
Adaptive Memory Programming for the Capacitated
Modular Hub Location Problem

Arild Hoff

Molde University College, Norway. Arild.Hoff@hiMolde.no

Juanjo Peiró

Universitat de València, Spain. Juanjo.Peiro@uv.es

Ángel Corberán

Universitat de València, Spain. Angel.Corberan@uv.es

Rafael Martí

Universitat de València, Spain. Rafael.Marti@uv.es

Abstract

In this paper we study the hub location problem. The goal is to identify an optimal subset of
facilities (hubs) to minimize the transportation cost while satisfying certain capacity constraints.
In particular, we target the single assignment version, in which each node in the transportation
network is assigned to only one hub to route its traffic. We consider here a realistic variant
introduced previously, in which the capacity of edges between hubs is increased in a modular
way. This reflects the practical situation in air traffic where the number of flights between two
locations implies a capacity in terms of number of passengers. Then, the capacity can be
increased in a modular way, as a factor of the number of flights. We propose heuristic methods
to obtain high-quality solutions in short computational times. Specifically, we implement
memory structures to create advanced search methods and compare them with previous
heuristics on a set of benchmark instances. Memory structures have been widely implemented
in the context of the tabu search methodology, usually embedded in local search algorithms. In
this paper we explore an alternative design in which memory structures constitute the core of
the constructive method and also of a path relinking post-processing. Statistical tests confirm
the superiority of our proposal with respect to previous developments.

Keywords

Hub location, modular links, heuristic algorithms, memory structures.

mailto:Arild.Hoff@hiMolde.no
mailto:Juanjo.Peiro@uv.es
mailto:Angel.Corberan@uv.es
mailto:Rafael.Marti@uv.es

AMP for the Capacitated Modular Hub Location / 2

1. Introduction

Let 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) be a network, being 𝑉𝑉 the set of nodes (|𝑉𝑉| = 𝑛𝑛), and 𝐸𝐸 the set of edges. For any
pair of nodes 𝑖𝑖, 𝑗𝑗 ∈ 𝑉𝑉, 𝑡𝑡𝑖𝑖𝑖𝑖 denotes the traffic to be transported from 𝑖𝑖 to 𝑗𝑗. As it is customary in
hub location problems, direct transportation between nodes is not possible, and therefore the
traffic needs to be routed through the nodes designed as hubs. This is especially evident in air
transportation in which is impractical to schedule a flight between every pair of cities in a region
due to its high operational cost. Air flight companies thus resort to route their passengers
through intermediate airports usually called hubs. Therefore, in this problem we first have to
select which nodes in the network will act as transportation hubs. We will then distinguish
between terminal and hub nodes.

In this paper we consider the single assignment hub location problem, which specifies that a
terminal can only be assigned to a single hub. Assigning a terminal 𝑖𝑖 to a hub 𝑘𝑘 has a cost 𝐶𝐶𝑖𝑖𝑖𝑖.
For the sake of simplicity, we consider that each hub is assigned to itself. Each hub has a
maximum transit capacity 𝑄𝑄ℎ, which indirectly limits the number of terminals that can be
assigned to it, in terms of their total traffic. In this variant of the problem, the number of hubs
is not specified beforehand, and opening a hub at node 𝑖𝑖 has a fixed installation cost 𝐶𝐶𝑖𝑖𝑖𝑖.

There are two types of edges between nodes: access edges, used to connect terminals with
hubs, and backbone edges, used to connect hubs with other hubs. Each backbone edge has a
maximum traffic capacity of 𝑄𝑄𝑏𝑏 (in each direction), which has to be understood as a capacity
factor. This characteristic models the real situation of the number of seats in a plane that
operates in a route, for example. The total capacity of the route can be increased by adding
more flights. In graph terms we will say that we add several copies of the backbone edge. Let
𝑅𝑅𝑘𝑘𝑘𝑘 be the cost of each copy of the edge connecting hubs 𝑘𝑘 and 𝑙𝑙 (i.e., the cost of a flight between
𝑘𝑘 and 𝑙𝑙 in our example). Therefore, if we represent by 𝑤𝑤𝑘𝑘𝑘𝑘 the number of edges (flights)
between 𝑘𝑘 and 𝑙𝑙, the maximum number of passengers that we can transport in this route is
𝑄𝑄𝑏𝑏𝑤𝑤𝑘𝑘𝑘𝑘, and its associated cost 𝑤𝑤𝑘𝑘𝑘𝑘𝑅𝑅𝑘𝑘𝑘𝑘. In short, the hub location problem considered in this
paper consists of selecting a subset of nodes to be hubs, and assigning the rest of the nodes to
them, in such a way the transportation cost is minimized while satisfying the capacity
constraints.

Yaman and Carello (2005) introduced this hub location problem under the name “capacitated
single assignment hub location problem with modular link capacities (CSHLPMLC)”. These
authors formulated it as a mixed integer non-linear program as follows:

Consider the variables:

• the assignment variable 𝑥𝑥𝑖𝑖𝑖𝑖 is equal to 1 if terminal 𝑖𝑖 is assigned to hub 𝑘𝑘, and 0 otherwise.
If node 𝑖𝑖 receives a hub, then 𝑥𝑥𝑖𝑖𝑖𝑖 takes value 1,

• 𝑧𝑧𝑘𝑘𝑘𝑘 is the traffic on an arc (𝑘𝑘, 𝑙𝑙) ∈ 𝐴𝐴,

• 𝑤𝑤𝑘𝑘𝑘𝑘 is the number of copies of the edge {𝑘𝑘, 𝑙𝑙} ∈ 𝐸𝐸.

AMP for the Capacitated Modular Hub Location / 3

The formulation is, then:

min��𝐶𝐶𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖
𝑘𝑘∈𝑉𝑉𝑖𝑖∈𝑉𝑉

+ � 𝑅𝑅𝑘𝑘𝑘𝑘𝑤𝑤𝑘𝑘𝑘𝑘
{𝑘𝑘,𝑙𝑙}∈𝐸𝐸

 (1)

Subject to:

�𝑥𝑥𝑖𝑖𝑖𝑖
𝑘𝑘∈𝑉𝑉

= 1,∀𝑖𝑖 ∈ 𝑉𝑉 (2)

𝑥𝑥𝑖𝑖𝑖𝑖 ≤ 𝑥𝑥𝑘𝑘𝑘𝑘 ,∀𝑖𝑖 ∈ 𝑉𝑉,∀𝑘𝑘 ∈ 𝑉𝑉 ∖ {𝑖𝑖} (3)

��(𝑡𝑡𝑖𝑖𝑖𝑖 + 𝑡𝑡𝑗𝑗𝑗𝑗)𝑥𝑥𝑖𝑖𝑖𝑖
𝑗𝑗∈𝑉𝑉𝑖𝑖∈𝑉𝑉

−��𝑡𝑡𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖𝑥𝑥𝑗𝑗𝑗𝑗
𝑗𝑗∈𝑉𝑉𝑖𝑖∈𝑉𝑉

≤ 𝑄𝑄ℎ𝑥𝑥𝑘𝑘𝑘𝑘 ,∀𝑘𝑘 ∈ 𝑉𝑉 (4)

𝑧𝑧𝑘𝑘𝑘𝑘 ≥��𝑡𝑡𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖𝑥𝑥𝑗𝑗𝑗𝑗
𝑗𝑗∈𝑉𝑉𝑖𝑖∈𝑉𝑉

 ,∀(𝑘𝑘, 𝑙𝑙) ∈ 𝐴𝐴 (5)

𝑄𝑄𝑏𝑏𝑤𝑤𝑘𝑘𝑘𝑘 ≥ 𝑧𝑧𝑘𝑘𝑘𝑘 ,∀{𝑘𝑘, 𝑙𝑙} ∈ 𝐸𝐸 (6)

𝑄𝑄𝑏𝑏𝑤𝑤𝑘𝑘𝑘𝑘 ≥ 𝑧𝑧𝑙𝑙𝑙𝑙 ,∀{𝑘𝑘, 𝑙𝑙} ∈ 𝐸𝐸 (7)

𝑥𝑥𝑖𝑖𝑖𝑖 ∈ {0, 1},∀𝑖𝑖,𝑘𝑘 ∈ 𝑉𝑉 (8)

𝑤𝑤𝑘𝑘𝑘𝑘 ∈ ℤ+ ,∀{𝑘𝑘, 𝑙𝑙} ∈ 𝐸𝐸 (9)

𝑧𝑧𝑘𝑘𝑘𝑘 ≥ 0 ,∀(𝑘𝑘, 𝑙𝑙) ∈ 𝐴𝐴. (10)

Constraints (2) imply that each node needs to be assigned to only one hub. Constraints (3)
force node 𝑘𝑘 to be a hub if a node 𝑖𝑖 is assigned to it. Constraints (4) specify that the capacity
of a given hub 𝑘𝑘 cannot be less than the amount of traffic that transits through it, thus
prohibiting allocations to 𝑘𝑘 beyond its capacity 𝑄𝑄ℎ. Constraints (5) add up the traffics through
a given arc (𝑘𝑘, 𝑙𝑙). Finally, constraints (6) and (7) fix the number of copies needed of each
backbone edge.

Yaman and Carello (2005) also proposed a branch-and-cut algorithm and a heuristic method
to solve this problem. The heuristic method, based on the tabu search methodology, feeds the
branch-and-cut with a good initial upper bound. In particular, the solution provided by the
metaheuristic is used to limit the number of variables considered by the exact method, by
identifying a subset of nodes that represents the best potential locations for the hubs. The
hubs selected in the best solution belong to this subset, as well as the two other hubs which
appear most often in the best solutions found by the metaheuristic.

Corberán et al. (2016) proposed a heuristic method, based on a strategic oscillation over the
search space, to solve the CSHLPMLC. In particular, their method iteratively constructs and
partially destructs a solution. In this way, hubs are selected and deselected in search of the
optimal set of hubs. This procedure is coupled with two local searches, one based on swapping
the assignment of terminals to hubs, and another based on exchanges of terminals to a
different hub. Their computational experimentation showed that this method outperforms
the tabu search heuristic in Yaman and Carello (2005), and it is able to match the optimal
solutions in the small size instances that CPLEX is able to solve.

AMP for the Capacitated Modular Hub Location / 4

In this paper we propose a new heuristic based on Adaptive Memory Programming. We basically
introduce memory structures to enhance the performance of our methods. Memory-based
strategies, which are the hallmark of the well-known tabu search methodology (Glover and
Laguna 1997), and coined under the term adaptive memory programming, are founded on a
quest for “integrating principles,” by which alternative forms of memory are appropriately
combined with effective strategies for exploiting them. Specifically, we propose different
construction and local search methods and study the effectiveness of memory structures, and
compare them with memory-less variants. Our experiments show that the adaptive memory
features are capable of searching the solution space economically and effectively. Since local
choices are guided by information collected during the search, these methods contrast with
memoryless designs that heavily rely on semi-random processes that implement a form of
sampling.

