The E_{7} Invariant and Measures of Entanglement

Leron Borsten
The Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2AZ

RTN Valencia, 2007

Introduction

The Qubit Interpretation of I_{4}

Introduction

Introduction

Introduction

Introduction

We have seen a correspondence between the entanglement of 3-qubits and the black hole entropy of the STU model

$$
\begin{aligned}
a_{A B D}|A B D\rangle & \Longleftrightarrow \text { STU model } \\
\text { Det } a & \Longleftrightarrow W(p, q)
\end{aligned}
$$

Generated numerous intriguing connections between the different disciplines of Quantum Information and Supergravity

1. Attractor mechanisms and optimal entanglement distillation processes
2. Special geometry and error correction protocols [P. Levay, arXiv:hep-th/0603136, arXiv:hep-th/0707.2799]
3. Black hole classes and quantum equivalence classes
4. Quantum corrections and concurrences $[R$. Kallosh and A. Linde, arXiv:hep-th/0602061]
The correspondence has been extended to the $\mathcal{N}=8$ case relating Cartan's unique E_{7} quartic invariant to the entanglement of a uniquely entangled 7-qubit state

Introduction

Introduction

Introduction

Tripartite entanglement of 7-qubits
[M. Duff, S. Ferrara, arXiv:hep-th/0609227]

$$
\begin{align*}
|\Psi\rangle & =a_{A B D}|A B D\rangle+b_{B C E}|B C E\rangle+c_{C D F}|C D F\rangle+d_{D E G}|D E G\rangle \\
& +e_{E F A}|E F A\rangle+f_{F G B}|F G B\rangle+g_{G A C}|G A C\rangle \tag{1}
\end{align*}
$$

The insights gained in the STU case where made possible by both having a complete correspondence and on the relatively complete understanding of 3-qubit entanglement

However, the particularly special state related to the $\mathcal{N}=8$ case is not well understood from the quantum information theoretic perspective.
In order to develop a similar understanding of the black hole - qubit analogy to that of the STU example we need to better understand this state, it's explicit relationship to the BH entropy and it's entanglement properties

Plan

1. Black Holes, Jordan Algebras and the Freudenthal Triple System (FTS)

The Jordan algebra and FTS representations of charges, in $d=5$ and $d=4$, and the role of the division algebras
$\mathcal{N}=8$, Cartan's invariant I_{4} and the FTS
2. The Qubit Interpretation of I_{4}

Relationship to the STU model and therefore Cayley's Hyperdet
Understanding the $\mathcal{N}=4$ subsectors in terms of qubits
Bhargava's Cube Construction
3. Constructing the explicit dictionary

From black hole charges to state vector coefficients
The entanglement measure
4. Questions the FTS picture may still clarify

Introduction

Black Holes, Jordan

Algebras and the
Freudenthal Triple
Jordan Algebras
The Jordan Algebras of
3×3 Hermitian
Matrices
$d=5$ Black Hole
Entropy
$d=4$ Black Holes and the FTS
Feudenthal Triple
System
Invariance Group of $\mathcal{F}(\mathcal{J})$
FTS and $d=4$ Black
Hole Entropy
$\mathcal{N}=8$ and the FTS
The Qubit Interpretation of I_{4}

Black Holes, Jordan Algebras and the Freudenthal Triple System

Jordan Algebras

Introduction

Black Holes, Jordan Algebras and the Freudenthal Triple System

Jordan Algebras

The Jordan Algebras of 3×3 Hermitian Matrices
$d=5$ Black Hole Entropy
$d=4$ Black Holes and the FTS
Feudenthal Triple System
Invariance Group of $\mathcal{F}(\mathcal{J})$
FTS and $d=4$ Black Hole Entropy
$\mathcal{N}=8$ and the FTS
The Qubit Interpretation of I_{4}
Results

A Jordan algebra \mathcal{J} over a field \mathbb{F} (here $\mathbb{F}=\mathbb{R}$ always) char $\neq 2$ is a vector space over \mathbb{F} with Jordan product \circ s.t.

$$
\begin{equation*}
x \circ y=y \circ x ; \quad x^{2} \circ(x \circ y)=x \circ\left(x^{2} \circ y\right) \quad \forall x, y \in \mathcal{J} \tag{2}
\end{equation*}
$$

A Cubic Jordan algebra has an admissible cubic form $N: \mathcal{J} \rightarrow F$ such that

$$
\begin{equation*}
N(\alpha x)=\alpha^{3} N(x) \quad \text { for } \quad \alpha \in \mathbb{F}, x \in \mathcal{J} \tag{3}
\end{equation*}
$$

a trace bilinear form $(\cdot, \cdot): \mathcal{J} \times \mathcal{J} \rightarrow F$ and a quadratic adjoint map, $\sharp: \mathcal{J} \rightarrow \mathcal{J}$ which satisfies

$$
\left(x^{\sharp}\right)^{\sharp}=N(x) x, \quad \forall x \in \mathcal{J}
$$

The Jordan Algebras of 3×3 Hermitian Matrices

Introduction

Black Holes, Jordan Algebras and the Freudenthal Triple System

Here \mathcal{J} is the space $J_{3}(\mathbb{A})$ of 3×3 Hermitian matrices over one of the nicely normed division algebras, $\mathbb{R}, \mathbb{C}, \mathbb{H}, \mathbb{O}$ or their split cousins, $\mathbb{C}^{s}, \mathbb{H}^{s}, \mathbb{O}^{s}$

$$
A=\left(\begin{array}{ccc}
a & z & \bar{y} \\
\bar{z} & b & x \\
y & \bar{x} & c
\end{array}\right) \quad \text { where } \quad a, b, c \in \mathbb{R} \quad \text { and } \quad x, y, z \in \mathbb{A}
$$

Here the Jordan product is given by $A \circ B=\frac{1}{2}(A B+B A)$ and the cubic norm, bilinear trace form and quadratic adjoint are given respectively by

$$
\begin{gather*}
N(A)=I_{3}(A)=a b c-a \mathbf{n}(x)-b \mathbf{n}(y)-c \mathbf{n}(z)+(x y) z+\bar{z}(\bar{y} \bar{x}) \tag{4}\\
(A, B)=\operatorname{Tr}(A \circ B) \tag{5}\\
A^{\sharp}=A^{2}-\operatorname{Tr}(A) A+\frac{1}{2}\left(\operatorname{Tr}(A)^{2}-\operatorname{Tr}\left(A^{2}\right)\right) I
\end{gather*}
$$

$d=5$ Black Hole Entropy

Introduction

Black Holes, Jordan Algebras and the Freudenthal Triple System
Jordan Algebras
The Jordan Algebras of 3×3 Hermitian Matrices
$d=5$ Black Hole
Entropy
$d=4$ Black Holes and the FTS
Feudenthal Triple System
Invariance Group of $\mathcal{F}(\mathcal{J})$
FTS and $d=4$ Black Hole Entropy $\mathcal{N}=8$ and the FTS
The Qubit Interpretation of I_{4} Results

Under the norm preserving group Str_{0}, leaving $I_{3}(A)$ invariant, $A \in J_{3}(\mathbb{A})$ transform as the $(3 \operatorname{dim} \mathbb{A}+3)$ dimensional representation of $S L(3, \mathbb{A})$ where $\operatorname{dim} \mathbb{A}=1,2,4,8$ for $\mathbb{A}=\mathbb{R}, \mathbb{C}, \mathbb{H}, \mathbb{O}$, respectively.

