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The purpose of the present study was to compare the Type I error rate and 
power of two model-based procedures, the mean and covariance structure 
model (MACS) and the item response theory (IRT), and an observed-score 
based procedure, ordinal logistic regression, for detecting differential item 
functioning (DIF) in polytomous items. A simulation study was employed in 
which polytomous data with five ordered categories were generated using 
Samejima's graded response model under three crossed factors: sample size 
per group (300-, 500-, and 1,000-examinees), type of DIF (b-parameter, a-
parameter, and a- and b-parameter DIF), and magnitude of DIF (small and 
large magnitudes of DIF). The Type I error rate was inflated for IRT based 
tests and ordinal logistic regression when some of the items contained DIF. 
For the uniform DIF conditions, MACS and IRT exhibited similar power 
rates; however, ordinal logistic regression exhibited slightly higher power 
compared to the other two methods for smaller sample sizes. Lastly, for non-
uniform DIF, IRT exhibited much more power compared to MACS and 
ordinal logistic regression. 

 

Measurement invariance plays a crucial role in interpreting test scores 
appropriately for individuals from different populations (Raju, Laffitte, & 
Byrne, 2002). Measurement equivalence or invariance is satisfied across 
groups (e.g., language, race, cultural, gender, etc.) if persons with the same 
level of proficiency on the latent variable (measured variable) have the 
same expected raw score in the observed variable at the item or test score 
level (Drasgow & Kanfer, 1985). One way of assessing measurement 
invariance is to examine whether the items are functioning differentially 
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(DIF) between the groups of interest. An item exhibits DIF if the probability 
of answering an item correctly or responding to a particular category differs 
for individuals from different groups but with the same level of proficiency.  

Most of the research to date has examined the detection of DIF for 
cognitive and psychological assessments and questionnaires that use 
dichotomous items. However, the use of polytomous items is common in 
the psychological and educational assessment. Although there are some 
interesting papers about the detection of DIF in polytomous data (French & 
Miller, 1996; Kristatkansson, Aylesworth, McDowell, & Zumbo, 2005; 
Spray & Miller, 1994; Zwick, Donogue & Grima, 1993), the level of 
development regarding the detection procedures for polytomous items has 
not been widely studied. The purpose of the present paper was to examine 
several methods for detecting DIF for polytomous items that are often used 
on psychological or educational assessments. 

 
DIF Detection Methods 
DIF statistics may be classified as either latent model-based or 

observed-score based. Latent model-based procedures rely on fitting a latent 
variable model to the data in which the relationship between the item 
response and underlying latent variable is defined.  There are two general 
types of model-based procedures: linear and non-linear. An example of a 
linear model-based procedure is the mean and covariance structure model 
(MACS; Sörbom, 1974). In MACS, a factor linear model is fit to the data 
for each group in which the relationship between the item response and 
latent variable is assumed to be linear; measurement invariance is assessed 
by comparing the factor loadings (i.e., non-uniform DIF) and item 
thresholds (i.e., uniform DIF) for each item between two or more groups. 
For non-linear model based procedures, an item response theory (IRT; 
Embretson & Reise, 2000; Hambleton, Swaminathan, & Rogers, 1989; 
Lord, 1980) model is fit to the data for each group in which the relationship 
between probability of responding to a particular category and the latent 
variable is described; DIF is assessed by comparing the item parameters (a-
parameter for non-uniform DIF, and b-parameter for uniform DIF) between 
the two groups.  

Observed-score based procedures focus on examining the relationship 
between item performance and observed scores, often based on total scores.  
Examples of observed-score based procedures are the Mantel-Haenszel 
procedure (Mantel, 1963; Potenza & Dorans, 1995), logistic regression 
(Swaminathan & Rogers, 1990) and discriminant logistic regression (French 
& Miller, 1996). The advantages of observed-score methods is that they do 
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not rely on a measurement model to fit the data and they do not require 
parameters within a measurement model to be estimated.  

