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Abstract 

Tabu Search is a meta-heuristic that guides a local heuristic search procedure to explore the solution space 
beyond local optimality.  One of the main components of Tabu Search is its use of adaptive memory, which 
creates a more flexible search behavior.  Memory-based strategies are therefore the hallmark of tabu 
search approaches, founded on  a quest for “integrating principles,” by which alternative forms of memory 
are appropriately combined with effective strategies for exploiting them.  A novel finding is that such 
principles are sometimes sufficiently potent to yield effective problem solving behavior in their own right, 
with negligible reliance on memory.  Over a wide range of problem settings, however, strategic use of 
memory can make dramatic differences in the ability to solve problems.  Pure and hybrid Tabu Search 
approaches have set new records in finding better solutions to problems in production planning and 
scheduling, resource allocation, network design, routing, financial analysis, telecommunications, portfolio 
planning, supply chain management, agent-based modeling, business process design, forecasting, 
machine learning, data mining, biocomputation, molecular design, forest management and resource 
planning, among many other areas. 
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1. Introduction 

The term tabu search was coined in the same paper that introduced the term meta-heuristic 
(Glover, 1986).  Tabu search (TS) is based on the premise that problem solving, in order to qualify 
as intelligent, must incorporate adaptive memory and responsive exploration.  The adaptive 
memory feature of TS allows the implementation of procedures that are capable of searching 
the solution space economically and effectively.  Since local choices are guided by information 
collected during the search, TS contrasts with memoryless designs that heavily rely on semi-
random processes that implement a form of sampling.  The emphasis on responsive exploration 
(and hence purpose) in tabu search, whether in a deterministic or probabilistic implementation, 
derives from the supposition that a bad strategic choice can often yield more information than 
a good random choice. 
 
TS can be directly applied to virtually any kind of optimization problem.  We can state most of 
these problems in the following form, where “optimize” means to minimize or maximize: 
 
     Optimize  𝑓(𝑥)  
                    subject to   

                      𝑥  𝑋  

 
The function 𝑓(𝑥) may be linear, nonlinear or even stochastic, and the set 𝑋 summarizes 
constraints on the vector of decision variables 𝑥.  The constraints may similarly include linear, 
nonlinear or stochastic inequalities, and may compel all or some components of x to receive 
discrete values. 
 
While this representation is useful for discussing a number of problem solving considerations, 
we emphasize that in many applications of combinatorial optimization, the problem of interest 
may not be easily formulated as an objective function subject to a set of constraints.  The 
requirement 𝑥  𝑋, for example, may specify logical conditions or interconnections that would 
be cumbersome to formulate mathematically, but may be better be left as verbal stipulations 
that can be then coded as rules. 
 
The TS technique is rapidly becoming the method of choice for designing solution procedures 
for hard combinatorial optimization problems.  A comprehensive examination of this 
methodology can be found in the book by Glover and Laguna (1997) and we describe some 
recent developments in section 8 of this chapter. Widespread successes in practical applications 
of optimization have spurred a rapid growth of the method as a means of identifying extremely 
high quality solutions efficiently.  TS methods have also been used to create hybrid procedures 
with other heuristic and algorithmic methods, to provide improved solutions to problems in 
scheduling, sequencing, resource allocation, investment planning, telecommunications and 
many other areas.  Some of the diversity of tabu search applications is shown in Table 1. 
 

  



 

TABLE 1. ILLUSTRATIVE TABU SEARCH APPLICATIONS 
 

Scheduling 
 Flow-Time Cell Manufacturing 
 Heterogeneous Processor Scheduling 
 Workforce Planning 
 Rostering 
 Machine Scheduling 
 Flow Shop Scheduling 
 Job Shop Scheduling 
 Sequencing and Batching 
 

Telecommunications 
 Call Routing 
 Bandwidth Packing 
 Hub Facility Location 
 Path Assignment 
 Network Design for Services 
 Customer Discount Planning 
 Failure Immune Architecture 
 Synchronous Optical Networks 

Design 
 Computer-Aided Design 
 Fault Tolerant Networks 
 Transport Network Design 
 Architectural Space Planning 
 Diagram Coherency 
 Fixed Charge Network Design 
 Irregular Cutting Problems 
 Lay-Out Planning 
 

Production, Inventory and Investment 
Supply Chain Management 
Flexible Manufacturing  
 Just-in-Time Production 
 Capacitated MRP 
 Part Selection 
 Multi-item Inventory Planning 
 Volume Discount Acquisition 
 Project Portfolio Optimization 

Logic and Artificial Intelligence 
 Maximum Satisfiability 
 Probabilistic Logic 
 Pattern Recognition/Classification 
 Data Mining 
 Clustering 
Statistical Discrimination 
 Neural Network Training 
 Neural Network Design 
 

Routing 
 Vehicle Routing 
 Capacitated Routing 
 Time Window Routing 
 Multi-Mode Routing 
 Mixed Fleet Routing 
 Traveling Salesman 
 Traveling Purchaser 
 Convoy Scheduling 

Location and Allocation 
 Multicommodity Location/Allocation 
 Quadratic Assignment 
 Quadratic Semi-Assignment 
 Multilevel Generalized Assignment 
Large-Scale GAP Problems 

Graph Optimization 
 Graph Partitioning 
 Graph Coloring 
 Clique Partitioning 
 Maximum Clique Problems 
 Maximum Planner Graphs 
 

