
Branch and Bound for the Cutwidth Minimization Problem

RAFAEL MARTÍ
Departamento de Estadística e Investigación Operativa, Universidad de Valencia, Spain
rafael.marti@uv.es

JUAN J. PANTRIGO
Departamento de Ciencias de la Computación, Universidad Rey Juan Carlos, Spain.
juanjose.pantrigo@urjc.es

ABRAHAM DUARTE
Departamento de Ciencias de la Computación, Universidad Rey Juan Carlos, Spain.
abraham.duarte@urjc.es

EDUARDO G. PARDO
Departamento de Ciencias de la Computación, Universidad Rey Juan Carlos, Spain.
eduardo.pardo@urjc.es

Original version: January 6, 2010

Abstract — The cutwidth minimization problem consists of finding a linear layout of a graph

so that the maximum linear cut of edges (i.e., the number of edges that cut a line between

consecutive vertices) is minimized. This paper starts by reviewing previous exact approaches

for special classes of graphs as well as a linear integer formulation for the general problem. We

propose a branch and bound algorithm based on different lower bounds on the cutwidth of

partial solutions. Empirical results with a collection of previously reported instances indicate

that the proposed algorithm is able to solve all the small-sized instances (up to 32 vertices) as

well as some of the large-sized instances tested (up to 158 vertices) in less than 30 minutes of

CPU time. We compare our method with the best previous linear integer formulation solved

with the well-known software Cplex. The comparison favors the proposed procedure.

KeyWords: Cutwidth, Branch and Bound, Integer Programming.

B&B for the Cutwidth problem

2

1. Introduction
Let G =(V, E) be a graph with vertex set V (|V| = n) and edge set E (|E| = m). A labeling or linear
arrangement f of G assigns the integers {1, 2, …, n} to the vertices of G in such a way that each
vertex v ∈ V has a different label f(v) (i.e. f(v) ≠ f(u) for all u,v ∈ V). The cutwidth of a vertex v,
with respect to a labeling f, CWf (v), is given by the number of edges (u,w) ∈ E in the graph
satisfying f(u) ≤ f(v) < f(w).

In mathematical terms:

{ })()()(:),()(CW wfvfufwu=vf <≤∈E

Given a labeling f, the cutwidth of G is defined as:

)(CWmax)(CW v= fvf
V

G
∈

The optimum cutwidth of graph G, CW(G), is defined as the minimum CWf (G) value over all
possible labelings f. In other words, the cutwidth minimization problem consists of finding a
labeling f that minimizes CWf (G) over set ∏n of all possible labelings.

)(CWmin)(CW GG ff nΠ∈
=

This problem is NP-hard as stated in Gavril (1977) even for graphs with a maximum degree of
three (Makedon et al., 1985). Some special cases have been solved optimally; for example,
Harper (1966) solved the cutwidth for hypercubes, Chung et al. (1982) presented a O(logd-2 n)
time algorithm for the cutwidth of trees with n vertices and with maximum degree d.
Yannakakis (1985) improved the aforesaid results by giving a O(n log n) time algorithm to
determine the cutwidth of trees with n vertices. In particular, for k-level, t-ary trees Tt,k, it holds
that:

3,)1)(1(
2
1)(CW , ≤∀

 −−= ktkT kt

Exact methods to obtain the optimal cutwidth of grids have been proposed in Rolim et al.
(1995). Specifically, for width, height ≥ 2 the authors proved that

++
==

=
otherwiseheightwidth

heightwidthif
L heightwidth },1,1min{

2,2
)(CW ,

Finally, Thilikos et al. (2001) presented an algorithm to compute the cutwidth of bounded
degree graphs with small tree-width in polynomial time.

Practical applications of the cutwidth problem can be traced back 35 years. Adolphson and Hu
(1973) used it as the theoretical model to establish the number of channels in an optimal layout
of a circuit (see also Adolphson and Hu, 1973; Makedon and Sudborough, 1989). More recent
applications of this problem include network reliability (Karger 1999), automatic graph drawing
(Mutzel, 1995) and information retrieval (Botafogo, 1993).

Figure 1.a shows an example of an undirected graph with 6 vertices and 10 edges. Figure 1.b
shows a labeling, f, of the graph in Figure 1.a, setting the vertices in a line in the order of the
labeling, as commonly represented in the cutwidth problem. In this way, since f (A) = 1, vertex

B&B for the Cutwidth problem

3

A comes first, followed by vertex D (f (D) = 2) and so on. We represent f with the ordering (A,
D, E, F, B, C) meaning that vertex A is located in the first position (label 1), vertex D is located
in the second position (label 2) and so on. In Figure 1.b, the cutwidth of each vertex is
represented as a dashed line with its corresponding value at the bottom. For example, the
cutwidth of vertex A is CWf (A) = 5, because the edges (A,D), (A,E), (A,F), (A,B) and (A,C) have
an endpoint in A labeled with 1 and the other endpoint in a vertex labeled with a value larger
than 1. Similarly, we can compute the cutwidth of vertex B, CWf (B)=4, by counting the
appropriate number of edges ((A,C), (D,C), (F,C) and (D,C)). Then, since the cutwidth of graph
G, CWf (G), is the maximum of the cutwidth of all vertices in V, in this particular example, we
obtain CWf (G) = CWf (D) = 7, represented in the figure as a bold line with the corresponding
value at the bottom.

Figure 1: (a) Graph example, (b) Cutwidth of G for a labeling f.

Luttamaguzi et al. (2005) proposed the following linear integer formulation to solve the
cutwidth minimization problem:

 Min b
 s.t.

}1,0{∈k
ix (1)

},...,1{, nki ∈ (2)
},...,1{,1

},...,1{
nix

nk

k
i ∈∀=∑

∈

 (3)

},...,1{,1
},...,1{

nkx
ni

k
i ∈∀=∑

∈

 (4)

k
i

lk
ji xy ≤,

, (5)
l
j

lk
ji xy ≤,

, (6)

1,
, +≤+ lk
ji

l
j

k
i yxx (7)

}1,...,1{,

)(
)(

,
, −∈∀≤∑

<≤
∨<≤

ncby

kcl
lck

lk
ji (8)

where xi

k is a decision binary variable whose indices are i, k ∈ {1,2,...,n}. This variable specifies
whether i is placed in position k in the ordering. In other words, for all xi

k (i, k∈{1, 2,...,n})they
take on value 1 if and only if i occupies the position k in the ordering; otherwise xi

k takes on
value 0. Constraints (3) and (4) ensure that each vertex is only assigned to one position and one
position is only assigned to one vertex respectively. Consequently, constraints (1), (2), (3) and
(4) together imply that a solution of the problem is an ordering.