 
Previous Research 
Several studies have compared the MACS approach, which uses a 

linear factor analytic model, with IRT-based methods that use a nonlinear-
model (see Raju, Laffitte, & Byrne, 2002; Meade & Lautenschlager, 2004; 
Stark, Chernyshenko & Drasgow, 2006). Meade and Lautenschlager (2004) 
provided a detailed comparison of the likelihood-ratio test within IRT and 
MACS1 that included a simulation study that examined the Type I error rate 
and power of both methods. Polytomous item responses were generated 
using Samejima’s GRM under conditions that varied with respect to type of 
DIF (uniform and non-uniform DIF) and sample size. The authors found 
that MACS was unable to detect uniform or non-uniform DIF at the item-
level whereas the IRT-based method detected both types of DIF.  

 Kim and Yoon (2011) compared multiple-group categorical CFA 
(MG-CFA) to the likelihood-ratio test in IRT in detecting measurement 
invariance in simulating data. Ordered categorical item responses 
(dichotomous and polytomous) were generated using the MG-CFA model 
for various sample sizes and sources of DIF. The MG-CFA was 
implemented using a backward procedure where the chi-square difference 
tests were compared to a fully invariant baseline model. The Type I error 
and power rate were compared across the two models. A Dunn-Bonferroni 
correction was employed to control the overall Type I error rate. The 
authors found that the likelihood-ratio test exhibited better Type I error rate 
control compared to the MG-CFA approach. Both methods exhibited 
similar power rates. However, because power is conditional on controlling 
the Type I error rate, it is questionable to interpret the detection of DIF 
items using the MG-CFA model as power since it exhibited inflated Type I 
error rates.  

 Stark, Chernyshenko, and Drasgow (2006) compared MACS and the 
IRT on detecting DIF for dichotomous and polytomous item responses 
across various types and amount of DIF, sample sizes, and latent mean 
differences. Contrary to Meade and Lautenschlager (2004), Stark et al. 
(2006) found that MACS was able to detect uniform DIF. The differences 
illustrated in these two studies may be related to the way MACS was 
implemented. Meade and Lautenschlager (2004) used a constrained-

                                                
1 Meade and Lautenschlager used the terminology confirmatory factor analysis with latent 
means and intercepts. MACS are included within such models. 
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baseline model approach whereas Stark et al. (2006) used the free-baseline 
model approach. Another important difference between Meade and 
Lautenschlager (2004) and Stark et al. (2006) is that the latter study used a 
linear common factor model to generate the item responses instead of 
Samejima’s GRM. In this study, we will be using Samejima's GRM to 
simulate the item responses and the free-baseline approach to testing 
measurement invariance. 

 While the model-based approaches such as MACS and IRT are 
useful for examining DIF and measurement invariance, they are limited by 
the fact that a measurement model must fit the data and that a sufficient 
sample size is required to estimate the model parameters. Therefore, 
observed-score based methods such as logistic regression and Mantel-
Haenszel are attractive alternatives because they do not implement a 
measurement model to detect DIF. Furthermore, many of the observed-
score based methods provide an effect size (e.g., pseudo-R2 for logistic 
regression) that may be used to judge the magnitude of DIF.  

 The purpose of the present study was to compare the Type I error 
rate and power of three approaches for the DIF detection using data 
generated under Samejima’s GRM: IRT, MACS, and ordinal logistic 
regression. We chose the model-based approaches in order to delve deeper 
into the similarities and differences between them when the data are 
polytomous. Ordinal logistic regression was selected because it is flexible 
and also the most general form of the contingency tables and generalized 
linear modeling approaches to DIF detection (Zumbo & Hubbley, 2003). A 
secondary purpose of the study was to provide practitioners guidance about 
which method is most effective and useful for detecting DIF. 