2. Construction Method

A solution 𝑆𝑆 for our problem consists of a set of hubs 𝐻𝐻 and an assignment of each terminal to
a hub. Note that with this assignment, the routing of the traffics between any pair of nodes is
univocally determined through their respective hubs.

Corberán et al. (2016) proposed a constructive method to obtain an initial solution that selects
nodes to be hubs in a greedy fashion. Specifically, the authors considered an evaluation function
to discriminate among candidate nodes based on the costs. Their method iteratively selects the
hub nodes until there are enough hubs (in terms of capacity) to assign all the nodes in the
network. An important characteristic of this method is that, each time a node is selected as a
hub, it performs the associated assignment of terminals to this hub in a greedy fashion ignoring
future hub selections. In this paper, we propose an alternative construction method that
performs the assignment step after the hub selection, thus taking into account the complete set
of hubs.

Our construction method starts by estimating the number of hubs 𝑝𝑝 that provides enough
capacity to assign all the terminals. We basically consider the total traffic between all pairs 𝑖𝑖, 𝑗𝑗
of nodes, and divide it by the hub capacity 𝑄𝑄ℎ . In mathematical terms:

𝑝𝑝 = �
∑ 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖,𝑗𝑗∈𝑉𝑉

𝑄𝑄ℎ
�

Note that traffics 𝑡𝑡𝑖𝑖𝑖𝑖 can take a positive value in some applications, as in the case of postal
deliveries sent to a central hub for sorting.

Since, for example, nodes with large amount of traffics may not be assigned to the same hub,
the value of 𝑝𝑝 above can underestimate the required number of hubs to route all the traffic in
the network. In particular, we compute the number of nodes for which their traffic exceeds half
of the hub capacity:

� 𝑡𝑡𝑖𝑖𝑖𝑖
𝑗𝑗∈𝑉𝑉∖{𝑖𝑖}

+ � 𝑡𝑡𝑗𝑗𝑗𝑗
𝑗𝑗∈𝑉𝑉∖{𝑖𝑖}

+ 𝑡𝑡𝑖𝑖𝑖𝑖 >
𝑄𝑄ℎ

2
 .

AMP for the Capacitated Modular Hub Location / 5

It is likely that two nodes verifying the expression above do not share the same hub since the
sum of their traffics may be larger than 𝑄𝑄ℎ. Therefore, if the number of nodes verifying this
expression is larger than our estimation of 𝑝𝑝, we change 𝑝𝑝 to be this number of nodes.

The method we propose here is a multi-start algorithm. Many multi-start methods in
combinatorial optimization resort to randomization to perform multiple constructions. Among
them, GRASP methodology (Festa and Resende, 2011) is probably one of the most popular.
However, we have developed our constructive algorithm under a different paradigm: adaptive
memory. Instead of randomization, we apply frequency values, which record past hub
appearances to discourage their selection in future constructions.

To decide which hubs to open, we use an evaluation function, described in what follows.
Suppose that some nodes have already been selected as hubs. We denote them by 𝐻𝐻’. In order
to select the next hub, the following four elements are considered:

 Traffic value. For each node 𝑖𝑖, we compute the traffic through it (incoming, outgoing, and
internal traffic) with origin or destination not in 𝐻𝐻’ as 𝑡𝑡(𝑖𝑖) = ∑ 𝑡𝑡𝑖𝑖𝑖𝑖𝑗𝑗∈𝑉𝑉∖{𝑖𝑖} + ∑ 𝑡𝑡𝑗𝑗𝑗𝑗𝑗𝑗∈𝑉𝑉∖{𝑖𝑖} +

𝑡𝑡𝑖𝑖𝑖𝑖 − ∑ 𝑡𝑡𝑖𝑖𝑖𝑖𝑗𝑗\𝐻𝐻′ − ∑ 𝑡𝑡𝑗𝑗𝑗𝑗𝑗𝑗\𝐻𝐻′ . We then compute the relative value as 𝑡𝑡(𝑖𝑖)
max𝑗𝑗∈𝑉𝑉\𝐻𝐻′ 𝑡𝑡(𝑗𝑗).

 Opening cost. We compute the relative fixed installation cost for each node 𝑖𝑖 as
𝐶𝐶𝑖𝑖𝑖𝑖

max𝑗𝑗∈𝑉𝑉\𝐻𝐻′𝐶𝐶𝑗𝑗𝑗𝑗
.

 Assignment cost. For each node 𝑖𝑖 we compute the 𝑚𝑚 = 𝑛𝑛/𝑝𝑝 nodes (i.e. the average number
of terminals assigned to a hub) with lowest assignment cost to 𝑖𝑖. The absolute assignment
cost of node 𝑖𝑖, 𝑎𝑎(𝑖𝑖), is defined as the sum of these 𝑚𝑚 costs. The relative assignment cost is

computed as 𝑎𝑎(𝑖𝑖)
max𝑗𝑗∈𝑉𝑉\𝐻𝐻′ 𝑎𝑎(𝑗𝑗)

.

 Frequency value. For each node 𝑖𝑖, we record in freq(𝑖𝑖) the number of times (previous

solutions) in which 𝑖𝑖 has been a hub. The relative frequency is freq(𝑖𝑖)
max𝑗𝑗∈𝑉𝑉\𝐻𝐻′ freq(𝑗𝑗).

These four elements are merged into a single expression reflecting the attractiveness of a node
to be selected as a hub. Since we cannot establish a priori their relative importance, we
introduce some factors that will be empirically set. For each node 𝑖𝑖, attractive(𝑖𝑖) is defined as:

attractive(𝑖𝑖) = + 𝛿𝛿
𝑡𝑡(𝑖𝑖)

max𝑗𝑗∈𝑉𝑉\𝐻𝐻′ 𝑡𝑡(𝑗𝑗)
− 𝛼𝛼

𝐶𝐶𝑖𝑖𝑖𝑖
max𝑗𝑗∈𝑉𝑉\𝐻𝐻′𝐶𝐶𝑗𝑗𝑗𝑗

− 𝛽𝛽
𝑎𝑎(𝑖𝑖)

max𝑗𝑗∈𝑉𝑉\𝐻𝐻′ 𝑎𝑎(𝑗𝑗)
− 𝛾𝛾

freq(𝑖𝑖)
max𝑗𝑗∈𝑉𝑉\𝐻𝐻′ freq(𝑗𝑗)

 ,

where 𝛼𝛼,𝛽𝛽, 𝛾𝛾, 𝛿𝛿 ∈ [0,1], and 𝛼𝛼 + 𝛽𝛽 + 𝛾𝛾 + 𝛿𝛿 = 1.

Typically, a node with large traffics is attractive to be selected as a hub, whereas a high opening
cost or large assignment costs discourages it. Regarding the frequencies, since we want to
diversify the search, those nodes that have been selected as hubs in previous solutions are
penalized in posterior constructions. In our computational experiments section, we will test
different values of these parameters, which permits to isolate the effect of each of the three
elements considered (apart from the frequency) and evaluate their contribution.

AMP for the Capacitated Modular Hub Location / 6

At each iteration, our multi-start constructive method selects the best hubs according to the
attractive values. Once the hubs are selected, we proceed to assign the terminals to these hubs.
Let 𝐻𝐻 be the set of selected hubs. For each terminal 𝑖𝑖, we compute the best assignment cost 𝑐𝑐𝑖̅𝑖
to the selected hubs as:

𝑐𝑐𝑖̅𝑖 = 𝑚𝑚𝑚𝑚𝑚𝑚ℎ∈𝐻𝐻 𝐶𝐶𝑖𝑖ℎ .

Then, we order all the terminals according to the 𝑐𝑐𝑖̅𝑖-values, where the terminal with the
minimum value comes first. Following this order, we assign each terminal to its best hub (the
one in 𝐻𝐻 with the minimum cost) if it has enough capacity. If this hub does not have enough
capacity to route the traffics of terminal 𝑖𝑖 because of previous assignments, we consider the
second best hub in 𝐻𝐻 for 𝑖𝑖 according to the assignment cost. We proceed in this way, trying to
assign terminal 𝑖𝑖 to the best hub in 𝐻𝐻 that can manage its traffic. It may happen that none of the
hubs in 𝐻𝐻 can accommodate a given terminal. In this case we add this terminal to a list of orphan
nodes. When the assignment procedure has explored all terminals, the orphan node with largest
traffics is selected as a new hub and we assign as many orphan nodes as possible to it. This
procedure, which searches among orphan nodes to select a new hub, is repeated until all nodes
are assigned to a hub.

The following example illustrates the constructive method described above, that we call CM1.
Suppose that we have a network with 15 nodes where we have estimated 𝑝𝑝 = 2. We have
applied attractive(𝑖𝑖) to all nodes and concluded that 𝐻𝐻 = {3, 10}. Column “Order” of Table 1
shows the order of the terminals in 𝑉𝑉 for assigning terminals to hubs according to the 𝑐𝑐𝑖̅𝑖-values.
The assignment process starts by terminal 4 and assigns it to hub 3, since it is the preferred hub
for this terminal. The procedure continues by assigning terminal 1 to hub 10; terminal 7 to hub
3; terminals 2, 15, and 14 to hub 10; and terminal 9 to hub 3. By the time terminal 13 needs to
be assigned, hub 10 is full of traffics, so terminal 13 is assigned to hub 3 (second best hub for
terminal 13). Then, terminals 8, 11, and 5 are assigned to hub 3. At this point, hubs 3 and 10 are
completely full, hence they cannot accommodate any other terminal. Node 6 (next terminal in
the order) is then declared an orphan node. The same happens with node 12. Since no more
nodes remain to be assigned, the orphan node with largest traffics is selected as a new hub.
Suppose that this is the case of node 12. Therefore 𝐻𝐻 ← 𝐻𝐻 ∪ {12} and node 12 is assigned to
itself. As there is still enough capacity in the new hub 12, terminal 6 is assigned to it. The
assignment process finishes here because all terminals have been assigned to a hub.

Notice that the process implemented in CM1 is designed under the assumption that the best
assignment for a terminal is the hub for which its assignment cost is the lowest. However,
considering that this is a greedy process and that hubs are limited in terms of their capacity, it is
clear that in many cases we cannot assign all the terminals to their preferred hub. For this
reason, we also propose alternative construction methods to implement different search
strategies. Construction method CM2 orders the terminals in non-increasing order of the 𝑐𝑐𝑖̅𝑖-
values (i.e., the terminal with the largest value comes first).

