Backreacting flavors in the Klebanov-Strassler theory: a new duality cascade

Stefano Cremonesi

SISSA/ISAS AND INFN, TRIESTE

RTN Workshop, Valencia, October 5, 2007

based on:

F. Benini, F. Canoura, SC, C. Núñez and A. V. Ramallo, JHEP **0709**, 109 (2007) [arXiv:0706.1238].

Outline of the talk

Motivation and framework:

AdS/CFT and large N expansions with flavors

• Review of KT/KS:

Field theory and duality cascade

• Backreacting flavors in the KS background:

- Supergravity + branes solution
- Field theory and IIA brane configuration
- Seiberg duality cascade from supergravity solution: methods and results

Outline of the talk

Motivation and framework:

AdS/CFT and large N expansions with flavors

• Review of KT/KS:

Field theory and duality cascade

Backreacting flavors in the KS background:

- Supergravity + branes solution
- Field theory and IIA brane configuration
- Seiberg duality cascade from supergravity solution: methods and results

Outline of the talk

Motivation and framework:

AdS/CFT and large N expansions with flavors

• Review of KT/KS:

Field theory and duality cascade

• Backreacting flavors in the KS background:

- Supergravity + branes solution
- Field theory and IIA brane configuration
- Seiberg duality cascade from supergravity solution: methods and results

Outline of the talk

Motivation and framework:

AdS/CFT and large N expansions with flavors

Review of KT/KS:

Field theory and duality cascade

Backreacting flavors in the KS background:

- Supergravity + branes solution
- Field theory and IIA brane configuration
- Seiberg duality cascade from supergravity solution: methods and results

Outline of the talk

Motivation and framework:

AdS/CFT and large N expansions with flavors

• Review of KT/KS:

Field theory and duality cascade

Backreacting flavors in the KS background:

- Supergravity + branes solution
- Field theory and IIA brane configuration
- Seiberg duality cascade from supergravity solution: methods and results

Outline of the talk

Motivation and framework:

AdS/CFT and large N expansions with flavors

Review of KT/KS:

Field theory and duality cascade

Backreacting flavors in the KS background.

- Supergravity + branes solution
- Field theory and IIA brane configuration
- Seiberg duality cascade from supergravity solution: methods and results

Outline of the talk

Motivation and framework:

AdS/CFT and large N expansions with flavors

Review of KT/KS:

Field theory and duality cascade

• Backreacting flavors in the KS background:

- Supergravity + branes solution
- Field theory and IIA brane configuration
- Seiberg duality cascade from supergravity solution: methods and results

Addition of flavors to AdS/CFT

Karch-Katz '02

Stefano Cremonesi Backreacting flavors in the Klebanov-Strassler theory: a new duality cascade

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Probe vs. Backreacting D7

Probe approximation $(N_t/N_c \ll 1)$

Karch-Katz '02

- Background from D3-branes (after decoupling limit)
- Stable D7 embeddings in that background

 \rightarrow Quenched approx in lattice gauge theories.

Backreacting D7's (any N_f/N_c) Graña-Polchinski, Bertolini et al. '00 Casero-Núñez-Paredes '06 (D5)

Solve simult. EoM for IIB sugra + DBI-WZ action of flavor branes.

Probe vs. Backreacting D7

Probe approximation $(N_f/N_c \ll 1)$

- Karch-Katz '02
- Background from D3-branes (after decoupling limit)
- Stable D7 embeddings in that background
- \rightarrow Quenched approx in lattice gauge theories.

Probe vs. Backreacting D7

Probe approximation $(N_f/N_c \ll 1)$

- Background from D3-branes (after decoupling limit)
- Stable D7 embeddings in that background
- \rightarrow Quenched approx in lattice gauge theories.

Backreacting D7's (any N_f/N_c) Graña-Polchinski, Bertolini et al. '00 Casero-Núñez-Paredes '06 (D5) Solve simult. EoM for IIB sugra + DBI-WZ action of flavor branes.

