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Abstract

Given a set of positive integers S, the minimum generating set problem
consists in finding a set of positive integers T with a minimum cardinality
such that every element of S can be expressed as the sum of a subset of
elements in T . It constitutes a natural problem in combinatorial number
theory and is related to some real-world problems, such as planning radiation
therapies.

We present a new formulation to this problem (based on the terminology
for the multiple knapsack problem) that is used to design an evolutionary
approach whose performance is driven by three search strategies; a novel
random greedy heuristic scheme that is employed to construct initial solu-
tions, a specialized crossover operator inspired by real-parameter crossovers
and a restart mechanism that is incorporated to avoid premature conver-
gence. Computational results for problem instances involving up to 100 000
elements show that our innovative genetic algorithm is a very attractive al-
ternative to the existing approaches.
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1. Introduction

The minimum generating set (MGS) problem, a natural problem in com-
binatorial number theory [1], is defined as follows: given a set of positive
integers, S = {s1, · · · , sn}, the problem consists of finding a minimum car-
dinality set of distinct integers T = {t1, · · · , tm}, called generating set, such
that every element of S is equal to the sum of a subset of T . The MGS prob-
lem has been shown to be NP-hard [1], and is related, among other problems,
to planning radiation therapies [2, 3, 4]: the elements of S represent radiation
dosages required at various points, while an element of T represents a dose
delivered simultaneously to multiple points. Then, the objective is to find
the set of doses that properly combined (subsets of T ), produces the initial
requirements (S). Other variants, namely the cases in which the elements of
T can be negative or fractional, were considered elsewhere [5, 6].

The greedy algorithm presented by Collins et al. [1] is the unique pro-
posed approach for the MGS problem so far. Its idea is to represent the
largest set of integers si by means of the combination of other integers sj ,
previously accepted solution components tk, and a new candidate solution
component d. The process is repeated until all the integers si ∈ S have a
representation based on solution components. Fagnot et al. [7] gave some
elementary properties of the minimum 2-generating set, a natural restriction
of the MGS problem where each element of S must be represented by the
sum of at most two elements from T , and proved its hardness. However, sur-
prisingly, not a single metaheuristic approach has been applied so far (to our
knowledge) to tackle the problem from a practical point of view. This fact
was our main motivation for the development of a genetic algorithm (GA)
that aims at optimizing the MGS problem. GA is a well known metaheuristic
that has proved to be very effective in solving hard optimization problems
[8, 9].

In GA, a population of candidate solutions, called chromosomes, evolves
over successive generations using three genetic operators: selection, crossover,
and mutation. First of all, based on some criteria, every chromosome is as-
signed a fitness value, and then the selection mechanism is invoked to choose
relatively fit chromosomes to be part of the reproduction process. Then, new
chromosomes are created through the crossover and mutation operators. The
crossover generates new individuals by recombining the characteristics of ex-
isting ones, whereas the mutation operator is used to maintain population
diversity with the goal of avoiding premature convergence.
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The proposal presented in this paper to successfully address the MGS
problem rests on four pillars:

• We redefine the MGS problem using the terminology employed in the
well-known multiple knapsack (MK) problem, which has been exten-
sively studied within this class of algorithms.

• We devise a randomized greedy procedure specifically designed for gen-
erating feasible solutions for the given MGS case in reasonable com-
puting times. Highly constrained combinatorial optimization problems
such as the MGS problem have proved to be a challenge for metaheuris-
tic solvers [10]. This is a situation in which it is difficult to define an
efficient neighborhood, thus no local search is available [11]. Therefore,
the incorporation of specialized constructive greedy heuristics is often
necessary in order to produce practical implementations [10].

• On the basis of the new formulation, we propose a GA approach to deal
with the MGS problem that comprises an initial population generation
method (based on the proposed randomized greedy algorithm) with
the goal of acquiring a population of diversified, yet adequate quality
solutions, and a restart mechanism, substituting the usual GA mu-
tation, to regenerate population diversity when chromosomes become
very similar.

• In addition, the proposed GA incorporates an innovative specialized re-
combination operator, inspired by real-parameter crossovers [12], which
maintains the feasibility and legality of the offspring as solutions to the
problem.

The rest of this paper is organized as follows. Section 2 presents the MK-
based interpretation of the MGS problem, their similarities and differences.
Section 3 introduces the new randomized greedy heuristic for the MGS prob-
lem, which constitutes one of the essential components of the proposed GA.
Section 4 describes the evolutionary approach for the MGS problem. Sec-
tion 5 provides an analysis of the GA performance and draws comparisons
with the existing literature. Finally, Section 6 contains a summary of results
and conclusions.
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2. The MGS Problem as Searching Objects for Knapsacks

In the MK problem, we are given a set of objects O and a set of knapsacks
K. Each object oj ∈ O has a profit, p(oj), and a weight, w(oj), and each
knapsack ki ∈ K has a capacity, C(ki). The objective in the MK problem is
to allocate each object to at most one knapsack in such a way that the total
weight of the objects in each knapsack does not exceed its capacity and the
total profit of all the objects included in the knapsacks is maximized. Its
mathematical formulation, shown in Figure 1 (left) [13, 14], is based on a set
of binary variables xojki, where xojki = 1 indicates that object oj is included
in knapsack ki, and xojki = 0, otherwise. GAs and other metaheuristics
applications to the MK problem and its variants [15, 16, 17, 14] usually
encode solutions as integer arrays whose lengths are equal to the number of
objects, and the respective oj-th element indicates the knapsack ki where it
is included into, or an invalid value if it is not assigned to any knapsack.

max
∑

ki∈K

∑

oj∈O p(oj)xojki
(1) min

∑Smax

j=1
xj

subject to: subject to:
∑

oj∈O w(oj)xojki
≤ C(ki), ∀ki ∈ K (2)

∑Smax

j=1
jxjsi = C(si), ∀si ∈ S

∑

ki∈K xojki
≤ 1, ∀oj ∈ O (3)

xojki
∈ {0, 1}, ∀oj ∈ O, ki ∈ K (4) xjsi ∈ {0, 1}, ∀j ∈ {1, . . . , Smax}, si ∈ S

(5) xj =

{

1,
0,

∑

si∈S xjsi ≥ 1 (j ∈ T )
otherwise (j /∈ T )

Figure 1: Mathematical model of the multiple knapsack problem (left), and the Minimum
Generating Set problem (right)

In the MGS problem, the elements si ∈ S may be recognized as knapsacks
with capacities equal to their si values (C(si) = si, ∀si ∈ S). Then, the ele-
ments in a candidate generating set, tj ∈ T , are objects that may be inserted
in the knapsacks, with weights equal to their values (w(oj) = tj , ∀tj ∈ T ).
In this fashion, the objective of the MGS problem may be reformulated as
constructing the smaller set of objects T , such that every knapsack is com-
pletely filled by including replicas of different objects from T . Noticing that
no integer value j greater than the maximal element in S, Smax, may belong
to a generating set T , we can reformulate the problem of constructing the
set of objects T as the one of selecting those from the set {1, . . . , Smax} that
will belong to T .
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The MK mathematical formulation can be adapted for the MGS problem
as shown in Figure 1 (right). There xjsi = 1 indicates that integer j con-
tributes to fill knapsack si (xjsi = 0, otherwise); and consequently, xj must
be equal to 1, which expresses that integer j belongs to the generating set T .

