are allowed to be time-varying while the

higher order moments associated to the innovations are kept constant, but not zero as in the

gaussian case.

Given the static results presented in Section 1.5.2 above, we will only consider the

ML estimation method. In Appendix C.1 we present the likelihood function that we have

maximized to obtain the set of parameters of our model (c, AR, w, p, q, a3 and a2) and

in Appendix C.2 we test our algorithm in a set of Montecarlo experiments. In these ex-

periments we simulate 100 samples of length 2000 for 6 sets of parameters with different

skewness and kurtosis characteristics. According to the results of these experiments we �nd

that our estimation algorithms are accurate. Tables 1.14 and 1.15 present the ML-estimates

of GARCH models with a normal density and a Cornish-Fisher density for the innovations,

respectively.

Starting with Table 1.14, parameter p indicates that in general after a large return

also volatility of the next period tends to be high. Parameter q indicates that a high volatil-

ity is also followed by high volatilities and, therefore, volatility remains quite persistent.
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Although not reported, we have estimated the skewness and kurtosis coef�cients for the

innovations, and we have seen that in all cases kurtosis coef�cients are signi�cantly dif-

ferent from three and, therefore, incompatible with a gaussian distribution. However, we

have also tested the adequacy of the gaussian hypothesis by using the same four tests pre-

sented in the static Section 1.5.2. In Table 1.14 we have presented p-values of the tests and

have marked in bold the cases where normality assumption cannot be rejected. As can be

seen, the four results imply an overall rejection of this hypothesis in both data series. As

commented before, these results are already well established in the literature and suggest

that GARCH models should be modeled with distributions for the innovations allowing

for heavy tails. It is also important to notice that in all cases the likelihood function has

increased with respect to its static counterpart shown in Table 1.9.

Table 1.15 shows the results for the estimations of a GARCH(1,1) model with inno-

vations distributed as a Cornish-Fisher Density. The parameters for the variance dynamics,

w; p and q, are similar to the ones presented for the gaussian case in Table 1.14. In addition,

we also report the estimations of the parameters a3 and a2 of the standardized Cornish-

Fisher distribution. As shown in the previous Section, the four tests also demonstrate that

we cannot reject the null hypothesis that standardized innovations are compatible with the

CFD. While for all series the a3 coef�cient is statistically different from zero, indicating

that the true QQ Plot of innovations is non linear, in some cases we �nd that in many cases

the a2 coef�cient is not signi�cantly different from zero, as an indication that the condi-

tional distribution of these series is highly symmetric. The highest asymmetries are found

in the indexes database, indicating that even in �ltered returns extreme crashes are more
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likely to happen than extreme booms, which will be an important feature when describing

the portfolio selection to maximize returns in the next Chapter. In all the series the value

of the Log-Likelihood function has highly improved with respect to the gaussian approx-

imation and, moreover, according to this criteria the gaussian approximation is rejected32.

Besides that, considering the CFD, a general decrease of standard errors associated to the

parameters is obtained, and as a consequence, our estimation becomes more ef�cient. Al-

though not reported, we �nd in general that the skewness and kurtosis coef�cients implied

from the estimation are closer to the sample values of the standardized innovations than in

the gaussian case.

In order to analyze the goodness of in-sample �t corresponding to the dynamic CFD

model presented in this work (GARCH-CFD), it is compared with two well known and ac-

cepted models to describe the non-gaussian innovations: the T-Student (GARCH-T) and

the Skewed-T Student (GARCH-ST) distributions. The �rst one just accounts for symmet-

ric heavy tails while the second one incorporates asymmetry between positive and negative

returns (see Appendix A.1 for more details). In Table 1.16 the results of these estima-

tions are presented along with the results of the static models used in the later Section for

comparison purposes and the gaussian GARCH model (GARCH-G), where we report the

Maximum Likelihood values, the Akaike Criteria and the Bayesian Criteria33.

According to the likelihood test, we �nd that the GARCH-CFDmodel outperforms in

13 out of 17 cases the other models and the Akaike criteria also suggests that in 13 cases the

GARCH-CFD is more accurate. In contrast, given that the Bayesian criteria penalizes more

32 In all cases the p-value is smaller than 10�4.
33 Estimation details are available from authors upon request.
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AUD BEF CHF DEM DKK ESP FRF GBP ITL

c -0.0041 0.0024 -0.0019 -0.0008 0.0022 0.0146 0.0024 -0.0149 -0.0156
std. 0.0103 0.0131 0.0146 0.0128 0.0128 0.0124 0.0121 0.0112 0.0117
w 0.0050 0.0077 0.0130 0.0063 0.0049 0.0138 0.0066 0.0028 0.0072
std. 0.0009 0.0016 0.0030 0.0015 0.0012 0.0026 0.0015 0.0006 0.0015
p 0.0450 0.0424 0.0381 0.0418 0.0364 0.0719 0.0465 0.0377 0.0746
std. 0.0051 0.0046 0.0056 0.0055 0.0046 0.0051 0.0061 0.0035 0.0063
q 0.9390 0.9416 0.9391 0.9449 0.9530 0.9023 0.9384 0.9565 0.9122
std. 0.0065 0.0066 0.0093 0.0075 0.0060 0.0090 0.0081 0.0039 0.0077

KS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
JB <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Liliefors 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
AD 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Log-Lik -1943 -2507 -2772 -2477 -2445 -2521 -2351 -2378 -2387

JPY NGL SEK S&P NKI STX EM EME

c -0.0041 -0.0002 0.0148 0.1238 0.0481 0.1578 0.1287 0.1069
std. 0.0129 0.0130 0.0117 0.0937 0.1348 0.1016 0.1261 0.1634
AR -0.0848 -0.0375 -0.0632 0.1069 0.0574
std. 0.0510 0.0438 0.0515 0.0520 0.0497
w 0.0124 0.0065 0.0041 0.1135 0.2911 0.2371 0.2460 0.7152
std. 0.0020 0.0015 0.0008 0.0728 0.3073 0.0994 0.0875 0.2543
p 0.0472 0.0403 0.0497 0.1074 0.0277 0.2142 0.0736 0.0905
std. 0.0044 0.0051 0.0046 0.0288 0.0159 0.0404 0.0200 0.0218
q 0.9264 0.9460 0.9445 0.8782 0.9402 0.7723 0.8970 0.8707
std. 0.0070 0.0070 0.0046 0.0308 0.0420 0.0414 0.0244 0.0300

KS 0.00 0.00 0.00 0.19 0.44 0.04 0.08 0.00
JB <0.01 <0.01 <0.01 <0.01 0.06 <0.01 <0.01 <0.01
Liliefors 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
AD 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00

Log-Lik -2480 -2485 -2474 -1149 -1314 -1217 -1258 -1458

Table 1.14. GARCH estimates under normality assumption for both databases. c, w, p and
q are the coef�cients in Equations 1.30 to 1.33 and AR is the autoregressive coef�cient
(only for the indexes). Under each estimate the standard deviation is reported. KS, JB,
Liliefors and AD represent, respectively, the p-values of the Kolmogorov-Smirnov, Jar-
que-Bera, Liliefors and Anderson-Darling tests for normality of standardized innovations.
Finally, Log-Lik is given by the sum of all log-likelihoods.
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AUD BEF CHF DEM DKK ESP FRF GBP ITL

c -0.0063 -0.0043 -0.0072 -0.0074 -0.0037 -0.0032 -0.0038 -0.0123 0.0081
std. 0.0102 0.0130 0.0147 0.0129 0.0127 0.0128 0.0121 0.0116 0.0120
w 0.0050 0.0066 0.0117 0.0058 0.0046 0.0093 0.0069 0.0017 0.0060
std. 0.0018 0.0027 0.0048 0.0024 0.0021 0.0032 0.0026 0.0010 0.0021
p 0.0545 0.0469 0.0424 0.0443 0.0417 0.0547 0.0506 0.0422 0.0618
std. 0.0107 0.0092 0.0097 0.0089 0.0085 0.0100 0.0101 0.0077 0.0102
q 0.9313 0.9411 0.9383 0.9447 0.9497 0.9274 0.9347 0.9562 0.9273
std. 0.0128 0.0117 0.0149 0.0113 0.0104 0.0134 0.0132 0.0075 0.0116
a3 0.0668 0.0669 0.0550 0.0573 0.0598 0.0657 0.0585 0.0741 0.0602
std. 0.0070 0.0068 0.0070 0.0071 0.0070 0.0063 0.0069 0.0070 0.0070
a2 0.0435 -0.0063 0.0080 -0.0107 -0.0059 -0.0030 -0.0085 0.0005 0.0084
std. 0.0123 0.0124 0.0119 0.0121 0.0122 0.0123 0.0120 0.0125 0.0122

KS 0.77 0.98 0.93 0.95 0.86 0.72 0.56 0.30 0.67
JB >0.20 >0.20 >0.20 >0.20 >0.20 >0.20 >0.20 >0.20 0.04
Liliefors 0.65 0.90 0.82 0.77 0.82 0.81 0.91 0.64 0.72
AD 0.66 0.72 0.55 0.89 0.88 0.76 0.78 0.82 0.75

Log-Lik -1834 -2409 -2710 -2411 -2371 -2412 -2276 -2264 -2309

JPY NGL SEK S&P NKI STX EM EME

c -0.0047 -0.0012 0.0166 0.0954 0.0303 0.0769 0.0412 0.1270
std. 0.0128 0.0129 0.0121 0.0895 0.1359 0.1042 0.1189 0.1639
AR -0.0862 -0.0347 -0.0684 0.0561 0.0236
std. 0.0458 0.0422 0.0461 0.0422 0.0421
w 0.0143 0.0067 0.0063 0.1187 0.2408 0.2413 0.0940 0.5766
std. 0.0047 0.0027 0.0022 0.0893 0.3808 0.1256 0.0700 0.3663
p 0.0486 0.0446 0.0593 0.1110 0.0261 0.1814 0.0483 0.1053
std. 0.0110 0.0092 0.0102 0.0369 0.0200 0.0452 0.0187 0.0410
q 0.9203 0.9425 0.9290 0.8724 0.9475 0.7980 0.9395 0.8724
std. 0.0177 0.0120 0.0115 0.0413 0.0525 0.0469 0.0221 0.0444
a3 0.0758 0.0603 0.0596 0.0296 0.0354 0.0298 0.0417 0.0802
std. 0.0064 0.0069 0.0056 0.0119 0.0147 0.0121 0.0116 0.0164
a2 0.0219 -0.0066 -0.0041 -0.0666 0.0004 -0.0990 -0.0778 -0.0682
std. 0.0125 0.0122 0.0120 0.0226 0.0239 0.0247 0.0241 0.0277

KS 0.67 0.99 0.59 0.344 0.73 0.30 0.86 0.95
JB >0.20 >0.20 >0.20 >0.20 >0.20 0.15 >0.20 >0.20
Liliefors 0.78 0.84 0.27 0.97 0.97 0.75 0.88 0.76
AD 0.78 0.97 0.89 0.81 0.45 0.14 0.96 0.86

Log-Lik -2321 -2409 -2351 -1.1386 -1.3072 -1.2053 -1.2377 -1.4308

Table 1.15. GARCH estimates under CFD assumption for both databases. The legend is
the same as in Table 1.14, with a3 and a2 being the coef�cients of the standardized Cor-
nish-Fisher Density.
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over-parametrization, we �nd that in 11 cases the GARCH-T model is the best and only

in three cases the GARCH-CFD appears to be better. Nevertheless, even according to the

Bayesian Criteria the GARCH-CFD is always better than the GARCH-ST approximation,

indicating that comparing models with the same number of parameters the CFD becomes

more appropriate.

It is also interesting to note that the better �t of the GARCH-CFD is specially re-

markable in the exchange rates database, which, as we have seen before (see Section 1.4),

presents a higher non-gaussian behavior. This fact indicates that our distribution could

be specially adequate in highly non-linear time series. Finally, as can be seen from the

difference between values of static and dynamic models, we also want to emphasize the

importance of allowing for �rst an second order dynamics. We have also performed likeli-

hood ratio tests for the pairs GARCH-G, Gaussian and GARCH-CFD, �nding in all cases

a strong rejection of the dynamic model.
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1.6 Multivariate Inference

In this Section we will analyze and characterize the estimation of Multivariate Cornish-

Fisher Densities for the two databases in both of its forms: the CB-MCFD and the VCB-

MCFD considering separately static and dynamic frameworks. In each case we describe

�rst the estimation procedure and afterwards analyze the estimation results.

1.6.1 Static Framework

Static Copula-Based MCFD

Estimation. As was described in Section 1.3.1 the static CB-MCFD model assumes

a structural dependence given by a gaussian copula and, generally, copula functions are

estimated in two steps: �rst, one has to model and �t the univariate distributions and,

second, one has to transform the real data onto the �copula scale data� , Xi;t, using the

�tted univariate distributions and �t the parameters of the copula function. In the CB-

MCFD model:

cb-mcfdm(Rt) =
1p

(2�)n det [�]

nY
i=1

@
�
Q�1i (Ri;t)

�
@Ri;t

exp

 
�1
2

nX
i;j=1

Q�1i (Ri;t)
�
��1
�
ij
Q�1j (Rj;t)

!

if our real data are denoted as Ri;t , corresponding to the value of the variable Ri at time

t; the corresponding �copula scale data� with our notation is given by Xi;t = Q�1i (Ri;t),

which, under the CB-MCFD hypothesis, should be distributed as a multivariate gaussian

with zero mean, unit variance and correlation matrix �. We can prove this just calculating

the distribution of the variables Xi;t using the density transformation theorem presented in
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Section 1.3.2 (see also Johnson and Kotz 1972a):

f(Xt) = cb-mcfdm(Qi (Xt)) =

=
1p

(2�)n det [�]

nY
i=1

@
�
Q�1i (Qi (Xi;t))

�
@Xi;t

�

exp

 
�1
2

nX
i;j=1

Q�1i (Qi (Xi;t))
�
��1
�
ij
Q�1j (Qj (Xj;t))

!

=
1p

(2�)n det [�]
exp

 
�1
2

nX
i;j=1

Xi;t

�
��1
�
ij
Xj;t

!
= ��(Xt)

As a consequence, in order to �t the CB-MCFD we have to calculate the correlation

matrix of these �ctitious variables Xi;t, which will be called as normal rank correlation.

We will use the common estimator for correlations �̂:

�̂ij =
1

T

TX
t=1

Xi;tXj;t =
TX
t=1

Q�1i (Ri;t)Q
�1
j (Rj;t)

where Xi;t is the value of the �ctitious gaussian variable Xi at time t and T is the sample

size. In Appendix C.1 we show that this estimator is, as a matter of fact, the Maximum

Likelihood estimator of the normal rank correlation, given that the univariate CFD speci�-

cation is the correct one for each asset.

Results. The estimation results for the exchange rates and indexes databases corre-

sponding to the CB-MCFD model are presented in Table 1.17 and 1.18, respectively. In

both cases the estimates are presented under the diagonal and the standard errors above it,

which are calculated using the numerical Hessian matrix. We can observe that estimates

of the normal rank correlation are very similar to the estimates corresponding to the linear

correlation presented in Table 1.3. Actually, as we could have deduced from the results of
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AUD BEF CHF DEM DKK ESP FRF GBP ITL JPY NGL SEK
AUD 0.0203 0.0203 0.0204 0.0203 0.0202 0.0203 0.0198 0.0201 0.0202 0.0204 0.0202

BEF -0.0439 0.0030 0.0014 0.0020 0.0142 0.0014 0.0150 0.0141 0.0099 0.0009 0.0060

CHF -0.0478 0.8800 0.0018 0.0034 0.0150 0.0027 0.0145 0.0143 0.0096 0.0022 0.0071

DEM -0.0372 0.9418 0.9192 0.0018 0.0143 0.0010 0.0146 0.0140 0.0091 0.0005 0.0058

DKK -0.0356 0.9217 0.8645 0.9261 0.0139 0.0017 0.0149 0.0141 0.0101 0.0014 0.0053

ESP 0.0330 0.4203 0.3781 0.4123 0.4377 0.0140 0.0180 0.0167 0.0176 0.0139 0.0154

FRF -0.0460 0.9428 0.8919 0.9545 0.9301 0.4293 0.0146 0.0137 0.0096 0.0009 0.0057

GBP -0.1545 0.6465 0.6648 0.6860 0.6542 0.2836 0.6805 0.0170 0.0161 0.0147 0.0149

ITL -0.1077 0.6896 0.6558 0.6983 0.6862 0.3782 0.7183 0.6180 0.0163 0.0140 0.0137

JPY -0.0028 0.5946 0.6146 0.6236 0.5886 0.2383 0.6061 0.4527 0.4209 0.0093 0.0127

NGL -0.0417 0.9564 0.9073 0.9760 0.9371 0.4315 0.9585 0.6743 0.7058 0.6138 0.0056

SEK -0.0620 0.7542 0.7155 0.7592 0.7852 0.3795 0.7661 0.5861 0.6377 0.4872 0.7646

Table 1.17. Normal rank correlation between the different exchange rates. The Maximum
Likelihood estimates are presented under the diagonal and the standard errors, which are
calculated using the numerical Hessian matrix, above it.

S&P NKI STX EM EME
S&P 0.0361 0.0184 0.0276 0.0373
STX 0.4037 0.0345 0.0342 0.0408
NKI 0.7488 0.4495 0.0246 0.0246
EM 0.5945 0.4569 0.6475 0.0246
EME 0.3705 0.2568 0.4197 0.5980

Table 1.18. Normal rank correlations between indexes. Maximum likelihood-estimates are
under the diagonal and standard errors above it.

Lemma 7, biggest differences correspond to series with highest non-gaussian behavior, as

ITL and SEK.

In order to characterize the goodness of �t of the estimated CB-MCFD, we will apply

the same tests already presented in Section 1.4: the KS-�2 test, the Omnibus test and the

Mardia A and B tests. In the tests presented below, �rst, we will focus both on pairs of as-

sets, i.e., on the dependence structures between just two random variables and on the whole

sample. Actually, testing the gaussian copula hypothesis for two random variables gives

useful information for a larger number of dependent variables constituting a large portfo-

lio. Indeed, let us assume that each pair (Ri; Rj), (Ri; Rk) and (Rj; Rk) has a gaussian
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copula, then, the triplet (Ri; Rj; Rk) also has a gaussian copula and this result might be

generalized to an arbitrary number of random variables. In Tables 1.20 and 1.19 we report

the p-values from the bivariate tests for the exchange rates and the indexes databases and

bold numbers show the cases where the null hypothesis that historical data are distributed

as a CB-MCFD cannot be rejected at a 5% signi�cance level. Additionally, in the lower

part of the Tables we also present the results of the tests for the whole database.

Considering that CFD �t properly the marginal distributions of all the series, as we

have seen in Section 1.5, these results show that the static gaussian copula is not �exible

enough to characterize the multivariate distribution describing the exchange rates. In par-

ticular, we observe that only 10, 33, 34 and 9 of the 66 bivariate performed tests are positive

at a 5% signi�cance level. Moreover, we �nd that the tests for the whole sample clearly

reject the CB-MCFD hypothesis. Additionally, although bivariate tests of the indexes data-

base generally support the CB-MCFD hypothesis (10, 10, 7 and 7 out of 10 give positive

results), almost all multivariate tests (only the Omnibus test is positive with a p-value of

0.06) reject the CB-MCFD. Given that the returns of the exchange rates are daily and the

ones corresponding to the indexes are weekly, these results are an indication that weekly

returns are more likely to present a static gaussian copula dependence structure than daily

returns.

Static Variance-Covariance Based MCFD

Estimation. As shown in Section 1.3.2 in the VCB-MCFD model we are consider-

ing a dependence structure which allows the incorporation of simultaneous extreme events.
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Omnibus n KS-�2

AUD BEF CHF DEM DKK ESP FRF GBP ITL JPY NGL SEK
AUD 0.03 0.10 0.03 0.03 0.17 0.10 0.08 0.48 0.01 0.06 0.09
BEF 0.72 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
CHF 0.73 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.01 0.00 0.00
DEM 0.69 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00
DKK 0.69 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00
ESP 0.63 0.51 0.53 0.48 0.34 0.00 0.01 0.00 0.04 0.00 0.00
FRF 0.71 0.00 0.00 0.00 0.00 0.54 0.02 0.00 0.01 0.00 0.00
GBP 0.44 0.07 0.25 0.21 0.27 0.80 0.13 0.00 0.05 0.01 0.05
ITL 0.19 0.00 0.00 0.00 0.00 0.24 0.00 0.09 0.11 0.00 0.00
JPY 0.74 0.27 0.12 0.06 0.24 0.81 0.10 0.41 0.05 0.00 0.00
NGL 0.71 0.00 0.00 0.00 0.00 0.57 0.00 0.13 0.00 0.07 0.00
SEK 0.50 0.00 0.00 0.00 0.00 0.11 0.00 0.00 0.00 0.00 0.00

Mardia BnMardia A

AUD BEF CHF DEM DKK ESP FRF GBP ITL JPY NGL SEK
AUD 0.78 0.82 0.56 0.31 0.50 0.41 0.69 0.16 0.83 0.49 0.66
BEF 0.18 0.70 0.00 0.00 0.08 0.00 0.00 0.00 0.01 0.00 0.00
CHF 0.10 0.00 0.10 0.00 0.43 0.40 0.19 0.00 0.83 0.01 0.00
DEM 0.20 0.00 0.00 0.00 0.08 0.00 0.00 0.02 0.02 0.12 0.00
DKK 0.15 0.00 0.00 0.00 0.22 0.13 0.62 0.00 0.02 0.00 0.68
ESP 0.15 0.00 0.00 0.00 0.00 0.06 0.71 0.02 0.15 0.20 0.72
FRF 0.17 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.00 0.00
GBP 0.31 0.00 0.00 0.00 0.00 0.00 0.00 0.37 0.12 0.00 0.22
ITL 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.12
JPY 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.23
NGL 0.22 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
SEK 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Complete Tests
Mardia A Mardia B Omnibus KS-�2
3629 266 13339 0.25
0.00 0.00 0.00 0.00

Table 1.19. Tests for the static Copula-Based Multivariate Cornish-Fisher Density model
corresponding to the exchange rate database. In the �rst panel, we present the p-values for
the bivariate tests KS-�2 and Omnibus (over and below the diagonal, respectively). In the
second panel, we report the p-values for the bivariate Mardia A and B tests (over and below
the diagonal, respectively). In the third panel we present the joint multivariate tests for the
static CB-MCFD model. Marked in bold are the cases where the null hypothesis of the
CB-MCFD cannot be rejected at a 5% signi�cance level.
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Omnibus n KS-�2

S&P NKI STX EM EME
S&P 0.34 0.73 0.11 0.89
NKI 0.68 0.89 0.43 0.49
STX 0.08 0.10 0.06 0.86
EM 0.21 0.94 0.06 0.36
EME 0.73 0.90 0.47 0.52

Mardia A nMardia B

S&P NKI STX EM EME
S&P 0.28 0.04 0.00 0.42
NKI 0.15 0.00 0.76 0.53
STX 0.07 0.01 0.08 0.42
EM 0.06 0.04 0.00 0.77
EME 0.51 0.46 0.13 0.69

Complete Tests
Mardia A Mardia B Omnibus KS-�2
0.00 0.00 0.06 0.01

Table 1.20. Tests for the static Copula-Based Multivariate Cornish-Fisher Density model
corresponding to the Indexes database, with the same structure as Table 1.19
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AUD BEF CHF DEM DKK ESP FRF GBP ITL

m -0.0010 -0.0050 -0.0065 -0.0056 -0.0050 -0.0142 -0.0054 -0.0062 -0.0172
std. 0.0108 0.0138 0.0154 0.0139 0.0136 0.0146 0.0134 0.0145 0.0139
�2 0.3135 0.4842 0.5850 0.4717 0.4595 0.5256 0.4293 0.4625 0.4887
std. 0.0162 0.0214 0.0251 0.0195 0.0196 0.0343 0.0187 0.0214 0.0324
a3 0.0799 0.0751 0.0895 0.1101 0.1503 0.0950 0.1231 0.0775 0.0998
std. 0.0062 0.0058 0.0055 0.0045 0.0036 0.0048 0.0043 0.0055 0.0042
a2 0.0454 -0.0110 0.0295 -0.0215 -0.0012 -0.0066 0.0005 0.0309 0.0219
std. 0.0095 0.0104 0.0114 0.0119 0.0097 0.0108 0.0109 0.0108 0.0119

JPY NGL SEK S&P NKI STX EM EME

m -0.0041 -0.0002 0.0148 0.1800 -0.0996 0.1502 0.0271 0.1107
std. 0.0129 0.0130 0.0117 0.0974 0.1282 0.1277 0.1494 0.2161
�2 0.4687 0.4737 0.5024 5.6039 9.3262 8.6552 8.0984 18.7958
std. 0.0254 0.0201 0.0377 0.4776 0.7136 0.8670 0.7493 1.8055
a3 0.0890 0.1596 0.1556 0.0505 0.0321 0.0646 0.0660 0.0645
std. 0.0054 0.0031 0.0037 0.0117 0.0094 0.0120 0.0108 0.0118
a2 0.0394 0.0023 -0.0153 -0.0379 0.0071 -0.0098 -0.0781 -0.0358
std. 0.0102 0.0097 0.0085 0.0254 0.0267 0.0235 0.0218 0.0238

Table 1.21. Static VCB-MCFD estimates under both databases. m, � denote the mean and
variance while a3 and a2 denote the coef�cients of the standardized Cornish-Fisher Density.
Under each estimate its standard deviation calculated using the Hessian matrix is reported.
Signi�cant parameters at a 95% con�dence appear in bold.

Parameters of the VCB-MCFD distribution (mi; �ij; a3;i and a2;i) will be estimated us-

ing the Maximum Likelihood method. The details of the estimation as the log-likelihood

function or the initial parameters are described in Appendix C.1.

Results. Next we present two sets of tables: in Table 1.21 we present the estimates

for this distribution and the standard errors for both data sets, and in Tables 1.22 and 1.23

we show the test results for this model.

Analyzing the results of the bivariate tests (the KS-�2 test, the Omnibus test and the

Mardia A and B tests) in Table 1.22 we observe 35, 25, 55 and 24 positive results (at a 5%

con�dence level) out of 66 pairs for the exchange rates database and 10, 10, 9 and 6 out of
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Omnibus n KS-�2

AUD BEF CHF DEM DKK ESP FRF GBP ITL JPY NGL SEK
AUD 0.00 0.24 0.67 0.03 0.07 0.28 0.07 0.16 0.00 0.03 0.54
BEF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
CHF 0.00 0.00 0.47 0.00 0.17 0.35 0.64 0.52 0.29 0.00 0.06
DEM 0.06 0.00 0.00 0.00 0.03 0.00 0.02 0.02 0.01 0.00 0.03
DKK 0.00 0.00 0.00 0.00 0.43 0.03 0.36 0.33 0.32 0.00 0.08
ESP 0.79 0.00 0.01 0.08 0.00 0.28 0.01 0.03 0.11 0.15 0.22
FRF 0.23 0.00 0.00 0.02 0.00 0.39 0.18 0.21 0.88 0.00 0.27
GBP 0.76 0.00 0.01 0.08 0.00 0.90 0.31 0.00 0.01 0.08 0.82
ITL 0.10 0.00 0.00 0.01 0.00 0.14 0.03 0.13 0.13 0.08 0.84
JPY 0.55 0.00 0.00 0.04 0.00 0.70 0.20 0.70 0.09 0.04 0.17
NGL 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.08
SEK 0.49 0.00 0.00 0.05 0.00 0.65 0.33 0.65 0.07 0.43 0.00

Mardia BnMardia A

AUD BEF CHF DEM DKK ESP FRF GBP ITL JPY NGL SEK
AUD 0.20 0.62 0.09 0.65 0.57 0.75 0.21 0.53 0.65 0.33 0.39
BEF 0.00 0.09 0.02 0.19 0.49 0.29 0.12 0.05 0.01 0.42 0.35
CHF 0.12 0.00 0.06 0.63 0.08 0.84 0.82 0.06 0.21 0.65 0.02
DEM 0.20 0.00 0.00 0.04 0.04 0.06 0.03 0.04 0.09 0.05 0.09
DKK 0.09 0.00 0.65 0.00 0.99 0.55 0.99 0.13 0.43 0.56 0.72
ESP 0.28 0.00 0.03 0.00 0.13 0.96 0.85 0.00 0.79 0.69 0.59
FRF 0.49 0.00 0.84 0.00 0.00 0.07 0.33 0.16 0.55 0.86 0.01
GBP 0.10 0.00 0.26 0.00 0.14 0.00 0.01 0.72 0.61 0.70 0.78
ITL 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.03 0.35 0.25
JPY 0.00 0.00 0.21 0.00 0.78 0.01 0.04 0.00 0.00 0.25 0.88
NGL 0.03 0.00 0.88 0.00 0.00 0.03 0.00 0.10 0.00 0.35 0.41
SEK 0.34 0.00 0.99 0.00 0.00 0.46 0.00 0.02 0.00 0.09 0.01

Complete Tests
Mardia A Mardia B Omnibus KS-�2
800 84 813 0.16
0.00 0.00 0.00 0.00

Table 1.22. Tests for the static Variance-Covariance Based Multivariate Cornish-Fisher
Density corresponding to the exchange rates database, with the same structure as Table
1.19
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Omnibus n KS-�2

S&P NKI STX EM EME
S&P 0.45 0.33 0.99 0.50
NKI 0.23 0.06 0.61 0.05
STX 0.08 0.30 0.86 0.08
EM 0.19 0.56 0.26 0.13
EME 0.16 0.47 0.20 0.41

Mardia A nMardia B

S&P NKI STX EM EME
S&P 0.51 0.01 0.90 0.11
NKI 0.31 0.06 0.83 0.02
STX 0.24 0.08 0.13 0.00
EM 0.01 0.51 0.11 0.00
EME 0.20 0.39 0.43 0.04

Complete Tests
Mardia A Mardia B Omnibus KS-�2
0.00 0.00 0.20 0.01

Table 1.23. Tests for the static Variance-Covariance Based Multivariate Cornish-Fisher
Density corresponding to the Indexes database, with the same structure as Table 1.19.
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10 for the indexes database. Therefore, these results indicate that the static VCB-MCFD

clearly outperforms the previous static CB-MCFD. This is the case because this density

allows for the occurrence of simultaneous extreme events as mentioned in Section 1.3.2. In

spite of this, the overall results of the �t are still somehow poor: the four tests give negative

results with p-values smaller than 0.00 for the exchange rates database, while in the indexes

database we �nd that only one test (the Omnibus) is positive at a 5% con�dence level with

a p-value of 0.20 and the KS-�2 is also positive at 1% con�dence level.

