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Assessing measurement equivalence in the framework of the common factor 
linear models (CFL) is known as factorial invariance. This methodology is 
used to evaluate the equivalence among the parameters of a measurement 
model among different groups. However, when dichotomous, Likert, or 
ordered responses are used, one of the assumptions of the CFL is violated: 
the continuous nature of the observed variables. The common factor analysis 
of ordered-categorical data (CFO) has been described in several works, but 
none evaluate its power and Type I error rate in the evaluation of 
measurement equivalence (ME). In this simulation study, we evaluated ME 
under four different conditions: size of group (300, 500 and 1000), type of 
DIF (thresholds, loadings), amount of DIF (0.25, 0.40), and equality/impact 
of the distributions. The parameters used for the data generation came from 
one scale with  nine items with three ordered categories. The results were 
evaluated according to three decision rules: a) the significance of the 
difference in chi-square values obtained in two nested models, b) the 
significance of the difference in chi-square values between two nested 
models with Bonferroni corrections, and c) the difference between the 
values of the Comparative Fix Index (CFI) obtained in two nested models. 
The results showed good power as well as good control of the false positives 
for both the chi-square Bonferroni correction and CFI difference index.  

 

The common factor linear model has been used with large success for 
modelling measurement and structural models in the framework of 
psychological and educational measurement (Bollen, 1989, Jöreskog and 
Sörbom, 1993). The model is extensively applied even when the basic 
assumption regarding the continuous nature of the indicator variables is 
violated. Most tests or questionnaires assessing psychological and 
educational latent variables use ordered-categorical response variables, such 
as dichotomous response items, Likert type items, or partial-credit items. 
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Although the nature of the responses in these cases is discrete and   there are 
important studies about models for ordinal variables when they are used as 
latent variable indicators   (Bock and Aitkin, 1981; Christofferson, 1975; 
Jöreskog, 1990; Mislevy, 1986; Muthén, 1984),  the approach most often 
used to model the ordered data is designed for continuous data (Muthén and 
Kaplan, 1985). From a theoretical point of view this is a methodological 
issue related to the application of incorrect models.   

This issue is extended to the evaluation of factorial invariance. 
Assessing factorial invariance  implies analyzing the mean and covariance 
structures of the data (MACS; Sörbom, 1974) across groups.  The definition 
of factorial invariance involves the equivalence between conditional 
probabilities for observed outcomes given latent variable scores 
(Mellenbergh, 1989; Meredith, 1993) among groups. This statement is 
independent of the nature of the observed scores:  

(1)        ( ) ( )21
, ,P Y g P Y gη η=  

To assess measurement invariance, we need to check the parameters 
that determine the probability of observed scores among groups, in other 
words, the equivalence among the parameters of the measurement models 
among the groups (Meredith, 1964; 1993). It is a progressive study of 
covariance structures, where the same measurement model is estimated in 
two groups using multigroup confirmatory factor analysis. The invariance 
level reached depends on the invariance of the parameters used in the 
definition of the measurement model. In the framework of linear models, to 
guarantee that the same construct is assessed in different groups and that 
this construct has the same metrics characteristics among groups, we must 
evaluate the equivalence among the regressor coefficients (Λ), the intercepts 
(ν), and the equivalence among the residual variance/covariance matrix (Θ). 
The parameters that remain equivalent will determine the kind of 
invariance: configural, metric, strong, or strict (see table 1). The first, 
configural equivalence, is the simplest model of invariance. It assumes the 
equivalence between the basic configurations of the measurement model in 
both groups; that is, the factors are defined through the same items among 
groups. Metric equivalence adds a restriction to the previous model: the 
equality between the regressor coefficients or loading in both samples 
(Λ1=Λ2). The third one, strong equivalence, demands the equality among 
intercept parameters (ν1=ν2), and the highest model of invariance 
constrained to be equal to the error variances (Θ1=Θ2). Table 1 formally 
shows the invariance models. 
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To evaluate measurement invariance, multiple group analysis is 
typically performed, as well as the computation of the chi-square difference 
test for nested models. The chi-square value and degrees of freedom for the 
less restrictive model are subtracted from the chi-square value and degrees 
of freedom for the more restrictive model. Depending on the significance of 
the difference, we are able to conclude the invariance or non-invariance of 
the model across groups. 