Technology 
 Seismic Inversion 
 Electrical Power Distribution 
 Engineering Structural Design 
 Minimum Volume Ellipsoids 
 Space Station Construction 
 Circuit Cell Placement 
 Off-Shore Oil Exploration 

General Combinational Optimization 
 Zero-One Programming 
 Fixed Charge Optimization 
 Nonconvex Nonlinear Programming 
 All-or-None Networks 
 Bilevel Programming 
Multi-Objective Discrete Optimization 
 General Mixed Integer Optimization 

 
  



The tabu search emphasis on adaptive memory makes it possible to exploit the types of 
strategies that underlie the best of human problem-solving, instead of being confined to 
mimicking the processes found in lower orders of natural phenomena and behavior.  The basic 
elements of tabu search have several important features, summarized in Table 2.  Tabu search 
is concerned with finding new and more effective ways of taking advantage of the concepts 
embodied in Table 2, and with identifying associated principles that can expand the 
foundations of intelligent search 
 

 

TABLE 2. PRINCIPAL TABU SEARCH FEATURES 

Adaptive Memory 
 
 Selectivity (including strategic forgetting) 
 
 Abstraction and decomposition (through explicit and attributive memory) 
 
 Timing: 
  recency of events 
  frequency of events 
  differentiation between short term and long term 
 
 Quality and impact: 
  relative attractiveness of alternative choices 
  magnitude of changes in structure or constraining 
       relationships 
 
 Context: 
  regional interdependence 
  structural interdependence 
  sequential interdependence 
 
Responsive Exploration 
 
 Strategically imposed restraints and inducements  
  (tabu conditions and aspiration levels) 
 Concentrated focus on good regions and good solution features  
  (intensification processes) 
 Characterizing and exploring promising new regions 
  (diversification processes) 
 Non-montonic search patterns  
  (strategic oscillation) 
 Integrating and extending solutions  
  (path relinking) 

 

 

 In this chapter we will describe some key aspects of this methodology, as the use of memory 
structures and search strategies, and illustrate them in an implementation to solve the linear 
ordering problem. 
 



2. Memory Structures 

Tabu search begins in the same way as ordinary local or neighborhood search, proceeding 
iteratively from one point (solution) to another until a chosen termination criterion is satisfied.  
Each solution 𝑥 has an associated neighborhood 𝑁(𝑥) ⊆ 𝑋 , and each solution 𝑥′ ∈ 𝑁(𝑥) is 
reached from 𝑥 by an operation called a move. 
 
We may contrast TS with a simple descent method where the goal is to minimize 𝑓(𝑥).  Such a 
method only permits moves to neighbor solutions that improve the current objective function 
value and ends when no improving solutions can be found.  The final 𝑥 obtained by a descent 
method is called a local optimum, since it is at least as good as or better than all solutions in its 
neighborhood.  The evident shortcoming of a descent method is that such a local optimum in 
most cases will not be a global optimum, i.e., it usually will not minimize 𝑓(𝑥) over all 𝑥 ∈ 𝑁(𝑥). 
 
Tabu search permits moves that deteriorate the current objective function value but the moves 
are chosen from a modified neighborhood 𝑁∗(𝑥).  Short and long term memory structures are 
responsible for the specific composition of 𝑁∗(𝑥).  In other words, the modified neighborhood 
is the result of maintaining a selective history of the states encountered during the search.  In 
the TS strategies based on short term considerations, 𝑁∗(𝑥) characteristically is a subset of 
𝑁(𝑥), and the tabu classification serves to identify elements of 𝑁(𝑥) excluded from 𝑁∗(𝑥).  In 
TS strategies that include longer term considerations, 𝑁∗(𝑥) may also be expanded to include 
solutions not ordinarily found in 𝑁(𝑥), such as solutions found and evaluated in past search, or 
identified as high quality neighbors of these past solutions.  Characterized in this way, TS may 
be viewed as a dynamic neighborhood method.  This means that the neighborhood of 𝑥 is not a 
static set, but rather a set that can change according to the history of the search. 
 
The structure of a neighborhood in tabu search differs from that used in local search in an 
additional manner, by embracing the types of moves used in constructive and destructive 
processes (where the foundations for such moves are accordingly called constructive 
neighborhoods and destructive neighborhoods).  Such expanded uses of the neighborhood 
concept reinforce a fundamental perspective of TS, which is to define neighborhoods in 
dynamic ways that can include serial or simultaneous consideration of multiple types of moves. 
 

 Context Attributes To record the last time … 
 Binary 

problems 
Variable index (i) variable i changed its value from 0 to 1 or 

1 to 0 (depending on its current value). 
 Job 

sequencing 
Job index (j) job j changed positions. 

  Job index (j) and position 
(p) 

job j occupied position p. 

  Pair of job indexes (i, j) job i exchange positions with job j. 
 Graphs Arc index (i) arc i was added to the current solution. 
   arc i was dropped from the current 

solution. 

