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The present study has two main interests. First, some pending issues about 
the psychometric properties of the CTAC (an anxiety questionnaire for blind 
and visually-impaired people) are assessed using item response theory 
(IRT). Second, the linear model is compared to the graded response model 
(GRM) in terms of measurement precision, sensitivity to change, and person 
fit, and the results are also used to illustrate the functioning and advantages 
of IRT models. The participants were 670 blind or visually-impaired people 
from different Spanish cities. The results showed that the CTAC scores are 
accurate enough for practical purposes, and that respondents are quite 
consistent in their responses. Model-data fit was acceptable in both cases, 
and both models lead to similar results regarding the trait estimates, with the 
exception of extreme respondents who were better assessed with the linear 
model. The GRM assessed measurement precision better, and both models 
showed high sensitivity to change around cut-off values. Person-fit results 
were also similar in both models.    

 

Visual impairment is expected to have a substantial impact on 
individuals, because of the shortcomings and restrictions it entails in their 
everyday life activities (WHO, 2001). Their self-assessment of the situation 
is usually made in a context of severe anxiety, which can give rise to a self-
perception of inefficacy (e.g. I am unable to do the things I used to do). This 
perception may, in turn, be associated with a series of anxiety responses that 
are both physiological (e.g. sweaty hands) and cognitive (negative worries, 
recurring thoughts; see e.g. Lazarus, 2000). Anxiety responses of the 
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types just described are likely to appear in everyday situations, even in 
people who have already acquired coping resources (Welsh, 1997). 
Psychological assessment of the anxiety responses discussed above would 
make it possible to design intervention programs aimed at reducing the high 
anxiety levels. This reduction is expected to have three main effects: first, 
quality of life would be improved; second, the process of learning the 
adaptive skills needed to cope with visual impairment would be facilitated; 
and third, the skills acquired would be easier to maintain and generalize. 

At present there are very few instruments available to measure 
psychological variables related to visual loss. In particular, anxiety scales 
specifically intended for blind and visually impaired people are very scarce. 
In English (a) some existing measures intended for the general population 
have been adapted to create more specific anxiety scales (Hardy, 1968), and 
(b) some questionnaires that measure general adjustment have  included a 
set of anxiety items (Bauman, 1963; Dodds, 1991; Fitting 1954).  

The state of affairs outlined above prompted our research group to 
develop a Spanish instrument specifically intended to measure anxiety for 
the blind and visually-impaired. The instrument was called the CTAC (the 
Spanish acronym for ‘Tarragona Anxiety Questionnaire for the Blind’), and 
was designed to measure specific anxiety related to visual impairment in a 
range of everyday situations of the type discussed above. More specifically, 
and as mentioned above, the CTAC aimed to measure two related 
(physiological and cognitive) components of anxiety, so it was conceived as 
a bi-dimensional instrument (Pallero, Ferrando, & Lorenzo-Seva, 2006; 
Ferrando, Lorenzo-Seva & Pallero, 2009). Since its initial conception we 
have assessed the dimensionality of the CTAC scores in a series of studies 
and, so far, the results can be summarized as follows. First, the 
unidimensional model already fits the data reasonably well. Second, fitting 
the bi-dimensional model slightly improves the model-data fit and leads to a 
clearly identifiable solution with two highly correlated factors. So, we 
believe that both the use of the test as an essentially unidimensional 
instrument or as a bi-dimensional instrument (as e.g. in Ferrando et al., 
2009) is justifiable. And, in fact, the scoring procedure of the CTAC allows 
both a double scoring and a single general scoring to be computed. 
Although it will not be discussed any further in this article, a plausible 
approach for integrating both views is to fit a bifactor solution (e.g. Reise, 
2012). 

The target population for which the CTAC is intended is relatively 
reduced, and all the studies that have been made on how it performs 
(including the dimensionality studies discussed above) have been based on 
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small samples. This is the main reason why, so far, relatively simple 
approaches have been used to assess its psychometric properties: classical 
test theory (CTT) and exploratory factor analysis (FA). The results obtained 
so far are positive: The CTAC scores show acceptable reliability levels, and 
are useful for assessment and decision purposes (Pallero et al., 2006). The 
usefulness of the test has prompted it to be used more and a relatively large 
sample is now available. This situation can be exploited to assess some 
issues that could not be satisfactorily addressed with the simple 
methodology used so far. The main issues that need to be assessed are: (a) 
the amount of individual precision of the trait estimates, particularly around 
the potential cut-off points that are used to decide the need for 
psychological treatment, (b) the sensitivity of the trait estimates for 
detecting changes (mainly treatment-induced), and (c) the assessment of 
individual consistency when responding to the questionnaire. Given the 
aims of the test the relevance of the first and second issues is clear. The 
CTAC scores are mainly intended to be used for flagging respondents with 
high anxiety levels, and also in follow up studies to assess improvement due 
to psychological treatment. As for the third issue, given the importance of 
the decisions derived from the interpretation of the CTAC scores, it is 
critical to assess whether the participant is responding consistently to the 
questionnaire. If he/she is not, the score obtained must be considered as 
uninterpretable.  