In other words as the $6,9,15,27$ of $S L(3, \mathbb{R}), S L(3, \mathbb{C}), S U^{*}(6), E_{6(-26)}$, respectively.

These are the symmetries of the magic $\mathcal{N}=2, D=5$ supergravities. There is one-to-one correspondence between the vector fields (and there charges) and the elements of $J_{3}(\mathbb{A})$. For the electric black holes, we have the conjugate Jordan matrix

$$
J_{3}(Q)=\left(\begin{array}{lll}
q_{1} & Q_{v} & \bar{Q}_{c} \\
\bar{Q}_{v} & q_{2} & Q_{s} \\
Q_{c} & \bar{Q}_{s} & q_{3}
\end{array}\right)
$$

and the entropy is

$$
S=\pi\left|I_{3}(Q)\right|
$$

[S. Ferrara and M. Gunaydin, arXiv:hep-th/9708025]

$d=4$ Black Holes and the FTS

Introduction

For $d=4$ this correspondence is extended, now between the charges and the Freudenthal triple system $\mathcal{F}(\mathcal{J})$ where \mathcal{J} is a Jordan algebra

$$
\left(\begin{array}{cc}
-q_{0} & J_{3}(P) \\
J_{3}(Q) & p^{0}
\end{array}\right) \Longleftrightarrow\left(\begin{array}{cc}
\alpha & A \\
B & \beta
\end{array}\right)
$$

here α and β are real and $A, B \in J_{3}(\mathbb{A})$

The p^{0} is the charge coming from the $d=4$ graviphoton field strength which derives from the vector of the $d=5$ graviton

The charges in $J_{3}(P)$ derive from the field strengths already present in $d=5$ [S. Ferrara and M. Gunaydin, arXiv:hep-th/9708025, S. Bellucci, S. Ferrara, M. Gunaydin, A. Marrani, arXiv:hep-th/0606209]

Feudenthal Triple System

Introduction

Black Holes, Jordan Algebras and the Freudenthal Triple System
Jordan Algebras The Jordan Algebras of 3×3 Hermitian
Matrices
$d=5$ Black Hole
Entropy
$d=4$ Black Holes and the FTS Feudenthal Triple System
Invariance Group of $\mathcal{F}(\mathcal{J})$
FTS and $d=4$ Black Hole Entropy $\mathcal{N}=8$ and the FTS
The Qubit Interpretation of I_{4} Results

Consider the vector space $\mathcal{F}(\mathcal{J})$ constructed as follows

$$
\mathcal{F}(\mathcal{J})=\mathbb{R} \oplus \mathbb{R} \oplus \mathcal{J} \oplus \mathcal{J} \quad \text { where } \mathcal{J} \text { is a cubic Jordan algebra over } \mathbb{R}
$$

So $\operatorname{dim} \mathcal{F}(\mathcal{J})=2 \operatorname{det} \mathcal{J}+2$. We may write an arbitrary element $x \in \mathcal{F}(\mathcal{J})$ as a " 2×2 matrix"

$$
x=\left(\begin{array}{cc}
\alpha & A \\
B & \beta
\end{array}\right) \quad \text { where } \alpha, \beta \in \mathbb{R} \quad A, B \in \mathcal{J}
$$

Bilinear antisymmetric quadratic form $\{x, y\}$ and quartic norm form $q(x)$

$$
\begin{gather*}
\{x, y\}=\alpha \delta-\beta \gamma+(A, D)-(B, C) \\
q(x)=-[\alpha \beta-(A, B)]^{2}-4\left[\alpha N(A)+\beta N(B)-\left(A^{\sharp}, B^{\sharp}\right)\right] \tag{6}
\end{gather*}
$$

where N, \sharp and (\cdot, \cdot) are inherited from $\mathcal{J}[\mathrm{S}$. Krutelevich, arXiv:math.NT/0411104]

Invariance Group of $\mathcal{F}(\mathcal{J})$

The invariance group $\operatorname{Inv}(\mathcal{F}(\mathcal{J}))$ is defined to be the set of all \mathbb{R}-linear transformations leaving $\{x, y\}$ and $q(x)$ invariant

In the case, $\mathcal{J}=J_{3}\left(\mathbb{A}\right.$ or $\left.\mathbb{A}^{s}\right), \operatorname{Inv}(\mathcal{F}(\mathcal{J}))$ is generated by the transformations

1. $\phi(C):\left(\begin{array}{cc}\alpha & A \\ B & \beta\end{array}\right) \mapsto\left(\begin{array}{cc}\alpha+(B, C)+\left(A, C^{\sharp}\right)+\beta N(C) & A+\beta C \\ B+a \times C+\beta C^{\sharp} & \beta\end{array}\right)$
2. $\psi(C):\left(\begin{array}{cc}\alpha & A \\ B & \beta\end{array}\right) \mapsto\left(\begin{array}{cc}\alpha & A+B \times C+\alpha D^{\sharp} \\ B+\alpha D & \beta+(A, D)+\left(B, D^{\sharp}\right)+\alpha N(D)\end{array}\right)$
3. $T(s):\left(\begin{array}{cc}\alpha & A \\ B & \beta\end{array}\right) \mapsto\left(\begin{array}{cc}\lambda^{-1} \alpha & s(A) \\ s^{*-1}(B) & \lambda \beta\end{array}\right)$

Here, $s \in \operatorname{Str}(\mathcal{J}), N(s(A))=\lambda N(A)$, and $A \times B=(A+B)^{\sharp}-A^{\sharp}-B^{\sharp}$
[S. Bellucci, S. Ferrara, M. Gunaydin, A. Marrani, arXiv:hep-th/0606209]
[S. Krutelevich, arXiv:math.NT/0411104]