B&B for the Cutwidth problem

4

The decision binary variable }1,0{,
, ∈lk
jiy is defined in terms of k

ix and l
jx as follows:

l
j

k
i

lk
ji xxy ∧=,

,

where i, j, ∈ {1,2,...,n}, (vi, vj) ∈E and k, l, ∈ {1,2,...,n} the labels associated to vertex vi and vj
respectively. In the linear formulation above this conjunction is computed with constraints (5),
(6) and (7).

Constraint (8) computes for each position c in the ordering, the number of edges whose origin is
placed in any position k (1 ≤ k < c) and destination in any position l (c < l ≤ n). The cutwidth
problem consists of minimizing the maximum number of cutting edges in any position,
c∈{1,...,n - 1} of the labeling. Therefore, the objective function b must be larger than or equal
to this quantity.

In this paper we propose a branch and bound algorithm for the cutwidth minimization problem.
It consists of a systematic enumeration of all its solutions (labeling) based on the definition of
partial solutions, set out in Section 2. In this section we also propose lower bounds that will
enable us to discard a large number of solutions in the enumeration process. In Section 3 we
introduce a simple heuristic to obtain an upper bound for the cutwidth problem. Section 4
describes the search tree for an efficient enumeration of the problem solutions and its associated
strategies. Finally, the paper concludes with the computational experiments, in which we
include our experience with the linear integer formulation above, and the associated
conclusions.

2. Lower bounds for partial solutions
Given a subset S of V with k < n vertices and an ordering g ∈ Πk assigning the integers {1, 2, ...,
k} to the vertices in S, we define a partial solution as the pair (S, g). A complete solution of the
cutwidth problem in the graph G=(V, E) can be obtained by adding n-k elements from V \ S to S,
assigning them the integers {k+1, k+2, ..., n}. Therefore, the elements in S ordered according to
g can be viewed as an incomplete or partial solution of the cutwidth problem in G. We define U
as the set of unlabeled vertices (U = V \ S) and Sg as the set of all complete solutions of the
problem in G obtained by adding ordered elements to S. Figure 2 shows the partial solution (S,
g) of the example introduced in Figure 1.a (see Section 1) where the vertices in S={A, D, E}
have been labeled with g (g(A) = 1, g(D) =2 and g(E) = 3). Vertices B, C and F remain
unlabeled and therefore belong to set U.

Figure 2: Partial solution.

Given a partial solution (S, g) with S ⊂ V and g ∈ Πk, we consider the graph GS =(S, ES) where S
is the set of labeled vertices and ES ⊂ E is the set of edges among them. In the example depicted
in Figure 2, S={A, D, E}, ES ={(A, E), (D, E)} and Sg ={ (A, D, E, F, C, B), (A, D, E, C, B, F),
(A, D, E, B, F, C), (A, D, E, F, B, C), (A, D, E, C, F, B), (A, D, E, B, C, F)}.

Particularizing the expression to compute the cutwidth shown in Section 1 to a partial solution
(S, g), we can calculate the cutwidth of each labeled vertex in GS with respect to the ordering g

B&B for the Cutwidth problem

5

and the edges in ES, CWg(v) as follows:

{ })()()(:),()(CW wgvgugEwu=v Sg <≤∈

In the example in Figure 2, we have CWg(A)=1, CWg(D)=2 and CWg(E)=0. It is clear that the
cutwidth values in the partial solution provide a lower bound of their corresponding values than
in any complete solution f∈Sg. In this example, if f is a complete solution (with 4, 5 and 6
assigned to C, B and F), we have CWf (A) ≥ CWg (A)=1, CWf (D) ≥ CWg (D)=2 and CWf(E) ≥
CWg (E)=0. We can therefore conclude that the cutwidth of the graph CWf (G) is larger than
max{CWg (A), CWg (D), CWg (E)}=2 and say that this maximum is a lower bound of the
cutwidth. In mathematical terms, for any f∈Sg:

)(CWmax),()(CW vgSLB gSvf ∈
=≥G .

In this section we propose five lower bounds, LB1, LB2, LB3, LB4 and LB5, to the value of
CWf(G) for f∈Sg thus improving this trivial lower bound, LB(S, g). LB1 is based on the degree
of the vertices in G, LB2 computes the edges between the labeled and unlabeled vertices, LB3 is
a refinement of LB1, LB4 considers the best vertex to be labeled next in the partial solution and
LB5 is based on the distribution of the edges in G minimizing the cutwidth.

2.1 Lower bound LB1
Let N(v) be the set of adjacent vertices to vertex v and let E(v) be the edges with an endpoint in
v. Consider a solution f and the vertex u in position f(v)–1 (i.e., u precedes v in the ordering f).
If an edge in N(v) is adjacent to a vertex w with f(w)<f(v), then it contributes to CWf (u);
otherwise, it contributes to CWf (v) (the edge is computed in the cutwidth of the vertex). Then
CWf (u) + CWf (v) ≥ |N(v)|. Therefore,

max {CWf (u) , CWf (v) }≥ |N(v)| / 2

Considering that the cutwidth of the graph CWf (G) is the maximum of the cutwidths of all its
vertices, we conclude that |N(v)| / 2 is a lower bound on CWf (G).

≥

∈ 2
|)(| max=)(CW 1

vNLB
vf

V
G

In the example in Figure 2, we obtain LB1=3. Note that this bound is independent of the labeling
f, and it actually provides a lower bound on the optimum cutwidth of the graph CW(G).