Table 3. Examples of recency-based memory 

  
TS uses attributive memory for guiding purposes (i.e., to compute N*(x)).  Instead of recording 
full solutions, attributive memory structures are based on recording attributes.  This type of 
memory records information about solution properties (attributes) that change in moving from 
one solution to another.  The most common attributive memory approaches are recency-based 
memory and frequency-based memory.  Recency, as its name suggests, keeps track of solutions 
attributes that have changed during the recent past.  Frequency typically consists of ratios about 
the number of iterations a certain attribute has changed or not (depending whether it is a 



transition or a residence frequency).  Some examples of recency and frequency based memory 
are shown in Tables 3 and 4 respectively. 
 

 Context Residence measure Transition measure 
 Binary 

problems 
Number of times variable i has 
been assigned the value of 1. 

Number of times variable i has 
changed values. 

 Job 
sequencing 

Number of times job j has 
occupied position p. 

Number of times job i has exchanged 
positions with job j. 

  Average objective function value 
when job j occupies position p. 

Number of times job j has been 
moved to an earlier position in the 
sequence. 

 Graphs Number of times arc i has been 
part of the current solution. 

Number of times arc i has been 
deleted from the current solution 
when arc j has been added. 

  Average objective function value 
when arc i is part of the 
solution. 

Number of times arc i has been 
added during improving moves. 

Table 4. Examples of frequency-based memory 

 
Characteristically, a TS process based strictly on short term strategies may allow a solution 𝑥 to 
be visited more than once, but it is likely that the corresponding reduced neighborhood 𝑁∗(𝑥) 
will be different each time.  With the inclusion of longer term considerations, the likelihood of 
duplicating a previous neighborhood upon revisiting a solution, and more generally of making 
choices that repeatedly visit only a limited subset of 𝑋, is all but nonexistent.   
 
Recency-based memory is the most common memory structure used in TS implementations.  As 
its name suggests, this memory structure keeps track of solutions attributes that have changed 
during the recent past.  To exploit this memory, selected attributes that occur in solutions 
recently visited are labeled tabu-active, and solutions that contain tabu-active elements, or 
particular combinations of these attributes, are those that become tabu.  This prevents certain 
solutions from the recent past from belonging to 𝑁∗(𝑥) and hence from being revisited.  Other 
solutions that share such tabu-active attributes are also similarly prevented from being visited.  
Note that while the tabu classification strictly refers to solutions that are forbidden to be visited, 
by virtue of containing tabu-active attributes (or more generally by violating certain restriction 
based on these attributes), moves that lead to such solutions are also often referred to as being 
tabu. 
 
Frequency-based memory provides a type of information that complements the information 
provided by recency-based memory, broadening the foundation for selecting preferred moves.  
Like recency, frequency often is weighted or decomposed into subclasses.  Also, frequency can 
be integrated with recency to provide a composite structure for creating penalties and 
inducements that modify move evaluations. 
 
Frequencies typically consist of ratios, whose numerators represent counts expressed in two 
different measures: a transition measure — the number of iterations where an attribute changes 
(enters or leaves) the solutions visited on a particular trajectory, and a residence measure — the 
number of iterations where an attribute belongs to solutions visited on a particular trajectory, 
or the number of instances where an attribute belongs to solutions from a particular subset.  
The denominators generally represent one of three types of quantities: (1) the total number of 
occurrences of all events represented by the numerators (such as the total number of associated 
iterations), (2) the sum (or average) of the numerators, and (3) the maximum numerator value.  
In cases where the numerators represent weighted counts, some of which may be negative, 
denominator (3) is expressed as an absolute value and denominator (2) is expressed as a sum of 
absolute values (possibly shifted by a small constant to avoid a zero denominator).  The ratios 



produce transition frequencies that keep track of how often attributes change, and residence 
frequencies that keep track of how often attributes are members of solutions generated.  In 
addition to referring to such frequencies, thresholds based on the numerators alone can be 
useful for indicating when phases of greater diversification are appropriate. 
 
 

3. Search Strategies 

The use of recency and frequency memory in tabu search generally fulfills the function of 
preventing searching processes from cycling, i.e., from endlessly executing the same sequence 
of moves (or more generally, from endlessly and exclusively revisiting the same set of solutions).  
More broadly, however, the various manifestations of these types of memory are designed to 
impart additional robustness or vigor to the search.  
 
A key element of the adaptive memory framework of tabu search is to create a balance between 
search intensification and diversification.  Intensification strategies are based on modifying 
choice rules to encourage move combinations and solution features historically found good.  
They may also initiate a return to attractive regions to search them more thoroughly.  
Diversification strategies, on the other hand, seek to incorporate new attributes and attribute 
combinations that were not included within solutions previously generated. In one form, these 
strategies undertake to drive the search into regions dissimilar to those already examined. It is 
important to keep in mind that intensification and diversification are not mutally opposing, but 
are rather mutually reinforcing. 
 
Most types of intensification strategies require a means for identifying a set of elite solutions as 
basis for incorporating good attributes into newly created solutions.  Membership in the elite 
set is often determined by setting a threshold that is connected to the objective function value 
of the best solution found during the search.  A simple instance of the intensification strategy is 
shown in Figure 1.  Two simple variants for elite solution selection have proved quite successful.  
One introduces a diversification measure to assure the solutions recorded differ from each other 
by a desired degree, and then erases all short term memory before resuming from the best of 
the recorded solutions.  The other keeps a bounded length sequential list that adds a new 
solution at the end only if it is better than any previously seen, and the short term memory that 
accompanied this solution is also saved. 
 

Figure 1.  Simple TS intensification approach. 
 