FTS and $d=4$ Black Hole Entropy

Introduction

Black Holes, Jordan Algebras and the Freudenthal Triple System Jordan Algebras The Jordan Algebras of 3×3 Hermitian
Matrices
$d=5$ Black Hole
Entropy
$d=4$ Black Holes and the FTS
Feudenthal Triple
System
Invariance Group of $\mathcal{F}(\mathcal{J})$

FTS and $d=4$ Black

Hole Entropy
$\mathcal{N}=8$ and the FTS
The Qubit Interpretation of I_{4} Results

For $\mathbb{A}=\mathbb{R}, \mathbb{C}, \mathbb{H}, \mathbb{O}, \operatorname{lnv}\left(\mathcal{F}\left(J_{3}(\mathbb{A})\right)=\operatorname{Sp}(, \mathbb{R}), S U(3,3), S O^{*}(12), E_{7(-25)}\right.$.
These are the symmtries of the magic $\mathcal{N}=2, d=4$ supergravities

$$
\begin{gathered}
\left(\begin{array}{cc}
-q_{0} & J_{3}(P) \\
J_{3}(Q) & p^{0}
\end{array}\right) \Longleftrightarrow\left(\begin{array}{cc}
\alpha & A \\
B & \beta
\end{array}\right) \\
J_{3}(Q)=\left(\begin{array}{ccc}
q_{1} & Q_{v} & \bar{Q}_{c} \\
\bar{Q}_{v} & q_{2} & Q_{s} \\
Q_{c} & \bar{Q}_{s} & q_{3}
\end{array}\right), \quad J_{3}(P)=\left(\begin{array}{lll}
p_{1} & P_{v} & \bar{P}_{c} \\
\bar{Q}_{v} & p_{2} & P_{s} \\
P_{c} & \bar{P}_{s} & p_{3}
\end{array}\right)
\end{gathered}
$$

The charge representations have dimensions $(6 \operatorname{dim} \mathbb{A}+8)$ and correspond to the threefold antisymmetric traceless tensor (14') of $S p(6, R)$, the threefold antisymmetric self-dual tensor (20) of $S U(3,3)$, the chiral spinor (32) of $S O^{*}(12)$ and the fundamental (56) of $E_{7(-25)}$
[S. Ferrara and M. Gunaydin, arXiv:hep-th/9708025]

$\mathcal{N}=8$ and the FTS

Introduction

Black Holes, Jordan Algebras and the Freudenthal Triple System
Jordan Algebras
The Jordan Algebras of 3×3 Hermitian
Matrices
$d=5$ Black Hole
Entropy
$d=4$ Black Holes and the FTS
Feudenthal Triple System
Invariance Group of $\mathcal{F}(\mathcal{J})$
FTS and $d=4$ Black Hole Entropy

$\mathcal{N}=8$ and the FTS

The Qubit Interpretation of I_{4}

Results

The $\mathcal{N}=8$ case with U-duality group $E_{7(7)}$ then also follows by using the split octonions, $\mathbb{A}=\mathbb{O}^{s}$. We have

$$
E_{7(7)} \supset E_{6(6)}
$$

under which

$$
56 \rightarrow 1+1+27+27^{\prime}
$$

In all cases the black hole entropy is

$$
\begin{equation*}
S=\pi \sqrt{\left|\mathrm{I}_{4}\right|} \tag{7}
\end{equation*}
$$

where $I_{4}(x)=q(x)$ is the quartic norm

$$
\begin{aligned}
I_{4}\left(p^{0}, P ; q_{0}, Q\right)= & -\left[p^{0} q_{0}+\operatorname{tr}\left(J_{3}(P) \circ J_{3}(Q)\right)\right]^{2} \\
& +4\left[-p^{0} I_{3}(Q)+q_{0} I_{3}(P)+\operatorname{tr}\left(J_{3} \#(P) \circ J_{3}{ }^{\#}(Q)\right)\right](8)
\end{aligned}
$$

[S. Ferrara and M. Gunaydin, arXiv:hep-th/9708025]

Introduction

Black Holes, Jordan Algebras and the Freudenthal Triple System

```
The Qubit Interpretation
```

of I_{4}
The STU Model in the
FTS 1
The STU Model in the
FTS 2
The STU Model in the
FTS 3
$\mathcal{N}=4$ Subsector 1
$\mathcal{N}=4$ Subsector 2
Towards a Qubit
Interpretation
Bhargava's Cube
Construction
Fundamental Slicings 1
Fundamental Slicings 2
Cayley's Hyperdet
Qubits and the Hessian
Back to the FTS and
$I_{4} 1$
Back to the FTS and
$I_{4}{ }^{2}$
From $\left(P^{s}, Q_{s}\right)$ to
$\left({ }^{c_{C D F}}, d_{D E G}\right)$
Results

The STU Model in the FTS 1

Introduction

Black Holes, Jordan Algebras and the Freudenthal Triple System

The Qubit Interpretation of I_{4}

The STU Model in the

FTS 1

The STU Model in the FTS 2
The STU Model in the FTS 3
$\mathcal{N}=4$ Subsector 1
$\mathcal{N}=4$ Subsector 2
Towards a Qubit Interpretation
Bhargava's Cube Construction
Fundamental Slicings 1 Fundamental Slicings 2 Cayley's Hyperdet Qubits and the Hessian Back to the FTS and $I_{4} 1$
Back to the FTS and $I_{4} 2$
From $\left(P^{s}, Q_{s}\right)$ to $\left(c_{C D F}, d_{D E G}\right)$

In the simple case, where we put P, Q all to zero, then

$$
\begin{gather*}
\mathcal{F}\left(J_{3}\left(\mathbb{O}^{s}\right)\right)=\left(\begin{array}{cc}
p^{0} & p^{i} \\
q_{i} & -q_{0}
\end{array}\right) \tag{9}\\
I_{3}(P)=p^{1} p^{2} p^{3}, \quad I_{3}(Q)=q_{1} q_{2} q_{3} \tag{10}
\end{gather*}
$$

and

$$
J_{3}{ }^{\#}(P)=\left(\begin{array}{ccc}
p^{2} p^{3} & 0 & 0 \tag{11}\\
0 & p^{1} p^{3} & 0 \\
0 & 0 & p^{1} p^{2}
\end{array}\right) \quad J_{3}{ }^{\#}(Q)=\left(\begin{array}{ccc}
q^{2} q^{3} & 0 & 0 \\
0 & q^{1} q^{3} & 0 \\
0 & 0 & q^{1} q^{2}
\end{array}\right)
$$

and I_{4} becomes

$$
\begin{align*}
I_{4}= & -(p \cdot q)^{2}+4\left(\left(p^{1} q_{1}\right)\left(p^{2} q_{2}\right)+\left(p^{1} q_{1}\right)\left(p^{3} q_{3}\right)+\left(p^{3} q_{3}\right)\left(p^{2} q_{2}\right)\right) \tag{12}\\
& -4 p^{0} q_{1} q_{2} q_{3}+4 q_{0} p^{1} p^{2} p^{3}
\end{align*}
$$