For the three issues we aim to study, test length is critical in the 
appropriate assessment of the corresponding properties. The measurement 
precision, sensitivity for detecting change and the power for detecting 
person misfit all improve as the number of items increases. For this reason 
in the present study we shall treat the CTAC scores as essentially 
unidimensional, so they will be taken from the complete item set. 

 
Methodological Basis and Purposes of the Study 
Methodologically, the three issues discussed above are better 

addressed within an item response theory (IRT) framework. Issues (a) and 
(b) are better assessed by using information curves and (potentially) optimal 
trait level estimates (instead of raw scores). Issue (c) can be addressed by 
using IRT-based person-fit assessment. 

 So far, IRT applications to the assessment of personality variables in 
visually-impaired populations have been relatively scarce, and most of the 
reported studies are conventional calibrations of existing binary-item 
instruments using a standard model (Ferrando, Pallero, Anguiano-Carrasco 
& Montorio, 2010; Lamoureux et al., 2007; Gothwal, Wright, Lamoureux, 
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& Pesudovs, 2009; Cochrane, Marella, Keeffe, & Lamoureux, 2011). 
Unlike these reported studies, however, the CTAC items use a 5-point 
graded response format. Not only is five a reasonable number of response 
points for fitting a non-linear IRT graded response model, but evidence also 
suggests that responses on 5-point response scales are, in most cases, well 
fitted by linear models (Hofstee, ten Berge & Hendricks, 1998). More 
specifically, both theoretical (Lord, 1952, 1953) and empirical (Muthén & 
Kaplan, 1985; Olsson, 1979) evidence suggests that the linear model works 
well with this type of item when (a) the discriminatory power of the items is 
moderate or low, and (b) the items have no extreme locations. This is 
because, in these conditions, the item-trait regressions are essentially linear 
and homoscedastic for the range of trait values that contains most of the 
respondents (Ferrando, 2002).  Previous analysis based on CTT obtained 
moderate discriminations and rather symmetrical distributions for most of 
the CTAC items (Pallero et al. 2006).  

The discussion above provides two starting points for this study: (a) 
both linear and non-linear IRT models are expected to be appropriate for 
assessing the three critical issues above, and (b) the comparison between the 
results provided by both approaches is of both substantive and theoretical 
interest. As for point (b), comparisons between the linear and the nonlinear 
approaches have already been made in the literature (e.g. Ferrando, 1999; 
McDonald, 1982, 1999). However, in most cases these comparisons are 
purely theoretical or have focused on issues such as item estimates or 
effects on external validity. In contrast, our study aims to make two new 
contributions. First, when possible, we shall make theoretical predictions 
that we shall contrast with the empirical data and discuss. Second, our study 
will focus on the three points discussed above. As far as linear/nonlinear 
comparisons in terms of conditional precision, sensitivity to change, and 
person fit is concerned, the present study appears to be new. 

In the rest of this section we shall briefly discuss the two models to be 
compared in the study, and derive the predictions to be contrasted with the 
empirical results. More specific information will be provided in the Method 
section. 

The linear model used in our study is Spearman’s factor analysis (FA) 
model, usually known as the congeneric model in the psychometric 
literature (Jöreskog, 1971). In this paper, we shall use the terms linear and 
congeneric indistinctly. As for the non-linear model we shall consider 
Samejima’s (1969) normal ogive version of the graded response model 
(GRM). This version (or its virtually indistinguishable logistic counterpart) 
is the one that is most used in practical applications (Baker, 1992; 



Linear and no linear IRT models on visually-impaired people’s anxiety 387 

Samejima, 1969, 1997). Although the initial conceptualization of the GRM 
is clearly different from FA modeling, both models can be related by using 
a general FA formulation based on an underlying variable approach (see 
Ferrando, 1999, 2002). Essentially, in the linear modeling it is assumed that 
the congeneric model holds directly for the observed item scores. In the 
GRM it is assumed that the congeneric model holds for the response 
variables that underlie the observed scores. 

Because the responses to the CTAC items are discrete and bounded, 
the linear model cannot be strictly true and must be taken as an 
approximation (Mellenbergh, 1994). On the other hand, the GRM is 
theoretically more plausible because it correctly treats the item scores as 
discrete and bounded variables.  

As discussed above, given the properties of the CTAC items, the 
linear model is expected to provide a good approximation in our study. 
However, even if we accept this point, why should we not use only the 
theoretically superior GRM? There are reasons not to discard the linear 
model from the outset. The GRM is a complex model that makes strong 
assumptions that might not be met. Furthermore, its complexity makes both 
the calibration and the scoring processes prone to instability.   

Overall, in the conditions that we assume ‘a priori’ for the CTAC case, 
our starting prediction is that both the linear model and the GRM will lead to 
very similar results and fit the data equally well. Furthermore, because there 
is a sizeable number of response points and the samples are not too large, 
the estimates provided by the simple linear model are likely to be more 
stable.  

We turn now to more specific predictions, and we shall start with 
those concerning the scoring of the individuals. In this study the chosen 
scores are the maximum likelihood (ML) individual trait level estimates. In 
the linear case they can be obtained in the closed form and are the well 
known Bartlett’s factor scores (e.g. McDonald, 1982; Mellenbergh, 1994). 
In the case of GRM, no closed-form estimator exists, so trait estimates must 
be obtained iteratively.  

