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Abstract. The Obnoxious p-Median problem consists in selecting a subset of
p facilities from a given set of possible locations, in such a way that the sum
of the distances between each customer and its nearest facility is maximized.
The problem is NP-hard and can be formulated as an integer linear program.
It was introduced in the 1990s, and a branch and cut method coupled with a
tabu search has been recently proposed. In this paper, we propose a heuristic
method – based on the GRASP methodology – for finding approximate so-
lutions to this optimization problem. In particular, we consider an advanced
GRASP design in which a filtering mechanism avoids applying the local search
method to low quality constructed solutions. Empirical results indicate that
the proposed implementation compares favorably to previous methods. This
fact is confirmed with non-parametric statistical tests.

1. Introduction

Facility location has been of practical and theoretical interest for more than
the half of a century (Cohen, 1973; Klose and Drexl, 2005). First linear program-
ming (LP) formulations origin in the late fifties and were soon followed by solution
techniques, which later on became well-known as Branch and Bound (B&B) or
Mixed Integer Programing (MIP). The classical so-called warehouse location prob-
lem (WLP), also well-known as (simple) facility or plant location problem, is an
uncapacitated optimization problem, which can be modeled as an LP (Balinski,
1965) or network problem (Drezner and Hamacher, 2004; Melkote and Daskin,
2001). It is a site-selecting location-allocation model with a min-sum objective,
where from a number of potential facility or warehouse sites the set of costumers
has to be serviced, while minimizing the total fixed site-costs (location) plus the to-
tal variable customer assignment costs (allocation). The WLP is NP-hard (Garey
and Johnson, 1979; Papadimitriou and Yannakakis, 1991) and, as such, has been in
the focus of researchers interested in developing specialized LP-approaches (Körkel,
1999) or approximative constructive and local search or improvement algorithms,
including standard add- or drop-heuristics, and Lagrangian approaches (Kuehn
and Hamburger, 1963; Beasley, 1993), which then were followed by more advanced
metaheuristics like genetic algorithms or tabu search and its derivatives (Kratica
et al., 2001; Michel and Hentenryck, 2004; Greistorfer and Rego, 2006). Comparing
the WLP with the p-median problem, pMP (Hakimi, 1964; 1965), one identifies
two differences: (1) there are no fixed site-costs involved and (2) the number of
finally opened sites, p, is no longer a decision variable, but becomes included in

Key words and phrases. Obnoxious location, Diversity problem, Metaheuristics, GRASP, Filter
solutions.

1

Manuscript (including abstract)
Click here to view linked References

http://ees.elsevier.com/ins/viewRCResults.aspx?pdf=1&docID=25773&rev=0&fileID=703539&msid={D6F71C3B-7542-479C-A4CA-B87F1A593EED}


J. M. Colmenar et al.

the model. The pMP can be solved in polynomial time for fixed values of p, but is
strongly NP-hard for variable values of p (Garey and Johnson, 1979; Megiddo and
Supowit, 1984; Current et al., 2004). Consequently, any pMP is a special case of
the general class of WLPs. Such as for the WLP, a variety of solution procedures,
exact approaches, primal-dual approaches and metaheuristics, has been introduced
for the pMP (Tansel et al., 1983; Reese, 2006; Mladenović et al., 2007). A most re-
cent paper, Batta et al. (2014), is recommend for a classical as well as modern view
(dispersion, population, and equity criteria) on locational developments, offering
an additional special focus on pMP.

This work relates to location type problems like the WLP and pMP, addition-
ally taking account of so-called obnoxious or semi-obnoxious effects. Such effects
often occur when interesting services of some provider are based on unwanted, but
inevitably necessary locations, which do not add additional value to the product.
Quite contrary, pure obnoxiousness clearly devalues the production process. Ob-
noxious problems were firstly coined in Church and Garfinkel (1978) who located
a facility in a network using an exact method and also introduced the term of
so-called bottleneck points for a network.

Erkut and Neuman (1989) used the terms disservice and service of the people
in the vicinity of an (semi-)obnoxious facility that occurs during the processing of
a product. In general, such services include a type of hazardous material, waste
disposal, water treatment, nuclear power or chemical plants as well as big public
facilities like airports. Regularly, these problems arise in the context of urban
settings when the network may consist of noisy or polluting roads, transportation
corridors, or rail lines (Segal, 2003).

The present work deals with the Obnoxious p-Median (OpM) problem. It can
be formally defined as follows. Let I be a set of clients, J a set of facilities, and
dij the distance between the client i ∈ I and the facility j ∈ J . The OpM problem
consists in finding a set S with p facilities (with S ⊆ J and p < |J |), such that
the sum of the minimum distance between each client and the set of facilities is
maximized. In mathematical terms:

max
∑

i∈I

min{dij : j ∈ S}

subject to

S ⊆ J / |S| = p

Facilities in S are called open facilities, while facilities in J \ S are known as
closed or unopened facilities.

Table 1 shows an example of pair-client distances, where there are 9 clients
I = {i1, i2, i3, i4, i5, i6, i7, i8, i9} and 6 potential facilities J = {j1, j2, j3, j4, j5, j6}.
Suppose that p = 3. Then, a solution of the OpM consists of selecting 3 facilities
out of 6 in J . Table 2a shows a solution with S = {j2, j5, j6}. The minimum
distance between each client and the corresponding facility is highlighted with bold
font. For example, the distances from client i1 to each facility are: d(i1, j2) = 2,
d(i1, j5) = 4, and d(i1, j8) = 8. Then, j2 is the closest facility to client i1. The
value of the objective function of this solution, denoted as f(S), is the sum of the
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j1 j2 j3 j4 j5 j6
i1 3 2 10 13 4 8
i2 14 14 11 3 15 12
i3 5 4 6 12 14 6
i4 3 1 1 3 10 9
i5 13 9 2 10 9 4
i6 9 5 11 14 4 11
i7 4 3 4 13 4 2
i8 12 2 9 3 15 13
i9 9 11 1 2 7 4
∑

72 51 55 73 82 69

Table 1. Matrix of distances. Last row shows the sum of all the
client distances for each facility.

minimum distances from each client to the set of facilities: f(S) = 2+ 12+ 4+1+
4 + 4 + 2 + 2 + 4 = 35.

