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ABSTRACT 

We tackle a combinatorial problem that consists of finding the optimal configuration of a binary matrix. 

The configuration is determined by the ordering of the rows in the matrix and the objective function value 

is associated with a value 𝐵, the so-called bandpass number. In the basic version of the problem, the 

objective is to maximize the number of non-overlapping blocks containing 𝐵 consecutive cells with a value 

of one in each column of the matrix. We explore variants of this basic problem and use them to test 

heuristic strategies within the scatter search framework. An existing library of problem instances is used 

to perform scientific testing of the proposed search procedures to gain insights that may be valuable in 

other combinational optimization settings. We also conduct competitive testing to compare outcomes 

with methods published in the literature and to improve upon previous results. 
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1. Introduction 

The bandpass problem is associated with early-generation DWDM (Dense Wavelength Division 

Multiplexing) systems in fiber optic networks [16] [18] [27]. This technology used the band concept to 

allow the transmission of several wavelengths in a single fiber-optic cable. Wavelengths enter or leave the 

fiber optic cables via a set of devices known as OADMs (Optical Add/Drop Multiplexers), which are 

installed along the fiber optic cable at origin and destination points [16] [18]. OADMs contain special cards 

that control the wavelengths and identify which wavelengths should pass through the device and which 

should be dropped. Typically, several wavelengths pass through the same OADM. The wavelengths may 

be handled as a block when they are consecutive. A block of wavelengths is known as a bandpass. Without 

this assembling of wavelengths, a card is needed for each wavelength. However, when a bandpass is 

created, a single card can handle the entire block of wavelengths. The number of wavelengths in the block 

is referred to as the bandpass number (𝐵). Therefore, the process of creating a wavelength block results 

in a reduction of cards from 𝐵 to 1 and hence a cost reduction in the design and maintenance of the fiber 

optic network. The optimization opportunity is to assign wavelengths in order to maximize the number of 

bandpasses with a bandpass number of 𝐵. 

This bandpass problem was first described by Bell and Babayev in the Annual INFORMS Meeting held in 

Denver Colorado in October 2004 and the first publication appeared in 2009 [1]. Since then, newer 

generations of DWDM systems have been developed to add more flexibility. This newer equipment 

employs reconfigurable optical ADMs (ROADMs) for which the band concept does not apply. The ROADM 

is a dynamic wavelength arrangement scheme enabled by wavelength selective switching. These new 

systems, however, are much more expensive and therefore the older systems still have a market in small 

DWDM deployments. 

The bandpass problem consists of creating blocks of wavelengths that need to be sent from a set of origins 

to a set of destinations. The goal of the blocks is to reduce the number of devices needed for the 

transmission of the wavelengths, resulting in a decrease of both installation and maintenance costs. The 

telecommunication network is modeled as a 𝑚 ×  𝑛 binary matrix 𝐴, where 𝑎𝑖𝑗  is equal to 1 if wavelength 

𝑖 must be delivered to destination 𝑗. In the basic version of the problem, the value of 𝐵 (i.e., the bandpass 

number) is given. A bandpass is formed by 𝐵 consecutive 1s in the same column. Each value of 1 can only 

be used for one bandpass and therefore two distinct bandpasses in the same column cannot have a 

common element. Figure 1.a shows a network with 6 wavelengths and 5 destinations. The network shows 

that, for instance, wavelength 1 must be delivered to all but the third destination. Assuming that 𝐵 = 3, 

the matrix in Figure 1.a contains 3 bandpasses, as indicated by the gray blocks, where 𝑂 refers to the 

ordering of the wavelengths, that is, 𝑂(𝑖) is the index of the wavelength assigned to row 𝑖. 
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 a) 𝑂 =(1,2,3,4,5,6) b) 𝑂 =(1,2,3,5,4,6) 

Figure 1 Bandpasses for two possible assignments of wavelengths to rows. 

In Figure 1.a, the bandpass for column 1 is shown as rows 1, 2, and 3. However, the bandpass for that 

column could also be formed by rows 2 to 4 or 3 to 5. Regardless of which one is chosen, there can only 

be one bandpass in column 1. In order to increase the number of bandpasses, the assignment of 

wavelengths to rows could be changed. This assignment could also be thought of as a reordering of the 

rows in the matrix. For instance, Figure 1.b shows the matrix that results by assigning wavelength 4 to row 

5 and wavelength 5 to row 4. In other words, wavelengths 4 and 5 have exchanged positions from the 

original lexicographical order shown in Figure 1.a. The reassignment results in an increase of bandpasses 

from 3 to 4. 

For a given bandpass number 𝐵, the bandpass problem consists of finding an ordering 𝑂∗ of the rows that 

maximizes the number of bandpasses. The upper bound on the number of bandpasses in column 𝑗 is given 

by: 

�̅�𝑗 = ⌊
∑ 𝑎𝑖𝑗𝑖

𝐵
⌋ 

Therefore, if 𝑓(𝑂) is the number of bandpasses in solution 𝑂, then the objective function value of an 

optimal solution 𝑂∗ is bounded as follows: 

𝑓(𝑂∗) ≤ ∑ �̅�𝑗

𝑗

 

For 𝐵 = 3, the upper bound for the example in Figure 1 is 5 bandpasses. It can be easily verified that this 

upper bound is achieved by the optimal solution 𝑂 = (5,4,1,6,3,2). 

Babayev, Bell, and Nuriyev [1] refer to the problem described above as BP1. They also suggest an 

alternative version of the problem, denoted by BP2, which reflects some specific network technologies. 

In this second version, a total of up to 𝐺 + 1 groups of rows are created, where the first 𝐺 groups have 𝐵 
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rows. That is, the first group consists of rows 1 to 𝐵, the second group consist of rows 𝐵 + 1 to 2𝐵, and 

so on. If the remainder of the 𝑚/𝐵 quotient is greater than zero, then an additional group with the last 

𝑚 − 𝐺𝐵 rows is created. The value of 𝐺 is determined by: 

𝐺 = ⌊
𝑚

𝐵
⌋ 

A bandpass in BP2 is defined as a column within a group for which all its elements are nonzero. If the 

group is one of the first 𝐺, then the bandpass contains 𝐵 nonzero elements. For group 𝐺 + 1, if it exists, 

the bandpass contains 𝑚 − 𝐺𝐵 elements with nonzero values. As mentioned in [1], this model reflects 

some specific equipment constraints. In contrast with BP1, the group of rows that can form bandpasses 

are all the same across columns. Figure 2 shows an optimal solution to BP2 for the example matrix shown 

in Figure 1. This solution corresponds to the row ordering 𝑂 = (2,3,6,1,4,5). Note that because 𝑚 = 6 

and 𝐵 = 3 then 𝐺 = 2 and the remainder of 𝑚/𝐵 is zero. Therefore, there are only 2 groups, one 

consisting of the first three rows in the matrix and the second one consisting of rows 4 to 6. 

 

Figure 2 Optimal solution to BP2 for matrix in Figure 1. 

