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Abstract

In this work, we tackle multidimensional two-way number partitioning (MD-
TWNP) problem by combining GRASP with Exterior Path Relinking. In
the last few years, the combination of GRASP with path relinking (PR) has
emerged as a highly effective tool for finding high-quality solutions for several
difficult problems in reasonable computational time. However, in most of the
cases, this hybridization is limited to the variant known as interior PR. Here,
we couple GRASP with the ”exterior form” of path relinking and perform
extensive experimentation to evaluate this variant. Our computational ex-
periments show the superiority of this approach compared with the previous
best method for MDTWNP and with alternative methods for this problem
that use other forms of PR.
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1. Introduction

The multidimensional two-way number partitioning (MDTWNP) is a bi-
nary optimization problem that consists of partitioning a set of vectors S
into two disjoint groups so that the maximum difference between the sum
per coordinate of the elements in each group is minimised.

More formally, Kojic [1] describes the MDTWNP problem as follows.
Given a set of n vectors of dimension d, S = {wi | wi = (wi1, wi2, . . . , wid), i =
1, . . . , n)}, the objective is to split the elements of S into two sets S1 and S2

so that S1 ∩ S2 = ∅, S1 ∪ S2 = S, and t is minimum, with:

t = max{|
∑

wi∈S1

wij −
∑

wi∈S2

wij| : j = 1, . . . , d} (1)

Example 1.1. Given S = {w1 = (2, 6), w2 = (−1, 5), w3 = (3,−7), w4 =
(−2, 4), w5 = (−2,−1)}, consider the solution with S1 = {w2, w3} S2 =
{w1, w4, w5}. In order to compute its objective function value, firstly, we cal-

culate the sum of the vectors included in each subset per every coordinate,

obtaining (2,−2) for S1 and (−2, 9) for S2. Secondly, we obtain the differ-

ences, (|2−(−2)|, |−2−9|) = (4, 11). Therefore, the objective function value

for this solution is max(4, 11) = 11.

The MDTWNP problem is NP-hard [1], and it is a generalisation of the
two-way number partitioning problem [2, 3] where the objective is to split
a set of numbers. The latter has practical applications in different areas
such as scheduling on multiprocessors, designing of VLSI circuits, public
key cryptography, and database processing [4, 5]. Kojic [1] described two
different real-world scenarios for the MDTWNP problem related to tasks
distribution area. In the first one, two travel agents need to have as closely
similar revenues from organized tours as possible, considering the price of
the tour, the mileage due to petrol consumption, and special offers such as
restaurants, shopping tours, or visits to museums. In the second one, the
objective is to homogenize police patrols according to the mileage, degree of
risk, and time needed for touring their beat.

We propose a new method for MDTWNP by joining GRASP and Exterior
Path Relinking. We now describe their key components, and our rationale
for combining them.
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GRASP [6, 7] is a multistart metaheuristic consisting of two phases, con-
struction and improvement. In the first phase, a greedy randomised proce-
dure generates an initial solution by adding elements one at a time from a
restricted candidate list to the current partial solution. The second phase
performs a local search to improve the quality of the solution obtained in the
first phase. Construction and improvement phases are performed iteratively
until a predefined termination condition is met.

Path-relinking (PR) was originally proposed to integrate intensification
and diversification strategies within the context of tabu search and scatter
search [8, 9, 10]. PR creates new solutions by a process of generating paths
between and beyond pairs of selected points in neighbourhood space. In spite
of the widespread application of PR in combinatorial optimisation, almost
all PR implementations only consider the between-form of PR. On the con-
trary, the beyond-form of PR introduced by Glover in [11] remains virtually
unexplored. This variant, called exterior PR (ePR), only has been recently
applied to address the differential dispersion problem [12], obtaining very
promising results.

Based on an original proposal by Laguna and Mart́ı [13], GRASP is usu-
ally combined with PR in order to improve its performance, and in the last
few years, this combined methodology has emerged as a leading method for
finding high-quality solutions for several difficult problems within reasonable
computational time [13, 14, 15, 16, 17, 18]. The efficacy of this approach leads
us to go a step farther by proposing an algorithm that combines GRASP with
ePR to deal with the MDTWNP problem. We further enhance our algorithm
by proposing a new restricted local descent method that accelerates the selec-
tion of moves and improves the quality of solutions that can be found within
a given time limit.

The remainder of this paper is organised as follows. Section 2 reviews
the state-of-the-art algorithms for the MDTWNP problem. In Section 3,
we detail the proposed GRASP+PR algorithm for the MDTWNP problem,
where our PR method embodies the ePR approach. In Section 4, we show the
results of an empirical study whose aim is twofold: 1) analyse the influence of
different parameters and algorithm components, 2) compare the results of a
tuned GRASP+PR with those obtained by other state-of-the-art algorithms
for the MDTWNP problem. Finally, in Section 5, we discuss conclusions and
further work.
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2. State-of-the-art Algorithms for MDTWNP problem

There are many approaches in the literature to solve the number parti-
tioning problem such as greedy heuristics [19, 20], total enumeration [21], a
hybrid algorithm that combines branch and bound, breadth first search, and
beam search [3], simulated annealing [22], tabu search [9, 23], genetic and
memetic algorithms [24, 25], and GRASP [26].

Unfortunately, as shown by Kojić [1], some of them cannot be directly
applied to solve the MDTWNP problem. For this reason, Kojić proposes the
following integer linear programming formulation for this problem:

Minimise t (2)

Subject to − 0.5 · t +
n∑

i=1

wij · xi ≤ 0.5 · sj , ∀j = 1, . . . , d, (3)

0.5 · t +
n∑

i=1

wij · xi ≥ 0.5 · sj, ∀j = 1, . . . , d, (4)

sj =

n∑

i=1

wij, ∀j = 1, . . . , d, (5)

xi ∈ {0, 1}, ∀i = 1, . . . , n. (6)

where sj is the sum of the value stored in the j − th position of all vectors
(Equation (5)), t is necessarily the largest absolute difference between the
sum per every coordinate of both groups because of Equations (2)-(4), and
xi = 1 if the vector wi ∈ S1 and 0 otherwise. Kojić carries out an experimen-
tal study to solve the above formulation with CPLEX on a set of instances
presented also in this work.

