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Abstract. Multi-start methods strategically sample the solution space of an
optimization problem. The most successful of these methods have two phases

that are alternated for a certain number of global iterations. The first phase
generates a solution and the second seeks to improve the outcome. Each global
iteration produces a solution that is typically a local optimum, and the best

overall solution is the output of the algorithm. The interaction between the
two phases creates a balance between search diversification (structural vari-
ation) and search intensification (improvement), to yield an effective means
for generating high-quality solutions. This survey briefly sketches historical

developments that have motivated the field, and then focuses on modern con-
tributions that define the current state-of-the-art. We consider two categories
of multi-start methods: memory-based and memoryless procedures. The for-
mer are based on identifying and recording specific types of information (at-

tributes) to exploit in future constructions. The latter are based on order
statistics of sampling and generate unconnected solutions. An interplay be-
tween the features of these two categories provides an inviting area for future
exploration.

1. Introduction

The methods that provide the origins of what we now call multi-start proce-
dures consist primarily of repeated applications of constructive methods. The best
solution produced by these repeated applications is then normally selected for im-
plementation. Early proposals can be found in the domains of heuristic scheduling
(Muth and Thompson (1963) and Crowston et al. (1963)), the traveling salesman
problem (Held and Karp (1970) and Lawler et al. (1985)), and knapsack problems
with single and multiple constraints (Senju and Toyoda (1968), Wyman (1973), and
Kochenberger et al. (1974)). It would be possible to go back even farther in time
and identify various methods used in statistics and calculus as instances of utilizing
repeated constructions to produce a preferred candidate, although such methods
were not used to address problems in the realm of optimization as we view it today.

More recently, Glover (1977) makes several connections to multi-start search by
means of a framework in which multi-start search includes local search to improve
the starting solutions. Within this framework, procedures are given for generating
starting values for variables and for generating values perturbed from other starting
points. By varying the rules for the perturbation, these strategies include custom-
ary local search approaches for producing re-starts. A series of extensions of this
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framework are given in Glover (1986), Glover (1989), and Glover (2000), addressing
controlled randomization, learning strategies, induced decomposition, and adaptive
memory processes (as introduced in tabu search). Emphasis is placed on the in-
teraction between intensification and diversification as a means for creating a more
effective search process. Several parts of the discussion bear on the area of multi-
start methods. Controlled randomization classically takes two forms. The first
is the well-known random restart approach, which injects a randomizing element
into the generation of an initial starting point to which a heuristic is subsequently
applied. The second classical version of this approach is the random shakeup pro-
cedure which, instead of restarting, periodically generates a randomized series of
moves that leads the heuristic from its customary path into a region it would not
otherwise reach.

Early multi-start methods from the optimization setting can be interpreted as
using a binary representation of decision variables, starting from a null solution and
selecting variables to set to 1, thus identifying assignments of jobs to machines, or
edges to tours, or items to compose a knapsack, and so forth. This construction
process continued until obtaining a complete or maximally feasible construction, at
which point all remaining variables were implicitly assigned values of 0. We adopt
this perspective of assigning values to zero-one variables as a basis for describ-
ing constructive processes within multi-start methods in general, allowing for the
added provision of considering associated destructive processes that instead oper-
ate by successively assigning values of 0 to selected variables (where these variables
would normally be assigned values of 1 in constructive processes). Different coding
schemes can be used to encompass a vast array of problems within this framework,
even in cases where a binary formulation that casts a problem as a mathematical
program would be inappropriate or counterproductive (e.g., due to the complexity
of describing the problem objective or constraints within a zero-one formulation).
Later in this section, we make use of one such coding scheme. Aggregation and
disaggregation methods can also be expressed within this framework by defining
zero-one variables within hierarchies, but we will not focus on such approaches
here.

The first multi-start methods were typically based on implementing the re-
starting step by randomly varying the choice of variables to receive a unit value, or
at the other extreme by simply going through a pre-defined list of choice rules and
applying a currently selected rule to build the current construction. In problem
contexts where it was possible to modify a completed construction by moves that
did not hopelessly destroy feasibility, the approach that is now commonly given
the name of local search or neighborhood search was sometimes applied in conjunc-
tion with the constructive processes in an effort to improve the solutions generated.
More recently, this marriage of constructive and local search procedures has become
the customary way to apply multi-start methods, such as in the GRASP heuristics
which we examine later in this survey. The motivation of enhancing constructed so-
lutions is additionally joined by the motivation of using the varied re-constructions
as a means of diversifying the solutions that launch the local search. In short, multi-
start methods from the modern perspective embody a blend of intensification and
diversification, and it is generally acknowledged that the nature of this blend is a
primary determinant of the effectiveness of the overall method.
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In this survey we will chiefly focus on the features that have been found to char-
acterize some of the best multi-start methods, rather than attempting to work our
way through the back alleys of all the various methods that have been proposed
over time. Among the substantial range of ways for classifying multi-start meth-
ods, we elect to employ a classification that divides multi-start methods into two
main groups, consisting of memory-based versus memory-less procedures. A useful
outcome of this classification is that it permits us to conveniently differentiate cer-
tain innovations that have provided important advances, according to our focus on
the multi-start methods that currently rank among the leading algorithms of this
genre.