Table 2b shows a different solution S′ = {j2, j3, j4}, where the value of the
objective function is f(S′) = 23. Considering that the OpM is a maximization
problem, solution S is better than solution S′. In other words, the minimum
distances among the clients and facilities in S has a sum that is larger than the one
in S′.

j2 j5 j6
i1 2 4 8
i2 14 15 12

i3 4 14 6
i4 1 10 9
i5 9 9 4

i6 5 4 11
i7 3 4 2

i8 2 15 13
i9 11 7 4

f(S) = 35
(a) S = {j2, j5, j6}

j2 j3 j4
i1 2 10 13
i2 14 11 3

i3 4 6 12
i4 1 1 3
i5 9 2 10
i6 5 11 14
i7 3 4 13
i8 2 9 3
i9 11 1 2

f(S) = 23
(b) S′ = {j2, j3, j4}

Table 2. Example of solutions with p = 3.

In this paper we explore the adaptation of the Greedy Randomized Adaptive
Search Procedure methodology, GRASP, introduced in Feo and Resende (1989),
to solve the OpM problem. Each GRASP iteration consists of constructing a trial
solution and then applying an improvement procedure to find a local optimum. We
explore different designs for both phases, construction and improvement. In par-
ticular, in Section 3 we propose two different constructive methods and in Section
4, we describe two local search algorithms. Additionally, we propose an efficient
strategy to update the objective function that considerably reduces the running
time of GRASP. In Section 5, we present a filtering strategy intended to discard
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low-quality solutions and to selectively apply the local search only to promising
solutions. This mechanism reduces the computing time without deteriorating the
quality of the final solution. Section 6 reports on an extensive computational expe-
rience to validate the proposed algorithm by comparing its performance with those
in the current state of the art. Finally, Section 7 summarizes the main conclusions
of our research.

2. Literature review

There exists an extensive literature treating obnoxious and semi-obnoxious sit-
uations, modeled on the plane or in a graph, using max-min, max-max and often
bi-criteria objectives (Erkut and Neuman, 1989; Cappanera, 1999; Segal, 2003; Con-
ceição Fonseca and Captivo, 2007; Farahani et al., 2010; Batta et al., 2014). This
goes along with the vast research on (obnoxious) p-median, p-center and similar
location problems. Some of these sources are highlighted subsequently.

In Drezner and Wesolowsky (1980) a planar, Euclidean model of a 1-facility-
problem is presented in which the shortest weighted distance to a point is maxi-
mized. Simultaneously, a side constraint must hold, i.e., the facility must be within
a pre-specified distance from each point. The problem is solved using a graphi-
cal circles-based approach. A continuation of this work can be found in Drezner
and Wesolowsky (1983), where a constrained obnoxious problem is considered for
which a weighted rectangular-metric objective has to be maximized. The authors
propose two algorithms, a so-called boundary and segment search and an LP-based
approach. A semi-obnoxious scenario is solved in Melachrinoudis (1985). It uses a
max-min model and seeks for a point on a convex two-dimensional bounded region,
which maximizes the minimum weighted distance from that point to a given set of
existing points in the region to be considered. As before, a circles-based, straight-
forward geometrical approach as well as an exact algorithm, using Kuhn-Tucker
boundary points, is introduced. Complexity issues regarding the placement of sev-
eral facilities in an obnoxious setting, a p max-min problem, were considered by
Tamir (1991). It is shown that even the finding of an approximate solution is NP-
hard. Again, Drezner and Wesolowsky (1996) deal with an Euclidean network and
an obnoxious urban situation in which a location has to be determined inside the
convex hull of a number of nodes in order to maximize the minimum weighted dis-
tance between this point and the nodes and arcs of the network. Among others, the
authors offer an ǫ-approximation scheme, which was later improved in Segal (2003).
Welch and Salhi (1997) present three heuristics to solve the max-min formulation
for siting p facilities on a network considering pollution dispersion equation and
additionally facility interaction. Starting with p = 1, a graphical method approx-
imates the pollution dispersion by the use of polygons. Afterwards, the general
case for p and the combination of both the p max-min and p max-sum objectives,
using a lexicographic approach, are investigated. Moreover, a simulated annealing
algorithm is used to evaluate the base-algorithms.

Ohsawa and Tamura (2003) study the placement of a semi-obnoxious facility in
a continuous plane underlying the bi-objective of maximizing the distance to the
nearest inhabitant and minimizing the sum of distances to all users. In doing so, an
elliptic max-min criterion and the rectangular min-sum criterion are used to model
the push- and pull-aspect, respectively. For determining an efficient set and ac-
cording trade-off curves, polynomial-time algorithms are presented. The obnoxious

4



Advanced GRASP for the OpM Problem

topic is considerably extended in Cappanera et al. (2004), who additionally consider
a routing component, in which sites and transportation links may be affected by a
hazardous single commodity. The resulting flow model of this obnoxious facility lo-
cation problem is then solved by a Lagrangian heuristic and possibly improved by a
subsequent B&B-algorithm. A multi-objective model for the location of landfills is
discussed in Rakas et al. (2004). They use a combined weighted objective and solve
the overall problem based on a composition of several MIP-solutions. Highlighted
are the use of fuzzy arithmetic rules with triangular fuzzy numbers to cover the
aspect of uncertainty and the coverage of a real-case-study. Tamir (2006) focuses
on the problem of finding the location of two new and obnoxious facilities in the
plane. The objective is to maximize the minimum of all weighted distances between
the existing customer facilities and the two new facilities, and the weighted distance
between the pair of new facilities. For the Euclidean and rectilinear versions of this
2-obnoxious facility location problem efficient logarithmic running time algorithms
are presented, and the rectilinear case is extended to also handle general (non-
convex) planar and compact polygonal sets. Yapicioglu et al. (2007) use a single-
and a bi-objective objective particle swarm optimizer, well-known from evolution-
ary computation for their semi-obnoxious facility location problem. The idea is to
simultaneously minimize transportation costs and undesirable effects, represented
by a piecewise distance function depicting the degree of obnoxiousness. A computa-
tional analysis approximates the linear complexity in effort with increasing problem
size. Berman and Wang (2007; 2008) consider the problem of locating single and
multiple semi-obnoxious facilities while expropriating the nearest demand nodes un-
der the restriction of a given total budget hold by the developer. The objective is to
maximize the minimum weighted distance to the non-expropriated demand nodes.
The algorithms introduced are based on dominating sets, Lagrangian relaxation
and B&B. In Berman et al. (2008) the base topic is extended to the possible expro-
priation of population centers in the vicinity of selected routes of a transportation
model, thus introducing a routing effect, e.g., when avoiding the transportation of
hazardous material in populated resident zones. Solution approaches for the single-
and multiple-flow-case are based on a greedy heuristic and on column generation
or branch and price, respectively.