Diversification is automatically created in TS (to some extent) by short term memory functions, 
but is particularly reinforced by certain forms of longer term memory.  TS diversification 
strategies are often based on modifying choice rules to bring attributes into the solution that 
are infrequently used.  Alternatively, they may introduce such attributes by periodically applying 
methods that assemble subsets of these attributes into candidate solutions for continuing the 
search, or by partially or fully restarting the solution process.  Diversification strategies are 

Apply TS short term memory 
Apply an elite selection strategy. 
do { 
 Choose one of the elite solutions. 
 Resume short term memory TS from chosen 
solution. 
 Add new solutions to elite list when applicable. 
} while (iterations < limit and list not empty) 



particularly helpful when better solutions can be reached only by crossing barriers or “humps” 
in the solution space topology. 
 
The incorporation of modified choice rules can be moderated by using the following penalty 
function: 

MoveValue = MoveValue + d * Penalty. 
 
This type of penalty approach is commonly used in TS, where the Penalty value is often a 
function of frequency measures such as those indicated in Table 2, and d is an adjustable 
diversification parameter.  Larger d values correspond to a desire for more diversification. 
 

 

4. Advanced Designs: Strategic Oscillation 

There are many forms in which a simple tabu search implementation can be improved by adding 
long term elements.  In this paper we restrict our attention to two of the most used methods, 
namely strategic oscillation and path relinking, which constitute the core of many adaptive 
memory programming algorithms. 
 
Strategic oscillation operates by orienting moves in relation to a critical level, as identified by a 
stage of construction or a chosen interval of functional values.  Such a critical level or oscillation 
boundary often represents a point where the method would normally stop.  Instead of stopping 
when this boundary is reached, however, the rules for selecting moves are modified, to permit 
the region defined by the critical level to be crossed.  The approach then proceeds for a specified 
depth beyond the oscillation boundary, and turns around.  The oscillation boundary again is 
approached and crossed, this time from the opposite direction, and the method proceeds to a 
new turning point (see Figure 2). 
 

Figure 2.  Strategic oscillation 

 
The process of repeatedly approaching and crossing the critical level from different directions 
creates an oscillatory behavior, which gives the method its name.  Control over this behavior is 
established by generating modified evaluations and rules of movement, depending on the 
region navigated and the direction of search.  The possibility of retracing a prior trajectory is 
avoided by standard tabu search mechanisms, like those established by the recency-based and 
frequency-based memory functions. 
 
When the level or functional values in Figure 2 refer to degrees of feasibility and infeasibility, a 
vector-valued function associated with a set of problem constraints can be used to control the 
oscillation.  In this case, controlling the search by bounding this function can be viewed as 
manipulating a parameterization of the selected constraint set.  A preferred alternative is often 
to make the function a Lagrangean or surrogate constraint penalty function, avoiding vector-
valued functions and allowing tradeoffs between degrees of violation of different component 
constraints. 

 Iterations
1 2 30

Oscillation Boundary

Depth

L
ev

el
 o

r 
F

u
n
ct

io
n
al

 V
al

u
e



 
Lozano et al. (2014) considered a constructive/destructive type of strategic oscillation in the 
context of the quadratic minimum spanning tree problem (QMSTP), where constructive steps 
“add” elements and destructive steps “drop” elements from the solution. As described in Glover 
(1977), the alternation of constructive with destructive processes, which strategically dismantle 
and then rebuild successive trial solutions, affords an enhancement of such traditional 
constructive procedures. 
 
A special case of these constructive and destructive neighborhood ideas has been applied within 
a simplified method known as Iterated Greedy – IG - (Ruiz and Stützle, 2008), which generates a 
sequence of solutions by joining constructive and destructive phases with a greedy constructive 
heuristic. IG is a memory-less version of strategic oscillation that has exhibited state-of-the-art 
performance in some settings. Lozano et al. (2014) integrated this approach with broader 
strategic oscillation strategies by first proposing an adaptation of the IG methodology to the 
QMSTP and then extending it to include short term memory structures to create a tabu search 
approach based on strategic oscillation, which outperforms previous methods. 
 
 

5. Advanced Designs: Path Relinking 

 
Path Relinking, as a strategy of creating trajectories of moves passing through high quality 
solutions was first proposed in connection with tabu search in Glover (1989). The approach was 
then elaborated in greater detail as a means of integrating TS intensification and diversification 
strategies, and given the name path relinking (PR), in Glover and Laguna (1993).  PR generally 
operates by starting from an initiating solution, selected from a subset of high quality solutions, 
and generating a path in the neighbourhood space that leads toward the other solutions in the 
subset, which are called guiding solutions.  This is accomplished by selecting moves that 
introduce attributes contained in the guiding solutions. 
 
Path relinking can be considered an extension of the Combination Method of Scatter Search 
(Glover and Laguna, 1993; Laguna and Martí, 2003).  Instead of directly producing a new solution 
when combining two or more original solutions, PR generates paths between and beyond the 
selected solutions in the neighborhood space.  The character of such paths is easily specified by 
reference to solution attributes that are added, dropped or otherwise modified by the moves 
executed.  Examples of such attributes include edges and nodes of a graph, sequence positions 
in a schedule, vectors contained in linear programming basic solutions, and values of variables 
and functions of variables. 
 