Multi-start procedures were originally conceived as a way to exploit a local or
neighborhood search procedure, by simply applying it from multiple random ini-
tial solutions. Modern multi-start methods usually incorporate a powerful form
of diversification in the generation of solutions to help overcome local optimality.
Without this diversification, such methods can become confined to a small region of
the solution space, making it difficult, if not impossible, to find a global optimum.

The explicit use of memory structures constitutes the core of a large number
of intelligent solvers, including tabu search (Glover, 1989), scatter search (Laguna
and Mart́ı, 2003), and path-relinking (Ribeiro and Resende, 2012). These methods,
generically referred to as adaptive memory programming, exploit a set of strategic
memory designs. On the other hand, we can also find successful metaheuristics,
such as simulated annealing (Kirkpatrick et al., 1983), noising methods (Charon and
Hudry, 2002), and GRASP (Feo and Resende, 1995), with no memory structure in
their original designs. To focus out attention memory-based and memory-less multi-
start methods, we target adaptive memory programming and GRASP heuristics.

The re-start mechanism of multi-start methods can be superimposed on many
different search methods. Once a new solution has been generated, a variety of
options can be used to improve it, ranging from a simple greedy routine to a com-
plex metaheuristic. An open question in order to design a good search procedure
is whether it is better to implement a simple improving method that allows a great
number of global iterations or, alternatively, to apply a complex routine that sig-
nificantly improves a few generated solutions. A simple procedure depends heavily
on the initial solution but a more elaborate method takes much more running time
and therefore can only be applied a few times, thus reducing the sampling of the
solution space.

The remainder of this paper is organized as follows. In Section 2 we introduce
notation for combinatorial optimization and provide pseudo-codes for solution con-
struction procedures and multi-start algorithms. Adaptive memory programming
methods, which focus on exploiting a set of strategic memory designs, are addressed
in Section 3. Section 4 reviews greedy randomized and GRASP multi-start methods
and makes a connection between these methods and the path-relinking strategy for
search intensification. Concluding remarks are drawn in Section 5.

2. Combinatorial Optimization

We consider in this survey a combinatorial optimization problem defined by a
finite ground set E = {1, . . . , n}, a set of feasible solutions F ⊆ 2E , and an objective
function f : 2E → R. In its minimization version, we search an optimal solution
S∗ ∈ F such that f(S∗) ≤ f(S), ∀S ∈ F . The ground set E, the cost function
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f , and the set of feasible solutions F are defined for each specific problem. For
instance, in the case of the traveling salesman problem, the ground set E is that of
all edges connecting the cities to be visited, F is formed by all edge subsets that
determine a Hamiltonian cycle, and f(S) is the sum of the costs of all edges in S.
Another example is the maximum clique problem, where the ground set E is the
set of all vertices of the graph, F is the set of all subsets of E for which all vertices
are mutually adjacent, and f(S) is the cardinality of the clique S ∈ F .

We consider next a simple algorithm to construct a feasible solution S ∈ F ⊆ 2E

for a large class of combinatorial optimization problems. Infeasible solutions are
those that contain certain subsets of 2E and we restrict ourselves to problems for
which we can easily identify infeasibilities by detecting the presence of any of these
subsets in the solution under construction. This set encompasses many combina-
torial optimization problems, including problems such as set covering, maximum
clique, quadratic assignment, and traveling salesman. For example, in the case
of the traveling salesman problem, a subset of the edges corresponding to a sub-
tour indicates infeasibility. For the maximum clique problem, any setset of vertices
whoses elements are not mutually adjacent indicates infeasibility.

procedure ConstructSolution

Initialize solution: S ← ∅;
Initialize candidate set:
C ← {s ∈ E \ S | S ∪ {s} is not infeasible};

while C ̸= ∅ do
Select s ∈ C;
Add s to solution: S ← S ∪ {s};
Update candidate set:
C ← {s ∈ E \ S | S ∪ {s} is not infeasible};

end
return S;

Algorithm 1: Pseudo-code for a solution construction procedure.

Algorithm 1 shows a procedure that constructs feasible solutions. The algorithm
constructs the solution by adding elements of the ground set, one at a time, until a
feasible solution is on hand. The procedure starts with an empty solution S ← ∅.
At each step of the construction, let C be a subset of E \ S such that, for all s ∈ C,
S ∪ {s} contains no infeasible subset of ground set elements. The construction
algorithm selects some s ∈ C and adds it to S, i.e. S ← S ∪ {s}, updates C taking
into consideration the inclusion of s in S, and terminates when C = ∅.