Actually, the rejection of the static gaussian structure we have proposed with the CB-

MCFD model (Section 1.6.1) and the rejection of the static VCB-MCFD can be explained

considering that returns are more highly correlated during volatile markets and during mar-

ket downturns (Longin and Solnik 2001 and Ang, Chen, and Xing 2002), given that we do

not capture this feature with static models. As we show next, we believe that any appro-

priate approach to model correctly multivariate dependence in returns relays on assuming

a dynamic dependence structure instead of considering more complex static copulas or de-

pendence structures34. As we have seen in Section 1.4, univariate return series present

dynamics in at least its �rst two moments and in Section 1.5.3 we have found that includ-

ing the dynamics associated with the �rst two moments highly improves the quality of the

�tting. Therefore, a similar behavior would be expected when including the dynamics to

describe the multivariate structural dependence35.

34 In contrast, the empirical rejection of the gaussian copula has lead some researchers to propose alternative
models of dependence like more general copulas as the t-student or Archimedean ones (Demarta and McNeil
2004, Malevergne and Sornette 2003, Henessy and H.E.Lapan 2002 or Frey, McNeil, and Nyfeler 2001).
35 Not much research has been done in this direction but Dias and Embrechts 2005 is a good reference.
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In order to understand our expectations on including dynamics it would be interest-

ing to go deeply into the origin of the failures associated to the static copula. With this aim

we present in Table 1.24 Figures corresponding to a bivariate scatter plot of three differ-

ent pairs of exchange rates36 and the QQ-Plot of the empirical z2 37 versus the theoretical

�2. The three Figures show three different cases according to the validity of the gaussian

copula assumption, in order to describe the bivariate structural dependence. For example,

for the ITL/JPY pair it cannot be rejected the null hypothesis that dependence between

these variables can be described by the gaussian copula at a 5% signi�cance level, for the

BEF/JPY it cannot be rejected at a 1% and for the BEF/CHF the gaussian copula is re-

jected. We have observed that the main data responsible of rejecting the null hypothesis are

those which are outside the gaussian ellipse and lie in the X-positive Y-negative axis (these

points are marked with a red circle in the Figure). In principle, one could impose a more

general dependence structure allowing for extreme results to capture this points as well, as

we have tried using the VCB-MCFD, but in our opinion it is more likely that in these points

correlation is lower than for the rest of the sample.

Therefore, in Section 1.6.2 we will present a dynamic copula model with CB-MCFD

innovations and a dynamic model with VCB-MCFD innovations.

36 Actually, we plot the �ctitious gaussian variables or "copula scale data" that corresponds to each asset in
the CB-MCFD model.
37 The statistic z2 is de�ned as

z2 =
nX

i;j=1

Q�1i (Ri)
�
��1

�
i;j
Q�1j (Rj)

and under the null hypothesis that returns follow a static CB-MCFD it is distributed as a �2 with n degrees
of freedom. See Appendix C.3 for more details on this test.
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Table 1.24. Bivariate scatter plot of three different pairs of exchange rates and the QQ-Plot
of the empirical z2 versus the theoretical �2. If the data satisfy the null hypothesis that
dependence between these variables can be described by the gaussian copula, the QQ-Plot
should be a straight line. In the BEF/CHF case the main points responsible of rejecting the
null hypothesis are marked with a red circle.
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1.6.2 Dynamic Framework

As opposed to the univariate case, we �nd that static MCFD densities are not able to cap-

ture well the multivariate characteristics of �nancial returns. Therefore, we will consider

two dynamic multivariate models: a dynamic copula model based on the CB-MCFD (dy-

namic CB-MCFD), and a Dynamic Conditional Correlation model (DCC) with Multivari-

ate Cornish-Fisher innovations (dynamic VCB-MCFD).

Dynamic CB-MCFD model

De�nition. As mentioned in Section 1.6.1, multivariate �nancial return series present

dynamics in their dependence structures and there are a number of models which capture

this feature: for example, the Constant Conditional Correlation model of Bollerslev 1990,

the Dynamic Conditional Correlation model of Engle 2002 and the BKKK model pro-

posed by Engle and Kroner 1995, among others. In this work, we choose the Dynamic

Conditional Correlation model because, as proven by Engle 2002, with just two parame-

ters captures correctly correlation dynamics. Due to this little number of extra parameters

we avoid the dimensionality curse (large increase of the number of parameters as the num-

ber of dimensions increases) that occurs when one is confronted with modeling of a large

number of assets in multivariate GARCH-like models.

Before presenting the dynamic CB-MCFD model, we will analyze �rst the usual

DCC model as described by Engle 2002 and Engle and Sheppard 2001. Let Ri:t be the rate

of return of asset i from t � 1 to t, i = 1; :::; n; and let mi;t be the conditional expected

rate of return of asset i at time t� 1. �t = �ij;t is the expected variance-covariance matrix
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conditional to the information available at t�1. The DCC model is designed to model both

volatility persistence and time-varying correlations avoiding the dimensionality curse. In

order to capture the dynamics of the expected meanmi;t an AR(1)38 model in considered:

Rt = mt + �
1=2
t zt (1.35)

mt = c+ AR �Rt�1 (1.36)

where Rt is de�ned as the n-th dimensional vector with components Ri;t, mt is an n-

dimensional conditional mean vector and �1=2t is a symbol for the Cholesky decomposition

of �t. The dynamics of the second moments associated to variances and correlations are

treated by the following Equation:

�t = Dt�tDt (1.37)

whereDt is the matrix with the conditional variances in its diagonal following a unidimen-

sional GARCH(1,1) process de�ned by:

Dii;t =
q
�2ii and Dij;t = 0 (1.38)

�2ii;t = wi + pi�
2
ii;t�1 + qi"

2
i;t�1 (1.39)

with "t = �
1=2
t zt being the vector of unexpected and correlated returns, and �t being the

conditional correlation matrix which follows a process de�ned by:

�t = [diag(
t)]�1 � 
t � [diag(
t)]�1 (1.40)


t = (1�  1 �  2) �
 +  1
�
ut�1u

0
t�1
�
+  2
t�1 (1.41)

�
ij = �ij (1.42)

38 See the univariate empirical Section 1.5.3 for details on the AR(1) model.



1.6 Multivariate Inference 92

where diag(
t)means the diagonal of 
t; �ij is the unconditional correlation of asset i and

j and ut = D�1
t "t denotes the vector of standardized and unexpected returns. With this

speci�cation, it easy to see that the conditional correlation matrix, 
t, follows a GARCH-

like process where the parameters  1 and  2 are the equivalents to pi and qi in Equation

1.39. In order to keep the variances �nite and the correlation matrix positive de�nite the

following conditions on the parameters must be imposed: pi+ qi < 1 , 0 �  1;  2 � 1 and

 1 +  2 = 1:

In this Section we propose the dynamic CB-MCFD model where in order to capture

and describe the dynamical evolution of dependencies, instead of the variance-covariance

matrix, the normal rank correlation39 is the one following a DCC model de�ned above.

With this model we are able to capture the unidimensional non-gaussian behavior and also

the dynamics of the mean, variances and dependencies. Explicitly, we are imposing a

dynamical DCCmodel given by Equations 1.39 on the correlations of the �ctitious gaussian

�copula scale data�,Xi;t, as opposed to the static CB-MCFD model of Section 1.6.1, where

we were assuming a constant correlation between the variablesXi;t: Therefore, the density

function at time t is formally identical to the CB-MCFD model (see Equation 1.19):

cb-mcfd(Rt) =
1p

(2�)n det [�t]

nY
i=1

@
�
Q�1t;i (Rt;i)

�
@Rt;i

exp

 
�1
2

nX
i;j=1

Q�1t;i (Ri)Q
�1
t;j (Rt;j)

�
��1t
�
ij

!
.

(1.43)

Given that the functions Qt;i are de�ned in terms of the variances (considering the second

parametrization of the univariate CFD), implicitly included in Qt;i;we have an univariate

39 See Section 1.3 for more details on the normal rank correlation and the gaussian copula.
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GARCH processes for the variances40 (Equations 1.38) and, on the other hand, we also

consider that the normal rank correlation matrix, �; follows a DCC process (Equations

1.39). Therefore, the full model can be formally denoted as:

Rt � cb-mcfd(Rt) =
1p

(2�)n det [�t]

nY
i=1

@
�
Q�1t;i (Rt;i)

�
@Rt;i

exp

 
�1
2

nX
i;j=1

Q�1t;i (Ri)Q
�1
t;j (Rt;j)

�
��1t
�
ij

!
(1.44a)

Qt;i = �ii;t

 
ai;3X

3
t;i + ai;2X

2
t;i+�q

1� 6a2i;3 � 3a2i;2 � 3ai;3
�
Xt;i � ai;2

!
+mi;t (1.44b)

�2ii;t = wi + pi�
2
ii;t�1 + qi"

2
i;t�1 (1.44c)

mi;t = ci + ARi �Ri;t�1 (1.44d)

�t = [diag(
t)]�1 � 
t � [diag(
t)]�1 (1.44e)


t = (1�  1 �  2) �
 +  1
�
ut�1u

0
t�1
�
+  2
t�1 (1.44f)

�
ij = �ij (1.44g)

Estimation. The parameters of this model are ci and ARi for the conditional mean

(Equation 1.44d), wi, pi and qi for the univariate GARCH processes (Equation 1.44c),

ai;2 and ai;3 for the skewness and kurtosis parameters of the univariate CFD (Equation

1.44b),  1 and  2 for the DCC model for the normal rank correlation, �; (Equation 1.44f)

and the unconditional normal rank correlations, �ij (Equation 1.44g). We estimate these

parameters using a two steps Maximum Likelihood algorithm: we estimate �rst a set of

n GARCH processes with CFD distributed innovations, following the method described

in Section 1.5.3, to obtain the parameters ci; ARi, wi, pi, qi, ai;2 and ai;3: If the model

40 Time dependence in the functions Qi is denoted by the subscript t: Qi;t. Given that the variances follow
a GARCH process we have a different transformation Ri;t = Qi;t(Xi;t) at each time t.



1.6 Multivariate Inference 94

Exchange rates Indexes

 1 0.0226 (0.0019)  1 0.0115 (0.0027)
 2 0.9731 (0.0026)  2 0.9726 (0.0072)

Table 1.25. Dynamic CB-MCFD model estimates for both databases.  1 and  2 are the
coef�cients of the DCC model in Equation 1.39.

is well speci�ed, we can transform the variables Rt into the �ctitious variables Xt and

then, estimate the parameters of a standard DCC model ( 1 and  2), with these �ctitious

variables using a Maximum Likelihood method as presented in Engle 2002. This method

of estimation is fully described in Appendix C.1.4.

Results. Given that the estimation results for the parameters (ci; ARi, wi, pi, qi; ai;2

and ai;3) are the same as in the univariate dynamic Section presented in Table 1.15, in Table

?? we just present the estimation for the parameters  1 and  2 of the DCC model. Accord-

ing to this Table, we �nd that for the exchange rates and indexes database the coef�cients

 1 are equal to 0.0226 and 0.0115, with an standard error of 0.0019 and 0.0027, and that

 2 are equal to 0.9731 and 0.9726 with an standard error of 0.0026 and 0.0725, respec-

tively. According to these results we can conclude that, �rst, given that  1 > 0 the normal

rank correlation is persistent, that is, if correlation yesterday was high, it is very likely that

today's will be also high. Second, given that  2 > 0 we have evidence for normal rank

correlation clustering, that is, if returns were yesterday high correlation is also likely to be

higher. These results hold for both daily and weekly databases, and are in concordance

with the results obtained by Engle 2002 for the usual correlation matrix. The parameters

ai;3, being all positive and signi�cant, show that the conditional distributions of returns

(conditioned on the mean and variance) are leptokurtic.
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As in the previous Section, we have considered the KS-�2 test, the Omnibus test

and the Mardia A and B tests to describe the quality of �t for this model, and the results

are presented in Tables ?? and ??. We observe that at a 5% con�dence level, 33, 14, 25

and 12 out of 66 pairs have positive results for the exchange rates database, and that 10,

8, 8 and 9 out of 10 for the indexes database are also positive. These pair results on the

bivariate tests are similar to the static CB-MCFD41. However, it has to be pointed out that

the overall results have signi�cantly improved in the dynamic case with respect to the static

one. Although the p-values for the exchange rates database are still lower than 0.00 they

are much bigger than in the static case, and considering the indexes database we observe

that 3 out of 4 tests are positive at a 1% con�dence level and one at a 5% con�dence level.

Therefore, these results clearly show that dynamics plays a very important role to describe

the dependence.

Dynamic VCB-MCFD model

De�nition. In this Section we describe a dynamic version of VCB-MCFD presented

in Section 1.3.2, which incorporates dynamics and also allows for extreme and asymmetric

comovements. This model will be denoted as the dynamic Variance-Covariance Based

Multivariate Cornish-Fisher Density Model (DVCB-MCFD). As was described in Section

1.3.2, the static VCB-MCFD is basically de�ned by assets, R; describing the following

41 It may seem not obvious to obtain less positive pairs test results for the dynamic model than for the static,
as the latter is a particular case of the �rst. This may be the case because we are only considering two
parameters for the whole dependence structure  1 and  2 and therefore for some pairs a constant correlation
may be a better model. Nevertheless, we will never �nd a worse overall result in the dynamic case than in the
static.
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Omnibus n KS-�2

AUD BEF CHF DEM DKK ESP FRF GBP ITL JPY NGL SEK
AUD 0.03 0.12 0.03 0.07 0.07 0.14 0.23 0.23 0.09 0.10 0.17
BEF 0.91 0.00 0.00 0.00 0.00 0.00 0.08 0.00 0.06 0.00 0.00
CHF 0.94 0.00 0.07 0.01 0.06 0.01 0.07 0.00 0.23 0.10 0.00
DEM 0.94 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.07 0.00 0.00
DKK 0.91 0.00 0.00 0.00 0.01 0.00 0.15 0.00 0.27 0.00 0.00
ESP 0.82 0.00 0.00 0.00 0.00 0.02 0.37 0.26 0.18 0.00 0.13
FRF 0.94 0.00 0.00 0.00 0.00 0.00 0.09 0.00 0.16 0.00 0.00
GBP 0.74 0.00 0.00 0.00 0.00 0.66 0.00 0.05 0.07 0.15 0.13
ITL 0.90 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.00 0.00
JPY 0.79 0.00 0.00 0.00 0.00 0.07 0.00 0.01 0.01 0.02 0.12
NGL 0.94 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.84 0.00
SEK 0.32 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Mardia BnMardia A

AUD BEF CHF DEM DKK ESP FRF GBP ITL JPY NGL SEK
AUD 0.46 0.55 0.19 0.11 0.57 0.09 0.10 0.35 0.45 0.19 0.80
BEF 0.14 0.00 0.00 0.07 0.00 0.00 0.00 0.00 0.01 0.00 0.00
CHF 0.21 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.66 0.00 0.00
DEM 0.28 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.11 0.00 0.00
DKK 0.11 0.00 0.00 0.00 0.38 0.73 0.19 0.00 0.09 0.00 0.00
ESP 0.07 0.00 0.00 0.00 0.00 0.00 0.66 0.65 0.01 0.00 0.00
FRF 0.18 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.04 0.00 0.00
GBP 0.49 0.00 0.00 0.00 0.00 0.85 0.00 0.50 0.19 0.00 0.00
ITL 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.06
JPY 0.01 0.03 0.02 0.04 0.10 0.01 0.01 0.00 0.00 0.04 0.14
NGL 0.21 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.00
SEK 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Complete Tests
Mardia A Mardia B Omnibus KS-�2
4630 198 9821 0.20
0.00 0.00 0.00 0.00

Table 1.26. Tests for the dynamic Copula-Based Multivariate Cornish-Fisher Density cor-
responding to the exchange rates database, with the same structure as Table 1.19.
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Omnibus n KS-�2

S&P NKI STX EM EME
S&P 0.72 0.67 0.32 0.68
NKI 0.50 0.30 0.38 0.53
STX 0.50 0.02 0.69 0.94
EM 0.71 0.02 0.61 0.80
EME 0.88 0.93 0.93 0.17

Mardia A nMardia B

S&P NKI STX EM EME
S&P 0.12 0.45 0.09 0.22
NKI 0.64 0.00 0.00 0.43
STX 0.07 0.01 0.41 0.47
EM 0.13 0.32 0.51 0.19
EME 0.21 0.21 0.55 0.30

Complete Tests
Mardia A Mardia B Omnibus KS-�2
0.02 0.00 0.01 0.10

Table 1.27. Tests for the dynamic Copula-Based Multivariate Cornish-Fisher Density cor-
responding to the Indexes database, with the same structure as Table 1.19.
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relation:

R = �1=2 � z +m

where �1=2 denotes the Cholesky decomposition of the variance-covariance matrix � and

z follows an Independent Multivariate Cornish-Fisher Distribution:

i-mcfd3(z) =
1p
(2�)n

nY
i=1

@
�
Q�1i (zi)

�
@zi

exp

 
�1
2

nX
i=1

�
Q�1i (zi)

�2!

In this Section we propose to include a dynamic character by assuming a DCC model

described in the previous Section for the variance-covariance matrix, �: In this way, the

full model can be formally written as:

Rt = �
1=2
t � zt +mt

mi;t = ci + ARi �Ri;t�1

�t = Dt�tDt

Dii;t =
q
�2ii and Dij;t = 0

�2ii;t = wi + pi�
2
ii;t�1 + qi"

2
i;t�1

zt � i-mcfd3(zt) =
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(2�)n

nY
i=1

@
�
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�
@zi;t
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�
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�2!
Qi;t(zi;t) = ai;3z

3
i;t + ai;2z

2
i;t +

�q
1� 6a2i;3 � 3a2i;2 � 3ai;3

�
zi;t � ai;2

�t = [diag(
t)]�1 � 
t � [diag(
t)]�1


t = (1�  1 �  2) �
 +  1
�
ut�1u

0
t�1
�
+  2
t�1

�
ij = �ij

The parameters of this model are the same as in the DCB-MCFDmodel, namely, ci and ARi

for the conditional mean, wi, pi and qi for the univariate GARCH processes, ai;2 and ai;3
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for the skewness and kurtosis parameters,  1 and  2 for the DCC model of the correlation

matrix, �t; and the unconditional correlations, �ij:

Estimation. We estimate these parameters using a two steps Maximum Likelihood

algorithm. First, we estimate a set of n standard GARCH processes with gaussian distrib-

uted innovations to obtain the parameters ci; ARi, wi, pi and qi. Afterwards, we estimate

the parameters of the standard DCC model ( 1 and  2) together with the a2;i and a3;i para-

meters using a Maximum Likelihood method. This method of estimation is fully described

in Appendix C.1.4.

Results. In Table 1.28 we present the estimation results for this model with their

standard errors. According to these estimations, we basically observe the same behavior as

in Engle 2002: persistence and clustering of correlation and volatility. Besides, we obtain

signi�cant parameters ai;3 indicating the existence of multivariate heavy tails in the data.

In Tables 1.29 and 1.30 we present the results of the �t tests for this model. In the

bivariate tests (the KS-�2 test, the Omnibus test and the Mardia A and B tests) we observe

50, 26, 36 and 20 positive results (at a 5% con�dence level) out of 66 pairs for the exchange

rates database and 10, 10, 9 and 10 out of 10 for the indexes database. It is interesting to

remark that these results are the best compared to the other three multivariate methods.

Comparison of Multivariate Models

In Table 1.31 we present a summary of the main results of the estimation tests for the

four multivariate models presented in this work (static CB-MCFD, dynamic CB-MCFD,

static VCB-MCFD and dynamic VCB-MCFD) for comparison purposes. In addition, we
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AUD BEF CHF DEM DKK ESP FRF GBP ITL

c -0.0010 -0.0050 -0.0065 -0.0056 -0.0050 -0.0142 -0.0054 -0.0062 -0.0172
std. 0.0108 0.0138 0.0154 0.0139 0.0136 0.0146 0.0134 0.0145 0.0139
w 0.0058 0.0082 0.0134 0.0067 0.0054 0.0142 0.0070 0.0028 0.0074
std. 0.0015 0.0021 0.0027 0.0019 0.0016 0.0029 0.0019 0.0011 0.0020
p 0.0495 0.0435 0.0385 0.0431 0.0380 0.0728 0.0480 0.0378 0.0760
std. 0.0066 0.0057 0.0055 0.0051 0.0045 0.0132 0.0057 0.0037 0.0093
q 0.9319 0.9395 0.9378 0.9426 0.9504 0.9007 0.9358 0.9562 0.9103
std. 0.0033 0.0022 0.0018 0.0017 0.0013 0.0078 0.0022 0.0014 0.0058
a3 0.0654 0.0647 0.0562 0.0875 0.1042 0.0798 0.0728 0.0591 0.0617
std. 0.0061 0.0056 0.0059 0.0054 0.0051 0.0055 0.0061 0.0054 0.0053
a2 0.0465 -0.0041 0.0313 -0.0095 0.0020 -0.0094 -0.0110 0.0346 0.0107
std. 0.0097 0.0106 0.0110 0.0118 0.0111 0.0111 0.0110 0.0097 0.0105

JPY NGL SEK S&P NKI STX EM EME

c -0.0041 -0.0002 0.0148 0.1943 -0.1038 0.1682 0.0245 0.1020
std. 0.0129 0.0130 0.0117 0.1048 0.1351 0.1360 0.1337 0.1977
AR -0.0782 -0.0434 -0.1196 0.0759 0.0740
std. 0.0351 0.0416 0.0290 0.0397 0.0353
w 0.0125 0.0070 0.0043 0.0723 2.6415 0.2434 0.2658 0.8483
std. 0.0026 0.0019 0.0020 0.0410 0.7463 0.0992 0.1357 0.3087
p 0.0471 0.0416 0.0514 0.0814 0.0409 0.2054 0.0781 0.1064
std. 0.0081 0.0052 0.0072 0.0148 0.0402 0.0420 0.0204 0.0275
q 0.9261 0.9436 0.9425 0.9092 0.6764 0.7784 0.8920 0.8511
std. 0.0039 0.0018 0.0027 0.0021 0.0364 0.0214 0.0037 0.0090
a3 0.0631 0.1126 0.1080 0.0274 0.0327 0.0281 0.0531 0.0655
std. 0.0055 0.0049 0.0052 0.0100 0.0091 0.0130 0.0124 0.0108
a2 0.0262 -0.0072 -0.0094 -0.0664 -0.0013 -0.0253 -0.0435 -0.0299
std. 0.0099 0.0115 0.0104 0.0232 0.0277 0.0209 0.0224 0.0258

Exchange rates Indexes
 1 0.0210 0.0012  1 0.0138 0.0106
 2 0.9755 0.0016  2 0.9431 0.0591

Table 1.28. Dynamic VCB-MCFD model estimates for both databases. Legend is the same
as in Table 1.14 with a3 and a2 the coef�cients of the standardized Cornish-Fisher Density.
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Omnibus n KS-�2

AUD BEF CHF DEM DKK ESP FRF GBP ITL JPY NGL SEK
AUD 0.00 0.71 0.97 0.15 0.48 0.99 0.02 0.20 0.00 0.37 0.60
BEF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
CHF 0.28 0.00 0.76 0.35 0.50 0.70 0.91 0.48 0.09 0.53 0.83
DEM 0.12 0.00 0.04 0.17 0.52 0.19 0.58 0.33 0.20 0.00 0.21
DKK 0.16 0.00 0.07 0.04 0.60 0.21 0.47 0.43 0.61 0.04 0.41
ESP 0.55 0.00 0.23 0.10 0.14 0.39 0.39 0.34 0.70 0.17 0.36
FRF 0.86 0.00 0.44 0.16 0.26 0.78 0.33 0.24 0.16 0.85 0.55
GBP 0.58 0.00 0.26 0.12 0.15 0.51 0.82 0.01 0.01 0.70 0.37
ITL 0.33 0.00 0.13 0.05 0.07 0.29 0.51 0.31 0.09 0.92 0.74
JPY 0.01 0.00 0.00 0.00 0.00 0.01 0.02 0.01 0.00 0.70 0.27
NGL 0.02 0.00 0.00 0.00 0.00 0.01 0.04 0.02 0.01 0.00 0.24
SEK 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Mardia BnMardia A

AUD BEF CHF DEM DKK ESP FRF GBP ITL JPY NGL SEK
AUD 0.05 0.49 0.02 0.37 0.49 0.50 0.05 0.75 0.22 0.31 0.02
BEF 0.00 0.01 0.00 0.13 0.05 0.18 0.13 0.02 0.00 0.03 0.00
CHF 0.43 0.00 0.03 0.24 0.05 0.75 0.05 0.00 0.00 0.01 0.00
DEM 0.95 0.00 0.00 0.02 0.11 0.01 0.03 0.01 0.01 0.03 0.00
DKK 0.25 0.00 0.05 0.00 0.78 0.98 0.95 0.81 0.13 0.12 0.00
ESP 0.46 0.00 0.03 0.08 0.25 0.53 0.38 0.25 0.26 0.35 0.01
FRF 0.71 0.00 0.08 0.00 0.00 0.76 0.31 0.43 0.18 0.10 0.00
GBP 0.15 0.00 0.07 0.00 0.05 0.08 0.00 0.44 0.11 0.16 0.03
ITL 0.02 0.00 0.02 0.00 0.04 0.01 0.01 0.00 0.03 0.09 0.00
JPY 0.00 0.00 0.00 0.00 0.07 0.03 0.00 0.00 0.00 0.01 0.01
NGL 0.19 0.00 0.03 0.00 0.00 0.43 0.00 0.15 0.24 0.17 0.00
SEK 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Complete Tests
Mardia A Mardia B Omnibus KS-�2
802 51 286 0.11
0.00 0.00 0.00 0.00

Table 1.29. Tests for the dynamic Variance-Covariance Based Multivariate Cornish-Fisher
Density corresponding to the exchange rates database, with the same structure as Table
1.19.
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Omnibus n KS-�2

S&P NKI STX EM EME
S&P 0.52 0.98 0.70 0.71
STX 0.22 0.15 0.56 0.10
NKI 0.21 0.54 0.94 0.64
EM 0.31 0.70 0.69 0.38
EME 0.27 0.64 0.63 0.80

Mardia A nMardia B

S&P NKI STX EM EME
S&P 0.22 0.54 0.18 0.28
STX 0.38 0.62 0.32 0.14
NKI 0.13 0.11 0.70 0.97
EM 0.06 0.52 0.36 0.02
EME 0.20 0.27 0.62 0.24

Complete Tests
Mardia A Mardia B Omnibus KS-�2
0.11 0.00 0.53 0.09

Table 1.30. Tests for the dynamic Variance-Covariance Based Multivariate Cornish-Fisher
Density corresponding to the Indexes database, with the same structure as Table 1.19.
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have estimated two benchmark models, a dynamic multivariate normal (dynamic MN) as

in Engle 2002 and a dynamic multivariate Skew-T model (dynamic MSkT) as in Jondeau

and Rockinger 2003. These two models present the same dynamic characteristics as the

dynamic VCB-MCFD, namely, an AR(1)-GARCH(1,1) with a DCC(1,1) model:

Rt = �
1=2
t � zt +mt

mi;t = ci + ARi �Ri;t�1

�t = Dt�tDt

Dii;t =
q
�2ii and Dij;t = 0

�2ii;t = wi + pi�
2
ii;t�1 + qi"

2
i;t�1

�t = [diag(
t)]�1 � 
t � [diag(
t)]�1


t = (1�  1 �  2) �
 +  1
�
ut�1u

0
t�1
�
+  2
t�1

�
ij = �ij

but posses different distributional hypothesis for the innovations, zt, namely, multivariate

normality for the dynamic MN model and a multivariate Skew-T for the dynamic MSkT.