For BP2, the order of the rows within each group is not relevant and thus, for instance, 𝑂 = (2,3,6,1,4,5) 

is the same solution as 𝑂 = (6,3,2,5,4,1) or as any ordering where the first three rows contain the 

wavelengths 2, 3, and 6. A permutation vector clearly is not an effective solution representation for BP2 

given that it creates a search space with 𝑚! solutions while the number of unique solutions for a BP2 

instance with 𝐺 groups of size 𝐵 is given by: 

𝑚!

(𝐵!)𝐺𝐺!
 

In the example of Figure 2, there are 720 permutations of the rows but only 10 unique ways of creating 

two groups of 3 rows. A more direct representation is given by 𝑆 for which 𝑆(𝑖) is the index of the group 

to which wavelength 𝑖 is assigned. 
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Both BP1 and BP2 assume that the value of 𝐵 is given. Kurt et al. [19] argue that fixing the value of 𝐵 may 

not be optimal and therefore they suggest an optimization model in which 𝐵 becomes a decision variable. 

However, since the range of relevant values for 𝐵 is expected to be somewhat limited, the optimization 

process to determine the best value for 𝐵 can be achieved by simply solving BP1 multiple times. We do 

not address this variant as a separate version of the problem. 

The third version that we include in our study is the one introduced by Nuriyev, Kutucu, and Kurt [25] and 

for which Gürsoy and Nnuriyev [17] developed a genetic algorithm. This is the so-called multi bandpass 

problem (MBP). In this version, instead of a single 𝐵 value across the entire network, each destination 𝑗 

has its own 𝐵𝑗  value. The assumption is that ADMs may be programmed independently from each other 

with different bandpass numbers. In the MBP, the input data include the 𝐵𝑗  values for 𝑗 = 1, … 𝑛. An 

extension of the MBP, suggested by Kurt et al. [19], turns the 𝐵𝑗  values into variables. This extension is 

referred to as the “Optimization of Lengths in the Multi-Bandpass Problem”. The optimization problem 

involves not only finding the best ordering of the rows in the matrix but also the best bandpass number 

for each destination. The literature does not include any experimentation on this problem and it is not 

clear whether the extension corresponds to an actual technology for which the 𝐵𝑗  values can be optimized 

within a given range. We do not address this variant here. 

The literature on the bandpass problem is limited to seven articles [1][2][17][19][21][22][25]. 

Mathematical models for BP1 and BP2 are presented in [1] along with a NP-hard proof of BP1. Babayev, 

Bell, and Nuriyev [1] developed two solution procedures: an exact polynomial algorithm for BP1 with 𝑛 =

2 and a heuristic for the general case. The authors also report optimal solutions for BP1 problem instances 

with 𝑚 ≤ 32 and 𝑛 ≤ 8, found by solving a mathematical programming model. A description of a 

generator of problem instances is provided and used to produce 90 instances with 𝑚 = 64 and 96 and 

𝑛 = 8, 12, 16, and 25. These instances are divided into two groups of 45 instances each, one for which 

the optimal solutions are known (OS instances) and one for which the optimal solutions are not known 

(BKS instances). Collectively, these problems are referred to as the Library of Bandpass Problems (BPLIB)1. 

No experiments are performed for BP2 in [1]. Additional mathematical proofs for special cases of BP1 are 

provided in [21] and [22]. 

Berberler and Gürsoy [2] developed four variants of a genetic algorithm and applied them to the 45 OS 

instances in BPLIB. Optimality gaps are reported for all variants in all problem instances. Several GA 

variants are also developed and tested in [19]. This article introduces a new set of problems for the MBP. 

The data include both the 𝐵𝑗  values and the binary 𝐴 matrix2. Finally, some of the same authors in [1] and 

[19] are co-authors of [25] where mathematical models for BP1, BP2, and MBP are presented. Some of 

these models already appeared in [1] and [19] and some are new. No additional experimentation or 

results are included in [25]. 

Our current investigation into this problem class includes BP1, BP2, and MBP. We use these problems as 

a platform to test heuristic strategies within the scatter search (SS) framework. An existing library of 

                                                      
1 The Library of Bandpass Problems can be found here http://sci.ege.edu.tr/~math/BandpassProblemsLibrary/.  
2 Problem instances introduced in [19] are found here http://fen.ege.edu.tr/arifgursoy/mbpopt/.  

http://sci.ege.edu.tr/~math/BandpassProblemsLibrary/
http://fen.ege.edu.tr/arifgursoy/mbpopt/
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problem instances is used to perform scientific testing to identify the contributions of several search 

strategies. In particular, we develop and test: 

 Two diversification generation methods 

 Four improvement methods  

 Two combination methods 

 A scatter search method, SS1, for which solutions are represented by an ordering 𝑂 of the 

wavelengths and therefore equipped to tackle BP1 and MBP instances. 

 A scatter search method, SS2, for which solutions are represented as an assignment 𝑆 of 

wavelengths to groups and that it is configured to solve BP2 instances. 

We also conduct competitive testing to compare the solutions obtained with SS1 and SS2 with the best 

methods published in the literature for these problems (DSR [1], GAs [2] and [17]). In addition, we 

compare performance against commercial optimizers, one based on metaheuristic technology 

(LocalSolver) and the other built on exact procedures(Gurobi). 

2. Standard Scatter Search Methods 

Scatter search (SS) [13][20] is a population-based metaheuristic framework that consists of methods that 

generate, maintain, and transform a reference set of solutions (𝑅𝑒𝑓𝑆𝑒𝑡). The methods are organized as 

shown in Algorithm 1. Basic and advanced SS implementations have been developed for a variety of 

problems (see, e.g. [5][10][23][26][29]). In this section, we describe the implementation of the standard 

methods within the SS framework that we developed for BP1, BP2, and MBP. Two solution 

representations are used: 1) 𝑂, the ordering of the wavelengths (for BP1 and MBP); and 2) 𝑆, the group 

assignment (for BP2). Since the search strategies are linked to the solution representation, the same SS 

procedure is used to search for solution to BP1 and MBP. 

Diversification generator 

Improvement 

Initial 𝑅𝑒𝑓𝑆𝑒𝑡 

do 

 Subset generator 

 Combination 

 Improvement 

 𝑅𝑒𝑓𝑆𝑒𝑡 update 

until termination is criteria satisfied 

Algorithm 1 Scatter search template. 

Following the template in Algorithm 1, we implemented standard methods for creating the initial 𝑅𝑒𝑓𝑆𝑒𝑡, 

for generating solution subsets, and for updating the 𝑅𝑒𝑓𝑆𝑒𝑡. The diversity generator and the 

improvement method (which will be described in Sections 3 and 4, respectively) are applied first to 

produce a population of 𝑃 feasible solutions to the problem. Then, the initial 𝑅𝑒𝑓𝑆𝑒𝑡 (of size 𝛽) is built by 

first selecting the 𝛽/2 best (in terms of the objective function value) solutions from 𝑃. The selected 
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solutions are removed from 𝑃. Then, the 𝛽/2 most diverse solutions with respect to those currently in 

the 𝑅𝑒𝑓𝑆𝑒𝑡 are selected from 𝑃. Because the selection of the most diverse group of elements out of a set 

is a hard problem (see e.g. [7]), the solutions are heuristically selected one at a time. 