But models for continuous and ordered data are different; therefore, 
testing the invariance of the measurement parameters between groups 
(Meredith, 1993) implies testing different parameters for each model. In 
case of continuous response data or multivariate normal data, the 
parameters of interest are regression intercepts, factor loadings, and residual 
variance (table 1), but if there is ordered categorical data, the set of 
parameters to be assessed is different because thresholds need to be 
compared across groups.  Using continuous linear models with maximum 
likelihood estimation to analyze ordered-categorical data  potentially has 
several disadvantages and can leads to erroneous conclusions because the 
models are formally different, and the information on the focus of 
invariance or the source of unacceptable fit remains obscure (Lubke and 
Muthén, 2004).  

Despite of those differences among models several papers have 
analyzed the power and Type I error associated with the common factor 
linear models for continuous data in assessing measurement invariance with 
ordered data (Elosua and Wells, 2008; Meade and Lautenschlager, 2004a; 
Stark, Chernyshenko, and Drasgow, 2006). They basically compare the 
power associated with procedures designed specifically for ordered data 
derived from Item Response Theory, as the Likelihood Ratio Test (Thissen, 
Steinberg andWainer, 1988) with that obtained using the MACS approach 
with maximum likelihood estimation. The conclusions among results are 
not consistent. Meade and Lautenschlager (2004a) and  Elosua  and Wells 
(2008) found more power associated with IRT procedures, especially when 
the lack of invariance or differential item functioning (DIF) was generated 
in thresholds (uniform DIF); However  Stark, Chernyshenko, and Drasgow 
(2006) concluded more power for the MACS procedure. One of the reasons 
for these results may be the model used in data generation. The first two 
studies generated data from the IRT logistic models, and the last study 
generated data from continuos linear model.  

There are few studies have analyzed the power in detecting 
measurement invariance using the common factor linear model for 
categorical outcomes.  French and Finch (2006)  studied the power and 
Type I error associated to the evaluation of measurement invariance on 
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loadings with dichotomous items in multidimensional data. Using chi-
square difference tests as criteria for evaluating measurement invariance  
their  findings showed  very low power in detecting differences in loadings 
(in the best condition the power doesn’t reach  20%). Finch and French 
(2007) evaluated factorial invariance  in an unidimensional dichotomously 
scored test by generating DIF on discrimination parameter. Even when the 
magnitude of DIF was big (0.6) the power didn’t reach the 60% test  This 
lack of power related with loadings  was also reported by using models for 
continuous outcomes (Meade and Lautenschlager, 2004a). However there is 
not works analyzing the power of models for ordered data with  
unidimensional and polytomous data  and it is clear we need studies about 
this issue (Millsap, 2005). Studies of this kind are important in order to 
evaluate the effectiveness, applicability and possible deficiencies of the 
model for categorical outcomes. 

 

 

Table 1. Invariance models for continuous data 
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With no more studies designed to assess the power and Type I errors 
associated to models for ordered outcomes  we wanted to study this issue 
using a simulation that breaks some new ground in the field of measurement 
invariance. Our works extended French and Finch’s (2006) research in 
several aspects; a) we simulated data for ordinal items with three response 
categories; b) we simulated non invariance in loadings and thresholds; c) we 
studied the effect of impact or different latent means for groups on the 
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detection of measurement invariance, and finally d)  we compared three 
criteria for evaluating measurement invariance; CFI difference tests, chi-
square difference tests, and the Bonferroni correction.  

To achieve this goal we started with a description of the model for 
ordered outcomes and the description of how the factorial invariance can be 
assessed. 

 

Ordered-categorical models.  

The common factor linear model for categorical outcomes is one 
extension of the common factor linear model for continuous data. Basically, 
it is assumed that the observed score (Yij) is determined by unobserved 
scores on the latent response variables (Y*

ij). Those latent variables are 
continuous, and so, the observed measures can be viewed as discretized 
versions of the latent responses variables. This discretization depends on the 
latent threshold parameters (τ). 

Let Yij be the score on the jth categorical measures for the ith person, 
and let c the number of response categories:  

(2)    Yij = m  if  τm-1 ≤ Y
*
ij < τm 

Where m = 1, … C,  and [τj0, τj1, …τjC] are latent thresholds 
parameters for the jth variables. The thresholds partition the range y* into C 
categories. The thresholds are therefore ordered, τ0    <τ1    <τC, where τ0 = -∞ 
and τC = +∞ , and they may differ across variables.  

