Holographic flavor on the Higgs branch

(Based on work with A.V. Ramallo and D. Rodríguez Gómez) hep-th/0703094, (hep-th/0609010)

Daniel Areán Fraga
Valencia, October 2007

- Adding flavor to the AdS/CFT correspondence. Dp-Dq brane intersections.
- Holographic dual of the Higgs branch. Macro \& micro descriptions.
- Higgs branch of the $D p-D(p+4)$ system.

D3-D7: $4 \mathrm{~d} \mathcal{N}=4 S U(N) S Y M+\mathbf{N}_{\mathrm{f}}$ fundamental hypermultiplets.

- Higgs branch of the $D p-D(p+2)$ setup.

D3-D5: $4 \mathrm{~d} \mathcal{N}=4 S U(N) S Y M+3 d$ fundamental hypermultiplets.

- Dp-Dp, F1-Dp \& M-theory M2-M5 intersections.

Higgs Branch $\longrightarrow\langle$ fundamentals $\rangle \neq 0$

RECOMBINING COLOR \& FLAVOR BRANES

Change embedding

(Giveon, Kutasov)
$\mathcal{N}=2$ THEORIES
$\mathcal{M}_{\text {Higgs }} \equiv \begin{aligned} & \text { 4d Instantons } \longleftarrow \\ & \text { Moduli space }\end{aligned}$
(Douglas; Witten)
Dissolved D3-branes: $T_{7} \int \mathrm{P}\left[C^{(4)}\right] \wedge \operatorname{tr}(F \wedge F) \longleftarrow \begin{aligned} & \text { D7 action } \\ & \text { WZ term }\end{aligned}$
$\left[\begin{array}{l}\text { D3 WV theory } \\ \text { F- \& D-flatness }\end{array} \equiv \begin{array}{l}\text { ADHM constraints } \\ \text { instantons along } 4567\end{array}\right]$

- SUGRA DUAL
(Macro picture)
D3 $\left.\begin{array}{ccccccccc}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & \overbrace{8} \\ \mathrm{X} & \mathrm{x} & \mathrm{X} & \mathrm{X} & - & \\ \hline\end{array} \rho^{2}=\vec{y} \cdot \vec{y}\right]$
D7 X X X X X X X X - -

Microscopical description: k dielectric D3-branes fuzzy along 4567 in $A d S_{5} \times S^{5} \sim$ N-k D3-branes $(N \gg k)$
$Y^{i}: \frac{1}{2 \pi \alpha^{\prime}}\left[Y^{i}, Y^{j}\right] \equiv i \theta_{i j} \in S U(K) ; \quad Z^{m} \longrightarrow$ abelian $; \quad{ }^{*} \theta_{i j}=\theta_{i j}$

$$
S^{D 3}=-T_{3} \int d^{4} \xi \mathbf{S t r}\left\{\sqrt{-\operatorname{det}\left[P\left[G+G\left(Q^{-1}-\delta\right) G\right]_{a b}\right]} \sqrt{\operatorname{det} Q}\right\}+T_{3} \int d^{4} \xi \mathbf{S t r}\left[P\left[C^{(4)}\right]\right] \stackrel{\theta_{i j}=\theta_{i j}}{=}-\frac{T_{3}}{4} \int d^{4} x \mathbf{S t r}\left[\theta^{2}\right]
$$

$$
=-\pi^{2} T_{7}\left(2 \pi \alpha^{\prime}\right)^{2} \int d^{4} x \mathbf{S} \operatorname{tr}\left[\theta^{2}\right]
$$

MAP MICRO \Rightarrow MACRO description $\mathbf{M}_{k \times k} \Rightarrow f(\vec{y})$

$$
\left[\begin{array}{l}
S_{W Z}^{D T}=T_{3} \int d^{4} x d^{4} y\left(\frac{r^{2}}{R^{2}}\right)^{2} \mathcal{P}(y) \\
S_{W Z}^{D 3}=T_{3} \int d^{4} x \operatorname{Str}\left[\left(\frac{\hat{r}^{2}}{R^{2}}\right)^{2}\right]
\end{array}\right] \quad \operatorname{Str}[\hat{f}] \Rightarrow \int d^{4} y \mathcal{P}(y) f(y)\left[\begin{array}{cc}
\left(2 \pi \alpha^{\prime}\right)^{2} \operatorname{Str}\left[\theta^{2}\right] \\
\Downarrow \\
\int d^{4} y \frac{N_{f}}{\pi^{2}} & \left(2 \pi \alpha^{\prime}\right)^{2} \theta^{2} \Rightarrow \frac{N_{f}}{\pi^{2} \mathcal{P}(y)}
\end{array}\right.
$$

e.g. One $\operatorname{SU}(2)$ instanton: $\mathcal{P}(y)=\frac{6}{\pi^{2}} \frac{\Lambda^{4}}{\left(\rho^{2}+\Lambda^{2}\right)^{4}}$, we recover: $v \sim \frac{\Lambda}{\alpha^{\prime}} \quad \begin{aligned} & \text { (Guralnik et al) } \\ & \text { (Erdmenger et al) }\end{aligned}$