A basic multi-start procedure simply applies procedure ConstructSolutionmul-
tiple times, returning the best solution found over all starts. This is illustrated in
Algorithm 2.

In the random multi-start procedure, a random solution is built at each iteration.
To accomplish this, an element is selected at random from the set of candidate
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procedure MultiStart

f∗ ←∞;
while stopping criterion not satisfied do

Construct feasible solution:
S ← ConstructSolution;

if f(S) < f∗ then
S∗ ← S;
f∗ ← f(S);

end

end
return S∗;

Algorithm 2: Pseudo-code for multi-start algorithm.

elements C at each iteration of the construction, as can be seen in the pseudo-
code ConstructRandomSolution shown in Algorithm 3. Algorithm 4 embeds this
construction in a multi-start scheme.

procedure ConstructRandomSolution

Initialize solution: S ← ∅;
Initialize candidate set:
C ← {s ∈ E \ S | S ∪ {s} is not infeasible};

while C ̸= ∅ do
Select s ∈ C at random;
Add s to solution: S ← S ∪ {s};
Update candidate set:
C ← {s ∈ E \ S | S ∪ {s} is not infeasible};

end
return S;

Algorithm 3: Pseudo-code for a randomized solution construction proce-
dure.

procedure RandomMultiStart

f∗ ←∞;
while stopping criterion not satisfied do

Construct random feasible solution:
S ← ConstructRandomSolution;

if f(S) < f∗ then
S∗ ← S;
f∗ ← f(S);

end

end
return S∗;

Algorithm 4: Pseudo-code for randomized multi-start algorithm.
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In the following sections we trace some of the more salient contributions to multi-
start methods, specially of the past decade. We have grouped them according to
the two categories mentioned above: memory-based (Section 3) and memory-less
designs (Section 4).

3. Adaptive Memory Programming

From a naive standpoint, virtually all heuristics other than complete randomiza-
tion induce a pattern whose present state depends on the sequence of past states,
and therefore incorporate an implicit form of memory. However, such an implicit
memory, as indicated in Glover and Laguna (1997), does not take a form nor-
mally viewed to be a memory structure. By contrast, the explicit use of memory
structures constitutes the core of a large number of intelligent solution methods.
They include tabu search (Glover and Laguna, 1997), scatter search (Laguna and
Mart́ı, 2003), iterated-based methods (Lozano et al., 2012), and evolutionary path-
relinking (Resende and Werneck, 2004), among others. These methods focus on
exploiting a set of strategic memory designs. Tabu search (TS), the metaheuristic
that launched this perspective, is the source of the term Adaptive Memory Program-
ming (AMP) to describe methods that use advanced memory strategies (and hence
non-trivial learning) to guide a search. In linguistic terms, to define semantic hier-
archies, we can say that AMP is the hypernym of tabu search such as mathematical
programming is the hypernym of linear programming.

Taillard et al. (2001) characterized adaptive programming methods as those that
exploit a memory structure to obtain a solution. Specifically they identified the
following characteristics in these methods:

• A set of solutions or a special data structure that aggregates the particu-
larities of the solutions produced by the search is memorized.
• A provisory solution is constructed using the data in memory.
• The provisory solution is improved using a greedy algorithm or a more
sophisticated heuristic.
• The new solution is added to memory or is used to update the data structure
that memorizes the search history.

Over time, various uses of memory strategies have also become incorporated
into a variety of other metaheuristics. For example, a number of “hybrid” genetic
and evolutionary methods have arisen that embed some form of these memory
strategies within them, and more recently several have appeared that have dropped
the hybrid nomenclature (and in some cases any reference to tabu search). To-
day it is not unusual for evolutionary methods to implement long term memory
structures to record elite solutions found during the search for intensification or
diversification purposes. In this survey, we examine the inclusion of memory struc-
tures in combined construction-improvement methods, comparing memory-based
with memory-less designs.

To set the stage for discussing these strategies, it is useful to briefly sketch some
of the features of tabu search. TS is a metaheuristic that guides a local search
heuristic procedure to explore the solution space beyond local optimality. Its use
of adaptive memory and associated strategies for exploiting such memory, creates a
flexible search behavior and offers a means to learn improved trajectories through
the solution space. The structure of a neighborhood in tabu search goes beyond
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that typically employed in local search by embracing the types of moves used in
constructive and destructive processes (where the foundations for such moves are
accordingly called constructive and destructive neighborhoods). As described in
Glover and Laguna (1997), adaptive memory in these settings involves an attribute-
based focus and closely depends on the elements of recency, frequency, and influence.
We now review the most relevant adaptive memory programming contributions in
the context of multi-start methods.

