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What are the Donaldson–Thomas invariants?

In the recent years it has emerged that the so–called
Donaldson–Thomas invariants provide a nice reformulation of
the topological string that is both mathematically well defined
and simply related to BPS states.

The Donaldson–Thomas invariants count the number of
bound states formed by a single D6 brane wrapping the
Calabi–Yau X with an arbitrary number of D2 branes
wrapping a curve C ⊂ X and D0 branes

This information is contained in the moduli space of ideal
sheaves that parametrizes curves C in a homology class β
with m ”points” (D0 branes): Im(X , β). It is also known as
the Hilbert scheme of points and curves Hilbm(X , β).

The DT invariant Dm
β (X ) is the ”volume” of this moduli space
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Some open problems

Non abelian invariants on local toric CY manifolds

We can define non abelian DT invariants by considering bound
states of D0–D2 branes with an arbitrary number N of D6
branes. This would be interesting as it provides computational
control on the counting of BPS states (at least in a toric CY)
and one could hope to make contact with the OSV conjecture.

Singular varieties

Orbifold points arise in most common Calabi–Yau
compactification and the topological string (and
Gromov–Witten theory) is certainly well defined there. What
about DT invariants? They are not even defined! Can we
provide a physical picture? Can we compare this picture with
Gomov–Witten invariants?
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A more physical perspective

Perhaps it is easier to think of the DT invariants as
parametrizing the classical atomic configuration in the
”melting crystal” interpretation of the Topological String.
For a toric CY they can be described as generalized instantons
of a six dimensional abelian theory living on the D6 brane
wrapping the CY: the problem of computing DT invariants is
reduced to an instanton counting problem

Iqbal Nekrasov Okounkov Vafa

This gauge theory is the topologically twisted version of the
maximally supersymmetric U(1) Yang–Mills in six dimensions.
Its action up to BRST exact terms is∫

Tr (k ∧ F ∧ F + F ∧ F ∧ F )
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The Topological Gauge Theory Picture

The generalized instanton configurations are classified by 3D
partitions: this is how we recover the crystal picture

Since the theory is topological the semiclassical approximation
is exact

Z ∼
∑

x∈{critical}

(∫
Minst(ch2,ch3)

e(N)

)
e Sinst(x)

Unfortunately these moduli spaces are very singular as they
suffer from UV (instantons shrinking to zero size) and IR
(instantons running away to infinity) divergences

We can overcome these problems with a noncommutative
deformation of the theory and working equivariantly

Iqbal Nekrasov Okounkov Vafa
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The Topological Gauge Theory Picture

With the noncommutative deformation UV problems are
solved since instantons can’t shrink to zero size anymore. The
singularities of the moduli space are resolved

At least in the case of X = C3
θ we can provide a fairly concrete

parametrization of the moduli space of these noncommutative
instantons in term of generalized ADHM–like equations.

The idea is to parametrize a generic torsion free sheaf on the
resolved moduli space with the so–called Beilinson spectral
sequence. This shows explicitly how the Hilbert scheme
emerges from our moduli space of instantons (generalizing a
4d result by Nakajima)
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Equivariant localization

We can do better: C3 and toric manifolds in general have a
natural T3 action zi −→ e i εi zi

We can work equivariantly w.r.t. this action and use
equivariant localization. This can be achieved by putting the
theory on the so–called Ω–background.

Nekrasov

The BRST operator becomes an equivariant differential on the
instanton moduli space and we should look for its fixed points.

In our case we can show that the fixed points are isolated: the
fluctuation integrals simply become sums as in the familiar
Duistermaat–Heckman formula∫

M

ωn

n!
e−µ[εi ] =

∑
f

e−µ[εi ](f )∏
i wi [ε](f )
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Classification of the Critical Points

Localization techniques reduce the problem of evaluating the
”volumes” of instanton moduli spaces to the classification of
critical points of the equivariant BRST charge.

Now we have a well defined problem! and these techniques
can be extended to non abelian invariants (since we know
what a non abelian gauge theory is) on any toric manifold
(since it can be covered with C3 patches and has global toric
T3 isometries)

The critical points of the U(N) gauge theory are classified by
N–tuples of 3D partitions on each C3 patch: (Y1, . . . ,YN)

Physically for what these invariants are concerned we can
separate the N D6 branes and work in the Coulomb branch.
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Non Abelian DT

We can now compute the non abelian partition function. We
have developed two independent techniques:

Work directly with the noncommutative gauge theory and
compute the ratio of the determinants that constitutes the
fluctuation factor around each critical point.
Introduce an ADHM–like quantum mechanics that lives on
the resolved moduli space and use localization to compute
equivariant volumes of instanton moduli space.

Moore Nekrasov Shatashvili

The result on any toric variety is

Z
U(N)
DT

=
∑
f

qI(−1)(N+1)I ∏
e∈edge

(−1)

∑N
l,l′=1

|λl,e ||λl′,e |m1
e
−

∑N
l=1 |λl,e |te

I =
∑
f

N∑
l=1

|πl,f | +
∑

e∈edge

N∑
l=1

∑
(i,j)∈λe,l

(m1(i − 1) + m2(j − 1) + 1)
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Non Abelian DT

We can now compute the non abelian partition function. We
have developed two independent techniques:

Work directly with the noncommutative gauge theory and
compute the ratio of the determinants that constitutes the
fluctuation factor around each critical point.
Introduce an ADHM–like quantum mechanics that lives on
the resolved moduli space and use localization to compute
equivariant volumes of instanton moduli space.
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Physical Interpretation

The extra minus signs can be interpreted as a N–dependent
shift of the coupling constant. The shift is exactly the one
predicted by the OSV conjecture for an arbitrary number of
D6 branes:

gs,OSV =
1

Gs,ours
=

4π i
p0 + i φ0

π

This is related to our picture by S–duality.

Unfortunately we do not find new invariants of Calabi–Yau
manifolds. After the shift the non abelian partition function is
given by N copies of the abelian one

This is consistent with the computation of the IIA NS5 brane
partition function in terms of topological strings by
Dijkgraaf–Verlinde–Vonk. One can think of our computation
as the ”mirror statement”
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DT Invariants on Orbifolds?

We have developed two powerful approaches (noncommutative
instantons and ADHM–like quantum mechanics) to compute
these invariants. How general are they?

We think they may be used to give a prescription to compute
DT invariants on orbifolds

In particular we can melt our ADHM–like parametrization
with Nakajima’s work on quiver varieties to define
Donaldson–Thomas quiver varieties.

We propose that the DT invariants on an orbifolds compute
the equivariant volumes of these varieties. The computation
of these volumes is simple with our techniques

Problem: it is technically challenging to compare with
Gromov–Witten theory
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Conclusions and Further Directions

We have constructed an explicit link between the moduli
space of 6d abelian instantons and the Hilbert scheme, at
least on C3. This parametrization works also for non abelian
instantons.

We can compute the non abelian invariants with two
techniques (noncommutative field theory and an ADHM–like
quantum mechanics) that are related by the previous point.

The partition function of non abelian DT invariants is
consistent with physical expectations. Unfortunately no finer
classification of CY manifolds emerges

We are trying to extend these techniques to orbifolds. A new
kind of quiver varieties seems to play a role. Potentially
interesting further developments!
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