
Intensification and Diversification with Elite Tabu Search
Solutions for the Linear Ordering Problem

MANUEL LAGUNA
Graduate School of Business, University of Colorado, Boulder, CO 80309, USA
Manuel.Laguna@Colorado.Edu

RAFAEL MARTÍ
Departamento de Estadistica e Investigacion Operativa, Universidad de Valencia, Spain
Rafael.Marti@uv.es

VICENTE CAMPOS
Departamento de Estadistica e Investigacion Operativa, Universidad de Valencia, Spain
Vicente.Campos@uv.es

Latest revision: March 23, 1998.

ABSTRACT - In this paper, we develop a new heuristic procedure for the linear ordering problem
(LOP). This NP-hard problem has a significant number of applications in practice. The LOP, for
example, is equivalent to the so-called triangulation problem for input-output tables in economics.
In this paper we concentrate on matrices that arise in the context of this real-world application.
The proposed algorithm is based on the tabu search methodology and incorporates strategies for
search intensification and diversification. For search intensification, we experiment with path
relinking, a strategy proposed several years ago in connection with tabu search, which has been
rarely used in actual implementations. Extensive computational experiments with input-output
tables show that the proposed procedure outperforms the best heuristics reported in the literature.
Furthermore, the experiments also show the merit of achieving a balance between intensification
and diversification in the search.

Laguna, et al. / 2

1. Introduction

The practical significance of the linear ordering problem (LOP) has been well documented in the
literature (see e.g. Grotschel, et al., 1984 and Chanas and Kobylanski, 1996). Solution methods
for the LOP have been proposed since 1958, when Chenery and Watanabe outlined some ideas on
how to obtain solutions for this problem. The interest on this problem has continued over the
years, resulting in a book by Reinelt (1985) and in the most recent solution method due to Chanas
and Kobylanski (1996).

Given a matrix of weights E = {eij}m×m, the LOP consists of finding a permutation p of the columns
(and rows) in order to maximize the sum of the weights in the upper triangle. In mathematical
terms, we seek to maximize:

C p eE p p
j i

m

i

m

i j
() =

= +=

−

∑∑
11

1

.

where pi is the index of the column (and row) in position i in the permutation. Note that in the
LOP, the permutation p provides the ordering of both the columns and the rows. The equivalent
problem in graphs is that of finding, in a complete weighted graph, an acyclic tournament with a
maximal sum of arc weights (Reinelt, 1985).

In economics, the LOP is equivalent to the so-called triangulation problem for input-output
tables, which can be described as follows. The economy of a region (generally a country) is
divided into m sectors and an m×m input-output table E is constructed where the entry eij denotes
the amount of deliveries (in monetary value) from sector i to sector j in a given year. The
triangulation problem then consists in permuting the rows and columns of E simultaneously such
that the sum of the entries above the main diagonal is as large as possible. An optimal solution
then orders the sectors in such a way that the suppliers (i.e., sectors that tend to produce materials
for other industries) come first followed by the consumers (i.e., sectors that tend to be final-
product industries that deliver their output mostly to end users).

Instances of input-output tables from sectors in the European and United States Economies can
be found in the public-domain libraries LOLIB (1997) and Stanford Graph Base (Knuth, 1993),
respectively.

2. Relevant Procedures

In this section, we describe two procedures for the LOP reported in the literature. We provide
descriptions of these procedures because they will be used for comparison purposes in our
computational experiments. Becker (1967) proposes a heuristic based on calculating quotients to
rank each sector (using the interpretation from economics). In particular, for each sector i =1, ...,
m the value

Laguna, et al. / 3

∑

∑

=

==
m

k
ki

m

k
ik

i

e

e
q

1

1

is calculated. The sector with the largest q-value is ranked highest. Then, the corresponding
column and row are deleted from the matrix and the procedure is applied to the remaining sectors.
A pseudo code of this method is shown in Figure 1.

Becker’s method is quite fast, and produces reasonable results considering its simplicity. We now
describe the method developed by Chanas and Kobylanski (1996), which we will refer to as the
CK procedure.

