The holomorphic anomaly for open string moduli Giulio Bonelli (SISSA/ISAS)
 RTN Meeting, Valencia October, 22007

Based on G.B. and A.Tanzini, arXiv:0708.2627

Topological Open Strings are interesting for:

- String theorists who like all genera exact results
- Math.-Phys. people: those like to calculate string amplitudes at all genera, count cycles, topological invariants and other stuffs
- String Pheno. people: these like to get gauginos masses, Yukawa couplings and other stuffs upon superstring CY compactification

The last two items are connected via the topological twist of the superstring

$$
[F-\text { terms }] \quad \Longleftrightarrow \quad \text { [topological obs.] }
$$

Holomorphic anomaly equations (HAE)

- BCOV (hep-th/9309140) for closed strings.

$$
\partial_{\overline{t_{\bar{i}}}} F_{g}=\frac{1}{2} C_{\bar{i}}^{j k}\left[\sum_{g_{1}+g_{2}=g} D_{j} F_{g_{1}} D_{k} F_{g_{2}}+D_{j} D_{k} F_{g-1}\right]
$$

- for open strings and frozen open moduli (see Walcher arXiv:0705.4098)

$$
\partial_{\bar{t}_{\bar{i}}} F_{g, h}=\frac{1}{2} C_{\bar{i}}^{j k}\left[\sum_{\substack{g_{1}+g_{2}=g \\ h_{1}+h_{2}=h}} D_{j} F_{g_{1}, h_{1}} D_{k} F_{g_{2}, h_{2}}+D_{j} D_{k} F_{g-1, h}\right]-\Delta_{\bar{i}}^{j} D_{j} F_{g, h-1}
$$

where $\Delta_{\bar{i}}^{j}=g^{j \bar{j}} \int_{0}^{1} d r\left\langle\phi_{\bar{i}}(0) \phi_{\bar{j}}^{[1]}(r)\right\rangle_{\Sigma_{0,1}}$

New issue : switch on open moduli in HAE's

Abstract of the talk

- Main result:Complete the holomorphic anomaly equations for topological strings with their dependence on open moduli.
- How: by standard path integral arguments generalizing the analysis of BCOV to strings with boundaries and open moduli.
- In particular: study anti-holomorphic dependence of string partition functions on open moduli and on closed moduli in presence of Wilson lines.
- Math. spin-off: compactification à la Deligne-Mumford of the moduli space of Riemann surfaces with boundaries. Actually: the open holomorphic anomaly equations are structured on the (real codimension one) boundary components of this space.

Anti-holomorphic dependence on open moduli was already noticed:

- I. Antoniadis, K. S. Narain and T. R. Taylor, "Open string topological amplitudes and gaugino masses,"
- D. Cremades, L. E. Ibanez and F. Marchesano, "Computing Yukawa couplings from magnetized extra dimensions,"
- M. Marino, "Open string amplitudes and large order behavior in topological string theory,"
- R. Russo and S. Sciuto, "The twisted open string partition function and Yukawa couplings,"
- M. Billo et al., "Instantons in N=2 magnetized D-brane worlds," "Instanton effects in $N=1$ brane models and the Kahler metric of twisted matter"

Boundary marginal deformations

$$
\begin{gathered}
\left.F_{g, h}=\left.\int_{\overline{\mathcal{M}}_{g, h}}\left\langle\prod_{k=1}^{3 g-3+h}\right|\left(\mu_{k}, G^{-}\right)\right|^{2} \prod_{a=1}^{h}\left(\lambda_{a}, G^{-}\right)\right\rangle_{\Sigma_{g, h}} \\
\delta S_{B}=\bar{Q}_{+} \bar{Q}_{-} \int_{\Sigma_{g, h}} \delta t^{\bar{i}} \phi_{\bar{i}}+\int_{\Sigma_{g, h}} Q_{+} Q_{-} \delta t^{i} \phi_{i}+ \\
+Q \oint_{\partial \Sigma_{g, h}}\left(\delta t^{\bar{\alpha}} \Theta_{\bar{\alpha}}+\delta t^{\bar{i}} \Psi_{\bar{i}}\right)+\oint_{\partial \Sigma_{g, h}} \bar{Q}\left(\delta t^{\alpha} \Theta_{\alpha}+\delta t^{i} \Psi_{i}\right)
\end{gathered}
$$