[S. Ferrara and R. Kallosh, arXiv:hep-th/0603247]

The STU Model in the FTS 2

Introduction

Black Holes, Jordan Algebras and the Freudenthal Triple System

The Qubit Interpretation of I_{4}
The STU Model in the FTS 1
The STU Model in the FTS 2
The STU Model in the FTS 3
$\mathcal{N}=4$ Subsector 1
$\mathcal{N}=4$ Subsector 2 Towards a Qubit Interpretation
Bhargava's Cube Construction
Fundamental Slicings 1 Fundamental Slicings 2 Cayley's Hyperdet Qubits and the Hessian Back to the FTS and $I_{4}{ }^{1}$
Back to the FTS and $I_{4}{ }^{2}$
From (P^{s}, Q_{s}) to (${ }^{c} C D F, d_{D E G}$)

If we make the identifications

$$
\left[\begin{array}{c}
p^{0} \tag{13}\\
p^{1} \\
p^{2} \\
p^{3} \\
q_{0} \\
q_{1} \\
q_{2} \\
q_{3}
\end{array}\right]=\left[\begin{array}{c}
a_{0} \\
-a_{1} \\
-a_{2} \\
-a_{4} \\
a_{7} \\
a_{6} \\
a_{5} \\
a_{3}
\end{array}\right]
$$

we recover Cayley's hyperdeterminant

$$
\begin{gathered}
I_{4}=a_{0}^{2} a_{7}^{2}+a_{1}^{2} a_{6}^{2}+a_{2}^{2} a_{5}^{2}+a_{3}^{2} a_{4}^{2} \\
-2\left(a_{0} a_{1} a_{6} a_{7}+a_{0} a_{2} a_{5} a_{7}+a_{0} a_{4} a_{3} a_{7}+a_{1} a_{2} a_{5} a_{6}+a_{1} a_{3} a_{4} a_{6}+a_{2} a_{3} a_{4} a_{5}\right) \\
+4\left(a_{0} a_{3} a_{5} a_{6}+a_{1} a_{2} a_{4} a_{7}\right)
\end{gathered}
$$

The STU Model in the FTS 3

Introduction

Black Holes, Jordan Algebras and the Freudenthal Triple System

The Qubit Interpretation of I_{4}
The STU Model in the FTS 1
The STU Model in the FTS 2
The STU Model in the
FTS 3
$\mathcal{N}=4$ Subsector 1 $\mathcal{N}=4$ Subsector 2 Towards a Qubit Interpretation
Bhargava's Cube Construction
Fundamental Slicings 1 Fundamental Slicings 2 Cayley's Hyperdet
Qubits and the Hessian Back to the FTS and $I_{4} 1$
Back to the FTS and $I_{4} 2$
From $\left(P^{s}, Q_{s}\right)$ to $\left({ }^{c} C D F, d_{D E G}\right)$

Results

Using the transformation between P, Q and p, q :

$$
\left[\begin{array}{l}
p^{0} \tag{14}\\
p^{1} \\
p^{2} \\
p^{3} \\
q_{0} \\
q_{1} \\
q_{2} \\
q_{3}
\end{array}\right]=\frac{1}{\sqrt{2}}\left[\begin{array}{c}
P^{0}-P^{2} \\
Q_{0}+Q_{2} \\
-P^{1}+P^{3} \\
-P^{1}-P^{3} \\
Q_{0}-Q_{2} \\
-P^{0}-P^{2} \\
-Q_{1}+Q_{3} \\
-Q_{1}-Q_{3}
\end{array}\right]
$$

This transformation gives us the relations:

$$
\begin{equation*}
P^{2}=2\left(p^{2} p^{3}-p^{0} q_{1}\right), \quad P \cdot Q=p \cdot q-2 p^{1} q_{1}, \quad Q^{2}=2\left(p^{1} q_{0}+q_{2} q_{3}\right) \tag{15}
\end{equation*}
$$

hence we find

$$
\begin{equation*}
I_{4}=P^{2} Q^{2}-(P \cdot Q)^{2} \tag{16}
\end{equation*}
$$

$\mathcal{N}=4$ Subsector 1

The STU Model in the FTS 2
The STU Model in the FTS 3
$\mathcal{N}=4$ supergravity coupled to m vector multiplets where the symmetry is $S L(2, \mathbb{Z}) \times S O(6,6+m, \mathbb{Z})$ where the black holes carry charges belonging to the $(2,12+m)$ representation [M. Duff, S. Ferrara, arXiv:hep-th/0609227]

Here $m=0$. We keep only 24 of the 56 charges but still have the $S L(2)^{7}$ subgroup. This corresponds to keeping only $\left(p^{i}, q_{i}\right)$ and $\left(P^{s}, Q_{s}\right)$ in $\mathcal{F}\left(J_{3}\right)$, then I_{4} becomes

$$
\begin{align*}
I_{4} & =-\left(p^{0} q_{0}+p^{i} q_{i}+2\left(P^{s} \cdot Q_{s}\right)\right)^{2}+4\left[q_{0}\left(p^{1} p^{2} p^{3}-p^{1} P^{s 2}\right)-p^{0}\left(q_{1} q_{2} q_{3}-q_{1} Q_{s}{ }^{2}\right)\right. \\
& \left.+\left(p^{2} p^{3}-P^{s 2}\right)\left(q_{2} q_{3}-Q_{s}^{2}\right)+p^{1} p^{3} q_{1} q_{3}+p^{1} p^{2} q_{1} q_{2}+2 p^{1} q_{1}\left(P^{s} \cdot Q_{s}\right)\right] \tag{17}
\end{align*}
$$

where

$$
\begin{equation*}
P^{s 2}=P^{s} \bar{P}^{s}, \quad P^{s} \cdot Q_{s}=\frac{1}{2}\left(P^{s} \bar{Q}_{s}+\bar{Q}_{s} P^{s}\right), \quad Q_{s}{ }^{2}=Q_{s} \bar{Q}_{s} \tag{18}
\end{equation*}
$$

$\mathcal{N}=4$ Subsector 2

Introduction

Black Holes, Jordan Algebras and the Freudenthal Triple System

The Qubit Interpretation of I_{4}
The STU Model in the FTS 1
The STU Model in the FTS 2
The STU Model in the FTS 3
$\mathcal{N}=4$ Subsector 1