As we already know, the multivariate normal distribution does not incorporate asymmetries

or heavy tails while the multivariate Skew-T does (see Appendix A.1 for more details on

the multivariate Skew-T distribution). In particular in Table 1.31, we present the number

of positive pair tests for each test (KS-�2, Omnibus, Mardia A and Mardia B) as well as

the test results of the whole database and the Log-Likelihood values (Log-Lk.) and the

Akaike (AIC) and Bayesian (BIC) model selection criteria, which penalize for an increase

in complexity through the inclusion of more parameters.
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Analyzing the results we can obtain the following conclusions:

1. In general, considering the selection criteria statistics (Log-Lk., AIC and BIC), we

observe that the best models for both databases are the dynamic MSkT and the

dynamic VCB-MCFD: the estimation tests (KS-�2, Omnibus, Mardia A and Mardia

B) are a somewhat better for the dynamic MSkT, but model selection criteria do not

distinguish between both models.

2. Dynamic models present much better results than static models. Therefore, we

can conclude that both databases present second order (variances and correlations)

dynamics.

3. The dynamic Multivariate Normal model is much worse than the dynamic MSkT

and VCB-MCFD ones. Therefore, both databases present univariate heavy tails and

asymmetries.

4. The dynamic Copula-Based model is much worse than the dynamic MSkT and the

dynamic VCB-MCFD. Therefore, both databases present multivariate heavy tails and

asymmetries.

5. In the indexes database we �nd a strong statistical support for the dynamic VCB-

MCFD model. Actually, in 3 out of 4 estimation tests we �nd that we cannot reject the

null hypothesis that returns are samples of a dynamic VCB-MCFD with p-values of

0.09, 0.53, 0.11 and 0.00 for the KS-�2 test, the Omnibus test and the Mardia A and B

tests, respectively.
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6. Considering the exchange-rates database we �nd that still more research has to be

done to capture adequately the styled facts of these series given that we obtain p-values

for all models equal to zero. We �nd a rejection of the dynamic VCB-MCFD model

for this database, but p-values of this model are the highest (with the dynamic MSkT)

of the six models as can be seen from the statistic values.

1.7 Conclusions

In this Chapter we have analyzed the theory of Cornish-Fisher distributions and we have

applied them to �nancial data to model stylized facts as asymmetry, heavy tails, clustering

and persistence of volatility and correlation dynamics.

These distributions are based on Cornish-Fisher Expansions which are applied to

theoretically determined distributions (with known moments) to obtain the quantiles but

have not been used to create a family of distributions. We have demonstrated that univariate

CFD are very easy to estimate and we have provided three methods for the estimation of

static models and developed a Maximum Likelihood estimator for a GARCH model with

CFD distributed innovations. The interpretation of the parameters of the distribution have

a natural and straightforward interpretation in terms of the coef�cients of the third-order

polynomial of a QQ-plot function. This distribution is more �exible than Gram-Charlier,

Edgeworth or semi-nonparametric distributions of similar order, and capture well the main

characteristics of univariate �nancial series performing better than standard market models

as the skewed-t distribution.
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We have also developed two families of multivariate distributions, namely Copula-

Based and Variance-Covariance Based MCFD, which incorporate different dependence

structures. The Copula-Based distribution incorporates a gaussian copula dependence and

the Variance-Covariance permits multivariate heavy tails. We have observed that static

multivariate models are not enough to model �nancial series and, therefore, we have intro-

duced dynamics using a Dynamic Conditional Correlation model. According to our results,

we have been able to model accurately the indexes database, but still more research has to

be done to capture adequately the exchange rates database. A possible path to solve this

problem would be to include dynamics not only in the �rst two moments, but also an au-

toregressive behavior could be imposed to the parameters a2 and a3 to model the dynamics

on higher moments considering works like Rubio, Serna, and León 2006 and Jondeau and

Rockinger 2005. In addition, other second order dynamics (as BKKK models) could be

considered but this path seems not to be very promising given the results of Engle 2002.

More interesting could be the analysis of other dependence structures based on the Extreme

Value Theory.

Finally, it is interesting to note that, although not reported in this thesis, the dynamic

Variance-Covariance Based Multivariate CFD has motivated more investigation and the

model has been proven to be a good predictor of multivariate volatility (Bergara, Ansejo,

and Rubia 2006).



Chapter 2
Financial Applications of Cornish-Fisher

Distributions

In this Chapter we will present several applications of both theCornish-Fisher density

function and theMultivariate Cornish-Fisher density function described in the �rst Chapter

for three different areas of interest in �nancial modeling: i) optimal portfolio selection, ii)

measure of risk via the Value at Risk (VaR), and iii) option valuation.

2.1 Optimal Portfolio Selection

In this Section we analyze the Markowitz (Markowitz 1959) hypothesis, that a mean-and-

variance based analysis to construct optimal portfolios is enough to maximize investors'

expected utility function. Many authors (e.g., Arditti 1967 and Samuelson 1970) have ar-

gued that the expected utility function may be more appropriately approximated by a func-

tion of higher moments, where investors are supposed to like positive skewness and dislike

fat-tailedness, as measured by the kurtosis, but, on the other hand, early empirical evidence

(e.g., Levy and Markowitz 1979 and Pulley 1981) suggests that a mean-variance optimiza-

tion results in allocations that are similar to the ones obtained using a direct optimization

of expected utility. Therefore, in order to provide more evidence on this issue, we use a

VCB Multivariate CFD model (Section 1.3) to analyze whether the inclusion of higher or-

der moments improves asset allocation in terms of utility, �nding that in many cases higher

order moments are fundamental in the asset allocation procedure.

108
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2.1.1 Introduction

The theory of portfolio optimization establishes a framework for asset selection through

a competition between expected return and risk. Investors choose a bearable risk level

depending on their aversion to it and look for the portfolio offering the highest expected

return for that given level1. Markowitz's theory (Markowitz 1952) assumes that expected

returns of assets in a portfolio follow a multivariate normal distribution, as many other

theories that constitute the fundamentals of traditional �nancial mathematics. According to

Markowitz's theory, an optimal investment behavior promotes diversi�cation among assets

in order to reduce the risk of a portfolio. This hypothesis became a good �rst approximation

that as a result derived analytically tractable theories. It is well known that the mean-

variance theory is only valid under the hypothesis of gaussian distributed returns or under

the assumption that investors' utility function is quadratic. Nonetheless, as we have seen

in Chapter 1, there is a strong empirical support against this normality hypothesis and,

as pointed out by Tsiang 1972, the quadratic utility function may lead to absurd results.

To this respect, in his Nobel Lecture Markowitz (Markowitz 1991) stated the following

caveat: "Equipped with database, computer algorithms and methods of estimation, the

modern portfolio theorist is able to trace out mean-variance frontiers for large universes

of securities. But, is this the right thing to do for the investor? In particular, are mean and

variance proper and suf�cient criteria for portfolio choice?". Empirical and theoretical

attacks to Markowitz's portfolio theory addressing this question have given impetus to both

the investigation on moments of higher order than the mean and variance and how their

1 Equivalently, investors can also select an expected return target and look for the portfolio that minimizes
the risk.
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inclusion in the de�nition of risk would affect investment decisions of rational investors.

In this work we will mainly focus on the �rst part, namely, whether higher order moments

are suf�cient criteria for portfolio choice2.

While some authors have argued that the expected utility function may be more ap-

propriately approximated by a function of higher moments where investors are supposed

to like positive skewness and dislike fat-tailedness as measured by kurtosis (Arditti 1967,

and Samuelson 1970), early empirical evidence suggests that mean-variance criterion un-

der certain assumptions, as small investment periods or high wealth to risk ratios, results in

allocations that are very similar to the ones obtained using a direct optimization of the ex-

pected utility (Levy and Markowitz 1979, Pulley 1981, Tsiang 1972 and Kroll, Levy, and

Markowitz 1984). An explanation of the good performance of the mean-variance criterion

reported in these papers may be that, although returns are non-normal, they are driven by

an elliptical distribution for which the mean-variance approximation of the expected util-

ity remains exact for all utility functions (Owen and Rabinovitch 1983). However, under

large departure from normality, in particular when the distribution is severely asymmet-

ric (Flôres and de Athayde 2002, Athayde and Flôres 2004 and Chunhachinda, Danpadani,

2 The second aspect, namely, which risk measure to use once it has been realized that variance is not
a suf�ciently good measure, has also attracted much interest among �nancial literature. For example, the
Semivariance model (Markowitz 1959), incorporating only the negative returns, the Gini risk measure or
Gini's mean difference (Yitzhaki 1982 and Shalit and Yitzhaki 1984), which is based on the expected value
of the absolute difference between every pair of realizations, and the Shortfall probability (Roy 1952, Browne
1999), where the risk is de�ned over an expected return or reward. The Hodges ratio (Hodges 1998), the
Omega ratio (Shadwick and Keating 2002) or the inferior partial moments (Bawa and Lindenberg 1977
Fishburn 1977) are also de�ned in terms of a weighted average of deviations. Likewise, given the success
that VaR has raised, Alexander and Baptista 2002, describe a portfolio selection model based on the mean-
VaR competition and, recently, a number of new risk measures with the desirable properties of subadditivity
and coherence (Artzner, Eber, and Heath 1999), like the Expected Shortfall (Artzner, Eber, and Heath 1999)
or the Spectral Risk Measures (Acerbi 2002, Acerbi 2004) have also been proposed. Nevertheless, if it would
be proven that mean and variance would be a suf�cient criteria for portfolio choice all these measures would
reduce to the Markowitz's framework.
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Hamid, and Prakash 1997), a three or four moment optimization strategy provides a bet-

ter approximation of the expected utility. Therefore, the question stated by Markowitz still

seems to be open and most of the recent literature on this subject tries to answer the ques-

tion whether mean-variance portfolios are a good approximation to reality or if, in contrast,

predictions of this theory are too rude3.

On the other hand, recently a number of papers have highlighted the importance of

modeling the dynamic behavior of higher order moments in order to capture the real in-

vestment opportunities at each date. For example, Ang and Bekaert 2002 and Guidolin and

Timmerman 2005 use the Markov-switching approach, where the mean and variance of re-

turns are allowed to vary over time as regimes change, Jondeau and Rockinger 2005 model

the dynamics as DCC Model �rst proposed by Engle and Sheppard 2001 with innovations

given by a Skewed T-Student and Harvey and Siddique 2000 shows how the conditional

skewness is priced by investors.

In this Section we use the new model presented in Chapter 1, the dynamic VCB-

MCFD, for the characterization of non-normality to provide more evidence on the issue

whether the expected utility function may be more appropriately approximated by a func-

tion of higher moments than just by the �rst two moments. While keeping to capture

3 In past research, this topic was discussed for example by Arditti 1967, Levy 1969, Jean 1971, Rubinstein
1973, Jean 1973, Arditti and Levy 1975, Francis 1975 Ingersoll 1975 and Kraus and Litzenberger 1976, but
portfolio optimization taking into account more than the �rst two moments has been receiving renewed inter-
est in recent years. Both on the theoretical side, including its links with the multimoment CAPM extensions,
or on what relates to econometric tests or updates based on higher conditional moments. Works like Adcock
2002, Hung, Shackleton, and Xu 2004, Athayde and Flôres 2004, Flôres and de Athayde 2002, Jurczenko
and B.Maillet 2001, Prakash, Chang, and Pactwa 2003, Dittmar 2002, Barone-Adesi, Gagliardini, and Urga
2000, Harvey and Siddique 2000, Guidolin and Timmerman 2005 and Jondeau and Rockinger 2005, far from
exhausting the full list of contributions, pay good witness to the growing awareness of the importance of
higher moments in both lines of research.
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�rst-order moment dynamics and stylized facts like volatility clustering with a GARCH

model via a Dynamic Conditional Correlation (DCC) as in Jondeau and Rockinger 2005,

we investigate the consequences of assuming a Variance-Covariance Based Multivariate

Cornish-Fisher Density (MCFD) for the returns. Main objectives of the inclusion of the

VCB-MCFD model described in Section 1.3 are to address two characteristic limitations

of the hypothesis that returns follow a multivariate normal distribution with time inde-

pendent parameters throughout time: �rst, including asymmetry and fat tails and, second,

incorporating non-linear correlations between the different assets of the investment set.

With this setting we try to give more evidence on the importance of higher moments

in portfolio decision theory and, after presenting the model, we evaluate the inclusion of

more terms in the Taylor expansion of the utility function through the cost of opportu-

nity (Simaan 1993) in both an unconditional and a conditional framework for a portfolio

of several international equity indexes. We also analyze the gain of considering a condi-

tional setting instead of an unconditional one and the impact of restricting the investment

possibilities prohibiting short-selling and borrowing. Basically, our results allow us to con-

clude that inclusion of higher order moments might be very relevant in asset allocation

and considering time-varying moments highly improves the allocation in terms of cost of

opportunity.

The structure of this Section is as follows. First, we introduce the VCB-MCFD in

the portfolio selection problem and next, we analyze the optimal allocation problem with

higher moments. Afterwards, in Sections 2.1.5 and 2.1.6 we present the optimization re-



2.1 Optimal Portfolio Selection 113

sults both in a constant and a time-varying investment universe and, �nally, we end this

Section with our conclusions.

2.1.2 The Model

While the multivariate normal distribution has several attractive properties for modeling a

portfolio there is considerable evidence that portfolio returns are non-normal. In the �rst

Chapter we have presented a conditional set-up that incorporates most statistical features

of stock market returns, like the well-known properties of volatility clustering (Bollerslev

1986), time-varying correlations (Engle and Sheppard 2001) and both the asymmetry and

fat-tailedness that is often found in stock or index data. In particular, we will use the model

named dynamic VCB-MCFD introduced in Chapter 1, as it is the one that best incorpo-

rates these mentioned features. With this setting we model the dynamics of the �rst two

moments of the return distribution following the DCC model (Dynamic Conditional Cor-

relation Multivariate GARCH) of Engle and Sheppard 2001 that has also been applied by

Jondeau and Rockinger 2005 in the �eld of portfolio optimization, and we also capture

the non-gaussianity behavior of the standardized returns proposing the use of the Multi-

variate Cornish-Fisher Density. As has been proven in Chapter 1, a remarkable feature of

this distribution is that it is de�ned starting from a Cornish-Fisher Expansion and, there-

fore, in principle it is possible to �t as much as needed any univariate density adding more

terms in the expansion. Besides, it is a straightforward extension of the multivariate normal

distribution and the associated parameters have a quite natural interpretation.
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For the ease of readiness we will present here the Equations de�ning this model.

Let Rt be the vector of returns of the assets at time t; Rt = fRi;tgni=1; then the dynamic

VCB-MCFD is de�ned as:

Rt = �
1=2
t � zt +mt (2.1a)

mi;t = ci + ARi �Ri;t�1 (2.1b)

�t = Dt�tDt (2.1c)

Dii;t =
q
�2ii and Dij;t = 0 (2.1d)

�2ii;t = wi + pi�
2
ii;t�1 + qi"

2
i;t�1; "t = �

1=2
t � zt (2.1e)

zt � i-mcfd3(zt) =
1p
(2�)n

nY
i=1

@
�
Q�1i;t (zi;t)

�
@zi;t

e

�
� 1
2

Pn
i=1(Q

�1
i;t (zi;t))

2
�
(2.1f)

Qi;t(zi;t) = ai;3z
3
i;t + ai;2z

2
i;t +

�q
1� 6a2i;3 � 3a2i;2 � 3ai;3

�
zi;t � ai;2 (2.1g)

�t = [diag(
t)]�1 � 
t � [diag(
t)]�1 (2.1h)


t = (1�  1 �  2) �
 +  1
�
ut�1u

0
t�1
�
+  2
t�1; ut = D�1

t "t (2.1i)

�
ij = �ij (2.1j)

The term mt in Equation 2.1a represents the conditional vector mean, which in our model

will be described by a �rst order autoregressive model AR(1) (Equation 2.1b). On the other

hand, the �rst term in Equation 2.1a, �1=2t � zt; represents the unexpected part of returns and

consists on a time varying variance-covariance matrix, �t; and a vector of innovations, zt:

The variance-covariance matrix is modeled by Equation 2.1c, which divides the contribu-

tion of covariance into variance (Dt) and correlation (�t). The conditional variances of

asset i; �2ii;t; will be described by a GARCH(1,1) representation given by Equation 2.1e, al-

though more complicated processes could be trivially accommodated. In the GARCH(1,1)
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setting, the parameter pi captures the sensibility of present volatility to past returns (high or

low returns tend to predict volatility) and the parameter qi captures the volatility clustering

phenomenon, i.e. high past volatility tends to predict high present volatility. In addition, we

model the conditional correlation matrix, �t;with a DCC model, as proposed by Engle and

Sheppard 2001. This model is designed to model time-varying correlations avoiding the

dimensionality curse. With this speci�cation (Equations 2.1h-2.1j), it is easy to see that the

conditional correlation matrix, �t, follows a GARCH-like process where the parameters

 1 and  2 are the equivalents to pi and qi in the GARCH Equation 2.1e.

Although in standard multivariate GARCH models it is assumed that the innovation,

zt, follows a multivariate normal standardized distribution, in our model we will consider

that innovations are distributed as an independent multivariate third-order Cornish-Fisher

Density de�ned in Equations 2.1f and 2.1g with parameters ai;3 and ai;2. As mentioned in

Section 1.3, the variables ai;2 capture the asymmetry and the variables ai;3 capture the heavy

tailedness. Therefore, in this new model �rst and second order moments are allowed to be

time-varying while higher order moments associated to the innovations are kept constant,

but not zero as in the gaussian case.

Summarizing, the parameters of this model are: ci and ARi for the conditional mean,

wi, pi and qi for the univariate GARCH processes, ai;2 and ai;3 for the asymmetry and fat-

tailedness parameters,  1 and  2 for the DCC model of the correlation matrix �t and the

unconditional correlations, �ij: Therefore, as the number of assets, n, increases the number
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of parameters in the model just increases only with 15
2
n + 1

2
n2 + 2 4; avoiding in this way

the dimensionality curse. As an example, with 5 assets we would have 52 parameters.

We estimate these parameters using a two steps Maximum Likelihood algorithm: we

estimate �rst a set of standard GARCH processes with gaussian distributed innovations to

obtain the parameters ci; ARi, wi, pi and qi, and afterwards, we estimate the parameters

of a standard DCC model,  1 and  2, together with the ai;2 and ai;3 parameters using a

Maximum Likelihood method. This method of estimation is fully described in Appendix

C.1.4.

In the unconditional optimization Section 2.1.4 we will consider a static version of the

dynamic VCB-MCFD model presented above. We can obtain this static model by setting

in Equations 2.1a-2.1j the following restrictions: ARi = pi = qi =  1 =  2 = 0:

2.1.3 Optimal Portfolio Selection with Higher Moments

When investors' beliefs about future returns strongly depart from normality or when in-

vestors' utility function differs from the quadratic one, the standard mean-variance crite-

rion may be inappropriate, or even a bad approximation. One way of quantifying how

bad this approximation is, is to compare the portfolio chosen with a mean-variance crite-

ria with the optimal portfolio chosen in an expected utility framework corresponding to

the fundamental theories of action under risk and uncertainty of Von Neumann and Mor-

genstern and L. J. Savage (Tsiang 1972, Neumann and Morgenstern 1953). Therefore, in

4 We have 2n parameters for the coef�cients ci and ARi in the conditional mean; 3n for the GARCH
parameters, ki; �i and 
i; 2n for the parameters ai;2 and ai;3; 2 for the DCC parameters,  1 and  2; and
n(n+ 1)=2 parameters for the unconditional correlations, �ij:
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this work we will suppose that investors optimal selection is the one obtained through a

maximization of the expected utility function. Markowitz's theory takes into account just

the �rst two moments of the expected utility function, but, as put forward by many au-

thors (e.g. Jondeau and Rockinger 2005, Ang and Bekaert 2002), incorporating the effect

of higher moments than the mean and variance on the expected utility of investors (which

corresponds to Markowitz's framework) would improve the moments approximation in the

allocation of wealth and �ll the gap between moments based and utility based selections.

Theoretical research suggests (under rather general conditions) that investors prefer

high values of odd moments, and low values of even moments (e.g. Scott and Horvath

1980 or Pratt and Zeckhauser 1987). Hence, investors would prefer positive skewness,

because they prefer positive extreme values and dislike negative extreme value and, in

addition, they would avoid kurtosis, because it is a measure of dispersion and, therefore,

of uncertainty. Since we are primarily interested in the effect of higher moments on the

asset allocation, a convenient approach consists in approximating the utility function using

a Taylor series expansion around the current value of the portfolio return, and afterwards

to maximize this expansion to obtain the highest expected utility function. As we will see

below, direct optimization of the utility function is in most cases computationally unfeasible

as the number of assets in the investment universe increases, but with the Taylor expansion

based approximation we will show that this problem can be solved ef�ciently in practice.

In the following, we will consider the general Von Neumann-Morgenstern utility

function U(Wt+1) de�ned at the end of period wealthWt+1
5. LetWt be the initial wealth of

5 We do not consider here a multi-period investment problem. Ang and Bekaert 2002 have shown that even
if portfolio weights may be slightly affected by the investment horizon, the opportunity cost of a myopic
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the investor at time t; and let the investor universe consist on n risky assets with stochastic

returns Ri;t+1 and one riskless asset at which he can borrow or lend at a rate rf . The

(random) end of period wealth is given byWt+1 = Wt (1 + (1� !te) rf + !tRt+1)where

e is an n-dimensional vector of ones and ! are the different weights on the risky assets.

This notation shows that if e!t = 1 portfolio weights sum up to one, so that the investor

can only invest in risky assets. On the other hand, if !i are forced to be positive, it is not

possible to short sell assets.

In order to obtain the optimal allocation among the different assets, i.e. the opti-

mal weights !�, the investor maximizes the expected utility function over the next period

conditional on the information at time t:

max
!t

Et [U(Wt+1)] = Et [U(Wt (1 + (1� !te) rf + !tRt+1))] (2.2)

The First Order Conditions (FOCs) necessary to solve this optimization problem are calcu-

lated identifying the �rst derivatives of this Equation with respect to !i;t to zero:

Et [U
0(Wt+1) (Ri;t+1 � rf )] = 0; i = 1; :::; n (2.3)

where U 0(Wt+1) is the �rst derivative of the utility function evaluated in the future wealth

Wt+1 = Wt (1 + (1� !te) rf + !tRt+1). In general, for non-normal returns the FOCs in

Equation 2.3 do not have a closed-form solution and, in addition, the complexity of the

problem increases with the number of assets, as pointed out by Jondeau and Rockinger

2002. It is not dif�cult to see that Equations 2.3 are very complicated as long as the returns

Rt are not multivariate gaussian or the utility function is not quadratic. If we elaborate

strategy is negligible. This result suggests that hedging against unfavorable changes in the investment set
does not result in any signi�cant gain.
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Equation 2.3 we �nd:Z
� � �

Z
R1;t+1;:::;Rn;t+1

U 0(Wt (1 + (1� !te) rf + !tRt+1)) (Ri;t+1 � rf ) f(R1;t+1; :::; Rn;t+1)dR1;t+1:::dRn;t+1

where f(R1;t+1; :::; Rn;t+1) is the multivariate distribution of returns. It is easy to see that

solving a set of n Equations like this involving multivariate integrations becomes a daunting

task even for a limited number of assets as small as three. In the Markowitz case this

problem becomes trivial as the utility function U is quadratic and, therefore, its derivative

U 0 is the identity function. Therefore, in this case this Equation becomes:Z
� � �

Z
R1;t+1;:::;Rn;t+1

(1 + (1� !te) rf + !tRt+1) (Ri;t+1 � rf ) f(R1;t+1; :::; Rn;t+1)dR1;t+1:::dRn;t+1

and these integrals can be solved exactly.

A solution to the general non-gaussian problem has been provided by Tauchen and

Hussey 1991 using Quadrature-Based Methods, but the number of nodes to be used in this

approximation happens to increase exponentially with the number of assets getting rapidly

unmanageable. Therefore, an approximative method for this calculation becomes necessary

and very appropriate.

As we will see, the expansion in Taylor Series of the expected utility function (Equa-

tion 2.2), while it simpli�es the optimization procedure, provides a natural link between

the utility based problem and the moments based one. Actually, it is used as a justi�cation

of the use of higher moments in investment evaluation or multi-moment asset pricing mod-

els. Expanding the utility function, U(Wt+1); in Taylor series around the expected wealth

�Wt+1 = Wt (1 + (1� !te) rf + !tmt+1)
6, where mt+1is the expected rate of return of the

6 We have chosen the expected wealth, �Wt+1; as the point to expand the Taylor aleatorily. We could also
have chosen, for example, the actual wealth Wt but, although the formulas would be different, main results
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risky assetsmt+1 = Et [Rt+1], we obtain:

U(Wt+1) = U( �Wt+1) + U 0( �Wt+1)
�
Wt+1 � �Wt+1

�
+
1

2!
U 00( �Wt+1)

�
Wt+1 � �Wt+1

�2
+

1

3!
U 000( �Wt+1)

�
Wt+1 � �Wt+1

�3
+
1

4!
U (iv)( �Wt+1)

�
Wt+1 � �Wt+1

�4
+O(W 5

t+1)

where O(W 5
t+1) is the remainder of the series of orderW 5

t+1 or higher. Considering that the

following equality holds,

E[U 0( �Wt+1)(Wt+1 � �Wt+1)] = U 0( �Wt+1)E
�
(Wt+1 � �Wt+1)

�
= 0;

the expected utility function of Equation 2.2 becomes:

Et [U(Wt+1)] = U( �Wt+1) +
1

2!
U 00( �Wt+1) � �2(Wt+1) + (2.4)

1

3!
U 000( �Wt+1) � �3(Wt+1) +

1

4!
U (iv)( �Wt+1) � �4(Wt+1) +O(W 5

t+1)

with �2(Wt+1) being the variance, �3(Wt+1) being the third central moment, and �4(Wt+1)

the fourth central moment of the end-of-period wealth distribution.

At this stage we will consider various speci�cations of the utility function in order

to investigate the resulting preferences. First, we will consider an investor with a constant

relative risk aversion (CRRA) utility function:

U(W ) =
W 1�


1� 


where 
 measures the investor's constant risk aversion. Using this expression we obtain

the following expression for the approximated expected utility function (Equation 2.4), up

would not change signi�cantly.
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to the fourth order:

Et [U(Wt+1)] �
�W 1�

t+1

1� 

� 


2
�W�
�1
t+1 �2(Wt+1) (2.5)

+

 (
 + 1)

6
�W�
�2
t+1 �3(Wt+1)�


(
 + 1)(
 + 2)

24
�W�
�3
t+1 �4(Wt+1):

Analogously, considering an investor with a constant absolute risk aversion (CARA) utility

function:

U(W ) = � exp (��W ) ;

with � being the investor's absolute risk aversion, we obtain the following expression for

the approximated expected utility function:

Et [U(Wt+1)] � � exp
�
�� �Wt+1

��
1 +

�2

2
�2(Wt+1)�

�3

6
�3(Wt+1) +

�4

24
�4(Wt+1)

�
(2.6)

Therefore, both approximations can be considered to obtain the optimal weights, !�i ;

just maximizing directly Equation 2.5 or 2.6 for the CRRA or the CARA utility function,

respectively. It is interesting to note that within this approximation, in order to take optimal

investment decisions, agents only care about the �rst four moments instead of the whole

distribution of returns. As a consequence, this approximation will be useful as long as we

are able to obtain analytical expressions for the moments of various orders of future wealth.

