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The purpose of this paper is to derive optimal rules for sequential mastery 
tests. In a sequential mastery test, the decision is to classify a subject as a 
master, a nonmaster, or continuing testing and administering another 
random item. The framework of Bayesian sequential decision theory is 
used; that is, optimal rules are obtained by minimizing the posterior 
expected losses associated with all possible decision rules at each stage of 
testing. The main advantage of this approach is that costs of testing can be 
taken explicitly into account. The binomial model is assumed for the 
probability of a correct response given the true level of functioning, 
whereas threshold loss is adopted for the loss function involved. The paper 
concludes with a simulation study, in which the Bayesian sequential 
strategy is compared with other procedures that exist for similar 
classification decision problems in the literature. 

Key words: sequential mastery testing, Bayesian sequential rules, binomial 
distribution, threshold loss, most efficient strategy.  

 
Well-known examples of fixed-length mastery tests include pass/fail 

decisions in education, certification, and successfulness of therapies. The 
fixed-length mastery problem has been studied extensively in the literature 
within the framework of (empirical) Bayesian decision theory (e.g., De 
Gruijter & Hambleton, 1984; van der Linden, 1990). In this approach, the 
following two basic elements are distinguished: A psychometric model 
relating the probability of a correct response to student's (unknown) true 
level of functioning, and a loss structure evaluating the total costs and 
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benefits for each possible combination of decision outcome and true level of 
functioning. Within the framework of Bayesian decision theory (e.g., 
DeGroot, 1970; Lehmann, 1959), optimal rules (i.e., Bayes rules) are 
obtained by minimizing the posterior expected losses associated with all 
possible decision rules. Decision rules are hereby prescriptions specifying for 
each possible observed response pattern what action has to be taken. The 
Bayes principle assumes that prior knowledge about student's true level of 
functioning is available and can be characterized by a probability distribution 
called the prior. This prior probability represents our best prior beliefs 
concerning student’s true level of functioning; that is, before any item yet has 
been administered.  

 The test at the end of the treatment does not necessarily have to be a 
fixed-length mastery test but might also be a variable-length mastery test. In 
this case, in addition to the actions declaring mastery or nonmastery, also the 
action of continuing testing and administering another random item is 
available. Variable-length mastery tests are designed with the goal of 
maximizing the probability of making correct classification decisions (i.e., 
mastery and nonmastery) while at the same time minimizing test length 
(Lewis & Sheehan, 1990). For instance, Ferguson (1969) showed that 
average test lengths could be reduced by half without sacrificing 
classification accuracy.  

 Generally, two main types of variable-length mastery tests can be 
distinguished. First, both the item selection and stopping rule (i.e., the 
termination criterion) are adaptive. Student's ability measured on a latent 
continuum is estimated after each response, and the next item is selected 
such that its difficulty matches student's last ability estimate. Hence, this type 
of variable-length mastery testing assumes that items differ in difficulty, and 
is denoted by Kingsbury and Weiss (1983) as adaptive mastery testing 
(AMT). In the second type of variable-length mastery testing, the stopping 
rule only is adaptive but the item to be administered next is selected random. 
In the following, this type of variable-length mastery testing will be denoted 
as sequential mastery testing (SMT).  

The purpose of this paper is to derive optimal rules for SMT using the 
framework of Bayesian sequential decision theory (e.g., DeGroot, 1970; 
Lehmann, 1959). The main advantage of this approach is that costs of testing 
(i.e., administering another random item) can be taken explicitly into 
account. 
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Review of Existing Procedures to Variable-Length 
Mastery Testing 
In this section, earlier solutions to both the adaptive and sequential 

mastery problem will be briefly reviewed. First, earlier solutions to AMT will 
be considered. Next, it will be indicated how SMT has been dealt with in the 
literature.  

 
Earlier Solutions to Adaptive Mastery Testing 
In adaptive mastery testing, two item response theory (IRT)-based 

strategies have been primarily used for selecting the item to be administered 
next. First, Kingsbury and Weiss (1983) proposed the item to be 
administered next is the one that maximizes the amount of (Fisher's) 
information at student's last ability estimate.  

 In the second IRT-based approach, the Bayesian item selection 
strategy, the item that minimizes the posterior variance of student's last 
ability estimate is administered next. In this approach, a prior distribution 
about student's ability must be specified. If a normal distribution is assumed 
as a prior, an estimate of the posterior distribution of student's last ability, 
given observed test score, may be obtained via a procedure called restricted 
Bayesian updating (Owen, 1975). Also, posterior variance may be obtained 
via Owen’s Bayesian scoring algorithm. Nowadays, numerical procedures 
for computing posterior ability and variance do also exist. 

 Both IRT-based item selection procedures make use of confidence 
intervals of student's latent ability for deciding on mastery, nonmastery, or 
continue testing. Decisions are made by determining whether or not a 
prespecified cut-off point on the latent IRT-metric, separating masters from 
nonmasters, falls outside the limits of this confidence interval.  

 
Existing Procedures to the Sequential Mastery Problem 
One of the earliest approaches to sequential mastery testing dates back 

to Ferguson (1969) using Wald's well-known sequential probability ratio test 
(SPRT), originally developed as a statistical quality control test for light 
bulbs in a manufacturing setting. In Ferguson's approach, the probability of a 
correct response given the true level of functioning (i.e., the psychometric 
model) is modeled as a binomial distribution. The choice of this 
psychometric model assumes that, given the true level of functioning, each 
item has the same probability of being correctly answered, or that items are 
sampled at random.  
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 As indicated by Ferguson (1969), three elements must be specified in 
advance in applying the SPRT-framework to sequential mastery testing. 
First, two values p0 and p1 on the proportion-correct metric must be 
specified representing points that correspond to lower and upper limits of 
true level of functioning at which a mastery and nonmastery decision will be 
made, respectively. Also, these two values mark the boundaries of the small 
region (i.e., indifference region) where we never can be sure to take the right 
classification decision, and, thus, in which testing will continue. Second, two 
levels of error acceptance α and β must be specified, reflecting the relative 
costs of the false positive (i.e., Type I) and false negative (i.e., Type II) error 
types. Intervals can be derived as functions of these two error rates for 
which mastery and nonmastery is declared, respectively, and for which 
testing is continued (Wald, 1947). Third, a maximum test length must be 
specified in order to classify within a reasonable period of time those 
students for whom the decision of declaring mastery or nonmastery is not as 
clear-cut.  