2.2 Lower bound LB2
Given a partial solution (S,g) and a complete solution f in Sg, the cutwidth of a vertex v ∈ S with
respect to f, CWf (v), can be computed as:

() ∑
≤≤

∈

+=

)()(1

|)(|)(CWCW
vgug

Su
Ugf uNvv (9)

where NU(u) is the set of unlabeled adjacent vertices to u. The first term in this expression,
CWg(v), corresponds to the cutwidth of v in GS =(S, ES). The second term computes the number
of edges with an endpoint in a vertex u labeled with g(u) ≤ g(v) (i.e., previous to v in the
ordering g), and the other endpoint in a unlabeled vertex w. Note that f(w) > g(v) for all w in U
and any labeling (solution) f in Sg. This is why we include all the edges with an endpoint in the
unlabeled vertices w in the computation of CWf (v).

B&B for the Cutwidth problem

6

Given that (9) provides an expression of CWf (v) for all v in S ⊆ V, and that CWf (G) is the
maximum of CWf (v) for all v in V , we can conclude that:

+=≥ ∑
≤≤
∈∈

)()(1

2 |)(|)(CWmax)(CW
vgug

Su
UgSvf uNvLBG

In the partial solution shown in Figure 2, the value of the cutwidth of any solution f in Sg,
CWf(G), satisfies:

() () () 7}6,7,4max{}CW,CW,CWmax{)(CW ==≥ EDA ffff G ,
where:

()
()
() 61230|)(||)(||)(|)(CWCW

7232|)(||)(|)(CWCW

431|)(|)(CWCW

=+++=+++=

=++=++=

=+=+=

ENDNANEE
DNANDD

ANAA

UUUgf

UUgf

Ugf

2.3 Lower bound LB3
Given a partial solution (S, g) and an unlabeled vertex u ∈ U, let NS(u) be the set of labeled
adjacent vertices to u. Let vk be the vertex in S with the largest label (i.e, g(vk) = k = |S|). It is
clear that for any f in Sg and any v in S, f(v) ≤ f(vk)< f(u). Then, CWf (vk) ≥ |NS(u)|. On the other
hand, we can also apply the same argument to the vertices in U as in LB1, obtaining an improved
lower bound LB3 for the vertices in U:

=≥

∈
)(,|)(|

2
1max)(CW 3 uNuNLB SUuf G

In the example in Figure 2, we can see that the value of LB3 for vertices B, C and F:

()

()

() 1}1,1max{)(,|)(|
2
1max

2}2,2max{)(,|)(|
2
1max

3}3,2max{)(,|)(|
2
1max

3

3

3

==

=

==

=

==

=

FNFNFLB

CNCNCLB

BNBNBLB

S

S

S

Therefore, LB3 will be for this graph:

() () (){ } { } 31,2,3max,,max 3333 === FLBCLBBLBLB

2.4 Lower bound LB4
As in the previous case, consider a partial solution (S, g), an unlabeled vertex u ∈ U, the vertex
vk in S with the largest label, and a solution f in Sg. If the vertex u is labeled in f with k+1 (i.e., u
follows vk in the ordering f) its cutwidth can be computed as:

())()()(CW)(CW uNuNvu USkgf −−=

B&B for the Cutwidth problem

7

where NS(u) is the set of labeled adjacent vertices to u, and NU(u) is the set of unlabeled adjacent
vertices to u. We can then compute a lower bound of the CWf -value for the vertex in position
k+1, by computing the maximum of the term)()(uNuN US − for all u ∈ U. Thus we obtain:

())()(max)(CW)(CW 4 uNuNvLB USUukgf −−=≥
∈

G

Figure 3.a shows a partial solution (S, g) of the example given in Figure 1, where S = {E, F},
g(E) = 1, g(F) = 2 and U = {A, B, C, D} with CWg(F) = 4. Figure 3.b shows the value of |NS(u)|
- |NU(u)| for each vertex u in U. According to the definition given above, we select the vertex A,
giving a value of LB4 = 4 – (–1) = 5. This means that, independently of the labeling of the
vertices in U, the value of the final solution is greater than or equal to 5.

Figure 3: (a) Partial solution. (b) |NS(u)| - |NU(u)| values for every u∈U.

2.5 Lower bound LB5
Given a graph G with n vertices and m edges we compute the lower bound LB5 of its cutwidth
CW(G), by constructing an auxiliary graph G’ with n vertices and m edges distributed in such a
way that it has minimum cutwidth. In other words, we “put” the edges in G’ between the
appropriate vertices to obtain a minimum cutwidth. In this way, the cutwidth of G’ is a lower
bound of the cutwidth of G for any labeling of its vertices (it is in fact a lower bound of the
cutwidth of any graph with n vertices and m edges).

Consider the case in which m < n, we construct the auxiliary graph G’ as a path (Figure 4) in
which some vertices may eventually be disconnected (when m=n-1 it is a connected path). The
cutwidth of G’ is equal to 1 and it is clear that regardless how the edges are distributed in G,
given that it has m edges, for any labeling f, its cutwidth CWf (G) will be equal to or larger than
CW(G’)=1. Moreover, if we have m=n, we need to add an extra edge to the connected path G’
and it necessarily results in a vertex with cutwidth 2; therefore, in this case CW(G’)=2≤CWf (G)
for any labeling f of the vertices in G.

Figure 4: Graph G’ with m=n-1 edges (path).

Let us now consider the case in which m > n. The best way to distribute the m edges in a graph
with n vertices in order to reduce its cutwidth is as follows: We place the first n-1 edges joining
“consecutive” vertices, in the graph (we call them edges of length 1) as shown in Figure 4
(between vi and vi+1 for any i). Then, we can add a few extra edges increasing the cutwidth by
only one unit. Specifically, we can add (n-1)/2 edges between “alternated” vertices (vi and
vi+2) as shown in Figure 5, keeping the cutwidth of G’ with value 2. We shall denote them edges
of length 2. Therefore, the cutwidth of a graph G with n vertices and m edges with n ≤ m ≤ n-
1+(n-1)/2 satisfies CW(G’) = 2 ≤ CWf (G) for any labeling f of the vertices in G. Any extra
edge would result in a cutwidth of 3.

B&B for the Cutwidth problem

8

Figure 5: Graph G’ with a length 1 and 2 edges.