Given that the observed score Yij is assumed to be determined by 
unobservable latent continuous variable Y*

ij. (we consider by simplicity the 
unidimensional model), we can  write  

(3)     *
ij j ij ijY jν λ η ε= + +   

Where ν is the intercept of the regression, λ is the factor loading or 
regression coefficient, ηi is the factor variable, and εi is the residual term. 
This equation is equivalent in the continuous linear model (Jöreskog, 1971)  

It is possible to represent the arithmetical means and variance of the 
continuous latent response variable by means of structural parameters. 

(4)     
*

* 2

µ ν λα

σ λ ψ θ

= +

= +
 

For these equations, α is the mean of η, ψ  is the variance of η, and θ 
is the variance of the ε. Under this model the observed variable (Y) is 
modeled using the measurement parameters regarding the latent response 
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variable (Y*), and the thresholds parameter (τ), which determine the values 
of the categorical response variable.  

In this framework of common factor linear models for ordered 
categorical variables, the objective of this work was to investigate the 
power and Type I error rates for detecting a lack of measure equivalence (or 
differential item functioning in the framework of item response theory; 
Lord, 1980). In addition, we wanted to study the strategy for detecting DIF 
based on the likelihood ratio test. This is a common way to assess DIF in 
the framework of IRT (LR; Thissen, Steinberg, and Wainer, 1988), and 
also, we wanted to check different criteria for flagging DIF items. We used 
three different decision criteria: (a) the difference between two chi-square 
values tests belonging to nested models, (b) the Bonferroni correction, and 
(c) the difference in Bentler’s comparative fix index (CFI; Bentler, 1990) 
between two nested models. According to this criteria, an item was flagged 
for DIF when the difference between two nested models in the comparative 
fix index was greater than 0.01 (Cheung and Rensvold, 2002). 

METHOD 

Detecting of DIF 

The first step in the detection of DIF was testing the full invariance 
model. In this model all items parameters (thresholds and loadings) were 
constrained to be equal across groups1. This approach to assessing 
invariance is called the “constrained baseline approach”, which is the 
opposite of the “free-baseline approach” (Stark, Chernyshenko, and 
Drasgow, 2006). 

 For each of the items in the test, a different model was evaluated. In 
each model the parameters of the evaluated item were freely estimated in 
the focal group. For identification purposes, the loading of the first item was 
fixed to one. Since this item is not evaluated, it becomes the referent item 
(Lubke and Muthén, 2004).  

 For each item and for each sample replication, the chi-square 
difference test (without correction and with Bonferroni correction) and the 
CFI difference index were computed between both the invariance model 
and the item-free model. We made eight comparisons (one for every item) 
for each data replication (we did not evaluate the reference item). This 

                                                 
1 In this study, we followed the parameterization described by Lubke and Muthén (2004). 
We define E(η)=α=0 so that µ=ν. Since y* is a latent variable, its metric is not determined 
and it is, therefore, common to standardize to ν=0 between groups. 
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allowed us to analyze the power rates (correct detections) and false 
positives or Type I error rates. The power rate was defined by the number of 
times that the manipulated item was flagged across the replications. The 
Type I error rate was defined by the number of times that the non-DIF items 
were flagged across the replicas 

 An item was flagged for DIF if the difference in the chi-square 
values between two models was significant or the difference in the CFI 
index was greater than 0.01.  

 

Study Design 

The simulation study designed to assess the power and Type I error 
rate of linear models with categorical outcomes was made by defining and 
manipulating the following factors:  

1 - Sample size:  

Three sample sizes were selected for each group, reference group and 
focal group;  (a) 300, (b) 500, and (c) 1000. Each was chosen 
respectively to represent a small, medium, and large sample size used 
in empirical research. 

2 - Type of DIF:  

Two types of DIF were used, both (a) DIF on thresholds and (b) DIF 
on loadings. The first condition involved uniform DIF and was 
defined by adding one constant to the thresholds of the  DIF item in 
the focal group. Under equal loading, making focal group thresholds 
higher the item would be more difficult for focal group respondents. 
The second was the non-uniform DIF condition or DIF on loadings 
condition, where the factor loading of one item for the focal group 
was obtained by substracting a constant from the same item loading 
for the reference group. 