Whereas this knapsack-based interpretation provides a mathematical adap-
tation and a pictorial analogy for the MGS problem, which is finding objects
that properly combined fill all the knapsacks, their differences should be
clearly remarked:

• The capacity constraints (2) become equality constraints, i.e., the sum
of the weights of the objects in a knapsack must be equal to its capacity.

• There are not profits, so they disappear from the objective (1). Addi-
tionally, the objective is transformed into a minimization problem, to
reduce the number of created objects.

• Objects may be placed in more than one knapsack, so the constraint
(3) is not present.

• Knapsacks cannot carry two or more objects with the same weight, so
integers j apply only once in the summation in the constraint (2).

• Objects must be created for solving the problem, whereas they are
initially given in the MK problem.

This becomes a hard restriction, since the solver has to consider combi-
nations of every possible object. This can be addressed by searching in
the space of combinations of elements in the set {1, . . . , Smax}, either
exploiting the mathematical formulation (Figure 1, right) or apply-
ing a metaheuristic with integer arrays for the possible Smax objects.
However, this becomes impractical for large Smax values. For example,
we could not obtain any valid solution with CPLEX V12.1 and the
model in Figure 1 (right) for a random instance with |S| = 20 and
Smax = 4, 096 after one hour.

Regarding our proposed GA, since the direct adaptation of GAs for the
MK problem to the MGS one is not viable, we will propose a randomized
greedy heuristic that evaluates sets with a restricted number of samples from
{1, . . . , Smax} (Section 3). Our GA will use it at different stages, namely
initialization, restart, and crossover. To address extremely hard problems, a
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common strategy concerns to include heuristic subordinate procedures into
the stages of metaheuristics [18, 19, 20].

Finally, note that given a solution for this reformulated knapsack problem,
i.e. the set of objects (O = {oj}), we may directly obtain a generating set
T for S by building a set with the weight values of the objects (T = {tj =
w(oj), oj ∈ O}).

3. Randomized Greedy Heuristic

In this section, we propose a randomized greedy heuristic for the MGS
problem, which is called RG-MGS. The design of RG-MGS (Figure 2) is
specified under the new formulation for the MGS problem presented in this
paper. Therefore, one of its inputs is the set of knapsacks K associated with
S, and the output is the set of created objects, O.

Input: K, nsample

Output: O
1 O ← ∅;
2 F ← {f1, · · · , fn} where fi ← C(ki), ki ∈ K, for i = 1, · · · , n;
3 while Fmax 6= 0 do

4 R← Sample nsample random numbers from {1, · · · , Fmax};
5 ω′ ← argmax

ω∈R
ψ(ω, F );

6 o← Create-Object (ω′);
7 O ← O ∪ {o};
8 κ(o)← ∅;
9 for i = 1, · · · , n do

10 if w(o) ≤ fi then

11 fi ← fi − w(o);
12 κ(o)← κ(o) ∪ {ki};

13 end

14 end

15 end

16 O ← Eliminate-Duplicates (O, κ);

Figure 2: Pseudocode algorithm for RG-MGS
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RG-MGS starts with all the knapsacks empty and constructs one object
at a time, which is added to the current partial solution, O, until all the
knapsacks are completed. Specifically, the algorithm manages the free spaces
in the knapsacks, F = {f1, · · · , fn} (fi stores the free space in knapsack ki),
and creates an object with a weight value belonging to the set {1, · · · , Fmax}
(the weight of the biggest possible object is equal to the greatest free space
in any knapsack, Fmax) with the aim of minimizing the global free space in
the knapsacks after the insertion of the new object. To do this, RG-MGS
uses the global contribution (ψ(ω, F )) of an object with weight ω to fill up
the knapsacks:

ψ(ω, F ) =
n

∑

i=1

δ(ω, fi), where δ(ω, fi) =

{

ω, if ω ≤ fi
0, otherwise

Since the calculation of the global contribution for all the possible weight
values in the set {1, · · · , Fmax} may become a time-consuming strategy, RG-
MGS employs an alternative random sampling technique, which consists of
choosing, at random, nsample (a control parameter of RG-MGS) weight values
in this set (Step 4). Later, it selects the one for which the global contribution
value across these sampled weights is maximal (Step 5), and builds an object
with exactly that weight (Steps 6 and 7). Subsequently, RS-MGS introduces
the new object into every knapsack with sufficient free space and updates
their free spaces (Steps 8-13). κ(o) denotes the set of knapsacks containing
object o. The algorithm finishes when the objects assigned to the knapsacks
make exactly their respective capacities.

During the run of RG-MGS, it may be possible to create objects with
the same weights, and then, the final associated generating set would be-
come infeasible. Therefore, RG-MGS ends its execution by invoking a repair
procedure, called Eliminate-Duplicates, which resolves this problematic situ-
ation (Figure 3). The main ideas of Eliminate-Duplicates are the following.
Whenever there exist two different objects, oi and oj, with w(oi) = w(oj),
this procedure pays attention to the set of knapsacks containing both ob-
jects (κ(oi) ∩ κ(oj)). If this set is not empty, a new object with twice the
weight of oi is created (Step 4) and it replaces both oi and oj in these knap-
sacks. Moreover, Eliminate-Duplicates replaces oj by oi in those knapsacks
that uniquely contained oj. Finally, it removes object oj from the solution
(Step 12). If there was already an object with twice the weight of oi, the
procedure will address the new conflict in a subsequent iteration. To sum
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up, the proposed procedure replaces two objects with equal weights with one
of the same weight and another with double the weight.

Input: O, κ
Output: O′

1 O′ ← O ;

2 while ∃ i, j ∈ {1, · · · , |O′|} | i 6= j and w(oi) = w(oj) do

3 if κ(oi) ∩ κ(oj) 6= ∅ then

4 ok ← Create-Object (2 · w(oi));
5 O′ ← O′ ∪ {ok};
6 κ(ok)← κ(oi) ∩ κ(oj);

7 end

8 κ(oi)← (κ(oi) ∪ κ(oj)) \ (κ(oi) ∩ κ(oj));
9 if κ(oi) = ∅ then

10 O′ ← O′ − {oi};
11 end

12 O′ ← O′ − {oj};

13 end

Figure 3: Pseudocode algorithm for Eliminate-Duplicates procedure

In another metaheuristic based on constructions, namely GRASP, it is
customary to construct a solution by selecting iteratively elements at random
from a restricted candidate list of elements with good evaluations. Recent
designs, however, have proved that this classic design can be improved in
some problems by first applying a random sampling and then performing
a greedy selection from the sampled elements (see for example [21]). Our
proposal here is in line with these recent GRASP designs.