$\mathcal{N}=4$ Subsector 2

Towards a Qubit

 InterpretationBhargava's Cube Construction
Fundamental Slicings 1 Fundamental Slicings 2 Cayley's Hyperdet Qubits and the Hessian Back to the FTS and $I_{4} 1$
Back to the FTS and $I_{4} 2$
From $\left(P^{s}, Q_{s}\right)$ to $\left(c_{C D F}, d_{D E G}\right)$

Hence we find

$$
\begin{gather*}
I_{4}=P^{2} Q^{2}-2 P^{2} Q_{s}{ }^{2}-2 Q^{2} P^{s 2}+4 P^{s 2} Q_{s}{ }^{2} \\
-(P . Q)^{2}-4 P \cdot Q P^{s} . Q_{s}-4\left(P^{s} \cdot Q_{s}\right)^{2} \tag{19}
\end{gather*}
$$

So if we identify

$$
\begin{align*}
P^{s} & =\frac{1}{\sqrt{2}}\left(P^{4}, P^{5}, P^{6}, P^{7}, P^{8}, P^{9}, P^{10}, P^{11}\right) \tag{20}\\
Q_{s} & =\frac{1}{\sqrt{2}}\left(Q_{4}, Q_{5}, Q_{6}, Q_{7}, Q_{8}, Q_{9}, Q_{10}, Q_{11}\right)
\end{align*}
$$

then

$$
\begin{equation*}
I_{4}=P^{2} Q^{2}-(P . Q)^{2} \tag{21}
\end{equation*}
$$

where indices now run over $0, \ldots 11$, which is manifestly invariant under $S L(2) \times S O(2,10)$ or $S L(2) \times S O(6,6)$ according as we use the octonions or split octonions

Towards a Qubit Interpretation

Introduction

Black Holes, Jordan Algebras and the Freudenthal Triple System

The Qubit Interpretation of I_{4}
The STU Model in the FTS 1
The STU Model in the FTS 2
The STU Model in the FTS 3
$\mathcal{N}=4$ Subsector 1 $\mathcal{N}=4$ Subsector 2 Towards a Qubit
Interpretation
Bhargava's Cube Construction
Fundamental Slicings 1 Fundamental Slicings 2 Cayley's Hyperdet Qubits and the Hessian Back to the FTS and $I_{4} 1$
Back to the FTS and $I_{4}{ }^{2}$
From $\left(P^{s}, Q_{s}\right)$ to $\left(c_{C D F}, d_{D E G}\right)$

Results

The above suggests away to associate the 56 black hole charges to the 56 $a_{A B D}, b_{B C E}, c_{C D F}, d_{D E G}, e_{E F A}, f_{F G B}, g_{G A C}$. Using

$$
E_{6(6)} \supset S O(4,4), \quad 27 \rightarrow 1+1+1+8_{s}+8_{c}+8_{v}
$$

we have

$$
56 \rightarrow 1+1+1+1+1+1+1+1+8_{s}+8_{c}+8_{v}+8_{s}+8_{c}+8_{v}
$$

under $E_{7(7)} \supset S O(4,4)$. If we recall

$$
\begin{equation*}
E_{7(7)} \supset S L(2, R)_{A} \times S L(2, R)_{B} \times S L(2, R)_{D} \times S O(4,4) \tag{22}
\end{equation*}
$$

under which

$$
\begin{equation*}
56 \rightarrow(2,2,2,1)+\left(2,1,1,8_{v}\right)+\left(1,2,1,8_{s}\right)+\left(1,1,2,8_{c}\right) \tag{23}
\end{equation*}
$$

we are led to identify the $a_{A B D}$ with the 8 singlets and the pairs $\left(e_{E F A}, g_{G A C}\right),\left(b_{B C E}, f_{F G B}\right),\left(b_{B C E}, f_{F G B}\right)$ with the pairs of $8_{v}, 8_{s}, 8_{c}$

Bhargava's Cube Construction

Introduction

Black Holes, Jordan Algebras and the Freudenthal Triple System

The Qubit Interpretation of I_{4}
The STU Model in the FTS 1
The STU Model in the FTS 2
The STU Model in the FTS 3
$\mathcal{N}=4$ Subsector 1
$\mathcal{N}=4$ Subsector 2 Towards a Qubit Interpretation Bhargava's Cube Construction
Fundamental Slicings 1 Fundamental Slicings 2 Cayley's Hyperdet Qubits and the Hessian Back to the FTS and $I_{4} 1$
Back to the FTS and $I_{4} 2$
From $\left(P^{s}, Q_{s}\right)$ to $\left(c_{C D F}, d_{D E G}\right)$

Results

Conisder the quantum STU model. Charges live in the space $V=\mathbb{Z}^{2} \otimes \mathbb{Z}^{2} \otimes \mathbb{Z}^{2}$
Specifically, we arrange the $8\left(p^{i}, q_{i}\right)$ of the FTS in the following cube

If we denote the standard basis in \mathbb{Z}^{2} by $\{|0\rangle,|1\rangle\}$ we have the element of V above described by

$$
\begin{aligned}
& -q_{0}|000\rangle+q_{2}|001\rangle+q_{1}|010\rangle+p^{3}|011\rangle \\
& +q_{3}|100\rangle+p_{1}|101\rangle+p_{2}|110\rangle+p_{0}|111\rangle
\end{aligned}
$$

[M. Bhargava, Ann. of Math. 159 (2004), 217-250]

Fundamental Slicings 1

Introduction

Black Holes, Jordan Algebras and the Freudenthal Triple System

The Qubit Interpretation of I_{4}
The STU Model in the FTS 1
The STU Model in the FTS 2
The STU Model in the FTS 3
$\mathcal{N}=4$ Subsector 1
$\mathcal{N}=4$ Subsector 2 Towards a Qubit Interpretation Bhargava's Cube Construction Fundamental Slicings 1
Fundamental Slicings 2 Cayley's Hyperdet Qubits and the Hessian Back to the FTS and $I_{4} 1$
Back to the FTS and $I_{4}{ }^{2}$
From (P^{s}, Q_{s}) to $\left(c_{C D F}, d_{D E G}\right)$