3 - Amount of DIF:  

Three levels of DIF were manipulated, (a) non-DIF (in these 
conditions the reference group and focal group loadings and 
thresholds parameters were set to be equal), (b) 0.25, and (c) 0.40. 
These values are the constant values that we added or subtracted to 
define the parameters for the focal group. We refer to these conditions 
as non dif, medium DIF, and large DIF.  

The difference in non invariant item parameters was consistent with 
previous simulation works (Meade and Lautenschlager, 2004a; French 
and Finch, 2006). 

 



 P. Elosua 410 

4 - Amount of impact:  

Two amounts of impact were examined, both (a) non-impact 
condition (the distribution of the reference group and the focal groups 
were set equal (NR(0, 1); NF(0, 1))) and (b) moderate impact (the 
mean of the focal groups was 0.5 standard deviations lower than the 
reference group (NR(0, 1), NF(-0.5, 1))). 

5 - Decision rule to flag DIF:  

Three rules were used to flag DIF items, (a) p=0.05 or Chi-square 
difference test without correction, (b) the Bonferroni correction, and 
(c) the CFI difference index. 

In total, 30 different conditions were fixed to generate data under DIF 
conditions. Six non-DIF conditions were defined and three decision rules 
were evaluated. For each condition, 100 sample replications were generated. 

 

Data 

Realistic values for the generation of data were obtained using the 
estimated parameters of the one self-concept scale, AFA-A (Musitu, Garcia, 
and Gutierrez, 1997). The scale is a four-dimensional measure of the self-
concept. For our purpose we used a unidimensional subscale composed of 
nine items with two thresholds. The use of scales with this number of items 
is common in psychological testing; we could cite for instance the different 
versions of the 16PF (Catell, 1989, 16PF-APQ; Schuerger, 2001). The 
response data were collected from 540 students (Elosua and López,  2008). 
The parameters used for the data generation can be found in Table 2. The fit 
of the data to the model was moderate (χ2 =76.20; df=24; CFI=0.89; 
RMSEA=0.06).  

In all conditions, the data were generated for two groups under a 
single-factor model with ordered outcomes. The model for the generation 
was the model implemented in Mplus3.11. The referent item for the model 
estimation was item 1, and the DIF item was number 9, the last item. Table 
1 shows the parameters used in the data generation. 

 

Analysis 

The analysis of the data was carried out using Mplus 3.11 (Muthén 
and Muthén, 2004) using weighted least squares estimation (WLS). When 
ordinal data are analyzed  weighted least squares (WLS) estimation 
(Muthén, du Toit and Spisic, 1997) is applied. That procedure  uses 
polychoric correlations among items and is  effective in estimating models  
with dichotomous and ordinal variables (Jöreskog, 1994).  
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Table 2. Item parameters for data generation 

 

Item 

Reference Group Focal Group 
DIF on λ DIF on τ 

λ τ1 τ2 
Medium High Medium High 

λ λ τ1 τ2 τ1 τ2 
1 0.50 -1.2 1.1 0.50 0.50 -1.2 1.1 -1.2 1.1 
2 0.21 -0.43 0.98 0.21 0.21 -0.43 0.98 -0.43 0.98 
3 0.44 -0.61 1.2 0.44 0.44 -0.61 1.2 -0.61 1.2 
4 0.50 -1.20 0.52 0.50 0.50 -1.20 0.52 -1.20 0.52 
5 0.55 -0.76 1.02 0.55 0.55 -0.76 1.02 -0.76 1.02 
6 0.70 -1.22 0.64 0.70 0.70 -1.22 0.64 -1.22 0.64 
7 0.35 -0.31 1.2 0.35 0.35 -0.31 1.2 -0.31 1.2 
8 0.37 -1.2 0.68 0.37 0.37 -1.2 0.68 -1.2 0.68 
9 0.56 -1.2 0.80 0.31 0.16 -0.95 1.05 -0.8 1.2 

+ote: Numbers in bold are DIF items parameters. 