Karch-Katz '02

't Hooft limit: $N_c ightarrow \infty$, $\lambda = N_c g_{YM}^2$ and N_f fixed

- Leading: planar diagrams w/o quark internal loops
- Topological expansion of a theory of closed and open strings

Probe approx in sugra: leading order in 't Hooft limit.

Veneziano limit: $N_{c} ightarrow\infty$, $\lambda=N_{c}g_{YM}^{2}$ and $x=N_{t}/N_{c}$ fixed

• Leading: planar diagrams w/ and w/o quark internal loops

Backreacting D7 in sugra: leading order in Veneziano limit.

NEW PHYSICS at leading order in Veneziano limit:

- New hadronic physics, e.g. finite mass for η' (Veneziano-Witten)
- Screening of color charges, breaking of chromoelectric flux tubes
- RG flow

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

't Hooft limit: $N_c \rightarrow \infty, \ \lambda = N_c g_{YM}^2$ and N_f fixed

- Leading: planar diagrams w/o quark internal loops
- Topological expansion of a theory of closed and open strings

Probe approx in sugra: leading order in 't Hooft limit.

Veneziano limit: $N_c ightarrow \infty$, $\lambda = N_c g_{YM}^2$ and $x = N_f/N_c$ fixed

• Leading: planar diagrams w/ and w/o quark internal loops

Backreacting D7 in sugra: leading order in Veneziano limit.

NEW PHYSICS at leading order in Veneziano limit:

- New hadronic physics, e.g. finite mass for η' (Veneziano-Witten)
- Screening of color charges, breaking of chromoelectric flux tubes
- RG flow

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

't Hooft limit: $N_c \rightarrow \infty, \ \lambda = N_c g_{YM}^2$ and N_f fixed

- Leading: planar diagrams w/o quark internal loops
- Topological expansion of a theory of closed and open strings

Probe approx in sugra: leading order in 't Hooft limit.

Veneziano limit: $N_c \rightarrow \infty$, $\lambda = N_c g_{YM}^2$ and $x = N_f/N_c$ fixed

Leading: planar diagrams w/ and w/o quark internal loops

Backreacting D7 in sugra: leading order in Veneziano limit.

NEW PHYSICS at leading order in Veneziano limit:

- New hadronic physics, e.g. finite mass for η' (Veneziano-Witten)
- Screening of color charges, breaking of chromoelectric flux tubes
- RG flow

't Hooft limit: $N_c \rightarrow \infty, \, \lambda = N_c g_{YM}^2$ and N_f fixed

- Leading: planar diagrams w/o quark internal loops
- Topological expansion of a theory of closed and open strings

Probe approx in sugra: leading order in 't Hooft limit.

Veneziano limit: $N_c \rightarrow \infty$, $\lambda = N_c g_{YM}^2$ and $x = N_f/N_c$ fixed

• Leading: planar diagrams w/ and w/o quark internal loops

Backreacting D7 in sugra: leading order in Veneziano limit.

NEW PHYSICS at leading order in Veneziano limit:

- New hadronic physics, e.g. finite mass for η' (Veneziano-Witten)
- Screening of color charges, breaking of chromoelectric flux tubes
- RG flow

< ロ > < 同 > < 三 > < 三 > -

KT/KS: field theory and backgrounds

N regular and M fractional D3 on the conifold $(z_1z_2 - z_3z_4 = 0 \text{ in } \mathbb{C}^4)$:

 $W = h \, \epsilon^{ij} \, \epsilon^{kl} \, \mathrm{Tr} \left(A_i B_k A_j B_l \right)$

• F_5, F_3, H_3 constant ϕ $\int_{S^3} F_3 \propto M, \quad \int_{T^{1,1}} F_5 \propto N_{eff}(r)$ Klebanov-Tseytlin '00

• RG flow: cascade of Seiberg dualities. Klebanov-Strassler '00

N = kM: IR $SU(2M) \times SU(M)$ on a \mathbb{Z}_2 -symm pt of the baryonic branch. $\hookrightarrow \mathcal{N} = 1 SU(M)$ pure SYM + Goldstone of $U(1)_B$.

Complex deformation
 $z_1z_2 - z_3z_4 = \epsilon^2$ Quantum deformation
of the moduli spaceSize of S^3 at the tip \longleftrightarrow Gluino condensateSmooth supergravity solution: Warped deformed conifold.