AMP for the Capacitated Modular Hub Location / 7

Table 1. Example of ordered nodes and possible hubs in CM1.

Order Terminal Ordered hubs

1st 4 3 10

2nd 1 10 3

3rd 7 3 10

4th 2 10 3

5th 15 10 3

6th 14 10 3

7th 9 3 10

8th 13 10 3

9th 8 3 10

10th 11 3 10

11th 5 3 10

12th 6 10 3

13th 12 10 3

The rationale behind this rule is to assign first the terminal with highest minimum assignment
cost to the hubs. Constructive method CM3 computes the lowest and the second lowest
assignment cost for each terminal 𝑖𝑖:

𝑐𝑐𝑖̅𝑖 = 𝑚𝑚𝑚𝑚𝑚𝑚ℎ∈𝐻𝐻 𝐶𝐶𝑖𝑖ℎ , 𝑐𝑐𝑖̿𝑖 = 𝑚𝑚𝑚𝑚𝑚𝑚ℎ∈𝐻𝐻∖{ℎ∗} 𝐶𝐶𝑖𝑖ℎ , where ℎ∗ = arg𝑚𝑚𝑚𝑚𝑚𝑚ℎ∈𝐻𝐻 .

Then CM3 calculates the difference of the two values above,
𝑑𝑑𝑖𝑖 = 𝑐𝑐𝑖̿𝑖 − 𝑐𝑐𝑖̅𝑖, to evaluate how “urgent” is to assign 𝑖𝑖 to its best hub. It is clear that if 𝑑𝑑𝑖𝑖 is large,
we should try to assign 𝑖𝑖 to its best hub because otherwise the assignment cost will be greater.
On the contrary, if 𝑑𝑑𝑖𝑖 is low, the assignment costs of 𝑖𝑖 to its best and second best hubs are very
similar. CM3 orders the terminals according to the 𝑑𝑑𝑖𝑖-values in non-increasing order and assigns
them to their best available hub in this order.

Once a solution 𝑆𝑆 is obtained with one of the three methods above, we evaluate it. To this end,
different costs are involved:

 The fixed cost of opening/installing hubs.
 The fixed cost of assigning each terminal to its associated hub.
 The cost of installing the copies of the backbone edges needed to

send the traffics between hubs.

As it is customary in multi-start methods, once a solution is constructed, we proceed to improve
it. The improvement methods used are described in the next section.

AMP for the Capacitated Modular Hub Location / 8

3. Improvement Methods

Corberán et al. (2016) consider two neighborhoods, Npairs and Nalone, to improve a solution by
changing the assignments of terminals to hubs. Npairs implements a classical exchange in which
two terminals 𝑖𝑖 and 𝑗𝑗, assigned to hubs 𝑘𝑘 and 𝑙𝑙 respectively (𝑘𝑘 ≠ 𝑙𝑙), swap their corresponding
hubs (i.e., the move assigns 𝑖𝑖 to hub 𝑙𝑙, and 𝑗𝑗 to hub 𝑘𝑘). The authors proposed a local search
method, LSpairs, which implements this neighborhood with a first improvement strategy, i.e. by
scanning the list of terminals and applying this exchange every time terminals are assigned to
different hubs and the objective function is reduced (while the capacity limits are satisfied). Note
that an efficient computation of the objective value after a move requires a detailed study. We
refer the reader to Corberán et al. (2016) for such a study.

As the authors mentioned, the Npairs neighborhood turns out to be too restrictive due to the
capacity constraints, so they complemented it with the Nalone neighborhood. This second
neighborhood performs a simple insertion move in which the assignment of a terminal is
changed from a hub to another hub. As in the previous neighborhood, authors proposed a local
search method, LSalone, based on this move, which implements a first improvement strategy.

The experimental testing in Corberán et al. (2016) shows that the combination of the two
neighborhoods is able to significantly improve the constructed solutions. Here, we want to go a
step further by including the possibility of changing the hub selection of a given solution in the
neighborhood exploration. As a matter of fact, we believe that further reductions in the
objective function can be achieved by permitting the local search method to test different sets
of hubs. However, including or removing a hub in a solution may cause a great change in 𝑆𝑆, and
consequently the evaluation of such a move can be very costly, especially the computation of
the number of backbone edges needed after any move. To overcome this difficulty, we propose
a new neighborhood, Ncluster, in which we consider that each hub, together with its assigned
terminals, form a set (or cluster) in the network. This neighborhood explores the change of hub
within each cluster. In this way, the hub in a cluster changes its status to become a terminal and
one of the terminals in this cluster is now the new hub of the cluster. The rest of the terminals
in the cluster remain the same but assigned now to the new hub.

The proposed neighborhood Ncluster exhibits a tradeoff between search power and
computational cost. On the one hand, it considers changing the hub in a solution, which is a
major change that may lead to different types of solutions in the solutions’ space. On the other,
as it limits the exploration to changes within a cluster, there is no need to calculate the number
of copies of the backbone edges to compute the value of the new solution.

The associated procedure, LScluster, works as follows. Let 𝑈𝑈ℎ be a cluster of nodes formed by a
hub ℎ and the set of its assigned terminals 𝑆𝑆, 𝑈𝑈ℎ = {ℎ} ∪ 𝑆𝑆. We define an evaluation function
of the cluster of ℎ, based on the opening cost of ℎ and on the assignment cost of its terminals,
as follows:

eval(𝑈𝑈ℎ) = 𝐶𝐶ℎℎ + �𝐶𝐶𝑗𝑗ℎ .
𝑗𝑗∈𝑆𝑆

AMP for the Capacitated Modular Hub Location / 9

This evaluation function induces an order in which the set of clusters will be explored in
LScluster, where the cluster with the largest evaluation (the one with highest cost) is explored
first, since we try to improve it in the first place. Steps 5 and 6 in Algorithm 1 show respectively
the evaluation and ordering of the clusters.

Input: (s)
1 continue ← 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇;
2 while continue is 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 do
3 continue ← 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹;
4 Define 𝒰𝒰 = {𝑈𝑈ℎ∈𝐻𝐻}
5 Compute clusters’ evaluation eval(𝑈𝑈ℎ) = 𝐶𝐶ℎℎ + ∑ 𝐶𝐶𝑗𝑗ℎ𝑗𝑗∈𝑈𝑈ℎ , ∀ℎ ∈ 𝐻𝐻: |𝑈𝑈ℎ| ≥ 2
6 Order ℎ ∈ 𝐻𝐻: |𝑈𝑈ℎ| ≥ 2 by non-decreasing value of eval(𝑈𝑈ℎ)
7 foreach ℎ ∈ 𝐻𝐻: |𝑈𝑈ℎ| ≥ 2 do
8 Compute nodes’ evaluation eval(𝑖𝑖) = 𝐶𝐶𝑖𝑖𝑖𝑖 + ∑ 𝐶𝐶𝑗𝑗𝑗𝑗𝑗𝑗∈𝑆𝑆∖{𝑖𝑖} , ∀𝑖𝑖 ∈ 𝑆𝑆
9 Order 𝑖𝑖 ∈ 𝑆𝑆 by non-decreasing value of eval(𝑖𝑖)
10 foreach 𝑖𝑖 ∈ 𝑆𝑆 do
11 𝐻𝐻� = 𝐻𝐻 ∖ {ℎ} ∪ 𝑖𝑖
12 𝑆𝑆̅ = 𝑆𝑆 ∖ {𝑖𝑖} ∪ ℎ
13 𝑈𝑈𝑖𝑖 = {𝑖𝑖} ∪ 𝑆𝑆̅
14 𝒰𝒰� = �𝑈𝑈𝑗𝑗∈𝐻𝐻��
15 Compute cost solution value using 𝒰𝒰�
16 if cost of solution using 𝒰𝒰� < cost of solution using 𝒰𝒰 then
17 𝐻𝐻 ← 𝐻𝐻�
18 𝑖𝑖 ↔ ℎ
19 continue ← 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
20 end
21 end
22 end
23 end-while
Output: s

Algorithm 1. Procedure LScluster

Once a cluster is selected in the main loop of Algorithm 1 (steps 7 to 22), we explore its terminals
for a possible swapping with the current hub in the order given by their evaluation. Given an
element 𝑖𝑖 in cluster 𝑈𝑈ℎ = {ℎ} ∪ 𝑆𝑆, its evaluation is given by:

eval(𝑖𝑖) = 𝐶𝐶𝑖𝑖𝑖𝑖 + � 𝐶𝐶𝑗𝑗𝑗𝑗 .
𝑗𝑗∈𝑆𝑆∖{𝑖𝑖}

We explore the nodes in the cluster and perform the first improvement move. After we have
scanned all the clusters and eventually performed one or more moves, LSalone and LSpairs are
applied. It is clear that if the hub of a cluster changes, some of the nodes in another cluster
could be assigned to the new hub. As mentioned, Ncluster does not check this point. Therefore,
we consider the Nalone and Npairs neighborhoods to check these re-assignments and eventually
perform further changes after a hub move. The application of LSalone and LSpairs may change a
clusters’ composition. We perform further steps in which we first go over the clusters with the
Ncluster neighborhood exploration, and then apply the LSalone and LSpairs, as long as the
solution improves. Our local search ends when no further improvement is possible.

AMP for the Capacitated Modular Hub Location / 10

4. Path Relinking

Path relinking (PR) was suggested as an approach to integrate intensification and diversification
strategies in the context of tabu search (Glover and Laguna, 1997). This approach generates new
solutions by exploring trajectories that connect high-quality solutions by starting from one of
these solutions, called initiating solution, and generating a path in the neighborhood space that
leads toward the other solutions, called guiding solutions. This is accomplished by introducing
in the initiating solutions attributes contained in the guiding ones. In this way, we generate a
sequence of intermediate solutions that “connect” the initiating solution with the guiding one.

The term relinking reflects the fact that this method links again two or more solutions with a
path in the search space. In the original tabu search design, two or more good solutions are
recorded during the search. Since tabu search describes a trajectory, these solutions can be
viewed as linked in the search space by the chain of moves which originated them. After the
tabu search execution, we can consider to create a new trajectory, or chain of moves, to go from
one of these high-quality solutions to another one. This new trajectory is directed considering
the target solutions, instead of the objective function as in the initial application of tabu search.
The method is therefore called path relinking because it creates two paths joining two solutions.

Laguna and Martí (1999) adapted PR in the context of GRASP as a form of intensification. The
relinking, in the context of multi-start algorithms, consists of finding a path between two
solutions generated with the constructive method and, eventually, improve the solution in the
path with a local search. Therefore, the relinking concept has a different interpretation within
GRASP, since the solutions are not originally linked by a sequence of moves. The authors,
however, kept the original name of the methodology in spite of the fact that the two solutions
are linked for the first time. Resende et al. (2010) explored different implementations to
hybridize these two methodologies:

 Greedy Path Relinking. In this method the moves in the path from a solution to another are
selected in a greedy fashion, according to the objective function value.