Reckase (1983) has proposed an alternative approach to sequential 
mastery testing within an SPRT-framework. Unlike Ferguson (1969), 
Reckase (1983) did not assume that items have equal characteristics but 
allowed them to vary in difficulty and discrimination by using an IRT-model 
instead of a binomial distribution. Modeling response behavior by an IRT 
model, as in Reckase’s (1983) model, Spray and Reckase (1996) compared 
Wald’s SPRT procedure also with a maximum information item selection 
procedure (Kingsbury and Weiss, 1983). 

Recently, Lewis and Sheehan (1990), Sheehan and Lewis (1992), and 
Smith and Lewis (1995) have applied Bayesian sequential decision theory to 
SMT. In addition to a psychometric model and a loss function, cost of 
testing (i.e., cost of administering one additional item) must be explicitly 
specified in this approach. Doing so, posterior expected losses associated 
with the nonmastery and mastery decisions can now be calculated at each 
stage of testing. As far as the posterior expected loss associated with 
continue testing concerns, this quantity is determined by averaging the 
posterior expected losses associated with each of the possible future decision 
outcomes relative to the probability of observing those outcomes (i.e., the 
posterior predictive distributions).  

 Optimal rules (i.e., Bayesian sequential rules) are now obtained by 
choosing the action that minimizes posterior expected loss at each stage of 
testing using techniques of dynamic programming (i.e., backward induction). 
This technique starts by considering the final stage of testing and then works 
backward to the first stage of testing. Backward induction makes use of the 
principle that upon breaking into an optimal procedure at any stage, the 
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remaining portion of the procedure is optimal when considered in its own 
right. Doing so, as pointed out by Lewis and Sheehan (1990), the action 
chosen at each stage of testing is optimal with respect to the entire sequential 
mastery testing procedure. 

 Lewis and Sheehan (1990) and Sheehan and Lewis (1992) modeled 
response behavior in the form of a three-parameter logistic (PL) model from 
IRT. The number of possible outcomes of future random item 
administrations, needed in computing the posterior expected loss associated 
with the continue testing option, can become very quick quite large. Lewis 
and Sheehan (1990), therefore, made the simplification that the number-
correct score in the 3-PL model is sufficient for calculating the posterior 
predictive distributions rather than the entire pattern of item responses.  

 As an aside, it may be noted that Lewis and Sheehan (1990), Sheehan 
and Lewis (1992), and Smith and Lewis (1995) used testlets (i.e., blocks of 
items) rather than single items.  

 

Bayesian Sequential Principle Applied to SMT 
In this section, it is indicated how the framework of Bayesian 

sequential decision theory in combination with the binomial distribution for 
modeling response behavior is applied to SMT. Also, a rationale is provided 
for why this approach should be applied to sequential mastery testing in 
comparison to other approaches that exist for the variable-length mastery 
problem (both of a sequential and adaptive character) in the literature.  

 
Bayesian Sequential Decision Theory in Combination with the 
Binomial Model 
In the present paper, as in Lewis and Sheehan’s model (1990), the 

framework of Bayesian sequential decision theory will also be applied to 
SMT. As in Ferguson's (1969) approach, however, the binomial distribution 
instead of an IRT-model will be considered here for modeling response 
behavior. It will be shown later on that for the binomial distribution, in 
combination with the assumption that prior knowledge about student's true 
level of functioning can be represented by a beta prior (i.e., its natural 
conjugate), the number-correct score is sufficient to calculate the posterior 
expected losses at future stages of item administrations. Unlike the Lewis 
and Sheehan (1990) model, therefore, no simplifications are necessary to 
deal with the combinatorial problem of the large number of possible decision 
outcomes of future item administrations. 
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Rationale for Applying the Bayesian Sequential Principle 
As pointed out by Lewis and Sheehan (1990), an IRT-based adaptive 

item selection rule requires a pool of content-balanced test items such that its 
difficulty levels span the full range of ability levels in the population. These 
specialized pools are often difficult to construct. Random item selection, 
however, requires a pool of parallel items, that is, items from the same 
difficulty levels. Procedures for constructing such pools of parallel items are 
often available. In addition to the reasons of computational efficiency (i.e., 
no estimation of student's last ability required) and simplicity, therefore, 
Lewis and Sheehan (1990) decided to consider a random rather than 
adaptive item selection procedure.  

 Following the same line of reasoning as in the Lewis and Sheehan 
(1990) model, in the present paper also random rather than adaptive item 
selection is used. To comply with the requirement of administering the next 
item randomly from a pool of items from the same difficulty levels, following 
Ferguson (1969), the probability of a correct response for given true level of 
functioning will be modeled here by a binomial distribution.  

 For reasons given above, applying an IRT-based adaptive item 
selection procedure to the variable-length mastery problem is not considered 
in this paper. However, one might wonder why the Bayesian sequential 
principle should be preferred above the application of Wald's SPRT-
framework. The main advantage of the Bayesian sequential strategy as 
compared to Wald's SPRT-framework is that cost per observation can 
explicitly been taken into account. In some real-life applications of variable-
length mastery testing, costs associated with administering additional items 
might be quite large. 