The CK method is based on the following symmetry property of the LOP. If the permutation

()p p pm1 2, , ,K is an optimal solution to the maximization problem, then an optimal solution to the

minimization problem is ()p p pm m, , ,−1 1K . In other words, when the sum of the elements above

the main diagonal is maximized, the sum of the elements below the diagonal is minimized. The
CK method utilizes this property to escape local optimality. In particular, once a local optimal
solution p′ is found, the process is re-started from the permutation ()′′ = ′ ′ ′−p p p pm m, , ,1 1K . The

operation REVERSE is defined with this purpose, where ()′′ = ′p pREVERSE .

In addition to REVERSE, the operations SORT and INSERT are utilized by the CK method. These
operations are defined as follows.

() ()()SORT
INSERT SORT

for

for
p p p

p k

p p p kk
k k

1 2

1

1 1

1

1
, , ... ,

, , ,
=

=
>

 −K

Fig. 1 Becker’s method.

Input: E = {eij}m×m

Output: p = (p1, p2, ..., pm)

becker {
I = {1, ..., m};
j = 0;
while (j < m) {

k = argmax{qi : i ∈ I};
j = j + 1;
pj = k;
I = I - {k};

}
return (p);

}

Laguna, et al. / 4

()() ()INSERT i p p p p p i p pk r r k, , , ... , , , , , , ,1 2 1 1 1 1− − −= K K

where r ∈ {1, 2, ..., k} maximizes the value

()()∆C
E

i r p p p e ek p i
j

r

ip
j r

k

j j
, , , , ... ,1 2 1

1

1 1

−
=

−

=

−

= +∑ ∑ .

Figure 2 shows the pseudo code for the routine bestsort, which, through repeated calls to SORT,
finds a local optimal ordering of the sectors.

The complete CK procedure is described by the pseudo code in Figure 3.

Additional details and proofs related to the CK procedure can be found in Chanas and Kobylanski
(1996). We now focus on the description of the tabu search procedure proposed in this paper.

Fig. 2 Bestsort routine.

Input: E = {eij}m×m and p
Output: p′

bestsort {
p′ = p;
do {

p = p′;
p′ = SORT(p);

} while (CE(p′) > CE(p));
return (p′);

}

Fig. 3 CK procedure.

Input: E = {eij}m×m and p
Output: p*

ck {
p* = bestsort(p);
do {

p = p*;
p* = bestsort(REVERSE(p));

} while (CE(p*) > CE(p));
return (p*);

}

Laguna, et al. / 5

3. Tabu Search Procedure

The tabu search (TS) technique is rapidly becoming the method of choice for designing solution
procedures for hard combinatorial optimization problems. A comprehensive examination of this
methodology can be found in the book by Glover and Laguna (1997). The following subsections
describe three elements that are critical in the development of the tabu search procedure for the
linear ordering problem (TS_LOP).

3.1 Insert Moves

Insertions are used as the primary mechanism to move from one solution to another in TS_LOP.
We define INSERT_MOVE(pj, i) to consist of deleting pj from its current position j to be inserted in
position i (i.e., between the current sectors pi-1 and pi). This operation results in the ordering p′,
as follows:

()
()′ =

<

>

− − +

− + +

p
p p p p p p p i j

p p p p p p p i j
i j i j j m

j j i j i m

1 1 1 1

1 1 1 1

, , , , , , , , ,

, , , , , , , , ,

K K K

K K K

for

for

Then the objective function value corresponding to p′ can be obtained with the following
calculation:

()
() ()
() ()

>−+

<−+
=′

∑

∑

+=

−

=

jieepC

jieepC
pC i

jk
ppppE

j

ik
ppppE

E

kjjk

jkkj

for

for

1

1

Note that the complexity for evaluating p′ is in both cases O(m). The following example
illustrates the insertion mechanism. Suppose that the matrix corresponding to the permutation

()7,6,5,4,3,2,1=p has the form shown below, and that the INSERT_MOVE(p6, 2) must be
evaluated.

E p() = − −
−

−

0 12 5 3 1 8 3

6 0 3 6 4 4 2

8 5 0 5 7 0 3

2 7 2 0 3 6 0

8 0 3 1 0 4 1

9 1 6 2 13 0 4

2 9 4 5 8 1 0

Laguna, et al. / 6

The elements of the matrix that are inside of the rectangles are those needed to evaluate the
objective function corresponding to the new permutation p′ = (1, 6, 2, 3, 4, 5, 7). Since the
objective function value for p is 78, the one for p′ becomes:

CE(p′) = 78 + (1 - 4) + (6 - 0) + (2 - 6) + (13 - 4) = 78 + 8 = 86

It can also be verified that the best move involving p6 is in fact INSERT_MOVE(p6, 3), with a
corresponding move value of 11. The move value is the difference between the objective function
values after and before the move. In mathematical terms:

MoveValue = CE(p′) - CE(p).