Later, Pop and Matei [27] proposed a memetic algorithm (MA) to deal
with the MDTWNP problem which starts from an initial random population
and evolves it by means of crossover and mutation operators. The crossover
operator selects two parents using a binary tournament method and applies
single point crossover. At each generation, 85% of the new population is gen-
erated by crossed solutions and the remaining 15% is copied directly from the
old population. Mutation is applied with a probability of 10%, flipping the
group to which the vector belongs. Finally, for each new solution obtained
using the genetic operators, a local improvement procedure is applied, em-
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ploying three different neighbourhoods in succession consisting of 1, 2, and
3-swap moves, respectively.

Recently, Kratica et al. [28] presented a variable neighbourhood search

(VNS) and a electromagnetism based metaheuristic (EM) for the MDTWNP
problem. The variable neighbourhood search starts with a random solu-
tion, shakes the incumbent solution by randomly changing several elements
of this solution and performs a local search procedure based on 1-swap im-
provements. The electromagnetism-like metaheuristic is a population based
algorithm that evolves solutions through three different stages: local search,
scaling and moving. Firstly the same local search procedure as in VNS is
applied. Then, solutions from the population are moved toward local optima
obtained by the local search procedure during the scaling step. Finally, dur-
ing the moving phase, solutions are led to the most promising regions of the
search space sampled by the population.

The experimental study of Kratica et al. compares VNS, EM, MA, and
the results obtained by CPLEX, where the latter solves the integer linear
programming model for the MDTWNP problem [1]. The authors test EM
and VNS on the set of instances presented in [1] and compare them with the
results reported by MA and CPLEX in their respective original publications.
The study concludes that VNS and EM outperform MA and CPLEX, but
finds no statistically significant differences between EM and VNS.

3. GRASP and ePR for the MDTWNP problem

In this section we present the general design of our GRASP+PR for the
MDTWNP problem (Section 3.1). Then, we detail the main elements of the
model: construction phase (Section 3.2), local improvement phase (Section
3.3), and PR (Section 3.4), focusing on the novel contributions made in each
of these stages: constructive procedure guided by heuristic information, local
search with restricted neighbourhood and ePR.

3.1. General Scheme

As previously intimated, GRASP is a multistart process that iteratively
performs two main phases, construction and solution improvement, which
respectively employ a greedy randomised procedure to generate an initial
solution and then execute an improvement process to drive the initial solution
to a local optimum. The best solution found over all iterations is returned
as the result.
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As it is well known, the basic GRASP scheme does not make use of any
memory structure to exploit the information obtained about the search space
in previous iterations. To complement this approach, GRASP is frequently
hybridized with PR, as first proposed by Laguna and Mart́ı [13]. In this
hybridization a set P of so-called elite solutions is incorporated that stores
high-quality and diverse solutions found throughout the search process. The
PR method then explores trajectories between and beyond solutions obtained
by the improvement procedure and solutions from the elite set.

The general scheme of our proposed GRASP+PR algorithm (which in-
corporates the option of using the ePR method) is shown in Figure 1. We
employ six input parameters: typePR identifies the form of PR, Tmax denotes
the computation time limit, maxElite is the maximum number of solutions
in the elite set P , typeLS identifies the particular local search method ap-
plied during the improvement phase, and typeRCL and α are parameters
related to the construction phase. These parameters are explained in detail
in the following sections.

Each iteration begins by constructing an initial solution s by procedure
Construction(typeRCL, α) (Section 3.2). Then a local search improvement
method is applied to the solution s in ImprovementProcedure(s, typeLS) (Sec-
tion 3.3). Next, PR is applied in procedure PathRelinking(typePR, s,maxElite)
(Section 3.4). The best solution found during the search, denoted s∗, is re-
turned at the end.

Input: Tmax, maxElite, typePR, typeRCL, α, typeLS
Output: s∗

1 s∗ ← NULL;
2 P ← ∅;
3 while computation time limit Tmax not reached do

4 s← Construction(typeRCL, α);
5 s← ImprovementProcedure(s, typeLS);
6 s← PathRelinking(typePR, s,maxElite) end;
7 if s∗ == NULL then

8 s∗ ← s;
9 else

10 if f(s) < f(s∗) then s∗ ← s end;
11 end

12 end

Figure 1: Pseudocode for GRASP with PR for MDTWNP problem
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3.2. Construction procedure

In the construction phase, a feasible solution is created by means of an
iterative procedure that combines greediness and randomness to successively
select new elements to add to the current partial solution (which begins
empty). Elements are drawn from a restricted candidate list (RCL) and the
process repeats until a complete solution is obtained. The construction pro-
cedure has two main components: a function g(·) that evaluates the solution
elements and a strategy to manage the RCL. Below, we describe each of these
components:

• Function g(·) is responsible for indentifying the most promising so-
lution elements and defines the greedy behaviour of the construction
procedure. Taking into account that a feasible solution is obtained by
assigning each vector w ∈ S to one group j = {1, 2}, a solution element
is represented by a pair (w, j). Given a partial solution consisting of
sets S1 and S2 of vectors already assigned to the groups 1 and 2, we
calculate the greedy value g(z, j) for the assignment of an unassigned
vector z to the group j as follows:

g(z, 1) = max{|(
∑

p∈S1

wpi + zi)−
∑

q∈S2

wqi| : i = 1, . . . , d}. (7)

g(z, 2) = max{|
∑

p∈S1

wpi − (
∑

q∈S2

wqi + zi)| : i = 1, . . . , d}. (8)

where zi is the value of the i− th position of the vector z. By this def-
inition, the smaller g(z, j) values are attached to the solution elements
(z, j) that are more attractive.