Boese et al. (1994) analyze relationships among local minima from the perspec-
tive of the best local minimum, finding convex structures in the cost surfaces.
Based on the results of that study, they propose a multi-start method where start-
ing points for greedy descent are adaptively derived from the best previously found
local minima. In the first step, Adaptive Multi-Start (AMS) heuristics generate r
random starting solutions and run a greedy descent method from each one to de-
termine a set of corresponding random local minima. In the second step, adaptive
starting solutions are constructed based on the local minima obtained so far and
improved with a greedy descent method. This improvement is applied several times
from each adaptive starting solution to yield corresponding adaptive local minima.
The authors test this method for the traveling salesman problem and obtain signifi-
cant speedups over previous multi-start implementations. Hagen and Kahng (1997)
apply this method for the iterative partitioning problem.

Moreno et al. (1995) propose a stopping rule for the multi-start method based on
a statistical study of the number of iterations needed to find the global optimum.
The authors introduce two random variables that together provide a way of estimat-
ing the number of global iterations needed to find the global optima: the number
of initial solutions generated and the number of objective function evaluations per-
formed to find the global optima. From these measures, the probability that the
incumbent solution is the global optimum is evaluated via a normal approximation.
Thus, at each global iteration, this value is computed and if it is greater than a
fixed threshold, the algorithm stops, otherwise a new solution is generated. The
authors illustrate the method using the median p-hub problem.

Hagen and Kahng (1997) implement an adaptive multi start method for a VLSI
partitioning optimization problem where the objective is to minimize the number
of signals sent between components. The method consists of two phases. It first
generates a set of random starting points and performs the iterative (local search),
thus determining a set of local minimum solutions. Then it constructs adaptive
starting points derived from the best local minimum solutions found so far. The
authors add a preprocessing cluster module to reduce the size of the problem. The
resulting Clustering Adaptive Multi Start (CAMS) method is fast and stable, and
improves upon previous partitioning results reported in the literature.

Fleurent and Glover (1999) propose some adaptive memory search principles to
enhance multi-start approaches. The authors introduce a template of a constructive
version of Tabu Search based on both, a set of elite solutions and the intensifica-
tion strategies based on identifying strongly determined and consistent variables
according to the following definitions:

• Strongly determined variables are those whose values cannot be changed
without significantly eroding the objective function value or disrupting the
values of other variables.
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• A consistent variable is defined as one that receives a particular value in a
significant portion of good solutions.

The authors propose the inclusion of memory structures within the multi-start
framework as it is done with tabu search. Computational experiments for the qua-
dratic assignment problem show that these methods improve significantly over pre-
vious multi-start methods like GRASP and random restart that do not incorporate
memory-based strategies.

Patterson et al. (1999) introduce a multi-start framework called Adaptive Rea-
soning Techniques (ART), based on memory structures. The authors implement
the short term and long term memory functions, proposed in the Tabu Search
framework, to solve the Capacitated Minimum Spanning Tree Problem. ART is
an iterative, constructive solution procedure that implements learning methodolo-
gies on top of memory structures. ART derives its success from being able to learn
about, and modify the behavior of a primary greedy heuristic. The greedy heuristic
is executed repeatedly, and for each new execution, constraints that prohibit certain
solution elements from being considered by the greedy heuristic are introduced in
a probabilistic fashion. The active constraints are held in a short-term memory,
while a long-term memory holds information regarding the constraints that were in
the active memory for the best set of solutions.

Glover (2000) approaches the multi-start framework from a different perspec-
tive. The author views multi-start methods as an extreme version of the strategic
oscillation approach. Strategic oscillation is a mechanism used in tabu search to
allow the process to visit solutions around a “critical boundary,” by approaching
such a boundary from both sides. The most common application of strategic os-
cillation is in constrained problems, where the critical boundary is the feasibility
boundary. The search process crosses the boundary from the feasible side to the
infeasible side and also from the infeasible side to the feasible side. Two search prin-
ciples, persistent attractiveness and marginal conditional validity, are proposed in
Glover (2000) for creating improved forms of constructive multi-start and strategic
oscillation methods.

• Persistent attractiveness states that good choices derive from making de-
cisions that have often appeared attractive, but that have not previously
been made within a particular region or phase of search. That is, persistent
attractiveness also carries with it the connotation of persistently unselected
within a specific domain or interval.
• Marginal conditional validity specifies that the more decisions are made, the
consequences of imposing them cause the problem to be more restricted.
Consequently, as the search progresses, future decisions face less complexity
and less ambiguity about which choices are likely to be preferable. There-
fore, early decisions are more likely to be bad ones or at least to look better
than they should, once later decisions are made.