3.2 Neighborhood Definition

Two neighborhoods were considered during preliminary experimentation.

N1 = {p′ : INSERT_MOVE(pj, i), for j = 1, ..., m-1 and i = j+1}
N2 = {p′ : INSERT_MOVE(pj, i), for j = 1, ..., m and i = 1, 2, ..., j-1, j+1, ..., m}

N1 consists of permutations that are reached by switching the positions of contiguous sectors pj

and pj+1. N2 consists of all permutations resulting from executing general insertion moves, as
defined above. In conjunction with these neighborhoods, two strategies are defined. The best
strategy selects the move with the largest move value among all the moves in the neighborhood.
The first strategy, on the other hand, scans the list of sectors (in the order given by the current
permutation) in search for the first sector (pf) whose movement results in an strictly positive move
value (i.e., a move such that CE(p′) > CE(p)). The move selected by the first strategy is then
INSERT_MOVE(pf, i*), where i* is the position that maximizes CE(p′). Note that for N1, i

* = f+1,
while for N2, i

* is chosen from i = 1, 2, ..., f-1, f+1, ..., m. Therefore, the first strategy used in
combination with N1 is equivalent to searching for the first improving move in the neighborhood.

Combining the selection strategies with the neighborhood definitions results in four greedy local
search procedures: first(N1), best(N1), first(N2), and best(N2). The results of preliminary
experimentation with these procedures are reported in Table 1.

Table 1. Preliminary experimentation.
first(N1) best(N1) first(N2) best(N2)

Deviation 25.21% 24.16% 0.15% 0.19%
Num. of Opt. 0 0 11 11
CPU sec. 0,00 0,01 0,01 0,04

The data used to produce Table 1 consist of 49 instances from the problem library LOLIB. These
instances correspond to real input-output matrices for which the optimal sector orderings are
known. Table 1 reports the average deviation from optimality, the number of optimal solutions
found and the computational effort corresponding to each of the greedy procedures. Note that

Laguna, et al. / 7

these procedures do not incorporate any tabu search elements, since the purpose of the
experiment is to determine which neighborhood exploration to implement within TS_LOP. The
greedy procedure first(N2) is the most effective with best(N2) a close second. This results seems
to indicate that an effective search strategy results from searching for the best move associated
with a given sector, as opposed to searching for the best move overall (as done by best(N2)). This
result can be explained by observing that first(N2) tends to have a “slower” ascent to a local
maximum, avoiding a premature entrapment in an inferior local maximum. This phenomenon has
been observed in other applications (see e.g. Laguna, et. al 1994). Based on this finding, we
partition N2 into m N 2

j neighborhoods

N 2
j = {p′ : INSERT_MOVE(pj, i), i = 1, 2, ..., j-1, j+1, ..., m}

associated with each sector pj, for j = 1, ..., m. We therefore base our local search on choosing
the best insertion associated with a given sector. (The rules on how to select a sector are outlined
below.) We did not attempt to use general swaps as a move strategy, since the consecutive-sector
swaps in N1 did not perform better than general insertions.

3.3. Measure of Influence

For each sector, there are at most m-1 relevant elements (i.e., those elements that may contribute
to the objective function value). The elements in the main diagonal are excluded because their
sum does not depend on the ordering of the sectors. This indicates, that sectors should not be
treated equally by a procedure that selects a sector for a local search (i.e., for search
intensification). We define wj as the weight of sector j as follows:

()w e ej ij ji
i j

= +
≠
∑ .

Note that weight values do not depend on the permutation p, and therefore they can be calculated
off-line (i.e., before the search begins). The weight values will be used to bias the selection of
sectors during the tabu search intensification phase.

3.4 Basic Procedure

Starting from a randomly generated permutation p, the basic TS procedure alternates between an
intensification and a diversification phase as described below.

Intensification Phase

An iteration in this phase begins by randomly selecting a sector. The probability of selecting
sector j is proportional to its weight wj. The move INSERT_MOVE(pj, i) ∈ N 2

j with the largest
move value is selected. (Note that this rule may result in the selection of a non-improving move.)
The move is executed even when the move value is not positive, resulting in a deterioration of the

Laguna, et al. / 8

current objective function value. The moved sector becomes tabu-active for TabuTenure
iterations, and therefore it cannot be selected for insertions during this time.