 

Notation 
In the following, as in Ferguson’s approach (1969), a sequential 

mastery test is supposed to have a maximum length of n (n ≥ 1). Let the 
observed item response at each stage of testing k (1 ≤ k ≤ n) for a randomly 
sampled student be denoted by xk, which can take the values 0 and 1 for 
respectively incorrect and correct responses to the k-th item. Furthermore, 
let sk = x1 + …  + xk (0 ≤ sk ≤ k) denote the observed number of correct 
responses after k items have been administered. Student's true level of 
functioning is unknown due to measurement and sampling error. All that is 
known is his/her observed number-correct score sk. In other words, the 
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mastery test is not a perfect indicator of student's true performance. 
Therefore, let student's (unknown) true level of functioning be denoted by t 
(0 ≤ t ≤ 1). Finally, a criterion level tc (0 ≤ tc ≤ 1) must be specified in 
advance by the decision-maker using methods of standard-setting (e.g., 
Angoff, 1971; Nedelsky, 1954). A student is considered a true nonmaster 
and true master if his/her true level of functioning t is smaller or larger than 
tc, respectively. 

 Assuming an observed response pattern (x1,… ,xk), the two basic 
elements of Bayesian sequential decision making discussed earlier can now 
be formulated as follows: A psychometric model in the form of a probability 
distribution, Prob(sk  t), relating observed number-correct score sk to 
student's true level of functioning t at each stage of testing k, and a loss 
function describing the loss L(m,t) or L(n,t) incurred when mastery or 
nonmastery is declared for given t, respectively.  

 

Threshold Loss and Costs of Testing 
Generally speaking, as noted before, a loss function evaluates the total 

costs and benefits of all possible decision outcomes for a student whose true 
level of functioning is t. These costs may concern all relevant psychological, 
social, and economic consequences which the decision brings along. The 
Bayesian approach allows the decision-maker to incorporate into the 
decision process the costs of misclassifications (i.e., students for whom the 
wrong decision is made). As in Lewis and Sheehan (1990), here the well-
known threshold loss function is adopted as the loss structure involved. The 
choice of this loss function implies that the "seriousness" of all possible 
consequences of the decisions can be summarized by possibly different 
constants, one for each of the possible classification outcomes.  

 For the sequential mastery problem, a threshold loss function can be 
formulated as a natural extension of the one for the fixed-length mastery 
problem at each stage of testing k as follows (see also Lewis & Sheehan, 
1990):  

 
Table 1. Table for threshold loss function at stage k (1 ≤ k ≤ n) of 
testing 

True level of 
functioning 
Decision 

 
t ≤ tc 

 
t > tc 

Declaring nonmastery ke l01 + ke 

Declaring mastery l10 + ke ke 
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The value e represents the costs of administering one random item. For 

the sake of simplicity, following Lewis and Sheehan (1990), these costs are 
assumed to be equal for each classification outcome as well as for each 
testing occasion. Of course, these two assumptions can be relaxed in specific 
sequential mastery testing applications. Applying an admissible positive 
linear transformation (e.g., Luce & Raiffa, 1957), and assuming the losses l00 
and l11 associated with the correct classification outcomes are equal and take 
the smallest values, the threshold loss function in Table 1 was rescaled in 
such a way that l00 and l11 were equal to zero. Hence, the losses l01 and l10 
must take positive values. 

 Note that no losses need to be specified in Table 1 for the continue 
testing option. This is because the posterior expected loss associated with 
the continue testing option is computed at each stage of testing as a 
weighted average of the posterior expected losses associated with the 
classification decisions (i.e., mastery/nonmastery) of future item 
administrations with weights equal to the probabilities of observing those 
outcomes.  

 The ratio l10/l01 is denoted as the loss ratio R, and refers to the 
relative losses for declaring mastery to a student whose true level of 
functioning is below tc (i.e., false positive) and declaring nonmastery to a 
student whose true level of functioning exceeds tc (i.e., false negative).  

 The loss parameters lij (i = 0,1; i ≠ j) associated with the incorrect 
decisions have to be empirically assessed, for which several methods have 
been proposed in the literature. Most texts on decision theory, however, 
propose lottery methods (e.g., Luce & Raiffa, 1957) for assessing loss 
functions empirically. In general, the consequences of each pair of actions 
and true level of functioning are scaled in these methods by looking at the 
most and least preferred outcomes. But, in principle, any psychological 
scaling method can be used. 

An obvious disadvantage of the threshold loss function is that, as can 
be seen from Table 1, it assumes constant loss for students to the left or to 
the right of tc, no matter how large their distance from tc. In practice, 
however, errors in classification are sometimes considered to be more 
serious, the further a student is from the criterion level tc. For instance, a 
student who is declared a nonmaster with true level of functioning just above 
tc gives the same loss as a misclassified true nonmaster with true level of 
functioning far above tc. It seems more realistic to suppose that for 
misclassified true nonmasters the loss is a strictly increasing function of t. 
Moreover, the threshold loss function shows a "threshold" at the point tc, 
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and this discontinuity also seems unrealistic in many cases. In the 
neighborhood of this point, the losses for correct and incorrect decisions 
should change smoothly rather than abruptly (van der Linden, 1981). 