• Several different ways exist to manage the RCL [29]. In this work, we
have chosen two of them. In the first, denoted by B RCL, the RCL is
composed of high-quality candidate elements which are restricted ei-
ther in number (cardinality-based) or by their quality (value-based).
The cardinality based membership includes within RCL a percentage
α of the full set of elements ordered by their attractiveness. Then, a
random element from the RCL is chosen to be added to the current
partial solution. In the second approach for managing the candidate
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list, denoted by R RCL, the RCL consists of randomly selected solu-
tion elements whose number is again determined as a percentage α of
the full set, and the member of RCL having the best greedy function
value is chosen to be added to the current partial solution. The use
of randomness in various parts of the RCL management facilitates the
exploration of different regions of the search space by the constructive
procedure. B RCL is the standard implementation that first applies
the greedy component, evaluating the candidate elements, and then
applies the random one in the selection. R RCL, recently applied [30],
performs first the random component, and then the greedy one.

The detailed pseudocode of the construction procedure described above
is shown in Figure 2.

Input: α, typeRCL

Output: s
1 S ← S;
2 Let s be an empty solution;

3 while S 6= ∅ do
4 if typeRCL == B RCL then

5 For all pairs (z, j) : z ∈ S, j = {1, 2} compute g(z, j);
6 RCL← {(z, j) | g(z, j) is one of the α · n best greedy values };
7 (z∗, j∗)← Choose an element at random from RCL;

8 end

9 else if typeRCL == R RCL then

10 RCL← Choose randomly α ·n elements from {(z, j) : z ∈ S, j = {1, 2}};
11 For all pairs (z, j) ∈ RCL compute g(z, j);
12 (z∗, j∗) = argmin{g(z, j) : (z, j) ∈ RCL };

13 end

14 Assign vector z∗ to group j∗ in solution s;

15 S ← S\{z∗};

16 end

Figure 2: Pseudocode for contruction procedure

3.3. Local improvement phase: restricted first interchange local search

The aim of the improvement phase is to explore the neighbourhood of the
solution obtained by the construction procedure to find better solutions rel-
atively close to the initial one. The construction procedure is responsible for
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identifying promising areas of the search space, whereas the local improve-
ment procedure is in charge of intensifying the search in these promising
regions.

We have considered two different local search procedures for the MDTWNP
problem, both of which consist of a simple descent that stops as soon as no
further improving moves are detected. The first, proposed in [28], explores
the search space near a particular solution by choosing two random vec-
tors assigned to different groups in the current solution and then exchanging
(swapping) the groups to which they belong. The first neighbour found that
improves the current solution becomes the new current solution. We call this
process first interchange local search (FI).

The second form of simple descent we consider is a new one that we
propose to overcome a limitation of FI which stems from the fact that the
neighbour solution selected by this process can have a significantly different
objective function value than the current solution, and this can cause the
process to become prematurely lodged in a local optimum. Our new local
search descent method, which we call restricted first interchange local search

(RFI), evaluates only a single swap move for each vector by pairing it with
the most similar vector (in terms of Euclidean distance) assigned to a dif-
ferent group. Like in FI, the order for selecting the vectors is determined
by a random permutation. As soon as such a restricted swap move is found
that improves the current objective function value, it is selected to produce
the new solution. This process, like the FI method, ends when there is no
available move (of the form considered) that enhances the current value. The
RFI method moves to nearby solutions with objective function values that
are generally close to those of solutions left behind, yielding a more grad-
ual form of descent. At the same time, by restricting the neighbourhood
explored, the RFI local search is faster

It is important to highlight that, in order to improve the performance of
the local search methods, the new solutions obtained after a swapping move
are not evaluated from scratch but applying delta evaluation. With this
purpose, we store the sum of the elements in each group for each coordinate
(Sum(Si, j) : i = {1, 2}, j = {1, ..., d}) for the current solution, and when the
group of a vector w is changed, we only have to update accordingly the sums,
per coordinate, of the old (Sold) and new (Snew) group. This results from
the computation shown in Equations 9 and 10, enabling the new objective
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function value to be obtained more quickly after a swapping move.

Sum(Sold, j) = Sum(Sold, j)− wj : j = 1, ..., d. (9)

Sum(Snew, j) = Sum(Snew, j) + wj : j = 1, ..., d. (10)

3.4. Exterior Path Relinking

The main objective of PR is to explore paths between and beyond high-
quality solutions in order to find new solutions in their vicinity that may
be even better. Several variants of PR have been studied in the literature
[13, 31, 32, 33, 30]. Among these, two main variants yielding high quality
results have been widely analysed, the first consisting of interchanging initi-
ating and guiding solutions to generate different trajectories between these
solutions and the second consisting of simultaneously moving from each of
these solutions toward the other. These studies have always focused on inte-
rior PR, that is, exploring paths between solutions (see Figure 3). Here, by
contrast, we explore the exterior PR (ePR) approach introduced in [11].

Figure 3: Interior PR scheme

The essence of ePR for binary optimization can be characterised as follows
(see Figure 4). Let si and sg denote an initiating and guiding solution,
respectively. Starting from s = si and defining J = {j : sjg = sji}, we focus
on changing the value of only those components sj for j ∈ J . This way, we
avoid moving either in the direction of si or sg. The variable sj for j ∈ J
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that is selected to be flipped at each stage of the ePR process is typically one
that produces a new solution s with the highest evaluation (best objective
function value) from the accessible candidates. This is called greedy PR [30],
in contrast to greedy randomized PR in which we randomly select an element
among the candidates with better evaluations. In this manner, the search is
drawn toward attractive solutions (and potential improving sequences) when
these are available.

Given two solutions for the MDTWNP problem, ePR considers the set of
moves where the vectors assigned to the same group are shifted. The process
starts from the so-called initiating solution and, at each step, the best move
is performed, stoping when there is no possible move left. As underscored in
the tabu search literature [8, 9], diversification should not be divorced from
intensification, but should aim at producing high quality solutions at the
same time that it drives the solution process into new regions. The exterior
form of PR is usefully structured to accomplish this.