4. Steady-State Genetic Algorithm for the MGS Problem

GAs [8, 9] are adaptive methods based on the genetic process of biological
organisms. They are widely used in many combinatorial and real-parameter
optimization problems. GAs start with an initial set of random solutions (or
seeded candidates with some good heuristic method) forming a population of
so-called chromosomes of size Np. Chromosomes evolve from population to
population through successive iterations, called generations, keeping Np fixed
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throughout the iterations. Each chromosome has a fitness value associated
with it.

In each generation, chromosomes are evaluated by the fitness function (re-
lated to the objective of the problem) to assess their competence to survive
in the next generation. The fittest chromosomes are selected to form a new
population, which subsequently undergoes genetic operations: mutation of a
single chromosome and crossover between two ones (parents get offspring).
Genetic operators are applied to the selected solutions to produce new ones
with inherited characteristics of their parents and the associated fitness func-
tion evaluates the extent to which they achieve the goal of the optimization
problem.

Generational GAs abandon the current population once the whole off-
spring population had been created, which becomes the new current popu-
lation. On the contrary, steady-state GAs [22, 23, 24] typically generate one
single new solution and insert it into the population at any one time. A re-
placement/deletion strategy defines which member of the current population
is forced to perish for the new offspring to compete in the next iteration.

In this section, we introduce the use of an advanced steady-state GA to
solve the MGS problem. Next, Section 4.1 summarizes the overall evolution-
ary process flow in the proposed GA and Section 4.2 explains the details of
the specific crossover operator designed to generate feasible solutions from
two parent chromosomes.

4.1. Overall GA Algorithm

An outline of the proposed GA, called GA-MGS, is given in Figure 4. It
is a steady-state GA, whose chromosomes represent sets of objects that fill
the different knapsacks, and their fitness values are equal to the number of
objects used. The chromosome encodes for each object its weight and the
set of knapsacks where it is placed.

GA-MGS operates in two phases: first, the initialization, during which the
population is filled with Np solutions generated by the RG-MGS procedure
(Section 3), and next, the population is subject to an evolutionary loop that
adopts the following operations:

1. Select two parents from the population using the binary tournament se-
lection mechanism (Steps 5 and 6). This selection technique is widely
used in GAs due to its simplicity and ability to escape from local op-
tima. It selects the fittest chromosome between two that are randomly
picked out from the population.
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Input: K, Np, nsample, csample

Output: Cb

// Initialization

1 for i = 1, · · · , Np do

2 Ci ← RG-MGS (K, nsample);
3 end

// Main GA cycle

4 while not termination-condition do

// Selection

5 P1 ← Binary-Tournament (Pop);
6 P2 ← Binary-Tournament (Pop);

// Crossover

7 Ccx ← Crossover-Operator

(P1, P2, K, csample);
8 Cb ← Best-Found-Solution ();

// Replacement

9 Cw ← argmax
C∈Pop

fitness(C);

10 if fitness(Ccx) < fitness(Cw) then

11 Cw ← Ccx ;

12 end

// Restart

13 if Fitness values of individuals in Pop are equal then

14 C1 ← Sample a random

individual from Pop;
15 for i = 2, · · · , Np do

16 Ci ← RG-MGS (K, nsample);
17 end

18 end

19 end

Figure 4: Pseudocode algorithm for GA-MGS

2. Create an offspring applying the crossover operator (Step 7; Section
4.2). This is a method for sharing information between individuals
that combines the features of two parents to create potentially better

10



offspring. The underlying idea is that the exchanging of genetic mate-
rial among good individuals is expected to generate good or even better
individuals. Therefore, this operator exploits the available information
from the population.

3. Select an individual from the population and decide if this individual
will be replaced by the offspring (Steps 9-12). For this decision, we
consider the replace worst strategy, which replaces the worst individual
in the population only if the new individual is better. This mechanism
induces a high selective pressure even when the parents are selected
randomly [25].

4. A restart process is fired (Steps 13-18) when the population has con-
verged (the fitness function values of all the individuals in the popula-
tion are equal). In this situation, the population is reinitialized with
Np − 1 new solutions generated by the RG-MGS method and a ran-
domly chosen one from the current population. This source of diversity
allows the high selective pressure associated with the replacement and
parent selection mechanisms to be counteracted with the aim of avoid-
ing premature convergence.

These steps are repeated until some termination condition (e.g. Maximum
number of iterations, or maximum computation time allowed; Step 4) has
been met. The best chromosome, Cb, generated during the iterative process
is kept as the overall result.

4.2. Crossover Operators to Induce Objects Preferences

The crossover operator has always been regarded as one of the main com-
ponents that guides the search process of GAs [9, 26], because it gathers
up, combines, and exploits the available information on previous samples
to influence future search directions [27, 28, 29]. Real-coded genetic algo-
rithms [30, 31, 12] are a prominent research field where a substantial effort
has been put into the development of sophisticated real-coded crossover op-
erators. Herrera et al. [27] presented a taxonomy to classify the crossover
operators for real-coded GAs. Neighborhood-based crossover operators are
a class of the taxonomy that has been found to be effective in many cases.
They determine the genes of the offspring by sampling probability distri-
butions associated with the values of the genes of the parents, which often
define the central position and extent of the distribution.
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Inspired by several neighborhood crossover operators proposed in the lit-
erature, we present in this section three crossover operators (CX-BLX-α,
CX-PBX-α, and CX-MP-α) aimed at exploiting the information from two
or more parents (their objects oi) to induce some preferences when creating
the objects for the offspring. Section 4.2.1 describes the general and com-
mon structure they share to generate objects for the offspring and fill up
its knapsacks. Section 4.2.2 details two prominent types of probability dis-
tribution usually considered in neighborhood-based crossover operators, and
thus, used in this work. Section 4.2.3 assembles previous concepts into three
concrete crossover operators, CX-BLX-α, CX-PBX-α, and CX-MP-α.

4.2.1. General structure of the crossover operators for the MGS Problem

In contrast to the uniform distribution sampled by RG-MGS, which covers
all the possible weights for new objects, the idea here is to exploit the informa-
tion in the population to induce some preferences when sampling new weight
values. Specifically, the motivation is to promote a fruitful synergy between
the selection pressure of the parent selection and the replacement strategy,
which maintains good solutions in the population, and the crossover opera-
tor, which generates new solutions, to concentrate the sampling in promising
limited intervals.