The approach may be viewed as an extreme (highly focused) instance of a strategy that seeks to 
incorporate attributes of high quality solutions, by creating inducements to favor these 
attributes in the moves selected.  However, instead of using an inducement that merely 
encourages the inclusion of such attributes, the path relinking approach subordinates other 
considerations to the goal of choosing moves that introduce the attributes of the guiding 
solutions, in order to create a “good attribute composition” in the current solution.  The 
composition at each step is determined by choosing the best move, using customary choice 
criteria, from a restricted set — the set of those moves currently available that incorporate a 
maximum number (or a maximum weighted value) of the attributes of the guiding solutions.  
(Exceptions are provided by aspiration criteria, as subsequently noted.) The approach is called 
path relinking either by virtue of generating a new path between solutions previously linked by 
a series of moves executed during a search, or by generating a path between solutions 
previously linked to other solutions but not to each other. 
 



To generate the desired paths, it is only necessary to select moves that perform the following 
role: upon starting from an initiating solution, the moves must progressively introduce attributes 
contributed by a guiding solution (or reduce the distance between attributes of the initiating 
and guiding solutions).  The roles of the initiating and guiding solutions are interchangeable; 
each solution can also be induced to move simultaneously toward the other as a way of 
generating combinations.  First consider the creation of paths that join two selected solutions x′ 
and x″, restricting attention to the part of the path that lies ‘between’ the solutions, producing 
a solution sequence x′ = x(l), x(2), …, x(r) = x″.  To reduce the number of options to be considered, 
the solution x(i + 1) may be created from x(i) at each step by choosing a move that minimizes 
the number of moves remaining to reach x″.  The relinked path may encounter solutions that 
may not be better than the initiating or guiding solution, but that provide fertile “points of 
access” for reaching other, somewhat better, solutions.  For this reason, it is valuable to examine 
neighboring solutions along a relinked path, and keep track of those of high quality which may 
provide a starting point for launching additional searches. 
 
Laguna and Martí (1999) adapted PR in the context of GRASP as a form of intensification. The 
relinking in this context consists in finding a path between a solution found with GRASP and a 
chosen elite solution. Therefore, the solutions submitted to path relinking are drawn from a 
population (as in Glover, 1997) whose members may not be linked by a previous sequence of 
moves. Resende et al. (2010) explored the adaptation of GRASP with PR to the Max-Min Diversity 
Problem across different designs in which greedy, randomized, and evolutionary path relinking 
are considered in the implementation: 
 

 Greedy Path Relinking. In this method the moves in the path from a solution to another 
are selected in a greedy fashion, according to the objective function value. 

 Greedy Randomized Path Relinking. Here the method creates a candidate list with the 
good intermediate solutions and randomly selects among them. 

 Truncated Path Relinking. In this application of PR the path between two solutions is not 
completed. It is applied, for example, in problems where good solutions are found close 
to the end points (original solutions) in the path.  

 Evolutionary Path Relinking. This method iterates over the set of high-quality solutions, 
applying successively the relinking mechanism. It has many similarities with the scatter 
search methodology (Glover, 1997; Laguna and Martí, 2003). 

 
As described in Glover and Laguna (1993) and Martí et al. (2006), we can apply different PR 
elements to perform more elaborated designs. Some examples are: simultaneous relinking, 
tunneling strategy, extrapolated relinking, multiple guiding solutions, constructive 
neighborhoods or vocabulary building. 
 
 

6. Application: The Linear Ordering Problem 

Given a matrix of weights E = {eij}mm, the linear ordering problem (LOP) consists of finding a 
permutation p of the columns (and rows) in order to maximize the sum of the weights in the 
upper triangle.  In mathematical terms, we seek to maximize: 
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where pi is the index of the column (and row) in position i in the permutation.  Note that in the 
LOP, the permutation p provides the ordering of both the columns and the rows.  Solution 



methods for this NP-hard problem have been proposed since 1958, when Chenery and 
Watanabe outlined some ideas on how to obtain solutions for this problem (Martí and Reinelt, 
2011).  In this section we describe a tabu search implementation (Laguna et al. 1999) for the 
LOP. 
 
The LOP has a wide range of applications in several fields.  Perhaps, the best know application 
occurs in the filed of economics.  In this application, the economy (regional or national) is first 
subdivided into sectors.  Then, an input/output matrix is created, in which the entry (i,j) 
represents the flow of money from sector i to sector j.  Economists are often interested in 
ordering the sectors so that suppliers tend to come first followed by consumers.  This is achieved 
by permuting the rows and columns of the matrix so that the sum of entries above the diagonal 
is maximized, which is the objective of the LOP. 
 
Insertions are used as the primary mechanism to move from one solution to another in Laguna’s 
et al method for the LOP.  INSERT_MOVE(pj, i) consist of deleting pj from its current position j to 
be inserted in position i (i.e., between the current sectors pi-1 and pi).  This operation results in 

the ordering p, as follows: 
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The neighborhood N consists of all permutations resulting from executing general insertion 
moves as: 
 

N = {p : INSERT_MOVE(pj, i), for j = 1, ..., m and i = 1, 2, ..., j-1, j+1, ..., m} ,  
 
and N is partitioned into m Nj neighborhoods associated with each sector pj, for j = 1, ..., m. 
 