Figure 4: ePR scheme

As noted in [11], instead of starting with s = si, we can also start the
exterior PR procedure from the solution s′ that was selected as best during
an interior PR process, yielding s′ between si and sg. We will call this
alternative approach alt ePR.

The solutions chosen to be combined by PR are drawn from a reference
set consisting of high-quality and diverse solutions found throughout the
execution of the algorithm. In this exterior form of PR we deem it natural to
choose the initiating solution to have a better objective function value than
the guiding one, on the supposition that the chance of finding high-quality
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solutions should be higher near the better solutions. Therefore, we choose the
initiating solution to be the higher quality solution from the two candidates
consisting of the current GRASP solution and a solution selected at random
from the reference set. In the following, we take the liberty of referring to
the reference set as the elite set.

In order to have a benchmark for comparing the behaviour of the exte-
rior form of PR, we have also developed an instance of interior PR for the
MDTWNP problem. The moves of interior PR involve shifting those vectors
in the initial solution that are assigned to a different group in the guiding
solution. We have applied backward PR [34] for interior PR, where the initial
solution is chosen as the best of the current GRASP solution and the solution
from the elite set. Previous experiments carried out by Aiex et al. [15] and
Resende et al. [35] for interior PR showed that backward PR usually out-
performs forward PR. The latter, on the contrary, assigns the role of initial
solution to the worst solution.

The complete pseudocode of our PR procedures for the MDTWNP prob-
lem is shown in Figure 5. The PR procedure Path-Relinking(typePR, s,maxElite)
receives three input parameters, the type of PR (interior or exterior, where
alt ePR is performed by calling PR function twice), the solution s achieved
by the improvement procedure and the maximum size of the elite set. First,
a random solution s′ from the elite set is selected. Then, for interior PR, the
less attractive (lower quality solution) of the two solutions s and s′ plays the
role of guiding solution sg, whereas the more attractive becomes the initial
solution si. Then each step selects a vector w∗ from the set ∆(sc, sg) which
consists of those vectors in si assigned to a different group from sg, so that
the quality of the solution resulting from changing the group to which this
vector belongs is maximised. This process is repeated until |∆(si, sg)| > 1,
that is, next solution in the path is the guiding solution.

Similarly, the more attractive solution between s and s′ is used as the
initiating solution si for ePR. Then, at each step, w∗ is chosen from the set
of vectors assigned to the same group in si and sg, δ(si, sg). The process
stops when |δ(si, sg)| = 0.

The solution s obtained after applying PR is considered as a candidate
to be added to the elite set, provided that s is not already included in the set
elite. This procedure is implemented by the function UpdateEliteSet(s, P,
maxElite) and its pseudocode is shown in Figure 6. Its structure is based
on the procedure proposed by Mart́ı and Sandoya in [36]. If the current
cardinality of the set P is less than its maximum capacity (maxElite), s is
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Input: typePR, s, maxElite

Output: s
1 e← Random(1, |P |);
2 s′ ← Pe;
3 si ← argmin{f(s), f(s′)};
4 sg ← argmax{f(s), f(s′)};
5 if typePR == Interior then

6 while |∆(si, sg)| > 1 do

7 w∗ ← argmin{f(mov(si, w)) : w ∈ ∆(si, sg)};
8 si ← mov(si, w

∗);
9 if f(si) < f(s) then

10 s← si;
11 end

12 end

13 end

14 else if typePR == Exterior then

15 while |δ(si, sg)| > 0 do

16 w∗ ← argmin{f(mov(sg, w)) : w ∈ δ(si, sg)};
17 si ← mov(si, w

∗);
18 if f(si) < f(s) then
19 s← si;
20 end

21 end

22 end

23 UpdateEliteSet(s, P );

Figure 5: Pseudocode for PR

just added to P , provided that s is not already included in P . By contrast,
if the elite set is full, s must meet at least one of the following conditions to
be included in the set:

• The objective function value of s is better than the best solution in the
elite set (sb).

• The objective function value of s is better than the worst solution in
the elite set (sw) and the diversity that s would provide to the elite set
Div(s, P ) is larger than the smallest diversity contribution of any of
the solutions that are currently in the elite set.

If s fulfils either of these conditions, it is added to the elite set by replacing
the solution most similar to it (in terms of distance).
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Input: s, P , maxElite

Output:
1 if s ∈ P then

2 Exit();
3 end

4 if |P | < maxElite then

5 P ← P ∪ {s};
6 end

7 else

8 sw ← argmax{f(t) : t ∈ P};
9 sb ← argmin{f(t) : t ∈ P};

10 if f(s) < f(sb) then
11 sr ← argmin{Dist(s, t) : t ∈ P};
12 P ← P\{sr};
13 P ← P ∪ {s};

14 end

15 else if f(s) > f(sw) then
16 d← argmin{Div(t, P ) : t ∈ P};
17 Div(s, P )←

∑
t∈P Dist(s, t);

18 if Div(s, P ) > Div(d, P ) +Dist(s, d) then
19 sr ← argmin{∆(t, s) : t ∈ P};
20 P ← P\{sr};
21 P ← P ∪ {s};

22 end

23 end

24 end

Figure 6: Pseudocode for procedure to update the elite set

The diversity contribution of a solution s to the elite set is calculated
as the sum of the distances between this solution and all the solutions in
this set. The diversity in the elite set becomes larger as distances among
its solutions get greater. The function Dist(s1, s2) is used to calculate the
distance between any two solutions s1 and s2 and returns the minimum value
over the number of vectors assigned to a different group and to the same one.
Notice that, if we change the group to which every vector belongs, we obtain
the same objective value.