The general structure of the proposed crossover operators is similar to
that of RG-MGS but using the objects in the parents to modify the originally-
uniform probability distribution; starting with all the knapsacks of the off-
spring empty and iterating the following steps until they are filled up.

1. Construct a set of objects with one object per parent, Oparents. For this
step, we select the largest object from the first parent, not previously
selected, and the most similar to this one from the second parent, not
previously selected, too. In the case of more than two parents, par-
ents are revised iteratively and, each one contributes with the object
most similar to those already selected. The idea here is to favor the
creation of objects with high global contributions ψ(ωi, F ) (Section 3),
by using the largest objects first, and the smaller ones later to fill the
gaps. Additionally, similarity is justified to concentrate the associated
probability distribution, from which new objects are sampled, on these
objects.

2. Define a probability distribution Pr(ω|Ω, F ) according to the weights
of the selected objects (Ω = {w(o), ∀o ∈ Oparents}), and the free spaces
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in the knapsacks of the offspring (F ). Here, we follow the idea from two
significant families of neighbourhood-based crossover operators, mean-

centric and parent-centric ones. The former centers the probability
distribution on an aggregated measure of the values of the parents,
whereas the latter centers it on the value of one of the parents. Partic-
ularly, we design appropriate distributions for the MGS problem, in-
spired by BLX-α [31] (mean-centric) and PBX-α [32] (parent-centric)
(Section 4.2.2).

3. Sample csample integers from Pr(ω|Ω, F ).
4. Evaluate their global contributions ψ(ωi, F ).

5. Create an object with weight equals to the integer with ψ(ωi, F ) max-
imum and insert it in every knapsack with sufficient free space.

If this process left some knapsacks incomplete, because all the objects from
the parents have been selected once, they would be filled up with RG-MGS.
Finally, the Eliminate-Duplicates procedure (Section 3) is invoked to repair
the possible existence of more than one object with the same weight.

4.2.2. Mean-centric and parent-centric distributions

Given a set of weights, from objects selected from the parents that un-
dergo crossover, Ω, we define the following probability distributions from
which new weights are sampled. We shall indicate that they come (when
|Ω| = 2 and ω ∈ R) from the definition of the BLX-α [31] and PBX-α [32]
crossover operators, respectively:

• Prmean(ω|Ω, F ) is uniform in the following integer range, which is cen-
tered on the mean of the set of weights (Ω), and is equal to 0 out of it
(Figure 5):

VI = {max{1,Ω− ⌈I · (1 + α)⌉}, · · · ,

min{Fmax,Ω+ ⌈I · (1 + α)⌉}},

where I = y− x, x = min(Ω), y = max(Ω), and α is a control parame-
ter.

• Prparent(ω|Ω, F ) is uniform in the following integer range, which is cen-
tered on the first weight of the set (ω1 ∈ Ω), and is equal to 0 out of it
(Figure 6):
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⌈I · α⌉ ⌈I · α⌉I

1 x Ω y Fmax

Figure 5: Possible values sampled from Prmean(ω|Ω, F )

VII = {max{1, ω1 − ⌈I · α⌉}, · · · ,

min{Fmax, ω1 + ⌈I · α⌉}},

where I = y− x, x = min(Ω), y = max(Ω), and α is a control parame-
ter.

⌈I · α⌉ ⌈I · α⌉

1 ω1 Fmax

Figure 6: Possible values sampled from Prparent(ω|Ω, F )

4.2.3. Crossover operators

Gathering up previous ideas, we present the following crossover operators:

• CX-BLX-α, named after BLX-α [31], takes two parent solutions and
produces an offspring applying the steps commented in Section 4.2.1
and using the Prmean(ω|Ω, F ) probability distribution. Thus, this is a
mean-centric crossover operator.

• CX-PBX-α, named after PBX-α [32], is similar to CX-BLX-α but
uses the Prparent(ω|Ω, F ) probability distribution. Therefore, this is
a parent-centric crossover operator.
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• CX-MP-α is motivated by the superior performance shown by some
multi-parent real-parameter crossover operators that combine the fea-
tures of more than two parents [29] (examples are UNDX [33], SPX [34],
and PCX [30]). This operator takes np parents, which is a parameter,
and generates an offspring applying the steps in Section 4.2.1 using the
Prmean(ω|Ω, F ) probability distribution. Thus, this is a mean-centric
crossover operator. The complimentary multi-parent crossover oper-
ator using Prparent(ω|Ω, F ) is not analyzed in this work because the
first empirical results, shown in Section 5.2, conclude that mean-centric
crossover operators produce better solutions than parent-centric ones
for the MGS problem.

The designed crossover operators exploit a subordinate heuristic proce-
dure, which samples a set of weights and returns the one with the maximal
global contribution, to generate new solutions for this complex problem. In
particular, this helps the GA with dealing with a very large set of possible
candidate objects to be created ({1, . . . , Smax}; as mentioned in Section 2.
This strategy resembles the indirect encoding methodology of several meta-
heuristics that incorporate a subordinate greedy decoder. In these cases, the
individuals in the population do not directly represent candidate solutions,
but the way a greedy algorithm should construct feasible ones [18, 19, 20].

5. Computational Experiments

This section describes the computational experiments that we conducted
to assess the performance of the evolutionary approach introduced in the
previous section to face the MGS problem. Firstly, we detail the experimen-
tal setup (Section 5.1) then, we analyze the results obtained from different
experimental studies carried out with this algorithm. Our aim is: 1) to an-
alyze the influence of the parameters and settings associated with GA-MGS
(Section 5.2), and 2) to compare the results of the proposal with those of a
greedy heuristic approach for the MGS problem from the literature (Section
5.3).

5.1. Experimental Setup

All algorithms have been implemented in C and the source code has been
compiled with gcc 4.8.2. The experiments were conducted on a computer
with a 3.2 GHz Intel R© CoreTM i7 processor with 24 GB of RAM running
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FedoraTM Linux V20. Importantly, the establishment of common execu-
tion conditions for all algorithms is essential for an adequate replication of
previous computational experiments, which is a necessary condition for ob-
taining meaningful findings [35]. In this regard, we have chosen execution
time as comparison metric, instead of number of evaluations, since our pro-
posal employs a repair procedure prior to the evaluation of each solution,
which undoubtedly adds an additional computational cost that it is difficult
to quantify to perform a fair comparison with other algorithms if not using
time as comparison metric. In addition of using for all experiments the same
conditions such as programming language or operating system, we have also
tried to minimize the effect of any OS background task on the algorithm’s
performance. To achieve this, we limit the number of simultaneous algorithm
executions to five in the same computer, being 3 of the 8 running threads in
the Intel Core i7 processor available to operating systems tasks. Moreover,
it is important to note that the findings of the experimental comparison are
obtained from a large number of executions on different instances, limiting
the incidence of a one-time OS task on those findings.