These concepts play a key role in deriving appropriate measures to capture in-
formation during prior search. Applied to constructive neighborhoods, strategic
oscillation operates by alternating constructive and destructive phases, where each
solution generated by a constructive phase is dismantled (to some degree) by the
destructive phase, after which a new phase builds the solution anew. The conjunc-
tion of both phases and their associated memory structures provides the basis for
an improved multi-start method. These strategies can also be joined with the target
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analysis (Glover and Laguna, 1997) to identify subsets of variables in 0-1 problems
that are sufficient to generate optimal solutions. The creation of measures to cap-
ture information about recency, frequency, and attractiveness, makes Glover (2000)
an important milestone in the multi-start literature based on memory structures.

Braysy et al. (2004) propose a multi-start local search heuristic for the vehicle
routing problem with time windows. The objective in this problem is to design
least cost routes for a fleet of identical capacitated vehicles to service geographi-
cally scattered customers within pre-specified service time windows. The suggested
method uses a two-phase approach. In the first phase, a fast construction heuristic
is used to generate several initial solutions. Then, injection trees, an extension of
the well-known ejection chain approach (Glover and Laguna, 1997) are used to re-
duce the number of routes. In the second phase, two new improvement heuristics,
based on CROSS-exchanges (Taillard et al., 1997) are applied for distance mini-
mization. The best solution identified by the algorithm is post-optimized using a
threshold accepting post-processor with both intra-route and inter-route improve-
ment heuristics. The resulting hybrid method is shown to be fast, cost-effective,
and highly competitive.

Mezmaz et al. (2006) hybridize the multi-start framework with a model in which
several evolutionary algorithms run simultaneously and cooperate to compute bet-
ter solutions (called island model). They propose a solution method in the con-
text of multi-objective optimization on a computational grid. The authors point
out that although the combination of these two models usually provides very ef-
fective parallel algorithms, experiments on large-size problem instances are often
stopped before convergence is achieved. The full exploitation of the cooperation
model needs a large amount of computational resources and the management of the
fault tolerance issue. In this paper, a grid-based fault-tolerant approach for these
models and their implementation on the XtremWeb grid middleware is proposed.
The approach has been experimented on the bi-objective Flow-Shop problem on a
computational grid made of 321 heterogeneous Linux PCs within a multi-domain
education network. The preliminary results, obtained after an execution time of
several days, demonstrate that the use of grid computing effectively and efficiently
exploits the two parallel models and their combination for solving challenging opti-
mization problems. In particular, the effectiveness is improved by over 60 percent
when compared with a serial meta-heuristic.

Under the template of a typical multi-start metaheuristic, Lan and DePuy (2006)
propose Meta-RaPS (Meta-heuristic for Randomized Priority Search), in which
several randomization methods and memory mechanisms are present. With the
Set Covering Problem (SCP) as the application problem, it is found that these
randomization and memory-based methods work well for Meta-RaPS. The mem-
ory methods consists of priority rules with fitness and partial construction in the
construction phase to obtain good starting solutions. In the partial construction
strategy, some basic elements are fixed according to the information gathered in
previous iterations. As a conclusion, the authors state that the quality and effi-
ciency of multi-start methods can be improved through the use of both memory
mechanisms and randomization methods.

Beausoleil et al. (2008) consider a multi-objective combinatorial optimization
problem called Extended Knapsack Problem. By applying multi-start search and
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path-relinking their solving method rapidly guides the search toward the most bal-
anced zone of the Pareto-optimal front (the zone in which all the objectives are
equally important). The constructive process can be summarized as follows:

(1) Modify the problem by using a ghost image strategy (Glover and Laguna,
1997).

(2) Create a candidate list and a probability distribution.
(3) Construct a feasible solution for the modified problem by using the proba-

bility distribution

The Pareto relation is applied in order to designate a subset of the best generated
solutions to be the current efficient set of solutions. A max-min criterion applied
to the Hamming distance is used as a measure of dissimilarity in order to find
diverse solutions to be combined. The performance of this approach is compared
with several state-of-the-art multi-objective evolutionary algorithms for a suite of
test problems taken from the literature.

Essafi et al. (2010) propose a multi-start ant based heuristics for a machine line
balancing problem. The proposed procedure is a constructive algorithm that as-
signs operations sequentially to stations. The algorithm builds a feasible solution
step by step according to a greedy function that computes the contribution of each
unassigned operation to the partial solution under construction based on opera-
tional time and weights. The selection of the operation to be added is performed
with a roulette wheel mechanism based on the typical ant probability distribution
(pheromones of previous assignments). The proposed heuristic is applied to solve
a real industry problem.