A multi-objective obnoxious facility location model is treated in Bhattacharya
(2011), in which an obnoxious facility interacts with a given set of existing cos-
tumers on the plane and has to be located according to a max-min criterion, while
at the same time maximizing the number of existing facility points covered. The
algorithm proposed is a rectangle decomposition, a step-wise analytical approach
that embeds linear as well as non-linear programming sub-procedures. Ortigosa
et al. (2011) describe heuristic methods, based on Pareto-approaches, for generating
semi-obnoxious locations. In doing so, they use a bi-objective convex/non-convex
approach and several randomized sampling methods to optimize the desirable and
the non-desirable aspect of the model, i.e. the min-sum pull-objective and the ob-
noxious push-objective. Coutinho-Rodrigues et al. (2012) deal with an empiric case
of an urban waste collection problem in which a number of waste containers has to
be located in a way that combines push and pull aspects of being serviced by a lo-
cation too near (visual aesthetics, smell, nuisance, attractiveness) and by a location
too far away (walking effort to deposit waste), respectively. Again, a bi-objective
model approach is used, this time to minimize both, the container investment cost
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and a so-called weighted average customer dissatisfaction. The solution approach
is a MIP-model, letting the decision-maker the final choice from non-dominated
locations. Lozano et al. (2012) study the so-called separation or dual bandwidth
problem. This NP-hard problem uses a max-min objective function to optimize
transmitters in radio frequency assignment by assigning different frequencies in
such a way that physically neighboring transmitters have as different frequencies as
possible. To solve this type of layout problem, different metaheuristic approaches
are studied, e.g., ejection chains, tabu search and variable neighborhood search.
The interesting point in Heydari and Melachrinoudis (2012), who describe a semi-
obnoxious facility with elliptic max-min and network min-sum objectives, is the use
of two different metric measures. To find the efficient set of this bi-objective prob-
lem three phases are implemented: a network redefinition (of the transportation
network due to bottleneck points and Voronoi-clustering), elimination (of inefficient
edges) and construction (of the efficient set and its non-dominated trade-off curve).
In Plastria et al. (2013) a continuous, i.e., Euclidean, semi-obnoxious facility lo-
cation problem is in the focus of interest. The analytical method offered, based
on machine learning, gives the necessary conditions for optimality, and, using the
latter, develops a polynomial enumeration on the set of dominating solutions.

In this paper, we target the Obnoxious p-Median (OpM) problem, which consists
of selecting a subset of p facilities from a given set of possible locations, in such a
way that the sum over all customers of the distances between each customer and
its nearest facility is maximized. OpMP was introduced in the 1990s (Eiselt and
Laporte, 1995; Welch and Salhi, 1997; Cappanera, 1999) and, as of today, has only
gained relatively few attention. It is NP-hard (Tamir, 1991) and can be formulated
as a binary LP. Note that Burkard et al. (2007) proved that the special case of the
OpM problem on a tree can be solved in linear time. A branch and cut method
coupled with a tabu search has been recently suggested by Belotti et al. (2007). We
include both methods, the branch and cut and the tabu search in our computational
experimentation reported in Section 6.

3. Constructive methods

The GRASP construction phase is an iterative, greedy, randomized and adaptive
procedure that constructs solutions from scratch. It is iterative since the solution
is built by considering one element at a time. It is greedy because the addition of
each element to the solution under construction is guided by a greedy function. It is
randomized because it performs a random selection from a list of good candidates.
Finally, the method is adaptive in the sense of updating relevant information from
a construction step to the next one.

A complete solution of the OpM is a set S ⊂ J with exactly p elements (|S| = p).
Let S ⊂ J be a partial solution to the OpM problem (i.e., 0 ≤ |S| < p). For each
client i ∈ I, we define the minimum distance between i and the facilities in S,
denoted as δi, as follows:

(1) ∀i ∈ I → δi = min
j∈S

dij

The value of this partial solution, f(S), can be directly computed as:
6
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(2) f(S) =
∑

i∈I

δi

We propose a greedy function that calculates the change in the objective function
when a new facility is added to a partial solution. In particular, if the facility j
is included in the partial solution S, producing a new solution S′ = S ∪ {j}, the
corresponding δ′-value for each client is updated as follows:

∀i ∈ I → δ′i = min{δi, dij}

Instead of directly computing the change of the objective function, we determine
the contribution of the new facility to the objective function. This is obtained with
the greedy function g(S, j):

(3) g(S, j) =
∑

i∈I

min{0, (dij − δi)}

where (dij − δi) < 0 indicates that the facility j is closer to i than the remaining
facilities in S. Then, the inclusion of j reduces δi. On the other hand, if (dij−δi) ≥
0, the inclusion of the facility j does not affect to client i. We use g(S, j) to
determine the best potential facility, j⋆, to be included in the partial solution. In
mathematical terms:

j⋆ = arg max
j∈J\S

{g(S, j)}

Let us illustrate the computation of the proposed greedy function with the ex-
ample shown in Section 1. Considering that the OpM problem consists of finding
a subset of facilities distant from the clients, we first identify the facility with the
largest sum of distances. In this example, the sum of distances from all clients to
each facility are 72, 51, 55, 73, 82 and 69. Then, the most distant facility with
respect to all clients is j5 with a sum of distances equal to 82. Therefore, the
greedy strategy selects this facility, obtaining the partial solution S = {j5} and the
minimum distance from each client to j5 is [4, 15, 14, 10, 9, 4, 4, 15, 7] respectively.

Table 3 calculates the objective function change when we try to include a new
facility, showing for each client i, dij − δi. For example, if we selected j1 to be
included in the partial solution, the situation of clients i1, i2, i3, i4, and i8 would be
deteriorated since j1 is closer to these clients than j5. On the other hand, i5, i6, i7,
and i9 are not affected for the inclusion of this new facility. The facility which
presents the best (higher) evaluation of the greedy function is, in fact, j1, with a
value equal to -21 according to Equation 3. We then update the partial solution to
S = {j1, j5} and the array of distances to [3, 14, 5, 3, 9, 4, 4, 12, 7], respectively.

Similarly, Table 4 shows the values of the greedy function when we try to add
a new facility to the current solution. The best option now is to include j6, which
obtains a value of -12. We then include j6 in the partial solution, obtaining S =
{j1, j5, j6} and the distances to elements: [3, 12, 5, 3, 4, 4, 2, 12, 4]. Considering that
p = 3, S is a feasible solution with an objective function value of 49 (i.e., the sum
of minimum distances).