KT/KS: field theory and backgrounds

• F_5, F_3, H_3 constant ϕ $\int_{S^3} F_3 \propto M, \int_{T^{1,1}} F_5 \propto N_{eff}(r)$ Klebanov-Tseytlin '00

• RG flow: cascade of Seiberg dualities. Klebanov-Strassler '00 N = kM: IR $SU(2M) \times SU(M)$ on a \mathbb{Z}_2 -symm pt of the baryonic branch. $\hookrightarrow \mathcal{N} = 1 SU(M)$ pure SYM + Goldstone of $U(1)_B$.

Complex deformation
 $z_1z_2 - z_3z_4 = e^2$ Quantum deformation
of the moduli spaceSize of S^3 at the tip \longleftrightarrow Gluino condensateSmooth supergravity solution:Warped deformed conifold.

KT/KS: field theory and backgrounds

N regular and M fractional D3 on the conifold $(z_1z_2 - z_3z_4 = 0 \text{ in } \mathbb{C}^4)$:

 $W = h \, \epsilon^{ij} \, \epsilon^{kl} \, \mathrm{Tr} \left(A_i B_k A_j B_l \right)$

• F_5, F_3, H_3 constant ϕ $\int_{S^3} F_3 \propto M, \int_{T^{1,1}} F_5 \propto N_{eff}(r)$ Klebanov-Tseytlin '00

• RG flow: cascade of Seiberg dualities.

Klebanov-Strassler '00

N = kM: IR $SU(2M) \times SU(M)$ on a \mathbb{Z}_2 -symm pt of the baryonic branch. $\hookrightarrow \mathcal{N} = 1 SU(M)$ pure SYM + Goldstone of $U(1)_B$.

 $\begin{array}{ccc} \text{Complex deformation} & & & & \text{Quantum deformation} \\ z_1z_2 - z_3z_4 = \epsilon^2 & & & \text{of the moduli space} \\ \text{Size of } S^3 \text{ at the tip} & & & \text{Gluino condensate} \\ \text{Smooth supergravity solution: Warped deformed conifold.} \end{array}$

KT/KS: field theory and backgrounds

N regular and M fractional D3 on the conifold $(z_1z_2 - z_3z_4 = 0 \text{ in } \mathbb{C}^4)$:

 $W = h \, \epsilon^{ij} \, \epsilon^{kl} \, \mathrm{Tr} \left(A_i B_k A_j B_l \right)$

• F_5, F_3, H_3 constant ϕ $\int_{S^3} F_3 \propto M, \quad \int_{T^{1,1}} F_5 \propto N_{eff}(r)$ Klebanov-Tseytlin '00

• RG flow: cascade of Seiberg dualities. Klebanov-Strassler '00 N = kM: IR $SU(2M) \times SU(M)$ on a \mathbb{Z}_2 -symm pt of the baryonic branch.

 $\hookrightarrow \mathcal{N} = 1 SU(\dot{M})$ pure SYM + Goldstone of $U(1)_B$.

KT/KS: field theory and backgrounds

N regular and M fractional D3 on the conifold $(z_1z_2 - z_3z_4 = 0 \text{ in } \mathbb{C}^4)$:

 $W = h \, \epsilon^{ij} \, \epsilon^{kl} \, \mathrm{Tr} \left(A_i B_k A_j B_l \right)$

• F_5, F_3, H_3 constant ϕ $\int_{S^3} F_3 \propto M, \quad \int_{T^{1,1}} F_5 \propto N_{eff}(r)$ Klebanov-Tseytlin '00

RG flow: cascade of Seiberg dualities.
 Klebanov-Strassler '00

N = kM: IR $SU(2M) \times SU(M)$ on a \mathbb{Z}_2 -symm pt of the baryonic branch. $\hookrightarrow \mathcal{N} = 1 SU(M)$ pure SYM + Goldstone of $U(1)_B$.