From the point of view of computational complexity, we should note that
diversity values are not recalculated from scratch at each iteration. For this
purpose, we store Div(s, P ) for each s ∈ P . In this way, each time a solution
sa is added to P and replaces sr in P if needed, diversity values are updated
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as follows:

Div(sa, P ) = Div(sa, P )−Dist(sa, sr). (11)

Div(t, P ) = Div(t, P ) +Dist(sa, t)−Dist(sr, t) ∀t 6= sa ∈ P. (12)

4. Computational Experiments

This section details the computational experiments performed to study
the behaviour of our GRASP+PR algorithm for the MDTWNP problem.
First, we outline the experimental framework (Section 4.1) and then analyse
the results obtained. The objective of these experiments is twofold: (1) to
analyse the behaviour of the proposed method depending on its parameters
and settings; (2) to compare the results of GRASP+PR with those obtained
by the VNS algorithm proposed in [28] and by CPLEX, executing the latter
with the integer linear programming model detailed in Section 2.

4.1. Experimental Setup

GRASP+PR is implemented in C++ and compiled with gcc 4.8.2. The
experiments were carried out on a computer with an Intel R© CoreTM i7-930
2.8 GHz processor (8MB cache, four cores and eight threads) with 24GB
of RAM running FedoraTM Linux 20. Our experiments use the instance set
created in [1], which is composed of 210 instances with different combinations
of the number of vectors (n) and their dimensions (d). In particular, the
value n is drawn from {50, 100, 200, 300, 400, 500} and d is drawn from {2,
3, 4, 5, 10, 15, 20}. For each combination of n and d, there are 5 different
instances with different random values for each element wij. We have divided
this set of instances into two subsets. The first one is used exclusively for
tuning the parameters and configuration of GRASP+PR (using the first two
instances of each type, 84 instances in total), and the second one to perform
the comparison with the state-of-the-art algorithms (126 instances, using the
remaining 3 instances of each type).

We execute GRASP+PR 10 times on each problem instance. The max-
imum CPU time (Tmax) allotted to each instance is fixed depending on the
number of vectors involved, in particular, n/10 seconds.

We employ non-parametric statistical tests, as proposed in [37], to com-
pare the different algorithms. The performance measure is the average of the
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best values found over the 10 independent runs. In particular, we have em-
ployed two alternative non-parametric analysis to compare the experimental
results:

• In the first case, we use the Iman and Davenport test [38], followed
by Holm’s method [39] as a post-hoc procedure. The first test allows
us to see whether there are statistically significant differences among a
group of algorithms. Provided that such differences are detected, the
second test compares the best performing algorithm (control algorithm)
against the remaining ones.

• The second method is the Wilcoxon matched-pairs signed-ranks test
[40] to perform pairwise comparisons. In order to perform the test,
we rank the differences, in absolute value, between the performance
scores of the two algorithms compared for each instance. Then, we
compute R+ as the sum of ranks for the instances in which the first
algorithm outperforms the second one and R− as the sum of ranks for
the reverse case. If R+ is greater than R− and R− is less than or equal
to the critical value, the first algorithm outperforms the second one.
On the contrary, if R+ is less than R− and R+ is less than or equal
to the critical value, the second algorithm outperforms the first one.
Otherwise, the test does not find differences between the algorithms’
performances.

4.2. Parameter Study of the GRASP+PR Algorithm

Our objective in this section is to study the effect of different parameters
and strategies used in our algorithm. We first attempt to obtain a competitive
configuration of the GRASP+PR algorithm by performing a tuning of the
parameters and strategies. Subsequently, we analyse the impact of different
key mechanisms, namely those consisting of PR, the randomised construction
procedure, and the local search improvement procedure.

4.2.1. Parameter Tuning of the GRASP+PR Algorithm

In this section, we perform an experimental study to find a suitable con-
figuration for the proposed algorithm. We have carried out a full factorial ex-
periment [41, 42] with the RCL construction procedure (B RCL, R RCL), the
local search method (FI, RFI), the size of the elite set (6, 12), the type of PR
(Interior, Exterior, and Alt ePR), and the percentage of solution components
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included into the RCL (0.05, 0.1, 0.2), exploring 72 different combinations
in total. However, it is important to note that additional values can be con-
sidered for each parameter, and therefore the performance of GRASP+PR
might be further improved.

Table 1 details the mean ranking of the different GRASP+PR config-
urations. The ranking is obtained by ordering the algorithms according
to their observed results at each problem instance, assigning the ranking
1 to the best algorithm, and |A| to the worst (where A is the set of algo-
rithms). Each configuration is denoted by GRASP-<RCL Type>-< α >-
<PR Type>-<Elite Set Size>-<Local Search>.

In order to identify significant performance differences between the algo-
rithms, we have first applied the Iman and Davenport test. The statistical
value (395.19) is greater than the critical one (1.29) for a significance fac-
tor of 0.05, evidencing that performance differences really exist. Then, we
have compared the behaviour of the best-performing configuration (control
algorithm, GRASP-R RCL-0.05-Exterior-6-RFI) against the remaining ones
by means of Holm’s test. The third column details the results of this test,
showing whether there are significant performance differences (+) or not (∼).