Now we describe our two constructive algorithms C1 and C2 for the OpM prob-
lem. C1 implements a typical GRASP construction where each candidate element
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g(S, j1) g(S, j2) g(S, j3) g(S, j4) g(S, j6)
i1 3-4 = -1 2-4= -2 10-4= 6 13-4= 9 8-4 = 4
i2 14-15= -1 14-15= -1 11-15=-4 3-15= -12 12-15= -3
i3 5-14=-9 4-14=-10 6-14=-8 12-14=-2 6-14=-8
i4 3-10= -7 1-10= -9 1-10= -9 3-10= -7 9-10= -1
i5 13-9=4 9-9=0 2-9=-7 10-9=1 4-9=-5
i6 9-4=5 5-4=1 11-4=7 14-4=10 11-4=7
i7 4-4 =0 3-4 = -1 4-4 =0 13-4= 9 2 -4 = -2
i8 12-15=-3 2-15=-13 9-15=-6 3-15=-12 13-15=-2
i9 9-7=2 11-7=4 1-7=-6 2-7=-5 4-7=-3

-21 -36 -40 -38 -24

Table 3. Greedy evaluation with respect to the partial solution
S = {j5}

g(S, j2) g(S, j3) g(S, j4) g(S, j6)
i1 2-3= -1 10-3= 7 13-3= 10 8-3 = 5
i2 14-14= 0 11-14=-3 3-14= -11 12-14= -2
i3 4-5=-1 6-5=1 12-5=7 6-5=1
i4 1-3= -2 1-3= -2 3-3= 0 9-3= 6
i5 9-9=0 2-9=-7 10-9=1 4-9=-5
i6 5-4=1 11-4=7 14-4=10 11-4=7
i7 3-4 = -1 4-4 =0 13-4= 9 2 -4 = -2
i8 2-12=-10 9-12=-3 3-12=-9 13-12=1
i9 11-7=4 1-7=-6 2-7=-5 4-7=-3

-15 -21 -25 -12

Table 4. Greedy evaluation with respect to the partial solution
S = {j1, j5}

is initially evaluated by a greedy function to construct a Restricted Candidate List
(RCL), and one element is selected at random from the RCL. Algorithm 1 shows
the pseudo-code for C1. It initially creates a list of candidates (CL) which contains
the elements that can be added to the partial solution under construction (Step 2).
In order to favor the diversity of the constructed solutions, the method randomly
selects the first facility from CL (Step 3) and includes it in the partial solution (Step
4). The method thus iterates until it obtains a solution with p facilities (Steps 6
to 13). In each iteration, C1 calculates the minimum (gmin) and maximum (gmax)
values of the greedy function g(S, j) (Steps 7 to 8). After that, C1 constructs a
restricted candidate list (RCL) with all the elements (facilities) whose greedy value
exceeds a percentage α of the best greedy value (Step 9). Finally, in Step 10, the
method selects at random one facility from the RCL and adds it to the solution,
updating CL (Steps 11 to 12).

We now describe C2, based on the construction strategy introduced in Resende
and Werneck (2004), in which randomization takes place before the greedy selection
in each construction step. In C2, we first randomly choose candidates and then
evaluate them to make the greedy choice. C2 first constructs a restricted candidate
list RCL with a fraction (with 0 ≤ α ≤ 1) of the elements in the CL selected
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Algorithm 1: Greedy constructive algorithm (C1)

1: S ← ∅
2: CL← J
3: j0 ← SelectRandom(CL)
4: S ← S ∪ {j0}
5: CL← CL \ {j0}
6: while |S| < p do

7: gmin ← min
j∈CL

g(S, j)

8: gmax ← max
j∈CL

g(S, j)

9: RCL← {j ∈ CL | g(S, j) ≥ gmin + α · (gmax − gmin)}
10: j ← SelectRandom(RCL)
11: S ← S ∪ {j}
12: CL← CL \ {j}
13: end while

14: return S

at random. Then, it evaluates all of them, computing the greedy function for all
elements in the RCL, and selects the best one. Algorithm 2 shows the pseudo-
code for C2. As it can be seen, the initial steps are the very same than those in
Algorithm 1. The main difference between both methods resides on the instructions
in the main loop (Steps 6 to 12 in Algorithm 2). In particular, it randomly selects a
number of facilities from the CL. This number is determined by α, the percentage of
the current size of the CL. Notice that we ensure that the value of size ranges from
1 to |CL| (see Step 7). The restricted candidate list is built with size elements of the
CL, selected at random (Step 8). Then, the method selects the element j⋆, which
presents the best value according to the greedy function g (Step 9). Similarly to C1,
the constructive procedure adds the selected element to S (Step 10) and removes
it from CL (Step 11).

Algorithm 2: Greedy constructive algorithm (C2)

1: S ← ∅
2: CL← J
3: j0 ← SelectRandom(CL)
4: S ← S ∪ {j0}
5: CL← CL \ {j0}
6: while |S| < p do

7: size← max{⌊α · |CL|⌋, 1}
8: RCL← SelectRandom(CL, size)
9: j⋆ ← arg max

j∈RCL
g(S, j)

10: S ← S ∪ {j⋆}
11: CL← CL \ {j⋆}
12: end while

13: return S
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The α parameter controls the greediness/randomness of the GRASP constructive
procedures. Specifically, if α = 0, the corresponding method would be totally
random. On the other hand, if α = 1, the constructive procedure would be a pure
greedy method. In Section 6 we investigate the influence of this parameter on the
performance of C1 and C2, selecting the value that obtains the best result.

4. Local search

The second stage of a GRASP algorithm consists in improving the constructed
solution by applying a local search method to obtain a local optimum. Given a
solution S, a neighbor solution S′ can be obtained by applying a move, which can
be viewed as a perturbation in the solution S. The set of all neighbor solutions
of S, called neighborhood, is denoted as N(S). In particular, we define a move
operator that interchanges a facility j ∈ S with a facility j′ ∈ J \ S, producing a
new feasible solution S′ = S \ {j} ∪ {j′}. For the sake of simplicity, we denote this
move as S′ ← exchange(S, j, j′). Therefore, the neighborhood of a solution can be
defined as follows:

N(S) = {S′ ← exchange(S, j, j′) : j ∈ S, j′ ∈ J \ S}

The neighborhood can be explored with two different strategies: best improve-
ment, in which all the solutions are examined (i.e., the associated neighborhood
is completely explored), to identify the best; and first improvement, that tries
to avoid the time complexity of exploring the whole neighborhood by performing
the first improving move encountered during the exploration of the corresponding
neighborhood. Therefore, the order in which the neighbors are inspected has a
significant influence on the search. Notice that the order of exploration in the best
improvement strategy is irrelevant since the corresponding neighborhood is fully
explored.