Nj = {p : INSERT_MOVE(pj, i), i = 1, 2, ..., j-1, j+1, ..., m} 
 
Starting from a randomly generated permutation p, the basic TS procedure alternates between 
an intensification and a diversification phase.  An iteration of the Intensification Phase begins by 
randomly selecting a sector.  The probability of selecting sector j is proportional to its weight wj 
according to: 
 

 w e ej ij ji
i j

 


  

 

The move INSERT_MOVE(pj, i)  Nj with the largest move value is selected.  (Note that this rule 
may result in the selection of a non-improving move.)  The move is executed even when the 
move value is not positive, resulting in a deterioration of the current objective function value.  
The moved sector becomes tabu-active for TabuTenure iterations, and therefore it cannot be 
selected for insertions during this time. 
 
The number of times that sector j has been chosen to be moved is accumulated in the value 
freq(j).  This frequency information is used for diversification purposes.  The intensification 
phase terminates after MaxInt consecutive iterations without improvement.  Before 
abandoning this phase, a local search procedure based in the same neighborhood is applied to 
the best solution found (during the current intensification).  We denote this solution as p#, in 
contrast to p* (the best solution found over the entire search).  By applying this greedy procedure 



(without tabu restrictions), a local optimum is guaranteed as the output of the intensification 
phase. 
 
The Diversification Phase is performed for MaxDiv iterations.  In each iteration, a sector is 
randomly selected, where the probability of selecting sector j is inversely proportional to the 
frequency count freq(j).  The chosen sector is placed in the best position, as determined by the 
move values associated with the insert moves in Nj.  The procedure stops when MaxGlo global 
iterations are performed without improving CE(p*).  A global iteration is an application of the 
intensification phase followed by the application of the diversification phase. 
 
An additional intensification is introduced by implementing a long term path relinking phase.  
Specifically, the best solution found at the end of an intensification phase p# (which not 
necessarily represents p*, the best solution overall) is subjected to a relinking process.  The 
process consists of making moves starting from p# (the initiating solution) in the direction of a 
set of elite solutions (also referred to as guiding solutions).  The set of elite solutions consists of 
the EltSol best solutions found during the entire search.  The insertions used to move the 
initiating solution closer to the guiding solutions can be described as follows.  For each sector pj 
in the current solution: 
 

1) Find the position i for which the absolute value of (j-i) is minimized, 
where i is the position that pj occupies in at least one of the guiding 
solutions. 

 
2) Perform INSERT_MOVE(pj, i). 

 
A long term diversification phase is also implemented to complement the diversification phase 
in the basic procedure.  The long-term diversification is applied after MaxLong global iterations 

have elapsed without improving CE(p*).  For each sector pj, a rounded average position (pj) is 
calculated using the positions occupied by this sector in the set of elite solutions and the 
solutions visited during the last intensification phase.  Then, m diversification steps are 

performed which insert each sector pj in its complementary position m-(pj), i.e., 

INSERT_MOVE(pj, m-(pj)) is executed for j = 1, ..., m. 
 
After preliminary experimentation, the search parameters are set to  MaxGlo = 100, MaxLong = 
50, EltSol = 4, TabuTenure = 2 m , MaxInt = m, and MaxDiv = 0.5m and EltSol = 4.  In the 49 

instances of the public domain LOLIB library, the method obtains the optimal solution within 1 
second of computer time run on a Pentium IV at 3Ghz.  The method is also compared with a 
previous procedure due to Chanas and Kobylanski (1996) and a greedy procedure based on the 
N local search.  The methods were run in a way that the best solution found was reported every 
0.5 seconds.  These data points were used to generate the performance graph in Figure 3.  The 
superior performance of TS_LOP is made evident by Figure 3. 
 



Fig. 3  Performance Graph.
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7. The Tabu Cycle and Conditional Probability 

In this section, we describe the implementation and testing of the tabu cycle method and two 
variants of the conditional probability method (Laguna, 2005).  These methods were originally 
described in Glover (1990) and again in the book by Glover and Laguna (1997) but have been 
largely ignored in the tabu search literature.  The tabu cycle method is a short-term memory 
mechanism that is based on partitioning the elements (i.e., move attributes) of a tabu list.  The 
methodology is general and capable of accommodating multi-attribute tabu search memory, as 
described in Glover and Laguna (1997).  In its most basic form, the tabu cycle method divides 
the short-term memory list into TabuGroups groups, where group k consists of elements that 
were added to the list between a specified range of iterations ago.  While in some variants of 
tabu search (e.g., probabilistic tabu search) it is common to progressively relax the tabu status 
of elements as they become older, the tabu cycle method, by contrast, allows the elements of 
some groups to fully escape their tabu status according to certain frequencies that increase with 
the age of the groups.  The method is based on the use of iteration intervals called tabu cycles, 
which are made smaller for older groups than for younger groups (with the exception of a small 
buffer group).  Specifically, if group k has a tabu cycle of TC(k) iterations, then at each occurrence 
of this many iterations, on average, the elements of group k escape their tabu status and are 
free to be chosen.  In other words, on average, group k is designated as FREE every TC(k) 
iterations.  Mechanisms and data structures that are useful for achieving this are described in 
Laguna (2005). 
 