Order Algorithm Ranking Holm’s test

1 GRASP-R RCL-0.05-Exterior-6-RFI 7.57 Control algorithm

2 GRASP-R RCL-0.05-Exterior-12-RFI 8.04 ∼

3 GRASP-R RCL-0.05-Interior-12-RFI 8.52 ∼

4 GRASP-R RCL-0.1-Exterior-12-RFI 8.89 ∼

5 GRASP-R RCL-0.1-Interior-12-RFI 9.34 ∼

6 GRASP-R RCL-0.1-Interior-6-RFI 9.70 ∼

7 GRASP-R RCL-0.1-Exterior-6-RFI 10.54 ∼

8 GRASP-R RCL-0.2-Interior-6-RFI 10.66 ∼

9 GRASP-R RCL-0.05-Alt ePR-12-RFI 10.70 ∼

10 GRASP-R RCL-0.05-Interior-6-RFI 10.83 ∼

11 GRASP-R RCL-0.05-Alt ePR-6-RFI 11.17 ∼

12 GRASP-R RCL-0.1-Alt ePR-6-RFI 11.37 ∼

13 GRASP-R RCL-0.2-Exterior-12-RFI 11.67 ∼

14 GRASP-R RCL-0.2-Exterior-6-RFI 12.11 ∼

15 GRASP-R RCL-0.2-Interior-12-RFI 12.30 ∼

16 GRASP-R RCL-0.1-Alt ePR-12-RFI 13.41 ∼

17 GRASP-R RCL-0.2-Alt ePR-6-RFI 14.30 ∼

18 GRASP-R RCL-0.2-Alt ePR-12-RFI 14.70 ∼

19 GRASP-B RCL-0.05-Exterior-6-RFI 23.18 +

... ... ... +

37 GRASP-R RCL-0.05-Alt ePR-12-FI 39.11 +

... ... ... +

72 GRASP-B RCL-0.2-Interior-6-FI 66.94 +

Table 1: Mean Ranking of GRASP+PR configurations and Holm’s test results

As shown in Table 1, the best performing GRASP+PR configuration uses
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the R RCL contruction procedure with α = 0.05, ePR with 6 elements in the
elite set, and restricted local search RFI. Holm’s test detects statistically
significant differences between the control algorithm (GRASP-R RCL-0.05-
Exterior-6-RFI) and those algorithms that use B RCL instead of R RCL to
build the RCL (first occurrence of such configuration is at position 19 in
the rankings list) and that employ the first interchange local search (FI)
instead of the restricted first interchange one (RFI). Therefore, both the
R RCL scheme for the management of the RCL and the novel RFI local
search appear to be two key components in the proposed algorithm.

Table 2 summarises the results of applying the Wilcoxon test, with p-value
= 0.05, to compare the results of the control algorithm and the algorithms
for which Holm’s test does not detect significant differences. The last column
indicates whether GRASP-R RCL-0.05-Exterior-6-RFI performs statistically
better (+), worse (-), or without significant differences (∼) to its competitor.

GRASP-R RCL-0.05-Exterior-6-RFI vs R+ R− Sig. differences?

GRASP-R RCL-0.05-Exterior-12-RFI 1638 1932 ∼

GRASP-R RCL-0.05-Interior-12-RFI 1834 1736 ∼

GRASP-R RCL-0.1-Exterior-12-RFI 2192 1378 ∼

GRASP-R RCL-0.1-Interior-12-RFI 1948 1622 ∼

GRASP-R RCL-0.1-Interior-6-RFI 2067 1503 ∼

GRASP-R RCL-0.1-Exterior-6-RFI 2192 1378 ∼

GRASP-R RCL-0.2-Interior-6-RFI 2204 1366 ∼

GRASP-R RCL-0.05-Alt ePR-12-RFI 2287 1283 +

GRASP-R RCL-0.05-Interior-6-RFI 2429 1141 +

GRASP-R RCL-0.05-Alt ePR-6-RFI 2405 1165 +

GRASP-R RCL-0.1-Alt ePR-6-RFI 2354 1216 +

GRASP-R RCL-0.2-Exterior-12-RFI 2475 1095 +

GRASP-R RCL-0.2-Exterior-6-RFI 2603 997 +

GRASP-R RCL-0.2-Interior-12-RFI 2558 1012 +

GRASP-R RCL-0.1-Alt ePR-12-RFI 2833 737 +

GRASP-R RCL-0.2-Alt ePR-6-RFI 2969 601 +

GRASP-R RCL-0.2-Alt ePR-12-RFI 2801 769 +

Table 2: Wilcoxon’s test results (critical value is 1345)

From results in Table 2, we notice that GRASP-R RCL-0.05-Exterior-6-
RFI with the ePR scheme, which explores areas beyond the initial solutions,
improves the algorithm behaviour compared to the Alt ePR approach, which
combines exterior and interior PR. If we compare the performance of the
approaches using the interior and exterior PR scheme, we can notice that
GRASP-R RCL-0.05-Exterior-6-RFI seems to outperform all the approaches
using interior PR, although sometimes the Wilcoxon’s test does not find
statistically significant differences, due to R+ value is always higher than
R−.
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4.2.2. GRASP+PR performance analysis

In this section, we perform an in-depth study of the influence of the differ-
ent components and parameters on the behaviour of the proposed GRASP+PR
algorithm, focusing on the three key components identified in Section 4.2.1:
the ePR scheme, the mechanism to choose the elements included in the RCL
and the local search procedure.

First, we compare the behaviour of the GRASP+PR algorithm depending
on the PR scheme. For this purpose, we show in Figure 7 the results for all
the instances, grouped by number of vectors, in terms of the difference (∆R)
between the algorithm using the ePR scheme and the algorithm with interior
PR and alt ePR schemes. In order to calculate ∆R, we have applied the
following formula:

∆R =
REx −R

REx

(13)

where REx is the result of the algorithm using ePR and R is the result of
the algorithm with other PR schemes. This means that negative ∆R values
indicate an advantage for the algorithm using ePR.
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Figure 7: Difference (∆R) between GRASP + ePR vs GRASP + interior PR / alt ePR

Figure 7 shows that the ePR scheme produces better quality solutions for
the instances of all types, since the ∆R value is less than 0 for all the instances
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independently of the number of vectors. Interestingly, the advantage of using
ePR over interior or alt ePR is greater for instances with an intermediate
number of vectors (300) and, in addition with regards to interior PR, for the
instances with the largest number of vectors (500).