The number of times that sector j has been chosen to be moved is accumulated in the value
freq(j). This frequency information is used for diversification purposes. The intensification phase
terminates after MaxInt consecutive iterations without improvement. Before abandoning this
phase, the first(N2) procedure is applied to the best solution found (during the current
intensification). We denote this solution as p#, in contrast to p* (the best solution found over the
entire search). By applying this greedy procedure (without tabu restrictions), a local optimum is
guaranteed as the output of the intensification phase.

Diversification Phase

This phase is performed for MaxDiv iterations. In each iteration, a sector is randomly selected,
where the probability of selecting sector j is inversely proportional to the frequency count freq(j).
The chosen sector is placed in the best position, as determined by the move values associated with
the insert moves in N 2

j .

The procedure stops when MaxGlo global iterations are performed without improving CE(p*). A
global iteration is an application of the intensification phase followed by the application of the
diversification phase.

3.5 Additional Intensification with Path Relinking

Path relinking has been proposed in the context of tabu search (see e.g. Glover and Laguna,
1997). However, path relinking has largely been ignored by practitioners and researchers alike.
One of the few path-relinking implementations appears in Laguna and Martí (1997). In the
current development, the path relinking strategy is implemented with the goal of strengthening the
intensification phase.

The best solution found at the end of an intensification phase p# (which not necessarily represents
p*, the best solution overall) is subjected to a relinking process. The process consists of making
moves starting from p# (the initiating solution) in the direction of a set of elite solutions (also
referred to as guiding solutions). The set of elite solutions consists of the EltSol best solutions
found during the entire search. The insertions used to move the initiating solution closer to the
guiding solutions can be described as follows. For each sector pj in the current solution:

1) Find the position i for which the absolute value of (j-i) is minimized,
where i is the position that pj occupies in at least one of the guiding
solutions.

2) Perform INSERT_MOVE(pj, i).

Laguna, et al. / 9

Suppose, for example, that the current solution to a 4-sector problem is given by (A, B, C, D) and
that the solutions (B, C, A, D) and (B, A, D, C) are being used as the guiding solutions. Consider
sector A in the current solution, where p1 = A. The values of i to be considered are i = 3 (for the
first guiding solution) and i = 2 (for the second guiding solution). Since the absolute value of (j-i)
is minimized when i = 2, then the move INSERT_MOVE(p1, 2) is executed. The current solution
becomes (B, A, C, D) and the process continues.

During the path relinking phase, a number of intermediate solutions are generated, like the
solution given by (B, A, C, D) in the example above. These intermediate solutions are good
candidates for additional exploration by way of applying a local search procedure. We apply
first(N2) to intermediate solutions once every four path-relinking iterations. That is, the local
search procedure is applied to one fourth of the intermediate solutions visited during path
relinking. The rational for applying local search to every fourth solution is based on the fact that
consecutive intermediate solutions differ only in the position of one sector. Therefore, a local
search procedure applied to consecutive intermediate solutions would likely converge to the same
local optimum. The path relinking process terminates when all the sectors have been considered.

3.6 Additional Long Term Diversification

A long term diversification phase is implemented to complement the diversification phase in the
basic procedure. The long-term diversification is applied after MaxLong global iterations have
elapsed without improving CE(p*).

For each sector pj, a rounded average position α(pj) is calculated using the positions occupied by
this sector in the set of elite solutions and the solutions visited during the last intensification
phase. Then, m diversification steps are performed which insert each sector pj in its
complementary position m-α(pj), i.e., INSERT_MOVE(pj, m-α(pj)) is executed for j = 1, ..., m.

This strategy is inspired by the REVERSE operation developed by Chanas and Kobylanski (1996).
We, however, incorporate information about solutions that have been recently visited (during the
last intensification phase) and solutions of high quality that have been found during the search
(elite solutions). Purposefully constructing solutions that are “far away” from those in the elite set
constitutes a diversifying element that also complements the intensification goal of the path
relinking strategy.

4. Computational Experiments

The path relinking and the long term diversification strategies were coded both separately and
jointly with the purpose of assessing their relative merit. There are therefore four variants of the
method:

TS Basic procedure (intensification and diversification phases).
TS_PR: TS and path relinking.
TS_LD: TS and long term diversification.