Dhouib et al. (2010) propose a multi-start adaptive threshold accepting algo-
rithm (MS-TA) to find multiple Pareto-optimal solutions for continuous optimiza-
tion problems. Threshold accepting methods (TAs) are deterministic and faster
variants of the well-known simulated annealing algorithms, in which every new
move is accepted if it is not much worse than the old one. A multi-start technique
is applied in this paper to the TA algorithm to allow more diversifications.

One of drawbacks of traditional multi-objective methods versus the evolutionary
ones is the necessity of multiple single-objective runs to find multiple Pareto-optimal
solutions. To overcome this drawback a multi-start technique is used and only one
run is required to allow more diversification in the space search. This diversification
consists in restarting with a new initial solution and different weight values (with
respect to the objective functions) in order to diversify the search. Empirical exper-
iments with non-linear mechanical design problems show the merit of the proposed
procedure.

Villegas et al. (2010) propose two hybrid algorithms for the single truck and
trailer routing problem. The first one is based on GRASP and variable neigh-
borhood descent (VND), while the second one is and evolutionary local search
(ELS). In the first one, large tours are constructed with a randomized nearest
neighbor method with a restricted candidate list that ignores capacity constraints
and trailer-point selection. VND is applied to improve these initial solutions ob-
tained with GRASP. In the second one, a multi-start evolutionary search is applied
starting from an initial solution (giant tour). The best solution found is strongly
perturbed to obtain different solutions from which the search is re-started. The
perturbation is managed by a mutation operator. The results of the computational
experiments on a set of 32 randomly generated instances also unveil the robustness
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of the proposed metaheuristics, all of them achieving gaps to best known solutions
of less than 1% even in the worst case. Among the proposed methods,the multi-
start evolutionary local search is more accurate, faster, and scales better than the
GRASP/VND.

4. Greedy randomized and GRASP multi-start methods

As was the case for the random multi-start procedure, an adaptive greedy al-
gorithm constructs a feasible solution, one ground set element at a time. Instead
of selecting an element at random from the set C of candidate elements, this al-
gorithm computes the contribution to the cost of the solution of each candidate
element and then selects an element corresponding to the smallest cost contribu-
tion to add to the solution. A randomized version of the adaptive greedy algorithm,
shown in procedure ConstructSemiGreedySolution of Algorithm 5, was proposed
by Hart and Shogan (1987). In this variant a restricted candidate list (RCL) of
good elements for selection is constructed. Let g(s) be the contribution of ground
set candidate element s ∈ C to the cost of the solution under construction and let
gmin = min{g(s) | s ∈ C} and gmax = max{g(s) | s ∈ C}. The restricted candidate
list is defined as

RCL = {s ∈ C | g(s) ≤ gmin + α(gmax − gmin)},
where α is a real-valued parameter such that 0 ≤ α ≤ 1. At each iteration of the
greedy randomized construction procedure, an element is selected at random from
the RCL and is added to the solution under construction. The RCL is then redefined
to take into account the fact that the selected ground set element is now part of the
solution under construction. Note that by varying the value of α we can make this
construction procedure vary from a purely greedy procedure (α = 0) to one that is
purely random (α = 1). Hart and Shogan (1987) called this procedure semi-greedy.
The randomized greedy construction procedure is illustrated in Algorithm 5 and
the corresponding multi-start procedure is shown in Algorithm 6.

procedure ConstructSemiGreedySolution(α)
Initialize solution: S ← ∅;
Initialize candidate set:
C ← {s ∈ E \ S | S ∪ {s} is not infeasible};

while C ̸= ∅ do
gmin ← min{g(s) | s ∈ C};
gmax ← max{g(s) | s ∈ C};
RCL← {s ∈ C | g(s) ≤ gmin + α(gmax − gmin)};
Select at random s ∈ RCL;
Add s to solution: S ← S ∪ {s};
Update candidate set:
C ← {s ∈ E \ S | S ∪ {s} is not infeasible};

end
return S;

Algorithm 5: Pseudo-code for a randomized greedy solution construction
procedure.
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procedure RandomizedGreedyMultiStart(α)
f∗ ←∞;
while stopping criterion not satisfied do

Construct a feasible randomized greedy solution:
S ← ConstructSemiGreedySolution(α);

if f(S) < f∗ then
S∗ ← S;
f∗ ← f(S);

end

end
return S∗;

Algorithm 6: Pseudo-code for randomized greedy multi-start algorithm.