Figure 6 shows how can we add (n-2)/2 edges to the graph in Figure 5 keeping the cutwidth of
G’ with value 3. Then, following the same argument described above, the cutwidth of a graph G
with n vertices and m edges with (n-1)+(n-1)/2 < m ≤ (n-1) + (n-2) satisfies 3 ≤ CWf (G) for
any labeling f of its vertices. (It is easy to see that (n-1)/2 + (n-2)/2 = n-2.)

Figure 6: Graph G’ with cutwidth 3.

Generalizing this incremental construction of G’, we observe that there is a maximum of n-k
edges of length k (between vi and vi+k for any i) that can be added to G’ (in which we have
previously added all the edges with lengths t from t = 1 to k-1). The first (n-1)/k edges
increase the cutwidth of G’ by one unit; the second (n-2)/k by another unit, the third (n-3)/k
in another unit and so on until the n-k edges of length k have been added and the cutwidth of G’
increases by k units. The cutwidth of graph G’ provides a bound of the cutwidth of any graph
with the same number of vertices and edges.

3. Initial Upper Bound
In this section, we propose a heuristic approach to obtain an upper bound for the cutwidth
problem based on GRASP methodology (Feo et al. 1994). Each GRASP iteration involves
constructing a trial solution and then applying a local search from the constructed solution.
Figure 7 shows a pseudo-code of our GRASP construction method for the cutwidth problem.

PROCEDURE Constructive
1. Let S and U be the sets of labeled and unlabeled vertices of the graph respectively
2. Initially S = Ø and U = V
3. Select a vertex u from U randomly
4. Assign the label k = 1 to u. S = {u}, U = U \ {u}

 WHILE (U ≠ Ø)
 5. k = k + 1
 6. Construct CL = {v ∈ U / (w,v) ∈ E ∀w ∈ S}

7. Let NS(v) and NU(v) be the set of adjacent labeled and unlabeled vertices to v
respectively.

 8. Compute e(v)= |NS(v)| - |NU(v)| ∀ v in CL
 9. Construct RCL = {v ∈ CL / e(v) ≥ th}
 10. Select a vertex u randomly in RCL
 11. Label u with the label k

 12. U = U \ {u}, S = S ∪ {u}

Figure 7. Pseudo-code of the constructive method.

The constructive method starts by creating a list of unlabeled vertices U (initially U = V). The
first vertex v is randomly selected from all those vertices in U and labeled with 1. In subsequent
construction steps, a candidate list CL is formed by all the vertices in U that are adjacent to at
least one labeled vertex. For each vertex u in CL we compute its evaluation e(u) as:

)()()(uNuNue US −=

B&B for the Cutwidth problem

9

where NS(u) is the set of labeled adjacent vertices to u, and NU(u) is the set of unlabeled adjacent
vertices to u. Note that in this step a greedy selection would label the vertex u* having the
maximum e-value with the next available label, which would be the minimum CWf (u) value.
However, by contrast, the GRASP methodology computes a restricted candidate list, RCL, with
good candidates and selects one at random. Specifically, RCL = {v ∈ CL / e(v) ≥ th} where the
parameter th is a threshold to establish the “good” elements for selection as shown in Figure 7.

Once a solution has been constructed we apply an improving phase based on a local search
procedure. Our local search method for the cutwidth problem is based on insertion moves.
Given a labeling f, we define the insertion move MOVE(f, j, v) consisting of deleting v from its
current position f(v) and inserting it in position j. This operation results in the ordering f ′, as
follows:

• If f(v) = i > j, then the vertex v is inserted just before the vertex vj in position j. In
mathematical terms, from f =(…, vj-1, vj, vj+1,…, vi-1, v, vi+1,…), we obtain the new
ordering f ′=(…, vj-1, v, vj, vj+1,… vi-1, vi+1,…).

• If f(v) = i < j the vertex v is inserted just after the vertex vj in position j. Therefore, from

the ordering f =(…, vi-1, v, vi+1,…, vj-1, vj, vj+1,…), we obtain f ′=(…, vi-1, vi+1,…, vj-1, vj, v,
vj+1,…).

We define the set of critical vertices CV as those with a cutwidth value equal or close to the
cutwidth of the graph. These vertices determine the value of the objective function or are
considered likely to do so in subsequent iterations. In each iteration, our local search method
selects a vertex v in CV and performs the first improving move MOVE(f, j, v), where the
meaning of improving is not limited to the objective function (which provides little information
in this problem). The position j in the move is computed as the median of the positions
(according to f) of the adjacent vertices to v (a search mechanism explores only positions close
to j). An improving move is the one that either reduces CWf (G) or the number of vertices in
CV. When a move is performed, the associated vertex is removed from CV. When the set
becomes empty, we recalculate it. The method cuts off when there is no improving move
associated with the vertices in CV.

4. The search tree
Branch and bound generates and explores the entire set of solutions to the problem by means of
a search tree. It first starts by running a heuristic algorithm (in our problem we consider the
GRASP introduced in Section 3) to obtain an initial solution, whose objective function value
gives an upper bound UB of the optimal value. Then, at each node of the search tree, it
computes a lower bound LB (in our problem the maximum among LB1, LB2, LB3, LB4, and LB5
introduced in Section 2) and compares it with UB. If LB ≥ UB then we fathom the node
(because no better solution than the incumbent one can be found in this node); otherwise we
branch the node and explore its first child node. When the exploration reaches a leaf node (that
represents a complete solution of our problem), it computes the objective function value of this
solution, and updates the upper bound UB if necessary. Then, it performs a backward step,
checking its parent node again (backtracking) with the new upper bound and continuing the
exploration. The branch and bound algorithm stops when all the nodes have been examined
(some of which have been branched and others fathomed), and returns as the output, the
optimum solution to the problem. An early termination, due to time limitations, provides us
with a lower bound and an upper bound of the optimum (this latter bound is obtained as the
minimum of the lower bounds in the unexplored nodes).

In our search tree, the initial node branches into n nodes labeling each vertex A, B, C, … with

B&B for the Cutwidth problem

10

label 1. Then, the node containing the vertex i represents the partial solution (S, g) where S={i}
and g(i) = 1). Each of these n nodes at the first level branches into n – 1 nodes (which will be
referred to as nodes at level 2). Then, a node at level 2 contains two labeled vertices i and j and
represents the partial solution S={i, j} with g(i) = 1 and g(j) = 2. Therefore, at each level in the
search tree, the algorithm extends the current partial solution by labeling one vertex. Figure 8
represents this search tree for the example given in Figure 1.a.