But, as we will see next, these moments can be worked out analytically in the case of the

dynamic VCB-MCFD model.

In the following we will show that centered moments of various orders of future

wealth, for instance �2(Wt+1); �3(Wt+1) and �4(Wt+1); can be expressed in a very con-

venient way for the VCB-MCFD model. It is easy to relate the moments of future wealth,
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Wt+1; with the moments of the pro�t and loss function as de�ned in Equation (1.11)7:

�2(Wt+1) = E
�
(!t(Rt+1 �mt+1))

2� = �2(!tRt+1) = �P2

�3(Wt+1) = E
�
(!t(Rt+1 �mt+1))

3� = �3(!tRt+1) = �P3

�4(Wt+1) = E
�
(!t(Rt+1 �mt+1))

4� = �4(!tRt+1) = �P4

where �Pi is the i-th centered moment of the portfolio. To obtain the moments of a portfolio

(�P2 ; �P3 and �P4 ) whose assets follow a VCB-MCFDwe will follow a three steps procedure.

First, since the vector of unexpected returns is de�ned as "t+1 = Rt+1 �mt+1 = �
1=2
t+1zt+1

(see Equation 2.1a), its �rst multivariate moments, �t+1; M3;t+1 andM4;t+1; are de�ned as

:

�t+1 = Et["t+1 � "0t+1]

M3;t+1 = Et
�
"t+1 � "0t+1 
 "0t+1

�
= fsijk;t+1g

M4;t+1 = Et
�
"t+1 � "0t+1 
 "0t+1 
 "0t+1

�
= f�ijkl;t+1g;

can be computed using matrix calculus, instead of numerical integration. Notice that in-

stead of using tensors of third and fourth order to calculate the multivariate third and fourth

order moments we de�ne a (n; n2) matrix as the co-skewness matrix and a (n; n3) matrix

for the co-kurtosis matrix . With these matrices, �t+1; M3;t+1 andM4;t+1; we can calculate

7 As an example, consider the centered third-order moment, �3(Wt+1) :

�3(Wt+1) = E
�
(Wt+1 � �Wt+1)

3
�

= E
h
(Wt (1 + (1� !te) rf + !tRt+1)�Wt (1 + (1� !te) rf + !tmt+1))

3
i

= E
h
(!t(Rt+1 �mt+1))

3
i

= �3 (!tRt+1)
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the portfolio moments (�P2 ; �P3 and �P4 ) using matrix calculus with the following Equations:

�P2 = !0 � �t+1 � !

�P3 = !0 �M3;t+1 � (! 
 !)

�P4 = !0 �M4;t+1 � ((! 
 !)
 !)

In the second step we calculate the multivariate moments, �t+1; M3;t+1 and M4;t+1, for

a VCB-MCFD model. We obviously have Et["t+1] = 0 and �t+1 = Et["t+1"t+1] and

we denote �1=2t+1 = (wij;t+1), i; j = 1; :::; n the Cholesky decomposition of the covariance

matrix of returns. Then, in order to calculateM3;t+1 andM4;t+1 (i.e. �ijkl;t+1 and sijk;t+1),

we use the results of Proposition 10 in Section 1.3:

sijk =
X
r

wirwjrwkrE
�
z3r
�
=
X
r

wirwjrwkr�3;r

�ijkl =
X
r;s;t;u

wirwjswkswluE [zrzsztzu]

=
X
r

wirwjrwkrwlr�4;r +X
r

X
s
s 6=r

�
wirwjrwkswls + wirwjswkrwls

+wirwjswkswlr

�

Finally, in the third step we calculate the four moments of a univariate CFD distribution

(denoted by �i;r; the i-th moment of the r -th asset) as given by Equations 1.11 in Chapter

1.

Therefore, once we have calculated the Cholesky decomposition of the variance-

covariance matrix, �t+1; and the univariate moments of the distribution, we can easily

obtain the matricesM3;t+1 andM4;t+1; and afterwards the portfolio moments, �P2 ; �P3 and
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�P4 : It is interesting to note that considering this procedure it becomes straightforward to

calculate the expected utility for a given vector of weights !:

Summarizing, to solve the optimization problem given by Equation 2.2, where the

utility function is approximated by a Taylor series expansion, we will maximize the fol-

lowing expression for the CRRA utility function:

max
!t

 
�W 1�

t+1

1� 

� 


2
�W�
�1
t+1 (!0t � �t+1 � !t)�

�
 (
 + 1)
6

�W�
�2
t+1 (!0t �M3;t+1 � (!t 
 !t))

+

(
 + 1)(
 + 2)

24
�W�
�3
t+1 (!0t �M4;t+1 � ((!t 
 !t)
 !t))

�
and the following expression for the CARA utility function:

max
!t

0B@�e(�� �Wt+1)

0B@ 1 + �2

2
(!0t � �t+1 � !t)�

��3

6
� (!0t �M3;t+1 � (!t 
 !t))

+�4

24
(!0t �M4;t+1 � ((!t 
 !t)
 !t))

1CA
1CA

with �Wt+1 = Wt (1 + (1� !te) rf + !tmt+1).

2.1.4 Unconditional Investment Under Non-normality

In order to provide evidence on how the CRRA and the CARA utility functions incorpo-

rate information on higher moments and determine if higher moments are important when

choosing optimal portfolios, we perform two kinds of asset allocation exercises. In the �rst

one we consider an unconditional investment, i.e. the moments of the distribution are con-

stant, and in the second one (see next Section) the moments of the distribution are time

varying and, therefore, investors will take different investment options at each date. More-

over, we will analyze two different optimization problems in each case, either short sales

and borrowing are allowed, so that no constraints are considered on the portfolio weights,
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or we assume that the investor has strong constraints on the portfolio strategy, so that port-

folio weights are positive and sum to one. The latter case implies that short sales are not

possible and that the entire wealth must be invested in risky assets.

In order to analyze the problem we consider the data base consisting on the �ve series

of market indexes that we have used in Chapter 1. As we have seen in Section 1.4, the data

base consists on weekly returns (from Wednesday to Wednesday) for dollar denominated

stock indexes for the main geographical areas: North America, Japan, Europe, Emerging

Markets and Eastern Europe Emerging Markets, represented by the Standard and Poor's

500 Index (S&P), the Nikkei-225 Stock Average (NKI), the Dow Jones EURO STOXX

(STX), MSCI Emerging Markets Index (EM) and the MSCI Eastern Europe Emerging

Market Index (EME). This data set consists of total logarithmic return indexes from January

4 of 1995 to March 23 of 2005, making in total 519 observations8.

To estimate the moments necessary to calculate the optimal portfolios, we �t the

static VCB-MCFD model to this data base. In Table 1.21 of Chapter 1 we report estimated

parameters for the �ve series. Although we have already commented this estimation in

the �rst Chapter we would like to emphasize here that for the �ve series we �nd that the

a3 parameter, which incorporates kurtosis, are signi�cantly different from zero, indicating

that the unconditional distribution of returns presents a non-gaussian behavior.

In order to obtain the optimal portfolios and analyze if higher moments are important

we proceed as follows. First, we approximate the utility function using a Taylor expansion

up to order i, with i = 2 (second order approximation), i = 3 (third order) and i = 4 (fourth

8 Consult Section 1.4 for more descriptive details on these time series.
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order). This corresponds to cases where we incorporate information on volatility (i = 2),

volatility and skewness (i = 3), and volatility, skewness and kurtosis (i = 4). Then, to ob-

tain the optimal portfolio weights we solve the maximization problem of the approximated

utility CRRA function (Equation 2.5) or CARA function (Equation 2.6), considering that

the riskless asset annual rate is 2%. For every set of weights we calculate the �rst four mo-

ments of the optimal portfolio: mean and standard deviation (annualized), skewness and

kurtosis (both standardized) to analyze if different approximations drive substantially dif-

ferent portfolio moments. In addition, to analyze the importance of higher order moments

we analyze different indicators, as the Sharpe Ratio, the percentage invested in risky assets

(only for the unrestricted optimizations) and the opportunity cost (Simaan 1993), de�ned as

the percent the investor would be just willing to pay out of the portfolio for the privilege of

choosing the true Expected Utility maximizing portfolio rather than being con�ned to the

mean-variance "second best". The Sharpe Ratio is designed to measure the risk-adjusted

performance and it is calculated by subtracting the risk-free rate from the rate of return

of the portfolio and dividing the result by the standard deviation associated to portfolio

returns:

Sharpe =
�p � rf

�P
(2.7)

As it can be seen from its de�nition, the Sharpe Ratio considers only gaussian characteris-

tics as it associates risk to volatility and, therefore, it might not be well suited to evaluate

investments in a non gaussian world and we do not expect this ratio to change signi�cantly

between different Taylor approximations. In contrast, as we are interested in comparing if

higher order moments are of practical interest compared to the traditional mean-variance
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approach, the opportunity cost becomes a more appropriate measure. In order to calculate

the opportunity cost we suppose that the most optimal portfolio is the one obtained with

the fourth order approximation. For instance, we could take as the best optimal portfolio

the one obtained by maximizing the whole expected utility function of Equation 2.2 but,

as we have mentioned before, this task is unmanageable for �ve assets. Consequently, we

will take as the best approximation to the maximization of expected utility the fourth order

approximation. Therefore, the opportunity cost, OC, is implicitly de�ned as:

Et[U(1 + �
�
p)] = Et[U(1 + �p +OC)] (2.8)

where ��p is the return of the fourth order optimal portfolio and �p is the return correspond-

ing to the suboptimal one (i.e. the second or third order approximation).

Tables 2.1 to 2.4 report results for optimally selected portfolios for several values

of the risk aversion parameter (
 and � ranges between 0.05 and 0.9 which covers values

considered in the literature)9. Table 2.1 corresponds to the case CRRA function without

constraints on weights while Table 2.2 is associated to the case where the investor is forced

to invest in the risky assets only under the no-shortsale constraint. Tables 2.3-2.4 report the

respective results for the CARA function. The results of Tables 2.1 to 2.4 allow us to derive

the following results:

9 Which range to use for the risk aversion parameters 
 and � is actually an open question as it depends on
the investors' initial wealth. For example, Rabin 2000 and Rabin and Thaler 2001 argue that, under expected
utility theory, the levels of risk aversion we observe over modest stakes would imply absurdly high levels
of risk aversion over large stakes. Therefore, we can observe in the literature values for the risk aversion
parameters ranging from single digit values to four digit values (Schechter 2005). Nonetheless, Holt and
Laury 2002 �nds average coef�cients of approximately 0.4 when de�ning utility over gains, not wealth. In
this work we take this position and suppose an initial wealth W0 equal to one and therefore we de�ne the
utility in terms of percent gains. As a consequence, � = 
, i.e. relative and absolute risk aversion coincide,
and the reasonable range lies between 0.05 and 0.9. Considering the optimal portfolios we obtain with this
range (see Tables 2.1 to 2.4) we can conclude that it is suf�ciently adequate to model observed risk aversion
patterns.
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1. As the risk aversion parameter increases we obtain, as expected, that for all

approximation orders, in restricted or unrestricted optimizations, the investor opts

for a portfolio with lower expected mean and lower expected standard deviation, so

that the resulting portfolio becomes more diversi�ed. In the same way, we �nd that

in the unrestricted cases the exposition to risky assets decreases as the risk aversion

parameter increases.

2. The gain in terms of opportunity cost of taking higher order terms in the utility

expansion is relevant, specially in the unrestricted cases where it can be as high as

55% for the second order approximation in the CRRA function with 
 equal to 0.05.

The weights in this case are (1.2611, -0.7864, 0.3047, -0.6289) for the second order

approximation and (0.4199, -0.2785, 0.0923, -0.2229, 0.0606) for the fourth order,

which are substantially different.

3. On the other hand, we �nd that in some cases, in CARA without restrictions, the

opportunity cost is almost zero, while for the CRRA and CARA with restrictions we

�nd a cost of opportunity of around 5%. For example, the weights for the CRRA

function with restricted optimization and 
 equal to 0.05 are (0.8982, 0.0100, 0.0158,

0.0000, 0.0761) for the second order approximation and (0.6502, 0.2126, 0.0000,

0.0755, 0.0616) for the fourth order, which are also substantially different.

4. In contrast to previous research (Jondeau and Rockinger 2005, Y. Aït-Sahalia and

Brandt 2001) we do not �nd that for small values of the parameter of risk aversion,

higher moments do not matter. In particular, we �nd both cases: in the CRRA with
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restrictions we �nd that for 
 = 2 the OC is equal to 3%, while in the CARA it is 0%.

Therefore, we do not �nd an increasing relationship between OC and risk-aversion.

5. The cost of opportunity is always higher for the second order approximation compared

to the third order one.

6. Comparing how portfolio moments are modi�ed when higher moments are introduced

also provides interesting results. In general we can observe that the values of kurtosis

are in general higher and skewness more negative for the second order approximation

than for the fourth order. In addition, when the Taylor expansion is performed up to

order 2, portfolio variance decreases when risk aversion increases. However, when

a concern for higher moments is allowed, this is not necessarily the case. For large

values of risk aversion (
 > 0:6) a very slight increase in the variance is admitted to

obtain an increase in skewness and a decrease in kurtosis.

7. In the unrestricted cases the Sharpe Ratio does not depend on the approximation order

nor on the risk aversion. However, in the restricted cases we �nd that in general it

gets smaller with increasing risk aversion or approximation order. The dependence

on risk aversion can be explained due to the fact that as we get more risk averse our

investment set gets smaller and, therefore, asset allocation will be less optimal, while

the dependence on order approximation can be explained given that the Sharpe Ratio

only measures risk as volatility. However, if we care about higher-order moments,

(reducing the importance on volatility), we will be constructing a less optimal in a

Sharpe Ratio sense portfolio.
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8. Incorporating higher order terms in the expansion induces an "effective increase" in

the risk-aversion coef�cient, as portfolios within higher approximations, maintaining

all other variables constant, have a lower expected mean and variance compared to

the lower order ones. This is so because considering skewness or kurtosis are taking

into account that the investor will be aware of higher order moments, and he will be

willing to trade some expected return to increase expected skewness or lower expected

kurtosis. In fact, for restricted portfolios, the expected kurtosis coef�cient is lower for

higher order approximations and the skewness coef�cient is bigger in the third order

approximation than in the second order.

Summarizing, we �nd that in some cases but not always higher order moments are

relevant in the asset allocation process and that these cases depend on the speci�c utility

function used.

2.1.5 Conditional Investment Under Non-normality

We now turn to the optimal allocation when returns have time-varying moments. For each

week of the sample, we use the dynamic VCB-MCFD model described in Section 2.1.2 to

predict the �rst four moments and co-moments of market returns. As mentioned before,

with this model the conditional mean is assumed to follow an AR(1) model, while the

conditional variances are given by a GARCH(1,1) model. Conditional correlations vary

over time according to a DCC model and the non-gaussian behaviour is captured through a

VCB-MCFD.
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In Table 1.28 we report the estimations for the set of parameters of the DCC model

for these time series. First, we notice that all series except the E-STOXX present a non-zero

AR(1) dynamic for the mean, being the coef�cient positive for the S&P500 and Nikkei-225

and negative for the EmergingMarkets Index and, that all series present volatility clustering

and persistence effects, as can be seen from the GARCH parameters, pi and qi. Second, the

DCC parameters, which measure the dependence of the correlation matrix on past returns

and past correlations, are also signi�cant at a 99% con�dence interval10. And third, the

coef�cients ai;3 of the Multivariate Cornish-Fisher Density, which capture the kurtosis, are

signi�cant for all series, meaning that the conditional distributions after accounting for the

�rst and second order dynamics still present fat-tailedness, while the coef�cients ai;2;which

are associated to the skewness are signi�cant for all series except for the Nikkei-225.

With these estimations we maximize the approximated expected utility function for

the two alternative approximations (CARA and CRRA) given by Equations 2.5-2.6 and the

optimal weights for each approximation will be obtained. In addition, we also calculate

for each week of the sample the same indicators as in the previous Section11. As we have

one value of these statistics for each time period we report the mean values of each indica-

tor. In addition, we present the opportunity cost of using a sub-optimal forecasting model,

namely, the unconditional framework analyzed in the latter Section compared to the one us-

ing conditional estimates. In this way, we test both shortcomings that can make the investor

take bad decisions: the quadratic approximation and the hypothesis of i.i.d. returns. In par-

10 These results are in agreement with those found in the literature (Engle and Sheppard 2001, Bollerslev
1986 and Jondeau and Rockinger 2005).
11 We do not report the Sharpe Ratio given that it does not add more information to the one obtained in the
unconditional investment Section.
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ticular, from the different combinations that we can consider, we analyze the differences

of optimal allocations between a conditional and an unconditional investment framework

using the fourth order approximation.

In Tables 2.5-2.6 we report the results for optimally selected portfolios for several

values of the risk aversion parameter. Table 2.5 corresponds to the CARA function without

constraints on weights where we consider that the riskless asset rate is 2% (annualized),

while Table 2.6 is associated to the case where the investor is forced to invest in the risky

assets only under the no-shortsale constraint. In addition, Tables 2.7 and 2.8 contain the

results for the CRRA utility function in the unconstrained and constrained cases, respec-

tively. In this case, from the results found in Tables 2.5-2.8 we can derive the following

conclusions:

1. As in the unconditional setting as the risk aversion increases the investor opts for a

portfolio with lower expected mean and lower expected standard deviation. We also

�nd that in the unrestricted case the mean and variance values are in general higher

than in the conditional case, given that with reallocations the agent with no restrictions

is able to capture more aggressively its views about markets.

2. In this case, the gain in terms of opportunity cost of taking higher order terms in the

utility expansion is relevant, specially in the unrestricted cases, where it can be as high

as 60.78% for the second order approximation in the CRRA function with 
 equal to

0.05. The mean weights in this case are (2.5489, -1.5112, 0.6796, -1.2452, 0.41) for
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Fig. 2.1. Optimal weights for the S&P and the E-STOXX in the CARA conditional setting
for the �rst 100 days with 
 = 0:4:

the second order approximation and (0.8866 -0.676 0.2766 -0.3880 0.1334) for the

fourth order, which are substantially different.

3. The cost of opportunity of ignoring the time varying �rst moments is also relevant.

The opportunity cost can be as high as 35.30% in the restricted case (CARA) for


 = 0:9 and as high as 54.90% in the restricted case with 
 = 0:05: In Figure 2.1 we

present the time evolution of the optimal weights for the S&P Index and the E-STOXX

that shows that lines are certainly not constant as it should in the unconditional setting,

explaining, therefore, the high opportunity costs found.
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In addition to these conclusions, most of the results of the previous Section can also

be applied in the conditional framework. Therefore, we can summarize that the opportunity

cost of ignoring �rst and second order dynamics is signi�cant.

2.1.6 Conclusions

In this Section we have presented a dynamic correlation model with Multivariate Cornish-

Fisher distributed innovations in order to analyze the impact of higher order and time-

varying moments on the asset allocation problem. We have found that considering higher

moments is in general, but not always, important in portfolio selection. The multivariate

normal distribution is not an appropriate probability model for portfolio returns, primarily

because it fails to allow for higher moments, for example, skewness, co-skewness, kurtosis

and co-kurtosis. We also demonstrate that the Multivariate Cornish-Fisher Density is able

to capture these higher moments and becomes �exible enough to allow for skewness and

co-skewness and, at the same time, accommodates heavy tails while capturing �rst and

second order dynamics. On the other hand, we have obtained that including time varying

moments is crucial for asset allocation, given that ignoring changes in investment moments

can result in big costs of opportunity.

While we believe that we have made progress on an important issue in portfolio se-

lection, there are at least three limitations to our approach. First, we handle with parameters

which are by de�nition uncertain and subject to variations. Second, our exercise is an `in-

sample' portfolio selection and we have not applied yet our method to out-of sample port-

folio allocation. Finally, the portfolio choice problem we have analyzed only includes the
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dynamics in the �rst two moments, while an autoregressive behavior could also be imposed

to the parameters a2 and a3 to model the dynamics on higher moments12 to investigate if

ignoring higher order dynamics results in costs of opportunity for the investor. In future

research we expect to make progress on these limitations considering works like Rubio,

Serna, and León 2006 and Jondeau and Rockinger 2005, and we are also interested in in-

corporating parameter uncertainty in a Bayesian framework, as in Harvey, Liechty, Liechty,

and Müller 2005, focusing on prospective moments rather than future moments. Finally,

the calculation of the cost of opportunity with respect to the true utility maximization and

the relationship between the parameter 
 and the parameters of a model with parameters

for variance, skewness and kurtosis aversion would be of interest.

12 Several attempts have been made in this direction but the estimation procedure of the coef�cients in the
model becomes very unstable. Basically, the problem is that the coef�cients a2 and a3 are bounded as can be
seen in Figure 1.1 and usually the autoregressive behaviour moves the solution to this boundary. One way of
solving these problem would be to choose an appropriate transformation of the coef�cients that would expand
this region to the whole real plane. Nevertheless, when doing so, the problem would be to �nd a reasonable
model for the new coef�cients.
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2.2 VaR Calculation

2.2.1 Introduction

Value at Risk (VaR) is the standard tool for measuring market risks (Jorion 2000). VaR is

an estimate, with a prede�ned con�dence interval, of the quantity that can be lost due to

a position during a concrete time interval in standard market conditions. The most typical

horizons used in practice are those ranging from one day to one month or one year. The

regulatory environment and the need for controlling risk in the �nancial community have

provided incentives for banks to develop proprietary risk measurement models, as the VaR.

Among other advantages, VaR provides a quantitative and synthetic measure of risk that

allows to take into account various kinds of cross-dependence between asset returns, fat-tail

and non-normality effects, arising from the presence of �nancial options or default risk, for

example.

The estimation of this risk measure is related to quantile estimation and tail analy-

sis. Fully parametric approaches are widely used by practitioners (see e.g. JP Morgan

Riskmetrics documentation), and most often based on the assumption of multivariate nor-

mality of assets or factors returns. These parametric approaches are rather restrictive, as

they generally imply misspeci�cation of the tails, and VaR underestimation, since real dis-

tributions for the evolution of asset prices are besides asymmetric, notably leptokurtic, as

we have shown in Section 1.5. Other parametric approaches which include heavy tails are

modeled by means of jumps in prices or stochastic volatilities (GARCH) (Duf�e and Pan

1997, Duf�e and Pan 2001), or using extreme value densities (Neftci 2000, Longin 2000,
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Embrechts, Klüppelberg, and Mikosch 1997). Fully non-parametric approaches have also

been proposed and consist in determining the empirical quantile, the historical VaR or a

smoothed version of it (Harrel and Davis 1982, Falk 1984, Falk 1985, Jorion 1996 and

Ridder 1997). Additionally, semi-parametric approaches have been developed, which are

mainly based either on an extreme value approximation for the tails (Bassi, Embrechts, and

Kafetzaki 1997, Embrechts, Resnick, and Samorodnitsky 1998) or local likelihood meth-

ods (Gourieroux and Jasiak 1999).

In this Section, given the �tting-quality of the Univariate and Multivariate Cornish-

Fisher density functions to market data found in Chapter 1, we provide two new VaR

estimation methods for portfolios based on this density: one analytical and another one

simulation-based. Considering the exchange rates database both approaches will be com-

pared with standard market models via a Backtesting. It is interesting to point out that

the Backtesting methodology can be seen as an out-of-sample test for the CFD hypothesis.

The outline of this Section is as follows: �rst, we will describe brie�y the traditional ap-

proaches for calculating the VaR, then we will analyze a one asset VaR calculation using

the CFD density and, �nally, we will study the two VaR estimation methods for portfolios.

2.2.2 Traditional approaches to VaR

First, we present the standard methods to the VaR calculation of a portfolio, namely, (i) the

delta-normal one which assumes that risk factor returns are multivariate normally distrib-

uted and that the change in portfolio value is linearly dependent on all risk factor returns,

(ii) the historical simulation, which assumes that asset returns in the future will have the
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same distribution as they had in the past (historical market data) and (iii) Montecarlo sim-

ulation, where future asset returns are randomly simulated.

Delta-normal VaR

A very popular approach introduced by J.P Morgan is the one based on the hypothesis

that asset returns (equity, prices of zero coupon bonds, exchange rates, options and futures)

follow a multivariate normal distribution. The value of the Pro�t and Loss (P&L) function,

P , has the following form:

P =
nX
i=1

!iRi (2.9)

where Ri is the daily return of the i-th asset, and !i fi = 1; :::; ng are constants that

determine the weight of each asset inside the portfolio. When considering that market

variables follow a multivariate normal distribution the value of the portfolio will follow a

normal distribution with mean, �P , and variance, �P , given by:

�P =
nX
i=1

!i�i

�2P =

nX
i;j=1

!i!j�i�j�ij

with �i being the daily volatility of the i-th market variable, �i the daily mean and �ij the

correlation between Ri and Rj . Choosing a con�dence interval and a temporary horizon,

the VaR can be easily calculated from �P . For example, the VaR with a con�dence interval

of � and with a temporal horizon of T days is given by the expression:

1� � =

Z 1

�1
�(R� VaR�)

1p
2��2P

e
� 1
2

�
R��P
�P

�2
dR
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where �(x) is the Heaviside step function13. Carrying out the integral one obtains:

VaR� = �P � �(�)�P
p
T (2.10)

where � (x) is the standard normal distribution function. The bene�ts of the delta-normal

model are the use of a compact and maintainable data set (only a variance-covariance data

base), which can often be bought from third parties, and the speed of calculation using

optimized linear algebra libraries. Drawbacks include the hypothesis that the portfolio is

composed of assets whose delta is linear, and the assumption of a normal distribution of

asset returns.

Historical-VaR

Historical simulation is the simplest and most transparent method of calculation. This

involves running the current portfolio across a set of historical price changes to yield a dis-

tribution of changes in portfolio value, and computing a percentile (the VaR). In other

words, it is supposed that the weights of the different assets of the current portfolio do not

vary and we simulate scenarios equal to the historical changes of our database. The ben-

e�ts of this method are its simplicity to implement and the fact that it does not assume

a normal distribution of asset returns. Drawbacks are the requirement for a large market

database and the computationally intensive calculation. Additionally, the number of simu-

lations is evidently limited to the number of available days so that it is very dif�cult to carry

out a sensibility analysis, as for example, the inclusion of assets in the portfolio for which

13 The Heaviside step function is de�ned as:

�(x) =

�
0 si x < 0
1 si x > 0
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historical data do not exist. Finally, with this model we assume that the historical distribu-

tion is constant over time, obviating dynamic features as conditional heteroskedasticity or

changing correlations.

Montecarlo-VaR

In the Montecarlo-VaR we generate a random scenario of market movements using

some market model (generally multivariate normality) and revaluate the portfolio under

each simulated market scenario. Afterwards, we compute the P&L and sort the resulting

P&L to give us the simulated returns distribution for the portfolio. Finally, the VaR at a

particular con�dence level is calculated using the percentile function. For example, if we

computed 5000 simulations, our estimate of the 95% percentile would correspond to the

250th largest loss. Monte Carlo simulation is generally used to compute VaR for portfo-

lios containing securities with non-linear returns (e.g. options) since the computational

effort required is exhaustive. Note that for portfolios without these complicated securi-

ties, such as a portfolio of stocks, the delta-normal method is perfectly suitable and should

probably be used instead if returns follow a multivariate normal distribution. This method

implies a high time consumption given that the value of the portfolio must be recalculated

in each simulation (i.e. the value of each option must be recalculated using, for example, a

Black-Scholes model). In order to reduce another commonly used method consists on ap-

proaching the relationship between the P&L, P; and the value of the market variables, Ri,

by means of second-order Taylor expansion:

P =

nX
i=1

�iRi +
1

2

nX
i;j=1


ijRiRj +O
�
R3i
�

(2.11)
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where �i is the delta (linear sensitivity) of the portfolio to return Ri and 
ij are the second-

order derivatives (or gammas) of the portfolio to Ri and Rj . This latter expansion can be

used to carry out Montecarlo simulations if we know parameters �i and 
ij: we generate a

random scenario for Ri and calculate the simulated P&L, P; using Equation 2.11.