Given a feasible solution S ∈ F of a combinatorial optimization problem, we
define a neighborhood N(S) of S to consist of all feasible solutions that can be
obtained by making a predefined modification to S. For example, if S is represented
as a binary vector, the k-flip neighborbood consists of all feasible solutions where
the values of exactly k components of the binary vector are changed. In another
example, if S is represented as a permutation n-vector (a vector on size n consisting
of the entries {1, 2, . . . , n} in some order) the swap neighborhood is defined as all
feasible solutions for which the i-th and j-th entries of the vector are interchanged,
for i = 1, 2, . . . , n−1 and j = i+1, . . . , n. We say a solution S∗ ∈ F is locally optimal
if f(S∗) ≤ f(S) for all S ∈ N(S∗). Given a feasible solution S0 ∈ F , a local search
procedure finds a locally optimal solution by exploring a sequence of neighborhoods,
starting from N(S0). At the i-th iteration it explores the neighborhood of solution
Si. If there exists some solution Y ∈ N(Si) such that f(Y ) < f(Si), it sets
Si+1 = Y and proceeds to iteration i+ 1. Otherwise, S∗ = Si is declared a locally
optimal solution and the procedure stops.

Since there is no guarantee that a randomized greedy solution is locally optimal,
local search can be applied after each semi-greedy construction step to attempt
to find a locally optimal solution with smaller cost than that of the constructed
solution. This was first proposed in a paper by Feo and Resende (1989) for set
covering and was later referred to as GRASP, or greedy randomized adative search
procedure, a metaheuristic for combinatorial optimization (Feo and Resende, 1995;
Resende and Ribeiro, 2010; Festa and Resende, 2009a;b). The pseudo-code in
Algorithm 7 shows a GRASP for minimization.

We finish this survey with a brief mention to a successful hybridization of the
two methodologies described in the previous sections. Specifically, Laguna and
Mart́ı (1999) introduce path-relinking within GRASP as a way to improve multi-
start methods. To use path-relinking within GRASP or any multi-start method,
an elite set of diverse high-value solutions found during the search is maintained.
Path-relinking has been suggested as an approach to integrate intensification and
diversification strategies in the context of tabu search (Glover and Laguna, 1997).
This approach generates new solutions by exploring trajectories that connect high-
quality solutions, by starting from one of these solutions and generating a path in
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procedure GRASP(α)
f∗ ←∞;
while stopping criterion not satisfied do

Construct a feasible randomized greedy solution:
S ← ConstructSemiGreedySolution(α);

Find a locally optimal solution:
S ← LocalSearch(S);

if f(S) < f∗ then
S∗ ← S;
f∗ ← f(S);

end

end
return S∗;

Algorithm 7: Pseudo-code for GRASP.

the neighborhood space that leads toward the other solutions. This is accomplished
by selecting moves that introduce attributes contained in the guiding solutions. Re-
linking in the context of GRASP consists in finding a path between a solution found
after an improvement phase and a high-quality solution randomly chosen from the
elite solution. Therefore, the relinking concept has a different interpretation within
GRASP, since the solutions found from one iteration to the next are not linked by
a sequence of moves (as in the case of tabu search). The proposed strategy can be
applied to any method that produces a sequence of solutions; specifically, it can
be used in any multi-start procedure. Many different designs named evolutionary
path-relinking have also been proposed (Resende et al., 2008; 2010). Evolutionary
path-relinking applies path-relinking between pairs of solutions in the final elite set
produced by GRASP or any multi-start method. In one such design, while there
exists a pair of solutions that have yet to be relinked, the path-relinking operator is
applied to the pair and the resulting solution is a candidate to replace an existing
elite-set solution. Hybridization of path-relinking with methods such as VNS and
genetic algorithms is described in Ribeiro and Resende (2012).

5. Conclusions and Future Directions

The objective of this study has been to extend and advance the knowledge associ-
ated to implementing multi-start procedures. Unlike other well-known methods, it
has not yet become widely implemented and tested as a metaheuristic itself for solv-
ing complex optimization problems. Its use has been steadily increasing as shown
in Figures 1 and 2. Those figures show the number of papers published yearly
from 1990 to 2011 on multi-start methods. Figure 1 shows publication counts for
the query "multistart" OR "multi-start" on Google Scholar (http://scholar.
google.com), while Figure 2 shows the counts for the same topic query on the Sci-
ence Citation Index Expanded and Conference Proceedings Citation Index databases
of Thompson Reuter’s Web of Knowledge (http://webofknowledge.com).

We described the two methodologies, adaptive memory programming and GRASP,
within most of the multi-start implementations on combinatorial optimization can



14 RAFAEL MARTÍ, MAURICIO G.C. RESENDE, AND CELSO C. RIBEIRO

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1990  1995  2000  2005  2010

G
oo

gl
e 

S
ch

ol
ar

 r
es

ul
ts

year of publication (1990 - 2011)

Figure 1. Google Scholar number of publications for query
"multistart" OR "multi-start" from 1990 to 2011.
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Figure 2. Web of Science number of publications for query
"multistart" OR "multi-start" from 1990 to 2011 in the Sci-
ence Citation Index Expanded and Conference Proceedings Citation
Index databases.

be found. We also described new ideas that have recently emerged within the multi-
start area that add a clear potential to this framework which has yet to be fully
explored.