By slicing the cube across its three planes we find the following pairs of matrices:

$$
\begin{array}{ll}
M_{1}=\left(\begin{array}{cc}
-q_{0} & q_{2} \\
q_{1} & p^{3}
\end{array}\right), & N_{1}=\left(\begin{array}{ll}
q_{3} & p^{1} \\
p^{2} & p^{0}
\end{array}\right) \\
M_{2}=\left(\begin{array}{cc}
-q_{0} & q_{1} \\
q_{3} & p^{2}
\end{array}\right), & N_{2}=\left(\begin{array}{ll}
q_{2} & p^{3} \\
p^{1} & p^{0}
\end{array}\right) \\
M_{3}=\left(\begin{array}{cc}
-q_{0} & q_{3} \\
q_{2} & p^{1}
\end{array}\right), & N_{3}=\left(\begin{array}{ll}
q_{2} & p^{2} \\
p^{3} & p^{0}
\end{array}\right)
\end{array}
$$

The action of $\Gamma=S L_{1}(2, \mathbb{Z}) \times S L_{2}(2, \mathbb{Z}) \times S L_{3}(2, \mathbb{Z})$ on the cube is given by

$$
\left(M_{i}, N_{i}\right) \mapsto\left(r M_{i}+s N_{i}, t M_{i}+u N_{i}\right)
$$

for an element, $\left(\begin{array}{ll}r & s \\ t & u\end{array}\right)$, of the $i^{t h}$ factor of Γ

Fundamental Slicings 2

Introduction

Black Holes, Jordan Algebras and the Freudenthal Triple System

The Qubit Interpretation of I_{4}
The STU Model in the FTS 1
The STU Model in the FTS 2
The STU Model in the FTS 3
$\mathcal{N}=4$ Subsector 1
$\mathcal{N}=4$ Subsector 2 Towards a Qubit Interpretation
Bhargava's Cube Construction Fundamental Slicings 1 Fundamental Slicings 2 Cayley's Hyperdet Qubits and the Hessian Back to the FTS and $I_{4} 1$
Back to the FTS and $I_{4} 2$
From $\left(P^{s}, Q_{s}\right)$ to $\left(c_{C D F}, d_{D E G}\right)$

Then construct the three binary quadratic forms given by

$$
\begin{equation*}
f_{i}(x, y)=\operatorname{det}\left(M_{i} x-N_{i} y\right), \quad 1 \leq i \leq 3 \tag{24}
\end{equation*}
$$

Explicitly

$$
\begin{align*}
& f_{1}=-\left(q_{2} q_{1}+p^{3} q_{0}\right) x^{2}+\left(p \cdot q-2 p^{3} q_{3}\right) x y-\left(p^{2} p^{1}-p^{0} q_{3}\right) y^{2}, \tag{25}\\
& f_{2}=-\left(q_{1} q_{3}+p^{2} q_{0}\right) x^{2}+\left(p \cdot q-2 p^{2} q_{2}\right) x y-\left(p^{1} p^{3}-p^{0} q_{2}\right) y^{2}, \tag{26}\\
& f_{3}=-\left(q_{3} q_{2}+p^{1} q_{0}\right) x^{2}+\left(p \cdot q-2 p^{1} q_{1}\right) x y-\left(p^{3} p^{2}-p^{0} q_{1}\right) y^{2} \tag{27}
\end{align*}
$$

Note that the form f_{1} is invariant under the subgroup

$$
\left\{i d_{1}\right\} \times S L_{2}(2, \mathbb{Z}) \times S L_{3}(2, \mathbb{Z}) \subset \Gamma
$$

Cayley's Hyperdet

Introduction

Black Holes, Jordan Algebras and the Freudenthal Triple System

The Qubit Interpretation of I_{4}
The STU Model in the FTS 1
The STU Model in the FTS 2
The STU Model in the FTS 3
$\mathcal{N}=4$ Subsector 1
$\mathcal{N}=4$ Subsector 2
Towards a Qubit Interpretation
Bhargava's Cube Construction
Fundamental Slicings 1 Fundamental Slicings 2 Cayley's Hyperdet Qubits and the Hessian Back to the FTS and $I_{4} 1$
Back to the FTS and $I_{4} 2$
From $\left(P^{s}, Q_{s}\right)$ to $\left(c_{C D F}, d_{D E G}\right)$

Results

The remaining factor still acts in the standard way and the unique invariant under all $3 S L(2)$'s is Cayley's Hyperdet

Taking the det of the Hessian of each of the quadratic forms gives precisely Cayley's Hyperdet (the BH entropy of the STU model)

$$
\begin{align*}
\operatorname{det} H\left(f_{i}\right)= & \operatorname{det}\left(\begin{array}{ll}
\left(f_{i}\right)_{x x} & \left(f_{i}\right)_{x y} \\
\left(f_{i}\right)_{y x} & \left(f_{i}\right)_{y y}
\end{array}\right) \tag{28}\\
= & -(p \cdot q)^{2}+4\left(\left(p^{1} q_{1}\right)\left(p^{2} q_{2}\right)+\left(p^{1} q_{1}\right)\left(p^{3} q_{3}\right)+\left(p^{3} q_{3}\right)\left(p^{2} q_{2}\right)\right) \\
& -4 p^{0} q_{1} q_{2} q_{3}+4 q_{0} p^{1} p^{2} p^{3}
\end{align*}
$$

Qubits and the Hessian

Introduction

Black Holes, Jordan Algebras and the Freudenthal Triple System

The Qubit Interpretation of I_{4}
The STU Model in the FTS 1
The STU Model in the FTS 2
The STU Model in the FTS 3
$\mathcal{N}=4$ Subsector 1
$\mathcal{N}=4$ Subsector 2
Towards a Qubit Interpretation
Bhargava's Cube Construction
Fundamental Slicings 1 Fundamental Slicings 2 Cayley's Hyperdet

Back to the FTS and $I_{4} 2$
From $\left(P^{s}, Q_{s}\right)$ to $\left(c_{C D F}, d_{D E G}\right)$

In fact, the Hessian of each of the quadratic forms is precisely related to one γ_{a}^{i} 's in the following manner

$$
H\left(f_{i}\right)=\left(\begin{array}{ll}
\left(f_{i}\right)_{x x} & \left(f_{i}\right)_{x y} \tag{29}\\
\left(f_{i}\right)_{y x} & \left(f_{i}\right)_{y y}
\end{array}\right)=\gamma_{a}^{i}
$$

where

$$
\begin{gather*}
\left(\gamma_{a}^{1}\right)_{A_{1} A_{2}}=\epsilon^{B_{1} B_{2}} \epsilon^{D_{1} D_{2}} a_{A_{1} B_{1} D_{1}} a_{A_{2} B_{2} D_{2}} \tag{30}\\
\left(\gamma_{a}^{2}\right)_{B_{1} B_{2}}=\epsilon^{D_{1} D_{2}} \epsilon^{A_{1} A_{2}} a_{A_{1} B_{1} D_{1}} a_{A_{2} B_{2} D_{2}} \tag{31}\\
\left(\gamma_{a}^{3}\right)_{D_{1} D_{2}}=\epsilon^{A_{1} A_{2}} \epsilon^{B_{1} B_{2}} a_{A_{1} B_{1} D_{1}} a_{A_{2} B_{2} D_{2}} \tag{32}\\
\operatorname{det} \gamma_{a}^{i}=- \text { Det } a, \quad \forall i
\end{gather*}
$$