Any diversification strategy requires a measure of distance between any two solutions. The distance for 

each solution representation is measured as follows. 

𝑝(𝑂, 𝑂′) = ∑|𝑂(𝑖) − 𝑂′(𝑖)|

𝑚

𝑖=1

 

𝑐(𝑆, 𝑆′) = 𝑚 − number of common elements 

𝑝(𝑂, 𝑂′) represents the so-called positional distance in permutation vectors (see Das and Roberts [4]), 

where 𝑂(𝑖) is the wavelength in row 𝑖. To calculate 𝑐(𝑆, 𝑆′), we count the number of common 

assignments between both solutions by matching the groups in 𝑆 with the groups in 𝑆′. For each group 

and its match, we identify the wavelengths that are assigned to both (i.e., the common elements). The 

matching problem has the following form: 

Maximize ∑ ∑ 𝑐𝑘𝑙𝑥𝑘𝑙𝑙𝑘  

Subject to ∑ 𝑥𝑘𝑙𝑙 = 1 ∀𝑘 

𝑥𝑘𝑙 ∈ {0,1} ∀𝑘, 𝑙 

In this problem, 𝑥𝑘𝑙 = 1 when group 𝑘 in solution 𝑆 is matched with group 𝑙 in solution 𝑆′. The 𝑐𝑘𝑙  value 

indicates the number of common elements in groups 𝑘 and 𝑙. The total number of common elements is 

given by 𝑐𝑥∗, where 𝑥∗ is an optimal solution to the matching problem. Then, 𝑐(𝑆, 𝑆′) = 𝑚 − 𝑐𝑥∗. 

For the sequential selection of the 𝛽/2 diverse solutions to be included in the reference set, a maxmin 

criterion is used. The goal at each step is to find the solution that has the maximum distance between 

itself and the solutions currently in the reference set. The distance between a solution in 𝑃 and the 

solutions in the reference set depends on the solution representation, as follows: 

𝑑(𝑂, 𝑅𝑒𝑓𝑆𝑒𝑡) = min
𝑂′∈𝑅𝑒𝑓𝑆𝑒𝑡

𝑝(𝑂, 𝑂′) 

𝑑(𝑆, 𝑅𝑒𝑓𝑆𝑒𝑡) = min
𝑆′∈𝑅𝑒𝑓𝑆𝑒𝑡

𝑐(𝑆, 𝑆′) 

Then, at each step of the process, the solution 𝑅 from 𝑃 that has the maximum distance between itself 

and the solutions currently in 𝑅𝑒𝑓𝑆𝑒𝑡 is selected to be added to the reference set. Mathematically, 𝑅 is 

identified as follows: 

𝑅 = arg max
𝑋∈𝑃

𝑑(𝑋, 𝑅𝑒𝑓𝑆𝑒𝑡) 
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where 𝑋 is either 𝑂 or 𝑆, depending on the solution representation. Solution 𝑅 is added to 𝑅𝑒𝑓𝑆𝑒𝑡 and 

deleted from 𝑃. This is repeated 𝛽/2 times in order to complete the 𝑅𝑒𝑓𝑆𝑒𝑡 with 𝛽 solutions. As shown 

in Algorithm 1, the iterative process begins after the initial 𝑅𝑒𝑓𝑆𝑒𝑡 has been created. This process consists 

of selecting subsets of reference solutions to perform combinations that will result in new trial solutions. 

These solutions are then considered for inclusion in the reference set once they have been subjected to 

the improvement method. As recommended in [20], we employ a standard subset generation method 

that consists of selecting all pairs of reference solutions that contain at least one new solution. A new 

solution is one that has been added in the previous iteration of the do-loop in Algorithm 1. In the first 

iterations, all the solutions are new and therefore the number of subsets generated the first time around 

equals (
𝛽
2

). 

The updating of 𝑅𝑒𝑓𝑆𝑒𝑡 occurs at the end of each iteration. This is where the new solutions that were 

generated by the combination method and potentially improved by the improvement method are 

considered for membership in the reference set. The goal of the updating procedures is to maintain both 

quality and diversity in the reference set. Therefore, a solution is admitted to the reference set if its 

objective function value is better than the objective function value of the worst solution in the current 

reference set. For the sake of diversity, a solution that passes the above quality test replaces the reference 

solution that is closest to it according to the distance measures described above. This means that a 

solution that is included in the reference set does not necessarily replace the worst reference solution, 

unless the worst solution in the current 𝑅𝑒𝑓𝑆𝑒𝑡 happens to be the closest to this new reference solution. 

3. Diversification Generation Method 

The diversification generator is one of three scatter search methods that are problem-specific. That is, 

this method along with the combination and improvement methods take advantage of the problem 

context to create a customized solution procedure within the scatter search framework. Like it is often 

done to induce diversification, our method relies on a controlled randomization process. Controlled 

randomization refers to a strategy that makes reference to the objective function value while constructing 

solutions. This is in contrast to full randomization where solutions are constructed without any support or 

direction from the objective function. 

Algorithm 2 summarizes the steps performed by the diversification generation method for solutions 

represented as an ordering of the wavelengths. The set 𝑈 consists of all the wavelengths that have not 

been assigned to a row. Initially, 𝑈 contains all 𝑚 wavelengths in the problem and the solution 𝑂 being 

constructed is empty. The iterative process assigns one wavelength at a time and ends when no more 

unassigned wavelengths are left (i.e., when 𝑈 is empty). In each step, a wavelength 𝑘 is randomly selected 

from 𝑈 by the 𝑅𝑎𝑛𝑑𝑜𝑚( ) function. The 𝐵𝑒𝑠𝑡𝑅𝑜𝑤( ) function then searches for the best row 𝑖∗ where to 

assign 𝑘 in the partial solution 𝑂. In the first iteration, the selected wavelength is assigned to the first row, 

that is 𝑖∗ = 1. In the 𝑖𝑡ℎ iteration, there are 𝑖 − 1 wavelengths in the partial solution and the search for 

the best row 𝑖∗ consists of inserting wavelength 𝑘 in the 𝑖 − 1 available positions, starting in row 1. The 

row that produces the largest increase in the objective function value (i.e., that increases the number of 
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bandpasses the most) is chosen as 𝑖∗. If no row assignment from 1 to 𝑖 − 1 is able to improve upon the 

current objective function value then 𝑖∗ = 𝑖, meaning that wavelength 𝑘 is assigned to the last row. 

𝑈 ← {1, … , 𝑚}  

𝑂 ← ∅  

while 𝑈 ≠ ∅ do 

 𝑘 ← 𝑅𝑎𝑛𝑑𝑜𝑚(𝑈)  

 𝑖∗ ← 𝐵𝑒𝑠𝑡𝑅𝑜𝑤(𝑂, 𝑘)  

 𝑂(𝑖∗) = 𝑘  

 𝑈 ← 𝑈\{𝑘} 

end while 

Algorithm 2 Diversification generation method for solutions represented by 𝑂. 