The conditional probability method is a variant of the tabu cycle method that chooses elements 
by establishing the probability that a group will be FREE on a given iteration.  The probability 
assigned to group k may be viewed conceptually as the inverse of the tabu cycle value.  That is, 
P(k) = 1/TC(k).  Analogous to the tabu cycle method, group k is FREE if all older groups likewise 
are FREE.  The method employs a conditional probability, CP(k), as a means of determining 
whether a particular group k can be designated as FREE.  The conditional probability values are 
fixed and that at each iteration the status of a group is determined by a probabilistic process 
that is not affected by previous choices.  Consequently, the approach ignores the possibility that 
actual tabu cycle values may be far from their targets for some groups.  This may happen, for 
example, when for a number of iterations no elements are chosen from a particular set of FREE 



groups.  The conditional probability method also makes use of a buffer group, for which no 
element is allowed to escape its tabu status.   
 
A variant of the conditional probability method uses substitute probability values to keep the 
expected number of elements per iteration chosen from groups no older than any given group 
k close to P(k).  The substitute probabilities replace the original P(k) values in the determination 
of the conditional probabilities.  These substitute probabilities make use of cycle counts, which 
are also used in connection with the tabu cycle method. 
 
Laguna (2005) uses a single machine scheduling problem to test the merit of implementations 
of the tabu cycle method and both variants of the conditional probability method.  The problem 
consists of minimizing the sum of the setup costs and linear delay penalties when n jobs, arriving 
at time zero, are to be scheduled for sequential processing on a continuously available machine.  
Several variants of tabu search for this problem have been reported in the literature (Laguna, 
Barnes and Glover, 1991 and 1993; Glover and Laguna, 1991; Laguna and Glover, 1993).  
Experiments with more than 300 problem instances with up to 200 jobs were performed to 
compare a simple static and dynamic short-term memory schemes with a tabu cycle 
implementation (Cycle), a conditional probability implementation (C-Prob) and an 
implementation of the conditional probability method with substitute probabilities (S-Prob).  
The static short-term memory assigns a constant tabu tenure to all attributes during the search.  
The dynamic short term memory randomly selects a tabu tenure from a specified range.  
Therefore, the tabu tenure assigned to an attribute in a give iteration may not be the same as 
the tabu tenure assigned to another attribute in a different iteration.  Table 5 shows the number 
of best solutions found by each method in each set of 100 problems. 
 

Problem Set Static Dynamic Cycle C-Prob S-Prob 

n = 50 2 50 9 31 65 

n = 100 0 10 28 17 47 

n = 200 0 8 37 26 29 

Table 5. Number of best solutions (out of 100) found by each method 

 
The results in Table 5 show the merit of the tabu cycle and the conditional probability variants 
as the problem size increases.  In addition to these results, the S-Prob is able to find 17 new best 
solutions to 20 problems used for experimentation in Glover and Laguna (1991).  For problems 
with up to 60 jobs, for which a lower bound can be computed, S-Prob produces a maximum gap 
of 3.56% in relation to this optimistic bound.. 
 
These results confirm that a tabu search procedure based solely on a static tabu list is not a 
robust method, because it is incapable of maintaining an acceptable level of diversity during the 
search.  The dynamic short-term memory continues to be an appealing alternative, because it is 
easy to implement and provides a good balance between diversification and intensification.  The 
results also show that improved outcomes are possible with the additional effort required to 
implement the tabu cycle or conditional probability methods. 
 
Additional strategies identified in Glover and Laguna (1997) can be valuable for exploiting other 
aspects of intensification and diversification, but this example demonstrates the importance of 
handling short-term memory in a strategic way, especially when faced with larger and more 
difficult problems. 
 

 



8. Additional Uses of Conditional Relationships, Solution Attributes, Embedded Tabu 
Search and Learning  

 
Conditional Relationships 
 
Principles for exploiting conditional relationships in tabu search and strategic oscillation 
originally proposed in Glover (2000) have recently been elaborated to produce a class of 
methods called Multi-Wave Algorithms (Glover, 2016a), whose preliminary implementation has 
achieved notable success (Oualid, 2017). These principles, which are applicable both to multi-
start constructive methods and iterated local search methods, may be briefly summarized as 
follows.  
 
Define a boundary solution to be a local optimum for a neighborhood search method or a 
completed construction for a constructive solution method, and define a solution wave to be a 
succession of moves, starting from a given initial solution (which can be a null solution for a 
constructive method) that lead to a boundary solution.  We consider forms of constructive or 
neighborhood search that permit moves to be dropped (or equivalently, reversed) en route from 
an initial solution to a boundary solution. Hence, constructive search is treated within the 
framework of strategic oscillation, which permits destructive moves at intermediate stages and 
neighborhood search is treated in a similar framework, where move reversals are employed at 
specific junctures. The following observations motivate the use of such a framework. 
 
Principle of Marginal Conditional Validity (MCV Principle).  ― Starting from a given initial 
solution, as more moves are made, the information that permits these moves to be evaluated 
becomes increasingly effective for guiding the search to a high quality boundary solution, 
conditional upon the decisions previously made.  
 
This principle has several consequences, which can be stated as heuristic inferences. 
 
Inference 1.  Early decisions are more likely to be bad ones. 
 
Inference 2.  Early decisions are likely to look better than they should (i.e., receive higher 
evaluations than would be appropriate for achieving global optimality), once later decisions 
have been made. 
 