 To overcome these shortcomings, van der Linden and Mellenbergh 
(1977) proposed a continuous loss function for the fixed-length mastery 
problem which is a linear function of student's true level of functioning (see 
also van der Linden & Vos, 1996; Vos, 1997a, 1997b, 1999). Although a 
linear loss function is probably more appropriate for the sequential mastery 
problem, following Lewis and Sheehan (1990), in the present paper a 
threshold loss function is adopted for reasons of simplicity and 
computational efficiency. Another reason for using threshold rather than 
linear loss is that a linear loss function may be more appropriate in the 
neighborhood of tc indeed but that the further away from tc, however, the 
losses can be assumed to take more and more the same constant values 
again. 

 

Psychometric Model 
Following Wald (1947) and Ferguson (1969), as noted before, in the 

present paper the well-known binomial model will be adopted for the 
probability that after k items have been administered, sk of them have been 
answered correctly. Its distribution at stage k of testing for given student’s 
true level of functioning t, Prob(sk  t), can be written as follows:  

ksktkst
ks

k
tks −−



= )1()|(Prob .    (1) 

 If each response is independent of the other, and if student’s 
probability of a correct answer remains constant, the distribution function of 
sk, given true level of functioning t, is given by Equation 1 (Wilcox, 1981). 
The binomial model assumes that the test given to each student is a random 
sample of items drawn from a large (real or imaginary) item pool (Wilcox, 
1981). Therefore, for each student a new random sample of items must be 
drawn in practical applications of the sequential mastery problem. 

 

Optimizing Rules for the Sequential Mastery Problem 
In this section, it will be shown how optimal rules for SMT can be 

derived using the framework of Bayesian sequential decision theory. Doing 
so, given an observed item response vector (x1,… ,xk), first the Bayesian 
principle will be applied to the fixed-length mastery problem by determining 
which of the posterior expected losses associated with the two classification 
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decisions is the smallest. Next, applying the Bayesian principle again, optimal 
rules for the sequential mastery problem are derived at each stage of testing 
k by comparing this quantity with the posterior expected loss associated with 
the continue testing option.  

 
Applying the Bayesian Principle to the Fixed-Length Mastery 

Problem 
As noted before, the Bayesian decision rule for the fixed-length 

mastery problem can be found by minimizing the posterior expected losses 
associated with the two classification decisions of declaring mastery or 
nonmastery. In doing so, the posterior expected loss is taken with respect to 
the posterior distribution of t. Let E[L(m, t)  sk] and E[L(n, t)  sk] denote 
the posterior expected losses associated with these two classification 
decisions, respectively, given number-correct score sk. It then follows that 
mastery is declared when number-correct score sk is such that  

E[L(m, t)sk]  <  E[L(n, t)sk],    (2) 
 
and nonmastery is declared otherwise. It now can easily be verified 

from (1)-(2), and using Table 1, that mastery is declared when sk is such that 
 
(l10+ke)Prob(t≤tcsk)+(ke)Prob(t>tcsk)<(ke)Prob(t≤tcsk)+(l01+ke)Prob(t>tcsk)
           

(3) 
 
and that nonmastery is declared otherwise. Rearranging terms, it can 

easily be verified from (3) that mastery is declared when sk is such that  
 
Prob(t ≤ tc  sk)  <  1/(1+R),     (4) 
 
where R denotes the loss ratio (i.e., R = l10/l01). If the inequality in (4) 

is not satisfied, nonmastery is declared.  
 Assuming a beta prior for t, it follows from an application of Bayes' 

theorem that under the assumed binomial model from (1), the posterior 
distribution of t will be a member of the beta family again (the conjugacy 
property, see, e.g., Lehmann, 1959). In fact, if the beta function ( )βα ,tB  
with parameters α and β (α, β > 0) is chosen as prior distribution and 
student's observed number-correct score is sk from a test of length k, then 
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the posterior distribution of t is ( )βα +−+ kskkstB , . Hence, assuming a 
beta prior for t, it follows from (4) that mastery is declared when sk is such 
that  

( )βα +−+ kskksctB ,   <  1/(1+R)     (5) 

and that nonmastery is declared otherwise. 
The beta prior might be specified as either an empirical (i.e., empirical 

Bayes approach) or subjective prior (i.e., subjective Bayes approach). In the 
first approach, empirical data from other students of the group to which the 
individual student belongs (i.e., 'comparable group') are used for estimating 
the parameters α and β. In the second approach, prior knowledge about t is 
specified by subjective assessment. A subjective beta prior will be assumed in 
this paper. More specifically, the uniform distribution on the standard 
interval [0,1] is taken as a noninformative prior; that is, the beta distribution 

( )βα ,tB  with α = β = 1. In other words, prior true level of functioning can 
take on all values between 0 and 1 with equal probability. This particular 
prior is used for illustrative purposes in the present paper.  

It then follows immediately from (5) that mastery is declared when sk 
is such that 

 
( )1,1 +−+ kskksctB   <  1/(1+R)      (6) 

 
and that nonmastery is declared otherwise. The beta distribution has 

been extensively tabulated (e.g., Pearson, 1930). Normal approximations are 
also available (Johnson & Kotz, 1970, sect. 2.4.6). 

 
Derivation of Bayesian Sequential Rules 
Let d(x1,… ,xk) denote the Bayesian sequential rule at stage k of 

testing. At each stage of testing k, d(x1,...,xk) can then be found by using the 
following backward induction computational scheme: First, the Bayesian 
sequential rule at the final stage of testing n is computed. Since the continue 
testing option is not available at that stage of testing, it follows immediately 
that the Bayesian sequential rule (i.e., d(x1,...,xn)) coincides with the 
Bayesian rule for the fixed-length mastery problem, that is, declare mastery if 
the inequality in (6) holds for sk = sn and k = n; otherwise, declare 
nonmastery.  