The controlled randomization aspect of the method is evident in Algorithm 2 by a random selection of a 

wavelength that is followed by a purposeful search for the best row. The random nature of the procedure 

enables it to generate the population of solutions needed to initiate the scatter search. 

Algorithm 3 shows the procedure for solutions represented by 𝑆 that like Algorithm 2 is also semi-greedy 

[8] but that follows the tenets of GRASP [9]. For each candidate wavelength, the method calculates a 

greedy function ℎ1(𝑖, 𝑔) that consists of the number of the potential bandpasses that result from adding 

wavelength 𝑖 to group 𝑔. A potential bandpass is a column within the group that contains all 1s after 

wavelength 𝑖 has been added to the group. The function counts potential bandpasses because the final 

existence of a bandpass is not confirmed until 𝐵 wavelengths are assigned to a group. 

For instance, consider a problem with 𝑛 = 5 and 𝐵 = 4 and the two partial groups with two wavelengths 

each shown in Table 1. Wavelengths 4 and 8 are already assigned to group 1. Wavelengths 3 and 6 are 

assigned to group 2. The construction procedure is considering wavelength number 7 to be added to 

either group 1 or group 2. Each group in the example has two potential bandpasses, destinations 1 and 4 

for group 1 and destinations 2 and 4 for group 2. Adding row 7 to group 1 preserves the potential of two 

bandpasses for that group (see blocks with bold lines in Table 1). Adding wavelength 7 to group 2 reduces 

the potential bandpasses to 1. Therefore, the greedy function evaluations for adding wavelength 7 to each 

group are: 

ℎ1(7,1) = 2 

ℎ1(7,2) = 1 
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Group Wavelength 
Destination 

1 2 3 4 5 

1 

4 1 1 0 1 0 

8 1 0 1 1 0 

7 1 0 0 1 1 

?      

       

2 

3 1 1 1 1 0 

6 0 1 0 1 0 

7 1 0 0 1 1 

?      

Table 1 Example of greedy group assignment. 

To initiate the diversification generation procedure for solutions represented by 𝑆, the first wavelength is 

randomly chosen and is arbitrarily assigned to group 1 (see the first three lines in Algorithm 3). In the 

iterative loop, the greedy function is calculated for each pair of wavelength-group for all wavelengths in 

𝑈 and all groups with fewer than 𝐵 wavelengths. The wavelength-group combination (𝑖∗, 𝑔∗) is chosen 

among those pairs for which ℎ1(𝑖, 𝑔) ≥ ℎ𝑚𝑖𝑛 + 𝛼 ⋅ (ℎ𝑚𝑎𝑥 − ℎ𝑚𝑖𝑛), where ℎ𝑚𝑖𝑛 and ℎ𝑚𝑎𝑥  are the 

minimum and maximum values of ℎ1 among all the candidate wavelength-group combinations. As is 

customary in GRASP, 𝛼 is a tunable parameter that varies between zero (random selection) and one 

(deterministic selection). 

𝑈 ← {1, … , 𝑚}  

𝑖 ← 𝑅𝑎𝑛𝑑𝑜𝑚(𝑈)  

𝑆(𝑖) ← 1  

𝑈 ← 𝑈\𝑖  

while 𝑈 ≠ ∅ do 

 (𝑖∗, 𝑔∗)  ← 𝑆𝑒𝑚𝑖𝐺𝑟𝑒𝑒𝑑𝑦(𝑈, 𝑆, 𝛼)  

 𝑆(𝑖∗) ← 𝑔∗  

 𝑈 ← 𝑈\{𝑖∗}  

end while 

Algorithm 3 Diversification generation method for solutions represented by 𝑆 

A slight variant of this method is also tested in which the greedy function, ℎ2(𝑖, 𝑔), includes the number 

of bandpasses “eliminated” by adding a wavelength 𝑖 to group 𝑔. That is, ℎ2(𝑖, 𝑔) is the difference 

between potential bandpasses and eliminated bandpasses. A wavelength eliminates a bandpass in a group 

if it adds a zero to a column that previously contained all 1s within the group. Under this variant, the ℎ2 

values for the example in Table 1 are ℎ2(7,1) = 2 and ℎ2(7,2) = 0 because adding wavelength 7 to group 

2 eliminates the potential bandpass at destination 2. 
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4. Improvement Method 

In scatter search, solutions that are either constructed by the diversification generator or created by the 

combination method are subjected to an improvement process that is typically based on neighborhood 

searches. The search in an improvement method is local, meaning that it stops as soon as no improved 

solution is found in the neighborhood of the current solution. Four improvement methods were 

developed and tested for solutions represented by an ordering 𝑂 of the wavelengths: 

IM1 Best insertion 

IM2 Best swap 

IM3 Block merging 

IM4 Variable neighborhood descent 

All these improvement methods treat the bandpass problem as a search for the best ordering of a set of 

elements. The search neighborhood in IM1 is built via insertions of each wavelength in each row. Let 𝑂 

be the solution before the insertion of wavelength 𝑂(𝑖) in row 𝑘, and 𝑂′ the solution after the insertion: 

𝑂 = (𝑂(1), … , 𝑂(𝑖 − 1), 𝑂(𝑖), 𝑂(𝑖 + 1), … , 𝑂(𝑘 − 1), 𝑂(𝑘), 𝑂(𝑘 + 1), … , 𝑂(𝑚)) 

𝑂′ = (𝑂(1), … , 𝑂(𝑖 − 1), 𝑂(𝑖 + 1), … , 𝑂(𝑘 − 1), 𝑂(𝑘), 𝑂(𝑖), 𝑂(𝑘 + 1), … , 𝑂(𝑚)) 

All insertions are attempted and the best is chosen. The procedure stops when no insertion results in an 

increase of the number of bandpasses in the current solution. The same best-move strategy is used by 

IM2 with the difference that swaps define the neighborhood instead of insertions. A swap between the 

wavelengths in rows 𝑖 and 𝑘 transforms 𝑂 into 𝑂′ as follows: 

𝑂 = (𝑂(1), … , 𝑂(𝑖 − 1), 𝑂(𝑖), 𝑂(𝑖 + 1), … , 𝑂(𝑘 − 1), 𝑂(𝑘), 𝑂(𝑘 + 1), … , 𝑂(𝑚)) 

𝑂′ = (𝑂(1), … , 𝑂(𝑖 − 1), 𝑂(𝑘), 𝑂(𝑖 + 1), … , 𝑂(𝑘 − 1), 𝑂(𝑖), 𝑂(𝑘 + 1), … , 𝑂(𝑚)) 

IM3 is significantly different from IM1 and IM2. This improvement method analyzes the binary matrix 

associated with the current solution to identify higher-order exchanges. In particular, for each column in 

the matrix of the current solution it searches for two blocks of non-zero elements, one primary block with 

𝐵 − 2 wavelengths and one secondary block with 2 wavelengths, where a block has non-zero elements in 

consecutive rows. Once these two blocks have been identified, the secondary block is merged “at the 

end” of the primary block by rearranging the row assignments of the wavelengths in the secondary block. 