Our first prediction regarding individual scores is that the regression 
of the linear estimates on the GRM estimates will be S-shaped but 
nonlinearity will only be apparent at the ends of the curve. This prediction 
is based on the following results. First, the congeneric ML estimate (i.e. 
Bartlett’s score) is a linear combination of the raw item scores. Second, in 
the GRM the relation between the ML trait estimates and the ‘true’ trait 
levels is linear with unit slope. And, if the test is reasonably long, the 
estimates are related to the ‘true’ trait levels according to the assumptions of 
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an error-in-variables model (e.g. Samejima, 1977). So, the regression of the 
linear estimates on the GRM estimates is expected to have essentially the 
same shape (i.e. S-shaped) as the regression  of the test scores on the true θ 
levels (possibly with a slight attenuation due to the measurement error). 
Furthermore, given that the CTAC items are expected to have moderate 
discrimination and non-extreme locations, the regression is expected to be 
essentially linear in the trait range that contains most of the respondents. 

Our second prediction is that, at both trait ends, the linear estimates 
will be closer to zero than the GRM estimates and that the latter will have a 
greater dispersion. The basis for this prediction is as follows. First, finite ML 
estimates based on the GRM do not exist for totally extreme patterns. 
Furthermore, the estimates may take very extreme values for near-extreme 
patterns, particularly when the spread of item locations is relatively small and 
the item discriminations are high (Kim & Nicewander, 1993). Although these 
conditions are not expected in CTAC, some appreciable instability at the 
extremes is still expected. In the linear model, however, because the estimate 
is a weighted composite of the raw scores, finite estimates exist even for the 
totally extreme patterns. Furthermore, the changes that occur in the trait 
estimate as the pattern becomes extreme are gradual: no instability exists for 
near-extreme patterns.  

We shall now discuss the predictions regarding measurement 
precision and sensitivity to change. As far as the latter point is concerned, 
the situation we consider here is a repeated-measures design in which the 
individual is administered the CTAC on two occasions with a retest interval 
that is long enough to avoid retest effects. 

The basic measure to derive predictions in both cases (precision and 
sensitivity) is the test information, understood as a measure of conditional 
precision (Mellenbergh, 1996). In both the linear model and the GRM, the 
amount of information is related to the precision of the ML estimate of the 
trait level. So, it assesses both the accuracy of our chosen ML scores as 
estimates of the ‘true’ trait levels and the sensitivity of these scores for 
detecting change.  

In the linear model the test information does not depend on the trait 
level. So, the plot of the amount of information, which we shall term the test 
information curve (TIC), is flat, with constant information throughout the 
trait range. The amount of constant information depends only on (a) the 
number of items, and (b) their discriminating power. On the other hand, in 
the GRM the amount of information is a complex function of the trait level 
which depends on (a) the number of items, (b) the number of response 
categories (five in our case), (c) the items’ discriminating power, and (d) the 
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distances between the item locations. The amount of information increases 
with the number of items, the number of categories, and the discriminating 
power (Samejima, 1969, chapter 6). However, the impact of determinant (d) 
is not so clear (Baker, 1992). Therefore, it is very difficult to predict the 
relations between the TIC provided by the GRM and the constant amount of 
information provided by the linear model. In both cases, the information 
increases with the number of items and their discriminating power. 
However, it is difficult to go any further.  

As discussed above, the constant information predicted by the linear 
model cannot be a correct result, so the information is expected to be 
approximately constant only for the range of trait values in which the item 
response function is essentially linear. Therefore, only in this range the 
estimated precision and measurement of change are expected to be 
approximately correct As for the GRM, from previous results we can 
assume that the CTAC item locations are generally well spread and centered 
around the population mean of θ and that the items’ discriminating power is 
only moderate. If this is so, it follows that the GRM-based TIC should be 
relatively flat, centered around zero and provide a reasonable amount of 
information over a wide range of trait values. From this result, two 
predictions can be made. First, measurement precision and sensitivity to 
change are expected to be maximum around the zero trait mean. Second, 
precision and sensitivity to change are expected to be acceptable over a 
wide range of trait values.  Finally we are unable to predict the relation 
between the amount of information provided by both models, and what we 
propose is to empirically assess this issue.  

Finally we turn to person-fit assessment. Of the various types of 
parametric person-fit procedures (see e.g. Meijer & Sijtsma 1995, 2001 for 
reviews) this study focuses on global scalar-valued indices, which assess the 
extent to which a response pattern is consistent given the chosen model (the 
linear model or the GRM in our case) and the estimated trait value of the 
respondent. More specifically, we shall use global indices based on the 
likelihood function. Like all person-fit indices developed so far, likelihood-
based indices have both theoretical (there are approximations) and practical 
shortcomings (e.g. Magis, Raîche & Béland, 2012). However, they are 
simple and practical, and perform reasonably well when used as first-step 
devices for flagging potentially inconsistent respondents (Ferrando, 2007; 
Meijer & Sijtsma 1995, 2001).  