Figure 8: Search tree.

We propose three different ways to explore the search tree, called BB1, BB2 and BB3. In BB1,
the search tree is first explored in depth. Figure 9 shows a pseudo-code of the BB1 in which we
initially call BB1(Nodek) with Nodek = {S = ∅; g(u) = 0 ∀u∈V} and set k = 0.

PROCEDURE BB1(Nodek)
 1. Let (S, g) be the partial solution associated with Nodek, being k the last assigned label
 IF (Nodek is a leaf node) /* Complete solution*/
 2. Compute CWf (G) as the cutwidth of its associated solution
 IF (CWf (G) < UB)
 3. UB = CWf (G)
 ELSE
 4. Compute LB = max {LB1, LB2, LB3, LB4, LB5}
 IF (LB < UB)
 5. Let U be the set of unlabeled vertices
 6. k = k+1
 WHILE (U ≠ Ø)
 7. Select u from U in lexicographical order
 8. U = U \ {u}
 9. Set Nodek = {S = S ∪ {u}; g(u) = k}
 10. BB1(Nodek)

Figure 9: Pseudo-code of BB1

BB2 also performs a depth first search but, instead of exploring the first child node (in
lexicographical order) of the latest explored node as BB1, it explores the most promising node
at each level (i.e., the one with the lowest LB value). We have implemented effective data

B&B for the Cutwidth problem

11

structures to store the non-branched nodes at each level for a fast back-tracking. Finally, BB3 is
based on a breadth first search over the search tree. In order to enhance the performance of the
algorithm, we use a priority queue to drive the search where the priority criterion is the same as
the above mentioned. Figure 10 provides a pseudo-code of this procedure.

PROCEDURE BB3()
1. Compute UB with the GRASP algorithm
2. k = 0
3. Set Nodek = {S = ∅; g(u) = 0 ∀u∈V}
4. PQ = ∅ /* empty priority queue */
5. Enqueue(Nodek, PQ) /* add an element to the queue with an associated priority */
WHILE (PQ ≠ Ø)

4. Nodek = De-queue(PQ) /* return, removing from PQ, the highest priority element */
 IF (Nodek is a leaf node) /* Complete solution*/
 5. Compute CWf (G) as the cutwidth of its associated solution
 IF (CWf (G) < UB)
 6. UB = CWf (G)
 ELSE
 IF (LB < UB)

 7. Let U be the set of unlabeled vertices
 8. Let k be the latest label assigned in the current node Nodek
 WHILE (U ≠ Ø)

 9. Select u from U in lexicographical order
 10. U = U \ {u}
 11. Set Nodek+1 = {S = S ∪ {u}; g(u) = k+1}
 12. Compute LB = max {LB1, LB2, LB3, LB4, LB5}
 IF (LB < UB)
 13. In-queue (Nodek+1, PQ)

Figure 10. Pseudo-code of BB3.

5. Computational Experiments
This section describes the computational experiments performed to test the efficiency of our
branch and bound procedure, as well as to compare it with the linear integer formulation
proposed previously. We have implemented the branch and bound algorithm in Java SE 6 and
solved the linear integer formulation with Cplex 11.1. All the experiments were conducted on
an Intel Core 2 Quad CPU and 6 GB RAM. We limit the running time on each instance to 30
minutes of CPU.

We have employed three sets of instances in our experimentation. The first one, Small, was
reported in Martí et al. (2008), the second one, Grids, was described in Rolim et al. (1995) and
the third one, Harwell-Boeing, is a subset of the public-domain Matrix Market library (available
at http://math.nist.gov/MatrixMarket/data/Harwell-Boeing/). All these instances are available at
http://heur.uv.es/optsicom/cutwidth.

Small: This data set consists of 42 graphs established in the context of the
bandwidth reduction problem. We have selected 42 representative
graphs (out of 84) from the original set. The number of vertices
ranges from 16 to 24, and the number of edges ranges from 18 to 49.

Grids: This data set consists of 36 matrices constructed as the Cartesian

product of two paths (Raspaud et al., 2008). They are also called two
dimensional meshes and, as documented in Raspaud et al. (2008), the
optimal solution of the cutwidth problem for these types of instances
is known by construction. For this set of instances, the vertices are

B&B for the Cutwidth problem

12

arranged on a grid with a dimension width × height where width,
height ∈ {3, 4, …, 10} and width ≥ height.

HB: We derived 37 instances from the Harwell-Boeing Sparse Matrix

Collection. This collection consists of a set of standard test matrices
arising from problems in linear systems, least squares, and eigenvalue
calculations from a wide variety of scientific and engineering
disciplines. The problems range from small matrices, used as counter-
examples to hypotheses in sparse matrix research, to large matrices
arising in applications. Graphs are derived from these matrices as
follows. Let Mij denote the element of the i-th row and j-th column of
the n × n sparse matrix M. The corresponding graph has n vertices.
Edge (i, j) exists in the graph if and only if Mij ≠ 0. From the original
set we have considered all the graphs with n ≤ 200. Specifically the
number of vertices ranges from 30 to 199 and the number of edges
from 46 to 2145.

We have performed a preliminary experimentation over a set of 15 representative instances (five
small, five grids and five HB instances referenced in Table 1) in order to test the main
characteristics of our procedure. We shall call the set with 15 instances Set1. In all the
experiments the CPU time is limited to 30 minutes. When the branch and bound algorithm is
not able to explore the entire search tree within this time limit, we report the absolute gap (gap)
and relative gap (%gap) between the best lower and upper bounds obtained in the search, LB
and UB respectively. Both gaps provide an evaluation of the branch and bound performance on
an early termination.

100% ×
−

=−=
LB

LBUBgapLBUBgap

The first experiment compares the performance of the three proposed search algorithms BB1,
BB2 and BB3. For each of them we report the number of explored nodes, Expl, and the number
of fathomed nodes (not explored because of their bound), Fath, in the search tree. To
complement this information, we also report the number of unexplored and unfathomed nodes
(UnExpl). Note that if the whole search tree is explored, UnExpl equals zero (and Expl+Fath
equals the total number of nodes in the search tree). Table 1 shows these values over the 15
instances in Set1.