This merger forms a new bandpass, however, the row reassignment of the two wavelengths in the 

secondary block could have eliminated one or more bandpasses in other columns. In an attempt to 

reestablish those bandpasses or finding new ones, an exhaustive search is performed among the rows 

corresponding to the new bandpass. This means that all permutations of the rows are explored in order 

to identify the best. The process is repeated for primary blocks with 𝐵 − 3 wavelengths, then 𝐵 − 4 

wavelengths, and so on until the number of wavelengths in the primary block reaches 2. This local search 

procedure terminates when no improvement is possible after exploring all destinations. 
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Figure 3 shows a simple example of one move in IM3. As in previous examples, the gray blocks indicate 

the bandpasses. Figure 3.a shows the current solution with an objective function value of 3. In this figure, 

the primary block identified by IM3 is the one with the black background, which corresponds to 

wavelengths (rows) 5 and 6 in destination (column) 3. The secondary block is shown as a solid bold outline, 

corresponding to wavelengths (rows) 2 and 3 in destination (column) 3. As prescribed by the IM3 logic, 

the secondary block is inserted at the end of the primary block. This means that rows in the secondary 

block are removed and inserted right below the rows in the primary block, and then all rows (except the 

first one) are shifted up. The result of this exchange is an increase in the number of bandpasses, as shown 

in Figure 3.b. It can be shown that no permutation of the last four rows (i.e., the ones that participated in 

the exchange) results in a better solution. 

 

 a) 𝑂 = (1,2,3,4,5,6) b) 𝑂 = (1,4,5,6,2,3) 

Figure 3 Example of a move in IM3. 

IM4 combines IM2 and IM3 in the framework of a variable neighborhood descent (VND). VND employs 

multiple neighborhoods that are typically ordered in increasing level of complexity [24]. The first 

neighborhood is applied until no improvement is possible. At that time, the second neighborhood is 

explored until an improved solution is found at which point the search reverts back to the first 

neighborhood and the process starts again. If no improved solution is identified then the search moves to 

the next neighborhood. The entire VND ends when the last (and often the most complex) neighborhood 

is not able to identify an improved solution. In our case, we only use two neighborhoods: IM2 and IM3. 

The VND starts with IM2 and it identifies the first local optimum. Then, IM3 is applied and as soon as an 

improved solution is found it goes back to IM2. The search keeps alternating between IM2 and IM3 until 

IM3 fails to find an improved solution. The selection of IM2 followed by IM3 was supported by a full-

factorial experimental designed where all orderings of two neighborhoods and also all orderings of the 

three neighborhoods were considered. The experiment yielded IM2 followed by IM3 as the best 

combination in terms of solution quality and exploration time. 

A single improvement method was developed for solutions represented by 𝑆. This method, like IM2, is 

based on swaps, which preserve the feasibility of a solution. The neighborhood search is organized in such 
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a way that the groups are ordered by increasing number of bandpasses, and hence the first group is the 

one with the least number of bandpasses and the last group is the one with the largest number of 

bandpasses. The exploration is such that it starts by attempting swaps of wavelengths from the first group 

with wavelengths in group 2 to 𝐺. Then, wavelengths in group 2 are exchanged with wavelengths in groups 

3 to 𝐺, and so on until wavelengths from group 𝐺 − 1 are exchanged with wavelengths in group 𝐺. If a 

trial swap results in an increase in the number of bandpasses, the swap is executed. In other words, a first-

improving strategy is used in this neighborhood exploration. The process terminates when no more 

improving swaps can be identified. 

5. Combination Method 

The combination method is a procedure that generates new solutions from a given subset of solutions. As 

mentioned above, our implementation considers only subsets of size 2 (i.e., pairs of reference solutions). 

Path relinking (PR) is used as the method to create new solutions from the subsets created by the subset 

generation method. PR was originally proposed in [12] and formalized in [13]. The main idea behind PR 

consists of creating a path (i.e., a sequence of solutions) between two or more solutions. It is called 

relinking because the process was conceived in the context of a solution method that performs 

neighborhood searches to move from one solution to the next. In such a search, solutions are connected 

by the paths that the procedure created to reach them. The relinking in that context refers to creating a 

new path to connect solutions that are typically selected due to their elite status. In scatter search, 

solutions in the reference set may not have historical paths that connect them. Hence, in most cases, the 

application of PR to two reference solutions builds the first path between them. The PR principles have 

been successfully applied to multiple problem classes and in a variety of methodological frameworks, 

including tabu search [15], scatter search [29], and GRASP [3]. 

Our first combination method based on PR (referred to as CM1) operates on solutions represented by an 

ordering 𝑂. Given a pair of reference solutions, one is denominated the initiating solution 𝑂𝑖 and the other 

the guiding solution 𝑂𝑔. PR consists of transforming the initiating solution into the guiding solution by a 

sequence of moves. Consider for example the initiating solution 𝑂𝑖 = (5,2,3,4,6,1) and the guiding 

solution 𝑂𝑔 = (5,3,2,1,4,6) shown in Figure 4. The gray cells represent wavelengths in positions that do 

not coincide with the positions that they occupy in the guiding solution. Swaps are used to make the 

transformation from the initiating solution to the guiding solution, which is achieved in three moves. The 

most-improving swap is chosen at each step as prescribed by a greedy path relinking process [28]. The 

moves are represented by arrows that are labeled with the pair of wavelengths that are swapping 

positions. 

Initially, there are four swaps that transform the initiating solution into intermediate solutions that move 

toward to the guiding solutions. The (6,1) swap results in an intermediate solution with an improved 

objective function value. For this particular example, the relinking process could stop at this point because 

the objective function value of the intermediate solution matches the upper bound value of 5. However, 

for completeness, the figure shows that, at each step, the relinking process continues from the best 

intermediate solution. In this case, the solution resulting from the (4,1) swap is chosen and then the (2,3) 

swap completes the process. 
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Figure 4 Path relinking example. 

We developed a second combination method (referred to as CM2) based on a PR strategy that has been 

recently suggested and that has been labeled Exterior Path Relinking (EPR) [6][14]. EPR is a diversification 

strategy because, instead of moving the initiating solution toward the guiding solution, it searches for 

intermediate solutions that move away from the guiding solution. Figure 5 shows an EPR example applied 

to a 𝑂𝑖 = (5,2,3,4,6,1) and the guiding solution 𝑂𝑔 = (5,2,6,4,3,1). The process starts by randomly 

selecting one of the elements in 𝑂𝑖 that occupies the same position in 𝑂𝑔, these are the cells with a gray 

background (i.e., 5, 2, 4, and 1 in the initiating solution). Assume that the random selection is 5. Then 

another random selection is made among those elements that, if swapped with 5, do not produce an 

increase in the number of wavelengths that the resulting intermediate solution will have in the same 

position as in the guiding solution. 