The specific indices we shall use in this study are (a) the polytomous 
extension of Levine and Rubin’s (1979) index (lZGRM; Drasgow, Levine & 
Williams, 1985) for the GRM-based analyses, and the lco index proposed by 
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Ferrando (2007) for the congeneric model.  The results of both indices are 
expected to be comparable for three reasons. First, both indices are likelihood-
based. Second, they are independent of the trait level, and therefore expected 
to detect misfitting patterns equally well at all trait levels. Finally, they both 
refer to a theoretical distribution (lZGRM standard normal and lco chi-square).  

In spite of this comparability, however, it is hard to make predictions 
about the relation between lZGRM and lco due to the approximate nature of both 
indices. In a substantive study such as the present one, the indices are mainly 
intended to be used as screening devices for flagging potentially inconsistent 
respondents. So, in addition to assessing the degree of relation between the 
indices, we shall also assess whether they both flag mostly the same 
respondents as inconsistent. 

METHOD 
Participants. The participants were 670 visually impaired or blind 

people (39.7% men and 60.3% women; mean age 73.32 years and standard 
deviation 6.88; ranging from 59 to 92 years). They were all members of 
ONCE, and met the conditions under which the CTAC is intended to be 
used:  a residual vision of 0.1 or lower on the Weker scale and/or a visual 
field of 10 degrees or lower. They had no other pathologies. Participants 
came from different Spanish cities (18.5% Tarragona, 23.6% Barcelona, 
12.2% Sevilla, 13.7% Valencia, 13.4% Madrid, 14% other and 4.5% 
missing data). None of the participants were living in assisted centers.  For 
all the participants, one psychologist per city read them the items and wrote 
down the answer on a paper and pencil questionnaire.  

It is perhaps relevant to note that the CTAC sample is regularly 
updated, and that the first 350 of this sample of 670 had been used in the 
previous studies referred to in this paper. 

 
Instruments. The CTAC (Pallero et al., 2006) is made up of 35 items, 

with a 5-point response format, and, as discussed above, aims to measure 
the physiological and emotional behaviors that reflect anxiety. Each item 
has two parts. In the first part the respondent is asked to imagine 
him/herself in a situation related to their visual deficiency that the 
researcher explains. In the second part the respondent has to answer the 
degree of anxiety the imagined situation may evoke nowadays, using a 
suggested adjective that may refer to emotional or cognitive anxiety. An 
item example could be: 
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 -“Imagine that you are home alone, you drop a spoon and you can’t 
find it. To what extent do you feel helpless?”    

In previous studies on the dimensionality of the CTAC, a pair of items 
(9 and 27) that differ in the evoked degree of anxiety but which are very 
similar in both form and content were flagged as problematic. This pair is 
likely to behave as a locally dependent doublet, thus giving rise to problems 
of biased estimates and distorted goodness-of-fit results. For this reason 
item 9 (the least discriminating) was omitted in the present study and all the 
analyses that follow were based on the remaining 34-item set. 

 
Procedures 
Model Estimation and Scoring 
Both the congeneric model and the GRM were fitted using an FA 

approach. The congeneric model was fitted by using a standard FA based on 
the mean vector and the inter-item covariance matrix. The GRM was fitted 
by using a factor analytic limited-information estimation procedure based 
on the bivariate polychoric tables between pairs of item scores. To make the 
results as comparable as possible, both models were fitted using a robust 
estimation procedure with mean and variance-corrected goodness-of-fit 
statistics. In the congeneric model we used robust maximum likelihood 
estimation. In the GRM we used robust weighted least squares estimation. 
In both cases the models were estimated using the program Mplus 6.11 (B. 
Muthén & L.K. Muthén, 2010). Once the models had been fitted and their 
appropriateness had been assessed (item calibration), the item parameters 
were taken as fixed and known, and used to obtain ML estimates of the trait 
level for each individual (individual scoring). 

 
Assessment of Measurement Precision and Sensitivity to Change 
Measurement precision was assessed by computing the amount of test 

information as a function of the trait level. The general expression we used 
to obtain the expected information, which is applicable to both models (e.g. 
Kendall & Stuart, 1977) is 
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where log L is the log-likelihood for the corresponding response vector 
according to the model. As mentioned above, the amount of information is 
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related to the precision of the ML estimate of the trait level. More in detail, 
as the number of items increases without limit, the standard error of the ML 
estimate is  
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For both models, the information values obtained were next used to 

plot the TICs and check the predictions discussed above. Finally, the 
relation between the amount of information provided by both models was 
assessed by using the concept of relative efficiency (Lord, 1974), which, in 
our case, is simply the ratio of the amount of information provided by both 
models, and obtained as a function of θ.  

We turn now to the assessment of change. Two procedures were used 
to consider change as statistically significant. The first one (Speer, 1992; 
Reise & Haviland, 2005) is approximate but very simple. It consists of (a) 
setting a confidence band around the test score obtained at Time 1, and (b) 
considering change as significant if the score at Time 2 is beyond this band. 
Let 1̂θ  be the ML trait estimate for the individual obtained at Time 1. A 
90% confidence band is then computed as 
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where s.e. is the standard error of estimate in (2).  