 BB1 BB2 BB3
 Expl Fath UnExpl Expl Fath UnExpl Expl Fath UnExpl

Sm
al

l (
5)

 p51_20_28 1.4E04 6.6E18 0.0E0 1.4E04 6.6E18 0.0E0 1.4E04 6.6E18 0.0E0
p63_21_42 1.2E06 1.4E20 0.0E0 1.2E06 1.4E20 0.0E0 1.2E06 1.4E20 0.0E0
p72_22_49 1.3E06 3.1E21 0.0E0 1.3E06 3.1E21 0.0E0 1.3E06 3.1E21 0.0E0
p81_23_46 7.7E06 7.0E22 0.0E0 7.7E06 7.0E22 0.0E0 7.7E06 7.0E22 0.0E0
p100_24_34 1.5E06 1.7E24 0.0E0 1.5E06 1.7E24 0.0E0 1.5E06 1.7E24 0.0E0

G
rid

s (
5)

 Grid5x5 6.5E02 4.2E25 0.0E0 6.5E02 4.2E25 0.0E0 6.5E02 4.2E25 0.0E0
Grid6x8 1.3E04 3.4E61 0.0E0 1.3E04 3.4E61 0.0E0 1.3E04 3.4E61 0.0E0
Grid7x9 5.9E05 54E.87 0.0E0 5.9E05 5.4E87 0.0E0 5.9E05 5.4E87 0.0E0
Grid8x9 3.6E07 3.7E103 1.3E104 3.5E07 2.1E103 1.4E104 3.2E07 1.4E104 3.1E103
Grid10x10 2.0E07 1.8E148 2.5E158 2.0E07 5.4E142 2.5E158 8.0E05 3.7E157 2.2E158

H
B

 (5
)

ibm32 1.6E08 2.9E34 6.9E35 1.5E08 7.1E34 6.4E35 2.5E06 1.3E35 5.9E35
ash85 4.4E07 4.8E125 7.7E128 4.1E07 1.3E123 7.7E128 4.2E05 2.5E127 7.4E128
arc130 1.1E07 3.1E197 1.8E220 1.2E07 5.7E148 1.8E220 1.8E05 0.0E0 1.8E220
west0167 6.0E06 2.6E285 4.1E300 6.6E06 4.7E256 4.1E300 1.1E05 0.0E0 4.1E300
will199 4.6E06 3.2E318 1.1E373 5.0E06 4.7E256 1.1E373 8.0E04 0.0E0 1.0E373

Table 1: Explored, fathomed and unexplored nodes in the search tree.

Results in Table 1 show that BB1, BB2 and BB3 are able to solve the 5 small instances
optimally. Consequently, as shown in the five rows corresponding to these instances, the
number of explored and fathomed nodes is exactly the same in all three methods. This always

B&B for the Cutwidth problem

13

occurs if the search tree is fully explored since the only difference among BB1, BB2 and BB3 is
the branching order. In the three grids, Grid5x5, Grid6x8 and Grid7x9, the three variants of the
branch and bound are able to finish. However, in the other two, Grid8x9 and Grid10x10, none
of the variants is able to finish. In the former cases, we can see that BB3 is able to fathom a
larger number of nodes than BB1 and BB2. On the other hand, instances in the HB set exhibit a
different pattern since BB3 is unable to fathom any nodes (while BB1 and BB2 fathom a
relatively large number of nodes). This can partially be explained considering the way in which
BB3 explores the search tree (i.e., branching the most promising node). In large instances, there
are a lot of promising nodes in the priority queue that are “waiting” to be branched. This could
lead to a low value of the total number of fathomed nodes in an early termination of the method.
However, although these nodes are not fathomed, they have been explored and contribute to
improving the final lower bound, thus providing the best overall strategy. Table 2 shows the
lower bound, LB, the absolute gap, gap, and the relative gap, %gap, obtained with the three
methods on the 15 instances of Set1. Results in Table 2 clearly confirm that the best strategy to
explore the search tree is BB3, in which nodes are ordered according to their bound. We will
therefore consider this variant in the following experiments.

 BB1 BB2 BB3
 LB gap %gap LB gap %gap LB gap %gap

Sm
al

l (
5)

 p51_20_28 6 0 0.0 6 0 0.0 6 0 0.0
p63_21_42 12 0 0.0 12 0 0.0 12 0 0.0
p72_22_49 14 0 0.0 14 0 0.0 14 0 0.0
p81_23_46 13 0 0.0 13 0 0.0 13 0 0.0
p100_24_34 7 0 0.0 7 0 0.0 7 0 0.0

G
rid

s (
5)

 Grid5x5 6 0 0.0 6 0 0.0 6 0 0.0
Grid6x8 7 0 0.0 7 0 0.0 7 0 0.0
Grid7x9 8 0 0.0 8 0 0.0 8 0 0.0
Grid8x9 3 6 200.0 3 6 200.0 8 1 12.5
Grid10x10 3 8 266.7 3 8 266.7 8 3 37.5

H
B

 (5
)

ibm32 6 17 283.3 6 17 283.3 18 6 33.3
ash85 5 11 220.0 5 11 220.0 9 7 77.8
arc130 62 140 225.8 62 140 225.8 62 140 225.8
west0167 10 47 470.0 10 47 470.0 12 45 375.0
will199 8 134 1675.0 8 134 1675.0 15 123 820.0

Average 11.3 24.2 222.7 11.3 24.2 222.7 13.7 21.7 105.5

Table 2: Lower bound, absolute and relative gaps.

The next experiment undertakes to test the efficiency of each lower bound separately.
Specifically, we compute the percentage of nodes that each lower bound is able to fathom. This
measure can be interpreted as a success rate for each lower bound. Note that, in some cases, a
search tree node can be fathomed by two (or more) different lower bounds; then we compute
“this success” in the rates of all the corresponding lower bounds (therefore this measure is
independent on the order in which the fathoming tests are applied). Table 3 reports the
percentage of fathomed nodes for each lower bound, LB1 to LB5, in the 15 instances of Set1
(reporting the average on Small, Grids, and HB instances).