Laguna, et al. / 10

TS_LOP: TS and path relinking and long term diversification.

The first experiment has the goal of finding appropriate values for the three critical search
parameters: TabuTenure, MaxInt, and MaxDiv. For this purpose, we employ a full factorial
design with 3 levels for each parameter, as given in Table 2.

Table 2. Design of experiment for search parameters.
Factor Level 1 Level 2 Level 3

TabuTenure 0.5 m m 2 m
MaxInt 0.5m m 2m
MaxDiv 0.5m m 2m

We perform the experiment on the set of 49 instances in LOLIB, setting the rest of the search
parameters to the following values:

MaxGlo = 100
MaxLong = 50
EltSol = 4

The 27 test resulted in the best setting of TabuTenure = 2 m , MaxInt = m, and MaxDiv = 0.5m.
The average percent deviation from optimality using this setting was 0.0007% (since 47 out of the
49 instances were solved optimally).

Next, we explored the effect of changing EltSol from its current value of 4 to 3 and 5. By
definition (Glover and Laguna, 1997), the set of elite solution is small, so values larger than 5 are
generally not recommended. The experiment revealed that the number of optimal solutions found
in the LOLIB set drops to 42 and 44, when EltSol is set to 3 and 5 respectively. Therefore, we
set EltSol = 4 in the rest of our computational testing.

With the search parameters set as indicated above, we proceed to compare the relative merit of
our tabu search variants. We employ three sets of instances: (1) the 49 instances in LOLIB, (3)
the 75 instances in the Stanford GraphBase (Knuth, 1993), and (3) 75 randomly generated
instances. The set of Stanford GraphBase problems consists of 25 instances for each size of 40,
60 and 75. A uniform distribution with parameters (0, 25000) was used to generate the random
instances of sizes 75, 150 and 200 (25 instances per size). Tables 3, 4 and 5 show, for each TS
variant, the average objective function value, the average percent deviation from optimality, the
number of optimal solutions, and the average CPU time (seconds on a Pentium 166 MHz). Since
optimal solutions are not known either for the Stanford GraphBase problems or the random
instances, the deviation in Tables 4 and 5 is reported considering the best solution found during
the experiment. Also for these tables, the number of best solutions found is reported instead of
the number of optimal solutions.

Laguna, et al. / 11

Table 3. Comparison of TS variants with LOLIB instances.
TS TS_PR TS_LD TS_LOP

Obj. Function 22,040,159.4 22,040,160.9 22,041,257.7 22,041,261.5
Deviation 0.04% 0.04% 0.00% 0.00%
Num. of Opt. 30 30 44 47
CPU seconds 0.33 0.54 0.67 0.93

Table 4. Comparison of TS variants with Stanford GraphBase instances.
TS TS_PR TS_LD TS_LOP

Obj. Function 6,032,093.76 6,032,546.88 6,033,122.75 6,033,124.09
Deviation 0.018% 0.010% 0.001% 0.001%
Num. of Best 35 40 59 66
CPU seconds 1.16 2.29 2.65 4.13

Table 5. Comparison of TS variants with random (0, 25000) instances.
TS TS_PR TS_LD TS_LOP

Obj. Function 129,223,009 129,223,369 129,255,824 129,269,367.5
Deviation 0.065% 0.065% 0.038% 0.027%
Num. of Best 25 41 20 33
CPU seconds 10.79 17.94 13.07 20.19

Table 3 reveals that for the LOLIB set of problems, TS_PR is not significantly better than the
simple TS procedure. However, the TS_LD variant improves the quality of the solutions found
by TS and increases the number of optimal solutions found. The complete procedure TS_LOP is
capable of finding 47 out of 49 optimal solutions with approximately 39% more time than
TS_LD. The computational effort is reasonable for all variants, with the most demanding method
not reaching 1 CPU second on the average.

Table 4 shows an improving trend in the number of optimal solutions found as we move from TS
to TS_LOP. For these instances, TS_PR is superior to TS, however, the long-term diversification
component seems to have a larger effect on solution quality. Once again, the full procedure
TS_LOP yields the best results (at the expense of additional computational effort).

Table 5 gives some interesting results. While the percent deviation keeps improving as we move
from TS to TS_LOP, the number of best solutions found does not follow the same pattern. In
fact, TS_PR is able to contribute with 41 out of the 75 best known solutions. Some of the
problems in this set seem to particularly benefit from a strategy that provides additional
intensification during the search.