The second, more complete procedure, takes into account that both 
the Time 1 and Time 2 estimates contain measurement error (Finkelman, 
Weiss, & Kim-Kang, 2010). Using the same critical value as above, the 
minimum difference in ML values that is required to consider change as 
significant is 
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Person-Fit Assessment  
For each respondent, the lZGRM and lco indices were computed by using 

the ML trait estimates described above. If we denote by l0GRM the log-
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likelihood of a response pattern for which the GRM holds, the lZGRM index is 
given by  
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(see Drasgow, Levine & Williams, 1985 for details). If the ‘true’ trait level 
were known, the distribution of lZGRM would be expected to approach the 
standard normal as the test gets longer (Drasgow, et al., 1985). Because the 
ML estimate is used instead of the unknown trait level, the reference 
distribution is only approximate, and more so if the test is short (e.g. Magis 
et al., 2012). 

The lco index is given by 
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where iθ̂ is the maximum likelihood estimate of respondent’s i trait level, 
σεj is the residual standard deviation of item j and the first term on the right 
hand side of the equal sign is the log-likelihood for the corresponding 
response vector (xi) according to the model. If the congeneric model were 
correct, and the item parameters were known, the distribution of lco would 
be chi-squared with n-1 degrees of freedom (Ferrando, 2007). Because 
neither of the two conditions is met, the index must also be considered as an 
approximation. 

The relation between both indices will be assessed by plotting and 
inspecting their joint distribution. In this assessment it must be taken into 
account that both indices are interpreted in the opposite sense. In the case of 
lZGRM small values (i.e. large negative values) are indicators of misfit. In the lco 
case large positive values are indicators of misfit. 

RESULTS 
Preliminary Analyses 
As a first step for judging the adequacy of the models we assessed the 

discriminating power and the marginal distribution of the item scores. The 
CTT-based item discriminations ranged from 0.40 to 0.69, with a mean of 
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0.59. As for the distributions, most of them were unimodal and fairly 
symmetrical. The item means (in the 1-5 raw scoring) ranged from 2.02 to 
3.65 with an average of 2.89, and in none of the distributions was the 
skewness coefficient larger than one in absolute value (see Muthén & 
Kaplan, 1985). The kurtosis was negative in all cases (i.e. platykurtic 
distributions) and ranged from -1.48 to -0.29.  Overall, as expected, the 
CTAC items are characterized by moderate discriminations and 
distributions that are not too extreme. So, in principle, we consider the data 
to be amenable for both the linear and the GRM-based analyses. As for the 
kurtosis, although it is not excessive in any case (see Muthén & Kaplan, 
1985), the values obtained justify the use of the robust estimation 
procedures discussed above. 

 
Item Calibration and Scoring 
For both models, the goodness-of-fit results are in table 1. Apart from 

the chi-square statistic, we used other indices of fit: the RMSEA point 
estimate and its 90% confidence interval (Browne, & Cudeck, 1993), the 
comparative fit index (CFI, Bentler, & Bonett, 1980), the gamma-
Goodness-of-fit index (GFI, Tanaka & Huba, 1985) and the root mean 
square of the standardized residuals (RMSR-z). 

 
 

Table 1. Goodness of fit assessment 
 

Model χ2 df RMSEA 90% C.I. CFI GFI RMSR-z 
Linear 1179.41 525 0.043 (0.040;0.046) 0.87 0.95 0.049 
GRM 1773.72 525 0.060 (0.057;0.063) 0.93 0.90 0.059 

 
 

 
Overall the results in table 1 suggest that, as predicted, the fit is 

acceptable for both models, and more so if we take into account the size of 
the model. This statement, however, must be qualified. For the indices used 
here, reference cut-off values for considering model-data fit as good can be 
summarized as follows: RMSEA values of less than 0.06 (Hu & Bentler, 
1999) or less than 0.08 (Browne & Cudeck, 1993); CFI and GFI values 
greater than 0.90 (Bentler & Bonnet, 1980; see also the review in Hu & 
Bentler, 1999) or greater than 0.95 (Hu & Bentler, 1999), and RMSR-z 
values less than 0.08 (Hu & Bentler, 1999). If we use these references, our 
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results can be interpreted as follows. First, the absolute fit, mainly based on 
the assessment of the magnitude of the residuals, can be regarded as 
acceptable, as indicated by the RMSR-z and RMSEA values. Second, the fit 
as measured by the amount of explained covariation (GFI), and the fit as 
defined with respect to the null model of no inter-item relations (CFI), will 
only be marginally acceptable in some cases. This second result is not due 
to particular model misspecifications but to the general moderate 
discrimination characteristic of the CTAC items (see e.g. McDonald, 1999). 
Because of the moderate inter-item consistency, the amount of explained 
covariation is not too high (GFI), and there is no dramatic improvement in 
fit when the prescribed model is used instead of the null model (CFI).  

Even when the estimation methods were chosen to make the linear 
and GRM results as comparable as possible, they are still different. So, 
comparisons are necessarily descriptive. However, even when this 
limitation is acknowledged, it seems clear that the linear model fits better in 
terms of the magnitude of the residuals and the amount of explained 
covariation, as indicated by the chi-square, RMSEA, RMSR-z and GFI 
indices. On the other hand, the GRM appears to fit better in relative terms 
as expressed by the CFI.  