We propose two different local search procedures based on the first improvement
strategy. The difference between them resides in the neighborhood scanning strat-
egy. In particular, LS1 explores the neighborhood at random. Algorithm 3 shows
the pseudo-code of this procedure. It receives as input argument a feasible solution
S, which is improved (Steps 2 to 20). The local search uses working copies of the set
of facilities J , which are given as Jc (opened sites, Step 4) and J ′

c (unopened sites,
Step 5), which are both randomly sorted. The neighborhood is, therefore, explored
at random by selecting an opened facility (Step 7) and an unopened facility (Step
9). Specifically, in Step 10 a neighbor solution is visited. Then, LS1 tests whether
S′ improves upon S (Step 11) or not (Step 14). If so, the exploration of the current
neighborhood is abandoned, updating the incumbent solution (Steps 12 and 13);
otherwise, the copied sets are updated (Steps 15 and 16). The local search ends
when no further improvement is found.

The second local search, LS2, sorts the facilities in the solution in ascending
order of the δ-values (see Section 3). For the sake of simplicity we do not include
the pseudo-code of this method since is similar to the one presented in Algorithm
3. The only difference is that facilities j and j′ are selected according to their
δ-value (instead of selecting them at random). We will study the performance of
both methods in the computational experience.

One of the key elements in designing an effective local search method is the defi-
nition of the move and the associated move value (change in the objective function

10
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Algorithm 3: Random selection local search (LS1)

1: improve← true
2: while improve do

3: improve← false
4: Jc ← RandomlySort(S)
5: J ′

c ← RandomlySort(J \ S)
6: while (|Jc| 6= ∅) & (improve 6= true) do
7: j ← next(Jc)
8: while (|J ′

c| 6= ∅) & (improve 6= true) do
9: j′ ← next(J ′

c)
10: S′ ← exchange(S, j, j′)
11: if f(S′) > f(S) then
12: S ← S′

13: improve← true
14: else

15: Jc ← Jc \ {j}
16: J ′

c ← J ′
c \ {j

′}
17: end if

18: end while

19: end while

20: end while

21: return S

value). A move produces a change in the objective function, called move value.
More precisely, let S be a solution whose associated cost is f(S), let j1 ∈ S be a
opened facility, and let j2 ∈ J \S be an unopened facility. Then, exchange(S, j1, j2)
produces a new solution S′ = S \ {j1} ∪ {j2} with cost f(S′). The change in the
objective function (due to the move) can be computed as:

move value = f(S′)− f(S)

We say that exchange(S, j1, j2) is an improving move if move value > 0, since
the OpM is a maximization problem.

The local search performs a sequence of moves to reach the final solution (local
optimum). To perform a single move, it evaluates many candidates in the neighbor-
hood. Therefore, the move evaluation is a critical part when designing a GRASP,
since it requires a considerable computational effort. In a straightforward imple-
mentation, once the improvement method executes a move, it has to be evaluated,
computing its corresponding move value. Normally, this computation requires to
scan all the clients and all the facilities (i.e., the computational complexity of such
a straightforward move evaluation is Θ(|I||J |)). Therefore, the larger the number
of clients or facilities, the longer the execution time. However, we can considerably
improve and reduce this complexity by maintaining a list for each client, which
stores the currently best link to the closest facility. We conveniently separate these
distances in two independent data structures. The first one contains the distances
from all clients to the opened facilities. In particular, given a solution S, we main-
tain for each client i the list ∆S(i) with those distances from i to each facility j ∈ S.
This list is sorted is ascending order. For example, given the matrix of distances
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shown in Table 1 and the solution S = {j2, j5, j6}, the corresponding data struc-
ture is depicted in Table 5a, where each row contains the information of each client.
For instance, the list of distances for client i3 is ∆S(i3) = {(4, j2), (6, j6), (14, j5)},
which means that the closest facility is j2 (where the distance from i3 to j2 is 4),
the second closest facility is j6 (distance 6), and the farthest facility is j5 (distance
14).

We construct a similar structure with the distances from clients to unopened
facilities (i.e., those in J \S). Specifically, we store for each client i the ordered list
∆J\S(i) with the distances from i to each facility j ∈ J \ S. Table 5b shows the
list of distances for each client considering again the example described above (i.e.
J \ S = {j1, j3, j4}).

∆S(i1) {(2, j2), (4, j5), (8, j6)}
∆S(i2) {(12, j6), (14, j2), (15, j5)}
∆S(i3) {(4, j2), (6, j6), (14, j5)}
∆S(i4) {(1, j2), (9, j6), (10, j5)}
∆S(i5) {(4, j6), (9, j2), (9, j5)}
∆S(i6) {(4, j5), (5, j2), (11, j6)}
∆S(i7) {(2, j6), (3, j2), (4, j5)}
∆S(i8) {(2, j2), (13, j6), (15, j5)}
∆S(i9) {(4, j6), (7, j5), (11, j2)}

(a) Facilities in S.

∆J\S(i1) {(3, j1), (10, j3), (14, j4)}
∆J\S(i2) {(3, j4), (11, j3), (14, j1)}
∆J\S(i3) {(5, j1), (6, j3), (12, j4)}
∆J\S(i4) {(1, j3), (3, j1), (3, j4)}
∆J\S(i5) {(2, j3), (10, j4), (13, j1)}
∆J\S(i6) {(9, j1), (11, j3), (14j4)}
∆J\S(i7) {(4, j1), (4, j3), (13, j4)}
∆J\S(i8) {(3, j4), (9, j3), (12, j1)}
∆J\S(i9) {(1, j3), (2, j4), (9, j1)}

(b) Facilities in J \ S.

Table 5. List of distances for each client considering the example
in Table 1 and solution S = {j2, j5, j6}.

The evaluation of a move is considerably improved by using these two data
structures. In particular, if we execute the move S′ ← exchange(S, j, j′), the value
f(S′) can be obtained in O(|I|), since it is only required to access the first element
of each list. In addition, the aforementioned data structures can be updated in
O(|I| log(|J |)), since this operation requires to insert the elements j and j′ in 2 ∗ |I|
ordered lists (that can be performed in O(log(|J |))). Therefore, move value can be
computed in O(|I| log(|J |)) +O(|I|) = O(|I| log(|J |)), which is considerably better
than the straightforward implementation. In Section 6 we will study the influence
of this strategy that we denote as incremental evaluation.

5. GRASP with Filtering

GRASP repeatedly applies a construction followed by a local search. However,
as mentioned in Section 4, the local search is time consuming, so we implement a
filtering mechanism to discard low-quality constructed solutions and skip the local
search. Filtering low-quality solutions was proposed in the early paper by Feo
et al. (1994). We implement here the specific design proposed in Laguna and Mart́ı
(1999) and applied in Mart́ı et al. (2011).