 

 

 For each replication nine models were analyzed. The invariance 
model or constrained baseline model, was used as well as eight more 
models, one for each item. The results of the analysis were extracted using 
R (Ihaka and Gentleman, 1996) , and the chi-square differences (without 
correction and Bonferroni corrected) and the CFI index difference were 
computed for each item in each replication in all evaluated conditions.  

RESULTS 

Tables 3, 4, and 5 show power and Type I error results for the 
analysis. Power represents the proportion of correctly flagged items across 
100 replications in each condition. Type I error represents the proportion of 
times that no-DIF items were erroneously flagged. Note that this proportion 
was estimated across the replications and across all of the no-DIF items. We 
estimated the differences between nested models for each of the items 
belonging to the tests (DIF-item, rest of the items) and the baseline model 
(constrained model). The first item of the test was excluded from the 
analysis, which was fixed to one for identification purposes. 

 

+o-DIF condition 

Table 3 presents the results for the no-DIF condition. The values in 
the table are the Type I error estimates for this condition. The column 
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labeled with p=0.05 represents the values obtained by the difference 
between two chi-squares belonging to two nested models (invariance or 
constrained model versus “item free” model). These values were extremely 
big, ranging from 0.07 to 0.17. All were found to be greater than the 
nominal level. Even in the large sample condition, the reported value was 
0.07. The Bonferroni correction reduced the percentage of false positives in 
all evaluated conditions. This correction eliminated Type I error, and all the 
values were below 0.03, even in the impact conditions. The CFI difference 
index showed the best control of the Type I error under all evaluated 
factors. Its value under the worst condition (small sample and impact) was 
0.008. It is remarkable that neither the Bonferroni correction criteria nor the 
CFI difference index were influenced by the presence of distributional 
differences between groups. 

 

 

Table 3. Type I error rates for no-DIF conditions 

 

Impact 
Sample 
Size 

p=0.05 Bonferroni CFI 

None 300 0.16 0.03 0.004 
 500 0.11 0.02 0.001 
 1000 0.07 0.01 0.000 
Impact 300 0.17 0.03 0.008 
 500 0.12 0.02 0.004 
 1000 0.07 0.01 0.000 

 

 

 

DIF in thresholds 

Power. (See table 4). The power of the evaluated three criteria was 
excellent in the high DIF condition (DIF 0.40). The rate was 1.00 for the 
chi-square difference in the presence or absence of impact. This rate was 
slightly reduced for Bonferroni correction and CFI differences in the 
condition of impact and small sample size, but still remained close to 1.00 
(0.98 and 0.95, respectively).  

When the amount of DIF was smaller, say 0.25, the performance of 
the evaluated criteria was a little different. The power increased as the 
sample size increased. Under the non-impact condition, the performance of 
the chi-square difference was close to 1.00, even in the small sample size 
condition (0.95). The rates are slightly reduced when the Bonferroni 
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correction was applied. In this case the power for detecting DIF in small 
sample was 0.82, and increased when the sample size was medium (0.93). 
This pattern was followed also by the CFI difference index, but the power 
for this index was a little smaller. The values ranged from 0.64 in the small 
sample to 1.00 in the big sample condition, with a value of 0.74 for the 
medium sample condition. 

When distributional differences were introduced in the analysis, the 
detection of power decreased. Under high DIF conditions all the indexes 
showed good behaviors. When the amount of DIF was 0.25 and the sample 
size was small, the power showed by CFI was only 0.62. This value 
increased to 0.72 in the medium size sample condition and raised to 0.77 
when the sample was 1000. The power associated with Bonferroni 
corrections was not high when the size of group was small (0.76). In the 
medium sample size condition (N=500), the power was above 0.90 for the 
factor of a medium amount DIF and there was maximum power in the high 
DIF condition.   

 

Type I error. (see table 4).  The Type I error rates for the chi-square 
difference test was inflated in all conditions. It ranged from 0.14 to 0.28. 
These values increased as the amount of DIF increased. The use of the 
Bonferroni corrections, which is a stricter criterion for flagged items, 
reduced the Type I error. All the values reported were closed to 0.05, 
ranging from 0.04 to 0.09. They were not influenced by the presence of 
impact. The CFI difference showed values close to 0 in all conditions. This 
index was not affected for the amount of DIF. Even when the sample size 
was small (N=300), this index did not exceed the value of 0.02. 