Table 2 shows the item parameter estimates obtained from both 
models: standardized loadings for the linear model, and discriminations and 
thresholds for the GRM. In addition, the table also shows the GRM item 
discrimination values that are predicted from the linear approximation (a’; 
see e.g. Ferrando, 2002). If the GRM-based discriminations are compared to 
their linear predictions, it is clear that they are systematically a little higher, 
as expected. However, the relation is very high, and the product-moment 
correlation between a’ and a is r=0.99, a result that reinforces the 
appropriateness of the linear approximation in this case. Substantively, the 
results in table 2 agree with those found in previous studies, and show that 
the CTAC items (a) have moderate discriminations and (b) are generally 
centered on the trait mean and spread over a wide range of the trait 
distribution.  

We turn now to the individual estimates. The product-moment 
correlation between both sets of ML estimates was r=0.99. Furthermore, 
figure 1 shows the scatterplot of both sets of scores, which behaves 
essentially according to the predictions we made above. First, it is noted 
that the relation is non-linear and essentially S-shaped, as has also been 
found in previous empirical studies (Dumenci & Achenbach, 2008). 
However, the nonlinearity is only noticeable at the ends of the scale, where 
the floor and ceiling effects mean that the linear estimates are somewhat 
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squeezed up. The slope is relatively low, and the relation is essentially 
linear throughout the range of θ that contains most of the respondents.  

 
 
 

Table 2. Item parameter estimates from the linear model and the GRM 
 

Item λ a’(linear)  a b1 b2 b3 b4 
1 0.53 0.62  0.70 -1.04 0.06 1.01 2.00 
2 0.59 0.73  0.81 -0.95 -0.21 0.55 1.54 
3 0.56 0.67  0.78 -0.76 0.08 0.85 1.60 
4 0.62 0.80  0.90 -1.83 -0.88 -0.15 0.86 
5 0.63 0.81  0.94 -1.56 -0.72 -0.04 0.84 
6 0.57 0.70  0.79 -1.05 -0.21 0.77 1.60 
7 0.54 0.64  0.72 -1.53 -0.73 -0.10 1.00 
8 0.60 0.75  0.85 -0.76 0.03 0.78 1.54 

10 0.69 0.96  1.06 -1.66 -0.67 0.02 0.99 
11 0.50 0.58  0.64 -1.45 -0.37 0.54 1.69 
12 0.60 0.75  0.87 -1.80 -1.03 -0.3 0.74 
13 0.60 0.76  0.86 -1.46 -0.61 0.10 1.15 
14 0.66 0.89  1.02 -0.70 -0.04 0.59 1.40 
15 0.70 0.99  1.12 -1.07 -0.44 0.19 0.93 
16 0.62 0.79  0.91 -0.73 0.11 0.68 1.51 
17 0.59 0.73  0.84 -1.36 -0.49 0.36 1.42 
18 0.62 0.79  0.86 -1.24 -0.23 0.58 1.44 
19 0.57 0.70  0.80 -2.15 -1.20 -0.45 0.59 
20 0.60 0.76  0.84 -0.92 0.02 0.67 1.59 
21 0.53 0.63  0.75 -0.02 0.71 1.48 2.33 
22 0.54 0.63  0.73 -1.17 -0.40 0.29 1.11 
23 0.43 0.47  0.58 0.05 0.92 1.61 2.53 
24 0.62 0.79  0.91 -1.58 -0.72 0.04 0.88 
25 0.35 0.37  0.42 -1.34 -0.20 0.69 2.16 
26 0.61 0.77  0.88 -0.63 0.06 0.60 1.45 
27 0.60 0.76  0.84 -1.23 -0.29 0.35 1.20 
28 0.47 0.53  0.63 0.02 0.77 1.49 2.36 
29 0.54 0.64  0.76 -0.18 0.64 1.44 2.41 
30 0.44 0.50  0.54 -2.94 -1.25 0.00 1.67 
31 0.68 0.92  1.02 -1.08 -0.20 0.39 1.21 
32 0.53 0.62  0.69 -2.18 -1.21 -0.37 0.85 
33 0.67 0.89  1.03 -1.13 -0.46 0.08 0.86 
34 0.55 0.65  0.80 0.04 0.85 1.48 2.38 
35 0.66 0.89  1.02 -0.88 -0.04 0.71 1.46 
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Figure 1.  Scatterplot of the ML individual estimates based on the 
congeneric and the graded response model 

 
 
 
The second feature of the graph, which also agrees with the 

predictions made above, is the slight dispersion of the ML GRM estimates 
at both ends of the scale which reflects the instability of these estimates for 
some near-extreme patterns.  Although instability is very low, it is still 
noticeable even in this 34-item test. 

 
Assessment of Measurement Precision and Sensitivity to Change 
Figure 2 (a) displays the TIC based on the GRM together with the 

constant information line obtained from the congeneric model. As 
predicted, the CTAC scores provide the maximum amount of information 
around the population mean. Furthermore, the curve is not too peaked, so 
the scores provide a fair amount of information over a wide interval around 
the trait mean, as was also predicted. To see this point in more detail, we 
note that the constant amount of information obtained with the linear model 
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was 19, which corresponds to a reliability of 0.95 (see Ferrando, 2009). A 
comparison of both curves shows that, according to the GRM, the CTAC 
trait estimates are highly accurate (i.e. reliability above 0.95) over a trait 
interval of about θ=-1.4 to θ=1.4 which is a remarkable result for a test of 
this type.  
 