At this point, it is interesting to study the benefits of the optimized cal-
culation of the elite set diversity presented in Section 3.4. For that purpose,
we have measured the total time taken by the path relinking phase with
and without the optimized calculation and have computed the improvement
obtained as follows:

∆PR(%) =
PRwi − PRi

PRwi

· 100 (14)
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Figure 8: Improvement obtained by optimizing the computation of the elite set diversity

where PRwi is the total time required for the PR phase without the improve-
ment of the diversity calculation and PRi is that of the PR phase with the
improvement. This means that positive ∆PR values indicate a reduction of
the time needed for the PR phase when applying the optimized calculation
of the diversity. Figure 8 shows the value of ∆PR(%) grouped by the num-
ber of vectors. As we can observe, performance improvement during the PR
phase reaches values around 8% on average for instances with 50 vectors.
This value gradually decreases as we increase the size of the instances due to
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the relative importance of the diversity calculation is less within the full PR
procedure. Notice that the complexity of the diversity calculation is mostly
related to the number of dimensions of the vectors in the elite set. However,
it is important to highlight that regardless of the number of vectors that
enhancement always brings a positive result.

Secondly, we analyse the behaviour of our proposal depending on the
mechanism used to select the elements included in the RCL. For this purpose,
we compare the behaviour of different relevant configurations along the whole
run. We employ convergence graphs that summarise the behaviour of the
algorithms on the tuning instances set over 10 independent runs. In order to
build the convergence graphs, we have performed the following steps:

• Every result is normalised to lie in the interval [0, 1] by considering
the highest and lowest values achieved by the algorithms on each test
problem.

• The average per time instant, over the set of problem instances and 10
independent runs, is computed from previous normalised results. The
result is referred to by Avg. Normalized Fitness in Figures 9 and 10.

Figure 9 shows the convergence graph of the best performing configuration
found in the above section, GRASP-R RCL-0.05-Exterior-6-RFI, and three
more variants. The first configuration is mainly characterised by the use of
the R RCL scheme, ePR, and RFI local search. To see the effect of using
the R RCL scheme, we also plot the convergence graphs of configurations
obtained from the best one by changing that component and its related
parameter α. In particular, we consider one configuration with B RCL and
three configurations with different values for the parameter α.

The main difference between B RCL and R RCL is the number of solu-
tion elements evaluated at each step. B RCL assesses all available solution
elements while R RCL only evaluates some of them randomly chosen. We
find that the exhaustive exploration performed by B RCL does not provide
benefits over R RCL scheme in terms of solution quality throughout the ex-
ecution of the algorithm, as can be seen in Figure 9. In fact, at the end of
the execution, the quality of the solutions obtained by the configuration with
B RCL is the worst among the algorithms plotted in Figure 9.

With respect to the behaviour of our proposal depending on the value of
α, we note that, from the very beginning of the execution, the best results
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Figure 9: Convergence graphs of GRASP+PR configurations considering diferent schemes
to manage the RCL and α values

are achieved by the configuration with the lowest α value, that is, at each
step we are evaluating only a few components for inclusion in the current
partial solution. In fact, the worst results at the end of the execution, as
can be seen in Figure 9, are obtained with the higher α value (0.2). This
result is in line with our finding about the mechanism to select the elements
included in RCL. The reduction of the computational time spent during the
construction phase allows GRASP+PR to perform more iterations, which
seems to be benefitial for improving the quality of the solutions along the
whole execution.

Then, we analyse the influence of the local search method employed dur-
ing the local improvement phase. To do this, the convergence graphs of the
best performing algorithm and a variant with FI local search are presented
in Figure 10.

The results shown in Figure 10 disclose that GRASP+PR with RFI out-
performs GRASP+PR with FI from the very beginning of the execution.
This shows that just the pre-selection of the candidate neighbours performed
by RFI is suitable for this problem, regardless of the computational effort
saving achieved. This faster local improvement carried out by RFI pays off
as execution progresses, increasing the performance difference between the
two algorithms.
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Figure 10: Convergence graphs of GRASP+PR configurations considering RFI and FI
local search methods

Finally, we study the improvement obtained by using the delta evaluation
in the local search procedure. With this aim, we measure the total time taken
by the local search procedure with and without delta evaluation and compute
the improvement obtained analogously as we did for the diversity calculation
improvement during the path relinking phase:

∆LS(%) =
LSwd − LSd

LSwd

· 100 (15)

where LSwd is the total time required for the LS phase whithout delta eval-
uation and LSi is that of the LS phase with delta evaluation. This means
that positive ∆LS values indicate a reduction of the time needed for the LS
phase when using the delta evaluation. Figure 11 shows the value of ∆LS(%)
grouped by the number of vectors. We can clearly see how the delta evalu-
ation is a key element to improve the efficiency of the proposed algorithm,
achieving reductions of up to 70% in the runtime of the LS phase. As ex-
pected, these improvements are greater as the number of vectors increases.

Taking into account the conclusions drawn from Sections 4.2.1 and 4.2.2,
we base all comparisons in the following sections on the GRASP+PR config-
uration with R RCL, α = 0.05, ePR with size of the elite set equal to 6, and
RFI local search. This configuration will be referred to from now on just as
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Figure 11: Improvement obtained by using the delta evaluation during the LS phase

GRASP+ePR.

4.3. Comparison with state-of-the-art methods

In this section, we compare the GRASP+PR method with the results
of the integer programming model and the variable neighbourhood search
(VNS) described in Section 2. VNS is the current state-of-the-art algorithm
for the problem along with the EM method proposed in the same paper [28].
The VNS method is noteworthy for its simplicity, and establishes itself as an
effective tool for tackling hard problems [43]. To solve the integer program-
ming model, we have used CPLEX. Moreover, we have reimplemented VNS
in C++ following the guideliness in the original publication, allowing us to
perform a comparison under identical execution conditions such as compu-
tational time limit, computer features, etc. The parameters used for VNS
are those recommended in its original publication. Emphasize that the ex-
perimentation in this section has been done on a different subset of instances
from the above section, as explained in Section 4.1.

We have selected the GRASP+PR configuration that achieved the best
results in the previous sections (GRASP-R RCL-0.05-Exterior-6-RFI), which
will be noted simply as GRASP+ePR from now on. All the algorithms but
CPLEX were executed 10 times on each problem instance, alloting a com-
putation time limit of 600 seconds for each execution. CPLEX was executed
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only once due to its deterministic nature. CPLEX settings were established
with a maximum memory base of 400 MB of RAM, allowing disk-backup,
compression once the 400 MB limit was exceeded, and using a single thread.
The computer features are described in Section 4.1.