2.2.3 One Asset VaR using the Cornish-Fisher Density

VaR estimation for one asset14 considering that returns follow a m-th Cornish-Fisher den-

sity function, cfm(R), is simply reduced to the calculation of the following integral:

z� =

Z 1

�1
�(R� VaR�)cfm(R)dR

where z� determines the con�dence level with which we want to calculate the VaR�. In Ap-

pendix B we demonstrate the following result that gives us an analytic formula to calculate

the VaR of an asset when the returns follow a Cornish-Fisher distribution:

Proposition 11 Let R be a m-th order CFD variable. Then, the VaR at a con�dence level

1� z is given by:

VaR = ��1[Qm(z)] (2.12)

where �(x) is the standard normal distribution function, Qm(x) is the m-th order polyno-

mial and ��1 its respective inverse.

Therefore, in order to calculate the VaR under the Cornish-Fisher assumption we only

need to estimate the parameters of the CFD distribution, a3; a2 a1 and a0. As we have seen

in Section 1.5, this can be done using a static or a dynamic framework but we notice that for

14 Although this Section could seem to be very restrictive given that only one asset is involved, this asset can
be in fact a whole portfolio.
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both cases the formula is exactly the same. Given the superiority of in-sample goodness of

�t, in the illustration of VaR calculation that follows we have considered the more complete

dynamic framework using the CFD-GARCH model presented in Section 1.5.

As an illustrative example we have developed an integrated graphic interface in the

MatRisk application, initially implemented by Suárez and Carrillo 2003 in a MATLAB en-

vironment. In Figure 2.2 we show the �nal interface of the application with an example

corresponding to the CHF/USD exchange rate. The central graph presents a histogram with

a graph in red of the third-order Cornish-Fisher density function and in green a line that

indicates the VaR at the con�dence level that has been selected in the lower displacement

bar. In the square bellow the resulting VaR using the third-order CFD model (CFD-VaR),

the sample (historical) VaR and the Expected Shortfall or Conditional VaR15 resulting from

the model are also shown. On the right part the p-value of the Kolmogorov-Smirnov sta-

tistic and the parameter estimates are reported. Finally, we present the QQ-Plot of the data

against the normal distribution and the �t of a third-order polynomial. In addition, in Fig-

ure 2.3 we have compared these results with those obtained calculating the VaR by means

of the �t of a normal distribution (normal-VaR). It is evident that in this case the �tting

quality is poorer that in the case of the third-order CFD, as measured by the KS statistic.

In Table 2.9 we compare the differences in the VaR value between the normal-VaR,

historical-VaR and CFD-VaR considering different con�dence levels. It can be observed

15 The Expected Shortfall or Conditional VaR of a sample is de�ned as:

ES� = E [X j X > VaR�]

The Expected Shortfall is a measure of the mean loss that will have a portfolio, given that this loss is bigger
than a certain limit. It has been proposed by several authors like an alternative risk measure with the desirable
properties of subadditivity and coherence (Artzner et al. 1999). All calculations performed in this Section
can be easily adapted to this risk measure.
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90% 95% 99%
Historical-VaR -0.8675 -1.2067 -2.1240
CFD-VaR -0.8903 -1.2260 -2.0247
Normal-VaR -0.9739 -1.2518 -1.7732

Table 2.9. VaR comparison for the CHF/USD exchange rate. Historical-VaR, CFD-VaR
and Normal-VaR, denote the Historical simulation, the CFD and the delta-normal estimates
for the VaR, respectively.

that the normal-VaR for the percentiles corresponding to 90% and 95% are bigger than the

CFD-VaR, while for a percentile of 99% it is notably smaller. This is so because when cal-

culating the normal-VaR very little importance is given to the most extreme losses, since

this one is not capturing appropriately the asymmetry nor the kurtosis of the distribution.

In this way, under the assumption of normality, the VaR is overestimated for elevated per-

centile values, while it is undervalued for the lowest percentile values, which correspond to

the most extreme events. On the other hand, it is interesting to point out that the calculated

CFD-VaR is much more similar to the historical-VaR. It is interesting to highlight that the

differences between the CFD-VaR and the normal-VaR with respect to the estimates of the

historical-VaR at a 1% con�dence level are 4:68% and 16%, respectively.

2.2.4 Backtesting

Backtesting is a methodology used in the supervision of the quality of VaR calculations and

consists on keeping track of the realized losses and gains, checking that for a given con�-

dence level they are not bigger than the calculated VaR for that con�dence level. Therefore,

the most straightforward way to backtest a VaR calculation is to plot the P&L against pre-

dicted VaRs and monitor the number of excessions. For example, if you have a 1-day 95%

con�dence VaR, you should expect 5% upside and downside excessions over time. If ac-
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Fig. 2.2. Graphical interface to perform VaR calculations using a third-order CFD model.
On screen it can be seen the �t for the CHF/USD exchange rate. The central �gure shows
an histogram with a red curve representing the �tted CFD. A green line indicates the con�-
dence level percentage for the VaR that corresponds to the one that has been chosen in the
bar. On the lower �gure the numerical VaR values using the CFD model, the sample-VaR
and the Expected Shortfall calculated using the model are shown. On the right side appears
the p-value of the Kolmogorov-Smirnov statistic and the values of the estimated parame-
ters from the model. Finally, on the lower-right corner the sample QQ-Plot with the cubic
polynomial �t is shown.
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Fig. 2.3. VaR estimation using a gaussian �t for the CHF/USD exchange rate. The quali-
ty-of-�t obtained is remarkably inferior to the one obtained considering a third-order CFD,
as can be observed from the Kolmogorov-Smirnov statistic.

tual excessions are much larger or smaller this is an indication of an inaccuracy in the

calculation models. A VaR measure in which the losses were always smaller would be a

too conservative measure and one of the consequences would be, for example, the obliga-

tion of keeping too much capital as provision. Equivalently, if losses above the VaR were

more frequent than in reality, we would be undervaluing the risk and it could imply losses

for which we are not appropriately prepared. This methodology, can be seen as an out-of-

sample test for the CFD hypothesis as we are evaluating the capacity of predicting a given

percentile of the empirical distribution.

In Table 2.10 we present the results of the Backtesting for the twelve exchange rates,

using the �t of a gaussian as well as the Cornish-Fisher density function and the historical

time series. We perform one day VaR calculations with a con�dence interval of 99% for
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Normal-VaR Historical-VaR CFD-VaR Excessions Range
AUD 9 6 9 1-11
BEF 8 6 5 1-11
CHF 7 5 5 1-11
DEM 12 7 5 1-11
DKK 10 7 6 1-11
ESP 7 5 4 1-11
FRF 8 5 6 1-11
GBP 10 8 4 1-11
ITL 8 5 11 1-11
JPY 7 8 4 1-11
NGL 6 5 4 1-11
SEK 7 4 6 1-11

TOTAL 99 71 69 50-70

Table 2.10. Backtesting results for the twelve exchange rates using the gaussian �t as well
as a �t using the third-order CFD and the historical-VaR. We present the number of exces-
sions for the VaR at a 99% level of con�dence throughout 500 days. A good model should
give around 60 excessions in total.

500 successive days for the twelve exchange rates. In each calculation we use the 200

previous days for the �tting of the distribution16. Since we are calculating the VaR with a

con�dence level of 99%, for each exchange rate we expect the number of losses exceeding

the VaR to be a 1% of the number of days considered in the Backtesting. Since we carry

out 500 measures of the VaR, the number of excessions must be around 5, i.e., the number

of excessions will be inside the con�dence intervals considered in Peña 2002.

As we have already mentioned, the basic result indicates that the normal-VaR under-

estimates the historical-VaR and that the CFD-VaR �ts better to the historical-VaR. As an

example, in Figures 2.4 we show the graph of the Backtesting for the last exchange rate,

the SEK/USD exchange rate.

16 The time window used to �t the parameters of the model usually depends on the criterion of the agent.
The correct election of this parameter is essential to set good predictions in VaR calculation. We have carried
out the Backtesting considering both a 200 days time window and a 500 one and, although VaR calculations
using the Cornish-Fisher function were also closer to sample-VaR compared to the normal case, with the
normal-VaR better results were obtained in the Backtesting.
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Fig. 2.4. Backtesting for a one day time horizon VaR at a 99% level of con�dence through-
out 500 consecutive days for the SEK/USD exchange rate series. The normal-VaR, histor-
ical-VaR and CFD-VaR are shown. Dots represent realized losses or pro�ts the next day
after the calculation. A good model should give a number of excessions around 5.
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2.2.5 Portfolio VaR using the Multivariate Cornish-Fisher Density

Methodologies

VaR calculation for a portfolio that is formed by assets that follow a Multivariate

Cornish-Fisher distribution (in both of its forms, the Copula Based and the Variance-

Covariance Based, see Section 1.3) does not have a direct analytical approach. The problem

is that Multivariate Cornish-Fisher distributions are not closed under convolution and, in

principle, we ignore the general Pro�t and Loss distribution of a portfolio17. Neverthe-

less, we provide two different approximative alternatives to carry out the VaR calculation

of a portfolio whose assets follow a MCFD: the �rst one is based on Montecarlo simula-

tions and the other one is based on the calculations of the moments of the Pro�t and Loss

distribution.

The �rst possibility consists on �tting the parameters of the MCFD, and use one of

the simulation algorithms described in Section 1.3 to simulate CB-MCFD or VCB-MCFD

variables. If one wants to calculate the VaR for a period of T days, paths should be sim-

ulated with T points. After generating enough scenarios, the VaR� is obtained from the

percentile z� of the simulated distribution function of P&L of the simulated portfolio.

The second possibility consists on applying the Cornish-Fisher Expansion (Johnson

and Kotz 1972b, see Appendix A.1 for details) for the calculation of the percentile using

the moments of the distribution of the Pro�t and Loss function. In Section 1.3 we have

calculated them-th moment of the change in the value of a portfolio given by the equation

17 This is not true for the VCB-MCFD model as we have shown in Chapter 1. However, although been
closed under summation, we do not know the speci�c form of the univariate (marginal) distributions of a
VCB-MCFD and, therefore, a completely analytical VaR calculation is also not possible for this distribution.
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2.9 both under the Copula-BasedMCFD and under the Variance-Covariance-BasedMCFD

models. Therefore, using the Cornish-Fisher Expansion on the P&L variable, we can obtain

an estimate of the VaR applying the following equation:

VaR = �+ �zR

where � corresponds to the mean of the distribution, � is the standard deviation and zR is

given by:

zR = zX +
1

6

�
z2X � 1

�
� +

1

24
(z3X � 3zX)��

1

36
(2z3x � 5zx)�2 (2.13)

where zX is the corresponding standard gaussian percentile, � is the skewness and � is the

kurtosis. If we want to obtain the VaR for a longer time horizon and we have only �tted

the distribution for daily data in this second approach it is necessary to make additional

hypothesis on the time-scaling properties of moments. In the gaussian approach it is well-

known that the variance scales as
p
t and it is not necessary to make any hypothesis on

the scale properties of the skewness � or on the excess kurtosis �, since these are equal to

zero. However, in this more general context the escalation problem is more complicated. It

is known (Bouchaud and Potters 2000) that in a uncorrelated series the centered moments

must have an evolution proportional to
p
t. This implies that skewness must follow a 1=

p
t

law and the kurtosis 1=t law. Therefore, for distant times the skewness, the kurtosis and, of

course, the superior order moments tend to zero, which constitutes a manifestation of the

central limit theorem. However, the existence of autocorrelation, either lineal or of superior

order, implies some slower convergence rates towards normality.
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As in the previous Subsection, we can use either a static or a dynamic framework to

estimate the parameters of the MCFD. Given the multivariate in-sample estimation results

of Chapter 1, we use the dynamic Variance-Covariance-Based MCFD in the rest of this

Section to estimate the VaR of a portfolio.

Application of both methodologies

We carry out the calculation of the VaR for a portfolio formed by a monetary unit

expressed in US Dollars of each one of the following foreign currencies: Japanese yen,

Dutch pound and Swedish crown18. We calculate the VaR to one day and for the last day

available in our data, 08/15/1997, in four different ways: the �rst of them considering the

normal framework (normal-VaR), the second one using the sample percentile of the histor-

ical distribution of price changes of the portfolio (historical-VaR), the third and fourth ones

following the two methodologies proposed in the previous Section. The third one using

the Cornish-Fisher Expansion (CFDana-VaR) and in the fourth one we use the Montecarlo

simulation in the way that we detail next (CFDMon-VaR). First, we carry out a �t of the dy-

namic VCB-MCFD function considering all the data of the sample (2645 data, between

04/07/1988 and 15/08/1997) using the algorithm described in Chapter 119. Afterwards we

simulate 10000 paths of VCB-MCFD variables using the simulation procedure described

in Section 1.3.2. From these simulated evolutions we calculate the evolutions of the value

18 In this work we will not analyze the impact of including options for the VaR calculations under a multi-
variate CFD. Nonetheless, we would like to outline a procedure to include these assets in the model. In this
case, we can evaluate the VaR using Montecarlo simulation and considering the quadratic relation between
the Pro�t and Loss function and the market variables given by Equation 2.11. As a matter of fact, we simulate
the variables Ri and then use this Equation to simulate the portfolio.
19 The estimation results are available from the authors upon request.
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90% 95% 99%
Normal-VaR -1.9242 -2.4659 -3.4822
Historical-VaR -1.8286 -2.4478 -3.7399
MCFDana-VaR -1.7176 -2.4148 -4.1811
MCFDMon-VaR -1.7891 -2.4120 -3.7995

Table 2.11. VaR for a portfolio formed by one monetary unit countervalued in dollars for
each of the following currencies: Japanese yen, Dutch pound and Swedish crown, suppos-
ing normality, historical-VaR and the VaR using the VCB-MCFDmodel, with the analytical
approximation and by means of the Montecarlo simulation.

of the portfolio in each path. Finally, on the simulated histogram of changes of the value of

the portfolio we calculate the VaR as the percentile to the 10, 5 and 1%.

We show VaR results obtained using the different methods in Table 2.11. The results

of the CFDMon-VaR are very similar to the obtained ones for the VaR of an asset in the

previous Section. The calculation of the CFDana-VaR gives a value something superior for

the percentile to 1% that the CFDMon-VaR. This is so because the CFD-VaR works with

up to the fourth order of the distribution in this approach. Therefore, the CFDana-VaR will

always tend to overestimate the VaR for leptokurtic distributions.

Backtesting

In order to check the goodness-of-�t of each method we carry out VaR calculations

for a one day time horizon and with a con�dence level of 99% for 500 successive days

for four portfolios. These four portfolios are formed by one unit of each one of the three

following foreign currencies: portfolio 1 (Australian dollar, Belgian franc and Swiss franc),

portfolio 2 (German mark, Danish crowns and Spanish peseta), portfolio 3 (French franc,
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PortfolionExcessions Normal Historical MCFDana MCFDMon Excessions Range
1 3 2 5 5 1-11
2 9 6 7 5 1-11
3 5 2 7 6 1-11
4 5 5 6 5 1-11

Total 22 15 25 21 10-30

Table 2.12. Excessions in the estimation of the normal-VaR, of the sample-VaR, of the VaR
using the Cornish-Fisher expansion approximation and of the Montecarlo-VaR. A good
measure for the VaR should give a number of excessions included within the speci�ed
range in the last column.

English pound and Italian lira) and portfolio 4 (Japanese yen, Dutch pound and Swedish

crown)20.

The procedure used for the simulations is the following one: �rst, we carry out the

VCB-MCFD �tting using the Maximum Likelihood method as explained in Section 1.5,

taking for this �t the 200 data previous to the moment of the VaR calculation, period that

approximately corresponds to one year data21. Later on we simulate 10000 evolution paths

for each one of the assets. Using these simulations of the market variables we calculate the

evolutions of the portfolio value in each one of the paths and with this simulated histogram

of the variations of the value of the portfolio we obtain the VaR as the 1% percentile.

For the calculation of the VaR by means of the Cornish-Fisher Expansion approach

we use the same �tting that the one used for the Montecarlo simulation and by means of

the coef�cients, a3;i; a2;i; a1;i and a0;i, and the variance-covariance matrix we obtain the

moments of the P&L distribution. Finally, we use the Cornish-Fisher approach to evaluate

the percentile and to estimate the VaR.

20 Selection of the component assets of each portfolio is completely random.
21 Estimation results are available from the authors upon request.
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In Figure 2.5 we present the Backtesting for the CFD-VaR, the VaR calculation sup-

posing normality (also with a 99% con�dence level), the historical VaR and the realized

Pro�t and Losses values for each of the days. As it can be seen, at a 99% con�dence the

CFD-VaR is in general higher than the normal-VaR, which does not take into account skew-

ness and excess kurtosis. In some intervals the CFD-VaR is smaller, because the dynamic

model allows to capture periods with lower volatility. The calculated CFD-VaR is system-

atically higher than the one derived considering the normal framework, since the excess

kurtosis coef�cient is always positive. On the other hand, it is reliable the little variability

that the historical-VaR presents, being almost constant for some stretches and presenting

small jumps due to extreme events in pro�t or losses. This strong dependence on big mar-

ket movements is one of the reasons for which the methodology of the historical-VaR is

usually criticized. CFD-VaR calculations are the ones closest to the historical-VaR, but

they present a stronger variability due to the aleatory sampling that we are considering.

Since we are calculating the VaR with a con�dence level of 99% it is to be expected

that for each portfolio the number of losses exceeding the VaR to be more or less of 1%.

In Table 2.12 we present the excessions in the measure of the normal-VaR, historical-VaR,

CFDanaVaR and CFDMon-VaR and also the acceptance range of excessions for the VaR.

One can observe that although the number of excessions of the normal-VaR is within the

allowed range, the excessions of the CFDMon-VaR is much closer to the historical-VaR

and the theoretical value of twenty. The CFDana-VaR, as we have already mentioned, it

overvalues the theoretical value although it lies within the admitted range. Results are

therefore very similar to the ones obtained for a single asset.
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Fig. 2.5. Backtesting for the fourth portfolio formed by the assets JPY, NGL and SEK.
These are one day VaR calculations with a 99% con�dence interval for 500 consecutive
days. The following estimations are shown: normal VaR, historical-VaR and the VaR ob-
tained by means VCB-MCFD model with the Montecarlo-VaR approximation using 10000
scenarios. For the �ts we use the 200 prior days to the calculation day. Dots are the realized
losses or gains. The optimal number of excessions is equal to 5.
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2.2.6 Conclusions

In this Section we have proposed two ways of calculating the Value at Risk for a portfolio

formed by assets following a Multivariate CFD. In particular, we have analyzed a semi-

analytical procedure based on the Cornish-Fisher Expansion of the Pro�t and Loss function

and another one simulation based. We have tested the quality of these VaR meassures using

a Backtesting and we have found that both models tend to outperform the traditional normal

or delta-VaR. We have also developed a graphic interface to apply easily these meassures.

In further research it would be interesting to compare these two methods with other

market models which incorporate dynamics and heavy tails, like the ones proposed in Chap-

ter 1.
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2.3 Option Valuation

In this Section we will generalize the Black and Scholes option valuation formula (Black

and Scholes 1973) to include underlyings whose returns can be characterized by a third-

order Cornish-Fisher distribution function. We also obtain analytical formula for the hedg-

ing parameters, which do not show the anomalies present in other semi-parametric option

pricing models (e.g. Corrado and Su 1997b and Jarrow and Rudd 1982). In addition, we

compare in and out-sample estimations of option prices, using Spanish options data, and

�nd that our model clearly out-performs the standard Black-Scholes model.

2.3.1 Introduction

As it is well known, the Black and Scholes 1973 option pricing formula was an authen-

tic breakthrough in �nance and even nowadays it is commonly used to value derivative

securities. In spite of its widespread acceptance among practitioners and academics, the

model has a well known drawback of pricing inconsistently deep in-the-money and deep

out-of-the-money options. This phenomenon is referred by professionals as volatility skew

or smile. These mispricing patterns are known to be a result of one of the overidealized as-

sumptions used to derive the formula, namely, the hypothesis of normality with constant

volatility for the distribution of log prices.

One of the most recognized solutions to this pricing bias is the semi-parametric

methodology proposed �rst by Jarrow and Rudd 1982 and slightly modi�ed by Corrado

and Su 1996a and Corrado and Su 1997b. These methodologies are based on a moment ex-

pansion of the Black-Scholes formula to account for non-normal skewness and kurtosis in
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prices and returns, respectively. Jarrow and Rudd derived an option pricing formula from

an Edgeworth expansion of the log-normal probability density function to model the dis-

tribution of stock prices, while Corrado and Su used a Gram-Charlier series expansion of

the normal probability function to model the distribution of stock log returns. Neverthe-

less, both approaches, being polynomial approximations, share the theoretical drawback

of yielding negative density function values for certain parameter ranges of the implied

risk-neutral density function. In addition, these models present anomalies in the hedging

parameters, as we will see. Jondeau and Rockinger 2001 proposed as a solution to this

problems: the restriction of the parameter space so that the density remains positive, while

recently, León, Mencía, and Sentana 2005 analyze the use of the semi-nonparametric dis-

tribution for option pricing. These two last approximations solve the negativeness problem

of the implied risk-neutral density function while keeping the analytical �exibility of the

Edgeworth-Gram-Charlier moment expansion but, on the other hand, they inherit the lack

of �exibility for capturing high degrees of kurtosis and skewness, characteristic of these

approximations. In Figure 1.2 of Chapter one, we show that in the absence of skewness the

maximal kurtosis that can be achieved using this expansions is eight which could be very

restrictive to model implied density functions. Moreover, it also has to be pointed out that

these approximations derive multi-modal implied densities functions for certain parameter

values, which should be treated very carefully as it would imply the uncommon feature that

investors �nd more than one return value as expectable.

In this Section we propose the use of the Cornish-Fisher distribution function to char-

acterize the prices of the underlying in order to develop a model for option valuation. As
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we will see, this model bears the same analytical tractability characteristic of the Jarrow

and Rudd 1982, Corrado and Su 1996a, Jondeau and Rockinger 2001 or León, Mencía,

and Sentana 2005 models while it extends their modeling �exibility in terms of covered

range of skewness-kurtosis. We will derive closed form expressions for the price of plain

vanilla options and its "Greeks" under the assumption that at maturity underlyings fol-

low a third-order Cornish-Fisher distribution. Nonetheless, it is interesting to note that

the Cornish-Fisher model does not present certain "anomalies" in the volatility smile and

the Greeks, found in the Corrado-Su model. Additionally, an empirical application will

be also presented using Spanish options data. Performing in-sample and out-of-sample

quality of �t test, the empirical results demonstrate that besides solving the negative den-

sity values, properly capturing the risk-neutral kurtosis coef�cients as high as twenty, this

model highly outperforms the Black-Scholes model. In contrast, comparing the Cornish-

Fisher option pricing model with the Corrado and Su 1996a model, we �nd similar results

between them at the cost of allowing negative density values.

2.3.2 European Option Valuation

In this Section we will derive a closed-form pricing formula for European options for an

underlying characterized by a Cornish-Fisher density de�ned in Equation 1.9. As it is well

known, the Black-Scholes model is based on the hypothesis that asset prices, St, follow a

geometric Brownian motion under the risk-neutral probability Q given by:

ST = Ste

�
r��2

2

�
�+�WT (2.14)
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where r is the risk-free rate, � is the underlying's volatility, St is the initial price of the

underlying, � is the time to maturity and WT is a standard Brownian motion. The basic

hypothesis of the model is that log-returns de�ned asRt�s = ln (St=St�s) follows a normal

distribution, N(r; �
p
t� s). In general, we can obtain the price of an European call option

as the expected value of the payment under the risk-neutral probability:

Ct = e�r�EQ[(ST �K)+] (2.15)

The computation of this formula for the geometric Brownian motion gives as a result the

well known Black-Scholes formula:

CBS = St�(d)�Ke�r�N(d� �
p
�)

d =
ln (S0=K) + (r + �2=2) �

�
p
�

Equation 2.15 is of general use for any other distribution governing ST : In the model

that we propose in this work we make the hypothesis that prices differences can be ex-

panded through a Cornish-Fisher density function which, as we have already mentioned in

the previous Chapter, arises naturally as a series expansion of the percentiles of the true dis-

tribution in terms of the percentiles of the gaussian distribution. Therefore, the �rst order

term in the expansion of the price ST will be normally distributed, instead of log-normal as

is the case in the Black-Scholes framework, and hence, the �rst order approximation of the

price of a European call using the CFD will not exactly coincide with the Black-Scholes

formula, as it is the case of approaches based on an Edgeworth or Gram-Charlier expansion

like Jarrow and Rudd 1982 or Corrado and Su 1996a. It is interesting to point out that we

do not consider the expansion of the log-returns, Rt; in terms of CFD, as would be more
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natural, because doing so prices, St; would follow a distribution with divergent mean (i.e.

E
�
eRt
�
= 1) and, therefore, its application to option pricing would be useless22. Nev-

ertheless, this method regarded as an approximation is theoretically equally valid as any

other expansion based methods and, moreover, it assures unimodality and avoids negative

density values.

Due to the above mentioned reasons, the �rst order approximation of the CFD ex-

pansion will be an arithmetic Brownian motion rather than a geometric one. Bouchaud

and Potters 2000 analyze pricing differences between a geometric Brownian motion and an

arithmetic Brownian motion based23. It is important to remark that, although the arithmetic

Brownian motion includes the possibility of negative prices, in our framework this feature

has to be considered as an approximation nuisance; a very small probability as 10�20 is in

practice virtually equal to zero. Moreover, this theoretical drawback allows us to obtain a

positive de�nite expansion based density function which permits rather high kurtosis and

skewness levels24.

22 Let us consider the expression:

E
�
eR
�
=

Z 1

�1
eRcfm (R) dR

where cfm(R) is the CFd given by Equation 1.5. Carrying out the variable change, R = Qm(X); we would
obtain the following integral: Z 1

�1
e
Pm

i=1 aiX
i 1p
2�
e�

1
2X

2

dX

which clearly diverges form � 3 if a3 is greater than zero.
23 They �nd that with a daily volatility of 1% and a zero interest rate, the relative difference between the
geometric and arithmetic Black-Scholes price is almost zero for at and in-the-money options but can be as
high as 30% for options 20% out-of-the money. Nevertheless, this relative difference is very small when we
consider absolute differences.
24 This problem could be solved considering a truncated CFD which would assign a zero probability for the
occurrence of negative prices and a CFD distribution for positive prices. Nonetheless, with this distribution
valuation formulas are much more complicated and the pricing differences between the truncated and the
untruncated are almost negligible for reasonable parameter sets.
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The basic model in this framework, the arithmetic Brownian motion, can be written

as:

ST = St (1 + r�) + St�WT (2.16)

The following Proposition, which is demonstrated in Appendix B, gives the price of an Eu-

ropean call option under the hypothesis that the underlying follows an arithmetic Brownian

motion.

Proposition 12 Let r be the risk-free interest rate, K the strike of the option, St the ini-

tial price of the underlying, � the time to maturity and � the volatility of the process. In

absence of arbitrage opportunities the call option, whose underlying follows an arithmetic

Brownian motion, is given by:

C =
1

1 + r�

�
(St (1 + r�)�K) �(�d) + St�

p
��(d)

�
(2.17)

d =
K � St(1 + r�)

St�
p
�

where � (x) is the distribution function of a standard gaussian variable and �(x) is its

corresponding density.

In this work we assume that the model for the asset price, ST , under the risk neutral

measure Q is given by:

ST = St(1 + r�) + St�
p
�z� (2.18)

where z� is a variable following a standardized CFD. Note that we already have selected

the drift of the process in such a way that the martingale restriction holds, i.e. EQ(ST ) =

St(1 + r�)25. Under the assumption of a CFD distribution we can obtain a more general

25 The martingale restriction states that under the risk-neutral probability the underlying must have an ex-
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formula for the option price since both skewness and excess kurtosis different from zero

are possible under this distribution.