 
Figure 2. Conditional precision assessed from the linear model and the 
GRM. (a) TIC; (b) relative efficiency curve 

 
 
Figure 2 (b) displays the relative efficiency of the GRM with respect 

to the linear model. For a central trait interval of about θ=-1.2 to θ=1.5, the 
relative efficiency is greater than one. Outside this interval, the precision 
falls below that predicted by the linear model. To interpret this result we 
must again consider that the constant information predicted by the 
congeneric model (i.e. 19) can only be approximately correct for the 
interval in which the regression of θ̂ on θ is linear. If we use figure 1 as an 
approximation, this interval is found to be about (-1.5; 1.5). Now, the 
average amount of information predicted by the GRM in this interval is 20 
(assuming that θ is normally distributed). In our opinion this is a plausible 
interpretation: the constant information predicted by the congeneric model 
is interpreted as the average of the ‘true’ information over the interval in 
which the linear model is approximately correct. 

The discussion above shows that the assessment of the conditional 
precision is, so far, the only aspect in which the GRM is clearly superior to 
the congeneric model. Besides, the CTAC proved to be precise over a wide 
region around the middle of the trait continuum. As mentioned above, this 
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profile is determined by the combination of (a) moderate discriminations, 
and (b) a wide spread of item locations which are centered around the trait 
mean, and would be desirable for a test intended to describe a general 
population. However, it is perhaps not so desirable for purposes of 
detection. In this respect, we note that the cut-off value used so far with the 
CTAC corresponds to a θ value of 0.40 (Pallero et al, 2006). At this point, 
the GRM-based amount of information is still 21.9, which leads to and s.e. 
of 0.21. Furthermore, in CTT terms this information corresponds to a 
reliability of 0.96. To sum up: the precision of the CTAC scores around the 
standard cut-off is still excellent.   

We turn now to the issue of sensitivity to change. The constant 
amount of information estimated in the linear model, corresponds to an s.e. 
of 0.23. Now, by using the first approach in equation (3), it follows that the 
width of the 90% confidence band for detecting change is 
2×1.65×0.23=0.76 at any trait level. However, as discussed above, this 
result can be only trusted for the central range of θ. If we consider the more 
plausible GRM predictions, we find that, at the usual cut-off of 0.40, the 
width of the confidence interval is 2×1.65×0.21=0.69, which is similar. 
Finally, if we use the more complete approach in (4) the minimum 
difference in the expected direction (i.e. one tail) required for the change to 
be considered as significant is 0.49. Substantively, the last two results imply 
considerable sensitivity. A reduction in the anxiety level in the order of 35% 
(first approach) or 49% (second approach) of the standard deviation would 
be detected as significant if it were to be obtained around the usual cut-off 
point. Indeed, for more extreme levels the sensitivity would be lower. 

 
Person-Fit Assessment  
The joint distribution of the lZGRM and lco indices is displayed in figure 

3. To help interpret the figure, reference cut-off values of two standard 
deviations below the mean (lZGRM) and above the mean (lco) are included. 
These are the most usual cut-off values employed in applied research for 
flagging a respondent as potentially inconsistent (e.g. Meijer & Sijtsma 
1995, 2001). 

Several features in figure 3 are worth discussing. First, we note that 
the relation is negative (as predicted), essentially linear, and clearly 
heteroscedastic. Thus, the bottom right-hand quadrant, which is where there 
is most dispersion, contains most of the respondents, those who are 
regarded as being consistent with both indices. This information is 
substantively relevant, and suggests that most of the respondents answered 
the CTAC consistently. The dispersion in the top left-hand quadrant is 



 P.J. Ferrando, et al. 400 

considerably lower, and it is here that the respondents that are flagged as 
inconsistent by both indices are concentrated. We note that the most 
inconsistent respondents are flagged with one index or the other. Finally, 
the non-diagonal cells suggest that both indices operate with a different 
degree of sensitivity. So, lco tends to flag many more respondents as 
inconsistent than lZGRM. This result is responsible for the relatively low values 
of agreement based on the resulting 2 ×2 contingency table. The values of 
the phi coefficient and Pearson’s contingency coefficient were 0.48 and 
0.43, respectively. It is clear that a higher degree of agreement would have 
been obtained by maintaining the cut-off value (-2) for lZGRM. and raising 
that of lco. 

 

 
Figure 3. Scatterplot of the person fit indices based on the congeneric 
and the graded response models 
 

DISCUSSION 
We shall organize our discussion of the results into two stages: the 

calibration stage and the scoring stage.  
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As for calibration, and as predicted given the characteristics of the 
CTAC items, both models fitted the data reasonably well. The linear model 
seemed to provide a better fit in absolute terms whereas the GRM fitted 
better in relative terms (i.e. relative to the null model of independence). We 
also believe that the item estimates provided by the simple linear model 
were more stable in terms of re-sampling or cross-validation. However, we 
did not assess this issue. The estimates obtained agreed with previous 
assessments but provided a clearer picture of the test profile: (a) uniformly 
moderate item discriminations, and (b) item locations that spread over a 
wide range of the trait distribution and which are centered on the trait mean. 