METHOD 
Study Design 
A Monte Carlo simulation study was conducted to examine the Type I 

error and power rates of the MACS, likelihood-ratio test, and ordinal 
logistic regression in detecting DIF for polytomous data. Polytmous item 
response data were generated using Samejima’s GRM to represent a test 
with 15 items, each comprised of five categories (e.g., Likert-type items). 
The test length of 15 items was selected according to the number of items 
that are often observed on personality inventories (e.g., 16PF, Cattell’s 
Personality Inventory). The generating item parameter values, reported in 
Table 1, were obtained from real data from an actual personality inventory. 
The data were generated for two groups, a reference and focal group. The 
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generating item parameter values for items 1 to 3 shown in Table 1 were 
altered to generate DIF for the focal group. 

 
 

Table 1. Generating Item Parameter Values. 
 

Item α  1β  2β  3β  4β  
1 1.35 -2.59 -1.18 0.18 2.01 
2 1.10 -2.29 -0.46 1.04 3.14 
3 0.37 -2.74 0.44 3.71 8.36 
4 0.61 -2.80 -1.13 0.28 4.52 
5 2.32 -2.12 -0.73 0.40 1.81 
6 1.86 -1.48 -0.61 0.38 1.91 
7 1.72 -1.68 -0.57 0.71 2.25 
8 1.54 -1.62 -0.93 0.08 1.41 
9 1.74 -2.08 -0.66 0.41 1.87 
10 1.47 -2.50 -0.77 0.48 2.37 
11 0.91 -3.85 -1.85 -0.30 2.28 
12 1.26 -1.65 -0.07 1.31 3.17 
13 2.33 -1.82 -0.73 0.15 1.40 
14 2.10 -1.84 -0.61 0.60 2.07 
15 1.50 -1.60 -0.91 0.04 1.40 

 
 
 
 The data were generated under three crossed factors: sample size per 

group (300-, 500-, and 1,000-examinees), type of DIF (b-parameter, a-
parameter, and a- and b-parameter DIF), and magnitude of DIF (small and 
large magnitudes of DIF). The three sample sizes were chosen to represent a 
small, medium and large sample size used in empirical research in 
psychology. The three types of DIF were selected to represent uniform and 
non-uniform DIF. Small and large magnitudes of DIF were selected to 
examine the power rates for each DIF detection method across realistic 
magnitudes of DIF. For the small magnitudes of DIF, the a- and b-
parameter values for the focal group were altered by 0.25. For the large 
magnitudes of DIF, the a- and b-parameter values were altered by 0.40 and 
0.50, respectively. In addition, a non-DIF condition was examined in which 
the generating item parameter values for the focal and reference group were 
identical. Therefore, data were generated for 21 conditions: 3 sample sizes 
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X 3 types of DIF X 2 magnitudes of DIF plus 3 sample sizes for the non-
DIF condition. For each condition, 100 replications were performed. The 
proficiency parameters were sampled from the standard normal distribution 
for the reference and focal groups, ~ (0,1)Nθ .  

 
DIF Detection 
MACS.  To evaluate measurement invariance, multiple group 

confirmatory factor analysis (MG-CFA) is typically performed, as well as 
the computation of the chi-square difference test for nested models. The 
first step in the detection of DIF is to define the baseline model which is 
referred to as the free model. To test the invariance for item i, the factor 
loading associated with item i is constrained to be equal between the 
groups.  The fit of this new model is then compared to the fit of the free 
baseline model by taking the difference in chi-square fit statistics. If the 
model with the additional constraint fits significantly worse than the free 
baseline model, then item i is considered to function differentially between 
the groups. The degrees of freedom equal the difference in degrees of 
freedom between the two models which equals the number of parameters 
being compared. For each item and for each sample replication, one chi-
square difference test was computed between both the baseline model and 
the item-constrained model. We made one comparison for every item for 
each data replication, excluding the reference item (for identification 
purposes, the 15th item was defined as the reference item; Lubke & Muthén, 
2004). The MACS procedure was implemented using Mplus 5.0 (Muthén & 
Muthén, 2005) via ML estimation. 