Table 3 summarises the results achieved by GRASP+ePR and its main
competitor, VNS. We compute for each instance type the average objective
function value obtained (Avg.), the average relative deviation between the
best solution value found by the method and the best known value (Dev.),
and the number of executions for which the value of the best solution ob-
tained by a given method matches the best known value (#Best). In addi-
tion, detailed results of all the algorithms on each instance are provided at
http://sci2s.ugr.es/MDTWNP/

From results in Table 3, we highlight the following elements:

• GRASP+ePR attains the best overall results, obtaining the best Avg.
value for 32 out of 42 instance types.

• GRASP+ePR outperforms VNS in the vast majority of instance types
with more than 100 vectors. In fact, for instances with 500 vectors,
GRASP+ePR outperforms VNS independently of the number of di-
mensions.

• Dev. values achieved by VNS in certain large instances are very high
(for example in instances with 500 vectors and 3, 4, or 5 dimensions),
which shows that VNS’s results might be highly influenced by the ran-
dom initial solution. On the contrary, GRASP+ePR present more
stable Dev. values over the different types of instances.

To determine whether the observed differences in the above table are
statistically significant, we have employed Wilcoxon’s test. Table 4 shows
the results of applying Wilcoxon’s test with p-value = 0.05 to compare
GRASP+ePR and its competitors (VNS and CPLEX). These results clearly
show that GRASP+ePR outperforms both competitors, yielding statistically
significant differences.

5. Conclusions

We have proposed a new metaheuristic for the MDTWNP problem that
joins GRASP with a recently proposed Exterior Path Relinking method
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GRASP+ePR VNS

n d Avg. Dev. #Best Avg. Dev. #Best

50

2 4.629 0.527 3 7.146 1.752 0

3 155.570 0.043 2 154.760 0.031 4

4 895.444 0.005 2 896.665 0.008 1

5 2890.814 0.122 1 2742.916 0.034 3

10 16454.528 0.114 3 17664.979 0.195 2

15 32144.936 0.177 12 35898.863 0.329 1

20 56729.249 0.117 6 54801.555 0.076 9

100

2 2.706 712.142 3 6.149 2147.785 0

3 219.617 0.071 2 225.352 0.129 2

4 839.822 0.008 1 856.762 0.003 2

5 3193.905 0.188 1 2992.667 0.106 2

10 16141.921 0.245 0 14917.637 0.147 3

15 32937.013 0.056 2 34265.192 0.112 1

20 55026.754 0.174 0 52089.672 0.111 3

200

2 2.643 5.719 1 4.169 8.726 2

3 108.157 1.179 1 155.907 41.141 2

4 768.598 0.772 1 799.298 73.298 2

5 2122.008 1.143 0 1853.161 71.802 3

10 17445.241 0.104 2 18320.442 0.163 1

15 32256.267 0.136 4 33615.853 0.183 1

20 49214.221 0.101 3 52598.723 0.179 0

300

2 3.597 3.437 3 7.195 7.244 1

3 202.577 0.263 0 198.055 0.264 3

4 963.191 0.221 1 958.827 0.209 2

5 1663.231 0.068 2 2078.379 0.524 1

10 17159.752 0.093 2 17160.718 0.094 4

15 31988.06 0.088 3 33698.138 0.148 2

20 49556.532 0.213 2 50771.759 0.246 1

400

2 3.328 3.561 1 8.056 10.373 2

3 223.126 0.931 1 210.626 0.602 2

4 909.013 0.170 0 944.2 0.212 1

5 1676.304 0.171 2 2036.273 0.583 1

10 16075.187 0.171 0 16258.54 0.233 4

15 31388.099 0.128 1 33007.689 0.183 2

20 48794.137 0.131 3 49992.424 0.158 0

500

2 2.412 7.209 0 5.207 18.031 2

3 67.787 1.932 2 106.619 21.662 1

4 641.744 0.707 2 893.791 51.542 2

5 1852.538 0.341 1 12242.995 94.136 3

10 16106.188 0.120 2 16162.858 0.129 2

15 30684.108 0.132 1 32823,764 0.211 2

20 47524.461 0.132 2 49250.618 0.173 1

Table 3: Summarised results of GRASP+ePR and VNS

(ePR), which examines areas beyond those embraced by interior PR so-
lutions. The exterior form of PR proves to be a key component of our
GRASP+ePR algorithm, enabling it to obtain significantly improved solu-
tions for the MDTWNP problem.

We have also proposed a new restricted local search procedure for carrying
out local descent for MDTWNP, which limits neighbours considered to lie
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GRASP+ePR vs R+ R− Sig. differences?

VNS 5589 2412 +

CPLEX 7992 9 +

Table 4: Wilcoxon’s test results between GRASP+ePR and CPLEX/VNS (critical value
is 3195)

close to each other, to produce a smooth descent and a faster form of local
search, and which proves superior to the previous local descent approach
used for MDTWNP.

Our computational experiments have compared two different schemes to
choose the elements included in the restricted candidate list RCL. We have
shown that the scheme that does not perform an exhaustive evaluation of all
solution components at each iteration substantially improves the performance
of the GRASP+ePR algorithm for this problem due to its ability to run faster
and hence examine more solutions in total. Finally, we have compared the
results of GRASP+ePR with those of two chief methods: (1) CPLEX applied
to an integer linear programming formulation and (2) VNS, which is the
current state-of-the-art algorithm for the MDTWNP problem. This study
has demonstrated that the GRASP+ePR algorithm significantly outperforms
both approaches.

We mention two avenues for further research: first, to incorporate addi-
tional elements from interior PR (such as truncated PR and randomised PR)
into ePR; and second, to build new hybrid metaheuristics for the MDTWNP
problem combining the proposed GRASP+ePR with other salient meta-
heuristics such as tabu search and strategic oscillation.
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