Open moduli span fibers over closed moduli
For the B-model for example:

$$
\begin{array}{cc}
\phi_{\bar{i}}=\left(w_{\bar{i}}\right)_{I J}(X) \rho_{z}^{I} \rho_{\bar{z}}^{J}, & \phi_{i}=\left(\bar{w}_{i}\right)_{\bar{I} \bar{J}}(X) \eta^{\bar{I}} \theta^{\bar{J}} \\
\Theta_{\bar{\alpha}}=\left(\delta A_{\bar{\alpha}}^{(1,0)}\right)_{I}(X)\left(\rho_{z}^{I}+\rho_{\bar{z}}^{I}\right), & \Theta_{\alpha}=\left(\delta A_{\alpha}^{(0,1)}\right)_{\bar{I}}(X) \eta^{\bar{I}} \\
\Psi_{\bar{i}}=\left[\left(w_{\bar{i}}\right)_{I}^{\bar{J}} A_{\bar{J}}^{(0,1)}\right](X)\left(\rho_{z}^{I}+\rho_{\bar{z}}^{I}\right), & \Psi_{i}=\left[\left(w_{i}\right)_{\bar{I}}^{J} A_{J}^{(1,0)}\right](X) \eta^{\bar{I}} .
\end{array}
$$

Main points to proceed:

- F-terms are calculated by Mandelstam diagrams where all intermediate states are at zero energy.
- Therefore one can reduce the integrals over the Moduli space of Riemann surfaces to the boundary.
- Hence, for open strings also degenerating open channels are relevant.
- Need to study Riemann surfaces with colliding boundaries (that is long strips)

For closed strings channels: two topologically distinct ways:

For open strings channels: three topologically distinct ways:

$$
\begin{array}{ccc}
\text { [pinching] } & \text { [dividing] } & \text { [colliding] } \\
\partial_{o} \mathcal{M}_{g, h, n, \mathrm{~m}}= \\
\mathcal{M}_{g-1, h+1, n, \tilde{\mathrm{~m}} \oplus\left(m_{l}+1, m_{r}+1\right)} \cup \coprod \mathcal{M}_{g_{1}, h_{1}, n_{1}, \mathrm{~m}_{1}} \times \mathcal{M}_{g_{2}, h_{2}, n_{2}, \mathrm{~m}_{2}} \cup \mathcal{M}_{g, h-1, n, \hat{\mathrm{~m}} \oplus\left(\mathrm{~m}+\mathrm{m}^{\prime}+2\right)} \\
g_{1}+g_{2}=g \\
n_{1}+n_{2}=n \\
h_{1}+h_{2}=h+1 \\
\mathrm{~m}_{1} \oplus \mathrm{~m}_{2}=\hat{\mathrm{m}} \oplus\left(m_{l}+1, m_{r}+1\right)
\end{array}
$$

Zooming on the degenerating areas:

[real codimension two (but the shrinking!)] [real codimension one]
[conformal to a long tube]
[conformal to a long strip]

Open moduli holomorphic anomaly

$$
\left.\partial_{\bar{t}_{\bar{\alpha}}} F_{g, h}=\left.\int_{\mathcal{M}_{g, h}}\left\langle Q \int_{\partial \Sigma_{g, h}} \Theta_{\bar{\alpha}}^{3 g} \prod_{k=1}^{3 g-3+h}\right|\left(\mu_{k}, G^{-}\right)\right|^{2} \prod_{a=1}^{h}\left(\lambda_{a}, G^{-}\right)\right\rangle_{\Sigma_{g, h}}
$$