 Greedy Randomized Path Relinking. Here the method creates a candidate list with the good
intermediate solutions and randomly selects among them.

 Truncated Path Relinking. In this application of PR the path between two solutions is not
completed. It is applied, for example, in problems where good solutions are found close to
the end points (original solutions) in the path.

 Evolutionary Path Relinking. This method iterates over the set of high-quality solutions,
applying successively the relinking mechanism. It has many similarities with the scatter
search methodology (Laguna and Martí, 2003).

In this paper we explore a kind of Greedy Truncated Path Relinking to our problem as a post-
process method. Let 𝑋𝑋 and 𝑌𝑌 be two solutions to the CSHLPMLC, and let 𝐻𝐻𝑋𝑋 and 𝐻𝐻𝑌𝑌 be their
associated sets of hubs. The path relinking procedure PR(𝑋𝑋,𝑌𝑌) starts with 𝑋𝑋, and gradually
transforms it into 𝑌𝑌, by swapping out hubs in 𝑋𝑋 with hubs in 𝑌𝑌. The hubs in both solutions, 𝐻𝐻𝑋𝑋𝑋𝑋,
will remain as hubs in all the intermediate solutions generated in the path between them. Let
𝐻𝐻𝑋𝑋−𝑌𝑌 be the hubs in 𝑋𝑋 that are not hubs in 𝑌𝑌. 𝐻𝐻𝑌𝑌−𝑋𝑋 is defined equivalently. Let PR0(𝑋𝑋,𝑌𝑌) = 𝑋𝑋

AMP for the Capacitated Modular Hub Location / 11

be the initiating solution in the path from 𝑋𝑋 to 𝑌𝑌. To obtain the first solution PR1(𝑋𝑋,𝑌𝑌) in this
path, we remove a hub 𝑖𝑖 ∈ 𝐻𝐻𝑋𝑋−𝑌𝑌 and replace it with a hub 𝑗𝑗 ∈ 𝐻𝐻𝑌𝑌−𝑋𝑋, thus obtaining

𝐻𝐻PR1(𝑋𝑋,𝑌𝑌) = 𝐻𝐻PR0(𝑋𝑋,𝑌𝑌) ∖ {𝑖𝑖} ∪ {𝑗𝑗}.

In the PR variant implemented here, the selection of the nodes 𝑖𝑖, 𝑗𝑗 is the one minimizing the
objective function. In general, to obtain PR𝑡𝑡+1(𝑋𝑋,𝑌𝑌) from PR𝑡𝑡(𝑋𝑋,𝑌𝑌), we evaluate the different
hubs 𝑖𝑖 ∈ 𝐻𝐻PR𝑡𝑡(𝑋𝑋,𝑌𝑌)−𝑌𝑌 to be removed and the hubs 𝑗𝑗 ∈ 𝐻𝐻Y−PR𝑡𝑡(𝑋𝑋,𝑌𝑌) to be selected. The move
associated with the minimum cost option is performed.

At each intermediate solution in the path from 𝑋𝑋 to 𝑌𝑌, a restricted neighborhood is explored to
generate the next solution in the path. The neighborhood is restricted because only moves
removing hub 𝑖𝑖 ∈ 𝐻𝐻PR𝑡𝑡(𝑋𝑋,𝑌𝑌)−𝑌𝑌 and selecting hub 𝑗𝑗 ∈ 𝐻𝐻Y−PR𝑡𝑡(𝑋𝑋,𝑌𝑌) are allowed. As the procedure
moves from one intermediate solution to the next, the cardinalities of sets 𝐻𝐻PR𝑡𝑡(𝑋𝑋,𝑌𝑌)−𝑌𝑌 and
𝐻𝐻Y−PR𝑡𝑡(𝑋𝑋,𝑌𝑌) decrease by one element. Consequently, as the procedure nears the guiding
solution, there are fewer allowed moves to explore. This is why Resende et al. (2010) suggested
that the search tends to be less effective in the final stages. In truncated path relinking, a new
stopping criterion is used. Instead of continuing the search until the guiding solution is reached,
only a limited number of steps, PRsteps, are allowed, abandoning the path before reaching the
final solution. We consider PRsteps as a search parameter, and explore the performance of the
method with different values in the next section.

In our algorithm we first apply a constructive method (either CM1, CM2 or CM3) and the local
search methods (Ncluster, Nalone, and Npairs) to populate a set with high-quality solutions (elite
set, ES). Our PR mechanism is designed to work as a post-process method. For each pair of
solutions in ES, the cardinality of hubs and the objective values are compared in order to decide
which of them will be the starting and the guiding solution. In the case where the cardinalities
of their corresponding set of hubs are different, the solution with the highest number of hubs is
chosen as starting solution 𝑋𝑋, and the path relinking is performed against the guiding solution
𝑌𝑌. When all hubs in 𝐻𝐻𝑌𝑌−𝑋𝑋 have been incorporated, there are one or more hubs that should be
removed in order to finally reach 𝑌𝑌. The procedure does not do this and stops at this step, so
the whole path is not examined completely. This is the reason to consider our procedure a
Truncated PR. If 𝐻𝐻𝑋𝑋 and 𝐻𝐻𝑌𝑌 have the same cardinality, the solution with poorest objective value
is chosen as the starting point and the path relinking is performed towards the better solution.
The assignment of terminals to the hubs of any intermediate solution explored during the path
relinking process is performed using the same strategy of the construction process.

5. Computational Experiments

This section describes the computational experiments that we performed to test the
effectiveness and efficiency of the procedures discussed above. The algorithms have been
implemented in C and run on an Intel Xeon E3-1270 at 3.40 GHz and 16GB of RAM computer
running Windows 7–64 bits.

AMP for the Capacitated Modular Hub Location / 12

The metrics that we use to measure the performance of the algorithms are:

 Value: Average objective value of the best solutions obtained with the algorithm on the
instances considered in the experiment.

 Dev: Average percentage deviation from the best-known solution.
 Best: Number of instances for which a procedure is able to find the best-known solution.
 CPU: Average computing time in seconds employed by the algorithm.

From previous publications, we have identified a benchmark with 170 instances from three well-
known data sets:

• The CAB (Civil Aviation Board) data set, based on airline passenger flows between some
important cities in the United States. It consists of a data file, presented by O’Kelly in 1987,
with the distances and flows of a 25-nodes network. From this original file, a total of 23
instances with 10, 15, 20 and 25 nodes have been used.

• The AP (Australian Post) data set, based on real data from the Australian postal service and
presented by Ernst and Krishnamoorthy in 1996. The size of the original data file is 200
nodes. Smaller instances can be obtained using a code from ORLIB (Beasley, 1990). We have
used 70 instances with 𝑛𝑛 ranging from 10 to 200. Regarding the flows between nodes, these
instances do not have symmetric flows (i.e., for a given pair of nodes 𝑖𝑖 and 𝑗𝑗, 𝑡𝑡𝑖𝑖𝑖𝑖 is not
necessarily equal to 𝑡𝑡𝑗𝑗𝑗𝑗). Moreover, some flows from one node to itself are positive (i.e.,
𝑡𝑡𝑖𝑖𝑖𝑖 > 0 for a given 𝑖𝑖).

• The USA423 data set was introduced in Peiró et al. (2014), and is based on real airline data.
It consists of a data file concerning 423 cities in the United States, where real distances and
passenger flows for an accumulated 3 months period are considered. From the original
benchmark, we have employed 77 instances in the experimentation below with 𝑛𝑛 ranging
from 20 to 250.

Each instance includes the three matrices �𝑡𝑡𝑖𝑖𝑖𝑖�, �𝐶𝐶𝑖𝑖𝑖𝑖�, (𝑅𝑅𝑘𝑘𝑘𝑘) and the two capacity values 𝑄𝑄𝑏𝑏 and
𝑄𝑄ℎ. The entire set of instances is available at www.optsicom.es.

The experimental part is divided into two main blocks. The first block (scientific testing) is
devoted to study the performance of the components of the algorithm, as well as to determine
the best values for the key search parameters. They have been performed on the same training
set of 36 instances used in Corberán et al. (2016). The second block of experiments (competitive
testing) has the goal of comparing our procedure with the best published methods.

5.1 Scientific testing

From the 170 instances derived from the CAB, AP and USA423 data sets, the preliminary
experiments are performed on the following set of 36 instances: 3 instances with 15 ≤ 𝑛𝑛 ≤ 25
from the CAB set, 21 instances with 10 ≤ 𝑛𝑛 ≤ 195 from the AP set, and 12 instances with 20 ≤
𝑛𝑛 ≤ 150 from the USA423 set. These instances have been classified as small, medium, and large,
with 12 instances in each group.

AMP for the Capacitated Modular Hub Location / 13

In our first experiment we have compared the combination of the different elements of the
attractive(𝑖𝑖) function for the hub selection in the constructive method (see Section 2).
Specifically, we have considered the following five alternative sets of parameter values:

 Alt1 = { 𝛼𝛼 =0.25; 𝛽𝛽 =0.25; 𝛾𝛾 =0.25; 𝛿𝛿 =0.25}
 AllAlpha = { 𝛼𝛼 =1; 𝛽𝛽 =0; 𝛾𝛾 =0; 𝛿𝛿 =0}, only considers the opening costs
 AllBeta = { 𝛼𝛼 =0; 𝛽𝛽 =1; 𝛾𝛾 =0; 𝛿𝛿 =0}, only considers the assignment costs
 AllGamma = { 𝛼𝛼 =0; 𝛽𝛽 =0; 𝛾𝛾 =1; 𝛿𝛿 =0}, only considers the frequency values
 AllDelta = { 𝛼𝛼 =0; 𝛽𝛽 =0; 𝛾𝛾 =0; 𝛿𝛿 =1}, only considers the traffics

Note that Alt1 is the only alternative among the above ones including the four elements in
attractive(𝑖𝑖). The other alternatives isolate the effect of each element, so they measure their
contribution to the complete evaluation.