In Figure 5, two possible paths are shows, where the left path is created by first swapping 5 and 6, while 

the right path is initiated by the swap of 5 and 3. Clearly, this process relies heavily on randomization to 

create a diverse set of solutions that move away from the guiding solution. A large number of paths could 

be created from any 𝑂𝑖 and 𝑂𝑔 pair. As done in [14], we generate additional solutions by reversing the 

roles of the initiating and guiding solutions. 

 

Figure 5 Exterior path relinking example. 
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The path relinking for solutions represented by a group assignment 𝑆 starts with the solution of the 

matching problem described in Section 2. Recall that, given two solutions, the problem matches the 

groups in one solution with the groups in the other solution in order to maximize the total number of 

wavelengths assigned to the same group (also referred to as the common elements). The optimal 

matching identifies the common elements between an initiating solution 𝑆𝑖 and a guiding solution 𝑆𝑔. 

Then, swaps are performed to move 𝑆𝑖 toward 𝑆𝑔. As done in CM1, the swap with the largest 

improvement of the objective function is chosen. The process terminates when the guiding solution is 

reached. 

Table 2 shows the group assignments for two reference solutions for a BP2 instance with 𝑚 = 18 and 

𝐵 = 6, and therefore 𝐺 = 3. 

Solution Group 1 Group 2 Group 3 

1 1, 3, 6, 9, 12, 17 2, 5, 8, 10, 11, 18 4, 7, 13, 14, 15, 16 
2 1, 4, 5, 10, 11, 18 2, 3, 6, 12, 13, 15 7, 8, 9, 14, 16, 17 

Table 2 Two reference solutions for a BP2 instances with 𝑚 = 18 and 𝐵 = 6. 

The matching problem associated with the solutions in Table 2 is: 

 Maximize 𝑥11 + 3𝑥12 + 3𝑥13 + 4𝑥21 + 𝑥22 + 𝑥23 + 𝑥31 + 2𝑥32 + 3𝑥33 

 Subject to 𝑥11 + 𝑥12 + 𝑥13 = 1 

 𝑥21 + 𝑥22 + 𝑥23 = 1 

 𝑥31 + 𝑥32 + 𝑥33 = 1 

An optimal solution to this problem is 𝑥12
∗ = 𝑥21

∗ = 𝑥33
∗ = 1, resulting in the following common elements: 

Group 1: 3, 6, 12 

Group 2: 5, 10, 11, 18 

Group 3: 7, 14, 16 

The PR process then starts by switching the labels of the first two groups in solution 2 (i.e., the original 

group 1 becomes group 2 and the original group 2 becomes group 1). Since 𝑥33
∗ = 1, the original label for 

group 3 remains unchanged. Then, a sequence of swaps must be performed to move the wavelengths 1, 

2, 4, 8, 9, 13, 15, and 17 from their current group in solution 1 to their group in solution 2. For instance 

wavelength 1 must be moved to group 2 and wavelength 2 must be moved to group 1. Therefore, a swap 

between wavelength 1 and 2 is considered since it moves solution 1 closer to solution 2. 

6. Computational Experiments 

Before engaging in competitive testing, we performed a series of scientific tests to determine the 

contribution of the various elements that we have designed for the two problem classes defined by the 

solution representations. These experiments are also used to determine the best SS configuration for each 

problem class. Henceforth, SS1 refers to the implementation for which solutions are presented by an 

ordering 𝑂 of the wavelengths and therefore equipped to tackle BP1 and MBP instances. The SS2 

procedure refers to the scatter search for which solutions are represented as an assignment 𝑆 of 
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wavelengths to groups and that it is configured to solve BP2 instances. Table 3 summarizes the SS 

components for each SS implementation. 

Component SS1 (BP1 and MBP) SS2 (BP2) 

Solution representation Ordering of wavelengths (𝑂) Assignment of wavelengths to 
groups (𝑆) 

Distance measure Positional distance Number of wavelengths 
assigned to different groups 

Subset generation method All pairs of reference solutions All pairs of reference solutions 
Initial reference set Half of the reference solutions 

chosen by quality and half by 
diversity 

Half of the reference solutions 
chosen by quality and half by 
diversity 

Reference set update Eligible new trial solution 
replaces the reference solution 
closest to it. 

Eligible new trial solution 
replaces the reference solution 
closest to it. 

Diversification generation Semi-greedy (random selection 
of a wavelength followed by 
best insertion) 

GRASP construction with two 
greedy functional forms (ℎ1 and 
ℎ2) 

Improvement method Four variants (IM1 to IM4) 
based on exchanges of positions 

First-improvement swap of 
group assignments 

Combination method PR (CM1) and EPR (CM2) based 
on swapping positions 

PR based on swapping group 
assignments 

Table 3 Summary of SS components for the two bandpass problem classes. 

Our scientific testing focuses on determining the best combination of components for each SS. All 

components were programmed in Java 8 and the experiments were executed on an Intel Core i7 2600 

(3.4 GHz) processor with 4 GB of RAM. We use the Library of Bandpass Problems (BPLIB)3 for BP1 and BP2 

and the MBP library (MBPLIB)4 for the MBP. The BPLIB contains 90 instances, 45 referred to as OS and 45 

referred to as BKS. The OS instances were constructed in such a way that the optimal solutions are known 

for BP1 but not for BP2. The BKS problems were randomly generated and optimal solutions are not known 

for either BP1 or BP2. There are 45 instances with known optimal solutions in the MBP library. We use the 

BKS instances for the scientific experimentation and reserve the OS and the MBP instances for the 

competitive testing. This means that the experiments used to configure SS1 include only BP1 instances 

and that the configuration is expected to generalize to the MBP instances. 

A two-factor factorial design is employed to configure SS1 by fixing the population size |𝑃| to 100 and the 

reference set size 𝛽 to 10, the default values suggested in the literature. Also, the stopping criterion (see 

last line of Algorithm 1) is set as the iteration when no trial solution is admitted to the reference set. Since 

there are four improvement methods and two combination methods, the factorial design consists of 8 

treatment combinations with 45 replications each. For this experiment, the deviation from the best-

known solution is used as the response variable. The deviation is calculated as (
𝑓∗−𝑓

𝑓∗ ), where 𝑓∗ is the 

                                                      
3 http://sci.ege.edu.tr/~math/BandpassProblemsLibrary/ 
4 http://fen.ege.edu.tr/arifgursoy/mbpopt/ 
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objective function value of the best-known solution and 𝑓 is the objective function value of the solution 

obtained by the treatment combination. The ANOVA associated with the experiment revealed that both 

main effects are significant, with 𝑝-values smaller than 10−9. However, the experiment did not detect a 

significant interaction effect between CM and IM, as indicated by a 𝑝-value of 0.881. Figure 6, a plot of 

the average deviation values (y-axis) for each improvement method (x-axis), confirms this finding, where 

it can be observed that the CM1 line (solid) does not cross the CM2 line (dotted). 

Figure 6 shows that CM2 is more effective than CM1 regardless of the IM. It also shows that the response 

obtained by the IM alternatives does not change with the choice of CM. This means that the selection of 

the CM and the IM could have been done independently. The experiment indicates that the best 

treatment combination and therefore the SS1 configuration that is expected to yield the best results is 

CM2 with IM4. 