 
Ordinal logistic regression. The ordinal logistic regression was 

implemented using proportional odds ordinal logistic regression via 
maximum likelihood estimation. The analyses were performed using the 
lrm function within the software package R. The matching variable was 
defined as the total score obtained by summing all the individual items. 
Each item was evaluated for DIF by comparing the fit of two models. The 
first model was the baseline model, which only included one predictor, the 
total score. The second model included as predictors the total score plus two 
additional parameters, the grouping parameter and the interaction between 
group and observed score. After estimating both models the difference 
between the -2Log Likelihood from the model with more parameters and 
the model with less parameters was used to evaluate if the fit was better 
when information on the group was included in the model. This difference 
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is a likelihood ratio test 2
LG  which is distributed as a χ2 with degrees of 

freedom equal to the difference in the number of parameters estimated in 
the compact model and augmented model (i.e., df = 2). 

 
IRT. The likelihood-ratio (LR) test is one of the more popular IRT 

procedures for detecting DIF due to its control of Type I error rate and 
acceptable power rates (Thissen, Steinberg, & Gerrard, 1986; Thissen, 
Steinber, & Wainer, 1988). In addition, the LR test can be used to detect 
uniform and non-uniform DIF independently. The LR test essentially 
compares the fit of a compact and augmented model to test for DIF between 
a reference and focal group. The compact model constrains the parameter 
values to be equal between the reference and focal groups (i.e., assumes no 
DIF is present). The augmented model allows the parameter values for one 
item (or a set of items) to be freely estimated in each group, constraining the 
remaining items to be equal between groups. DIF is assessed by comparing 
the overall fit of both models. If the item being tested contains DIF (i.e., the 
parameter values are not equal between the groups), then the overall fit for 
the augmented model will be much better than the overall fit for the 
compact model. The overall fit of the respective model is provided by -2 
times log likelihood (-2 Log L). The IRT likelihood ratio test was 
implemented using the computer program IRTLRDIF v. 2.0 (Thissen, 
2001).  

 
Data Analysis 
An item was flagged for DIF if the difference of the chi-square values 

between two models was significant using an alpha level of 0.05. The 
empirical Type I error rate was defined by the proportion of non-DIF items 
that were flagged across replications. The empirical power rate was defined 
by the number of times that the manipulated (i.e., DIF) item was flagged 
across replications.  

RESULTS 
Non-DIF Conditions 
Table 2 reports the Type I error rate for the non-DIF condition (i.e., 

no items were generated to exhibit DIF). The three statistics did not exhibit 
inflated Type I error rates across the three sample sizes.  
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Table 2. Type I Error Rate for Non-DIF Conditions. 
 

 
Sample Size 

 
MACS 

 
IRT 

Logistic 
Regression 

N=300 0.02 0.06 0.05 
N=500 0.03 0.05 0.05 

N=1,000 0.04 0.05 0.06 
 
 
 

Uniform DIF (b-parameter) 
Table 3 reports the Type I error rate when uniform DIF was present 

for items 1 to 3. The Type I error rate was based on the detection rate for 
items 4 to 15 (i.e., those not simulated to exhibit DIF). MACS appeared to 
exhibit controlled Type I error rates whereas logistic regression exhibited 
noticeably inflated Type I error rates for the large magnitude of DIF 
conditions with N=500 and N=1,000. The Type I error rate for the 
likelihood-ratio test also appeared to be slightly influenced by the 
magnitude of DIF. It is likely that the presence of DIF contaminated the 
covariate (i.e., total score) in logistic regression that was used to match the 
reference and focal groups. For the likelihood-ratio test, the presence of DIF 
negatively influenced the concurrent calibration. The reason MACS did not 
suffer an inflated Type I error rate was likely because the reference item 
was not simulated to exhibit DIF. 

