F. Benini

Gauge/Gravity with Flavors

Outline

D3 + D7 on Conifold

Field Theory

Fractional Branes

Conclusions

Backreacting Flavors in the Klebanov-Witten Model via D7-branes

Francesco Benini

SISSA - Trieste and INFN - Trieste

RTN Workshop - Valencia 5 October 2007

(based on: hep-th/0612118, arXiv:0706.1238, arXiv:0710.0374 in collaboration with F. Canoura, S. Cremonesi, C. Nuñez and A.V. Ramallo)

F. Benini

Gauge/Gravity with Flavors

Outline

D3 + D7 on Conifold

Field Theory

Fractional Branes

Conclusions

Gauge/Gravity with Flavors

• Different large *N_c* expansions:

t'Hooft limit

 $N_c
ightarrow \infty$

 $g_{YM}^2 N_c, N_f$ fixed

Planar diagrams *without* quark loops

Topological expansion in *closed* Riemann surfaces

```
Gauge/Gravity framework:
```

Karch, Katz 02, Kruczenski et al. 03, ...

Veneziano limit

. .

$$egin{array}{lll} N_c
ightarrow \infty \ g_{YM}^2 \, N_c, & rac{N_f}{N_c} & {
m fixed} \end{array}$$

Planar diagrams *with* quark loops

Topological expansion in surfaces with *boundaries*

Graña,Polchinski 01, Bertolini et al. 01, ...

Some phenomena visible with fundamentals:

- · screening of color charges, breaking of flux tubes
- Seiberg duality
- meta-stable SUSY breaking vacua

F. Benini

Gauge/Gravity with Flavors

Outline

D3 + D7 on Conifold

Field Theory

Fractional Branes

Conclusions

non-AdS/non-CFT with Flavors

Add flavors to the Gauge/Gravity correspondence as *higher dimensional flavor branes*: D7-branes

Karch,Katz 02

D7-branes are *not* replaced by flux:

Flavor symm in Field Theory \iff Gauge symm on D7-branes

t'Hooft limit: N_f fixed $g_s N_f
ightarrow 0$ Veneziano limit: N_f/N_c fixed $g_s N_f \gg 1$ fixed

F. Benini

Gauge/Gravity with Flavors

Outline

D3 + D7 on Conifold

Field Theory

Fractional Branes

Conclusions

Backreacting flavors on the KW background

Outline:

- ► D3-branes on a *conifold* geometry
- Procedure for adding backreacting D7-branes
- The supergravity solution
- Comparison with field theory
- Addition of *fractional branes*
- Conclusions

F. Benini

Gauge/Gravity with Flavors

Outline

D3 + D7 on Conifold

Field Theory

Fractional Branes

Conclusions

D3-branes on the Conifold

Gravity side:

N_c D3-branes at the tip (near horizon)

- $AdS_5 \times T^{1,1}$
- \Rightarrow N_c units of RR 5-form flux on both factors
 - constant dilaton

Field Theory side:

Gauge theory: $SU(N_c) \times SU(N_c)$ $\mathcal{N} = 1$ Superconformal Matter: bifundamental $A_{1,2}$ and $B_{1,2}$

Superpotential:

 $W = A_1 B_1 A_2 B_2 - A_1 B_2 A_2 B_1$

Flavor symmetries:

 $SU(2)_\ell imes SU(2)_r imes U(1)_R imes U(1)_B$

We are going to add flavor D7-branes to this background

F. Benini

Gauge/Gravity with Flavors

Outline

D3 + D7 on Conifold

Field Theory

Fractional Branes

Conclusions

D7-branes: Computation of the Backreaction

Procedure:

Casero, Nunez, Paredes 05

- ► Find SUSY D7 probes
 - The background is $\mathcal{N} = 1$ superconformal: 8 supercharges The D7's preserve only 4 supercharges
- Compute the backreaction of the D7's D7-branes provide energy (Einst

(Einstein and dilaton eqns) (also EOMs for fluxes)

The solution would have a non-trivial angular profile

Smearing

and F_1 flux

Distribute the D7's along the angular directions (N_f large) Kill the angular dependency

 \Rightarrow Ansatz with only radial functions

Solve the SUSY equations and check the EOMs

F. Benini

Gauge/Gravity with Flavors

Outline

D3 + D7 on Conifold

Field Theory

Fractional Branes

Conclusions

The Smearing Procedure

With (magnetic) sources Bianchi identities are violated:

$$dF_1 = -\sum_{i=1}^{N_f} \delta^{(2)}(\mathsf{D7}_{(i)})$$

Homogeneous angular distribution (at large N_f):

$$dF_1 = -\sum_{i=1}^{N_f} \delta^{(2)}(\mathsf{D7}_{(i)}) \quad o \quad -\Omega_2$$

This comes from the DBI and WZ actions:

$$egin{aligned} S_{WZ} &= \sum_{i=1}^{N_f} \, \int_{D7_{(i)}} C_8 & &
ightarrow \int C_8 \wedge \Omega_2 \ S_{DBI} &= \sum_{i=1}^{N_f} \, \int_{D7_{(i)}} e^{\phi} \, \sqrt{-\hat{g}} \, d^8 \xi &
ightarrow \dots \end{aligned}$$

F. Benini

Gauge/Gravity with Flavors

Outline

D3 + D7 on Conifold

Ansatz:

Field Theory

Fractional Branes

Conclusions

Ansatz for the Backreacted Solution

In our setup, Ω_2 is computed to be:

$$\Omega_2 = \frac{N_f}{4\pi} \Big(\sin \theta_1 \, d\theta_1 \wedge d\varphi_1 + \sin \theta_1 \, d\theta_1 \wedge d\varphi_1 \Big)$$

 $SU(2)_\ell imes SU(2)_r imes U(1)_R$ isometry

$$\begin{aligned} ds_{10}^{2} &= h^{-\frac{1}{2}} dx_{1,3}^{2} + h^{\frac{1}{2}} ds_{6}^{2} \\ ds_{6}^{2} &= dr^{2} + \frac{e^{2g}}{6} \sum_{i=1,2} (d\theta_{i}^{2} + \sin^{2}\theta_{i} d\varphi_{i}^{2}) + \frac{e^{2f}}{9} (d\psi + \sum_{i=1,2} \cos\theta_{i} d\varphi_{i})^{2} \\ e^{\phi} &= e^{\phi(r)} \\ F_{5} &= (1 + *) d^{4}x \wedge dh^{-1} \\ F_{1} &= \frac{N_{f}}{4\pi} (d\psi + \sum_{i=1,2} \cos\theta_{i} d\varphi_{i}) \end{aligned}$$

Unknow functions: h(r), g(r), f(r), $\phi(r)$.

F. Benini

Gauge/Gravity with Flavors

Outline

D3 + D7 on Conifold

Field Theory

Fractional Branes

Conclusions

The Supergravity Solution The system can be analytically integrated (many integr consts) Change radial variable $r \rightarrow \rho$: $e^{-f}dr = d\rho$

- The warp factor h(ρ) can be analytically integrated
- The solution is defined in: $-\infty < \rho < 0$
- $\rho = 0$ (UV): the dilaton blows up Landau pole
- ▶ $\rho \to -\infty$ (IR): up to logarithmic correction of order $1/|\log(r)|$ the geometry approaches $AdS_5 \times T^{1,1}$ with $e^{\phi}(r) \to 0$ The Einstein frame curvature is finite

F. Benini

Gauge/Gravity with Flavors

Outline

D3 + D7 on Conifold

Field Theory

Fractional Branes

Conclusions

The Dual Field Theory

Gauge theory: $SU(N_c) \times SU(N_c)$ $\mathcal{N} = 1$ Flavor symmetry: $U(N_f) \times U(N_f)$ (particular)

(partially anomalous)

Matter: $A_{1,2}$ and $B_{1,2}$ bifundamentals D7 matter: q, \tilde{q} , Q, \tilde{Q} fundamentals

Superpotential (localized D7's):

$$W=A_1B_1A_2B_2-A_1B_2A_2B_2 + \tilde{q}A_1Q+\tilde{Q}B_1q$$

Smearing: only the superpotential (cubic coupling) is affected Appears a linear combination of A_i and B_i

Having added flavors to a conformal theory, we expect *positive* β -function

F. Benini

Gauge/Gravity with Flavors

Outline

D3 + D7 on Conifold

Field Theory

Fractional Branes

Conclusions

Comparison with Field Theory and Extensions

• Matching of β -functions and $U(1)_R$ anomaly

IVCompute:gauge couplings g_i (from e^{ϕ})
YM theta angles θ_i^{YM} (from C_0) β -functions: β_{g_i} are positive
Match γ_A and γ_q at almost conformal point $U(1)_R$ anomaly: $U(1)_R \times U(1)_B \rightarrow \mathbb{Z}_{N_f} \times U(1)_B$

- Extensions:
 - Massive flavors:

SUGRA solution for massive flavors Check of holomorphic decoupling

 Generic Calabi-Yau singularities
 SUGRA solution with backreacting D7's for every AdS₅ × M₅ (Sasaki-Einstein)

F. Benini

Gauge/Gravity with Flavors

Outline

D3 + D7 or Conifold

Field Theory

Fractional Branes

Conclusions

Addition of Fractional Branes

★ Field Theory side

Realize different gauge ranks: $G_1 > G_2$

RG flow: cascade of Seiberg dualities both ranks and their difference reduce

Extra gauge singlet fields involved

★ Gravity side

Add 3-form flux: F_3 and H_3

 $P_{D7}[H_3] \neq 0 \quad \Rightarrow \quad \text{forced to put gauge flux } \mathcal{F} \text{ on the D7's}$

SUGRA solution with 3-form flux + backreacting D7's with \mathcal{F}

• Matching of the cascade:

Page charges \rightarrow mathing of gauge rank cascade Intersecting D7 with flux $\mathcal{F} \rightarrow$ extra gauge singlets

F. Benini

- Gauge/Gravity with Flavors
- Outline
- D3 + D7 on Conifold
- Field Theory
- Fractional Branes
- Conclusions

Conclusions

- System of D3 + D7 backreacting branes on Conifold (*flavored* KW model)
- SUGRA solution (in terms of analytic functions)
- Dual field theory
- Perfect matching of:
 - gauge and flavor symmetries
 - β-functions
 - anomalies
- System of fractional D3 + D7 with flux \mathcal{F} on Conifold (*chirally flavored* KT model)
- SUGRA solution (in terms of analytic functions) Matching with the field theory cascade