Table 2. Average percentage deviation from the best solution (Dev)

Size # instances Alt1 AllAlpha AllBeta AllGamma AllDelta
small 12 6.6% 30.7% 35.4% 31.4% 17.3%

medium 12 0.4% 17.9% 10.5% 16.1% 9.1%
large 12 2.8% 50.6% 29.2% 27.0% 5.9%

summary 36 3.3% 33.1% 25.1% 24.9% 10.8%

Table 2 shows the average percentage deviation from the best solution obtained with each
alternative method when constructing 100 solutions on each instance. As expected, the best
alternative is Alt1, where the four elements are combined. AllDelta (the alternative with 𝛿𝛿 = 1)
is the best among the remaining alternatives, which seems to indicate that the traffic through a
node is a very important factor to choose it as a hub. Both alternatives, Alt1 and AllDelta,
produce better values for Dev than AllBeta, which was the one used in Corberán et al. (2016),
based on the assignment costs of terminals to hubs. The Friedman statistical test for multiple
paired samples obtains a 𝑝𝑝-value lower than 0.0001, which confirms that there are differences
among the five alternatives tested. Additionally, the ranks obtained with this test are Alt1=1.49,
AllAlpha=3.61, AllBeta=3.76, AllGamma=3.64, and AllDelta=2.50, which are in line with the
above results.

Figure 1 shows the average quality of the resulting solutions as a relative value of the best-
known solutions found in Corberán et al. (2016). We include in this diagram the results obtained
with a variant where hubs are randomly selected, called AltRand.

AMP for the Capacitated Modular Hub Location / 14

Figure 1. Average quality of solutions constructed with different strategies for hub selection

Figure 1 confirms that the single element giving the best results is the traffic value. However, in
this experiment we have also evaluated the variation on quality among the elements when
looking at the single instances. For some instances, the traffic value is clearly the most favorable
element. For others however, the opening costs or the assignment costs give better results,
while the other elements’ results are poorer.

In the second experiment we extend the previous analysis by including other alternative sets of
parameters in the constructive method. The new combinations are:

 Alt2 = { 𝛼𝛼 =0.70; 𝛽𝛽 =0.10; 𝛾𝛾 =0.10; 𝛿𝛿 =0.10}
 Alt3 = { 𝛼𝛼 =0.10; 𝛽𝛽 =0.70; 𝛾𝛾 =0.10; 𝛿𝛿 =0.10}
 Alt4 = { 𝛼𝛼 =0.10; 𝛽𝛽 =0.10; 𝛾𝛾 =0.70; 𝛿𝛿 =0.10}
 Alt5 = { 𝛼𝛼 =0.10; 𝛽𝛽 =0.10; 𝛾𝛾 =0.10; 𝛿𝛿 =0.70}
 Alt6 = { 𝛼𝛼 =0.35; 𝛽𝛽 =0.20; 𝛾𝛾 =0.10; 𝛿𝛿 =0.35}
 Alt7 = { 𝛼𝛼 =0.40; 𝛽𝛽 =0.10; 𝛾𝛾 =0.10; 𝛿𝛿 =0.40}
 Alt8 = { 𝛼𝛼 =0.40; 𝛽𝛽 =0.15; 𝛾𝛾 =0.05; 𝛿𝛿 =0.40}

The results obtained using these alternatives are then compared against Alt1, where the four
parameters have the same weight. In Alt2, Alt3, Alt4, and Alt5, one of the parameters receives
a larger weight value (0.70), while the other coefficients get a smaller weight (0.10). For Alt2 the
highest weight is given to 𝛼𝛼, which is associated with the fixed cost of opening a hub. Similarly,
Alt3 gives more weight to the cost of assigning terminals to hubs, while Alt4 penalizes the
frequency of occurrence in previous iterations, and Alt5 gives more weight to the amount of
traffic through the node. The Alt6, Alt7, and Alt8 alternatives try some other combinations of
weights, where 𝛼𝛼 and 𝛿𝛿 have higher values than the other parameters. This is based on the initial
findings indicating that the opening costs and the traffics are the two most important elements
when selecting hubs. Table 3 shows the average percentage deviation from the best solution
found in this experiment after constructing 100 solutions on each instance.

Results in Table 3 clearly show that alternative Alt2 builds solutions with least deviation,
followed by alternative Alt6, which performs especially well on large instances. We have
performed the Friedman test with these alternatives and obtained a 𝑝𝑝-value < 0.0001, which
confirms that there are significant differences between the alternatives. The test returned the

AMP for the Capacitated Modular Hub Location / 15

following ranges in line with the deviations in Table 3: Alt1 = 3.90, Alt2 = 2.54, Alt3 = 4.26, Alt4
= 7.68, Alt5 = 4.53, Alt6 = 3.97, Alt7 = 4.29, and Alt8 = 4.82.

Table 3. Average percentage deviation from best solution (Dev)

Size # instances Alt1 Alt2 Alt3 Alt4 Alt5 Alt6 Alt7 Alt8
small 12 11.3% 7.3% 14.0% 36.7% 10.6% 5.8% 4.8% 4.9%

medium 12 8.3% 1.1% 8.1% 19.8% 9.3% 7.5% 8.8% 8.4%
large 12 4.9% 5.4% 7.3% 24.6% 6.3% 4.6% 9.3% 10.7%

summary 36 8.2% 4.6% 9.8% 27.0% 8.7% 6.0% 7.6% 8.0%

To complement the analysis above, we represent in Figure 2 the boxplots of the percentage
deviations of each alternative. These diagrams represent the 36 deviation values obtained with
each alternative on the instances of the training set. It can be seen that Alt2 has the highest
concentration of lower relative deviations, which means that it produces the best solutions.

Figure 2. Box plot of different alternatives

After analyzing the methods for selecting hubs, we study the methods of assigning terminals to
hubs (CM1, CM2, and CM3). Table 4 shows the results of this experiment on the training set. For
each construction method, the combinations of parameters that have been found to be best in
the previous experiment have been tested. In particular, Alt1, Alt2, Alt6, Alt7, and Alt8 are
tested.

Table 4 show that the lowest average percentage deviation (8%) is obtained with CM3 and
parameter combination Alt2. On the other hand, CM2 with Alt2 or Alt6 are close to it with a 9%
deviation, while the CM1 strategy gives much poorer results on all parameter combinations. A
non-parametric Wilcoxon test performed to compare CM2 and CM3 both using Alt2, gave a p-
value of 0.789, which indicates that there is no significant difference between these two

AMP for the Capacitated Modular Hub Location / 16

configurations. We have chosen CM3 with Alt2 as the configuration for our constructive method
and will use it in the following experiments.

Table 4. Average percentage deviation for constructive methods

In the fourth experiment, we study the contribution of the local search phase of the algorithm
applied to the solutions obtained with the constructive method CM3 (and Alt2). In particular,
we study five local search variants, as described in Section 3:

 LSalone - The method only applies the local search LSalone (Corberán et al. 2016).
 LSpairs – The method only applies the local search LSpairs (Corberán et al. 2016).
 LSalone + LSpairs– The method combines the two previous local searches.
 LScluster - The method only applies the new local search LScluster.
 LSAllOnce - The three methods, LScluster, LSalone, and LSpairs are applied once in this

order.

It seems natural to ask whether we would be able to improve the solution further after
performing the three local searches defining LSAllOnce. Since LSpairs and LSalone can change
the clusters, it might happen that another terminal could be a better hub in the modified
clusters. Similarly, when a hub is changed, it could be a better option to assign some terminals
to a different hub. We therefore consider a sixth variant, called LSAll, in which these methods
are repeatedly applied in a loop as shown in Algorithm 2.

Input: (s)
1 continue ← 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇;
2 while continue is 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 do
3 continue ← 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹;
4 LScluster
5 LSpairs
6 if solution improved after LSpairs then
7 continue ← 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇;
8 end
9 LSalone
10 if solution improved after LSalone then
11 continue ← 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇;
12 end
13 end-while
Output: s

Algorithm 2. Procedure LSAll

Table 5 reports the average percentage reduction from the constructed solution value obtained
with these six local search variants by running 50 iterations (construction + local search) on the
instances in the training set. It shows that, on average, LSalone improves the solution value by

 CM1 CM2 CM3
 Alt1 Alt2 Alt6 Alt7 Alt8 Alt1 Alt2 Alt6 Alt7 Alt8 Alt1 Alt2 Alt6 Alt7 Alt8

small 15% 13% 14% 14% 11% 17% 16% 8% 11% 9% 15% 11% 9% 8% 8%
medium 23% 20% 22% 23% 23% 12% 6% 11% 12% 11% 13% 5% 12% 13% 13%

large 59% 39% 40% 44% 41% 10% 6% 10% 11% 14% 8% 9% 8% 13% 14%
summary 32% 24% 25% 27% 25% 13% 9% 9% 11% 12% 12% 8% 10% 11% 12%

AMP for the Capacitated Modular Hub Location / 17

4.7% with respect to the solutions obtained with the constructive method, while LSpairs
improves it by a 5.0% on average. In line with the results in Corberán et al. (2016), Table 5 shows
that a further reduction is achieved if both local searches are combined. In particular, LSalone +
Lspairs exhibit an improvement of 8.2%. Considering these three previous methods as a basis
for comparison, we can observe from this table the good performance of the new local search,
LScluster, which obtains better results. Specifically, applying LScluster only, improves by 11.5%
on average the constructed solutions. Another advantage of this search is that it is very fast,
since the amount of traffic between the clusters is constant and the number of edges used in
the backbone network (𝑊𝑊𝑘𝑘𝑘𝑘) do not change. The LSAllOnce column shows the result when
applying LScluster first, then LSalone and then LSpairs. This process improves the solutions
obtained considerably, reaching a reduction of 24% on average on the large size instances, and
of 17.8% for all instances in the training set. Finally, The LSAll column shows the average results
of the improvements after applying the loop procedure described in Algorithm 2. Clearly, it
shows that changing the configuration of clusters gives further improvements, thus concluding
that the LSAll is the best of the six alternatives. We have applied the Wilcoxon statistical test for
two paired samples to LSAllOnce and LSAll, which returns a p-value lower than 0.0001,
confirming the superiority of LSAll.

Table 5. Local search percentage reduction from construction

Size LSalone LSpairs LSalone+ LSpairs LScluster LSAllOnce LSAll
small -2% -2% -5% -9% -13% -18%

medium -5% -5% -8% -12% -17% -22%
large -7% -8% -12% -14% -24% -29%

summary -4.7% -5.0% -8.2% -11.5% -17.8% -22.8%

Figure 3 shows the search profile of the six methods described above. Specifically, we represent
the objective value of the best known solution on a 130-nodes instance when applying different
solution methods for 100 global iterations. We have added a seventh method, labeled
“Constructions”, which represents the best value obtained when applying the constructive
method without any local search. The other six lines represent the best solution value obtained
with the application of the construction method followed by each of the six local searches
described above. Note that in addition to the LSalone+LSpairs combination previously
considered, we have also included an eight method, LSpairs+LSalone, to study the application of
these two methods in reverse order. The results in this diagram agree with those reported in
Table 5, where the two methods LSAllOnce and LSAll present the best results, being LSAll the
best one. It must be noted that LSAll is able to obtain the best results from the very beginning
of the search process, and continues being the leader in the entire search horizon considered.