Inference 3.  The outcome of a constructive or local improvement method can often be improved 
by examining the resulting complete solution, where all decisions have been made, and seeing 
whether one of the decisions can now be advantageously replaced with a different one. 
 
Inference 4.  The outcome of a constructive or improvement method can often be improved by 
examining a solution at an intermediate stage, before reaching a boundary solution, and seeing 
whether one of the decisions can now be advantageously replaced with a different one. 
 
These conditionality principles are reinforced by an associated set of principles based on the 
notion of persistent attractiveness, which is manifested in three types of situations.  
 
PA Type 1: Exhibited by a move that is attractive enough more than once during a wave to be 
chosen a second or third time (a move that receives a high enough evaluation after being 
dropped to cause it to be chosen again). 
 



PA Type 2: Exhibited by a move that repeatedly has high evaluations during a wave, whether 
chosen or not, and if ultimately chosen is not selected until a step that occurs somewhat after it 
first appears to be attractive. 
 
PA Type 3: Exhibited by a move that repeatedly has a high evaluation during one or more waves, 
but which is not selected.  
 
Principle of Persistent Attractiveness.  

(PA-1) A move of PA Type 1 allows a focus on dropping moves that will have greater impact 
by exempting such a move from being dropped anew once it achieves the Type 1 
status.  

(PA-2) A move of PA Type 2 which was chosen on a given wave offers an opportunity for 
producing a better solution on a new wave if it is selected at an earlier stage in 
the wave. (In particular, given that the move was eventually chosen, selecting it 
earlier affords a chance to make decisions based on this choice that were not 
influenced at the later point in the decision sequence when the move was chosen 
previously).  

(PA-3) A move of PA Type 3 can be used to combine diversification with intensification by 
choosing at least one member of this type at a relatively early stage of a wave, 
assuring that the resulting solution will not duplicate a previous solution and 
allowing subsequent decisions to take this move into account. 

 
These types of conditional relationships are amplified by reference to an associated principle for 
combining attractiveness and move influence and are conjectured to be fundamental to 
designing more effective uses of memory in tabu search.  
 
Solution Attributes 
  
As emphasized in Glover and Laguna (1993), the choice of solution attributes for defining tabu 
status in tabu search can be important for producing solutions of highest quality. Recent studies 
by Wang et al. (2016), and Wu et al. (2016) have documented the impact of attribute selection 
strategies by employing a balance between attributes consisting of hash coded solutions 
(drawing on ideas of Woodruff and Zemel, 1993) and attributes more commonly used. 
Computational experiments show that such blends of attributes yield tabu search algorithms 
that significantly outperform all other methods previously proposed for the classes of problems 
tested. These outcomes motivate the exploration of other ways of generating compound 
solution attributes to identify attributes that likewise lead to more effective versions of tabu 
search. 
 
Embedded Tabu Search 
 
Numerous methods, most commonly evolutionary methods, have been joined with tabu search 
to produce effective hybrid (composite) methods. Such a hybrid methods can be viewed in one 
of two ways: either as an evolutionary method which relies on tabu search as a means for 
generating improved solutions, or as a tabu search method that incorporates evolutionary 
search in the role of an intensification/diversification strategy. The first of these two 
perspectives (e.g., Glover, 1997) has often proved more popular, giving rise to a large number 
of metaheuristics that “embed” tabu search within them. Prominent among these hybrid 
methods are Memetic Algorithms, in which tabu search is often used as a solution improvement 
procedure. Examples of such evolutionary/tabu search hybrids that have achieved particularly 
noteworthy successes appear in the work of Chen et al. (2016), Jin and Hao (2016), Lai and Hao 
(2016).  



Tabu Search with Learning 
 
Learning is automatically built into tabu search with its emphasis on adaptive memory. In 
addition, proposals have often been made for joining tabu search strategies with classical forms 
of learning. For example, within a memory-based method, clustering can take advantage of the 
fact that solutions generated over time may be exploited more effectively by analyzing subsets 
of good solutions that exhibit common characteristics (as proposed in Glover (1977, 1989) and 
in Glover and Laguna (1997)).  Similarly, classification can be exploited in retrospective analysis, 
particularly in relation to a tabu search strategy called target analysis, to identify characteristics 
of moves that lead to elite solutions, as proposed in Glover and Greenberg (1989) and Glover 
and Laguna (1997). In reverse, tabu search and associated scatter search methods have been 
utilized as a means to obtain improved learning procedures, as in neural networks (Kelly et al. 
1996; Dengiz et al. 2009) and in clustering (Cao et al. 2015). Nevertheless, the exploration of 
classical forms of learning with tabu search remains a topic that has not been covered in nearly 
the depth that it deserves. Key observations related to this topic emerge in the context of 
clustering and intensification/diversification strategies, where spatially defined measures of 
distance may be inapplicable (Glover, 2016b).  
 
 

Conclusions 

The focus and emphasis of tabu search have a number of implications for the goal of designing 
improved optimization procedures.  These research opportunities carry with them an emphasis 
on producing systematic and strategically designed rules, rather than following the policy of 
relegating decisions to random choices, as often is fashionable in a variety of other metaheuristic 
methods.  The highly attractive results provided by the adaptive memory structures underlying 
tabu search are producing an evident impact on the design of metaheuristic methods in general, 
and are motivating the emergence of new hybrids of TS with other procedures. 
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