Proposition 13 Let r be the risk-free interest rate,K the strike of the option, St the initial

price of the underlying, � the time to maturity and � the volatility of the process. In absence

of arbitrage opportunities the call option, CCFD, whose underlying follows a third-order

CFD given by Equation 1.9 is:

CCFD =
1

1 + r�

�
(St(1 + r�)�K) � (�d) + a1St�

p
��(d)

St�
p
��(d) (a3 (d

2 + 1) + a2d)

�
(2.19)

d = Q�1� (K)

Q� (x) = St(1 + r�) + �
p
�St

�
a3x

3 + a2x
2 +

�q
1� 6a23 � 2a22 � 3a3

�
x� a2

�
where � (x) is the distribution function of a standard gaussian variable, �(x) is its corre-

sponding density and Q�1� (x) is the inverse of the third-order polynomial Q� (x):

Note that the formula under the third-order CFD (Equation 2.19) becomes Equation

2.17 when a3 = a2 = 0; since we obtain the normal distribution for ST 26. Although not

reported, it is straightforward to generalize the later proposition to allow for a generalm-th

order CFD distribution. Nevertheless, with a third-order polynomial we already are able to

capture the non-normality features of the implicit density function.

Next, we analyze the absolute valuation differences between the Black-Scholes model

(1973) and the CFD model calculating call options prices with a strike of K = 10, times

to maturity of one month considering that the annual volatility is 40% and the risk free in-

pected return equal to the risk-free rate. In these risk neutral worlds, options can be priced as discounted
expected payoffs (Hull 2004).
26 It is important to point out that the inverse of the polynomialQ�1� (K) is equal to (K � S0(1 + r�)=S0�

p
�)

in the case of a3 = a2 = 0.
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terest rate is equal to 5%. Considering different parameters a2 and a3, we select different

degrees of skewness and kurtosis. In particular, we choose parameters a2 and a3 equal to

(0.092,0), (0.079 -0.11) and (0.079 0.11) which correspond to skewness and kurtosis coef-

�cients of (0,8), (-1,8) and (1,8), respectively. Therefore, we are considering the in�uence

of positively and negatively skewed implied density functions with fat tails. In Figure 2.6

we show the differences between the CFD and Black-Scholes call prices. The presence

of positive (negative) skewness makes the upper (lower) tail of the price density fatter un-

der the CFD model, and this produces an increase in the probability of a large drop (raise)

in prices, which is responsible for the relative lower (higher) prices given by the Black-

Scholes formula for deeply out-of or in-the money call options. We also have applied the

CFD model to obtain implied volatility smiles, which are represented in Figure 2.7. In this

Figure we can notice the �exibility to obtain different smile patterns.

Corrado and Su (Corrado and Su 1996a, Corrado and Su 1996b, Corrado and Su

1997a, and Corrado and Su 1997b) have developed a valuation formula, based on Gram-

Charlier distributions (Section 1.2), for european options, which does also include the con-

tribution of skewness and kurtosis to the price of the option. As this model is also based on

a semi-parametric density we will discuss it brie�y and we will use it later in the empirical

Section for comparison porpouses. The valuation formula of a European call of Corrado
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Fig. 2.6. Differences between CFD and geometric Black-Scholes call prices. Call options
have a strike ofK = 10, time to maturity of one month, the annual volatility is 40% and the
risk free interest rate is equal to 5%. We assume parameters a2 and a3 equal to (0.092,0),
(0.079 -0.11) and (0.079 0.11) which correspond to skewness and kurtosis coef�cients of
(0,8), (-1,8) and (1,8), respectively.

Fig. 2.7. Implied volatilities assuming that the true implied distribution is CFD. The para-
meters used are the same as in Figure 2.6.
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and Su, CCS; is:

CCS = CBS + �3Q3 + (�4 � 3)Q4

CBS = S0�(d)�Ke�r�N(d� �
p
�)

Q3 =
1

6
S0�

p
�
��
2�
p
� � d

�
�(d)� �2��(d)

�
Q4 =

1

24
S0�

p
�
��
d2 � 1� 3�

p
�
�
d� �

p
�
��
�(d) + �3� 3=2�(d)

�
d =

ln (S0=K) + (r + �2=2) �

�
p
�

where �3 and �4 are the skewness and kurtosis coef�cients of the implied density function.

It is trivial to see that if the implied density function of log-returns is gaussian (i.e. �3 = 0

and �4 = 3), this valuation formula converges to the Black-Scholes formula. As pointed

out in Section 1.2, this distribution presents the theoretical drawback of yielding negative

density values for certain parameter ranges27.

In Figures 2.8 and 2.9 we analyze the differences between the Corrado and Su and

the Cornish-Fisher valuation formula for different degrees of asymmetry and kurtosis. In

particular, in Figure 2.8 we compare the implied volatility with both models calculating the

implied volatility of call options with a strike ofK = 10 and times to maturity of one month

while in Figure 2.9 we analyze the absolute and relative valuation differences between both

models. In these Figures we suppose that the annual volatility is 40%, the risk free interest

rate equal to 5% and we consider different parameters in both approximations: a2 and a3 for

27 In Figure 1.2 we can observe the permitted range of the Gram-Charlier distribution (which is the density
which underlies in the Corrado and Su model). The permitted range is de�ned as the limit value of the
parameters, so that the density function remains positive. We can observe that only kurtosis coef�cients of
eight are achievable with this limitation and in the empirical Section we will �nd that the implied kurtosis
coef�cients that we �nd in the Spanish options markets are usually higher. Moreover, Jondeau and Rockinger
2000, using French Franc/German Mark European type exchange rate options data, �nd that the implied
density function of the Corrado and Su model derives negative density values.
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the CF model and �3 and �4 for the CS. In particular, as in the previous Figures, we assume

parameters a2 and a3 equal to (0.092,0), (0.079 -0.11) and (0.079 0.11) which correspond

to skewness, �3; and kurtosis, �4; coef�cients in the CS model of (0,8), (-1,8) and (1,8),

respectively. As a �rst conclusion we can observe that although the �rst four moments of

the implicit density function for both models are equal, signi�cant pricing differences can

be found. Figure 2.8 shows that the CS model gives higher implied volatility values for

deep out-of-the-money and deep in-the-money calls: with the underlying equal to 5 and

the zero skew case the CS model implies a 57% volatility and the CF a 42% volatility.

On the other hand, for at-the-money and in near in-the-money options the CF model gives

higher implied volatility values than the CS. Analyzing the absolute and relative valuation

differences we can �nd that the biggest differences are found in out-of-the-money options

for relative differences and in at-the-money options for absolute differences. These �ndings

allow as to conclude that the implied density of the CS presents heavier tails on the negative

part than the CF model. It is also interesting to note that the CS model gives a hump shaped

volatility pattern for deep out-of-the-money options, which the CF model does not exhibit,

displaying a maximum implied volatility for an underlying value of near 6. This "anomaly"

can be explained because of the negative density values included in the CS model and is

not observed in real volatility smile representations (e.g. Jondeau and Rockinger 2000).

2.3.3 Hedging Parameters

In this subsection we consider the CFD model to calculate the hedging parameters (the

Greeks, as they are more commonly known). The most important of them, the Delta, �,
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Fig. 2.8. Comparison of the implied volatility of both models for call options with a strike
of K = 10 and times to maturity of one month. The annual volatility is supposed to be
40%, the risk free interest rate is equal to 5% and we consider different parameters a2 and
a3 for the CF model and �3 and �4 for the CS. In particular, as in the previous Figures
we assume parameters a2 and a3 equal to (0.092,0), (0.079 -0.11) and (0.079 0.11) which
correspond to skewness, �3; and kurtosis, �4; coef�cients in the CD model of (0,8), (-1,8)
and (1,8), respectively. The blue lines represent the CF volatilities and the red lines the CS
ones.
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Fig. 2.9. Analysis of the relative and absolute differences of european call prices calculated
using the CFD and the CS model. The set of parameters is the same as the one used in
Figure 2.8.
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determines the sensitivity of the option price to the underlying asset price. Gamma, �, is

de�ned as the sensitivity of the Delta with respect to the underlying asset price and the Vega

measures the dependence to the option price to volatility shifts.

Although completely analytical, the expressions for the Greeks in the CF model are

rather cumbersome. Therefore, we will just report here the Delta and the Gamma as exam-

ples:

�CF =
�(�d) + �(d) ((St (1 + r�)�K) dK)+

�(d)
p
��

�
(a1 + a2d+ a3 (1 + d

2))� StddK (a1 + a2d+ a3 (1 + d
2))+

St (a2dk + 2a3ddK)

�

�CF =

�(d) (St (1 + r�)�K) (dd2K � dKK)+
St� (a2dk + 2a3ddK)� 2� (d) dK (1 + r�)+

�(d)
p
��

0@ �2ddK (a1 + a2d+ a3 (1 + d
2))

St (a1 + a2d+ a3 (1 + d
2) (d2d2K � d2K � ddKK))+

2 (a2dK + 2a3ddK) + St (a2dKK + 2a3 (d
2
K + ddKK))

1A
with :

d = ~Q�1� (K=St)

dK =
�K
S2t

@ ~Q�1� (x)

@x

?????
x=K=St

dKK =
K2

S4t

@2 ~Q�1� (x)

@x2

?????
x=K=St

� 2K
S3t

@ ~Q�1� (x)

@x

?????
x=K=St

~Q� (x) = �
p
�

�
a3x

3 + a2x
2 +

�q
1� 6a23 � 2a22 � 3a3

�
x� a2

�
+ (1 + r�)

These expressions can be readily obtained derivating the expression for the price of a call

option under the CFD hypothesis (Equation 2.19) with respect to St; once (Delta) or twice

(Gamma), bearing in mind that the coef�cient d = Q�1� (K) also depends on St and de�n-

ing ~Q� (x) = Q� (x)=St. In Table of Figures 2.13 we illustrate the shape of the CFD Greeks
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for the same parameters used in Figures 2.6 and 2.7 as well as the Black-Scholes counter-

parts. The most interesting case, as it is the one often found in practice, is the one with

negative skew. As we can see, when investors �nd negative return values more plausible

than positive ones, and the underlying is deep out-of-the-money the delta function is closer

to zero, but when the underlying gets at-the-money the increase of the Delta is much more

sharpen than in the Black-Scholes case. This feature is corroborated by the Gamma func-

tion, as we can see how the Gamma values when the option is near at-the-money for the

CFD are much higher than for the BS. This phenomenon is crucial for hedgers which hedge

a long position in an option with a position equal to the Delta in the underlying, because

if they do not consider negative skew and heavy tails they can suffer from open positions.

Even if they take care of it and model heavy tails, hedging an option in a non-gaussian

world is intrinsically more dif�cult as the Delta function is more sharpen.

When the European call market price is given by the Corrado and Su (Corrado and

Su 1996a, Corrado and Su 1997b) formula, the Delta and Gamma of a call options can be

written (Backus, Foresi, Li, and Wu 1997) as:

�CS ' �(d) + �(d)
n
1
6

�
d2 � 3d�

p
� + 2�2� � 1

�
+

2
24

�
�d3 + 4d2�

p
t+ 3d� 3d�2� � 4�

p
�
�o
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p
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Table 2.13. Delta and Gamma functions assuming that the true implied distribution is CFD.
Call options have a strike of K=10, time to maturity of one month, the annual volatility is
40% and the risk free interest rate is equal to 5%. We assume parameters a2 and a3 equal
to (0.092,0), (0.079 -0.11) and (0.079 0.11) which correspond to skewness and kurtosis
coef�cients of (0,8), (-1,8) and (1,8), respectively.
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In Table of Figures ?? and ?? we compare the Delta and Gamma functions derived from

the CF and CS models for similar degrees of asymmetry and kurtosis, considering the same

parameters used in Figures 2.6, 2.7 and 2.8. In Table ?? we present the Delta and Gamma

values and in Table ?? the relative and absolute differences between both models. From the

Delta function it can be observed that for both deep in and out-of-the-money options the CS

model gives higher Delta values than the CF, and viceversa for at-the-money options. These

differences are signi�cant as they can be as high as 0.1 in absolute value or 20% in relative

one. On the other hand, the Gamma functions present also substantial differences: at-the-

money options present similar Gamma values for both models but for deep out or in-the-

money options the CF model derives more reliable results given that the CS model presents

negative values, which are theoretically unsound for call options (Hull 2004). Again, this

anomaly (the Delta function presents a local maxima) can be explained through the negative

density values and through the fact that de Delta and Gamma expressions for the CF model

are only approximations and cannot be calculated analytically. Therefore, before turning to

the empirical comparison between both models, we can conclude that the CF option pricing

model is theoretically more coherent than the CS model as it does not derive "dubious"

hedging values for deep out or in-the-money options.

2.3.4 Empirical Performance of CFD Option Pricing

Data Description and Estimation Procedure

This analysis on the empirical performance will be based on the Spanish Futures and

Options market (MEFF) for the most actively traded options contracts, namely, options on
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Table 2.14. Comparison of the Delta and Gamma functions between the CF and CSmodels.
Call options have a strike of K=10, time to maturity of one month, the annual volatility is
40% and the risk free interest rate is equal to 5%. We assume parameters a2 and a3 equal to
(0.092,0), (0.079 -0.11) and (0.079 0.11) which correspond to skewness, �3, and kurtosis,
�4, coef�cients of (0,8), (-1,8) and (1,8), respectively. The blue lines represent the CF
volatilities and the red lines the CS ones.
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Table 2.15. Analysis of the relative and absolute differences of Delta and Gamma functions
using the CFD and the CS model. The set of parameters is the same as the one used in the
Table of Figures ??.
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futures over the IBEX-35 index. The Spanish Ibex-35 index is a value-weighted index com-

prising the 35 most liquid Spanish Stocks traded in the continuous auction market system.

The option contract that we consider is a cash settled European option with trading over

three nearest consecutive months and the other three months of the March-June-September-

December cycle. The expiration day is the third Friday of the contract month. Prices are

quoted with a minimum price change of one index point, and the exercise prices are given

by 50 index point intervals. The database considered in Ferreira, Gago, León, and Rubio

200528, contains all call and put options on the Ibex-35 Index futures traded daily on MEFF

during the period February 1996 to November 1998 and liquidity is concentrated on the

nearest expiration contract. We restrict our attention to all options transacted from 11:00 to

16:45 in order to avoid the well known intra day cycle. Thus, every trade recorded during

this window is used in the estimation. For this sample, about 90% of the crossing transac-

tions took place with these contracts. In each trade, we collect its transaction option price,

the simultaneous future price (F ) as measured by its bid-ask spread average, the exercise

price (X), the expiration date and the annualized repo T-bill rates with approximately the

same maturity as the option. Those calls and put prices that violate arbitrage bounds and

also the options with a market value of less than 5 Spanish pesetas are eliminated29.

The �nal daily sample is 37807 options (22099 calls and 15708 puts). Moneyness

is de�ned as the ratio of the exercise price to the futures price. A call (put) option is said

28 We are very thankful to the authors for making available the data.
29 The upper bound for an European call option is given by C � S0 where C is the price of the option and
S0 is the initial price of the underlying. On the other hand, the lower bound for the price of an European call
on a non-dividend paying stock (as is the case for the futures contract) is given by C � S0 � KerT (Hull
2004).
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to be out-of-the-money (in-the-money) when K=F > 1:015, at-the-money when 1:015 >

X=F > 0:985 and in-the-money (out-of-the-money) when 0:985 > X=F .

We compare the performance of the CFD option valuation with the standard option

valuation for the European call on futures of Black 1976 (B76) and with the model of

Corrado and Su (CS, Corrado and Su 1996a). We carry out both in-sample and out-of-

sample analysis with a one day time horizon. Our analysis is based on the following sample

statistics: the mean error (ME), the mean absolute error (MAE) and the root of the mean

squared errors (RMSE). All errors will be measured in relative value in order to weight each

option equally30. The parameters of each model, the volatility � for the Black76 model, the

volatility � and the parameters a2 and a3 for the CFD model and the volatility �; skewness,

� ; and kurtosis coef�cients, �; for the CS model, are estimated for each of the 601 days of

in the sample-period and have been computed from the cross-section of options prices. The

implicit estimator of date t is de�ned as the minimizer of the mean of the squared pricing

errors for the options traded that day, that is,

�̂t = argmin
�

1

nt

ntX
i=1

[ci(�)� ci]
2

where ci(�) is the theoretical option price, ci, denotes the market option price and nt the

total number of options at date t. Refer to Appendix C.1.5 for details on the optimization

procedure.

30 In these calculations we remove the dates where the relative mean error is bigger than 1000%, as in these
cases the true value of the option was close to zero (we only found 6 dates).
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Optimization Results

Next, we analyze the results of the optimizations. In Table 2.16 we present the results

of the three models (B76, CFD and CS) analyzing separately the �tting for calls and puts,

and for options out, at or in-the money. Table 2.16 shows that the CFD clearly beats B76

since both MAE and RMSE are lower under CFD for the whole sample as well as for every

Moneyness level. With respect to the ME statistics we conclude that while the B76 model

clearly fails to valuate calls the CFD works really well, as the ME for Calls (Puts) is 0.65

(0.27) for the CFD model while it is 10.45 (-0.84) for the B76 model. On the other hand,

comparing the CS model with the CFD, we observe that both models perform similarly.

For instance, mean errors are 0.65% (CFD) and 0.10% (CS) for the calls and 0.27% (CFD)

and 0.22% (CS) for the puts and the mean absolute errors are quite similar 5.22% (CFD)

versus 5.44% (CS) for the calls and 2.28% (CFD) versus 2.29% (CS).

Finally, given the parameters used to calculate the in-sample results for day t we use

them to predict prices at date t + 1: We calculate the statistics ME, MAE and RMSE for

each date and the results for this out-of-sample analysis are shown in Table 2.17. Now,

although the CFD model remains almost unbiased (the pricing error for both total calls and

puts is less than 1% in absolute value), the dispersion statistics (MAE and RMSE) now

give values that are closer to the B76 model ones. Nevertheless, both dispersion statistics

remain smaller for every moneyness level and, therefore, we can conclude that the CFD

model outperforms the Black-Scholes model also in an out-of-sample sense. Comparing

the CS model and the CFD model we observe again that the out-of-sample performance of

both models remains very similar: the mean errors are 0.77% (CFD) and -0.25% (CS) for
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Calls (B76) Calls(CFD) Calls(CS)
ME MAE RMSE ME MAE RMSE ME MAE RMSE

OTM 18.50 20.11 30.34 0.68 7.10 11.62 -0.42 7.51 13.31
ATM 2.10 4.34 6.35 0.64 3.34 4.99 0.71 3.36 5.03
ITM -2.54 3.04 3.85 0.51 1.73 2.50 0.47 1.72 2.49
Total 10.45 12.55 22.39 0.65 5.22 9.04 0.10 5.44 10.20

Puts (B76) Puts(CFD) Puts(CS)
ME MAE RMSE ME MAE RMSE ME MAE RMSE

ITM 17.45 22.99 42.49 6.18 15.13 28.83 5.73 15.08 28.87
ATM -0.19 3.46 5.62 -0.06 2.79 4.69 -0.07 2.78 4.69
OTM -2.75 2.84 3.28 -0.03 0.91 1.48 -0.06 0.92 1.49
Total -0.84 4.07 10.39 0.27 2.28 7.11 0.22 2.29 7.14

Table 2.16. Daily in-sample performance of alternative option pricing model (Black 1976,
(B76), Cornish-Fisher (CFD) and Corrado-Su 1996 (CS) . ME, MAE and RMSE stand for
Mean Errors, Mean Absolute Errors and Root Mean Squared Errors, while OTM, ATM and
ITM denote out-of-the money, at-the-money and in-the-money options.

the calls and -0.68% (CFD) and -0.81% (CS) for the puts. In addition, we can observe that

the dispersion statistics are also very similar between these models.

On the other hand, it is interesting to analyze the evolution of the implied volatility

for both models and the evolution of the kurtosis coef�cient for the CFD model. In Figure

2.10 we can observe that both volatilities, the one implied by the Black-Scholes model and

the one implied by the CFD are very similar. However, the evolution of the CFD volatility

is slightly sharper. Figure 2.11 shows the evolution of the kurtosis coef�cient and we can

see that some days the implied distribution of agents is much more leptokurtic than other

Edgeworth based models can present. Therefore, this fact corroborates the statement that

Edgeworth based distributions are too limited when capturing high degrees of kurtosis, that

are often found in reality to be greater than the typical limit of eight corresponding the CS

model.
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Calls (B76) Calls(CFD) Calls(CS)
ME MAE RMSE ME MAE RMSE ME MAE RMSE

OTM 18.02 24.32 36.65 0.22 15.23 23.83 -1.76 16.00 24.05
ATM 2.77 6.76 10.00 1.44 6.06 8.63 1.50 6.04 8.55
ITM -2.36 3.38 4.72 0.88 2.95 4.12 0.89 2.95 4.06
Total 10.50 15.80 27.38 0.77 10.78 18.19 -0.25 11.11 18.32

Puts (B76) Puts(CFD) Puts(CS)
ME MAE RMSE ME MAE RMSE ME MAE RMSE

ITM -8.46 24.71 43.34 -3.83 21.23 31.92 -4.85 21.32 31.97
ATM -1.41 5.59 9.11 -1.09 5.17 7.88 -1.11 5.11 7.80
OTM �3.18 3.45 4.69 -0.26 1.93 3.04 -0.30 1.94 3.00
Total -1.98 5.27 11.68 -0.68 4.07 8.85 -0.81 4.03 8.84

Table 2.17. Daily out-of-sample performance of alternative option pricing. The legend is
the same as in Table 2.16.

Fig. 2.10. Time evolution of the implied volatility for the Black-Scholes model and the
Cornish-Fisher model
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Fig. 2.11. Time evolution of the kurtosis implied by the Cornish-Fisher model.

Therefore, we can conclude that the CFD model, both in-sample and out-of-sample,

clearly out-performs the classical Black-Scholes model, which does not include heavy tails,

and that the CFD model gives similar prediction results compared to the Corrado and Su

model which does include asymmetry and heavy tails. Nevertheless, it is interesting to point

out that the implied densities of the Corrado and Su model present negative values for some

days in the sample. As an example, in Figure 2.12 we present the implied density functions

derived from the Corrado-Su (CS), Cornish-Fisher (CFD) and Black-Scholes (BS) models

for the dates 06/06/1996 and 08/09/1997, considering options with three months to expira-

tion. The implied BS density, obviously, does not present heavy tails or asymmetry, while

the CS and CF do show negative asymmetry and a considerable left heavy tail. These �nd-

ings are in agreement with the results in the literature (e.g. Jondeau and Rockinger 2000)
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Fig. 2.12. Comparison of the implied density functions derived from the Corrado-Su
(CS), Cornish-Fisher (CFD) and Black-Scholes (BS) models for the dates 06/06/1996 and
08/09/1997.
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and demonstrate that options trading agents assign a higher probability to large losses than

to large wins. In addition, in the upper graph we note that the �tted CS density is bimodal

and in the lower one we note that it derives negative density values, fact that could be ex-

pected given that in Figure 2.11 we observe kurtosis coef�cient much bigger than eight.

Therefore, although the �tting quality results are similar between the CS and the CFD, the

CS model possess a theoretical drawback that the CFD model does not.

2.3.5 Conclusions

In this Section we have derived closed-form option price and hedging parameters formulas

assuming that prices differences follow a third-order CFD under the risk-neutral measure.

In this way, we have proposed a new semi-parametric generalization of the Black and Sc-

holes option valuation formula (Black and Scholes 1973) to include underlyings whose

returns can be characterized by high degrees of skewness and kurtosis. In addition, we

have shown that hedging parameters in the CFD option pricing model do not present the

same anomalies as negative Gamma values for deep out or in-the-money options like in the

CS model, although being both from the semi-parametric class.

In the empirical application to Spanish options data we have evaluated the perfor-

mance of our pricing formulas using the Black-Scholes model as a benchmark, �nding that

the CFD model beats the Black-Scholes whether in-sample or out-of-sample. We have also

compared the CS and CF model �nding that the in-sample and out-of-sample performance

of both models remains very similar. In addition, we have shown that the CS presents

negative and bimodal implied density values while the CFD model does not.
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Therefore, given �rst that both models present the same predictive power and second,

that the CF does not present the anomaly in the hedging parameters, we can conclude

that the CF model is preferable than the CS model within the semi-parametric class of

distributions for valuing options.

Comparison of the option pricing performance and of the modeling �exibility be-

tween the Cornish-Fisher distribution and other option pricing model that also allow for

heavy-tailedness but do not belong to the semi-parametric class as a non-parametric method

based on a mixture of log�normal densities, a parametric approach of Malz which assumes

a jump-diffusion for the underlying process (Malz 1996), or Heston's approach assuming

a stochastic volatility model (Heston 1993), could be of interest and this is left for future

research.
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Third-order Cornish-Fisher Density

The third-order Cornish-Fisher Density with parameters a3, a2, a1 and a0 is given by:

cf3(R) =
d [Q�1(R)]

dR

1p
2�
e�

1
2 [Q�1(R)]

2

(A.1)

whereQ�1(R) is the inverse of the third-order polynomial, a3X3+a2X
2+a1X+a0 = R;

and d [Q�1(R)] =dR is the �rst derivative of this inverse function with respect to R: Both

the inverse function of a third-order polynomial and its �rst derivative can be calculated

analytically and are given by:

Q�1(R) = � a2
3a3

+
3

qp
B1R + a3B2 +

p
B1R2 +B2R +B3 � (A.2)

1

3

a1=a3 � a22=3a
2
3

3
pp

B1R + a3B2 +
p
B1R2 +B2R +B3

and:

d [Q�1(R)]

dR
=

p
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( 12B2+RB1)p
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a3B2 +R
p
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p
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3a3a1�a22
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a3B2+R
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B1+
p
B3+RB2+R2B1

1A

192



A.1 Other distributions related to the Cornish-Fisher Distribution 193

where the coef�cients B1; B2 and B3 depend on the coef�cients a0; a1; a2 and a3 and are

given by:

B1 =
1

4a23

B2 =
a2a1
6a33

� a0
2a23

� a32
27a43

B3 = �a2a1a0
6a33

+
a20
4a23

+
a31
27a33

+
a32a0
27a43

� a22a
2
1

108a43

A.1 Other distributions related to the Cornish-Fisher
Distribution

We present here some univariate distributions somehow related to the CFD function and the

skewed student-t (Hansen 1994) that we use for comparison purposes. On the following,

we will just outline their de�nitions and main properties, for a more extensive presentation

see Kendall, Stuart, and Ord 1994.

Gram-Charlier Series of Type A and Edgeworth Series (1879, 1904)

Instead of expanding the QQ-Plot function, it is proposed that a general density func-

tion f(x) can be expanded in a series of derivatives of the standard gaussian density func-

tion �(x). Then:

f(x) =
1X
j=0

cjHj(x)�(x) (A.4)

where Hj(x) is the j-th order Hermite polynomial (Abramowitz and Stegun 1964) and cj

are coef�cients given by:

cr =
1

r!

�
�0r �

r2

2 � 1!�
0
r�2 +

r4

22 � 2!�
0
r�4 � :::

�
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where �0r are the non-central moments of f(x). It is important to note here, that although

Edgeworth and Gram-Charlier densities have the same formal de�nition (Equation A.4),

given that for practical purposes it is necessary to take a �nite number of terms the �nite

sum of, this density is different in both cases. For example, in the Gram-Charlier case we

�nd the following formal expansion:

f(x) = �(x)f1 + 1
2
(�2 � 1)H2 +

1

6
�3H3 +

1

24
(�4 � 6�2 + 3)H4 + :::g

where �r are the central moments of f(x): Therefore, considering the �rst four empirical

moments of the data, we can �t the distribution up to fourth order. This expansion has been

frequently used in �nance, for example, by Jarrow and Rudd 1982 in option pricing theory.

However, a major drawback of this approximation is that it provides negative probabilities

for high kurtosis, for example, as pointed out in Kendall, Stuart, and Ord 1994. Jondeau

and Rockinger 2001 calculate the permitted parameter range in order to keep the density

always positive, and �nd that it becomes very restrictive.

Functional transformations to normality: Johnson distributions (1949)

Johnson considers a general transformation to normality of the type:

R = 
 + �g

�
X � �

�

�
where �; �; 
 and � are parameters at choice and g is some convenient function. In partic-

ular, he considers three types of systems:

1. The RL or lognormal system: g(y) = log(y):

2. The RB (bounded range) system: g(y) = log(y=1� y):
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3. The RU (unbounded range) system: g(y) = sinh�1(y).

As �nancial returns are unbounded, we would be more interested in the third one.

RU distributions are unimodal and its mode lies between the median, sinh(�
=�), and

zero. This distribution is positively or negatively skewed according to 
 being negative or

positive. Besides that, it is interesting to note that a RU variable, presents an hyperbolic

sinusoidal form QQ-Plot.