We considered two types of benchmark instances for our experiments,
which are described below; they were automatically generated and parame-
terized by the number of values to be represented, n = |S|.

• Instances Type U. They are unconstrained instances that consist of
n integers randomly sampled from the positive range of possible values
of a signed integer variable of the C programming language (gcc 4.8.2,
{1, · · · , 2 147 483 647}). An upper bound for the value of the optimal
solution for this type of instances is log2(Smax) = 31 [1].

• Instances Type L. They are limited-representation instances that are
additionally parameterized by the maximal value in the set S, Smax,
and a desired optimal objective value, m = |T |. The procedure that
generates the problem instance firstly samples an initial candidate so-
lution with m random integers in {1, · · · , Tmax}. Then, the numbers
in S are computed as sums of random subsets of T , whose sum is less
or equal to Smax.

The parameter m limits, in contrast to unconstrained instances, the
complexity of the representations of the elements in S. For instance,
m equals to ten impedes the existence of any number in S, whose
representation, in the optimal solution, required the sum of more than
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ten numbers. In addition, m is a known upper bound for the value of
the optimal solution. For these instances, Tmax has to be computed
properly. On the one hand, Tmax has to be inferior or equal to Smax,
and on the other, values of Tmax close to Smax, favors the apparition of
numbers in S with simple representations (sum of few elements from
T ). Thus, we have computed Tmax as 2 · Smax

m
, what makes that the

expected complexity of the numbers in S be at least m
2
.

When comparing algorithms, we compute the overall best solution value
for each problem instance, BestValue, obtained by the execution of the al-
gorithms under consideration (in each comparison analysis). Afterwards, for
each algorithm, we calculate the relative deviation between the best solution
value found by the method and BestValue. Then, we report the average of
this relative deviation in percentage (%D) across all the instances consid-
ered in each particular experiment and the percentage of instances (%B) for
which the value of the best solution obtained by a given method matches
BestValue. We will also show the average rankings (Av Rank) achieved by
these algorithms, computed by the Friedman test. This measure is obtained
by computing, for each instance, the ranking ra of the observed results for
algorithm a assigning to the best of them the ranking 1, and to the worst the
ranking |A| (where A is the set of algorithms). Then, an average measure
is obtained from the rankings of this algorithm for all test problems. For
example, if a certain algorithm achieves rankings 1, 3, 1, 4, and 2, on five
instances, the average ranking is 1+3+1+4+2

5
= 2.20. Note that the lower the

ranking, the better the algorithm.

5.2. Components and Parameter Tuning

In this section, we investigate the effect of the different parameters and
strategies applied in GA-MGS and their interactions. For these experiments,
we consider a set of 250 instances Type U that range from n = 50 to n = 1000.
All the algorithms were stopped after a time limit of n

10
seconds to have a

fair comparison. Additionally, each algorithm was executed once for each
problem instance.

Given the relevance of the RG-MGS procedure as generator of good start-
ing solutions for our GA, the first preliminary experiment is devoted to ad-
justing the nsample parameter of this procedure. To do this, we have imple-
mented a multi-start metaheuristic that invokes repeatedly RG-MGS until a
termination condition (e.g. maximum computation time allowed) has been
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met. The best solution generated during the iterative process is kept as the
overall result. The complete pseudocode of this procedure, which will be
termed MS-RG-MGS, may be found in Figure 7. MS-RG-MGS is an in-
stance of the so-called randomized greedy multi-start metaheuristic, which
was described by Mart́ı et al. [36] as a type of multistart method that fires a
greedy procedure integrating random diversification. Early instances can be
found under the name of semi-greedy heuristic [37].

Input: K, nsample

Output: O
1 O ← RG-MGS(K, nsample);
2 while stopping criterion not satisfied do

3 O′ ← RG-MGS(K, nsample);
4 if fitness(O′) < fitness(O) then

5 O ← O′;

6 end

7 end

Figure 7: Pseudocode algorithm for MS-RG-MGS

We ran 7 different MS-RG-MGS variants with nsample = {1, 2, 5, 10, 25, 50,
100}. Table 1 shows the results: averaged ranking, relative deviation from
the best result, and percentage of successful runs.

nsample Av Rank %D %B

1 5.470 19.0 0
2 2.614 4.5 20.4
5 1.322 0.5 86
10 2.914 8.1 10
25 4.584 16.4 4
50 5.256 20.5 5.2
100 5.840 23.3 2.4

Table 1: Results for the multi-start RG-MGS algorithm

The results in Table 1 show that the choice of the value for nsample has
an important influence on the RG-MGS behavior. According to the three
performance measures, the variant with nsample = 5 obtains, clearly, the best
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results (therefore, we choose this nsample value for all remaining experiments
involving GA-MGS). Moreover, the worst performance is achieved when: (1)
there is not a competition among different candidate objects to enter into the
knapsacks (nsample = 1) or (2) too much time is wasted in this competitive
process (nsample = 100).

Cross. Op. csample Av Rank %D %B

1 10.424 8.4 0
2 6.638 3.6 14

CX-BLX-α 5 4.192 1.8 48
Prmean(ω|Ω, F ) 10 3.716 1.3 56.4

20 4.764 2.2 44.4
30 6.732 3.9 21.2

1 11.972 16.2 0
2 9.262 6.3 0.8

CX-PBX-α 5 5.428 2.7 22
Prparent(ω|Ω, F ) 10 4.646 2.1 38.4

20 4.742 2.2 38.8
30 5.484 2.8 28.8

Table 2: CX-BLX-α vs. CX-PBX-α

We now undertake to analyze the effects of the type of probability distri-
bution used by the crossover operator on the GA-MGS performance. Specif-
ically, we have implemented 12 GA-MGS variants that apply CX-BLX-α
(α = 0.25; Prmean(ω|Ω, F )) and CX-PBX-α (α = 1; Prparent(ω|Ω, F )) with
different values for csample ({1, 2, 5, 10, 20, 30}). Though the values for α are
different for each crossover operator, they produce interval amplitudes for
the probability distributions, more similar than using the same value. The
population size for these GAs is set to 50 and nsample = 5 for the RG-MGS
procedure, which is employed by the GAs in the initialization phase and by
the restart mechanism. Table 2 shows the associated results, reporting again
the same statistics. We can draw the following conclusions from this table:

• In general, GA-MGS variants with CX-BLX-α are better than the cor-
responding ones with CX-PBX-α. In addition, the two best ranked
algorithms are based on CX-BLX-α (those with csample equal to 10
and 5, respectively). As was pointed out in Section 4.2, this opera-
tor samples weight values from a mean-centric probability distribution.
This fact indicates that the sampling of the weights for objects of the
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offspring becomes more profitable when the two parents participate eq-
uitably in the crossover operation than when one of the parents has a
predominant rule in this operation.