 Subsequently, the Bayesian sequential rule at the next to last stage of 
testing (n-1) is computed by comparing the minimum of the two 
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classification decisions, that is, min{E[L(m, t)  sn-1], E[L(n, t)  sn-1]}, with 
the posterior expected loss associated with the continue testing option. As 
noted before, the posterior expected loss associated with administering one 
more item at stage (n-1) of testing, given an observed response pattern 
(x1,..,xn-1), is computed by averaging the posterior expected losses associated 
with each of the possible future decision outcomes at the final stage of 
testing n relative to the probability of observing those outcomes (i.e., 
backward induction).  

 Let Prob(xn  sn-1) denote the probability of observing response xn (xn 
= 0 or 1) on the final stage of testing n, given observed number-correct score 
sn-1 on the (n-1) previous stages of testing, then, the posterior expected loss 
associated with administering one more item after (n-1) items have been 
administered, E[L(c, t)  sn-1], is computed as follows:  

 

E[L(c, t)sn-1] =
1

0

=

=
Σ
nx

nx
min{E[L(m, t)  sn], E[L(n, t)  sn]}*Prob(xnsn-1) 

  (7) 
 

 Note that (7) averages the posterior expected losses associated with 
each of the possible future decision outcomes relative to the probability of 
observing those outcomes. Generally, Prob(xksk-1) is called the posterior 
predictive probability of observing response xk (xk = 0 or 1) at stage k of 
testing, conditional on having obtained an observed number of correct 
responses sk-1 on the (k-1) previous stages of testing. It will be indicated later 
on how this conditional probability can be computed.  

 Given an observed response pattern (x1,… ,xn-1), the Bayesian 
sequential rule at stage (n-1) of testing (i.e., d(x1,...,xn-1)) is now given by 
(8):  














=

−

−

−

−

minimum.  a  is  ]|),([ if                  testingcontinue

minimum  a  is  ]|),([ if           nonmastery declare

minimum  a  is  ]|),([ if             mastery    declare

),...,(

1

1

1

11

n

n

n

n

stcLE

stnLE

stmLE

xxd

                   
 To compute the posterior expected loss associated with the continue 

testing option at stage (n-2), the so-called risk at stage (n-1) of testing is 
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needed. The risk at stage (n-1) of testing, Risk(x1,… ,xn-1), is defined as the 
minimum of the posterior expected losses associated with all available 
decisions, that is, declare mastery, declare nonmastery, or continue testing. 
In other words: 

Risk(x1,...,xn-1) = min{E[L(m, t)  sn-1], E[L(n, t)  sn-1], E[L(c, t)  sn-1]} 
 (9) 

 The posterior expected loss associated with administering one more 
item after (n-2) items have been administered with sn-2 of them being 
answered correctly, E[L(c, t)  sn-2], can then be computed by using the 
following recurrent relation (i.e., computing the expected risk): 

 

E[L(c, t)  sn-2] =
11

01

=−

=−
Σ

nx

nx
Risk(x1,...,xn-1)*Prob(xn-1  sn-2) (10) 

 
Given an observed response pattern (x1,… ,xn-2), the Bayesian 

sequential rule at stage (n-2) of testing (i.e., d(x1,...,xn-2)) can now be 
computed analogous to the computation of d(x1,… ,xn-1) under (8). 
Following the same computational backward scheme as in determining the 
Bayesian sequential rules at stages (n-1) and (n-2), the Bayesian sequential 
rules at stages (n-3),...,1 are computed. 

 

Computation of Posterior Predictive Probabilities 
For computing the posterior expected loss associated with 

administering one more item after (k-1) items have been administered with 
sk-1 of them being answered correctly (i.e., E[L(c, t)  sk-1]), as can be seen 
from (7) and (10), the posterior predictive probability Prob(xk  sk-1) is 
needed. To compute this probability, a prior probability distribution must be 
specified. As noticed before, here the uniform prior as a special case of the 
beta prior ( )βα ,tB  with α = β = 1, is taken as a prior probability 
distribution. 

 If sk-1 items have been answered correctly after (k-1) items have been 
administered, and assuming a uniform prior, in combination with the 
binomial distribution for the psychometric model, it is known (e.g., DeGroot, 
1970) that the probability on a correct response to the k-th item (i.e., 
Prob(xk = 1  sk-1)) is equal to (1+sk-1)/(k+1). Since the probabilities on a 
correct and incorrect response must sum to 1, it follows immediately that the 
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probability on an incorrect response to the k-th item (i.e., Prob(xk = 0  sk-1)) 
is equal to [1-(1+sk-1)/(k+1)] = (k-sk-1)/(k+1). 

 

Simulation of Different Mastery Testing Strategies  
In a Monte Carlo simulation the Bayesian sequential strategy will be 

compared with other existing approaches to mastery testing.  
 
Description of the Testing Strategies Used for Comparison 
The first comparison will be made with a conventional fixed-length 

mastery test (CT) in which student performance was recorded as proportion 
of correct answers. The student was declared a master for answering 60% or 
more items correctly after completion of the test, whereas nonmastery was 
declared otherwise.  

 The second comparison will be made with Wald's SPRT procedure. 
The limits of the indifference region in which testing will continue were set 
at proportion-correct values p0 and p1 of 0.5 and 0.7, respectively, whereas 
values of Type I and Type II error rates (i.e., α and β) were each set equal 
to 0.1. According to the SPRT procedure, after k items have been 
administered with sk of them being answered correctly, mastery was now 
declared if the likelihood ratio  

L(x1,… ,xk  p1) / L(x1,… ,xk  p0) = ])5.0()5.0(/)3.0()7.0[( kskkskskks −−   

was larger than α/(1-β), nonmastery if this likelihood ratio was smaller 
than (1-α)/β, and otherwise testing was continued. For those students who 
could not be classified as either a master or nonmaster before the item pool 
was exhausted, a classification decision was made in the same way as in the 
CT procedure, using a mastery proportion-correct value of 0.6.  