where

$$
Q \oint_{\partial \Sigma_{g, h}} \Theta_{\bar{\alpha}}=\oint_{\partial \Sigma_{g, h}} d t \int_{\gamma_{t}} d t^{\prime}\left(G^{+}+\bar{G}^{+}\right)\left(t^{\prime}\right) \Theta_{\bar{\alpha}}(t)
$$

$$
\left.\partial_{\bar{t}_{\bar{\alpha}}} F_{g, h}=\left.\int_{\mathcal{M}_{g, h}}\left\langle Q \int_{\partial \Sigma_{g, h}} \Theta_{\bar{\alpha}} \prod_{k=1}^{3 g-3+h}\right|\left(\mu_{k}, G^{-}\right)\right|^{2} \prod_{a=1}^{h}\left(\lambda_{a}, G^{-}\right)\right\rangle_{\Sigma_{g, h}}
$$

- To calculate: pull the supercharge against the measure.
- use superconformal algebra $Q G^{-}=T$
- use $\partial_{n}\langle X\rangle=\left\langle X \int T \cdot \nu_{n}\right\rangle$

$$
\begin{aligned}
& \partial_{\bar{t}_{\bar{\alpha}}} F_{g, h}=\int_{\mathcal{M}_{g, h}}\left\{\left.\sum_{j=1}^{3 g-3+h} \frac{\partial}{\partial m_{j}}\left\langle\int_{\partial \Sigma_{g, h}} \Theta_{\bar{\alpha}}\left(\bar{\mu}_{j}, \bar{G}^{-}\right) \prod_{k \neq j}\right|\left(\mu_{k}, G^{-}\right)\right|^{2} \prod_{a=1}^{h}\left(\lambda_{a}, G^{-}\right)\right\rangle_{\Sigma_{g, h}} \\
& \left.\left.\quad \text { + cplx.conj. }+\left.\sum_{b=1}^{h} \frac{\partial}{\partial l_{b}}\left\langle\int_{\partial \Sigma_{g, h}} \Theta_{\bar{\alpha}}^{3 g-3+h} \prod_{k=1}^{3+h}\right|\left(\mu_{k}, G^{-}\right)\right|^{2} \prod_{a \neq b}\left(\lambda_{a}, G^{-}\right)\right\rangle_{\Sigma_{g, h}}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \partial_{\bar{t}_{\bar{\alpha}}} F_{g, h}=\int_{\mathcal{M}_{g, h}}\left\{\left.\sum_{j=1}^{3 g-3+h} \frac{\partial}{\partial m_{j}}\left\langle\int_{\partial \Sigma_{g, h}} \Theta_{\bar{\alpha}}\left(\bar{\mu}_{j}, \bar{G}^{-}\right) \prod_{k \neq j}\right|\left(\mu_{k}, G^{-}\right)\right|^{2} \prod_{a=1}^{h}\left(\lambda_{a}, G^{-}\right)\right\rangle_{\Sigma_{g, h}} \\
& \left.\left.\quad \text { + cplx.conj. }+\left.\sum_{b=1}^{h} \frac{\partial}{\partial l_{b}}\left\langle\int_{\partial \Sigma_{g, h}} \Theta_{\bar{\alpha}} \prod_{k=1}^{3 g-3+h}\right|\left(\mu_{k}, G^{-}\right)\right|^{2} \prod_{a \neq b}\left(\lambda_{a}, G^{-}\right)\right\rangle_{\Sigma_{g, h}}\right\}
\end{aligned}
$$

Now use Stoke's theorem reducing to the real codimension one component of the boundary of the moduli space.