AMP for the Capacitated Modular Hub Location / 18

Figure 3. Search profile for the different local search methods

In the next experiment, we undertake to assess the performance of the PR post-process. To do
this, all the instances in the training set have been executed for 20 iterations to create the
solutions in the ES that will be used during PR. The path relinking procedure has been able to
improve the previously obtained results in 22 out of the 36 instances in the training set, with an
average improvement of 1.4% (denoted as -1.4% in the Summary row of Table 6). In this
experiment we have also tested the strategy called two-sided path relinking (Festa and Resende
2011), in which the best direction to create the path is determined. In particular, we have tested
the reversal of the direction considered so far in the PR process, moving from the best towards
the poorer solution, and it has not produced any significant difference in the results. In fact, in
26 of the instances, PR gives the same best solution in the path, independently of the direction.
Table 6 shows the results for the different groups of instances, together with the increase in the
CPU time for including PR. It can be seen that the increase in the computing time decreases with
the size of the instances and, in our opinion, the extra time consumed by PR is worth, especially
in the large size instances, where a 2.3% of improvement is obtained.

Table 6. Path relinking contribution

Size Deviation from best CPU
small -1.3% +33.3%

medium -0.7% +16.4%
large -2.3% +13.9%

Summary -1.4% +21.2%

In our final experiment in the scientific testing, we explore the variant known as Truncated Path
Relinking (Resende et al. 2010). As described in Section 4, this strategy considers the early
termination of the PR without reaching the guiding solution, thus performing only a limited
number of steps, PRsteps. Table 7 shows the average percentage improvement (reduction with
respect to the initiating solution) achieved at each step of the path. As in previous tables, we
divide the results according to the size of the instances and summarize them in an additional

950000

1050000

1150000

1250000

1350000

1450000

1550000

1 11 21 31 41 51 61 71 81 91

Constructions
LSalone
LSpairs
LSalone+LSpairs
LSpairs+LSalone
LSclusters
LSAllOnce

AMP for the Capacitated Modular Hub Location / 19

row. We include a final row with the average increase in the CPU time due to the application of
PR.

 Table 7. Average percentage reduction in truncating path relinking

 PRsteps
Size 1 2 3 4 5 6

small -1.2% -1.3% -1.3% -1.3% -1.3% -1.3%
medium 0.0% -0.3% -0.4% -0.6% -0.7% -0.7%

large -0.9% -1.3% -1.9% -2.0% -2.3% -2.3%
Summary -0.7% -1.0% -1.2% -1.3% -1.4% -1.4%
CPU time +2.9% +5.4% +7.0% +8.1% +10.0% +10.6%

In line with Table 6, Table 7 clearly shows the overall contribution of PR. Moreover, this table
shows that we achieve in two steps the best possible result in the small instances and, therefore,
it is a good strategy to truncate the path at an early stage. Medium and large instances require
more steps to achieve the best results in the path. At some point (step 5) the improvement
stagnates and further steps do not produce better results.

5.2 Competitive testing

Once we have established the key-search parameters and explored the different variants of our
method, we compare two variants of it with the best previous method. The two variants,
AMP_10 and AMP_20, correspond to a termination criteria of 10 and 20 global iterations with
full path relinking between the solutions in the Elite Set.

Table 8 reports the results of the comparison between the proposed procedure and the Strategic
Oscillation method, SO, by Corberán et al. (2016). We consider the full set of 170 instances, and
report the average percentage deviation (Dev), the running time in seconds (CPU), and the
number of best solutions found with each method (#Best). These instances have been classified
as small (10 ≤ 𝑛𝑛 ≤ 50), medium (55 ≤ 𝑛𝑛 ≤ 100), large (110 ≤ 𝑛𝑛 ≤ 150), extra-large
(155 ≤ 𝑛𝑛 ≤ 200), and huge (205 ≤ 𝑛𝑛 ≤ 250). Detailed results on each instance are shown in
Tables 9-13 in the Appendix.

Table 8. Comparison with best previous method

 Dev CPU # Best

Size

inst SO AMP_10 AMP_20 SO AMP_10 AMP_20 SO AMP_10 AMP_20
small 45 1.8% 0.9% 0.4% 3.0 0.3 0.8 13 23 33

medium 36 3.2% 1.1% 0.3% 37.8 11.2 24.8 6 8 30
large 27 10.6% 0.8% 0.0% 310.4 88.9 194.3 0 12 27

ex-large 37 13.2% 1.2% 0.0% 1606.3 185.8 397.8 0 17 37
huge 25 11.6% 1.2% 0.0% 4916.3 679.0 1403.7 0 12 25

Summary 170 7.4% 1.0% 0.2% 1130.7 156.9 329.3 19 72 152

Table 8 clearly shows the superiority of the proposed procedure with respect to the previous SO
method. Specifically, AMP_20 is able to obtain 152 best solutions out of the 170 instances

AMP for the Capacitated Modular Hub Location / 20

considered, and shows an average computing time of 329.3 seconds. This compares favorably
with the 19 best solutions obtained with SO, which uses 1130.7 seconds on average. The average
deviation (Dev) of 0.2% of AMP_20 also compares well with the 7.4% of SO. We have performed
a Wilcoxon test and the resulting p-value < 0.0001 confirms these conclusions. Regarding the
results obtained with AMP_10, it can be seen that, despite being much better than those
produced by SO, they are worse than those provided by AMP_20, although only half of the
computing time is used.

To complement the information in Table 8, we have performed a final experiment to compare
the evolution of the best solution found by AMP_20 and SO. Figure 4 reports the ratio between
the best solution found with both methods at each iteration and the best value reported in
Corberán et al. (2016), where a search horizon of 100 iterations has been considered. This
diagram confirms that our proposal consistently outperforms the best previous published
method.

Figure 4. Search profile of best methods

6. Conclusions

Hub location problems are difficult combinatorial optimization problems that have recently
received a lot of attention. In this paper, we have studied a capacitated modular hub location
problem that has been modeled in the Literature as a mixed integer non-linear program, and for
whose solution we have proposed an adaptive memory programming algorithm. We have tested
the effects of a variety of search strategies, as those combining different constructive methods
and neighborhood structures within a multi-start memory based framework. We have also
explored a Path Relinking post-process to obtain improved outcomes. Our experiments show
that the adaptive memory features are capable of searching the solution space economically
and effectively, outperforming existing approaches.

AMP for the Capacitated Modular Hub Location / 21

Acknowledgements

This work was supported by the Spanish Ministerio de Economía y Competividad and Fondo
Europeo de Desarrollo Regional (FEDER) (projects TIN-2015-65460-C02-01(MINECO/FEDER),
MTM-2015-68097(MINECO/FEDER), PhD. grant BES-2013-064245) and by the Generalitat
Valenciana (project Prometeo 2013/049). This support is gratefully acknowledged.

References

Beasley, J. E. (1990) OR-Library: distributing test problems by electronic mail. Journal of the
Operational Research Society 41, 1069-1072.

Corberán, Á., Peiró, J., Campos, V., Glover, F., Martí, R. (2016) Strategic oscillation for the
capacitated hub location problem with modular links. Journal of Heuristics 22, 221–244.

Ernst, A. T., Krishnamoorthy, M. (1996) Efficient algorithms for the uncapacitated single
allocation p-hub median problem. Location Science 4, 139–154.

Festa P., Resende, M.G.C. (2011) GRASP: basic components and enhancements.
Telecommunication Systems 46, 253-271.

Glover, F., Laguna, M. (1997) Tabu search, Kluwer, Norwell, MA.

Laguna, M., Martí, R. (1999) GRASP and path relinking for 2-layer straight line crossing
minimization. INFORMS Journal on Computing 11, 44–52.

Laguna, M. , Martí, R. (2003) Scatter search: Methodology and implementations in C. Kluwer
Academic Publishers, New York.

O’Kelly, M. E. (1987) a quadratic integer program for the location of interacting hub facilities.
European Journal of Operational Research 32, 393–404.

Peiró, J., Corberán, Á., Martí, R. (2014) GRASP for the uncapacitated r-allocation p-hub median
problem. Computers & Operations Research 43, 50–60.

Resende, M. G. C., Gallego, M. , Duarte, A. , Martí, R. (2010). GRASP and Path Relinking for the
Max-Min Diversity Problem. Computers and Operations Research 37, 498–508.

Yaman, H., Carello, G. (2005) Solving the hub location problem with modular link capacities.
Computers & Operations Research 32, 3227–3245.