 In order to make a fair comparison of the Bayesian sequential 
strategy with the two strategies described above, the criterion level tc was set 
equal to 0.6. Furthermore, the losses l01 and l10 associated with the incorrect 
classification decisions were assumed to be equal corresponding to the 
assumption of equal error rates in Wald's SPRT procedure. On a scale in 
which one unit corresponded to the cost of administering one item (i.e., e = 
1), l01 and l10 were each set equal to 100 reflecting the fact that costs for 
administering another random item were assumed to be rather small relative 
to the costs associated with incorrect decisions.  

 Using the backward induction computational scheme discussed 
earlier, for given maximum test length n, a computer program called BAYES 
was developed to determine the appropriate action (i.e., nonmastery, 
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mastery, or continue testing) for the Bayesian sequential strategy at each 
stage of testing k for different number-correct score sk. A copy of the 
program BAYES is available from the author upon request.  

 
Type of Test and Maximum Test Lengths 
The simulation study was conducted using a set of items that were 

perfect replications of each other (i.e. , uniform pool). More specifically, it 
was assumed that each item could be described by a one-parameter logistic 
model (Rasch, 1960) with discrimination parameter a of 1 and equal 
difficulty parameter b of 0. This item pool reflected the choice of the 
binomial distribution for modeling response behavior in the Bayesian 
sequential procedure. Furthermore, the simulation runs were executed using 
a 100-item pool. Conventional fixed-length mastery tests (CTs) of three 
different lengths of 10, 25, and 50 items were randomly drawn from this 
100-item pool. Doing so, the 10-item test served as the first portion of the 
25-item test and the 25-item test in turn served as the first portion of the 50-
item test. These three CTs served as subpools from which the SPRT and 
Bayesian sequential procedures drew items during the simulations.  

 
Item Response Generation 
Item responses for 1000 simulated students, drawn from a N(0,1) 

distribution, were generated for each item in the 100-item pool. For known 
ability of the simulated student and given item difficulty, first the probability 
of a correct answer was calculated using the one-parameter logistic model. 
Next, this probability was compared with a random number drawn from the 
uniform distribution in the range from 0 to 1. The item administered to the 
simulated student was scored correct and incorrect if this randomly selected 
number was less and greater than the probability of a correct answer, 
respectively.  

 Furthermore, a simulated student was supposed to be a "true" master 
if his/her ability used to generate the item responses was higher than a 
prespecified cut-off point on the N(0,1) ability metric. Since a value of 0.6 
on the proportion-correct metric of the 100-item pool corresponded after 
conversion with a value of 0 on the N(0,1) ability metric, the cut-off point on 
the N(0,1) ability metric was set equal to 0.  

 

Results of the Monte Carlo Simulation  
In this section, the results of the Monte Carlo simulations will be 

compared for the three different mastery testing strategies in terms of 
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average test length (i.e., the number of items that must be administered on 
the average before a mastery/nonmastery decision is made), correspondence 
with true mastery status (i.e., classification accuracy), and classification 
accuracy as a function of average test length.  

 
Average Test Lengths 
Table 2 shows the average number of items required by each of the 

mastery testing strategies before a mastery/nonmastery decision can be 
made. The Bayesian sequential testing strategy is hereby denoted as BAYES. 

As can be seen from Table 2, the BAYES strategy resulted in 
considerably test length reductions at each level of maximum test length 
(MTL). Table 2 also shows that the BAYES procedure resulted in a greater 
reduction of average test lengths than the SPRT strategy at all MTL levels. 
Finally, like under the SPRT strategy, it can be inferred from Table 2 that the 
reduction in average test length increased under the BAYES strategy with 
increasing MTL. More specifically, the average test length was reduced by 
41.6%, 62.2%, and 77.7% for the 10-item MTL, 25-item MTL, and 50-item 
MTL, respectively.  

 
Table 2. Average Number of Items to be Administered 

 Maximum   Test   Length 
Strategy 10 25 50 
CT 10 25 50 
SPRT 8.64 14.47 17.42 
BAYES 5.84 9.46 11.15 

 
Classification Accuracy 
Table 3 shows phi correlations between true classification status (i.e., 

true master or true nonmaster) and estimated classification status (i.e., 
declaring master or nonmaster) for the three testing procedures at each MTL 
level. These phi correlations (i.e., correspondence coefficients) can be 
considered as an indicator of the quality/validity of the mastery/nonmastery 
decisions, and are denoted by Weiss and Kingsbury (1984) as classification 
validity indicators. As can be seen from Table 3, the phi correlations 
increased under the BAYES strategy with increasing MTL level. 
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Table 3. Phi Correlations between True Classification Status and 
Estimated Classification Status 
 

 Maximum   Test   Length 
Strategy 10 25 50 
CT 0.652 0.787 0.718 
SPRT 0.584 0.723 0.718 
BAYES 0.610 0.620 0.692 

Most Efficient Testing Strategy 
Kingsbury and Weiss (1983) depicted graphically the phi correlation as 

a function of the average number of items administered by each testing 
strategy (see also Weiss and Kingsbury, 1984). From these graphs 
conclusions were derived concerning which testing strategy was most 
efficient. A testing strategy was hereby said to be most efficient if it results in 
the combination of highest phi correlation and shortest average test length.  

 As is immediately clear from Tables 2 and 3, the BAYES strategy 
yielded shorter average test lengths than the other two strategies at each 
MTL level, whereas the phi correlations were generally somewhat lower at 
each MTL level. To examine which strategy is most efficient, therefore, we 
compute for the other two strategies the average test length at each MTL 
level for achieving the same phi correlation as under the BAYES strategy. In 
other words, we match the average test length on the classification accuracy.  

