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Topological Open Strings are interesting for:

e String theorists who like all genera exact results

e Math.-Phys. people: those like to calculate string amplitudes at
all genera, count cycles, topological invariants and other stuffs

e String Pheno. people: these like to get gauginos masses, Yukawa
couplings and other stuffs upon superstring CY compactification

The last two items are connected via the topological twist of the
superstring
[F — terms] <— [topological obs.]



Holomorphic anomaly equations (HAE)

e BCOV (hep-th/9309140) for closed strings.
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e for open strings and frozen open moduli (see Walcher arxiv:0705.4098)
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New issue : switch on open moduli in HAE'sS



Abstract of the talk

e Main result:Complete the holomorphic anomaly equations for topological strings
with their dependence on open moduli.

e How: by standard path integral arguments generalizing the analysis of BCOV
to strings with boundaries and open moduli.

e In particular: study anti-holomorphic dependence of string partition functions
on open moduli and on closed moduli in presence of Wilson lines.

e Math. spin-off: compactification a la Deligne-Mumford of the moduli space of
Riemann surfaces with boundaries. Actually: the open holomorphic anomaly
equations are structured on the (real codimension one) boundary components
of this space.



Anti-holomorphic dependence on open moduli was already noticed:

e I. Antoniadis, K. S. Narain and T. R. Taylor, “Open string topological ampli-
tudes and gaugino masses,”

e D. Cremades, L. E. Ibanez and F. Marchesano, “Computing Yukawa couplings
from magnetized extra dimensions,”

e M. Marino, “Open string amplitudes and large order behavior in topological
string theory,”

e R. Russo and S. Sciuto, “The twisted open string partition function and Yukawa
couplings,”

(later)

e M. Billo et al., “Instantons in N=2 magnetized D-brane worlds,” "Instanton
effects in N=1 brane models and the Kahler metric of twisted matter”



Boundary marginal deformations
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Open moduli span fibers over closed moduli

For the B-model for example:
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Main points to proceed:

e F-terms are calculated by Mandelstam diagrams where all intermediate states
are at zero energy.

e T herefore one can reduce the integrals over the Moduli space of Riemann
surfaces to the boundary.

e Hence, for open strings also degenerating open channels are relevant.

e Need to study Riemann surfaces with colliding boundaries (that is long strips)



For closed strings channels: two topologically distinct ways:

[pinching] [dividing] [in particular, shrinking]
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For open strings channels: three topologically distinct ways:
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[pinching] [dividing] [colliding]
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Zooming on the degenerating areas:

[closed channel] [open channel]
N
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[real codimension two (but the shrinking!)] [real codimension one]

[conformal to a long tube] [conformal to a long strip]
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Open moduli holomorphic anomaly

3g—3+h

h
F, = / O= G T O, G
9.h Mg,h< ox,, 0 IT 1w GI° ] (e Ny

k=1 a=1

Q 05 = quzg,h dt /% dt’ (G+ + é+) tNO=(t) |

12



3g—3+h
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e [0 calculate: pull the supercharge against the measure.
e use superconformal algebra QG— =T

o use O (X) = (X [T -vy)
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Now use Stoke's theorem reducing to the real codimension one component of the
boundary of the moduli space.

We stay with two contributions: [open strings degenerations] + [shrinking holes].

To calculate [open strings degenerations]:

isolate the Beltrami differentials corresponding to the boundary punctures
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(calculating [open string degenerations])

In the vicinity of 9,M,; the Riemann surface develops a long strip. We calculate
the path integral via the following CFT prescription
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(there was a second term [shrinking holes])
e isolate the Beltrami differential concentrated around the node

e prescribe the CFT along this long tube on the Riemann surface as
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(summing [open strings degenerations] 4+ [shrinking holes].)
e rewrite the QO©, and QTQ ¢; as holomorphic covariant derivatives
The connection contributes the contact terms as in BCOV

e finally sum up
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® g.5 IS the open string moduli metric

o 5 = (Oad;)s,, is the overlap function.
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Closed moduli with open string background

We have to calculate
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where we have a [bulk contribution] + [boundary contribution].

e [boundary contribution]: it is equal in form to what we just calculated, but
with Wz boundary insertions

e [bulk contribution]: BCOV procedure has to be generalized because of the
boundaries (J. Walcher still zero open moduli) and because of the non trivial
open moduli background.

To proceed: just rewrite Q1 Q- = QQ’ where Q is the preserved supercharge and Q'
the broken one. Pull both the supercharges against the measure. (@ is standard.
Pulling Q" against the measure — the breaking term Q'Sp = [, J' to add.

[bulk contribution]=[BCOV]+[Walcher's]+[ [, J'-insertion]
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(calculating [bulk contribution to closed moduli HAE])

The new term [faz J'-insertion] reads
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and again localizes on the real codimension one component of oM.

Therefore, summing up with the [bouldary contribution] we had we get the complete
extended HAE's which reads
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where C is the sphere 3—pt function and A, A’, B are appropiate disk functions.
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Summary: via exact CFT arguments
Open moduli HAE's

Closed moduli HAE's in presence of a non trivial open background

Structure of the equations

éopenF — (DopenF)2 + O(tOpen)DclosedF

8closedF — (DclosedF)2 + O(t0pen) (D0p€nF)2

at frozen open moduli t,,en, = 0 and vanishing open moduli derivatives reduce
to BCOV 5closedF1 — (DclosedF)2-

all coefficients structure is on the one of the boundary decomposition of M,
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Open Issues
complete with low topologies
open moduli tt*—geometry
holomorphic ambiguity
test in particular cases (tori, quintic)
open-closed dualiy (geometric transition)
matrix model dual picture (a 1a Eynard-Marino-Orantin)

pheno appl. F-terms in open string compactifications
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