AMP for the Capacitated Modular Hub Location / 22

Appendix

Table 9. SO and AMP on small size instances

 SO AMP_10 AMP_20
Instance Value Dev CPU Value Dev CPU Value Dev CPU

10_600_89_60_40_1_60_CAB 237701 1.5% 0.22 234243 0.0% 0.00 234243 0.0% 0.03
10_700_50_60_8_1_60_AP 273801 0.0% 0.23 278212 1.6% 0.00 278212 1.6% 0.03
10_700_50_60_8_1_60_CAB 253255 3.9% 0.22 243854 0.0% 0.00 243854 0.0% 0.03
10_700_69_40_8_1_50_CAB 257691 4.5% 0.22 246610 0.0% 0.00 246610 0.0% 0.03
10_800_60_60_6_1_69_AP 245513 0.0% 0.23 263198 7.2% 0.00 263198 7.2% 0.03
10_800_60_60_6_1_69_CAB 244417 2.6% 0.58 238144 0.0% 0.02 238144 0.0% 0.03
10_800_60_80_8_1_80_CAB 247078 2.6% 0.22 240872 0.0% 0.02 240872 0.0% 0.03
15_500_50_60_40_1_60_CAB 289339 1.1% 0.36 286201 0.0% 0.02 286201 0.0% 0.09
15_600_80_89_6_1_69_CAB 293075 0.8% 0.44 290734 0.0% 0.02 290734 0.0% 0.09
15_600_80_89_8_1_60_CAB 308168 2.5% 0.41 300776 0.0% 0.02 300776 0.0% 0.09
15_700_89_60_40_1_60_CAB 289953 0.7% 0.39 288078 0.0% 0.03 288047 0.0% 0.11
15_800_50_60_40_1_60_CAB 290026 1.3% 0.39 286358 0.0% 0.02 286358 0.0% 0.08
15_900_80_89_40_1_60_CAB 290134 1.3% 0.41 286408 0.0% 0.02 286408 0.0% 0.09
20_700_50_60_8_1_60_AP 406266 3.2% 0.98 393788 0.0% 0.05 393788 0.0% 0.20
20_700_50_60_8_1_60_CAB 176142 0.0% 1.03 176783 0.4% 0.03 176783 0.4% 0.16
20_700_50_60_8_1_60_USA 127058 7.7% 0.92 117986 0.0% 0.05 117986 0.0% 0.17
20_700_69_40_8_1_50_AP 408538 0.0% 1.03 417187 2.1% 0.06 417187 2.1% 0.22
20_700_69_40_8_1_50_CAB 187305 2.3% 0.84 183013 0.0% 0.05 183013 0.0% 0.17
20_800_60_60_6_1_69_CAB 164351 0.0% 0.73 165518 0.7% 0.05 165276 0.6% 0.19
20_800_60_80_8_1_80_AP 363247 0.0% 1.19 363247 0.0% 0.03 363247 0.0% 0.22
20_800_60_80_8_1_80_CAB 170069 1.2% 0.75 167993 0.0% 0.03 167993 0.0% 0.19
20_800_60_80_8_1_80_USA 121071 4.9% 0.87 115370 0.0% 0.03 115370 0.0% 0.17
20_900_80_89_40_1_80_CAB 151342 0.4% 0.80 150767 0.0% 0.03 150767 0.0% 0.16
25_600_80_60_6_1_40_CAB 210578 0.0% 1.70 210808 0.1% 0.06 210808 0.1% 0.36
25_600_80_89_6_1_69_CAB 192213 0.0% 1.39 192388 0.1% 0.06 192388 0.1% 0.36
25_600_80_89_8_1_60_CAB 214944 3.9% 1.64 206901 0.0% 0.06 206814 0.0% 0.39
25_650_69_69_6_1_50_CAB 210278 4.0% 1.84 202169 0.0% 0.08 202169 0.0% 0.37
25_650_69_69_6_1_70_CAB 162862 0.7% 2.14 165762 2.5% 0.09 161771 0.0% 0.36
25_800_89_60_40_1_80_CAB 179893 0.0% 1.86 180375 0.3% 0.08 180210 0.2% 0.34
25_900_80_89_40_1_80_CAB 181207 0.7% 1.61 180028 0.0% 0.08 180028 0.0% 0.34
30_600_80_89_8_1_60_AP 383188 8.5% 3.46 353148 0.0% 0.12 353148 0.0% 0.53
30_700_69_40_8_1_50_USA 211640 0.0% 2.93 214726 1.5% 0.25 214726 1.5% 0.83
35_600_80_89_8_1_60_AP 448064 2.5% 3.98 437119 0.0% 0.28 437119 0.0% 0.89
35_600_80_89_8_1_60_USA 206472 0.0% 4.40 207966 0.7% 0.30 207966 0.7% 0.64
35_700_80_50_8_1_69_AP 436550 0.2% 4.23 435489 0.0% 0.27 435489 0.0% 0.58
40_600_80_89_8_1_60_USA 288503 2.7% 6.19 306713 9.1% 1.14 281012 0.0% 2.86
40_700_80_50_8_1_69_AP 478470 0.0% 6.43 488152 2.0% 0.59 486523 1.7% 1.20
40_700_80_50_8_1_69_USA 282629 2.8% 6.01 277734 1.0% 1.03 275037 0.0% 2.07
45_600_80_89_8_1_60_AP 521958 1.5% 8.44 528549 2.7% 0.78 514433 0.0% 1.84
45_700_69_40_8_1_50_AP 589832 0.6% 8.63 592707 1.1% 0.89 586337 0.0% 1.97
45_700_69_40_8_1_50_USA 345335 1.5% 6.83 340367 0.0% 1.42 340367 0.0% 3.29
50_600_80_89_8_1_60_USA 347675 5.0% 12.34 337159 1.8% 2.39 331097 0.0% 4.99
50_700_69_40_8_1_50_AP 598636 0.0% 11.50 610081 1.9% 1.48 610081 1.9% 3.23
50_700_80_50_8_1_69_AP 562786 2.4% 11.23 552563 0.5% 1.42 549699 0.0% 2.85
50_700_80_50_8_1_69_USA 328853 0.5% 10.87 337165 3.0% 2.32 327249 0.0% 5.05

AMP for the Capacitated Modular Hub Location / 23

Table 10. SO and AMP on medium size instances

 SO AMP_10 AMP_20
Instance Value Dev CPU Value Dev CPU Value Dev CPU

55_500_60_69_60_1_50_AP 551996 4.9% 12.28 526290 0.0% 1.70 526290 0.0% 3.71
55_500_60_69_60_1_50_USA 356419 0.1% 11.51 355920 0.0% 3.28 355920 0.0% 7.39
55_800_69_50_80_1_60_AP 627685 1.4% 13.65 622691 0.6% 1.59 618881 0.0% 3.62
55_800_69_50_80_1_60_USA 356039 0.0% 10.31 367214 3.1% 3.45 367214 3.1% 7.36
60_500_60_69_60_1_50_AP 597551 10.4% 14.23 570095 5.3% 3.31 541254 0.0% 6.75
60_600_60_69_60_1_69_USA 324245 0.0% 14.34 339436 4.7% 4.71 339436 4.7% 9.38
60_800_69_50_80_1_60_AP 664374 0.0% 13.32 671543 1.1% 3.43 669005 0.7% 7.44
60_800_69_50_80_1_60_USA 375981 2.2% 14.96 375481 2.0% 4.56 368020 0.0% 10.25
65_500_60_69_60_1_50_AP 594968 0.5% 19.49 597554 0.9% 3.54 592242 0.0% 8.49
65_600_60_69_60_1_69_AP 596768 4.0% 19.06 574420 0.1% 3.78 573660 0.0% 8.07
65_600_60_69_60_1_69_USA 366133 6.1% 21.09 346628 0.5% 5.90 344968 0.0% 12.45
65_800_69_50_80_1_60_USA 405756 9.6% 21.08 370350 0.0% 7.47 370350 0.0% 14.24
70_500_60_69_60_1_50_AP 664745 4.7% 24.56 634622 0.0% 5.43 634622 0.0% 11.68
70_600_60_69_60_1_69_AP 615656 0.5% 22.25 612709 0.0% 4.60 612709 0.0% 11.17
70_600_60_69_60_1_69_USA 383492 1.8% 29.03 380610 1.0% 7.24 376830 0.0% 17.66
70_800_69_50_80_1_60_AP 769108 2.7% 27.27 754050 0.7% 4.88 748826 0.0% 10.47
75_500_60_69_60_1_50_USA 552080 0.0% 29.14 567428 2.8% 12.40 564299 2.2% 28.97
75_600_60_69_60_1_69_AP 665111 1.9% 35.23 656614 0.6% 6.13 652910 0.0% 13.74
75_600_60_69_60_1_69_USA 519474 3.9% 31.44 516299 3.3% 10.83 499866 0.0% 26.01
75_800_69_50_80_1_60_AP 828245 6.8% 32.87 784188 1.1% 6.65 775560 0.0% 14.40
80_500_60_69_60_1_50_AP 722632 2.5% 40.25 712368 1.1% 6.27 704828 0.0% 14.87
80_500_60_69_60_1_50_USA 632672 0.0% 35.09 641698 1.4% 16.58 638106 0.9% 33.81
80_800_69_50_80_1_60_AP 837210 1.4% 39.53 825392 0.0% 6.69 825392 0.0% 16.04
80_800_69_50_80_1_60_USA 673561 4.5% 36.57 644728 0.0% 14.90 644728 0.0% 34.76
85_500_60_69_60_1_50_AP 762920 1.7% 62.71 759237 1.2% 9.42 750455 0.0% 21.76
85_500_60_69_60_1_50_USA 777825 7.1% 53.17 738851 1.8% 20.47 725993 0.0% 48.85
85_800_69_50_80_1_60_AP 903683 4.2% 60.42 880568 1.5% 9.36 867232 0.0% 22.67
90_500_60_69_60_1_50_USA 804494 7.0% 53.98 752493 0.1% 32.56 751816 0.0% 68.49
90_600_60_69_60_1_69_AP 759377 0.3% 70.56 756916 0.0% 12.17 756916 0.0% 24.57
90_600_60_69_60_1_69_USA 708086 2.0% 54.34 694659 0.0% 26.97 694320 0.0% 54.07
90_800_69_50_80_1_60_AP 966669 4.6% 70.72 931584 0.8% 12.43 924069 0.0% 25.85
95_500_60_69_60_1_50_AP 905808 6.8% 75.52 848766 0.1% 15.60 848132 0.0% 30.09
95_500_60_69_60_1_50_USA 780646 4.1% 64.88 758687 1.2% 32.22 749775 0.0% 70.33
95_600_60_69_60_1_69_AP 826451 2.0% 82.84 814028 0.5% 13.04 810103 0.0% 28.94
95_600_60_69_60_1_69_USA 714260 3.7% 65.63 692781 0.6% 30.65 688970 0.0% 72.09
100_500_60_69_60_1_50_USA 792405 0.0% 77.82 794332 0.2% 40.48 794332 0.2% 91.62