Skewed student-t: Hansen (1994)

The skewed student-t density t(x) with parameters � and � is de�ned as:

t(x) = bc

�
1 +

�

� � 2

�� �+1
2

where:

� =

�
(bx+ a)=(1� �) if x < �a=b
(bx+ a)=(1 + �) if x > �a=b

a = 4�c
� � 2
� � 1 ; b = 1 + 3�2 � a2

c =
�
�
�+1
2

�p
� (� � 2)�

�
�
2

�
with �(x) being the Gamma function. Parameters a and b are required to center and scale

the asymmetric distribution. The probability density is well-de�ned if � > 2 and �1 <

� < 1. If � = 0 the density reduces to the standard t distribution. If in addition � > 4 the

density will have positive and �nite excess kurtosis.

In addition, the multivariate Skewed student-t density is de�ned as (Jondeau and

Rockinger 2003):
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Mt(x) =

nY
i=1

bici

�
1 +

� i
�i � 2

�� �i+1

2

where bi; ci; � i and �i have the same expression as above. With this multivariate Skewed

student-t, the variables xi are independent and each follows a univariate skewed student-t

distribution.

Semi non-parametric distributions (2005)

The semi non-parametric distribution is de�ned as a variable z = a + bx where x is

distributed with the following density:

f(x) =
�(x)

� 0�

 
mX
i=0

�iHi(x)

!2
where � is anm+ 1 dimensional real vector (i.e. � 2 Rm+1), �(x) denotes the probability

density function of a standard normal distribution, and Hi(x) is the normalized Hermite

polynomial of order i. The density function of z is therefore given by:

g(z) =
1

b

�((z � a) =b)

� 0�

 
mX
i=0

�iHi((z � a) =b)

!2
In this context, a is the location parameter, b as a scale parameter and the parameters �

are the form parameters. It is interesting to note that this density is basically a squared

Gram-Charlier density and, therefore, it cannot be negative.
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Proofs

Lemma 1

Let cf3(R) be the third-order Cornish-Fisher density function de�ned by Equation 1.9 for

a random variable R, with coef�cients ai; (i = 0; 1; 2; 3), then the suf�cient and necessary

conditions on the coef�cients to guarantee the existence of the CFD are

a3 > 0 , a1 > 0 , �
p
3a3a1 < a2 <

p
3a1a3

Proof. In order to guarantee that a third-order polynomialQ(x) = a3x
3+a2x

2+a1x+a0

is invertible it is enough and necessary to impose that it is a strictly increasing function. In

consequence, the condition of positive derivative must hold for every point x:

Q0(x) = 3a3x
2 + 2a2x+ a1 > 0

This equation represents a parabola that must be positive for every point x; and is equivalent

to impose the following conditions: existence of a unique minimum and a positive function

value in this minimum. The �rst one implies that it must exist a unique solution, xm; to

Q00(xm) = 6a3xm + 2a2 = 0; which is always veri�ed, and that Q000(xm) > 0; which gives

197
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a3 > 0: The second conditions implies:

Q0(xm) = 3a3x
2
m + 2a2xm + a1

= a1 �
1

3

a22
a3

> 0;

which implies the following condition:

�
p
3a3a1 < a2 <

p
3a1a3

a1 > 0

The result of this Lemma could be easily generalized to a �fth order polynomial.

Proposition 2

Let cfm(R) be them-th order Cornish-Fisher density function de�ned by Equation 1.9 for

the random variable R, then non-central r-th order moments, �r, are given by:

�0r = E [Rr] =

�
Q

�
@

@J

��r
e
1
2
J2

?????
J=0

where Q
�
@
@J

�
=
Pm

i=1 ai
@i

@Ji
is a differential operator.

Proof. Consider the Fourier transform of the aleatory variable R:

P̂ (k) = E
�
eikR

�
where E [�] denotes its expected value. We perform the variable change R = Q(X):

P̂ (k) = E
�
eikQ(X)

�
,

P̂ (k) =

Z
1p
2�
e�

1
2
X2+ikQ(X)dX
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Expanding the exponential in power series we obtain:

P̂ (k) =
1X
m=0

(ik)m

m!

Z
1p
2�
Qm(X)e�

1
2
X2

dX

Using this expression we obtain the moments of the variable R can be obtained through the

following integral:

E [Rm] =

Z
1p
2�
Qm(X)e�

1
2
X2

dX (B.1)

Next, we de�ne the functional generator P̂ (J) as:

P̂ (J) =

Z
1p
2�
Qm(X)e�

1
2
X2+JXdX

where the variable J is introduced in order to calculate the integrals. If Q(X) is a poly-

nomial it is easy to demonstrate (through direct derivation) that Equation [B.1] reduces

to:

E [Rm] =

�
Q

�
@

@J

��m
�
Z

1p
2�
e�

1
2
X2+JXdX

?????
J=0

(B.2)

The integral [B.2] can be carried out analytically:Z
1p
2�
e�

1
2
X2+JXdX = e

1
2
J2

obtaining, �nally, the following expression:

E [Rm] =

�
Q

�
@

@J

��m
� e 12J2

?????
J=0

Lemma 3

Let cf3(R) be the third-order Cornish-Fisher density function de�ned by 1.9 for the ran-

dom variableR, with coef�cients ai; (i = 0; 1; 2; 3). Then, one can construct a standardized
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variable R�with zero mean and unit variance imposing

a0 = �a2 , a1 =
q
1� 6a23 � 3a22 � 3a3

with the following conditions on a2 and a3 to guarantee the existence of the cf3(R):

0 < a3 <
1p
15

�

s
3a3

�q
21a23 + 1� 6a3

�
< a2 <

s
3a3

�q
21a23 + 1� 6a3

�

Proof. For the �rst result one just has to impose �01 = 0 and �02 = 1 in Equations

1.11. In order to prove the second one we need to replace the conditions a0 = �a2 and

a1 =
p
1� 6a23 � 3a22�3a3 in the inequation�

p
3a3a1 < a2 <

p
3a1a3;which guarantees

the existence of the CFD. As a result, one �nds:

�

s
3a3

�q
1� 2a22 � 6a23 � 3a3

�
< a2 <

s
3a3

�q
1� 2a22 � 6a23 � 3a3

�

Solving this equation for a2 one obtains that this is equivalent to:

�

s
3a3

�q
21a23 + 1� 6a3

�
< a2 <

s
3a3

�q
21a23 + 1� 6a3

�

Imposing that
r
3a3

�p
21a23 + 1� 6a3

�
has to be a real number and that a3 > 0, we

obtain the last condition:

0 < a3 <
1p
15
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Lemma 4

Let R we a m-th order CFD distributed variable with parameters faigmi=1. Consider the

variable Z = m+ �R; then, the new variable Z is also distributed as a CFD with parame-

ters fa0igmi=1 given by

a0i = �ai i = 1; :::;m

a0 = �a0 +m

Proof. To prove this Lemma we only have to consider the de�nition of a Cornish-Fisher

distributed variable. In Equation 1.5 we see that a CF variable is given by:

R =
mX
i=0

aiX
i

where X is a standard gaussian variable. Therefore, the variable Z given by:

Z = m+ �R = m+
mX
i=0

�aiX
i = m+ �a0 +

mX
i=1

�aiX
i;

which can be again rewritten as:

Z = a00 +
mX
i=1

a0iX
i

where:

a0i = �ai i = 1; :::;m

a0 = �a0 +m
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Proposition 5

Third-order Cornish-Fisher Densities are unimodal.

Proof. To prove this Proposition we will consider the expression of the density function

of a third-order Cornish-Fisher distributed variable:

cf3(R) =
d
�
Q�13 (R)

�
dR

1p
2�
e�

1
2 [Q

�1
3 (R)]

2

Derivating this expression with respect to R and making d (cf3(R)) =dR = 0; we �nd the

condition for a maximum of the density function, Rm;:

d (cf3(R))

dR
=

24d2 �Q�13 (R)�
dR2

�
 
d
�
Q�13 (R)

�
dR

!2
Q�13 (R)

35 1p
2�
e�

1
2 [Q

�1
3 (R)]

2

= 0

)
d2
�
Q�13 (Rm)

�
dR2

�
 
d
�
Q�13 (Rm)

�
dR

!2
Q�13 (Rm) = 0 (B.3)

In order to demonstrate the unimodality of the CF3 we have to prove that we have only

one Rm. The function Q�13 (R) is necessarily strictly increasing for the existence of the

density and, therefore, as Q�13 is the inverse of a third-order polynomial, it can only have

one in�exity point, Ri; where d2
�
Q�13 (R)

�
=dR2 is equal to zero, and one cross point with

the x-axis, Rc, where Q�13 (R) is equal to zero. For the shake of ease of readiness for this

demonstration we will denote d2
�
Q�13 (R)

�
=dR2 by Q�13 (R)00: In the limits where R !

�1 we have Q�13 (R)! �1 and Q�13 (R)00 ! 0. We have therefore three possible cases:

i) Rc = Ri; ii) Rc > Ri; and iii) Rc < Ri: If we demonstrate that there is only one Rm for

each case we will prove the proposition.

i) Rc = Ri: When Rc = Ri, then Rm coincides with them, Rm = Rc = Ri: As we

have that Q�13 (R) > 0 and Q
�1
3 (R)

00 < 0 , Equation B.3 cannot hold. When R < Rc then
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Q�13 (R) < 0 and Q�13 (R)00 > 0 and also Equation B.3 cannot hold. Therefore we have

only a maximum Rm:

ii) Rc > Ri: If R > Rc > Ri then Q�13 (R) > 0 and Q�13 (R)00 < 0 and Equation

B.3 cannot hold. If R < Ri < Rc then Q�13 (R) < 0 and Q
�1
3 (R)

00 > 0 and Equation B.3

cannot hold. When Rc > R > Ri then Q�13 (R) < 0 and Q�13 (R)00 < 0 and, therefore,

there exists at least one point Rm where Equation B.3 holds. But there can only be one Rm

because the function Q�13 (R) is strictly increasing, Q
�1
3 (R)

0 > 0, and Q�13 (R)00 is strictly

decreasing and, therefore, Equation B.3 can only hold once.

ii) Finally, the third case is very similar to the second.

Proposition 6

Let (Ri)ni=1 be the daily returns of n assets that follow a Copula-Based Multivariate

Cornish-Fisher Density CB-MCFDm and � be the normal rank correlationmatrix of these

assets. The Pro�t and Loss (P&L) distribution of a portfolio with weights (!i)ni=1 corre-

sponding to these assets, constrained to
Pn

i=1 !i = 1, is given by:

P =
nX
i=1

!iRi

Then, the k-order non-centered moments of the aleatory variable P are given by:

E
�
P k
�
=

"X
i

!iQi(
@

@Ji
)

#k
� e 12J�Jt

?????
J=0

where J = (Ji)ni=1 is an auxiliary n-dimensional vector.
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Proof. Consider the Fourier transform of the aleatory variable P :

P̂ (k) = E
h
eik

Pn
i=1 !iRi

i
where E [�] denotes the expected value. We perform the variable change R = Q(X):

P̂ (k) = E
h
eik

Pn
i=1 !iQi(Xi)

i
,

P̂ (k) =

Z
e�

1
2
X��1(Ri;Rj)Xt+ik

Pn
i=1 !iQi(Xi)

dXp
(2�)n det [� (Ri; Rj)]

Expanding the exponential in power series we obtain:

P̂ (k) =
1X
m=0

(ik)m

m!

Z "X
i

!iQi(Xi)

#m
e�

1
2
X��1(Ri;Rj)Xt dXp

(2�)n det [� (Ri; Rj)]
;

and the moments of the variable R can be obtained by the following integral:

E [Pm] =

Z "X
i

!iQi(Xi)

#m
e�

1
2
X��1(Ri;Rj)Xt dXp

(2�)n det [� (Ri; Rj)]
(B.4)

Next, we de�ne the functional generator P̂ (J) as:

P̂ (J) =

Z
e�

1
2
X��1(Ri;Rj)Xt+JXt dXp

(2�)n det [� (Ri; Rj)]

where the vector J = (J1; :::; Jn) is introduced as a �ctitious vector that will allow to

calculate the integrals. If Q(X) is a polynomial it is easy to demonstrate that Equation

[B.4] reduces to:

E [Pm] =

"X
i

!iQi

�
@

@Ji

�#m
�
Z
e�

1
2
X��1(Ri;Rj)Xt+JXt dXp

(2�)n det [� (Ri; Rj)]

?????
J=0

(B.5)

The integral [B.5] can be carried out analytically:Z
e�

1
2
X��1(Ri;Rj)Xt+JXt dXp

(2�)n det [� (Ri; Rj)]
= e

1
2
J�(Ri;Rj)J

t

:
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Finally, we obtain the following result:

E [Pm] =

"X
i

!iQi

�
@

@Ji

�#m
� e 12J�(Ri;Rj)Jt

?????
J=0

Corollary 14 If the portfolio consists on two assets which follow a CFD, characterized

by the coef�cients a1; b1; c1; d1 and a2; b2; c2; d2 respectively, with normal rank correlation

�; and weights w1 and w2 the variance of the total return w1R1 + w2R2 can be calculated

using the above Proposition and is equal to:

�2 [rw] = w21
�
6a1c1 + 15a

2
1 + 2b

2
1 + c21

�
+ w22

�
6a2c2 + 15a

2
2 + 2b

2
2 + c22

�
+ (B.6)

2w1w2
�
6a1a2�

3 + 2b1b2�
2 + 3c1a2�+ c1c2�+ 9a1a2�+ 3a1c2�

�
and the kurtosis is given by:

� [rw] =
E [rw � �[rw]]

4

�4 [rw]
(B.7)
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Lemma 7

Let �ij be the linear correlation coef�cient and �ij the normal rank correlation between

the variablesRi andRj which follow a CB-MCFD3, and ai;j the i-th coef�cient in Equation

1.5 corresponding to the asset j determining the transformation. The relation between both

correlation coef�cients is given by:

�ij =
6a3;ia3;j�

3
ij + 2a2;ia2;j�

2
ij + (3a1;ia3;j + a1;ia1;j + 9a3;ia3;j + 3a3;ia1;j)�ijq�

6a3;ia1;i + 15a22;i + 2a
2
2;i + a21;i

� �
6a3;ja1;j + 15a23;j + 2a

2
2;j + a21;j

�
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Proof. The demonstration of this Lemma requires the result in Equation B.11 for the

variance of a portfolio formed by two assets Ri and Rj with weights wi and wj:

�2(wiRi + wjRj) = w2i
�
6a3;ia1;i + 15a

2
2;i + 2a

2
2;i + a21;i

�
+

w2j
�
6a3;ja1;j + 15a

2
3;j + 2a

2
2;j + a21;j

�
+

2wiwj

�
6a3;ia3;j�

3
ij + 2a2;ia2;j�

2
ij+

(3a1;ia3;j + a1;ia1;j + 9a3;ia3;j + 3a3;ia1;j)�ij

�

Comparing this expression with the general formula for the variance of a sum of aleatory

variables:

�2(wiRi + wjRj) = w2i �
2(Ri) + w2j�

2(Rj) + 2wiwjcov (Ri; Rj)

and having in mind that the Pearson correlation coef�cient, �ij; is de�ned as:

�ij =
cov (Ri; Rj)
�(Ri)�(Rj)

we �nally obtain the desired result.

Lemma 8

Let CB-MCFD3 be a third-order Copula-Based Multivariate Cornish-Fisher density de-

�ned by Equation 1.19 for the random vector of variables Ri, with coef�cients ai; i =

0; 1; 2; 3: Then one can de�ne a new vector of variables Ri�with zero mean and unitary

variance-covariance matrix imposing � to be the identity matrix and:

ai;0 = �ai;2 , ai;1 =
q
1� 6a2i;3 � 3a2i;2 � 3ai;3 (B.8)
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Besides that, ai;2 and ai;3 need to satisfy the following conditions in order to guarantee the

existence of the distribution:

0 < ai;3 <
1p
15

�
r
3ai;3

�q
21a2i;3 + 1� 6ai;3

�
< ai;2 <

r
3ai;3

�q
21a2i;3 + 1� 6ai;3

�

Proof. This proof is almost identical to the one of Lemma 3. In order to guarantee the ex-

istence of the CB-MCFD3 we must impose the existence of all the univariate distributions,

which are by de�nition CF distributed. Therefore we must have the same conditions as in

Lemma 3 for each variable Ri:

�
r
3ai;3

�q
21a2i;3 + 1� 6a3

�
< ai;2 <

r
3ai;3

�q
21a2i;3 + 1� 6ai;3

�
0 < ai;3 <

1p
15
.

Proposition 9

Let (Ri)ni=1 be variables that follow a VCB-MCFD with parameters of the distribution

given by a3;i, a2;i,m and �. Then, any variable W de�ned as a sum of variables Ri is also

a VCB-MCFD variable.

Proof. We will prove this proposition for the bivariate case, n = 2, but the generalization

to n dimensions is straightforward. Let W = R1 + R2: From Equation 1.27 we have that
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the variables Ri can be written in terms of the z1 and z2 which follow an I-MCFD:

R1 = �
1=2
11 � z1 + �

1=2
12 � z2 +m1

R2 = �
1=2
21 � z1 + �

1=2
22 � z2 +m2

Therefore, the variableW is given by:

W = R1 +R2

= �
1=2
11 � z1 + �

1=2
12 � z2 +m1 + �

1=2
21 � z1 + �

1=2
22 � z2 +m2

=
�
�
1=2
11 + �

1=2
21

�
� z1 +

�
�
1=2
12 + �

1=2
22

�
� z2 +m1 +m2

= ~�
1=2
11 � z1 + ~�

1=2
12 � z2 +m

Last Equation shows that the variableW can be also written as a linear combination

of z's and, therefore, by de�nition the variableW must have the same marginal distribution

as the Ri; i.e. W is a VCB-MCFD variable.

Proposition 10

Let (Ri)ni=1 be variables that follow a VCB-MCFD with parameters of the distribution

given by a3;i, a2;i; m and �. Then, the mean vectorM1, and the second, third and fourth

centered multivariate moments, given by the variance-covariance matrixM2, the skewness
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tensorM3 and the kurtosis tensor,M4, respectively, are given by:

M1;i = mi

M2;ij = �ij

M3;ijk =

nX
r=1

wirwjrwkr�3;r

M4;ijkl =

nX
r=1

wirwjrwkrwlr�4;r

+
nX
r=1

nX
s=1
s 6=r

�
wirwjrwkswls + wirwjswkrwls

+wirwjswkswlr

�

where �3;r and �4;r are the third and fourth order centered univariate moments of the

Cornish-Fisher Density for the variable r given by Equations 1.11, and wij denotes the

ij-element of the Cholesky decomposition of the covariance matrix, i.e, �1=2 = (wij),

i; j = 1; :::; n:

Proof. We denote �ij = (wij), i; j = 1; :::; n the Cholesky decomposition of the co-

variance matrix of returns, �. The �rst two equalities are straightforward and are already

demonstrated in the main text. Using tensor notations and denoting 
 the Kronecker prod-

uct, we de�ne the (n; n2) co-skewness matrix as:

M3 = E
�
(R� �) (R� �)0 
 (R� �)0

�
= fsijkg

and the (n; n3) co-kurtosis matrix as:

M4 = E
�
(R� �) (R� �)0 
 (R� �)0 
 (R� �)0

�
= fcijklg
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The (i; j; k) component of the third central moment, sijk; is given by:

sijk = E
�
(R� �) (R� �)0 
 (R� �)0

�
ijk

= E
h
(R� �)i (R� �)j (R� �)k

i
= E

h�
�1=2z

�
i

�
�1=2z

�
j

�
�1=2z

�
k

i
= E

" X
r

wirzr

! X
s

wjszs

! X
t

wktzt

!#

= E

"X
r;s;t

wirwjswktzrzszt

#
=
X
r;s;t

wirwjswktE [zrzszt] (B.9)

By de�nition, the variables zrzszt are independent and thereforeE [zrzszt] = E [zr]E [zs]E [zt]

which is 0 by de�nition when one of the z's is different from the others. Therefore the only

terms different from zero in Equation B.9 are those with r = j = k:

sijk =
X
r

wirwjrwkrE
�
z3r
�
=
X
r

wirwjrwkr�3;r

where �3;r is the third moment of a standard (zero mean and unit variance) CFD for asset r

and is given by Equations 1.11. For the fourth moment the demonstration is similar:

cijkl = E
�
(R� �) (R� �)0 
 (R� �)0 
 (R� �)0

�
ijkl

= E
h
(R� �)i (R� �)j (R� �)k (R� �)l

i
= E

h�
�1=2z

�
i

�
�1=2z

�
j

�
�1=2z

�
k

�
�1=2z

�
l

i
= E

" X
r

wirzr

! X
s

wjszs

! X
t

wktzt

! X
u

wluzu

!#

= E

"X
r;s;t;u

wirwjswkswluzrzsztzu

#
=

X
r;s;t;u

wirwjswkswluE [zrzsztzu] (B.10)
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In this case we have two sets of non-zero terms in the last sum, the E [z4r ] and E [z2rz2s ] :

The other combinations which involve odd powers of z, as E[zrz3s ] = E[zr]E [z
3
s ], are zero

given the independence of the z's. The terms with E [z4r ] are simply equal to the fourth

moment of a standard CFD for asset r, �4;r; given by Equations 1.11. The terms E [z2rz2s ]

are equal to E [z2r ]E [z2s ] given the independence of the z's and, therefore, are equal to 1,

because the z's have unit variance. Therefore, the above sum from Equation B.10 is given

by:

cijkl =
X
r;s;t;u

wirwjswkswluE [zrzsztzu]

=
X
r

wirwjrwkrwlr�4;r +X
r

X
s
s 6=r

�
wirwjrwkswls + wirwjswkrwls

+wirwjswkswlr

�

Proposition 11

Let R we a m-th order CFD variable, then the VaR calculated at a 1 � z con�dence level

is given by:

V aR = ��1(Qm(z))

where � is the standard normal distribution function, Qm(z) is them-th order polynomial

and ��1 its respective inverse.
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Proof. The de�nition of VaR for a m-th order Cornish-Fisher distributed variable with a

�xed time horizon and percentile z, is given by the implicit following Equation:

z =

Z 1

�1
�(R� VaR)cfm(R)dR

Using the expression R = Q(X), we obtain:

z =

Z 1

�1
�(Qm(X)� VaR)cfm(Qm(X))

@Qm(X)

@X
dX

In order to calculate cfm(Qm(X)), we use the de�nition of the density in Equation A.1:

cfm(R) =
1p
2�

d [Q�1m (R)]

dR
e�

1
2 [Q�1(R)]

2

then:

cfm(Qm(X)) =
1p
2�

d [Q�1m (Qm(X))]

dR
e�

1
2 [Q

�1
m (Qm(X))]

2

=
1p
2�

dX

dR
e�

1
2
X2 ,

cfm(Qm(X)) =
1p
2�

1
dR
dX

e�
1
2
X2

=
1p
2�

1
dQm(X)
dX

e�
1
2
X2

Replacing this result in the latter equation, we obtain:

z =

Z 1

�1
�(Qm(X)� VaR)

1p
2�

1
dQm(X)
dX

e�
1
2
X2 @Qm(X)

@X
dX =

Z 1

�1
�(Qm(X)� VaR)

1p
2�
e�

1
2
X2

dX =

Z Q�1m (VaR)

�1

1p
2�
e�

1
2
X2

dX ,

z = �
�
Q�1m (VaR)

�
� �(�1) = �

�
Q�1m (VaR)

�
Solving this equation for VaR we �nish the demonstration.
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Proposition 12

Let r be the risk-free interest rate, K the strike of the option, St the initial price of the

underlying, T the maturity date, � = T � t the time to maturity and � the volatility of the

process. In absence of arbitrage opportunities the call option, whose underlying follows

an arithmetic Brownian motion, is given by:

C =
1

1 + r�

�
(St (1 + r�)�K) �(�d) + St�

p
��(d)

�
d =

K � St(1 + r�)

St�
p
�

where � (x) is the distribution function of a standard gaussian variable and �(x) is its

corresponding density.

Proof. Under the risk-neutral probability the process of the underlying asset is:

ST = St(1 + r�) + St�Wt

In absence of arbitrage opportunities the price of a call option should be:

C =
1

1 + r�
E
�
(ST �K)+ jFt

�
where E[xjFt] denote the expected value of x conditioned to the available information at

time t. The later expression is equal to:

Cs =
1

1 + r�

Z 1

K

(ST �K) f(ST )dST =
1

1 + r�

Z 1

K

(x�K)
1p

2�S2t �
2�
e
� 1
2

�
x�St(1+r�)

St�
p
�

�2
dx

(B.11)

To evaluate the integral we consider the following variable change:

y =
x� St(1 + r�)

St�
p
�

! yk =
K � St(1 + r�)

St�
p
�

! dy =
dx

St�
p
�
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in Equation B.11:

C =
1

1 + r�

�
(St (1 + r�)�K) (1� �(yK)) +

1p
2�
e�

1
2
y2KSt�

p
�

�

Rearranging terms and undoing the variable change we obtain the required result:

C =
1

1 + r�

�
(St (1 + r�)�K) �(d) +

St�
p
�p

2�
e�

1
2
d
2
�
; d =

St(1 + r�)�K

St�
p
�

Proposition 13

Let r be the risk-free interest rate, K the strike of the option, St the initial price of the

underlying, � the time to maturity and � the volatility of the process. In absence of arbitrage

opportunities the call option, CCFD, whose underlying follows a third-order CFD given by

Equation 1.9 is:

CCFD =
1

1 + r�

�
(St(1 + r�)�K) � (�d) + a1St�

p
��(d)

St�
p
��(d) (a3 (d

2 + 1) + a2d)

�
d = Q�1� (K)

Q� (x) = St(1 + r�) + �
p
�St

�
a3x

3 + a2x
2 +

�q
1� 6a23 � 2a22 � 3a3

�
x� a2

�

where � (x) is the distribution function of a standard gaussian variable, �(x) is its corre-

sponding density and Q�1� (x) is the inverse of the third-order polynomial Q� (x):

Proof. We consider that the underlying ST at the time of maturity T can be approximated

through:

ST = St(1 + r�) + St�
p
�z�
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where z� is a standarized third-order CF variable with parameters a2 and a3: In absence of

arbitrage opportunities the price of a call option should be:

C =
1

1 + r�
E
�
(ST �K)+ jFt

�
Therefore, we have to evaluate the following integral

C =
1

1 + r�

Z 1

K

(ST �K) cf3(ST )dST

where cf3(ST ) is the density of the third-order CFD variable ST . We make the following

variable change, ST = St(1+r�)+St�
p
� ~Q� (x) = Q� (x), where ~Q� (x) is the polynomial

corresponding to a standardized third-order Cornish-Fisher density with coef�cients a2 and

a3:

C =
1

1 + r�

Z 1

K

�
St(1 + r�) + St�

p
� ~Q� (x)�K

�
cf3(ST )dST

=
1

1 + r�

�
(St(1 + r�)�K)

Z 1

K

cf3(ST )dST + St�
p
�

Z 1

K

~Q� (x)cf3(ST )dST

�
Using the property that cf3(ST )dST = 1p

2�
e�

1
2
x2dx we calculate the �rst integral obtain-

ing:

C =
1

1 + r�

8<:(St(1 + r�)�K)
�
1� �(Q�1� (K)

�
+ St�

p
�

Z 1

Q�1� (K)

~Q� (x)
1p
2�
e�

1
2
x2dx| {z }

9=;
(B.12)

Now, we carry out the marked integral, denoting ~Q� (x) = a3x
3 + a2x

2 + a1x+ a0
31:Z 1

Q�1� (K)

~Q� (x)
1p
2�
e�

1
2
x2dx =

Z 1

Q�1� (K)

�
a3x

3 + a2x
2 + a1x+ a0

� 1p
2�
e�

1
2
x2dx (B.13)

31 It has to be beard in mind that for a standardized third-order CF variable the following relations hold:

a0 = �a2 ; a1 =
q
1� 6a23 � 3a22 � 3a3:
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We consider the variable change in Equation B.13:Z 1

Q�1� (K)

�
a3x

3 + a2x
2 + a1x

� 1p
2�
e�

1
2
x2dx+ a0

Z 1

Q�1� (K)

1p
2�
e�

1
2
x2dx =Z 1

Q�1� (K)

�
a3x

3 + a2x
2 + a1x

� 1p
2�
e�

1
2
x2dx| {z }�a2

�
1� �

�
Q�1� (K)

��
We evaluate the marked expression in the later equation using the variable change, denoting

d = Q�1� (K):Z 1

d

�
a3x

3 + a2x
2 + a1x

� 1p
2�
e�

1
2
x2dx = a2(1��(d))+

1p
2�
e�

1
2
d2
�
a3d

2 + a2d+ a1 + a3
�

Rearranging terms:Z 1

K

Q� (x)
1p
2�
e�

1
2
x2dx = a2 (1� �(d)) + �(d)

�
a3
�
d2 + 1

�
+ a2d+ a1

�
(B.14)

We obtain the required result substituting B.14 in B.12:

C =
1

1 + r�

(
(St(1 + r�)�K) � (�d)+

�
p
�St�(d)

�
a3 (d

2 + 1) + a2d+
�p

1� 6a23 � 2a22 � 3a3
�� )

d = Q�1� (K)

Q� (x) = St(1 + r�) + St�
p
�

�
a3x

3 + a2x
2 +

�q
1� 6a23 � 2a22 � 3a3

�
x� a2

�



Appendix C
Algorithms and tests

C.1 Algorithms

In this Appendix, we present the details of the algorithms and optimization procedures we

have applied in the realization of this thesis. In particular, we discuss the algorithms used in

the estimation of the different models derived from the Cornish-Fisher Density (CFD) and

the optimization procedure in the empirical options Section. All computer programs have

been written in MATLAB code and are available from the authors upon request. We are

very thankful to Kevin K. Sheppard for making available the "UCSD GARCH Toolbox"

for estimating univariate and multivariate heteroskedasticity in time series models which

we have used and modi�ed in the estimation of the DCC models.