LB1 LB2 LB3 LB4 LB5

Small 0 93.85 0 96.30 0
Grids 0 99.49 0 98.82 0
HB 0 92.41 0 98.42 0
Total 0 95.12 0 98.53 0

Table 3. Average fathoms of each lower bound.

Results presented in Table 3 clearly show that LB1, LB3 and LB5 are not fathoming a significant
number of nodes (the associated percentages are very close to 0, and represented by 0 in the
table for the sake of simplicity). On the other hand, the behavior of LB2 and LB4 is very similar,
fathoming on average about 95% and 98% of the fathomed nodes respectively. Therefore we
shall not compute LB1, LB3 and LB5 when exploring the nodes in the search tree. However,

B&B for the Cutwidth problem

14

when the pre-established time limit is reached and the method terminates, to report the final gap,
the computation of these three bounds in the current nodes could contribute to increasing the
final lower bound, thus reducing the gap. To test this point we perform a new experiment
reporting the gap values when only LB2 and LB4 are computed in the search tree. We shall call
this method BB. Then, we incorporate the computation of LB3 and LB5 at the end of the process,
which results in the entire method tested above (note that LB3 contains LB1 in its definition). We
shall call this method BB+LB. Table 4 reports the average gaps, absolute and relative, obtained
with each of these two methods on the instances in Set1.

 BB BB+LB

 gap %gap gap %gap
Small 0.0 0.0 0.0 0.0
Grids 0.8 10.0 0.8 10.0
HB 73.2 447.4 64.8 310.6

Total 24.7 152.5 21.9 106.9

Table 4. Average gaps of two branch and bound variants.

The results in Table 4 clearly show that the addition of LB3 and LB5 helps to reduce the final gap
of the method. Examining the two previous experiments together, we can conclude that the
lower bounds complement each other. On one hand, LB2 and LB4 fathom a large number of
nodes in the search tree. On the other hand, LB3 and LB5 reduce the final gap. We shall
therefore include the four lower bounds in our final branch and bound algorithm.

The fifth experiment focuses on the combination of the GRASP heuristic (described in Section
3) with the branch and bound procedure. We compare the performance of the branch and bound
procedure with the initial upper bound computed with GRASP, BB from GRASP, with the
branch and bound procedure with an initial upper bound set as the value of a random solution,
BB from Random. Table 5 shows the average, absolute and relative gaps of both variants.

 BB from GRASP BB from Random

 gap %gap gap %gap
Small 0.0 0.0 1.4 11.7
Grids 0.8 10.0 33.0 471.4
HB 64.8 310.6 179.4 1055.2
Total 21.9 106.9 71.3 512.8

Table 5. Comparison of heuristic with random initial solution.

As shown in Table 5, the results obtained with the branch and bound coupled with the heuristic
initial upper bound are better, as expected, than those obtained with the random variant.
Specifically, the former obtains an average absolute gap value of 21.9 and an average relative
gap value of 106.9%; both values compare favorably with the respective gap values of 71.3 and
512.8% obtained for the branch and bound with the initial upper bound from a random solution.

We have also computed the number of instances in which the solution obtained with the GRASP
algorithm matches the optimum value. This is difficult to compute since we do not know the
optimum in all the cases (with the exception of the Grid instances in which, by design, the
optimum is known, as documented in Rolim et al., 1995). In this experiment we observed that
GRASP is able to obtain the optimum in the 5 Small and the 5 Grid instances tested in Set1. On
the other hand, we cannot assess how far the GRASP solutions are from the optimum in the HB
instances.

In our final experiment, we compare our branch and bound algorithm with the linear integer
formulation (Luttamaguzi et al. 2005) solved with Cplex 11.1. Specifically, we consider our

B&B for the Cutwidth problem

15

three variants to explore the search tree, BB1, BB2 and BB3. In the three variants we compute
the five lower bounds, LB1 to LB5, and the initial GRASP upper bound. Table 6 reports the
number of optimal solutions found, #opt, the average absolute gap between the final lower and
upper bounds, gap, the average relative gap (in percentage), %gap, and the CPU time in seconds
for each method on our entire benchmark set of 115 instances (42 Small, 36 Grids and 34 HB).
As in the previous experiments we limit the CPU time to 1800 seconds.

 BB1 BB2 BB3 Cplex

Sm
al

l (
42

) # opt 42 42 42 9
gap 0.0 0.0 0.0 1.9
%gap 0.0 0.0 0.0 54.7
CPU Time 2.1 2.2 4.9 1573.9

G
rid

s (
36

) # opt 30 30 30 2
gap 1.1 1.0 0.28 4.2
%gap 37.1 29.5 3.5 211.1
CPU Time 301.5 301.5 302.4 1707.9

H
B

 (3
7)

opt 5 5 4 0
gap 51.8 51.8 49.7 97.0
%gap 314.4 314.4 210.3 634.8
CPU Time 1574.7 1573.9 1594.4 1800.0

Table 6. Branch and bound versus Cplex.

Table 6 shows that the Cplex solver with the linear integer formulation is only able to solve 9
small instances (n ≤ 20) within 30 minutes of CPU time. On the other hand, the three variants
tested of our branch and bound algorithms clearly outperform Cplex with this formulation since
they are able to optimally solve all the small and medium-sized instances, and the average
relative gap values in the HB instances are below 350% (while the average relative gap value of
Cplex is 634.8% in these instances). On the other hand, the three branch and bound variants
present a similar performance with a marginal improvement of BB3 over BB1 and BB2.
Specifically, on the 34 HB instances BB3 presents an average relative gap of 210.3% while BB1
and BB2 present a value of 314.4%.

In our last experiment we represent the search profile of the three branch and bound variants,
BB1, BB2 and BB3 when running for 3 hours. Specifically, Figure 11 depicts the progression
of the average relative gap of the three methods over the 15 instances in Set1. We report the
average relative gap values of BB1, BB2 and BB3 every 10 minutes in the branch and bound
execution (and join the points with a line to observe the trend).