The percentage of improvement achieved by the application of the local search
can be estimated as follows:

P (i) =
f(S′

i)− f(Si)

f(S′
i)

where i indicates the i-th iteration, Si is the solution generated by the constructive
algorithm at iteration i, and S′

i is the solution obtained after applying the local
search method to Si. Considering that the OpM problem is a maximization problem
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the value of this percentage ranges from P (i) = 0 (i.e., the improvement method is
not able to improve the constructed solution) to P (i) < 1.

The filtering strategy requires a “warming up” phase to compute the average
improvement obtained by the local search, as well as the standard deviation of
the improvement. This phase corresponds to the first k iterations of the GRASP
algorithm, where k is an input parameter of the algorithm. After that phase, the
mean µP and standard deviation σP of the percentage of improvement P can be
estimated as:

µ̂P =

k
∑

i=1

P (i)

k

σ̂P =

√

√

√

√

√

k
∑

i=1

(P (i)− µ̂P )2

k − 1

These two statistics can be used to determine whether it is “likely” that the con-
structed solution at iteration i (with i > k) can be improved enough to outperform
the current best solution, S⋆. To do this, we calculate the minimum percentage im-
provement that a constructed solution Si needs to be improved in order to be better
than S⋆. This value, denoted as imp(i), is obtained with the following expression:

imp(i) =
f(S⋆)− f(Si)

f(Si)

If this value is close to µ̂P , we can assume that the improvement method could
improve the current best solution. On the other hand, if imp(i) is considerably
different than the estimation of the mean, it is unlikely that the local search method
is able to obtain a solution better than the current one. In particular we only apply
the local search method if and only if imp(i) is smaller than the estimated mean
plus q times the estimation of the standard deviation (to consider a conservative
rule). In mathematical terms:

imp(i) < µ̂P + q · σ̂P

where q is a search parameter representing a threshold on the number of standard
deviations away from the estimated mean percentage improvement. It is well-
known that in a GRASP implementation the local search method consumes most
of the running time. Therefore, we can considerably reduce it if we only improve
promising constructed solutions. In Section 6, we will study the effect of different
q values on solution quality and running time.

The pseudo-code of the GRASP approach with the filtering strategy is shown in
Algorithm 4. It performs N independent iterations as it is customary in GRASP.
The algorithm starts each iteration by constructing a solution (Step 3) with any of
the procedures described in Section 3 (C1 or C2). If the number of iterations i is
lower than k, the constructed solution is improved (Step 5) with any of the local
search procedures introduced in Section 4 (LS1 or LS2). Additionally, the percent-
age of improvement with respect to the best solution found are also updated (Steps
6 and 7). After k iterations (out of N), the method decides whether to improve a
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new constructed solution or not. In particular, the average mean, standard devia-
tion and the percentage of improvement are computed in Steps 9 to 11. Notice that
these computations are performed in an incremental way. Additionally, these three
values are updated during the entire execution of the procedure. This strategy has
the effect of being more restrictive in the application of the local search procedure
as soon as the number of iterations increases.

Algorithm 4: GRASP with filtering strategy.

1: S⋆ ← ∅
2: for i = 1 to N do

3: Si ← Constructive()
4: if (i < k) then
5: S′

i ← LocalSearch(Si)

6: P (i) =
f(S′

i
)−f(Si)
f(S′

i
)

7: S⋆ ← UpdateBest(S′
i)

8: else

9: µ̂P =

i∑

x=1

P (x)

i

10: σ̂P =

√

i∑

x=1

(P (x)−µ̂P )2

i−1

11: imp(i) = f(S⋆)−f(Si)
f(Si)

12: if (imp(i) < (µ̂P + q · σ̂P )) then
13: S′

i ← LocalSearch(Si)

14: P (i) =
f(S′

i
)−f(Si)
f(S′

i
)

15: S⋆ ← UpdateBest(S′
i)

16: end if

17: end if

18: end for

19: return S⋆

6. Experimental Results

In this section we first describe the preliminary experiments that guided us in
the selection of the values of the different key search parameters and strategies of
both constructive and local search algorithms. Then, we show the results of our
GRASP method compared with the state-of-the-art methods, i.e., branch & cut
and tabu search procedures describe in Belotti et al. (2007). All the experiments,
including the algorithms reported in Belotti et al. (2007), were executed on the
same computer, an Intel i5 660 processor running at 3.3 GHz with 8 Gb of RAM
using GNU/Linux. In addition, all the results related to execution times will be
displayed in seconds.

We have used a set of instances previously used in Belotti et al. (2007). In par-
ticular, they were generated by considering 24 instances (from pmed17 to pmed40)
of the well know p-median problem1, where the number of nodes ranges from 400

1http://people.brunel.ac.uk/~mastjjb/jeb/orlib/pmedinfo.html
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to 900. In order to transform a p-median instance into an obnoxious p-median one,
Belotti et al. (2007) described the following procedure. Given the original instance
with n nodes, this method selects n/2 nodes at random to be the set of clients. The
remaining n/2 become the set of facilities. Additionally, for each original instance,
Belotti et al. (2007) derived three new instances for the OpM by considering three
values of p: ⌊n/2⌋, ⌊n/4⌋ and ⌊n/8⌋. Table 6 reports the main characteristics of the
new set of of 72 instances, where n indicates the number of nodes, |I|/|J | represents
the number of clients/facilities, and p the number of required facilities.

Instance n |I|/|J| p

pmed17-p100 400 200 100
pmed17-p25 400 200 25
pmed17-p50 400 200 50
pmed18-p100 400 200 100
pmed18-p25 400 200 25
pmed18-p50 400 200 50
pmed19-p100 400 200 100
pmed19-p25 400 200 25
pmed19-p50 400 200 50
pmed20-p100 400 200 100
pmed20-p25 400 200 25
pmed20-p50 400 200 50
pmed21-p125 500 250 125
pmed21-p31 500 250 31
pmed21-p62 500 250 62
pmed22-p125 500 250 125
pmed22-p31 500 250 31
pmed22-p62 500 250 62
pmed23-p125 500 250 125
pmed23-p31 500 250 31
pmed23-p62 500 250 62
pmed24-p125 500 250 125
pmed24-p31 500 250 31
pmed24-p62 500 250 62
pmed25-p125 500 250 125
pmed25-p31 500 250 31
pmed25-p62 500 250 62
pmed26-p150 600 300 150
pmed26-p37 600 300 37
pmed26-p75 600 300 75
pmed27-p150 600 300 150
pmed27-p37 600 300 37
pmed27-p75 600 300 75
pmed28-p150 600 300 150
pmed28-p37 600 300 37
pmed28-p75 600 300 75