• For both crossover operators, the best outcomes (rankings) are obtained
when csample = 10 and the worst ones with too low csample values.
Thus, the evaluation of many different objects as candidate components
for the knapsacks aroused as a suitable strategy to create promising
offspring.

To complement these experiments, we now compare the GA-MGS that
has given the best results in the previous experiments, the one invoking CX-
BLX-α with csample = 10, with an alternative variant that applies a more
simple crossover procedure, SCX. This operator is based on the idea of the
classical standard crossover operators of provoking that genes of the parents
are inherited by the offspring [23]. SCX follows the general structure of our
crossover operators (Section 4.2.1) to pick iteratively objects from two par-
ents and selects, at random, the ones that are directly used to create the
offspring. In the same way as our operators, it additionally includes a mech-
anism to ensure the feasibility of the generated solutions. The comparison
results are listed in Table 3.

Cross. Op. Av Rank %D %B

SCX 1.922 4.6 13.6
CX-BLX-α 1.078 0.05 98

Table 3: SCX vs. CX-BLX-α

A visual inspection of Table 3 allows one to remark that CX-BLX-α was
able to provide considerably better %D and%B performance than SCX. This
experiment indicates that the scheme of the proposed crossover operators
may be beneficial and the improvement is significant, which gives a sense on
the highly complex nature of their design. They allow our GA model to have
a promising ability to solve the MGS problem that is difficult to achieve from
the use of a simple crossover operator.

Finally, we analyze the performance enrichment that might be produced
by the combination of the information of more than two parents. Therefore,
we investigate the performance of the GA-MGS algorithm when it applies
a multi-parent extension of the CX-BLX-α operator (CX-MP-α; with α =
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Cross. Op. csample Av Rank %D %B

1 13.600 6.4 0
2 10.260 4.0 5.2

CX-MP np = 3 5 7.736 2.8 22.8
10 6.746 2.3 30.8
20 6.472 2.1 34.8
30 7.346 2.6 25.6

1 13.238 6.2 0.4
2 8.008 2.9 16.8

CX-MP np = 4 5 5.858 1.8 44.4
10 5.300 1.6 55.2
20 8.740 4.1 32.4
30 12.660 6.9 10

1 14.636 9.6 0.4
2 7.382 2.8 26.4

CX-MP np = 5 5 6.210 2.3 53.6
10 7.714 3.5 47.6
20 13.276 8.4 15.6
30 15.818 11.7 3.6

Table 4: Results with the multi-parent crossover operator

0.25), in which the number of participating parents is directly specified as a
crossover parameter, np (Section 4.2.3).

To do this, we have built different GA-MGS instances that invoke CX-MP
with different values for np ({3, 4, 5}) and for csample ({1, 2, 5, 10, 20, 30}). In
these GAs, parents are selected at random (instead of by tournament selec-
tion) to avoid a harmful premature convergence caused for the application
of a mean-center crossover with many parents and a fitness biases selection
operator. Table 4 summarizes the results of these algorithms and Table 5
compares the best GA-MGS instances that apply CX-BLX-α, CX-PBX-α,
and CX-MP-α obtained so far.

We may observe that the two best ranked algorithms in Table 4 combines
the information of four parents (np = 4; and csample = 10 and csample = 5,
respectively), and the third one considers five (csample = 5). Then, Table 5
reveals the clear advantage of the CX-MP-α operator on CX-BLX-α and CX-
PBX-α. Particularly, these two-parent operators obtain a low performance in
terms of %D, and %B. Therefore, we may conclude that the presented mean-
centric CX-MP crossover operator is worth using within our GA template.
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Cross. Op. csample Av Rank %D %B

CX-MP np = 4 10 1.242 0.2 94.8
CX-BLX-α 10 2.240 2.8 24
CX-PBX-α 10 2.518 3.6 13.6

Table 5: CX-MP vs. CX-BLX-α and CX-PBX-α

5.3. GA-MGS vs. State-of-the-Art Algorithm for the MGS Problem

In this section, we undertake a comparative analysis between GA-MGS
(Np = 50, nsample = 5, and CX-MP-α with np = 4 and csample = 10) and the
current state-of-the-art algorithm for the MGS problem, the greedy algorithm
(named G-MGS) proposed by Collins et al. [1]. This method, which does
not require any parameter to be set, starts with an empty solution T and its
strategy is to include, at each step, the value d that let us to represent the
largest number of elements s ∈ S which have not been represented yet. To
do this, the method computes the differences d from different combinations
of elements s ∈ S and t ∈ T , so the representation of some elements (Rsj )
are expressed in terms of the representation of others (Rsj = Rsi

⋃

{t}
⋃

{d}),
and chooses the one that participates on the representation of more elements
that still have not got any. The considered combinations, avoiding those
that produce repetitions of T elements on the proposed representations, are
1) sj = si + d, 2) sj = si − t + t′ + d, 3) sj = si − t1 − t2 − t3 + d,
4) sj = si − t + t′1 + t′2 + d (where t, ti ∈ Rsi and t′, t′i ∈ T − Rsi)). To
facilitate the comprehension of the method, we show an example in Table 6
with S = {4, 7, 11, 13, 17}.

At the beginning, T is empty and every element of S is associated to an
empty representation Rsi. Then, it computes the elements d that are candi-
dates to enter in T . These elements are obtained according to the aforemen-
tioned production rules. First each element sj produces a candidate d = sj
(note that this production rule is a case of rule 1) sj = si + d with si = 0; as
commented in [1]). Then, more candidates are computed according to rule 1
with si 6= 0. No more candidates appear with the other rules at this interation
because there are not t values, so the method proceeds to count the number
of representations each candidate participates in. Since d = 4 appears in
more representations than the others, it is included in T and the process
avances to the following iteration. In the second iteration, the element 4 has
got a complete representation R4 = {4}, the representations of 7 and 13 are
still empty and those of 11 and 17 are expressed in terms of R7 and R13,
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First Iteration Second Iteration Third Iteration