 $\begin{array}{ccc} \text{Complex deformation} & & & \\ z_1z_2 - z_3z_4 = \epsilon^2 & & & \\ \text{Size of } S^3 \text{ at the tip} & & & \\ \end{array} \qquad \begin{array}{c} \text{Quantum deformation} & \\ \text{of the moduli space} & \\ \text{Gluino condensate} & \\ \end{array}$

 \Rightarrow Smooth supergravity solution: Warped deformed conifold.

KT/KS: field theory and backgrounds

N regular and M fractional D3 on the conifold $(z_1z_2 - z_3z_4 = 0 \text{ in } \mathbb{C}^4)$:

 $W = h \, \epsilon^{ij} \, \epsilon^{kl} \, \mathrm{Tr} \left(A_i B_k A_j B_l \right)$

• F_5, F_3, H_3 constant ϕ $\int_{S^3} F_3 \propto M, \quad \int_{T^{1,1}} F_5 \propto N_{eff}(r)$ Klebanov-Tseytlin '00

• RG flow: cascade of Seiberg dualities. Klebanov-Strassler '00

N = kM: IR $SU(2M) \times SU(M)$ on a \mathbb{Z}_2 -symm pt of the baryonic branch. $\hookrightarrow \mathcal{N} = 1 SU(M)$ pure SYM + Goldstone of $U(1)_B$.

 $\begin{array}{ccc} \text{Complex deformation} & & & \\ z_1 z_2 - z_3 z_4 = \epsilon^2 & & & \\ \text{Size of } S^3 \text{ at the tip} & & & \\ \end{array} \qquad \begin{array}{c} \text{Gluino condensate} \end{array}$

 \implies Smooth supergravity solution: Warped deformed conifold.

KT/KS: a cascade of Seiberg dualities

Stefano Cremonesi

Backreacting flavors in the Klebanov-Strassler theory: a new duality cascade

- Look for susy solutions of EoM of $S = S_{IIB} + S_{D7}$ with g_{MN} , ϕ , F_3 , H_3 , F_5 , F_1 and D7-embedding.
- D7: $dF_1 = \star j_{D7} \neq 0$, source in Einstein and dilaton eqns. κ -symmetric embeddings $z_1 + z_2 = 0$ and $SU(2)_D$ -related: smear! $\implies S_{D7}^{WZ} = T_7 \int \Omega \wedge C_8, \qquad \Omega = -\frac{N_I}{4\pi} \sum_i \sin \theta_i \, d\theta_i \wedge d\varphi_i.$
- Solve Bianchi identities by ansatz, DBI eqns. by κ-symmetry, reduce dilaton and Einstein eqns. to BPS system by requiring supersymmetry of the solution.
- Analytic solutions for backreacting flavors in KT and KS: supergravity duals of the same kind of gauge theories, with the same duality cascade but different IR dynamics (due to different initial ranks).

- Look for susy solutions of EoM of $S = S_{I/B} + S_{D7}$ with g_{MN} , ϕ , F_3 , H_3 , F_5 , F_1 and D7-embedding.
- D7: $dF_1 = \star j_{D7} \neq 0$, source in Einstein and dilaton eqns. κ -symmetric embeddings $z_1 + z_2 = 0$ and $SU(2)_D$ -related: smear! $\implies S_{D7}^{WZ} = T_7 \int \Omega \wedge C_8, \qquad \Omega = -\frac{N_I}{4\pi} \sum_i \sin \theta_i \, d\theta_i \wedge d\varphi_i.$
- Solve Bianchi identities by ansatz, DBI eqns. by κ-symmetry, reduce dilaton and Einstein eqns. to BPS system by requiring supersymmetry of the solution.
- Analytic solutions for backreacting flavors in KT and KS: supergravity duals of the same kind of gauge theories, with the same duality cascade but different IR dynamics (due to different initial ranks).