Instance Nodes |I|/|J| p

pmed29-p150 600 300 150
pmed29-p37 600 300 37
pmed29-p75 600 300 75
pmed30-p150 600 300 150
pmed30-p37 600 300 37
pmed30-p75 600 300 75
pmed31-p175 700 350 175
pmed31-p43 700 350 43
pmed31-p87 700 350 87
pmed32-p175 700 350 175
pmed32-p43 700 350 43
pmed32-p87 700 350 87
pmed33-p175 700 350 175
pmed33-p43 700 350 43
pmed33-p87 700 350 87
pmed34-p175 700 350 175
pmed34-p43 700 350 43
pmed34-p87 700 350 87
pmed35-p100 800 400 100
pmed35-p200 800 400 200
pmed35-p50 800 400 50
pmed36-p100 800 400 100
pmed36-p200 800 400 200
pmed36-p50 800 400 50
pmed37-p100 800 400 100
pmed37-p200 800 400 200
pmed37-p50 800 400 50
pmed38-p112 900 450 112
pmed38-p225 900 450 225
pmed38-p56 900 450 56
pmed39-p112 900 450 112
pmed39-p225 900 450 225
pmed39-p56 900 450 56
pmed40-p112 900 450 112
pmed40-p225 900 450 225
pmed40-p56 900 450 56

Table 6. Instances generated from the OR-Library (Beasley, 1990).

We have designed two constructive algorithms based on the same greedy function
(see Section 3). These procedures, namely C1 and C2 are parametrized by α, which
controls the trade-off between randomness and greediness. In the first experiment,
we evaluate the influence of this parameter over the performance of C1 and C2
by considering four different values: 0.25, 0.5, 0.75, and random, where random
indicates that the method randomly selects an α value in the range [0, 1] for each
construction. In order to avoid the over-fitting of our methods, we consider a
representative subset of 10% (i.e., 8 instances) of the whole set of instances, with
different sizes and properties. Notice that the remaining 90 % instances (64 out
of 72) are reserved for the final comparison with the state-of-the-art procedures.
Table 6 shows with bold font the 8 instances that form the representative subset.
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Constr. (α) Avg. Cost Avg. Time Dev. (%) Div. # Best
C1(0.25) 3851.63 7.56 7.9 6164.82 0
C1(0.5) 4063.75 13.33 8.17 6072.53 0
C1(0.75) 4745.13 10.91 7.77 5362.49 0
C1(random) 5837.38 7.02 30.38 5912.39 0
C2(0.25) 5892.38 6.46 2.98 1495.35 2
C2(0.5) 5896.75 8.86 2.65 1422.15 1
C2(0.75) 5904.5 11.53 2.53 1355.42 3

C2(random) 5902.38 4.69 3.89 1740.97 3

Table 7. Comparison of different variants of the constructive al-
gorithms. The best results are highlighted with bold font.

Table 7 shows the corresponding results when generating 100 independent con-
structions averaged over the subset of 8 instances. We report the average best cost
(Avg. Cost); average computing time (Avg. Time); deviation with respect to the
best result in this experiment (Dev.(%)); the diversity of the solutions (Div.), com-
puted as the sum of the different facilities found in the constructions generated on
each run, divided by the number of constructions; and the number of best results
(#Best), computed as the number of times the algorithm is able to match the best
solution in this experiment. Attending to these results, we can assert that C2 out-
performs C1 in terms of effectiveness, because it obtains the best results regarding
the average cost, deviation and number of best solutions found, emerging C2 with
α = 0.75 as the best variant. On the other hand, C1 presents better results in terms
of diversity, being C1 with α = 0.25 the best variant. Finally, C2 with random
α is the fastest algorithm, although the average cost and deviation are worse than
C2(0.75).

At this point, we thought that it could be interesting to select both, the most
effective constructive algorithm, C2(0.75), and the algorithm that produces the
most diverse solutions, C1(0.25). The first one feeds the local search with high-
quality solutions, although they share most of their facilities. On the contrary,
the second one provides diverse solutions to the local search to drive the search to
different areas in the search space, but the quality of this solutions is considerably
worse. It is well-known that the design of efficient metaheuristics mainly relies on
a balance between search intensification and diversification. Therefore, we cannot
anticipate which would result in better outcomes when coupled with the local search
method.

In the next experiment we analyzed this combination by considering the two
local search procedures defined in Section 4, namely LS1 and LS2 with the best
two constructive procedures aforementioned (i.e., C1(0.25) and C2(0.75)). Table
8 shows the results of the four derived GRASP variants in terms of cost, time,
deviation, and number of best solutions. We do not include in this experiment the
diversity computation since it is not useful for further improvements.

As shown in Table 8, the GRASP variants that use C2(0.75) as constructive
procedure obtain better results than the ones that consider C1(0.25). We can then
conclude that in this problem is more relevant to produce high quality solutions,
although it requires to sacrifice the diversity (at least in the set of instances con-
sidered in this experiment). Additionally, LS1 obtains slightly better results both
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GRASP Avg. Cost Avg. Time Dev. (%) # Best
C1(0.25) + LS1 5870.82 3581.15 1.29 4

C1(0.25) + LS2 5822.89 730.11 1.93 1
C2(0.75) + LS1 5892.81 2207.63 0.91 4

C2(0.75) + LS2 5888.66 461.63 0.84 1

Table 8. Local search methods coupled with two constructive
procedures. The best results are highlighted with bold font.

in average cost and number of best results, spending longer computing times than
LS2. This fact can be partially explained because LS2 sorts the elements in the
solution according to the δ-values (see Section 4), while LS1 scans the elements
in a random way. Given that the local search is based on the first improvement
strategy, LS2 reaches improved solutions faster than LS1.

In the next experiment, we study the computing time of the best GRASP method
when (1) using a direct cost computation (DCC) and (2) using the incremental cost
computation (ICC) presented in Section 4. Figure 1 depicts a bar diagram where
the X-axis represents the name of the 8 instances considered in the preliminary
experiments and the Y -axis gives the computing time required to obtain a local
optimum for both methods, respectively, (DCC and ICC) in the corresponding
instance. The figure clearly shows that the saving in computing time is significant
for ICC. Specifically, for these 8 instances DCC needs 2364.18 seconds on average
to obtain a local optimum, while ICC requires 316.75 seconds on average to obtain
the same optimum value, i.e., more than 7 times faster which implies a reduction
in the execution time is over 86% on average.