AMP for the Capacitated Modular Hub Location / 24

Table 11. SO and AMP on large size instances

 SO AMP_10 AMP_20
Instance Value Dev CPU Value Dev CPU Value Dev CPU

110_500_60_69_60_1_50_AP 996975 3.1% 150.65 970622 0.4% 26.99 967134 0.0% 60.89
110_600_60_69_60_1_69_AP 934826 2.3% 142.15 915806 0.2% 24.99 914181 0.0% 52.43
110_700_80_60_89_1_60_USA 1122255 13.6% 105.91 988074 0.0% 58.69 988074 0.0% 133.62
110_800_69_50_80_1_60_USA 1039753 13.1% 117.52 943367 2.6% 62.79 919493 0.0% 143.06
110_900_69_50_89_1_60_USA 1105052 8.6% 105.43 1025893 0.8% 52.98 1017557 0.0% 136.96
120_500_60_69_60_1_50_AP 1123004 8.0% 206.13 1053603 1.3% 43.59 1039932 0.0% 81.98
120_500_60_69_60_1_50_USA 1117652 14.3% 151.31 977587 0.0% 87.44 977587 0.0% 199.98
120_700_80_60_89_1_60_USA 1219108 11.5% 163.57 1093189 0.0% 74.66 1093189 0.0% 189.00
120_900_69_50_89_1_60_USA 1175745 8.8% 146.52 1103461 2.1% 83.34 1080591 0.0% 204.63
125_500_60_69_60_1_50_AP 1145428 4.7% 192.06 1093738 0.0% 66.02 1093577 0.0% 131.42
125_800_69_50_80_1_60_AP 1371476 9.9% 208.84 1265452 1.4% 45.52 1247724 0.0% 105.47
130_600_60_69_60_1_69_AP 1158759 8.5% 291.91 1067512 0.0% 67.16 1067512 0.0% 144.30
130_600_60_69_60_1_69_USA 1040651 6.3% 180.23 984860 0.6% 107.21 978893 0.0% 254.72
130_800_69_50_80_1_60_USA 1264063 14.2% 227.08 1106959 0.0% 117.71 1106959 0.0% 253.02
135_600_60_69_60_1_69_AP 1229722 9.9% 335.92 1118752 0.0% 66.55 1118752 0.0% 145.82
135_800_69_50_80_1_60_USA 1405752 24.8% 251.49 1126503 0.0% 132.34 1126503 0.0% 296.23
140_500_60_69_60_1_50_AP 1412597 11.1% 357.75 1271185 0.0% 71.54 1271185 0.0% 162.32
140_700_80_60_89_1_60_USA 1490007 21.6% 286.76 1225642 0.0% 165.41 1225642 0.0% 296.92
140_800_69_50_80_1_60_AP 1570932 8.9% 377.44 1442113 0.0% 83.24 1442113 0.0% 184.51
140_900_69_50_89_1_60_USA 1444192 16.2% 275.01 1242773 0.0% 136.96 1242773 0.0% 283.20
145_600_80_69_60_1_50_AP 1462902 7.8% 352.66 1368251 0.9% 90.17 1356427 0.0% 217.72
145_600_80_69_60_1_50_USA 596573 16.2% 710.75 519791 1.2% 112.31 513607 0.0% 239.69
145_800_69_50_80_1_60_AP 1603039 7.4% 357.12 1517218 1.6% 106.58 1493074 0.0% 230.67
145_800_69_50_80_1_60_USA 654681 8.4% 647.73 628893 4.1% 129.81 604117 0.0% 259.14
150_1000_69_60_80_1_69_USA 612031 5.8% 837.07 578217 0.0% 135.62 578217 0.0% 270.54
150_800_69_50_80_1_60_AP 1734477 11.1% 424.82 1584133 1.5% 114.37 1561333 0.0% 274.49
150_900_69_60_80_1_89_USA 606912 9.7% 775.96 562431 1.7% 136.29 553060 0.0% 293.43

AMP for the Capacitated Modular Hub Location / 25

Table 12. SO and AMP on extra-large size instances

 SO AMP_10 AMP_20
Instance Value Dev CPU Value Dev CPU Value Dev CPU

155_1000_69_60_80_1_69_USA 650419 13.9% 919.46 571084 0.0% 149.53 571084 0.0% 304.79
155_500_60_69_60_1_50_AP 1427231 16.5% 635.50 1240808 1.2% 124.74 1225509 0.0% 279.15
155_800_69_50_80_1_60_AP 1602365 13.6% 604.55 1442949 2.3% 127.36 1410360 0.0% 275.13
160_600_60_69_60_1_69_AP 685604 13.5% 950.80 613597 1.5% 58.83 604311 0.0% 126.61
160_700_80_60_89_1_60_USA 704872 24.3% 1010.66 588205 3.8% 194.77 566847 0.0% 369.32
160_800_69_50_80_1_60_AP 826772 9.0% 1042.87 786230 3.6% 82.48 758780 0.0% 176.89
160_900_80_50_60_1_69_AP 775178 7.2% 1008.39 741112 2.5% 79.78 722878 0.0% 159.69
160_900_89_50_60_1_69_USA 530376 12.4% 1048.41 481774 2.1% 163.12 471754 0.0% 339.01
165_1000_69_60_80_1_69_USA 665409 9.4% 1302.26 625185 2.8% 172.64 608228 0.0% 369.96
165_800_69_50_80_1_60_AP 876244 14.7% 1109.94 764063 0.0% 114.51 764063 0.0% 227.33
165_800_69_50_80_1_60_USA 704389 6.1% 1302.59 667884 0.6% 244.26 663785 0.0% 466.76
170_500_60_69_60_1_50_AP 714822 21.0% 1152.12 590908 0.0% 168.00 590908 0.0% 293.91
170_600_89_60_69_1_80_USA 551600 15.5% 1304.46 491632 2.9% 260.48 477564 0.0% 485.13
170_700_80_60_89_1_60_USA 609581 6.7% 1361.95 605758 6.0% 240.73 571293 0.0% 471.38
170_900_69_60_80_1_89_USA 613150 4.8% 1403.26 589807 0.8% 196.72 585232 0.0% 474.49
170_900_80_50_60_1_69_AP 754262 2.4% 1251.03 742642 0.8% 116.22 736391 0.0% 266.60
175_500_60_69_60_1_50_AP 649148 8.4% 1427.86 598789 0.0% 100.08 598789 0.0% 206.36
175_600_60_69_60_1_69_AP 648587 5.5% 1664.50 615051 0.0% 134.62 615051 0.0% 291.06
175_800_69_50_80_1_60_USA 716778 6.3% 1625.83 725441 7.6% 261.61 674337 0.0% 559.54
175_900_69_60_80_1_89_USA 602257 0.1% 1434.86 601938 0.0% 201.47 601938 0.0% 447.89
180_1000_69_60_80_1_69_USA 740453 9.8% 1970.72 674578 0.0% 238.30 674578 0.0% 480.79
180_600_60_69_60_1_69_AP 746918 19.5% 1804.62 625016 0.0% 168.64 625016 0.0% 377.00
180_600_89_60_69_1_80_USA 558479 11.8% 1739.88 501098 0.4% 284.38 499331 0.0% 599.79
180_800_89_69_89_1_89_AP 797621 8.8% 1921.67 738870 0.8% 151.14 733082 0.0% 334.86
185_500_60_69_60_1_50_AP 858506 36.3% 1872.10 629924 0.0% 113.62 629924 0.0% 336.56
185_600_80_89_89_1_89_AP 700282 5.5% 2029.67 663550 0.0% 192.09 663550 0.0% 424.61
185_600_89_60_69_1_80_USA 530783 5.9% 1880.00 501049 0.0% 272.53 501049 0.0% 656.61
185_800_69_50_80_1_60_AP 890070 9.5% 1971.64 813219 0.0% 147.86 813219 0.0% 334.44
185_900_69_60_80_1_89_USA 621650 7.4% 2158.96 579041 0.0% 264.73 579041 0.0% 511.57
190_600_60_69_60_1_69_AP 773840 20.5% 2200.58 642125 0.0% 163.49 642125 0.0% 354.57
190_600_80_89_89_1_89_AP 800719 20.5% 2288.98 667778 0.5% 216.77 664307 0.0% 426.08
190_600_89_60_69_1_80_USA 522508 5.4% 2190.87 506162 2.1% 386.28 495751 0.0% 818.66
190_700_89_69_89_1_89_USA 575933 10.9% 2177.05 531110 2.2% 355.05 519531 0.0% 720.86
190_800_69_50_80_1_60_AP 1031614 27.1% 2298.88 811776 0.0% 166.27 811776 0.0% 379.62
195_600_60_69_60_1_69_AP 774165 18.8% 2487.11 651750 0.0% 170.76 651750 0.0% 401.27
195_800_69_50_80_1_60_AP 1107739 34.2% 2431.53 825666 0.0% 249.33 825402 0.0% 500.46
195_900_89_89_89_1_69_AP 1093874 26.2% 2449.22 866814 0.0% 142.29 866814 0.0% 470.57

AMP for the Capacitated Modular Hub Location / 26

Table 13. SO and AMP on huge size instances

 SO AMP_10 AMP_20
Instance Value Dev CPU Value Dev CPU Value Dev CPU

200_500_60_69_60_1_50_AP 661633 5.0% 2686.72 630174 0.0% 205.88 630174 0.0% 456.88
200_700_80_60_89_1_60_USA 743444 17.5% 2976.42 632652 0.0% 422.74 632652 0.0% 912.87
200_700_89_69_89_1_89_USA 608272 10.0% 2985.89 558004 0.9% 444.05 552794 0.0% 1046.31
200_800_69_50_80_1_60_AP 763358 5.0% 2731.83 726953 0.0% 202.12 726953 0.0% 450.04
200_800_89_69_89_1_89_USA 645449 11.9% 2995.71 577027 0.0% 429.62 577027 0.0% 860.19
205_800_69_50_80_1_60_USA 800686 10.7% 3086.01 723185 0.0% 494.43 723185 0.0% 1002.65
205_900_69_60_80_1_89_USA 670343 6.2% 3570.73 641338 1.6% 477.98 631462 0.0% 881.68
210_800_69_50_80_1_60_USA 811601 9.9% 3832.57 761961 3.2% 474.52 738677 0.0% 1027.60
210_900_69_60_80_1_89_USA 699431 8.9% 3743.74 642226 0.0% 455.71 642226 0.0% 994.66
215_800_69_50_80_1_60_USA 897348 18.7% 3927.14 776169 2.7% 508.17 756041 0.0% 1067.44
215_900_69_60_80_1_89_USA 736413 11.8% 3653.79 662574 0.6% 440.71 658439 0.0% 952.68
220_800_69_50_80_1_60_USA 872528 11.9% 4275.09 785013 0.7% 669.57 779880 0.0% 1414.82
220_900_69_60_80_1_89_USA 725843 8.8% 4485.24 667050 0.0% 661.34 667050 0.0% 1204.99
225_800_69_50_80_1_60_USA 978703 7.4% 4993.80 911123 0.0% 689.23 911123 0.0% 1399.77
225_900_69_60_80_1_89_USA 812905 9.6% 4668.05 752181 1.4% 711.43 741512 0.0% 1366.89
230_800_69_50_80_1_60_USA 994501 11.5% 6096.23 892018 0.0% 694.07 892018 0.0% 1562.39
230_900_69_60_80_1_89_USA 859790 14.3% 5934.23 765328 1.8% 742.37 751951 0.0% 1509.29
235_800_69_50_80_1_60_USA 1067897 7.5% 6223.85 1026170 3.3% 800.88 993119 0.0% 1734.28
235_900_69_60_80_1_89_USA 967918 20.0% 6017.28 835859 3.7% 768.59 806302 0.0% 1662.56
240_800_69_50_80_1_60_USA 1106592 12.2% 6079.38 1019676 3.4% 1122.78 985860 0.0% 2515.60
240_900_69_60_80_1_89_USA 914468 12.2% 6852.66 846005 3.8% 788.71 815008 0.0% 1769.56
245_800_69_50_80_1_60_USA 1209802 20.8% 7913.75 1001725 0.0% 1264.32 1001725 0.0% 2322.69
245_900_69_60_80_1_89_USA 913041 8.5% 7197.28 841321 0.0% 903.16 841321 0.0% 1799.31
250_800_69_50_80_1_60_USA 1132659 11.7% 7800.79 1045446 3.1% 1299.77 1013736 0.0% 2508.24
250_900_69_60_80_1_89_USA 991167 17.2% 8180.05 845767 0.0% 1302.52 845767 0.0% 2668.66