 Table 4 reports the empirical power rates for detecting uniform DIF. 
The cells corresponding to conditions in which the Type I error rate was 
noticeably influenced are X-ed out since power is conditional on controlling 
the Type I error rate. For conditions in which the Type I error rate was 
controlled, logistic regression exhibited slightly more power in detecting 
uniform DIF compared to MACS and the likelihood-ratio test. MACS and 
the likelihood-ratio test were comparable across the conditions. 

 
Non-uniform DIF (a-parameter) 
Table 5 reports the Type I error rate when non-uniform DIF was 

present for items 1 to 3. The Type I error rate was based on the detection 
rate for items 4 to 15 (i.e., those not simulated to exhibit DIF). Each statistic 
procedure exhibited controlled Type I error rates when some of the items 
exhibited non-uniform DIF. It is interesting that although the presence of 
uniform DIF had a negative influence on the Type I error rate, non-uniform 



Detecting DIF in Polytomous Items 335 

did not appear to negatively influence the covariate in logistic regression or 
linking procedure (i.e., concurrent calibration) used in the likelihood-ratio 
test. 

 
 

Table 3. Type I Error Rate in the Presence of Uniform (b-parameter) 
DIF. 
 
  Magnitude 

of DIF 
 

MACS 
 

IRT 
Logistic 

Regression 
 N=300 Small 0.05 0.06 0.03 
  Large 0.04 0.06 0.08 
Sample 
Size 

N=500 Small 0.04 0.05 0.07 

  Large 0.04 0.08 0.12 
 N=1,000 Small 0.04 0.06 0.09 
  Large 0.03 0.09 0.21 
 
 
 
 
Table 4. Power Rates for Detecting Uniform (b-parameter) DIF. 
 
  Magnitude 

of DIF 
 

MACS 
 

IRT 
Logistic 

Regression 
 N=300 Small 0.20 0.22 0.24 
  Large 0.59 0.62 0.64 
Sample 
Size 

N=500 Small 0.28 0.31 0.37 

  Large 0.72 0.72 0.75 
 N=1,000 Small 0.51 0.52 0.57 
  Large 0.80 0.74 0.76 
Cells where the Type I error rate was inflated have been X-ed out. 
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 Table 6 reports the power rates for detecting non-uniform DIF 
(items 1 to 3). It was apparent that the likelihood-ratio test exhibited far 
more power in detecting non-uniform DIF compared to MACS and the 
logistic regression procedure. Even in the small magnitude DIF conditions, 
the likelihood-ratio test exhibited considerable power. MACS and logistic 
regression exhibited comparable power across the conditions. 

 
 

Table 5. Type I Error Rate in the Presence of Non-uniform (a-
parameter) DIF. 
 
  Magnitude 

of DIF 
 

MACS 
 

IRT 
Logistic 

Regression 
 N=300 Small 0.04 0.05 0.04 
  Large 0.03 0.05 0.05 
Sample 
Size 

N=500 Small 0.03 0.06 0.04 

  Large 0.03 0.05 0.04 
 N=1,000 Small 0.04 0.05 0.05 
  Large 0.04 0.05 0.04 
 
 
 
 
Table 6. Power Rates for Detecting Non-uniform (a-parameter) DIF. 
 