T {} T {4} T {4,6}

S

4 R4=?

S

4 R4={4}

S

4 R4={4}
7 R7=? 7 R7=? 7 R7=?

11 R11=? 11 R11={4} ∪ R7 11 R11={4} ∪ R7

13 R13=? 13 R13=? 13 R13={6} ∪ R7

17 R17=? 17 R17={4} ∪ R13 17 R17={4,7} ∪ R7

d

sj = d

d

sj = d

d

sj = d

4 R4={4} 7 R7={7} 7 R7={7}
7 R7={7} 13 R13={13} sj = si + d

11 R11={11} sj = si + d No new rules for R7

13 R13={13} 3 R7 = R4 ∪ {3} Conflict R11 sj = t′ + d

17 R17={17} 9 R13 = R4 ∪ {9} Conflict R17 1 R7={6} ∪{1} Conflict R13

sj = si + d 6 R13 = R7 ∪ {6} sj = si + t′ + d

3 R7 = R4 ∪ {3} 2 R13 = R11 ∪ {2} Conflict R17 No new rules for R7

7 R11 = R4 ∪ {7} sj = t′ + d sj = si − t+ t′ + d

9 R13 = R4 ∪ {9} 3 R7 = {4} ∪ {3} Conflict R11 No new rules for R7

13 R17 = R4 ∪ {13} 9 R13 = {4} ∪ {9} Conflict R17 Count

4 R11 = R7 ∪ {4} sj = si + t′ + d 7 |{R7}| = 1

6 R13 = R7 ∪ {6} 5 R13 = R4 ∪ {4} ∪ {5} {4} repeated

10 R17 = R7 ∪ {10} 2 R13 = R7 ∪ {4} ∪ {2} Conflict R17

2 R13 = R11 ∪ {2} Count

6 R17 = R11 ∪ {6} 6 |{R13}| = 1

4 R17 = R13 ∪ {4} 7 |{R7}| = 1

Count 13 |{R13}| = 1

4 |{R4, R11, R17}| = 3

7 |{R7, R11}| = 2

13 |{R13, R17}| = 2

6 |{R13, R17}| = 2

11 |{R11}| = 1

3 |{R7}| = 1

9 |{R13}| = 1

10 |{R17}| = 1

2 |{R13}| = 1

Table 6: G-MGS, example of execution for S = {4, 7, 11, 13, 17}

respectively. Therefore, the method consider new candidates that may con-
tribute to the representations of 7 and 13. The rules produced in the previous
iteration for these two elements are imported. However some of these rules
are now invalid because it would produce repetitions in the representations of
some elements. For instance, expressing R7 in terms of R4

⋃

{3} is not valid,
because that would create a repetition in R11 = {4}

⋃

R7 = {4, 4, 3}. Below,
there are new production rules according to sj = t′ + d, which is a case of
rule 2) sj = si − t + t′ + d with si = 0 and t = 0, and sj = si + t′ + d (case
of the same rule with t = 0). None of these instances of these rules are valid
for being in conflict with the representation of other elements, and no other
candidates can be computed according to the other production rules. In this
case, all the candidates appear with the same frequency and one is chosen
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randomly. Finally, assume we inserted d = 6 into T and representations are
updated accordingly (R17). The third iteration applies the same procedure
as previous one and the only candidate is now d = 7, which, after being in-
serted into T , completes the solution (T = {4, 6, 7}) and the representations
(R4 = {4}, R7 = {7}, R11 = {4, 7}, R13 = {6, 7}, and R17 = {4, 6, 7}).

Additionally, we include in this study the MS-RG-MGS algorithm (Figure
7) and an economized version of G-MGS (Ge-MGS; limited and faster), which
only considers combinations 1) sj = si + d and 2) sj = si − t + t′ + d. All
the algorithms were implemented and run under the same computational
conditions (machine, programming language, and compiler) to enable a fair
comparison between them.

The analysis has been divided into results on small instances (Section 5.3.1),
large instances (Section 5.3.2), and very large instances (Section 5.3.3).

5.3.1. Results on small instances

The first comparison between these algorithms is carried out by consider-
ing different sets with 17 small Type L instances of sizes n = 20, 25, . . . , 100.
Each set is distinguished by the values of |T | ({10, 20}) and for Smax ({65 536,
1 048 576, 16 777 216}). The algorithms were run once on each instance. The
cutoff time for each execution of GA-MGS and MS-RG-MGS was set to n

10

seconds. Table 7 reports the average objective function value (Av) and the
%B measure achieved by all the algorithms, and also, the average CPU time
in seconds required by G-MGS and Ge-MGS to construct their solution (t)
(t = 6 for all the instance sets for the case of MS-RG-MGS and GA-MGS,
which is the result from the averaged summation 1

17
·
∑

n n/10).

Instances G-MGS Ge-MGS MS-RG-MGS GA-MGS

|T | Smax log2(Smax) Av %B t Av %B t Av %B Av %B

65 536 16 16.4 29.4 2.2 17.1 17.6 1 16.5 11.8 15.5 70.6
10 1 048 576 20 15.8 82.4 2.2 17.2 29.4 1.2 20.9 5.9 19.5 5.9

16 777 216 24 15.4 88.2 2.1 17.4 23.5 1.2 25.8 5.9 23.4 5.9

65 536 16 21.5 11.8 19.7 25.7 5.9 8.2 16.6 29.4 15.8 100
20 1 048 576 20 29.2 5.9 87.7 34.8 5.9 26.3 21.0 11.8 19.6 100

16 777 216 24 36.2 5.9 441.4 43.1 5.9 33.4 25.9 5.9 23.5 100

Table 7: Results on small Type L instances

Examining the data in Table 7, we may conclude the following:
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• Attending to the values of Av and t reported by G-MGS and Ge-MGS,
instances with |T | = 20 seem to be the hardest ones, because the results
are much larger than the known upper bounds of the optimal solutions
(min(|T |, log2(Smax))), and G-MGS needs 441.4 seconds to construct a
single solution. This can be explained by the fact that there are much
more possible combinations of 20 elements than 10. In any case, the
results of all the algorithms when |T | = 10 are clearly distant from the
upper bounds for the optimal solution, which exhibits the hardness of
the MGS problem, even with small instances with low complexity (all
the values of S could had been generated with only ten ti values).

• The search difficulties for G-MGS and Ge-MGS increase as Smax be-
comes greater for |T | = 20 instances. However, in this case, GA-MGS
(and MS-RG-MGS) performs significantly better than these greedy al-
gorithms, returning values very close to the upper bound |T | or even
better (|T | = 20 and Smax = 65 536 or 1 048 576), and consuming much
less time (6 seconds as computed above).

• It is interesting to observe that the greedy algorithm G-MGS obtains
relatively good results when |T | = 10, regardless the value of Smax (they
are the best results for |T | = 10 and Smax = 1 048 576 or 16 777 216).
This suggests that the heuristic combinations of values used by this
method (Section 5.3) allow it to mildly approximate the real complexity
of the problem when that is less or around 16, i.e., when all the elements
in S can be generated with only 16 ti values (when |T | = 20 and
Smax = 65 536, the upper bound is still 16 = log2(65 536)). However, it
finds very difficult to deal with instances of higher complexity (those
where more than 16 ti values are needed to generate all the elements in
S), i.e., its heuristics are unable to approximate the real complexity of
the problem. Consequently, we observe that Ge-MGS, which considers
less heuristic combinations of values, obtains worse results and find
more difficulties earlier with lower complexities (though its running
times are considerable smaller).