Figure 1. Computing time comparison for direc (DCC) and in-
cremental (ICC) cost computation.
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q (# Constr.) Avg. Cost Avg. Time (% vs Max) Dev. (%) # Best Avg. # Skip
0.5 (100) 5889.51 1.51 (0.76%) 0.074 38 53.17
1.0 (100) 5889.51 1.41 (0.71%) 0.077 38 41.04
1.5 (100) 5889.22 1.38 (0.69%) 0.085 39 30.56
2.0 (100) 5890.75 1.70 (0.85%) 0.051 47 21.01
2.5 (100) 5890.21 1.65 (0.83%) 0.063 41 14.06
GRASP(20) 5884.53 1.72 (0.86%) 0.176 27 -
GRASP(100) 5890.81 198.99 (100%) 0.053 45 -

Table 9. Performance of the GRASP when filtering solutions
with different values of q. Two GRASP versions without the fil-
tering strategies are included as a baseline. The best results are
highlighted with bold font.

In the next preliminary experiment we test the influence of the filter strategy
described in Section 5. This mechanism skips the improvement method when the
value of the constructed solution does not reach a minimum quality. The param-
eter q controls the number of standard deviations away from the estimated mean
percentage improvement. In order to determine the effectiveness of this strategy
and to select the best value of q, we configure the GRASP algorithm with k = 20
(warming up phase) and N = 100, applying the filter strategy from iteration 21 to
100 (see Algorithm 4).

Table 9 shows the results of this experiment, where five values of q, from 0.5 to
2.5, are studied. In order to analyze the improvement with respect to traditional
GRASP implementations, we include two versions without the filter strategy (last
two rows of the table). The number between parenthesis indicates the number of
iterations of each variant.

We additionally include the percentage time reduction with respect to the slowest
algorithm (% vs Max), and the average number of skipped improvements (Avg.
#Skip). As expected, the lower the value of q, the larger the number of skipped
improvements, and the larger the reduction in the computing time. It is important
to remark that the quality of the obtained results (in terms of the average percentage
deviation and the number of best solutions found) does not present significant
changes across different values of q, thus indicating the robustness of the filter (i.e.
solutions skipped for improvement hardly modify the final result).

The reduction in the execution time is also remarkable. In particular, the slowest
algorithm, GRASP(100), employs 198.99 s on average, while the filter variants
need less than 2 seconds to find similar results. The filter strategy described in
Section 5 reduces the computing time in more than 99%. We select the variant
with q = 2 since it presents the best results in terms of quality and with a really
competitive computing time (1.70 s). Notice that a meaningful consequence of the
filter approach is the fact that it allows us to run the GRASP algorithm for a larger
number of iterations.

As described in Section 2, the best identified procedures in the related literature
are the branch & cut (B&C) and the tabu search method (XTS) described in Be-
lotti et al. (2007)2. As it was aforementioned, the B&C is an exact procedure that,
executed for unlimited time, guarantees the optimality of the solution found. How-
ever, considering that we are proposing heuristic procedures, we set the maximum
computing time of this exact method to 3600 s. If after that time the B&C has not

2The authors kindly provided us with the source code of their algorithms
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Algorithm Avg. Cost Avg. Time Dev. (%) # Best
GRASP(1000) 5893.15 237.34 0.76% 34
GRASP(5000) 5894.51 749.09 0.73% 47

B&C 5764.35 3600.00 3.27% 11
XTS 5847.08 511.35 1.57% 25

Table 10. Comparison of the best GRASP method over the whole
set of instances.

found the optimal solution, we interrupt its execution, returning the best solution
found. The XTS is configured with the best parameters described in Belotti et al.
(2007). We compare these methods with our best GRASP variant (constructive C2
with α = 0.75, local search LS1, incremental computation of the cost, and filter
strategy with q = 2) executed for two time horizons (1000 and 5000 iterations).

Table 10 presents the performance of each algorithm over the whole group of 72
instances. We report the same statistics used above. These results show the merit
of both GRASP approaches. In particular, the fastest version (1000 iterations)
clearly outperforms B&C and XTS in all the considered metrics. In particular, it
obtains the best results in 34 instances (out of 72), while the competitors obtain
11 and 25, respectively. In the same line, GRASP(1000) presents a remarkable
average percentage deviation of 0.76 %, which compares favorably to the 3.27 %
and 1.57 %, achieved by B&C and XTS. Notice that OpM instances used in this
experimentation presents a large value of the objective function (see the column
Avg. Cost in Table 10). Therefore, improving the value of the cost in hundreds
barely affects to the value of the average deviation (this problem is even aggravated
in large instances). Then, the reduction of 0.81 % in this set of instances can be
considered as a success. GRASP(1000) obtains these results in considerably shorter
computing time. It is important to remark that all algorithms were executed in the
same computer.

In order to show how the performance of the GRASP procedure is affected by
the number of iterations, we include a version executed for 5000 iterations. It
improves upon the results of the fastest version, obtaining the best solution in 47
instances (out of 72) with an average percentage deviation of 0.73 %. In this case,
GRASP(5000) is slower than XTS but faster than B&C.

We finally compare our best method, GRASP(1000), with the best previous
heuristic, XTS, with two well-known non-parametric tests for pairwise comparisons:
the Wilcoxon test and the Sign test. The Wilcoxon test answers the question: Do
the two samples (solutions obtained with both methods in our case) represent two
different populations? The resulting p-value of 0.017 clearly indicates that the
values compared come from different methods (using a typical significance level
α = 0.05 as the threshold for reject or not the null hypothesis). On the other hand,
the Sign test computes the number of instances on which an algorithm supersedes
another one. The resulting p-value of 0.013 indicates that there are significant
differences between both algorithms, confirming the superiority of our GRASP
method.
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7. Conclusions

In this work we have studied the application of a GRASP approach to solve the
Obnoxious p-median problem. In particular, we have developed two constructive
algorithms based on a greedy function that calculates the contribution of a facility
to the current solution. Our experimentation showed that one of them emphasizes
search intensification, while the other one mainly diversifies the search into different
regions.

We also proposed two different local search procedures to be executed after the
constructive phase. Knowing that the local search changes only one facility in a
given solution, an incremental move evaluation of the solutions was proposed, which
averages an 86% reduction in the execution time in relation to a full evaluation of
the solutions. In line with our objective of designing an efficient method, we imple-
mented a filtering mechanism that is able to skip the application of the improvement
phase in not promising constructed solutions. In this way, this technique saves an
average of 91.4% of the computation time for the GRASP with 100 constructions,
obtaining similar results in terms of cost than the approach with no filter.

Finally, before engaging in competitive testing, we performed a series of scientific
preliminary tests to determine the contribution of the various elements that we have
designed. We believe that the reader can find them very useful since valuable lessons
can be learned from them, and applied to other problems.

The experimental results show that our GRASP algorithm is able to outperform
the current state-of-the-art methods in both short and long time horizons.

As future work, we will incorporate additional cost functions to enhance the
quality of the solutions. The idea is to deal with a multi-objective optimization
scenario for the OpM problem.
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