C.1.1 Univariate static CFD

QQ-Estimation

In the Quantile-Quantile method (QQ) we calculate �rst the quantile-quantile func-

tion between the experimental distribution function ST (R),

ST (R) =
1

T

X
t2(Rt�R)

Rt

where T is the sample size. The number of points, qi, forming this discrete function

ST (R) to be used in this algorithm is in principle free, but we consider that an appro-

218
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priate number of points is the one given by the multiples of the inverse of the sample size:

qi =
�
1
T
; 2
T
; :::; T�1

T

	
. Therefore, we construct the pairs

�
R(i);�

�1 (qi)
�
; where R(i) are

the ordered return series elements, qi are the corresponding experimental quantiles and �

is the standard normal distribution. Then, we �t a cubic polynomial to these pairs using the

Minimum Least Squares algorithm. Interestingly, different versions of this method could

be easily incorporated. For example, one could give different weights to different quantiles

using the Generalized Minimum Squares algorithm, increasing, therefore, the importance

of the tails in the �tting.

Moments Estimation

In this Appendix we describe the algorithm used to obtain estimates for the para-

meters of the Cornish-Fisher distribution using the Moments Method (MM). A third-order

CFD depends on four parameters (a3, a2, a1 and a0) and at least we must �t the �rst four

empirical moments, given by Equations 1.11, to the theoretical ones. However, as the vari-

able a0 appears only in the Equation for the mean, we can reduce the estimation to three

parameters and get it after �tting the other parameters a1, a2 and a3.

We use the MATLAB macro FMINSEARCH to minimize the objective error func-

tion:

min
a3;a2;a1

err =
4X
i=2

(�i (a3; a2; a1)� m̂i)2

where �i (a3; a2; a1) is the i-th theoretical centered moment which depends on the parame-

ters a3, a2 and a1 and m̂i is the sampling centered moment of order i. As initial parameters

we use the QQ-estimates described above. If we try to �t the data with very small vari-
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ances, given that we are handling high powers or very small numbers, numeric problems

related to the �oating comma precision can arise. Therefore, as the starting point in order to

solve this problem, we scale the data to unit variance and �t the corresponding parameters,

a0i of the CFD. Finally, Lemma 4 is used to re-scale the obtained parameters ai to calculate

the real parameters ai = �a0i, where � is the sampled standard deviation of the data.

Maximum Likelihood Estimation

In this Appendix we describe the algorithm used to obtain estimates for the para-

meters of the Cornish-Fisher distribution using the Maximum Likelihood Method (ML).

Supposing i.i.d. (independent and identical distributed) CF variables, we have to maximize

the following log-likelihood function:

Lstatic-cfd(R) =
TX
t=1

log cf3(Rt; a0; a1; a2; a3)

= �T
2
log (2�) +

TX
t=1

�
log

d [Q�1(Rt)]

dR
� 1
2

�
Q�1(Rt)

�2�

where d [Q�1(Ri)] =dR and Q�1(Rt) are given in Equations A.2 and A.3. Considering

that the third-order CFD is analytical we can calculate the score function as the derivatives

of the log-likelihood with respect to the parameters ai, therefore, we avoid calculating nu-

meric derivatives in the optimization procedure. Although completely analytical, we do not

report here the score function for the shake of conciseness, given their cumbersome expres-

sion. Finally, as for the previous method, we use the MATLAB macro FMINSEARCH to

maximize the objective error function, and use also the QQ-estimates as initial parameters.
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C.1.2 Univariate dynamic CFD

We use the Maximum LikelihoodMethod to obtain estimations for the GARCHmodel with

Cornish-Fisher distributed innovations. We denote as mt and �2t the conditional mean and

variance at time t; E [RtjFt] and E
�
(R�mt)

2 jFt
�
, respectively. We leave the speci�ca-

tion of the conditional mean and variance free, i.e. any dynamics in the mean and variance

can be considered. We have to maximize the log-likelihood function:

Ldynamic-cfd (R) =
TX
t=1

log cf3(Rt; a0;t; a1;t; a2;t; a3;t)

Note that with this parametrization of the third-order CFD the four parameters are time

varying but only the �rst two moments of the distribution, mt and �2t are really time

varying. Therefore, it is more appropriate to translate the dynamics on a0;t; a1;t; a2;t

and a3;t into the dynamics of the parameters of the second parametrization of the CFD,

cf3(Rt;mt; �
2
t ; a2; a3), given in Equation 1.15 using the results of Lemma 4:

TX
t=1

log cf3(Rt; a0;t; a1;t; a2;t; a3;t)

a0;t = mt � �ta2

a1;t = �t

�q
1� 6a23 � 3a22 � 3a3

�
a2;t = �ta2

a3;t = �ta3
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For example, for an AR(1) - GARCH(1,1) speci�cation of the mean and variance with

Cornish-Fisher distributed innovations:

Rt = mt + yt

mt = c+ AR �Rt�1

yt = �tzt

�2t = w + py2t�1 + q�2t�1

zt � CF (a3; a2);

the log-likelihood function to be maximized is given by:

Lgarch-cfd (R) =
TX
t=1

log cf3(Rt; a0;t; a1;t; a2;t; a3;t)

a0;t = (c+ AR �Rt�1)�
�
w + py2t�1 + q�2t�1

�
a2

a1;t =
�
w + py2t�1 + q�2t�1

��q
1� 6a23 � 3a22 � 3a3

�
a2;t =

�
w + py2t�1 + q�2t�1

�
a2

a3;t =
�
w + py2t�1 + q�2t�1

�
a3

C.1.3 Multivariate static CFD

In this Section, we will describe the algorithms that we have applied to estimate the static

MCFD densities.

CB-MCFD

In the Copula-Based Multivariate Cornish-Fisher density we have decomposed our

estimation algorithm in two parts. First, we estimate the univariate parameters, a0;i; a1;i;
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a2;i and a3;i of each asset i, (i = 1; :::; n), using the above mentioned Likelihood Estimation

Method for each asset and, second, we estimate of the normal rank correlation matrix, �;

using the following estimator:

�̂ij =
1

T

TX
t=1

Q�1i (Ri;t)Q
�1
j (Rj;t) =

1

T

TX
t=1

Xi;tXj;t

where Ri;t is the return of asset i at time t: As we will see next, this estimation procedure

is consistent with the Maximum Likelihood optimization algorithm. If we write down the

expression for the log-likelihood of an i.i.d. sample of CB-MCFD distributed variables:

Lcb-mcfd(R) = �T
2
[n log (2�) + log j�j] +

TX
t=1

 
nX
i=1

 
log

 
@
�
Q�1i (Ri;t)

�
@Ri

!!
� 1
2

nX
i;j=1

Q�1i (Ri;t)Q
�1
j (Rj;t)

�
��1
�
ij

!

and suppose that the true univariate distribution functions are given by a third-order CFD

model, this log-likelihood function can be written in terms of the �ctitious variables, Xi;t;

using the variable transformation Xi;t = Q�1i (Ri;t):

Lcb-mcfd(X) = �
T

2
[n log (2�) + log j�j]� 1

2

TX
t=1

nX
i;j=1

Xi;tXj;t

�
��1
�
ij
.

This log-likelihood corresponds to the one of a centered multivariate normal i.i.d. sample

and therefore, the matrix � can be calculated as a usual correlation matrix with the variables

Xi.

VCB-MCFD

The estimation of the parameters with the Variance-Covariance Based Multivariate

Cornish-Fisher density model will be done considering the standard Maximum Likelihood

Estimator. The parameters of this density (mi; �ij , ai;2 and ai;3) can be estimated maxi-
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mizing the log-likelihood function given by:

Lvcb-mcfd(R) = �
T

2
(n log (2�) + log j�tj)+

TX
t=1

nX
i=1

 
log

 
@
�
Q�1i (zi;t)

�
@zi

!
� 1
2

�
Q�1i (zi;t)

�2!

where zi;t is the i-th component of the following vector zt = ��1=2 (Rt �mt) and ��1=2

is the inverse of the Cholesky decomposition of matrix �ij . It is straightforward to ob-

tain this expression using the de�nition of the density of a VCB-MCFD (Equation 1.27).

This log-likelihood is maximized as a whole in one step. As initial parameters in the algo-

rithm, we choose m0
i = E [Ri]

32 for the mean and �0ij = E [(Ri �mi) (Rj �mj)] for the

variance-covariance matrix, and the univariate Maximum Likelihood estimates of a2;i and

a3;i, calculated as explained in the above Section, for a02;i and a03;i.

C.1.4 Multivariate dynamic CFD

In this Section we will present the estimation algorithms for the dynamic MCFD densities.

Dynamic CB-MCFD

Following the procedure of the static case, we also use a two steps Maximum Like-

lihood estimator for the dynamic CB-MCFD model. In this model, the parameters to be

considered are ci and ARi for the conditional mean, wi, pi and qi for the univariate GARCH

processes, ai;2 and ai;3 for the skewness and kurtosis parameters of the CFD and  1 and  2

for the DCC model of the normal rank correlation, �: First, we estimate a set of GARCH

processes with CFD distributed innovations following the method described above, i.e.

using the second parametrization. If the model is well speci�ed we can transform the vari-

32 A 0 superscript indicates that the parameter is the initial guess in the optimization procedure.
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ables Rt into �ctitious normally distributed variables, Xt. So that we �nally estimate a

standard DCC model (Engle 2002) by using the normal �ctitious variables,Xt; with a like-

lihood given by:

Ldcb-mcfd(X) = �
1

2

TX
t=1

 
(n log (2�) + log j�tj) +

nX
i;j=1

Xi;tXj;t

�
��1
�
ij

!

However, it has to be pointed out that this algorithm is not equivalent to maximizing the

whole likelihood given by:

Lcb-mcfd(R) = �1
2

TX
t=1

(n log (2�) + log j�tj) +

TX
t=1

 
nX
i=1

 
log

 
@
�
Q�1i (Ri;t)

�
@Ri

!!
� 1
2

nX
i;j=1

Q�1i (Ri;t)Q
�1
j (Rj;t)

�
��1
�
ij

!

but it is actually much faster and makes this approximation feasible.

Dynamic VCB-MCFD

As in the previous cases, to estimate the dynamic VCB-MCFD density we will use

a two steps Maximum Likelihood Estimator. According to this model and as described in

Section 1.6.2, the parameters to be considered are ci and �i for the conditional mean, wi,

pi and qi for the univariate GARCH processes, ai;2 and ai;3 for the skewness and kurtosis

parameters of the CFD, and  1 and  2 for the DCC model. The likelihood function of a

dynamic VCB-MCFD is given by:

Ldvcb-mcfd(R) =
TX
t=1

�1
2
(n log (2�) + log j�tj) + (C.1)

TX
t=1

nX
i=1

�
log

@Q�1i (zi;t)

@zi
� 1
2

�
Q�1i (zi;t)

�2�
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where zi;t is the i-th component of the vector zt = �
�1=2
t (Rt �mt) : First we estimate n

(one for each asset) univariate ARMA-GARCH models with gaussian innovations to ob-

tain the parameters ci, �i, wi, pi and qi; and, afterwards, with the standardized residuals we

estimate the parameters associated to the DCC model together with the a2;i and a3;i para-

meters. As the likelihood is separable, these two steps procedure is equivalent to the whole

maximization of the whole likelihood as we will prove next. We recall here the de�nitions

of Dt, �t from Section 1.6.2 and let "t = D�1
t (Rt �mt). The innovations, "t, have zero

conditional means and variances but nonzero covariances. Adding and subtracting "0t"t in

Equation C.1 and collecting terms adequately, we can obtain the following expression:

Lvcb-mcfd(R) = �1
2

TX
t=1

�
n log (2�) + 2 log jDtj+R0tD

�1
t D�1

t Rt
�
+

�1
2

TX
t=1

 
log j�tj+ "0t"t +

nX
i=1

 
�2 log @Q

�1
i (�

�1=2
t "t;i)

@zi
+Q�1i (�

�1=2
t "t;i)

2

!!

The �rst part of this Equation is a sum of likelihoods from GARCH processes and the sec-

ond part contains the dynamic dependence parameters  1 and  2 along with the parameters

a2;i and a3;i: Therefore, given that the maximum of a sum is the sum of the maximums we

can obtain �rst, the parameters of the univariate ARMA-GARCH models and, afterwards,

the parameters associated to the DCC along with a2;i and a3;i; improving vastly the conver-

gence speed of the algorithm.



C.1 Algorithms 227

C.1.5 Option Pricing

Here we describe how we implemented the estimation of the parameters for each option

pricing model. We �rst introduce some notation, then we discuss the estimation. We then

go on to explain how we estimated parameters in more dif�cult situations.

The implicit estimator, �̂t; of the parameters of each model of date t is de�ned as the

minimizer of the mean of the squared pricing errors for the options traded that day, that is,

�̂t = argmin
�

1

nt

ntX
i=1

[ci(�)� ci]
2

where ci(�) is the theoretical option price, ci, denotes the market option price and nt the

total number of options at date t. For the CS and CF model, the parameter estimation turned

out to be dif�cult. In particular, if parameters need to be obtained in a systematic way such

as in the timeseries framework, it becomes necessary to make sure that the algorithm does

not diverge. In this case, we restrict parameters in certain intervals and, second, force

certain parameters to take values on a grid whereas the other parameters were obtained

without restrictions. When a parameter was on a grid we eventually ran an unconstrained

estimation using as starting values the estimates obtained over the grid that had a minimum

error. In particular, we found that the CS model tended to derive extremely negative values

for the skewness, and we obliged the parameter to stay between -2 and 2. And for the CF

model, we had to impose the restrictions necessary to keep the parameters a2 and a3 within

the permitted parameter range shown in Figure 1.2. From the 601 dates available we only

found two cases where the CF model derived boundary parameters because of the small

number of option prices available these dates.
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C.2 Montecarlo Experiments

C.2.1 Comparison of estimators in the static CFD model

In this Section we wish to investigate the properties of the maximum-likelihood, moments

and QQ-estimates when Cornish-Fisher Densities (CFD) are used in an attempt to directly

obtain higher moments that differ from the ones of the normal distribution. For this purpose

we investigate how well CFDs can be �tted to simulated data. We consider the �t of CFDs

to data generated with a Cornish-Fisher distribution and to data generated with a mixture

of normals. Furthermore, in the latter type of simulation we distinguish the situation where

parameters for the simulated data are in or out of the restricted domain given by the Figure

1.1. Once the statistical properties are well understood we turn to the estimation of static

and GARCH processes with Cornish-Fisher distributed innovations.

In our �rst simulation experiment we consider as true data those generated by a ran-

dom process distributed according to the Cornish-Fisher density, and we �t to those data

a CFD with the three-methods. We simulate 100 series of length 2000 of standardized CF

variables with zero mean and unit variance. We will retain this type of size for all simula-

tions reported in this work. As we have proven in Section 1.2, we have only two parameters

left a3 and a2. We have chosen parameters a3 and a2 in a manner that we simulate vari-

ables with a kurtosis that we have arbitrarily chosen as 4, 8, and 15, and for each value of

the kurtosis we have chosen values of skewness that correspond to the 75th, and 95th per-

centile of the [0, s (k)] segment in Figure 1.2. The �rst value of kurtosis corresponds to a
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situation where the tails behave very much like a normal density, and the third value is in

the middle of possible kurtosis choices as we can see in Figure 1.2.

We present three different tables with the results of the estimations for each of the

methods. In columns 2-5 of Table C.18 we present the various selected parameters (a3; a2; a1; a0).

Our analysis of the results is twofold: �rst, we want to compare the properties of each

estimator and, afterwards, we perform a comparison between the estimates for different

skewness-kurtosis coef�cients. As the columns 6-9 for the different estimations show, the

average of the estimates are in general very good. However, we notice that the parame-

ters a3 and a1 derived with the QQ and ML estimations are sensibly better than the ones

corresponding to the MM, but the QQ and ML estimates are overall very similar. When

turning to the dispersion of the parameter estimates, measured by their standard deviation,

we observe that ML estimates are the most ef�cient according to the theory, given that the

theoretical model in this case is also the true one. Comparing the dispersion between the

QQ and ML estimates we �nd that the QQ are in general more ef�cient. At sight of these

results, we should suggest the use of the ML method, but the QQ estimates are very useful

also, as for the time of computation is much smaller with this method: for 100 time series,

the ML algorithm takes around 50 times longer than the QQ method to reach its solution.

Therefore, although ML estimates have better properties, the QQ are interesting as a �rst

guess or as initial parameters in the optimization algorithm.

Comparing the estimations for the different kurtosis and skewness coef�cients we do

not �nd a worse behavior near the gaussinity, as in Jondeau and Rockinger 2001, where



C.3 Tests 230

they analyze the Gram-Charlier density. In general, the estimates errors and dispersions

are very similar in the whole region of permitted values.

C.2.2 GARCH + CFD

In Table C.19 we present the results of a set of Montecarlo experiments designed to test the

performance of our algorithm. In the �rst panel we show the parameters used to simulate

the data, while in the second and third panels we report the Maximum Likelihood estimates

and their standard deviation, respectively. We simulate for each set of parameters 100

samples of length 2000. The chosen parameters derive conditional skewness and kurtosis

equal to the values used in the static Montecarlo experiments, while the parameters w, p

and q have been given just reasonable values. According to these results, we can deduce

that our algorithm works well.

C.3 Tests

In this Appendix we provide a brief description of all the tests used throughout this work.

C.3.1 Kolmogorov-Smirnov Test

The Kolmogorov-Smirnov test statistic is used to decide whether a sample comes from a

certain distribution or not. In order to compare a sample of size n whose experimental

distribution function is given by Sn(x) with a theoretical distribution function F (x), the

value the maximum difference between these curves, Dn is calculated:

Dn = max(Sn(x)� F (x)) 8x
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0.0821

0.0964
0.7236

-0.0964
0.0813

0.0959
0.7213

-0.0963
0.0086

0.0129
0.0213

0.0156
4

0.0861
0.0744

0.7135
-0.0744

0.0873
0.0765

0.7122
-0.0773

0.0098
0.0158

0.0229
0.0170

5
0.1232

0.1663
0.5545

-0.1663
0.1239

0.1651
0.5536

-0.1688
0.0126

0.0182
0.0178

0.0141
6

0.1326
0.1250

0.5313
-0.1250

0.1306
0.1245

0.5308
-0.1285

0.0128
0.0169

0.0181
0.0140
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Theoretical Parameters
c w p q a3 a2

1 0.0000 0.0100 0.0500 0.9000 0.0302 0.0266
2 0.0000 0.0100 0.0500 0.9000 0.0307 0.0209
3 0.0000 0.0100 0.0500 0.9000 0.0821 0.0964
4 0.0000 0.0100 0.0500 0.9000 0.0861 0.0744
5 0.0000 0.0100 0.0500 0.9000 0.1232 0.1663
6 0.0000 0.0100 0.0500 0.9000 0.1326 0.1250

Maximum Likelihood Estimates
c w p q a3 a2

1 0.0013 0.0128 0.0488 0.8862 0.0287 0.0292
2 0.0008 0.0120 0.0526 0.8872 0.0301 0.0209
3 0.0005 0.0110 0.0511 0.8935 0.0813 0.0965
4 0.0008 0.0112 0.0491 0.8947 0.0858 0.0735
5 0.0010 0.0102 0.0469 0.9011 0.1214 0.1696
6 0.0009 0.0106 0.0505 0.8958 0.1313 0.1266

STD of Maximum Likelihood Estimates
c w p q a3 a2

1 0.0100 0.0178 0.0138 0.0953 0.0056 0.0110
2 0.0095 0.0052 0.0148 0.0364 0.0063 0.0118
3 0.0091 0.0042 0.0124 0.0278 0.0077 0.0138
4 0.0098 0.0047 0.0148 0.0339 0.0074 0.0143
5 0.0089 0.0033 0.0110 0.0223 0.0065 0.0123
6 0.0088 0.0039 0.0142 0.0283 0.0063 0.0134

Table C.19. This Table presents the results of simulations where a GARCH process with
CFD innovations is �tted via the ML algorithm to an exactly distributed data set. We
simulate for each set of parameters 100 samples of length 2000. The �rst panel shows the
parameters used to simulate the data while in the second and third panels we report the
estimates and their standard deviation. The chosen parameters derive conditional skewness
and kurtosis equal to the static experiments, while the dynamic parameters have chosen just
to be reasonable.
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In our case, the proposed theoretical distribution function is the one corresponding to the

CFD:

CF (S) = �
�
Q�1(S)

�
=

Z Q�1(S)

�1

1p
2�
e�

1
2
t2dt

and the empirical distribution function is calculated as:

Sn(x) =
1

n

X
i2(xi�x)

xi (C.2)

Under the null hypothesis of correct speci�cation, the values of this statistic follow the

Kolmogorov-Smirnov distribution.

C.3.2 Jarque-Bera Test

The Jarque-Bera test is a goodness-of-�t measure of departure from normality based on the

sample kurtosis and skewness. The JB test statistic is de�ned as:

JB =
T

6

 
�2 +

(�� 3)2

4

!

where � is the skewness, � is the kurtosis, and T is the number of observations. The statistic

has an asymptotic �2 distribution with two degrees of freedom.

C.3.3 Wald GMM-test

Bekaert and Harvey 1997 test for normality of equity returns based on Hansen 1982 gen-

eralized method of moments (GMM). The following system of equations is estimated for
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each asset i:

e1;i;t = Ri;t �mi

e2;i;t = (Ri;t �mi)
2 � �2i

e3;i;t = (Ri;t �mi)
3 �

�3=2
i � �i

e4;i;t = (Ri;t �mi)
4 ��2i � �i � 3

where mi is the mean, �2i is the variance, �i is the skewness, �i is the excess kurtosis, and

et = (e1it; e2it; e3it; e4it) represents the disturbances, with E[e1;i] = E[e2;i] = E[e3;i] =

E[e4;i] = 0. There are four orthogonality conditions and four parameters implying that

the model is exactly identi�ed. The null hypothesis that the coef�cients of skewness and

excess kurtosis are zero is tested with a Wald test.

The variance-covariance matrix of the parameters is heteroskedasticity consistent and

corrects for serial correlation using a Bartlett kernel with an optimal bandwidth as in An-

drews 1991. The Wald statistic is asymptotically distributed as a �2 distribution.

C.3.4 Ljung-Box statistic

The Ljung-Box (Ljung and Box 1978) test is based on the autocorrelation plot and tests if

a number of autocorrelations are zero. It is calculated as:

Q(h) = T (T + 2)

hX
j=1

�2(j)

T � j

where T is the sample size, �(j) is the autocorrelation at lag j, and h is the number of lags

being tested. The Ljung-Box statistic is asymptotically distributed as a �2 distribution with

h degrees of freedom.
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C.3.5 LM-test for Heteroskedasticity

Given sample residuals obtained from a curve �t, the LM-test of Engle 1982 tests for the

presence of h-th order ARCH effects by regressing the squared residuals on a constant

and the lagged values of the previous squared residuals. Under the null hypothesis, the

asymptotic test statistic, T (R2), where T is the number of squared residuals included in

the regression and R2 is the sample multiple correlation coef�cient, is asymptotically �2

distributed with h degrees of freedom. When testing for ARCH effects, a GARCH(P,Q)

process is locally equivalent to an ARCH(P+Q) process.

C.3.6 Shapiro-Wilk (modi�ed - Royston 1982)

The Shapiro-Wilk test (Shapiro and Wilk 1965) tests the null hypothesis that a sample

came from a normally distributed population. Let m0 = (m1;:::;mn) denote the vector of

expected values of standard gaussian order statistics (Kendall, Stuart, and Ord 1994) and

�ij the covariance matrix. Considering that R = (R1; :::; Rn) is ordered R(1) < R(2) <

::: < R(n); the traditional Shapiro-Wilk statistic is given by:

W =

�Pn
i=1 aiR(i)

�2Pn
i=1

�
Ri � �R

�2

where a0 = (a1; :::; an) = m0��1 [(m0��1) (��1m)]
�1=2

: The test rejects the null hypoth-

esis if W is too small. As this test has been shown to be limited to sample sizes between

3 and 50, we use the Royston 1982 transformation of this statistic which is suitable for
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sample sizes up to 2000:

y = (1�W )�

z = (y �my) =�y

where �; my and �y are parameters tabulated in Royston 1982.

C.3.7 Mardia A and B

Mardia A and B statistics (Mardia 1985) test for multivariate normality focusing on skew-

ness and kurtosis, respectively. They are de�ned as:

A =
1

6
nb1;n

B =
�
b2;n � �2;n

�
=f8n (n+ 2) =Tg1=2

where n is the number of assets, T is the sample size, coef�cient �2;n is equal to n (n+ 2)

and:

b2;n = E
h�
R� �R

�0
��1 �R� �R

�i2
b1;n =

X
r;s;t

X
r0;s0;t0

��1rr0�
�1
ss0�

�1
tt0M

3
rstM

3
r0s0t0

where R =fRi;tgt=1;:::;Ti=1;:::;n is the matrix of returns, � is the variance-covariance matrix and

M3
rst represents the skewness tensor:

M3
rst =

1

T

nX
i=1

�
Rr;i � �Ri

� �
Rs;i � �Ri

� �
Rt;i � �Ri

�
Mardia A and B statistics are asymptotically distributed as a �2 with n (n+ 1) (n+ 2) =6

degrees of freedom and a N(0; 1); respectively.
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C.3.8 Omnibus

The Omnibus statistic (Doornick and Hansen 1994) tests for multivariate normality. They

propose the following statistic:

O = Z 01Z1 + Z 02Z2

with Z 01 = (z11; :::; z1n) and Z 02 = (z21; :::; z2n) where z1i and z2j being a transformation of

skewness � and kurtosis �; respectively: This test controls for �nite sample properties of

skewness and kurtosis.

C.3.9 �2-Malevergne and Sornette

This statistic tests for the null hypothesis that the structure of dependencies is given by a

gaussian copula. The statistic z2 is given by:

z2 =
nX

i;j=1

��1(Fi(Ri))
�
��1
�
ij
��1(Fj(Rj)) (C.3)

where Fi is the marginal distribution function of asset i; ��1 is the inverse of the gaussian

distribution and the matrix � is the normal rank correlation:

�ij = Cov
�
��1(Fi(Ri));�

�1(Fj(Rj))
�
;

and follows a �2-distribution with n degrees of freedom. Malevergne and Sornette 2003

use the empirical distribution function Sn(x) = 1
n

P
i2(xi�x) xi to avoid making hypothesis

about the marginals.

In our work, we will test for the null hypothesis that innovations are given by a

Copula-Based Multivariate CFD (see Section 1.3.1) using Fi = �
�
Q�1i

�
in Equation C.3.
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In our notation we can rewrite this equation more easily in terms of Qi as:

z2 =
nX

i;j=1

Q�1i (Ri)
�
��1
�
i;j
Q�1j (Rj)

� = Cov
�
Q�1i (Ri); Q

�1
j (Rj)

�
Therefore, if our assets are supposed to follow a CB-MCFD, according to this test the z2

should be distributed as �2-distribution with n degrees of freedom.
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