In the following set of experiments we compare the performance of TS_LOP with the methods by
Chanas and Kobylanski (1996), Becker (1967) and a greedy procedure based on the first(N2)
local search. As before, we refer to Chanas and Kobylanski’s method as CK, and as CK-10 to the
application of the method from 10 randomly generated initial solutions. In a similar way, Greedy-
10 refers to the application of the greedy method from 10 different starting solutions. We include
in this experiment the Greedy-10 procedure for comparison purposes, because it gives us an

Laguna, et al. / 12

indication of the quality improvement achieved by employing a sophisticated search, such as the
one embedded in TS_LOP, versus the approach of randomizing a very simple local search.

We compare these procedures using the same set of 199 instances of our previous experiments.
Average behavior is reported in three separate tables (6 7, and 8), one for each set of problems.
Average deviation refers to optimal solutions for the LOLIB set and best-known solutions for the
Stanford GraphBase and the random (0, 25000) sets.

Table 6. LOLIB problems (49 instances).
Greedy Greedy-10 Becker CK CK-10 TS_LOP

Value 22,033,729.49 22,038,090.39 20,375,556.16 22,018,008,35 22,040,892.14 22,041,261.51
Deviation 0.15% 0.02% 8.95% 0.15% 0.02% 0.00%
No. of Optimal 11 22 0 11 27 47
CPU seconds 0.01 0.08 0.02 0.10 1.06 0.93

Table 7. Stanford GraphBase problems (75 instances).
Greedy Greedy-10 Becker CK CK-10 TS_LOP

Value 6,022,126.63 6,032,440.56 5,909,898.24 6,028,562.89 6,032,591.57 6,033,124.09
Deviation 0.18% 0.01% 2.04% 0.08% 0.01% 0.00%
No. of Best 3 20 0 4 22 70
CPU seconds 0.06 0.55 0.20 1.45 16.33 4.09

Table 8. Random (0, 25000) problems (75 instances).
Greedy Greedy-10 Becker CK CK-10 TS_LOP

Value 128,729,161.6 128,981,141 125,587,971.7 128,663,947.3 128,919,838 129,269,367.5
Deviation 0.47% 0.23% 3.08% 0.53% 0.28% 0.00%
No. of Best 0 2 0 0 0 73
CPU seconds 0.12 1.21 0.80 10.67 108.44 20.19

Becker’s procedure is clearly inferior in terms of solution quality, although given its simplicity, its
performance is quite acceptable. The performance of the Greedy and CK methods is very similar
across the three problem sets. TS_LOP outperforms all other methods in terms of solution
quality. This is most evident in the Random (0, 25000) set, where TS_LOP provides 73 of the 75
best-known solutions (compared to a maximum of 2 for all other methods). In terms of
computational effort, TS_LOP remains superior to CK-10. Therefore, TS_LOP can be
considered a superior solution method to the approach of applying the CK procedure from a
number of randomly generated initial points.

To further study the behavior of the greedy procedure, the CK method and TS_LOP, we
generated an additional set of 25 instances of size 75. The methods were run in a way that the
best solution found was reported every 0.5 seconds. These data points were used to generate the
performance graph in Figure 4. The superior performance of TS_LOP is once again made evident
by Figure 4.

Laguna, et al. / 13

Fig. 4 Performance Graph.

32,550,000

32,600,000

32,650,000

32,700,000

32,750,000

32,800,000

32,850,000

32,900,000

32,950,000

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
CPU Seconds

A
vg

. O
b

je
ct

iv
e

F
u

n
ct

io
n

 V
al

u
e

TS_LOP

Greedy

CK

The difference in quality between CK and the Greedy procedure may be due to the number of
initial solutions used for each method. While the Greedy procedure can be applied 150 times
during 5 seconds, the CK method can be applied only 10 times during the same amount of time.

5. Conclusions

In this paper we have developed an effective tabu search procedure for the linear ordering
problem. The performance of the procedure has been assessed using 224 problem instances of
several types and sizes. The procedure has been shown robust in terms of solution quality within
a reasonable computational effort. The proposed method was compared with a recently
developed procedure due to Chanas and Kobylanski (1996). The comparisons favor the proposed
tabu search implementation.