Doing so, the BAYES strategy resulted in a phi correlation of 0.692 
for an average test length of 11.15 at the 50-item MTL level. Interpolating 
data from Tables 2 and 3, it can easily be verified that the SPRT procedure 
would need to administer 13.17 items on the average to achieve this same 
phi correlation of 0.692, whereas the CT procedure would need to 
administer 14.4 items on the average. Similarly, as shown by Tables 2 and 3, 
the BAYES strategy resulted in a phi correlation of 0.620 for 9.46 items to 
be administered on the average at the 25-item MTL level. The SPRT and CT 
procedures would need to administer 10.15 and 9.54 items on the average to 
achieve this same phi correlation of 0.620, respectively. Finally, as indicated 
by Tables 2 and 3, the BAYES procedure resulted in a phi correlation of 
0.610 for 5.84 items to be administered on the average at the 10-item MTL 
level. The SPRT and CT procedures would need to administer 9.73 and 8.61 
items on the average to achieve this same phi correlation of 0.610, 
respectively. Hence, for the specific parameter values chosen in this 
simulation study, it can be concluded that the BAYES procedure was the 
most efficient of the three testing procedures at each MTL level.  
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DISCUSSION 

Optimal rules for the sequential mastery problem (nonmastery, 
mastery, or continue testing) were derived using the framework of Bayesian 
sequential decision theory. The binomial probability distribution was 
assumed for modeling response behavior, whereas threshold loss was 
adopted for the loss function involved. Prior knowledge about student’s true 
level of knowledge, needed for computing the posterior expected losses as 
well as the posterior predictive distributions, was assumed to be represented 
by the uniform prior.  

 In a Monte Carlo simulation, the Bayesian sequential procedure was 
compared with a conventional fixed-length mastery test and the SPRT 
procedure. Maximum test length varied from 10 to 50 items. For the specific 
parameter values chosen in this simulation study, it turned out that the 
Bayesian sequential strategy was most efficient (i.e., combination of highest 
classification accuracy and shortest average number of items to be 
administered) for test pools reflecting the one-parameter logistic model (i.e., 
Rasch model) at each level of maximum test length.  

 It is important to notice, however, that the Bayesian sequential 
strategy is especially appropriate when costs of testing can be assumed to be 
quite large. For instance, when testlets rather than single items are 
considered. Also, the Bayesian sequential strategy might be appropriate in 
psychodiagnostic. Suppose that a new treatment (e.g., cognitive-analytic 
therapy) must be tested on patients suffering from some mental health 
problem (e.g., anorexia nervosa). Each time after having exposed a patient to 
the new treatment, it is desired to make a decision concerning the 
effectiveness/ineffectiveness of the new treatment or testing another patient. 
In such clinical situations, costs of testing generally are quite large and the 
Bayesian sequential approach might be considered as an alternative to other 
testing strategies, such as SPRT, AMT, or fixed-length mastery tests. 

 An issue that still deserves some attention is why in the present 
paper, somewhat counter to the current trend in applied measurement, a 
random rather than IRT-based adaptive item selection procedure is 
preferred. As noted before, IRT-based item selection strategies assume that a 
calibrated pool of items exists which differ in their particular characteristics 
(i.e., levels of difficulty and discrimination). For random item selection 
strategies, such as Wald's SPRT procedure and the Bayesian sequential 
procedure advocated in this paper, however, the existence of a pool of 
parallel items only is required. Such pools of parallel items often are easier to 
construct than pools of items, which do differ in their IRT characteristics.  
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 In case a calibrated pool of items does exist, however, an IRT-based 
adaptive strategy that selects items for administration based on their 
particular characteristics is preferred rather than to randomly select items 
from a pool. A promising approach, in which the strong point of the 
Bayesian sequential procedure, that is, taking cost per observation explicitly 
into account, is combined with an IRT-based adaptive item selection strategy 
might be the following. The item to be administered next is the one that 
maximizes information or minimizes posterior variance at student's last 
ability estimate on an IRT-metric. At each stage of testing, the action 
declaring mastery, declaring nonmastery, or continue testing is then chosen 
which minimizes the posterior expected losses associated with all possible 
decision rules (see also Vos & Glas, 2000).  

 A final note is appropriate. Following the same line of reasoning as in 
the present paper, the optimal rules derived here can easily be generalized to 
the situation where three or more mutually exclusive classification categories 
can be distinguished. In Weiss and Kingsbury (1984), it is indicated how the 
AMT procedure can be employed in the context of allocating students to 
more than two grade classes (i.e., adaptive grading test). Spray (1993) has 
shown how a generalization of Wald's SPRT procedure (i.e., Armitage's 
(1950) combination procedure) can be applied to multiple categories. Vos 
(1999) applied Bayesian sequential decision theory to SMT for both 
threshold and linear loss in case the three classification decisions of declaring 
nonmastery, partial mastery, and mastery are open to the decision-maker 
(see also Smith & Lewis, 1995). 

RESUMEN 

Un procedimiento bayesiano en el contexto de los tests secuenciales de 
clasificación. El propósito de este artículo consiste en obtener reglas 
óptimas en los tests secuenciales de clasificación. En un test secuencial de 
clasificación, la decisión a tomar  es clasificar a una persona como maestro, 
no maestro, o continuar el test y administrar el siguiente ítem. Se aplica la 
teoría de la decisión secuencial bayesiana; es decir, las reglas óptimas 
resultan de minimizar  las pérdidas esperados posteriores  asociadas con 
todas las posibles reglas de decisión en cada momento de test. La principal 
ventaja de este acercamiento es que los costes de aplicar el test pueden ser 
tenidos en cuenta de manera explícita. Se asume el modelo binomial para 
determinar la probabilidad de respuesta correcta dado un cierto nivel de 
funcionamiento de la persona. Se adopta una pérdida umbral como función 
de perdida. El artículo termina con un estudio de simulación en el que la 
estrategia secuencial bayesiana se compara con otros procedimientos 
disponibles en la literatura para problemas de decisión similares. 
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Palabras clave: Tests secuenciales de clasificación, reglas secuenciales 
bayesianas, distribución binomial, pérdida umbral, estrategia más eficiente. 