 

DIF in loadings 

Power. The results of assessing non-uniform DIF are presented in 
Table 5.  The three decision criteria correctly flagged the DIF items when 
the amount of DIF was 0.40. Only for the impact condition with a small 
sample size did the power of the CFI not reach the maximum value (this 
value was 0.94). When the amount of DIF was 0.25 the power rates 
increased as the sample size increased. For the large sample size, the chi-
square difference tests (with correction and without correction) correctly 
flagged the DIF items. The power rate of the CFI difference index for this 
condition was 0.91. When the sample size was N=500, the rates related with 
the chi-square tests were good, bigger than 0.95 in all conditions (with 
correction, without correction, and under impact condition). These values 
were reduced when the sample size was 300. In this condition and the 
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without impact condition, the difference without correction showed 0.98 
power rate and the Bonferroni correction detected DIF 84 percent of the 
time. These values were smaller when distributional differences were 
present in the data. Under this adverse condition, the non-corrected chi-
square power rate was 0.89, and the corrected rate was 0.78. The CFI 
difference index showed power rates smaller than the chi-square tests. The 
rates ranged from 0.78 to 0.91 for the equal ability distribution condition. 
These values decreased (0.64 to 0.89) in the presence of impact. 

 

 

Table 4. Power and Type I error rates for DIF in thresholds 

 
   Power Type I Error 

Impact 
Sample 
Size 

Amount 
DIF 

p=0.05 Bonferroni CFI p=0.05 Bonferroni CFI 

Non 300 Medium 0.95 0.82 0.64 0.20 0.07 0.02 
  High 1.00 1.00 1.00 0.23 0.09 0.02 
 500 Medium 0.99 0.93 0.74 0.17 0.04 0.003 
  High 1.00 1.00 1.00 0.22 0.07 0.008 
 1000 Medium 1.00 1.00 1.00 0.16 0.04 0.001 
  High 1.00 1.00 1.00 0.28 0.06 0.001 
         
Impact 300 Medium 0.95 0.76 0.62 0.22 0.05 0.01 
  High 1.00 0.98 0.95 0.27 0.08 0.03 
 500 Medium 0.99 0.90 0.72 0.16 0.03 0.005 
  High 1.00 1.00 1.00 0.23 0.07 0.005 
 1000 Medium 1.00 1.00 0.77 0.14 0.05 0.00 
  High 1.00 1.00 1.00 0.23 0.08 0.00 

 

 

 

The effect of the distributional difference between groups was bigger 
in the condition of small group (N=300) and medium DIF (0.25). In these 
cases, we reported values from 0.64 for the CFI index, 0.78 for the 
Bonferroni correction, and 0.89 for the no correction chi-square. This 
pattern was found also when the size of the groups was N=500. When the 
amount of DIF was big (0.40), the power was not influenced by the impact. 
The effect of the non equal distributions was bigger in the small sample 
conditions. The detection rule with less power was the CFI difference index. 
This index was close to 1.0 when the amount of DIF was big, but was 
reduced when the amount was 0.25.  
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Type I error. The Type I error control was not good for the chi-square 
difference test. The values ranged from 0.10 to 0.34. The inflated error was 
drastically reduced by the Bonferroni correction. For this index, when the 
sample size was medium (N=500) or high (N=1000), the values were below 
0.05. When the sample size was small (N=300), those values were slightly 
bigger (0.08 and 0.11). Those values increased with the amount of DIF 
increased. The CFI difference index showed the best control of the Type I 
error. The obtained values were close to 0. Even in the worst condition 
(small sample, medium DIF, and impact) we reported a value of 0.06. We 
did not observe any influence of the impact over this index. 

 

 

Table 5. Power and Type I error rates for DIF in loadings 

 
   Power Type I Error 

Impact 
Sample 
Size 

Amount 
DIF 

p=0.05 Bonferroni CFI p=0.05 Bonferroni CFI 

Non 300 Medium 0.98 0.84 0.78 0.23 0.08 0.03 
  High 1.00 1.00 1.00 0.34 0.11 0.02 
 500 Medium 0.98 0.96 0.78 0.14 0.04 0.01 
  High 1.00 1.00 1.00 0.17 0.04 0.008 
 1000 Medium 1.00 1.00 0.91 0.10 0.01 0.00 
  High 1.00 1.00 1.00 0.10 0.02 0.00 
         