An important goal of this research was to assess the merit of balancing diversification and
intensification in a tabu search implementation. Our experiments show that long-term
diversification by itself is an important component, since in all cases it enhanced the performance
of the basic procedure. The additional intensification with path relinking, on the other hand, did
not have (by itself) a major impact on solution quality in most cases. Our experiments also show
that a balance between search diversification and intensification is achieved when both strategies
are combined, resulting in an improved tabu search implementation.

Acknowledgments

The authors wish to thank Gerhard Reinelt for providing helpful clarifications on the
implementation details of LOLIB and Fred Glover for his insightful comments on the path
relinking strategy.

Laguna, et al. / 14

References

Becker, O. (1967) “Das Helmstädtersche Reihenfolgeproblem — die Effizienz verschiedener
Näherungsverfahren” in:Computer uses in the Social Sciences, Berichteiner Working Conference,
Wien, January 1967.

Chanas, S. and P. Kobylanski (1996) “A New Heuristic Algorithm Solving the Linear Ordering
Problem,” Computational Optimization and Applications, Vol. 6, pp. 191-205.

Chenery, H. B. and T. Watanabe (1958) “International Comparisons of the Structure of
Production” Econometrica, Vol. 26, p. 4.

Glover, F. and M. Laguna (1997) Tabu Search, Kluwer Academic Publisher.

Grotschel, M., M. Junger and G. Reinelt (1984), “A Cutting Plane Algorithm for the Linear
Ordering Problem,” Operations Research, Vol. 32, No. 6, pp. 1195-1220.

Knuth, D. E. (1993) The Stanford GraphBase: A Platform for Combinatorial Computing,
Addison Wesley, New York.

Laguna, M., T. Feo and H. Elrod (1994) “A Greedy Randomized Adaptive Search Procedure for
the 2-Partition Problem,” Operations Research, vol. 42, no. 4, pp. 677-687.

Laguna, M. and R. Martí (1997) “GRASP and Path Relinking for 2-Layer Straight Line Crossing
Minimization,” University of Colorado at Boulder.

LOLIB (1997) http://www.iwr.uni-heildelberg.de/iwr/comopt/soft/LOLIB/LOLIB.html.

Reinelt, G. (1985) The Linear Ordering Problem: Algorithms and Applications, Research and
Exposition in Mathematics, Vol. 8, H. H. Hofmann and R. Wille (Eds.), Heldermann Verlag
Berlin.

Intensification and Diversification with Elite Tabu Search
Solutions for the Linear Ordering Problem

MANUEL LAGUNA
Graduate School of Business, University of Colorado, Boulder, CO 80309, USA
Manuel.Laguna@Colorado.Edu

RAFAEL MARTÍ
Departamento de Estadistica e Investigacion Operativa, Universidad de Valencia, Spain
Rafael.Marti@uv.es

VICENTE CAMPOS
Departamento de Estadistica e Investigacion Operativa, Universidad de Valencia, Spain
Vicente.Campos@uv.es

SCOPE AND PURPOSE — The linear ordering problem (LOP) has a wide range of applications in
several fields. Perhaps, the best know application of the LOP occurs in the filed of economics. In
this application, the economy (regional or national) is first subdivided into sectors. Then, an
input/output matrix is created, in which the entry (i,j) represents the flow of money from sector i
to sector j. Economists are often interested in ordering the sectors so that suppliers tend to come
first followed by consumers. This is achieved by permuting the rows and columns of the matrix
so that the sum of entries above the diagonal is maximized, which is the objective of the LOP.

In group decision making, for example, the linear ordering problem can be used to provide a
ranking by paired comparison (or aggregation of individual preferences). A matrix entry (i,j) in
this context may represent the strength of the preference that the group shows for option i over
option j. Since the data may be inconsistent, there may not be a direct way of finding an ordering
for the options. The solution to the corresponding LOP emerges as viable alternative for ranking
the options under consideration.

Due to its combinatorial nature, the linear ordering problem has been shown to be hard
(computationally speaking). While other computationally hard problems have capture the
attention of researcher for many years (e.g., the traveling salesman problem), developing efficient
solution procedures for the LOP has been somewhat neglected. The goal of our paper is two-
fold: (1) to develop an efficient heuristic procedure for this problem, and (2) to experiment with
the use of specialized strategies for search intensification and diversification, within the context of
the search methodology that we have chosen to apply.