• Regarding MS-RG-MGS and GA-MGS, we observe that their results
seem to be determined only by the value of Smax, not |T |. Even
when the problem instances were generated by excessive T sets, be-
cause log2(Smax) < |T |, they find that smaller T sets are sufficient.
On the contrary, when |T | < log2(Smax), the large space of values
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({1, . . . , Smax}) becomes a hard challenge that hinders them to find the
real simpler complexity of the problem (|T |). This is clearly due to the
fact that operations in these two algorithms (initialization, crossover,
etc.) depend on the range of the values, and they do not look for value
combinations as G-MGS and Ge-MGS do.

We may then summarize previous results in the following conclusion,
G-MGS performs considerably well for small problem instances when the
complexity of the problem is inferior or around 16, otherwise, GA-MGS is a
safer alternative.

5.3.2. Results on large instances

The aim of the next experiment is to compare the algorithms on larger
instances. Specifically, we have generated 6 sets of Type L instances and one
of Type U instances with 110 cases with sizes that range from n = 50 to
n = 10000. The former resulted from the combination of |T | = {15, 23} and
Smax = {65 536, 1 048 576, 16 777 216}.

Due to the computational requirements of G-MGS and Ge-MGS shown
in the previous experiment, we have imposed a maximum running time of
one hour for these experiments, and presented the results separately. Table 8
shows the size of the largest instances for which the greedy approaches were
able to provide a solution within one hour, along with the Av measure for
the solved instances (those for which they provided a solution). On the other
hand, Table 9 reports the Av and %B measures of GA-MGS and MS-RG-
MGS on the 7 sets of large instances.

Instances G-MGS Ge-MGS

|T | Smax max n Av max n Av

65 536 250 28 350 31.16
15 1 048 576 100 30 150 38.6

16 777 216 100 36 100 50.5

65 536 200 27.5 250 33.4
23 1 048 576 100 31.5 150 44

16 777 216 100 41 100 51.5

Type U Inst. 50 49 50 51

Table 8: Results of G-MGS and Ge-MGS on large instances

Looking at Tables 8 and 9, we may point out the following facts:
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Instances MS-RG-MGS GA-MGS

|T | Smax Av %B Av %B

65 536 18.1 14.54 17.2 94.54
15 1 048 576 23.5 19.09 21.8 91.81

16 777 216 30.6 0 25.9 100

65 536 18.0 9.09 17.1 98.18
23 1 048 576 23.4 5.45 21.3 95.45

16 777 216 30.9 0 25.9 100

Type U Inst. 44.8 0 36.8 100

Table 9: Results of MS-RG-MGS and GA-MGS on large instances

• G-MGS and Ge-MGS generated solutions for very few instances in one
hour (Table 8). Even more, they were only able to provide a solution
for the smallest Type U instances (n = 50). On the contrary, our
algorithms generated solutions for all the instances consuming at most
1000 seconds ( n

10
, with n = 10 000).

• The averaged results (Av) of GA-MGS and MS-RG-MGS are better
than those of the greedy approaches, even though they are computed
over much larger instances.

• Our GA manages to generate much better results than MS-RG-MGS
(Table 9). Differences are larger as Smax increases (notice that Type

U instances have the largest Smax value). This performance differ-
ence, also present in the previous experiment with small instances,
proves that the operators included in our GA, particularly the CX-
MP-α crossover operator and the fact of maintaining good solutions in
the population, are effectively working better than the random search
developed by MS-RG-MGS, and lead the algorithm to better solutions.

To complement the above experimental study, we now analyze the de-
tailed results obtained by GA-MGS and MS-RG-MGS on the complex large
Type U instances after 500 and 3600 seconds. Figure 8 plots the objective
function value for the best solutions found by the algorithms with each time
limit according to the size of the problem instance. These results allow us to
make the following observations:

• GA-MGS with 3600 seconds clearly obtains always the best results. In-
terestingly, the results are very similar regardless the size of the problem
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Figure 8: GA-MGS and MS-RG-MGS on large Type U instances

instance. Remember that the upper bound for this problem instances
is log2(Smax) = log2(2 147 483 647) = 31. Therefore, GA-MGS seems
to be able to approach the optimal solution closely when it is given
sufficient running time.

• The solutions obtained by the GA after 500 seconds are already clearly
better in comparison with those obtained by MS-RG-MGS after 3600
seconds.

• Given the performance difference gained by GA-MGS between 500 and
3600 seconds as n increases, we may conclude that the restart mech-
anism is allowing it to escape from the stagnation in local optima,
letting the rest of the operators to progress further on the quest for
better solutions. Particularly, this performance improvement is much
more reduced in MS-RG-MGS. In this case, since MS-RG-MGS is a
memoryless technique and just generates almost random solutions at

28



each iteration, its little performance improvement is only due to ran-
domness and more running time.

Therefore, we may conclude that GA-MGS is really effective on large
instances, for which the greedy approaches are not able to produce solutions
within reasonable running time.

Inst. Size GA-MGS MS-RG-MGS

10 000 33 44
20 000 34 46
30 000 36 45
40 000 35 45
50 000 38 46
60 000 38 47
70 000 39 49
80 000 41 48
90 000 41 48
100 000 39 50

Table 10: GA-MGS vs. MS-RG-MGS on very large Type U instances

5.3.3. Results on very large instances

A final computational experiment has been conducted for testing the
performance of our GA on very large test cases of size up to 100 000 el-
ements. Specifically, we have generated 10 Type U instances with sizes
n = 10 000, 20 000, . . . , 100 000. Table 10 provides, for each instance, the
value of the best solution found during a 5 hour run of GA-MGS and MS-
RG-MGS. As Table 10 shows, the GA again is definitely superior to the
multi-start algorithm. Though the problem instances are more difficult than
those considered so far, GA-MGS was able to find good solutions at a rela-
tively moderate computation time.

6. Conclusions

In this paper, a new formulation of the MGS problem was developed
to conceive a GA that revolves around RG-MGS, a new randomized greedy
method being able to construct, in an intelligent, diversified feasible solutions
for this highly constrained problem. This heuristic procedure is employed as
initialization mechanism for the GA and it is the basic pillar on which the
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design of the crossover operators is supported. A design that was completed
precisely through the knowledge acquired in the research field of GAs for
continuous optimization problems [30, 38, 39, 29]. The GA also integrates
a restart operator to ensure a reliable evolution towards promising areas
throughout the entire search. The proposal has proven to be a very high
performing algorithm for the MGS problem, showing it to be very competitive
with respect to state-of-the-art algorithms. Specifically, the empirical study
reveals a clear superiority when tackling hard and large instances.

The ability of the proposed GA to yield superior outcomes along with
the simplicity and flexibility of this approach, allows us to conclude that this
metaheuristic arises as a tool of choice to face this problem. Moreover, it in-
vites further consideration to explore other forms of evolutionary algorithms,
such as the memetic algorithms [40, 39], which apply a local search method
to members of the GA population after crossover and mutation operations,
with the aim of exploiting the best search regions identified by the global
sampling done by the GA.
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