The scoring stage includes the main points of interest of the study. 
First, for the ML individual estimates, we obtained a near unit correlation 
between the congeneric and the GRM scores. This result clearly shows that, 
if the CTAC scores had been used in a validity study, both models would 
have led to the same results. A more detailed analysis shows that the GRM 
estimates are more spread at the ends, which is a potential theoretical 
advantage (greater discrimination). However, this spread is obtained at the 
expense of some instability, which might lead to over- or under-estimation 
for some individuals. Overall, we believe that the closed-form estimates 
provided by the linear model are higher here. 

The GRM, however, is clearly better than the linear model when the 
main interest is to assess conditional precision. The GRM-based TIC is 
more realistic and shows the regions of θ in which the scores are more or 
less precise (the central region or extreme values, respectively). This 
information is useful for both decision purposes and for assessing 
sensitivity of change, so (a) extreme respondents are assessed with lower 
precision, and (b) at extreme levels, a larger difference is needed if the 
change is to be considered statistically significant. The linear model is 
unable to make these distinctions and the predicted constant precision can 
only be approximately correct for the trait range in which the test-trait 
regression is linear. Finally, as far as person-fit assessment is concerned, the 
relation between both indices is negative (as predicted), essentially linear, 
and heteroscedastic. And what is more important, the most inconsistent 
respondents are flagged in both models. Even though the indices appear to 
function with different degrees of sensitivity, we cannot say that one model 
works better than the other on this point. 

The aim of the study was not to compare the congeneric model and 
the GRM in general terms, but only in the case of a specific instrument. 
However, if we try to generalize a little more, it seem reasonable to predict 
that both models will be appropriate for fitting non-extreme items with 
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moderate discriminations. If this is the case, and if the aim of the 
practitioner is to undertake a validity study or to obtain information about 
individual scores, then the linear model appears to be a good choice. It is 
simpler, it is likely to produce more stable item estimates, and it will 
provide more stable trait estimates especially at the extremes. On the other 
hand if the scores are to be used for making decisions or assessing 
individual change, the GRM appears to be a better choice. These 
conclusions might also be useful from an illustrative point of view. For a test 
such as the CTAC which is based on graded response items, theoretically 
nonlinear IRT modeling is clearly superior to linear modeling. Our 
empirical study illustrates what practical contribution these theoretical 
advantages make. Finally, to close this part of the discussion, it should be 
mentioned that the linear and non-linear comparisons just discussed are 
both model based. So, in both cases, results are only interpreted and 
compared if the model from which they have been obtained provides a good 
fit of the data. Therefore, when discussing the advantages of the linear 
model in some issues we are not advocating the use of descriptive linear 
approaches (mainly CTT) that are not model based and whose 
appropriateness cannot be assessed. 

We turn now to more substantive contributions of the study. Overall, 
the results are positive. The CTAC is a precise instrument (according to 
personality standards) that is most precise in the middle of the trait 
continuum, and which provides substantial information over a wide region 
around this point. As mentioned above, this profile is more appropriate for a 
broad-bandwidth test intended for the general population than for a 
screening test aimed at detecting highly anxious respondents. To better 
fulfill this last aim, a more peaked TIC with the mode further towards the 
high end of the trait distribution would have been more appropriate. Even 
so, the fact that ample information is provided in a wide interval still makes 
the CTAC quite useful for detection purposes. In particular, the amount of 
information around the cut-off value used so far with the CTAC is still 
excellent, no matter which model was used to calculate it. Finally, as far as 
the person-fit results are concerned, it appears that most respondents 
answered the CTAC consistently, which is positive. Consistency is a basic 
requisite for interpreting scores, taking decisions or assessing change.  
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RESUMEN 
Evaluación de la ansiedad en deficientes visuales. Una comparación entre 
modelos lineales y no lineales de TRI. La presente investigación tiene dos 
intereses principales. En primer lugar, se evalúan algunas cuestiones 
pendientes acerca de las propiedades psicométricas del CTAC (cuestionario 
de ansiedad para ciegos y deficientes visuales) mediante la teoría de 
respuesta a los items (TRI). En segundo lugar, en las tres propiedades 
evaluadas: precisión de medida, sensibilidad al cambio e índices de ajuste de 
la persona, el modelo lineal se compara con el modelo de respuesta graduada 
(GRM) y los resultados obtenidos sirven además como ilustración de las 
posibilidades y ventajas de los modelos TRI. Los participantes son 670 
ciegos o personas con deficiencia visual de diferentes ciudades españolas. 
Los resultados mostraron que las puntuaciones del CTAC son 
suficientemente precisas para el uso al que están destinadas, y  que los 
participantes son generalmente consistentes en sus respuestas. Los datos 
eran apropiados para los dos modelos puestos a prueba llevando a resultados 
similares en lo referente a las estimaciones en los niveles en el rasgo, con la 
excepción de los participantes extremos que fueron mejor evaluados por el 
modelo lineal. El GRM mostró mayores ventajas en la evaluación de la 
precisión de la medida y ambos modelos mostraron alta sensibilidad al 
cambio alrededor del punto de corte. Los resultados concernientes al ajuste 
de la persona también fueron similares en ambos modelos.    
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