イロト 不得 トイヨト イヨト 三日

- Look for susy solutions of EoM of $S = S_{IIB} + S_{D7}$ with g_{MN} , ϕ , F_3 , H_3 , F_5 , F_1 and D7-embedding.
- D7: $dF_1 = \star j_{D7} \neq 0$, source in Einstein and dilaton eqns. κ -symmetric embeddings $z_1 + z_2 = 0$ and $SU(2)_D$ -related: smear! $\implies S_{D7}^{WZ} = T_7 \int \Omega \wedge C_8, \qquad \Omega = -\frac{N_t}{4\pi} \sum_i \sin \theta_i \, d\theta_i \wedge d\varphi_i.$
- Solve Bianchi identities by ansatz, DBI eqns. by κ-symmetry, reduce dilaton and Einstein eqns. to BPS system by requiring supersymmetry of the solution.
- Analytic solutions for backreacting flavors in KT and KS: supergravity duals of the same kind of gauge theories, with the same duality cascade but different IR dynamics (due to different initial ranks).

イロト 不得 トイヨト イヨト 三日

- Look for susy solutions of EoM of $S = S_{IIB} + S_{D7}$ with g_{MN} , ϕ , F_3 , H_3 , F_5 , F_1 and D7-embedding.
- D7: $dF_1 = \star j_{D7} \neq 0$, source in Einstein and dilaton eqns. κ -symmetric embeddings $z_1 + z_2 = 0$ and $SU(2)_D$ -related: smear! $\implies S_{D7}^{WZ} = T_7 \int \Omega \wedge C_8$, $\Omega = -\frac{N_t}{4\pi} \sum_i \sin \theta_i \, d\theta_i \wedge d\varphi_i$.
- Solve Bianchi identities by ansatz, DBI eqns. by κ-symmetry, reduce dilaton and Einstein eqns. to BPS system by requiring supersymmetry of the solution.
- Analytic solutions for backreacting flavors in KT and KS: supergravity duals of the same kind of gauge theories, with the same duality cascade but different IR dynamics (due to different initial ranks).

- Look for susy solutions of EoM of $S = S_{I/B} + S_{D7}$ with g_{MN} , ϕ , F_3 , H_3 , F_5 , F_1 and D7-embedding.
- D7: $dF_1 = \star j_{D7} \neq 0$, source in Einstein and dilaton eqns. κ -symmetric embeddings $z_1 + z_2 = 0$ and $SU(2)_D$ -related: smear! $\implies S_{D7}^{WZ} = T_7 \int \Omega \wedge C_8, \qquad \Omega = -\frac{N_t}{4\pi} \sum_i \sin \theta_i \, d\theta_i \wedge d\varphi_i.$
- Solve Bianchi identities by ansatz, DBI eqns. by κ-symmetry, reduce dilaton and Einstein eqns. to BPS system by requiring supersymmetry of the solution.
- Analytic solutions for backreacting flavors in KT and KS: supergravity duals of the same kind of gauge theories, with the same duality cascade but different IR dynamics (due to different initial ranks).

$$\begin{aligned} ds_{10}^{2} &= h(\tau)^{-1/2} dx_{1,3}^{2} + h(\tau)^{1/2} ds_{6}^{2} \\ \phi &= \phi(\tau) \\ F_{1} &= \frac{N_{f}}{4\pi} \left(d\psi + \sum_{i=1}^{2} \cos \theta_{i} \, d\varphi_{i} \right) \\ F_{3} &= \frac{M}{2} \left\{ g^{5} \wedge \left[\left(F(\tau) + \frac{N_{f}}{4\pi} f(\tau) \right) g^{1} \wedge g^{2} + \left(1 - F(\tau) + \frac{N_{f}}{4\pi} k(\tau) \right) g^{3} \wedge g^{4} \right] + \\ &+ F'(\tau) d\tau \wedge \left(g^{1} \wedge g^{3} + g^{2} \wedge g^{4} \right) \right\} \\ F_{5} &= (1 + \star) \, dh^{-1}(\tau) \wedge d^{4} x_{1,3} \\ B_{2} &= \frac{M}{2} \left[f(\tau) g^{1} \wedge g^{2} + k(\tau) g^{3} \wedge g^{4} \right] \end{aligned}$$

with suitable ansatz for 6-dimensional vielbein which includes both KT and KS cases.