REFERENCES 
Angoff, W.H. (1971). Scales, norms and equivalent scores. In R.L. Thorndike (Ed.), 

Educational Measurement (2nd ed., pp. 508-600). Washington, D.C.: American 
Council on Education. 

Armitage, P. (1950). Sequential analysis with more than two alternative hypotheses, and 
its relation to discriminant function analysis. Journal of the Royal Statistical 
Society, 12, 137-144. 

DeGroot, M.H. (1970). Optimal statistical decisions. New York: McGraw-Hill.  
De Gruijter, D.N.M., & Hambleton, R.K. (1984). On problems encountered using decision 

theory to set cutoff scores. Applied Psychological Measurement, 8, 1-8. 
Ferguson, R.L. (1969). The development, implementation, and evaluation of a computer-

assisted branched test for a program of individually prescribed instruction. 
Unpublished doctoral  dissertation, University of Pittsburgh, Pittsburgh PA. 

Johnson, N.L., & Kotz, S. (1970). Distributions in statistics: Continuous univariate 
distributions. Boston: Houghton Mifflin. 

Kingsbury, G.G., & Weiss, D.J. (1983). A comparison of IRT-based adaptive mastery 
testing and a sequential mastery testing procedure. In D.J. Weiss (Ed.), New 
horizons in testing: Latent trait test theory and computerized adaptive testing (pp. 
257-283). New York: Academic Press. 

Lehmann, E.L. (1959). Testing statistical hypotheses (3rd ed.). New York: Macmillan.  
Lewis, C., & Sheehan, K. (1990). Using Bayesian decision theory to design a 

computerized  
mastery test. Applied Psychological Measurement, 14, 367-386.  

Luce, R.D., & Raiffa, H. (1957). Games and decisions. New York: John Wiley and Sons. 
Nedelsky, L. (1954). Absolute grading standards for objective tests. Educational and 

Psychological Measurement, 14, 3-19. 
Owen, R.J. (1975). A Bayesian sequential procedure for quantal response in the context of 

adaptive mental testing. Journal of the American Statistical Association, 70, 351-
356. 

Pearson, K. (1930). Tables for statisticians and biometricians. London: Cambridge 
University Press. 

Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests. 
Copenhagen: Danish Institute for Educational Research. 

Reckase, M.D. (1983). A procedure for decision making using tailored testing. In D.J. 
Weiss (Ed.), New horizons in testing: Latent trait test theory and computerized 
adaptive testing (pp. 237-257). New York: Academic Press. 

Sheehan, K., & Lewis, C. (1992). Computerized mastery testing with nonequivalent 
testlets.  
Applied Psychological Measurement, 16, 65-76. 

Smith, R.L., & Lewis, C. (1995, April). A Bayesian computerized mastery model with 
multiple cut scores. Paper presented at the annual meeting of the National Council 
on Measurement in Education, San Francisco, CA.  

Spray, J.A. (1993). Multiple-category classification using a sequential probability ratio 
test  



 Sequential mastery testing  211 
 

(Research Rep. No. 93-7). Iowa City, IA: American College Testing. 
Spray, J.A., & Reckase, M.D. (1996). Comparison of SPRT and sequential Bayes 

procedures for classifying examinees into two categories using a computerized test. 
Journal of Educational and Behavioral Statistics, 21, 405-414. 

van der Linden, W.J. (1981). Decision models for use with criterion-referenced tests. 
Applied Psychological Measurement, 4, 469-492. 

van der Linden, W.J. (1990). Applications of decision theory to test-based decision 
making. In R.K. Hambleton & J.N. Zaal (Eds.), New developments in testing: 
Theory and applications, 129-155. Boston: Kluwer.  

van der Linden, W.J., & Mellenbergh, G.J. (1977). Optimal cutting scores using a linear 
loss function. Applied Psychological Measurement, 1, 593-599. 

van der Linden, W.J., & Vos, H.J. (1996). A compensatory approach to optimal selection 
with mastery scores. Psychometrika, 61, 155-172. 

Vos, H.J. (1997a). Simultaneous optimization of quota-restricted selection decisions with 
mastery scores. British Journal of Mathematical and Statistical Psychology, 50, 
105-125.  

Vos, H.J. (1997b). A simultaneous approach to optimizing treatment assignments with 
mastery scores. Multivariate Behavioral Research, 32, 403-433. 

Vos, H.J. (1999). Applications of Bayesian decision theory to sequential mastery testing. 
Journal of Educational and Behavioral Statistics, 24, 271-292. 

Vos, H.J., & Glas, C.A.W. (2000). Testlet-based adaptive mastery testing. In W.J. van der 
Linden and C.A.W. Glas (Eds.), Computerized adaptive testing: Theory and 
practice, 289-309. Kluwer-Nijhoff, Boston, MA.  

Wald, A. (1947). Sequential analysis. New York: Wiley. 
Weiss, D.J., & Kingsbury, G.G. (1984). Application of computerized adaptive testing to  

educational problems. Journal of Educational Measurement, 21, 361-375. 
Wilcox, R.R. (1981). A review of the beta-binomial model and its extensions. Journal of  

Educational Statistics, 6, 3-32. 
 





 

 

 