  Magnitude 

of DIF 
 

MACS 
 

IRT 
Logistic 

Regression 
 N=300 Small 0.09 0.66 0.08 
  Large 0.08 0.98 0.10 
Sample 
Size 

N=500 Small 0.08 0.80 0.08 

  Large 0.13 1.00 0.11 
 N=1,000 Small 0.15 0.97 0.11 
  Large 0.21 1.00 0.16 
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Non-uniform DIF (a- and b-parameter) 
Table 7 reports the Type I error rate when the a- and b-parameter 

values differed between the reference and focal groups for items 1 to 3. The 
Type I error rate was based on the detection rate for items 4 to 15 (i.e., those 
not simulated to exhibit DIF). MACS appeared to exhibit controlled Type I 
error rates. Logistic regression exhibited noticeably inflated Type I error 
rates for the large magnitude of DIF conditions with N=500 and N=1,000 as 
well as the small magnitude of DIF conditions with N=1,000. The 
likelihood-ratio test exhibited inflated Type I error rates for the large 
magnitude of DIF condition with N=1,000. The observed inflated Type I 
error rates are not surprising considering the uniform DIF results where the 
Type I error rates were also inflated.  

 Table 8 reports the empirical power rates for detecting non-uniform 
DIF in which the a- and b-parameter both exhibited DIF. The cells 
corresponding to conditions in which the Type I error rate was noticeably 
influenced are X-ed out since power is conditional on controlling the Type I 
error rate. For conditions in which the Type I error rate was controlled, the 
likelihood-ratio test exhibited considerably more power than MACS and 
logistic regression; MACS and logistic regression exhibited comparable 
power for the same conditions. However, MACS exhibited controlled Type 
I error rate and reasonable power rates as the sample size increased 
(however, this was most likely because the reference item was not 
simulated to exhibit DIF). 

 
 

Table 7. Type I Error Rate in the Presence of Non-uniform (a- and b-
parameter) DIF. 
 
  Magnitude 

of DIF 
 

MACS 
 

IRT 
Logistic 

Regression 
 N=300 Small 0.04 0.06 0.06 
  Large 0.04 0.08 0.04 
Sample 
Size 

N=500 Small 0.03 0.06 0.08 

  Large 0.03 0.09 0.16 
 N=1,000 Small 0.05 0.07 0.12 
  Large 0.03 0.13 0.31 
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Table 8. Power Rates for Detecting Non-uniform (a- and b-parameter) 
DIF. 
 
  Magnitude 

of DIF 
 

MACS 
 

IRT 
Logistic 

Regression 
 N=300 Small 0.28 0.69 0.32 
  Large 0.86 1.00 0.78 
Sample 
Size 

N=500 Small 0.42 0.84 0.45 

  Large 0.97 1.00 0.89 
 N=1,000 Small 0.77 1.00 0.72 
  Large 1.00 1.00 0.98 
Cells where the Type I error rate was inflated have been X-ed out. 
 

DISCUSSION 
 The purpose of the present study was to compare two model-based 

procedures, MACS and IRT, and an observed-score based procedure, 
ordinal logistic regression, for detecting DIF in polytomous items. Although 
each method exhibited controlled Type I error rates when none of the items 
exhibited DIF, the IRT based likelihood-ratio test and ordinal logistic 
regression exhibited inflated Type I error rates when DIF was present in 
some of the items; the Type I error rate for MACS did not appear to be 
influenced by the presence of DIF. This appears to be related to how group 
differences are equated before testing for DIF. The IRT based likelihood-
ratio test uses concurrent calibration to place the item parameter estimates 
for the two groups onto the same scale so that they may be compared. If 
some of the items used in the concurrent calibration function differentially, 
the linking of the two scales may be corrupted making it difficult to 
interpret differences in item parameter estimates. Logistic regression uses 
an estimate of proficiency such as the total score to control for differences 
between the groups. When the estimate of proficiency is influenced by DIF, 
group comparisons may be invalid. MACS, on the other hand, equates the 
groups by fixing one of the factor loadings to 1.0 in both groups (i.e., 
reference item); therefore, the scale of the latent variable for both groups is 
determined by the same variable, controlling for measurement error. If the 
reference item functions differentially between the groups, the remaining 
comparisons will likely be invalid. In this study, the reference item was free 
of DIF. 
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Given the importance of selecting appropriate anchor items or a 
reference item, it is worthwhile examining a selection method of anchor 
items when testing for DIF. For example, Woods (2009) developed and 
investigated an empirical procedure for selecting appropriate anchor items 
for tests of DIF using the likelihood-ratio test. Essentially, the method is a 
rank-based strategy in which the items with the smallest DIF statistics are 
selected to represent the anchor. Once those items are selected, they are 
used to link the scales for the two groups that are then used to test for DIF. 
Woods found that the rank-based method improved DIF detection. 
Although the method was developed using the likelihood-ratio test, it could 
easily be extended to other methods such as MACS or logistic regression. 