In the process of conducting this experiment, 39 solutions were found that improved upon the best-

known solution currently published in the BPLIB website. (We point out that the website does not indicate 

how those solutions were found given that neither [1] nor [2] reports results on these instances.) The 

objective function values of the new best-known solutions, which improve upon the current best-known 

solutions by an average of 16.2%, are shown in Appendix A. 

 

Figure 6 Plot of average response for all (CM, IM) treatment combinations. 

To configure SS2 we also fix |𝑃| and 𝛽 to their default values and execute the procedure (Algorithm 1) a 

total of 10 times on each instance. Recall that the standard SS stopping criterion (which we also use for 

SS1) terminates the search when the reference set does not change, that is, when in a given iteration, no 

trial solution is admitted to the reference set. In SS2, the procedure is allowed to rebuild the reference 

set by seeding it with the incumbent solution. That is, the incumbent solution is placed in the new 

reference set first and the remaining 𝑏 − 1 solutions are added following the construction processes 

within SS2. A two-factor factorial design is employed to study the effects of various 𝛼 values and the 
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greedy functions ℎ1 and ℎ2. The 𝛼 values included in the experiment are 0, 0.25, 0.5, and 0.75. We also 

include a variant where the value of 𝛼 is selected at random during the search. This factorial design has a 

total of 10 treatment combinations and 45 replications. We again use the average deviation —calculated 

as described above— as the response variable. The ANOVA yielded 𝑝-values of 0.03 and 0.00015 for the 

main effects associated with the greedy functions and the 𝛼 values, respectively. Hence, we consider both 

main effect significant. The interaction effect between the two factors has a 𝑝-value of 0.366. Therefore, 

we conclude that there is no significant interaction between the choice of  ℎ and 𝛼. Figure 7 is a graphical 

representation of the average deviations obtained by each treatment combination. 

 

Figure 7 Plot of average response for all (ℎ, 𝛼) treatment combinations. 

It can be concluded from Figure 7 that ℎ2 is generally more effective than ℎ1, except when 𝛼 = 0. Also in 

general, increasing the value of 𝛼 —thus making the construction less random— improves performance 

(except for ℎ1 and 𝛼 = 0.5). Allowing 𝛼 to change randomly during the search seems to be better than 

using small 𝛼 values. Given these results, the combination ℎ2 and 𝛼 = 0.75 is selected. 

We now turn our attention to the competitive testing for which we use the OS and the MBP instances. 

The competitors for BP1 are the DSR (Different Start Rows) method of Babayev, Bell, and Nuriyev [1] and 

the four variants of a genetic algorithm (GA1 to GA4) proposed by Berbeler and Gürsoy [2]. Results of the 

OS instances associated with DSR and the GA variants were obtained from [1] and [2] respectively. The 

articles do not report computational time. For future reference, we report that the SS1 results shown in 

Table 4 were obtained in an average of 875 seconds. In Table 4, OF Value refers to the average objective 

function value and #Opt indicates the number of optimal solutions that each competitor is able to find 

out of the 45 in the set. The column labeled GAP contains the average relative optimality gap (i.e., the 

absolute gap divided by the optimal objective function value and averaged over all instances). 
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Procedure OF Value GAP #Opt 

DSR 37.00 0.3407 0 
GA1 40.53 0.2516 3 
GA2 40.53 0.2550 3 
GA3 40.24 0.2613 2 
GA4 40.29 0.2575 3 
SS1 46.07 0.1027 16 

Table 4 Summary of competitive testing for BP1. 

The results in Table 4 indicate that there is little difference in performance among the GA variants. DSR 

produces results that are inferior to those produced by all other methods while SS1 dominate all 

competitors. In order to support this conclusion, we performed a Friedman test. This test assigns, for each 

instance in the test set, the value of 1 to the procedure that obtains the best result, the value 2 to the 

second best, and so forth. The average ranking is then calculated for each procedure and a 𝑝-value is 

calculated to assess the strength of the ranking. The rankings shown in Table 5 result in a 𝑝-value of less 

than 0.001. 

Procedure Ranking 

SS1 1.12 
GA2 3.33 
GA1 3.34 
GA4 3.61 
GA3 3.73 
DSR 5.86 

Table 5 Friedman test ranking. 

The next competitive test compares the performance of SS1 with four variants of a genetic algorithm (GA1 

to GA4) proposed by Gürsoy and Nuriyev [17] for MBP. The 45 MBPLIB instances are employed for this 

comparison and the summary of the results is presented in Table 6. Gürsoy and Nuriyev [17] do not report 

solution times but for future reference we note that the SS1 solutions summarized in Table 6 were 

obtained in an average of 267 seconds. Table 6 does not include the #Opt column because none of the 

procedures is capable of finding a single optimal solution. This is in agreement with the large optimality 

gap shown in Table 6. Nonetheless, the average objective function value of the SS1 solutions is at least 

47.6% better than the average objective function values of all the GA variants, resulting in optimality gap 

that is less than half of those corresponding to the GAs. Although this is a significant improvement over 

the existing GA procedures, it is clear that the strategies designed for BP1 and embedded in SS1 lose some 

of their effectiveness when applied to MBP instances. Additional strategies that directly exploit the 

structure of the MBP instances are necessary to produce improved outcomes. 
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Procedure OF Value GAP 

GA1 20.38 0.5153 
GA2 19.49 0.5326 
GA3 19.69 0.5324 
GA4 18.76 0.5458 
SS1 30.09 0.2349 

Table 6 Summary of competitive testing for MBP instances. 

Our third and last competitive testing compares the performance of SS2 to LocalSolver, a commercial 

metaheuristic optimizer, and Gurobi, a commercial MIP solver. To the best of our knowledge, there is no 

specialized procedure for BP2 in the literature. The Gurobi solutions were found with the IP formulation 

presented in [1], and the solver was run with its default optimization settings. This means that the search 

took advantage of the 8 processors on the machine that was used for testing. The LocalSolver model that 

we used is included in Appendix B. The model is a simplified version of the IP formulation of BP2 presented 

in [1]. The LocalSolver model is simpler because it requires of only one set of binary variables, namely, the 

x[i][g] variables that indicate whether or not wavelength 𝑖 is assigned to group 𝑔. We perform two 

experiments, one with a relatively short search time limit of 600 seconds per instance and one with a 

longer search horizon of 3000 seconds. As described above, SS2 is set up to rebuild the reference set every 

time the stopping criterion is satisfied and therefore is capable of continuing the search until any specified 

time limit. The results of this experiments are summarized in Table 7. 

Procedure OF Value GAP #Opt #Best #Outright #Ties #Worst 

Time limit of 600 seconds 
Gurobi 31.044 0.0434 19 25 1 24 18 
LocalSolver 32.577 0.0644 11 31 7 24 12 
SS2 32.711 0.0119 17 33 1 32 2 
Time limit of 3000 seconds 
Gurobi 31.733 0.0291 19 27 0 27 17 
LocalSolver 32.778 0.0516 12 37 8 29 8 
SS2 32.956 0.0050 19 37 1 36 2 

Table 7 Summary of results for the competitive testing on BP2 instances. 