Back to the FTS and $I_{4} 1$

Introduction

Black Holes, Jordan Algebras and the Freudenthal Triple System

The Qubit Interpretation of I_{4}
The STU Model in the FTS 1
The STU Model in the FTS 2
The STU Model in the FTS 3
$\mathcal{N}=4$ Subsector 1
$\mathcal{N}=4$ Subsector 2 Towards a Qubit Interpretation
Bhargava's Cube Construction
Fundamental Slicings 1 Fundamental Slicings 2 Cayley's Hyperdet Qubits and the Hessian Back to the FTS and
$I_{4} 1$
Back to the FTS and $I_{4} 2$
From $\left(P^{s}, Q_{s}\right)$ to $\left({ }^{c_{C D F}}, d_{D E G}\right)$

Results

Consider keeping $\left(p^{i}, q_{i}\right)$ and only one of $\left(P^{s}, Q_{s}\right),\left(P^{v}, Q_{v}\right)$ or $\left(P^{c}, Q_{c}\right)$. This yields three analogous equations:

1. $\left(\mathbf{P}^{\mathbf{s}}, \mathbf{Q}_{\mathbf{s}}\right)$

$$
\begin{aligned}
I_{4}= & 4\left(p^{2} p^{3}-p^{0} q_{1}\right)\left(q_{2} q_{3}+p^{1} q_{0}\right)-4\left(p \cdot q-2 p^{1} q_{1}\right)^{2}+4 P^{s 2} Q_{s}{ }^{2}-\left(P^{s} . Q_{s}\right)^{2} \\
& -4\left(p^{2} p^{3}-p^{0} q_{1}\right) Q_{s}{ }^{2}-4\left(q_{2} q_{3}+p^{1} q_{0}\right) P^{s 2}-4\left(p \cdot q-2 p^{1} q_{1}\right) P^{s} . Q_{s}
\end{aligned}
$$

Back to the FTS and $I_{4} 1$

Introduction

Black Holes, Jordan Algebras and the Freudenthal Triple System

The Qubit Interpretation of I_{4}
The STU Model in the FTS 1
The STU Model in the FTS 2
The STU Model in the FTS 3
$\mathcal{N}=4$ Subsector 1
$\mathcal{N}=4$ Subsector 2
Towards a Qubit Interpretation
Bhargava's Cube Construction
Fundamental Slicings 1
Fundamental Slicings 2 Cayley's Hyperdet Qubits and the Hessian Back to the FTS and

Consider keeping $\left(p^{i}, q_{i}\right)$ and only one of $\left(P^{s}, Q_{s}\right),\left(P^{v}, Q_{v}\right)$ or $\left(P^{c}, Q_{c}\right)$. This yields three analogous equations:

1. $\left(\mathbf{P}^{\mathbf{s}}, \mathbf{Q}_{\mathrm{s}}\right)$

$$
\begin{aligned}
I_{4}= & 4\left(p^{2} p^{3}-p^{0} q_{1}\right)\left(q_{2} q_{3}+p^{1} q_{0}\right)-4\left(p \cdot q-2 p^{1} q_{1}\right)^{2}+4 P^{s 2} Q_{s}{ }^{2}-\left(P^{s} . Q_{s}\right)^{2} \\
& -4\left(p^{2} p^{3}-p^{0} q_{1}\right) Q_{s}{ }^{2}-4\left(q_{2} q_{3}+p^{1} q_{0}\right) P^{s 2}-4\left(p \cdot q-2 p^{1} q_{1}\right) P^{s} . Q_{s}
\end{aligned}
$$

2. $\left(\mathbf{P}^{\mathbf{v}}, \mathbf{Q}_{\mathbf{v}}\right)$

$$
\begin{aligned}
I_{4}= & 4\left(p^{2} p^{1}-p^{0} q_{3}\right)\left(q_{2} q_{1}+p^{3} q_{0}\right)-4\left(p \cdot q-2 p^{3} q_{3}\right)^{2}+4 P^{v 2} Q_{v}{ }^{2}-\left(P^{v} \cdot Q_{v}\right)^{2} \\
& -4\left(p^{2} p^{1}-p^{0} q_{3}\right) Q_{v}{ }^{2}-4\left(q_{2} q_{1}+p^{3} q_{0}\right) P^{v 2}-4\left(p \cdot q-2 p^{3} q_{3}\right) P^{v} \cdot Q_{v}
\end{aligned}
$$

3. $\left(\mathbf{P}^{\mathbf{c}}, \mathbf{Q}_{\mathbf{c}}\right)$

$$
\begin{aligned}
I_{4}= & 4\left(p^{1} p^{3}-p^{0} q_{2}\right)\left(q_{1} q_{3}+p^{2} q_{0}\right)-4\left(p . q-2 p^{2} q_{2}\right)^{2}+4 P^{c 2} Q_{c}{ }^{2}-\left(P^{c} . Q_{c}\right)^{2} \\
& -4\left(p^{1} p^{3}-p^{0} q_{2}\right) Q_{c}{ }^{2}-4\left(q_{1} q_{3}+p^{2} q_{0}\right) P^{c 2}-4\left(p . q-2 p^{2} q_{2}\right) P^{c} . Q_{c}
\end{aligned}
$$

Back to the FTS and $I_{4} 2$

Introduction

Black Holes, Jordan Algebras and the Freudenthal Triple System

The Qubit Interpretation of I_{4}
The STU Model in the FTS 1
The STU Model in the FTS 2
The STU Model in the FTS 3
$\mathcal{N}=4$ Subsector 1
$\mathcal{N}=4$ Subsector 2 Towards a Qubit Interpretation Bhargava's Cube Construction Fundamental Slicings 1 Fundamental Slicings 2 Cayley's Hyperdet Qubits and the Hessian Back to the FTS and $I_{4} 1$

$I_{4} 2$
From $\left(P^{s}, Q_{s}\right)$ to
$\left({ }^{c} C D F, d_{D E G}\right)$
Results

By considering each case separately one gains some insight as to how to associate each of the P^{s} etc with the remaining $44 b, c, \ldots$