We stay with two contributions: [open strings degenerations] + [shrinking holes].
To calculate [open strings degenerations]:
isolate the Beltrami differentials corresponding to the boundary punctures

$$
\int_{\partial_{o} \mathcal{M}_{g, h}}\left\langle\int_{\partial \Sigma_{g, h}} \Theta_{\bar{\alpha}} \int_{\gamma_{t_{1}}}\left(G^{-}+\bar{G}^{-}\right) \int_{\gamma_{t_{2}}}\left(G^{-}+\bar{G}^{-}\right) \prod\left(m^{\prime}, G^{-}\right)\right\rangle_{\Sigma_{g, h}}
$$

In the vicinity of $\partial_{o} \mathcal{M}_{g, h}$ the Riemann surface develops a long strip. We calculate the path integral via the following CFT prescription

$\left.={\overline{\mathrm{Q}} \Theta_{\gamma}}_{\mathrm{g}_{\bar{\gamma}}}^{\Theta_{\bar{\gamma}}} \Theta_{\bar{\beta}}^{\Theta_{\bar{\alpha}}}\right)_{\overline{\mathrm{g} \beta}}$
and we stay with

$$
\int_{\partial_{o} \mathcal{M}_{g, h}}\left\langle\Theta_{\beta} \oint_{\partial \Sigma_{0,1}} \Theta_{\bar{\alpha}} \Theta_{\gamma}\right\rangle_{\Sigma_{0,1}}\left\langle\bar{Q} \Theta_{\beta} \bar{Q} \Theta_{\gamma} \prod\left(m^{\prime}, G^{-}\right)\right\rangle_{\Sigma_{\text {singulur }}}
$$

(there was a second term [shrinking holes])

- isolate the Beltrami differential concentrated around the node
- prescribe the CFT along this long tube on the Riemann surface as

$$
\int_{\mathcal{M}_{g, h-1}} g^{\bar{i}}\left\langle\oint_{\partial \Sigma_{0,1}} \Theta_{\bar{\alpha}} \phi_{\bar{i}}\right\rangle_{\Sigma_{0,1}}\left\langle\int_{\Sigma_{g, h-1}} \bar{Q}^{+} \bar{Q}^{-} \phi_{i} \prod\left(m^{\prime}, G^{-}\right)\right\rangle_{\Sigma_{g, h-1}}
$$

- rewrite the $Q \Theta_{\alpha}$ and $\bar{Q}^{+} \bar{Q}^{-} \phi_{i}$ as holomorphic covariant derivatives

The connection contributes the contact terms as in BCOV

- finally sum up

$$
\begin{gathered}
\partial_{\overline{\bar{\alpha}}} F_{g, h}=\frac{1}{2} g^{\bar{\beta} \beta} g^{\bar{\gamma} \gamma} \Delta_{\bar{\beta} \bar{\alpha} \bar{\gamma}}\left[D_{\beta} D_{\gamma} F_{g-1, h+1}+\sum_{g_{1}+g_{2}=g, h_{1}+h_{2}=h+1} D_{\beta} F_{g_{1}, h_{1}} D_{\gamma} F_{g_{2}, h_{2}}+D_{\beta} D_{\gamma} F_{g, h-1}\right]+ \\
+g^{i \bar{i}} \Pi_{\bar{\alpha} \bar{i}} D_{i} F_{g, h-1}
\end{gathered}
$$

where

- $g_{\alpha \bar{\alpha}}$ is the open string moduli metric
- $\Pi_{\bar{\alpha} \bar{i}}=\left\langle\Theta_{\bar{\alpha}} \phi_{\bar{i}}\right\rangle_{\Sigma_{0,1}}$ is the overlap function.

Closed moduli with open string background
We have to calculate

$$
\left.\partial_{t_{i}} F_{g, h}=\left.\int_{\mathcal{M}_{g, h}}\left\langle\left(\bar{Q}_{+} \bar{Q}_{-} \int_{\Sigma_{g, h}} \phi_{\bar{i}}+Q \oint_{\partial \Sigma_{g, h}} \psi_{\bar{i}}\right)^{3 g-3+h} \prod_{k=1}^{3+h}\right|\left(\mu_{k}, G^{-}\right)\right|^{2} \prod_{a=1}^{h}\left(\lambda_{a}, G^{-}\right)\right\rangle_{\Sigma_{g, h}}
$$

where we have a [bulk contribution] + [boundary contribution].