The GAP column in Table 7 is calculated against the best-known solution for each instance, 19 of which 

are optimal, as confirmed by the 3000-second Gurobi runs. The #Opt is the number of optimal solutions, 

out of the 19 that are known, that each procedure is able to match. The #Best column contains the number 

of best-known solutions matched by each procedure. The #Best values are divided into two groups, the 

number of outright best solutions (#Outright) and the number of ties with at least one of the competing 

procedures (#Ties). The #Worst column indicates the number of times that the solution procedure yielded 

the worst solution 

The following observations can be made from the analysis of the results in Table 7: 
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 SS2 exhibits the most robust behavior of the three competing procedures. Its #Best values are at 

the top in both the short and the long runs. At the same time, its #Worst values are the lowest in 

both runs. 

 The GAP values of 0.0119 and 0.005 for SS2 supports the robustness argument. That is, SS2 

produces high-quality solutions in most runs and avoids arbitrarily inferior solutions. SS2’s worst 

deviation from the best-known solutions is 0.067 in both, short and long runs. 

 LocalSolver is highly competitive and a viable option for finding high-quality solutions to BP2 

instances. This solution alternative is particularly attractive when one takes into consideration the 

development effort of creating a customized solution methods such as SS2. The only caveat is the 

variability of the solution quality produced by Local Solver. Note that for the long runs LocalSolver 

has the same number of outright best solutions (8) as the number of worst solutions. This 

variability causes LocalSolver to have the worst average deviation. 

 Gurobi’s GAP values are reasonably low because, even though it has the highest #Worst counts in 

both runs, its deviations from the best-known solutions are never more than 0.2 

Additional search strategies could widen the gap between the performance of a specialized procedure 

like SS2 for the BP2 and a commercial software LocalSolver. For instance, strategic oscillation proved 

critical in boosting performance in a tabu search for a grouping problem [11]. 

7. Conclusions 

The bandpass problem is somewhat new to the OR literature in the sense that, although it was originally 

introduced at a conference more than 10 years ago, the first publication did not appear until 2009. Several 

versions of the problem have been introduced in subsequent publications along with additional test data. 

One of our goals in this project was to gain understanding of the current state of knowledge associated 

with the bandpass problem and to identify avenues for advancing this area. Through our investigation, we 

identified two problem classes and a total of three problem variants within those classes. We then 

designed a common SS solution framework and developed the individual strategies for each problem 

class. 

We performed meticulous scientific testing that provided some interesting insights on the behavior and 

interaction of the search components. These experiments produced new benchmarks that will help future 

researchers test solution methods that could prove even more effective than those described here. We 

were also able to show that although BP1 and MBP belong to the same problem class, the effectiveness 

of the search strategies designed for BP1 diminish when applied to MBP instances. Nonetheless, 

competitive testing showed that the proposed SS1 method applied (without customization) to both BP1 

and MBP instances produces results that are significantly better than those produced by the existing 

procedures. Finally, our experiments show that the adaptation of the SS to BP2 exhibits a robust behavior 

when compared to commercial software. 
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Appendix A 

Table 10 shows the objective function values of the new best-known solutions for the BKS instances. A 

dash indicates that no solution better than the current best known was found in our experimentation. 

Instance Previous New %Improve Instance Previous New %Improve 

P01-A1B8 10 11 10.00 P24-A10B16 10 12 20.00 
P02-A1B16 3 - - P25-A11B5 54 59 9.26 
P03-A2B8 14 16 14.29 P26-A11B8 23 29 26.09 
P04-A2B16 5 6 20.00 P27-A11B16 6 9 50.00 
P05-A3B8 20 23 15.00 P28-A12B5 78 83 6.41 
P06-A3B16 8 - - P29-A12B8 37 40 8.11 
P07-A4B5 27 30 11.11 P30-A12B16 9 13 44.44 
P08-A4B8 12 15 25.00 P31-A13B5 71 - - 
P09-A4B16 4 - - P32-A14B5 83 87 4.82 
P10-A5B5 40 41 2.50 P33-A15B8 53 56 5.66 
P11-A5B8 18 21 16.67 P34-A16B16 29 35 20.69 
P12-A5B16 5 7 40.00 P35-A17B5 104 106 1.92 
P13-A6B5 62 67 8.06 P36-A18B5 215 223 3.72 
P14-A6B8 31 34 9.68 P37-A19B16 71 - - 
P15-A6B16 9 11 22.22 P38-A20B5 132 134 1.52 
P16-A7B8 17 20 17.65 P39-A22B8 74 78 5.41 
P17-A8B8 25 27 8.00 P40-A22B25 17 22 29.41 
P18-A8B16 9 10 11.11 P41-A23B5 161 - - 
P19-A9B5 44 47 6.82 P42-A24B8 93 95 2.15 
P20-A9B8 18 23 27.78 P43-A25B16 51 53 3.92 
P21-A9B16 5 8 60.00 P44-A26B5 245 248 1.22 
P22-A10B5 62 68 9.68 P45-A27B5 28 41 46.43 
P23-A10B8 33 35 6.06     

Table 10 New best solutions found during the scientific experimentation for SS1. 
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Appendix B 

LocalSolver input and model functions for the experiments with BP2. 

function input() 

{ 

  usage = "\nUsage: localsolver BP2.lsp " 

        + "B=BandpassNumber fileName=dataFile " 

        + "[lsTimeLimit=timeLimit] [lsVerbosity=0 or 1]\n"; 

 

  if (fileName == nil) error(usage); 

  dataFile = openRead(fileName + ".txt"); 

  m = readInt(dataFile); 

  n = readInt(dataFile); 

  a[i in 1..m][j in 1..n] = readInt(dataFile); 

  close(dataFile); 

  G = floor(m/B); 

  b = m-G*B; 

  GP = (b > 0) ? G+1 : G; 

} 

 

function model() 

{ 

  // x[i][g] equal to 1 if wavelength i is assigned to group g 

  x[1..m][1..GP] <- bool();     

 

  // each group from 1 to G has exactly B rows 

  for [g in 1..G] constraint sum[i in 1..m](x[i][g]) == B; 

 

  // group G+1 if it exists has b rows 

  if (GP > G) constraint sum[i in 1..m](x[i][GP]) == b; 

 

  // each row is included in exactly one group 

  for [i in 1..m] constraint sum[g in 1..GP](x[i][g]) == 1; 

 

  // y[j][g] is equal to 1 if there is a bandpass in destination j of group g 

  y[j in 1..n][g in 1..G] <- sum[i in 1..m] (a[i][j]*x[i][g]) == B; 

  if (GP > G) y[j in 1..n][GP] <- sum[i in 1..m] (a[i][j]*x[i][GP]) == b; 

   

  // objective function is the sum of bandpasses 

  obj <- sum[g in 1..GP][j in 1..n] (y[j][g]); 

  maximize obj; 

} 