Impact 300 Medium 0.89 0.78 0.64 0.26 0.07 0.06 
  High 1.00 1.00 0.94 0.25 0.09 0.03 
 500 Medium 0.97 0.96 0.73 0.16 0.04 0.005 
  High 1.00 1.00 1.00 0.25 0.11 0.009 
 1000 Medium 1.00 1.00 0.89 0.11 0.02 0.00 
  High 1.00 1.00 1.00 0.12 0.03 0.00 

 

DISCUSSIO+ 

Tests and questionnaires to measure attitudes or personality usually 
use Likert or ordered-categorical response format, but they are analyzed 
using models that assume the continuous character of those variables. There 
are very important studies describing those models, but the literature does 
not have a lot of work about using them to test measurement invariance. 
The aim of this work was to assess the power and Type I error rates in 
detecting ME using one factor linear model for ordered categorical items. 
There are other works that analyze the effectiveness of the continuous linear 
models in detecting DIF (Meade and Lautenschlager, 2004b; Oort, 1998; 
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Raju, Laffite, and Byrne, 2002; Stark, Chernyshenko, and Drasgow, 2006), 
but the literature has not paid much attention to the use of the ordered 
categorical models (French and Finch, 2006). However, several works 
warned about the threats of using the continuous model in categorical or 
Likert type data (Millsap and Yun-Tein, 2004; Lubke and Muthén, 2004). 
The continuous and ordered models are not equivalent. The latter includes 
thresholds, which are inherent to Likert type data, but using a continuous 
linear model is not possible to assess its equivalence between groups. 
Theoretically, the ordered categorical models should be preferred, but this is 
not what is found in the applied context. The researchers used continuous 
linear models to analyze Likert type data although they were violating the 
condition of multivariate normality. 

We wanted to add one point to the literature about ordered-categorical 
models and to show the utility of this model in assessing measurement 
invariance. We simulated several conditions, varying the sample size, type 
of DIF, amount of DIF, and presence of impact. We used a strategy named 
the “constrained baseline model” (Stark, Chernyshenko, and Drasgow, 
2006), and we used three different indexes for evaluating power and Type I 
error rates. Under this strategy and evaluated conditions, the power of DIF 
detection using chi-square test was very good, but these criteria did not 
control the Type I error. The results suggested the need to use more 
restrictive criteria in flagging items. The use of Bonferroni correction 
showed very good control of the false positives and its power was close to 
1.00 in all conditions. Only when the sample size was small (N=300) and 
the amount of DIF medium (0.25; uniform and non uniform), did the power 
not reach a value of 0.90. The use of the CFI difference index also reduced 
the false positives, even more than Bonferroni correction. The power rates 
of this index were slightly less than with the Bonferroni corrections, 
especially in presence of impact and medium amount of DIF. When the 
amount of DIF is big, the power of the CFI is close to 1.00. Although this 
index is slightly more conservative than Bonferroni correction, its 
characteristics turns it into a very good practical criterion for the detection 
of DIF. 

The results reported in this study confirm the adequacy of the 
common factor model for ordered categorical data in assessing DIF. Those 
results are not concordant with the findings from French and Finch’s 
(2006). They worked with multidimensional dichotomous data, different 
sample sizes and percentages of DIF bigger than we defined in this study.  
The number of indicators for factors was also different; they defined two 
conditions with 3 and 6 indicators whereas we worked with 9, which is a 
number extracted from real data. The works were different in a lot of 
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aspects so more studies would be need in order to evaluate the effect of each 
of the factors on the final results. 