Current research trends and new challenges in multi-start methods include is-
sues such as the development of tools for performance evaluation and algorithm
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comparison (Aiex et al., 2007; Ribeiro et al., 2011b), more sophisticated statistical
tests and validation processes (Chiarandini et al., 2007), development of effective
stopping criteria (Ribeiro et al., 2011a), and the use of restart policies (Resende
and Ribeiro, 2011) to improve efficiency of these methods.

Finally, we briefly make note of three rarely considered variations that can po-
tentially enrich the field of multi-start methods by providing fertile offshoots worthy
of investigation:

(1) Combining constructive and destructive processes via strategic oscillation
(e.g., Glover (1977), Glover and Laguna (1997), Lozano et al. (2012)).

(2) Using probabilistic choice instead of pure randomization, accompanied by
methods for learning good probabilities (Crowston et al., 1963).

(3) Systematically varying choice rules by changing weights attached to choice
rule components (Crowston et al., 1963).
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M. Lozano, F. Glover, C. Garćıa-Mart́ınez, F.J. Rodrguez, and R. Mart́ı. Tabu
search with strategic oscillation for the quadratic minimum spanning tree. Tech-
nical Report 1A, University of Valencia, Valencia, Spain, 2012.



MULTI-START METHODS FOR COMBINATORIAL OPTIMIZATION 17

M. Mezmaz, N. Melab, and E.G. Talbi. Using the multi-start and island models
for parallel multi-objective optimization on the computational grid. In Second
IEEE International Conference on e-Science and Grid Computing, 2006.

J.A. Moreno, N. Mladenovic, and J.M. Moreno-Vega. An statistical analysis of
strategies for multistart heuristic searches for p-facility location-allocation prob-
lems. In Eighth Meeting of the EWG on Locational Analysis Lambrecht, 1995.

J. F. Muth and G. L. Thompson. Industrial Scheduling. Prentice-Hall, 1963.
R. Patterson, H. Pirkul, and E. Rolland. Adaptive reasoning technique for the

capacitated minimum spanning tree problem. J. of Heuristics, 5:159–180, 1999.
M.G. Resende, R. Mart́ı, M. Gallego, and A. Duarte. GRASP and path relinking

for the max-min diversity problem. Computers and Operations Research, 37:
498–508, 2008.

M.G.C. Resende and C.C. Ribeiro. Greedy randomized adaptive search procedures:
Advances and applications. In M. Gendreau and J.-Y. Potvin, editors, Handbook
of Metaheuristics, pages 293–319. Springer, 2nd edition, 2010.

M.G.C. Resende and C.C. Ribeiro. Restart strategies for GRASP with path-
relinking heuristics. Optimization Letters, 5:467–478, 2011.

M.G.C. Resende and R.F. Werneck. A hybrid heuristic for the p-median problem.
J. of Heuristics, 10:59–88, 2004.

M.G.C. Resende, R. Mart́ı, M. Gallego, and A. Duarte. GRASP and path relinking
for the max-min diversity problem. Computers and Operations Research, 37:
498–508, 2010.

C.C. Ribeiro and M.G.C. Resende. Path-relinking intensification methods for
stochastic local search algorithms. J. of Heuristics, 18:193–214, 2012. doi:
10.1007/s10732-011-9167-1.

C.C. Ribeiro, I. Rosseti, and R.C. Souza. Effective probabilistic stopping rules for
randomized metaheuristics: GRASP implementations. Lecture Notes in Com-
puter Science, 6683:146–160, 2011a.

C.C.. Ribeiro, I. Rosseti, and R. Vallejos. Exploiting run time distributions to
compare sequential and parallel stochastic local search algorithms. J. of Global
Optimization, 2011b. doi: 10.1007/s10898-011-9769-z.

S. Senju and Y. Toyoda. An Approach to Linear Programming with 0-1 Variables.
Management Science, 15:196–207, 1968.

E.D. Taillard, P. Badeau, M. Gendreau, F. Guertin, and J.Y. Potvin. A tabu
search heuristic of the vehicle routing problem with time windows. Transportation
Science, 31:170–186, 1997.

E.D. Taillard, L.M. Gambardella, M. Gendreau, and J.Y. Potvin. Adaptive memory
programming: A unified view of metaheuristics. European J. of Operational
Research, 135:1–16, 2001.

J.G. Villegas, C. Prins, C. Prodhon, A.L. Medaglia, and N. Velasco. GRASP/VND
and multi-start evolutionary local search for the single truck and trailer routing
problem with satellite depots. Engineering Applications of Artificial Intelligence,
23:780–794, 2010.

F.P. Wyman. Binary Programming: A Occasion Rule for Selecting Optimal vs.
Heuristic Techniques. The Computer Journal, 16:135–140, 1973.
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