- [boundary contribution]: it is equal in form to what we just calculated, but with $\Psi_{\bar{i}}$ boundary insertions
- [bulk contribution]: BCOV procedure has to be generalized because of the boundaries (J. Walcher still zero open moduli) and because of the non trivial open moduli background.

To proceed: just rewrite $\bar{Q}_{+} \bar{Q}_{-}=Q Q^{\prime}$ where Q is the preserved supercharge and Q^{\prime} the broken one. Pull both the supercharges against the measure. Q is standard. Pulling Q^{\prime} against the measure \rightarrow the breaking term $Q^{\prime} S_{B}=\int_{\partial \Sigma} J^{\prime}$ to add.
[bulk contribution $]=[\mathrm{BCOV}]+[$ Walcher's $]+\left[\int_{\partial \Sigma} J^{\prime}\right.$-insertion $]$
(calculating [bulk contribution to closed moduli HAE])
The new term [$\int_{\partial \Sigma} J^{\prime}$-insertion] reads

$$
\int_{\mathcal{M}_{g, h}}\left\langle\int_{\Sigma_{g, h}} \phi_{\bar{i}}\left(\frac{1}{2} \int_{\partial \Sigma_{g, h}} J^{\prime}\right)\left(Q \prod_{k=1}^{3 g-3+h}\left|\left(\mu_{k}, G^{-}\right)\right|^{2}\right) \prod_{a=1}^{h}\left(\lambda_{a}, G^{-}\right)\right\rangle_{\Sigma_{g, h}}
$$

and again localizes on the real codimension one component of $\partial \mathcal{M}_{g, h}$.
Therefore, summing up with the [bouldary contribution] we had we get the complete extended HAE's which reads

$$
\begin{align*}
& \partial_{\bar{t}_{i}} F_{g, h}=\frac{1}{2} C_{\bar{i}}^{j k}\left[\sum_{\substack{g_{1}+q_{2}=g \\
h_{1}+h_{2}=h}} D_{j} F_{g_{1}, h_{1}} D_{k} F_{g_{2}, h_{2}}+D_{j} D_{k} F_{g-1, h}\right]-\left(\Delta+\Delta^{\prime}\right)_{\bar{i}}^{j} D_{j} F_{g, h-1}+ \\
& +\frac{1}{2}\left(\Delta^{\prime}+B\right)_{\bar{i}}^{\beta \gamma}\left[D_{\beta} D_{\gamma} F_{g-1, h+1}+D_{\beta} D_{\gamma} F_{g, h-1}+\sum_{\substack{g_{1}+g_{2}=g \\
h_{1}+h_{2}=h+1}} D_{\beta} F_{g_{1}, h_{1}} D_{\gamma} F_{g_{2}, h_{2}}\right] \tag{2}
\end{align*}
$$

where C is the sphere $3-$ pt function and $\Delta, \Delta^{\prime}, B$ are appropiate disk functions.

Summary: via exact CFT arguments

- Open moduli HAE's
- Closed moduli HAE's in presence of a non trivial open background
- Structure of the equations

$$
\begin{gathered}
\bar{\partial}_{\text {open }} F=\left(D_{\text {open }} F\right)^{2}+O\left(t_{\text {open }}\right) D_{\text {closed }} F \\
\bar{\partial}_{\text {closed }} F=\left(D_{\text {closed }} F\right)^{2}+O\left(t_{\text {open }}\right)\left(D_{\text {open }} F\right)^{2}
\end{gathered}
$$

- at frozen open moduli $t_{\text {open }}=0$ and vanishing open moduli derivatives reduce to BCOV $\bar{\partial}_{\text {closed }} F=\left(D_{\text {closed }} F\right)^{2}$.
- all coefficients structure is on the one of the boundary decomposition of $\mathcal{M}_{g, h}$

Open Issues

- complete with low topologies
- open moduli $t t^{*}$-geometry
- holomorphic ambiguity
- test in particular cases (tori, quintic)
- open-closed dualiy (geometric transition)
- matrix model dual picture (a lá Eynard-Marino-Orantin)
- pheno appl. F-terms in open string compactifications
-