Of course, our work had several limitations. Maybe one of the most 
important was the definition of only one DIF item in the test. Although 
most of the works assessing DIF in polytomous items use this design 
(French and Miller, 1996; Kristjanssson, Aylesworth, Dowell, and Zumbo, 
2005; Spray and Miller, 1994; Zwick, Donogue and Grima, 1993; Zwick, 
Thayer and Mazzeo, 1997), it is difficult to assume than only one item 
presents DIF in practical situations. The detection of DIF when more than 
one item is functioning differently in two groups adds another important 
aspect to the problem of assessing DIF using the difference of fit between 
nested models, which is the definition of the baseline model. The strategy 
that we used consisted of comparing nested models: one baseline model 
against one model with one item parameters free. This strategy was 
evaluated for all items that were components of the test (except for the 
referent item). This way of assessing DIF is followed by one of the most 
popular IRT approaches, the Likelihood Ratio test (LR). The basis of the 
LR method is similar to the procedure described in this paper (Cohen, Kim, 
and Baker, 1993; Thissen, 1991; Thissen, Steinberg, and Wainer, 1998). 
The LR compares nested models, wherein parameters are fixed or free. The 
baseline model is defined by constraining the parameters for all items. 
Different models are formed by freeing the parameters for the evaluated 
item, one at time. Then, the variation in G2 is evaluated. Recent works have 
shown that it would be more statistically correct (Maydeu-Olivares and Cai, 
2006) to use the baseline free model. This idea would be more important in 
the conditions where more than one item had DIF.  

 In this work we used WLS estimation which performs well with 
dichotomous and ordinal variables (Jöreskog, 1994).  However robust 
weighted  least squares (RWLS) estimation is being recommended by some 
authors (Muthén, du Toit and Spisic, 1997;  Finney and DiStenfano, 2006; 
Beauducel and Herzberg, 2006; Flora and Curran, 2004) . WLS requires the 
weight matrix to be positive definite because the weight matrix is inverted 
as part of the estimation procedure, and when small samples are used WLS 
can lead to estimation problems.  RWLS use the diagonal matrix and the 
estimates are reasonably stable even with small samples (N=100). In this 
simulation we didn’t have converge problems, but would be interesting to 
evaluate the results using RWLS.   

Also, it would be convenient to follow in this line of work and extend 
the study in different ways. It would be very interesting to assess the 
similarities and dissimilarities between the linear continuous and linear 
ordered models in the study of invariance. Even using ordered linear 
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models, we found two different approaches depending on which software 
was used. Two of the most implemented software packages, LISREL 
(Jóreskog and Sörbom, 1993) and Mplus (Muthén and Muthén, 2004), used 
different baseline models and different parameterization in the definition of 
the invariance for ordered categorical data (Millsap and Yun-Tein, 2004). 
Another issue that remains important is the comparison between these 
models and the item response theory models. The work that compares those 
two approaches (Meade and Lautenschlager, 2004a, 2004c; Raju, Laffite, 
and Byrne, 2002; Stark, Chernyshenko, and Drasgow, 2006) used the 
continuous model. It would be interesting to have more information 
regarding those two models (linear/non linear) which are designed to model 
the ordered categorical responses. In summary, the results reported were 
good and promising under the simulated condition, and so we can say that 
the common factor model for ordered responses can be successfully used to 
analyze invariance between groups. 

RESUME+ 

Equivalencia métrica en datos categóricos ordenados. La invarianza 
factorial  estudia de la equivalencia métrica en el marco del modelo lineal 
del factor común  por medio de la comparación de los parámetros del 
modelo de medida en los grupos de interés. Sin embargo cuando  se utilizan 
ítems dicotómicos, Likert o categorías de respuestas ordenadas  se viola la 
asunción referida al carácter continuo de las variables. Aunque existen 
modelos explícitos para este tipo de datos son muy escasos los trabajos que 
analizan su potencia y error Tipo I en el estudio de la invarianza factorial. 
Por medio de simulación Montecarlo este trabajo analiza la potencia y error 
tipo I asociados a la detección de la invarianza factorial en un diseño que 
manipula cuatro factores; tamaño de la muestra (300, 500 y 1000), tipo de 
DIF (umbrales, pesos), cantidad de  DIF (0,25, 0,40), y presencia de 
impacto. Los parámetros de generación de datos provienen de una escala 
unifactorial compuesta por  9 indicadores  con 3 categorías de respuesta 
ordenada. La presencia/ausencia de invarianza se evaluó utilizando tres 
criterios  : a) significación de la diferencia entre valores chi-cuadrado de 
modelos anidados, b) la significación de la diferencia entre valores chi-
cuadrado de modelos anidados aplicando la corrección Bonferroni, y  c) la 
diferencia entre los valores del Índice Comparativo de Ajuste (CFI) entre 
modelos anidados. Los resultados mostraron un buena potencia y control de 
falsos positivos asociados a la diferencia entre CFIs y a la corrección 
Bonferroni.  
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