Figure 11. Relative gap profile

0

50

100

150

200

250

60
0

18
00

30
00

42
00

54
00

66
00

78
00

90
00

10
20

0

%
 G

ap

CPU Time (s)

BB1

BB2

BB3

B&B for the Cutwidth problem

16

The progression of the average gap represented in Figure 11 confirms that BB3 performs
slightly better than BB1 and BB2. On the other hand, it also shows that the most significant
reduction in the gap value is obtained in the first 30 minutes; then, only a marginal extra
improvement can be obtained if we run the method longer.

Table 7 in the Appendix contains the best upper and lower bounds obtained for the set of 34 HB
instances (identified as the hardest to solve in our study). We ran the GRASP for 10 minutes to
obtain the upper bound and the branch and bound for 4 hours to obtain the lower bound on each
instance (thereby setting a benchmark for future comparisons).

6. Conclusions

We have developed an exact procedure based on the branch and bound methodology to provide
solutions for the cutwidth minimization problem. We have introduced the partial solution as the
set of solutions that share some vertices, and we have proposed several approaches to
computing lower bounds on partial solutions. These bounds allow us to explore a relatively
small portion of the nodes in the search tree when implementing our branch and bound
procedure. Additionally, we have presented three different strategies to explore the search tree,
which we have called BB1, BB2 and BB3.

We have conducted an extensive preliminary experimentation to analyze the performance of the
proposed lower and upper bounds, as well as the search strategies. The final experiment shows
that our branch and bound procedures clearly outperform the previous linear integer formulation
solved with the well-known Cplex (version 11.1) and it is able to solve all the small-sized
problems and some of the larger ones optimally. We finally provide detailed results for the
hardest instances for future comparisons.

Acknowledgments
This research has been partially supported by the Ministerio de Ciencia e Innovación of Spain
(Grant Ref. TIN2006-02696, TIN2008-06890-C02-02, TIN2009-07516) and by the Comunidad
de Madrid – Universidad Rey Juan Carlos projects (Ref. URJC-CM-2008-CET-3731, URJC-
CM-2008-CET-3625).

References
Adolphson D. and T. C. Hu. Optimal linear ordering. SIAM Journal on Applied Mathematics,

25(3):403-423, 1973.

Botafogo R. A. Cluster analysis for hypertext systems. 16th Annual International ACM-SIGIR
Conference on Research and Development in Information Retrieval, pages 116-125,
1993.

Chung M. J., F. Makedon, I.H. Sudborough and J. Turner. Polynomial time algorithms for the
min cut problem on degree restricted trees. In Proceedings of the 23rd Annual
Symposium on Foundations of Computer Science, pages 262-271, 1982.

Feo T. A., M. G. C. Resende and S. H. Smith. A greedy randomized adaptive search procedure
for maximum independent set. Operations Research, 42:860–878, 1994.

Gavril F. Some NP-complete problems on graphs. In Proceedings of the 11th conference on
information Sciences and Systems, 91-95, 1977.

Harper L. H. Optimal numberings and isoperimetric problems on graph. Journal of
Combinatorial Theory, 1:385-393, 1966.

B&B for the Cutwidth problem

17

Karger D. R. A randomized fully polynomial time approximation scheme for the all-terminal
network reliability problem. SIAM Journal on Computing, 29(2):492-514, 1999.

Luttamaguzi J., M. Pelsmajer, Z. Shen and B. Yang. Integer Programming Solutions for Several
Optimization Problems in Graph Theory. Technical report, DIMACS, 2005.

Makedon F., C. Papadimitriou, I. H. Sudbourough. Topological bandwidth. SIAM Journal on
Algebraic and Discrete Methods, 6(3):418-444, 1985.

Makedon F. and I.H. Sudborough. On minimizing width in linear layouts. Discrete Applied
Mathematics, 23(3):243-265, 1989.

Martí, R., V. Campos and E. Piñana, Branch and Bound for the Matrix Bandwidth
Minimization, European Journal of Operational Research 186:513-528, 2008.

Mutzel, P. A polyhedral approach to planar augmentation and related problems. In Proceedings
of the 3rd Annual European Symposium on Algorithms, Lecture Notes in Computer
Science, 979:497-507, 1995.

Raspaud A., H. Schröder, O. Sýkora, L. Török, and I. Vrt'o. Antibandwidth and cyclic
antibandwidth of meshes and hypercubes. Discrete Mathematics, 309:3541-3552, 2009.

Rolim J., O. Sýkora and I. Vrt'o. Cutwidth of the de Bruijn graph. RAIRO Informatique
Théorique et Applications, 29(6):509-514, 1995.

Thilikos D. M., M. J. Serna and H. L. Bodlaender. A polynomial time algorithm for the cutwidth
of bounded degree graphs with small treewidth. In proceedings of the 9th Annual
European Symposium on Algorithms, Lecture Notes in Computer Science, 2161:380-
390, 2001.

Yannakakis M. A polynomial algorithm for the min-cut linear arrangement of trees. Journal of
the ACM, 32(4):950-988, 1985.

http://www.uv.es/rmarti/paper/docs/bmp3.pdf�
http://www.uv.es/rmarti/paper/docs/bmp3.pdf�

B&B for the Cutwidth problem

18

Appendix

 n m LB UB
pores_1 30 103 17 17
ibm32 32 90 20 23

bcspwr01 39 46 5 5
bcsstk01 48 176 22 32
bcspwr02 49 59 5 5
curtis54 54 124 10 13
will57 57 127 7 11

impcol_b 59 281 18 55
bcsstk02 66 2145 1089 1089
steam3 80 424 20 20
ash85 85 219 10 16
nos4 100 247 12 12

gent113 104 549 19 87
bcsstk22 110 254 6 13
gre__115 115 267 10 36
dwt__234 117 162 6 12
bcspwr03 118 179 5 10
lns__131 123 275 6 30
arc130 130 715 62 202

bcsstk04 132 1758 107 310
west0132 132 404 14 71
impcol_c 137 352 11 46
can__144 144 576 25 25

lund_a 147 1151 37 113
lund_b 147 1147 37 111

bcsstk05 153 1135 34 115
west0156 156 371 12 56

nos1 158 312 4 4
can__161 161 608 21 52
west0167 167 489 12 55

mcca 168 1662 58 390
fs_183_1 183 701 52 190
gre__185 185 650 19 48
will199 199 660 16 132

Table 7. Lower and upper bounds for the HB instances.

	6. Conclusions