 For uniform DIF, MACS and IRT exhibited similar power rates. 
This is particularly interesting since the IRT procedure would be expected 
to have an advantage since it implemented the same model that was used to 
generate the data (i.e., Samejima’s GRM). These results are consistent with 
Stark et al. (2006) but contradict Meade and Lautenschlager (2004). In this 
study, we used the free-baseline model, which was also used in Stark et al. 
(2006). This is evidence supporting the use of the free-baseline approach 
when assessing measurement invariance. Furthermore, logistic regression 
exhibited slightly more power than MACS and IRT for the smaller sample 
size conditions. This may be due to the fact that the model-based procedures 
require larger sample sizes in order to obtain accurate model parameter 
estimates that are used in testing DIF. This problem may be exacerbated in 
real data where the models will not fit the data perfectly. 

 For non-uniform DIF (a-parameter only), only IRT exhibited 
reasonable power rates. This is consistent with Meade and Lautenschlager 
(2004) who found that MACS was unable to detect a-parameter DIF. 
Logistic regression also exhibited very low power rates for detecting non-
uniform DIF. However, when the item was simulated to exhibit DIF in the 
a- and b-parameter, MACS and logistic regression exhibited reasonable 
power rates, most likely because they were detecting DIF in the b-
parameter.  

 For future research, it would be interesting to compare the 
measurement model approaches (e.g., MACS and the likelihood-ratio) to 
other observed-score procedures such as the Mantel-Haenszel procedure. 
For example, Fidalgo and Madeira (2008) and Fidalgo and Scalon (2010) 
illustrated a unified framework for testing DIF in multiple groups for both 
dichotomous and polytomous items using the generalized Mantel-Haenszel 
method. A primary advantage of the Mantel-Haenszel procedures is that 
they provide an effect size that summarizes the magnitude of the DIF. The 
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disadvantage of the Mantel-Haenszel procedures is that they cannot detect 
non-uniform DIF. It would be interesting to compare these procedures to 
model-based procedures under conditions of model fit and model misfit.  

RESUMEN 
Detección de DIF en ítems politómicos por medio de MACS, TRI y 
Regresión Logística Ordinal. El objetivo de este trabajo fue comparar el 
error Tipo I y la potencia de tres métodos de detección de funcionamiento 
diferencial del ítem en respuestas politómicas. Se compararon dos 
procedimientos basados en los modelos de estructuras de medias y 
covarianzas (MACS) y la teoría de respuesta al ítem (IRT) con un tercer 
procedimiento de puntuación observada, la regresión logística ordinal. Se 
utilizó simulación Montencarlo para generar datos según el modelo de 
respuesta graduada de Samejima. Se manipularon tres factores: tamaño de la 
muestra por grupo (300-, 500-, y 1,000- sujetos), tipo de DIF (b-parámetro, 
a-parámetro y a- y b parámetros), y magnitud de DIF (pequeño y grande). El 
error tipo I en presencia de DIF fue mayor que el esperado para la TRI y la 
regresión logística ordinal.  Para la condición de DIF uniforme, MACS y 
TRI mostraron potencias similares, sin embargo, la regresión logística 
ordinal mostró una potencia algo superior al resto para tamaños de muestra 
pequeños. En las condiciones de DIF no uniforme, la potencia de la TRI fue 
mayor que MACS y la regresión logística ordinal. 
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