Considering case (1) terms corresponding to $a_{A B D}$ are related to γ^{3}

$$
\begin{gather*}
2\left(p^{2} p^{3}-p^{0} q_{1}\right)=-\left(\gamma_{a}^{3}\right)_{00} \tag{33}\\
2\left(q_{2} q_{3}+p^{1} q_{0}\right)=-\left(\gamma_{a}^{3}\right)_{11} \tag{34}\\
p . q-2 p^{1} q_{1}=\left(\gamma_{a}^{3}\right)_{01}=\left(\gamma_{a}^{3}\right)_{10} \tag{35}
\end{gather*}
$$

That is, the index corresponding to qubit D is selected as special

From $\left(P^{s}, Q_{s}\right)$ to $\left(c_{C D F}, d_{D E G}\right)$

The STU Model in the FTS 1
The STU Model in the FTS 2
The STU Model in the FTS 3
$\mathcal{N}=4$ Subsector 1
$\mathcal{N}=4$ Subsector 2
Towards a Qubit Interpretation
Bhargava's Cube Construction
Fundamental Slicings 1 Fundamental Slicings 2 Cayley's Hyperdet
Qubits and the Hessian Back to the FTS and $I_{4} 1$
Back to the FTS and $I_{4} 2$

By considering which of the $\mathcal{N}=4$ subsectors is given by the common qubit D one is led to ($a_{A B D}, c_{C D F}, d_{D E G}$)

Thus, remembering

$$
-4\left(p^{2} p^{3}-p^{0} q_{1}\right) Q_{s}^{2}-4\left(q_{2} q_{3}+p^{1} q_{0}\right) P^{s 2}-4\left(p \cdot q-2 p^{1} q_{1}\right) P^{s} . Q_{s}
$$

(P^{s}, Q_{s}) ought to be related to $c_{C D F}$ and $d_{D E G}$ in a manner ensuring

$$
\begin{gather*}
P^{s 2}=\left(\gamma_{c}^{2}\right)_{00}+\left(\gamma_{d}^{1}\right)_{00} \tag{36}\\
Q_{s}^{2}=\left(\gamma_{c}^{2}\right)_{11}+\left(\gamma_{d}^{1}\right)_{11} \tag{37}\\
P^{s} \cdot Q_{s}=\left(\gamma_{c}^{2}\right)_{01}+\left(\gamma_{d}^{1}\right)_{01} \tag{38}
\end{gather*}
$$

Introduction

Black Holes, Jordan
Algebras and the
Freudenthal Triple
System
The Qubit Interpretation of I_{4}

The Entanglment

Conculsions

Explicit Dictionary

Introduction

$$
\begin{aligned}
& \left(P^{s}=\frac{1}{\sqrt{2}} P^{i} e_{i}, \quad Q^{s}=\frac{1}{\sqrt{2}} Q^{i} e_{i}\right) \quad 0 \leq i \leq 7 \\
& P^{0}=\frac{1}{\sqrt{2}}\left(-c_{0}-c_{5}\right) \quad Q^{0}=\frac{1}{\sqrt{2}}\left(-c_{2}-c_{7}\right) \\
& P^{1}=\frac{1}{\sqrt{2}}\left(c_{4}-c_{1}\right) \quad Q^{1}=\frac{1}{\sqrt{2}}\left(c_{6}-c_{3}\right) \\
& P^{2}=\frac{1}{\sqrt{2}}\left(c_{0}-c_{5}\right) \quad Q^{2}=\frac{1}{\sqrt{2}}\left(c_{7}-c_{2}\right) \\
& P^{3}=\frac{1}{\sqrt{2}}\left(-c_{1}-c_{4}\right) \quad Q^{3}=\frac{1}{\sqrt{2}}\left(c_{3}+c_{6}\right) \\
& P^{4}=\frac{1}{\sqrt{2}}\left(-d_{0}-d_{3}\right) \quad Q^{4}=\frac{1}{\sqrt{2}}\left(-d_{4}-d_{7}\right) \\
& P^{5}=\frac{1}{\sqrt{2}}\left(d_{1}-d_{2}\right) \quad Q^{5}=\frac{1}{\sqrt{2}}\left(d_{5}-d_{6}\right) \\
& P^{6}=\frac{1}{\sqrt{2}}\left(d_{0}-d_{3}\right) \quad Q^{6}=\frac{1}{\sqrt{2}}\left(d_{7}-d_{4}\right) \\
& P^{7}=\frac{1}{\sqrt{2}}\left(-d_{1}-d_{2}\right) \quad Q^{7}=\frac{1}{\sqrt{2}}\left(d_{5}+d_{6}\right)
\end{aligned}
$$

where P^{i} and Q^{i} have signature $(+,+,-,-,+,+,-,-), e_{0}=1$ and $e_{i}^{2}=1$ for $i=\{2,3,6,7\}$

The EntangIment

Introduction

This implies that, for any of the above $\mathcal{N}=4$ subsector, I_{4} takes the neat form

$$
\begin{align*}
I_{4}\left(a_{A B D}, e_{E F A}, g_{G A C}\right) & =\operatorname{det}\left(\gamma_{a}^{1}+\gamma_{g}^{2}+\gamma_{e}^{3}\right) \tag{39}\\
& =-\left[a^{4}+e^{4}+g^{4}+2\left(a^{2} e^{2}+a^{2} g^{2}+e^{2} g^{2}\right)\right]
\end{align*}
$$

where the superscript on the γ 's specifies the position of the common qubit and corresponding γ matrix
$a^{2} e^{2}=-\frac{1}{2} \epsilon^{B_{1} B_{2}} \epsilon^{D_{1} D_{2}} \epsilon^{E_{3} E_{4}} \epsilon^{F_{3} F_{4}} \epsilon^{A_{1} A_{4}} \epsilon^{A_{2} A_{3}} a_{A_{1} B_{1} D_{1}} a_{A_{2} B_{2} D_{2}} e_{E_{3} F_{3} A_{3}} e_{E_{4} F_{4} A_{4}}$

This holds through out, we may choose any one of the $7 \mathcal{N}=4$ subsectors, determined by a common qubit and write down the entropy using the above ideas

Conculsions

It does seem that studying the special qubit entanglement from the Freudenthal perspective is a fruitful approach and we can expect further insights

1. For the STU model Lévay has developed an understanding of the relationship between the attractor mechanism determining the black hole entropy and quantum distillation processes and certain error correction protocols. The FTS picture should aid the $\mathcal{N}=8$ understanding of these features
2. FTS should give us a better picture of the relationship between 3-qubits and the special tripartite entanglement of 7 -qubits
3. Bhargava's Higher composition laws: have seen a relationship between the Cube and $S L(2)^{3}$, the higher composition laws relate the Cube to the symmetries of the FTS