- Meson spectrum $(p \mid D p \perp D(p+4))$ in the Higgs branch

Only WV gauge field fluctuations: $A=A^{\text {inst }}+a \longrightarrow S^{D(p+4)}$ up to order a^{2}
Assume one $\operatorname{SU(2)}$ instanton \& only $a_{\mu} \neq 0$

D2-D6

D3-D7

* Our result

ム $\left[S^{D(p+4)} \sim \sqrt{g} F^{a b} F_{a b}\right]$
(Erdmenger et al)

- Spectral flow: $M(v, L=0) \xrightarrow{v \rightarrow \infty} M(v=0, L=1)$
- $M \sim \frac{m_{q}}{g_{\text {eff }}\left(m_{q}\right)} \quad(v \rightarrow \infty) \quad$ (as in D.A. \& A.V. Ramallo; R. Myers \& R.M. Thomson)
- $M \sim v \quad(v \rightarrow 0) \longleftarrow$ WKB approx.

D3-D5 system [$(p-1 \mid D p \perp D(p+2))$]

D3 WV: 4d $\mathcal{N}=4 S U(N) \mathrm{SYM}+\mathrm{N}_{\mathrm{f}}$ 3d fdmtal. hypermultiplets at $x^{3} \equiv x=\mathrm{cons} \longrightarrow 0$
(DeWolfe, Freedman, Ooguri)

- SUGRA DUAL (Macro picture)

N $_{\text {f }}$ D5 probes
in $A d S_{5} \times S^{5}$$\left\{\begin{array}{l|r}\xi^{a}=\left(x^{0}, x^{1}, x^{2}, \rho, S^{2}\right) & \rho \uparrow \\ x^{3}=\mathrm{cons} & \text { D3 } \\ |\vec{z}|=L & \\ \hline\end{array}\right.$

Microscopical description: \mathbf{k} dielectric D3-branes fuzzy along the $\mathbf{S}^{2}\left[d \Omega_{2}^{2}=\sum_{I=1}^{3} d Y^{I} d Y^{I}: \sum_{I=1}^{3} Y^{I} Y^{I}=1\right]$

$$
\begin{aligned}
& \text { Field Theory } \\
& \begin{array}{l}
456 \longrightarrow X_{H}^{I}=2 \pi \alpha^{\prime} \phi_{H}^{I} \\
789 \longrightarrow X_{V}^{A}=2 \pi \alpha^{\prime} \phi_{V}^{A}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\begin{array}{l}
\text { Higgs } \\
\text { Vacuum } \\
\phi_{V}=\left(\begin{array}{cc}
A & 0 \\
0 & 0
\end{array}\right) \quad q=\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
\alpha_{1} \\
\vdots \\
\alpha_{k}
\end{array}\right)+ \\
\\
{[A \longrightarrow(\mathrm{~N}-\mathrm{k}) \times(\mathrm{N}-\mathrm{k})]}
\end{array} \begin{array}{l}
\text { Nahm equations: } \\
\partial_{3} \phi_{H}^{I}+\frac{i}{2} \epsilon_{I J K}\left[\phi_{H}^{J}, \phi_{H}^{K}\right]+\alpha^{I} \delta\left(x^{3}\right)=0 \\
\phi_{H}^{I}=\frac{f(x)}{\sqrt{C_{2}(k)}}\left(\begin{array}{cc}
0 & 0 \\
0 & J^{I}
\end{array}\right) \xrightarrow[\rho^{2} \equiv X_{H}^{I} X_{H}^{I}]{\longrightarrow} \quad \rho=-\frac{\pi k \alpha^{\prime}}{x}
\end{array}\right)
\end{aligned}
$$

- Meson spectrum $(p-1 \mid D p \perp D(p+2))$ in the Higgs branch

Compute the whole set of fluctuations around
D5

$$
+\int_{S^{2}} F=q
$$

D3

Full mesonic mass spectrum continuous and gapless

- $(p-2 \mid D p \perp D p)$ [D3-D3 system: $4 \mathrm{~d} \mathcal{N}=4 S U(N) S Y M+2 d$ fdtal. multiplets]
(Constable, Erdmenger, Guralnik, Kirsch)

- M2-M5 intersection: M-theory codimension one defect. M5-probe embedding in the M2 background with WV gauge flux and bending along the direction // to the probe were found and shown to be SUSY. Meson spectrum becomes continuous and gapless.
- F1-Dp intersection: SUSY embeddings of the Dp in the F1 background with WV gauge flux and bending along the Fl were found. Again the spectrum becomes continuous and gapless.