< ロ > < 同 > < 三 > < 三 > -

Supergravity ansatz for flavored KT/KS

$$\begin{aligned} ds_{10}^{2} &= h(\tau)^{-1/2} dx_{1,3}^{2} + h(\tau)^{1/2} ds_{6}^{2} \\ \phi &= \phi(\tau) \end{aligned}$$

$$F_{1} &= \frac{N_{f}}{4\pi} \left(d\psi + \sum_{i=1}^{2} \cos \theta_{i} \, d\varphi_{i} \right) \end{aligned}$$

$$F_{3} &= \frac{M}{2} \left\{ g^{5} \wedge \left[\left(F(\tau) + \frac{N_{f}}{4\pi} f(\tau) \right) g^{1} \wedge g^{2} + \left(1 - F(\tau) + \frac{N_{f}}{4\pi} k(\tau) \right) g^{3} \wedge g^{4} \right] + F'(\tau) d\tau \wedge \left(g^{1} \wedge g^{3} + g^{2} \wedge g^{4} \right) \right\} \end{aligned}$$

$$F_{5} &= (1 + \star) \, dh^{-1}(\tau) \wedge d^{4} x_{1,3}$$

$$B_{2} &= \frac{M}{2} \left[f(\tau) g^{1} \wedge g^{2} + k(\tau) g^{3} \wedge g^{4} \right]$$

with suitable ansatz for 6-dimensional vielbein which includes both KT and KS cases.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Flavored KS solution

• $N_f \rightarrow 0$, $N_f \tau_0$ fixed: recover KS.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Flavored KS solution

$$\begin{aligned} ds_{6}^{2} &= \frac{1}{2}\mu^{\frac{4}{3}}\Lambda(\tau) \left\{ \frac{4(\tau_{0} - \tau)}{3\Lambda^{3}(\tau)} \left[d\tau^{2} + (g^{5})^{2} \right] + \cosh^{2}\frac{\tau}{2} \left[(g^{3})^{2} + (g^{4})^{2} \right] + \sinh^{2}\frac{\tau}{2} \left[(g^{1})^{2} + (g^{2})^{2} \right] \right] \right\} \\ \Lambda(\tau) &= \frac{\left[2(\tau - \tau_{0}) \left(\tau - \sinh(2\tau) \right) + \cosh(2\tau) - 2\tau\tau_{0} - 1 \right]^{1/3}}{\sinh \tau} \\ h(\tau) &= -\frac{2\pi M^{2}}{\mu^{8/3} N_{f}} \int^{\tau} dx \frac{x \coth x - 1}{(x - \tau_{0}^{2}) \sinh^{2} x} \cdot \frac{-\cosh(2x) + 4x^{2} - 4x\tau_{0} + 1 - (x - 2\tau_{0}) \sinh(2x)}{\left[\cosh(2x) + 2x^{2} - 4x\tau_{0} - 1 - 2(x - \tau_{0}) \sinh(2x)\right]^{2/3}} \\ e^{\phi(\tau)} &= \frac{4\pi}{N_{f}} \frac{1}{\tau_{0} - \tau} \qquad \qquad (0 \le \tau < \tau_{0}) \\ e^{-\phi(\tau)} f(\tau) &= \frac{\tau \coth \tau - 1}{2 \sinh \tau} (\cosh \tau - 1) \\ e^{-\phi(\tau)} k(\tau) &= \frac{\tau \coth \tau - 1}{2 \sinh \tau} (\cosh \tau + 1) \\ F(\tau) &= \frac{\sinh \tau - \tau}{2 \sinh \tau} \end{aligned}$$

• $N_f \rightarrow 0$, $N_f \tau_0$ fixed: recover KS.

イロト イヨト イヨト イヨト

Flavored KS solution

$$\begin{aligned} ds_{6}^{2} &= \frac{1}{2}\mu^{\frac{4}{3}}\Lambda(\tau) \left\{ \frac{4(\tau_{0} - \tau)}{3\Lambda^{3}(\tau)} \left[d\tau^{2} + (g^{5})^{2} \right] + \cosh^{2}\frac{\tau}{2} \left[(g^{3})^{2} + (g^{4})^{2} \right] + \sinh^{2}\frac{\tau}{2} \left[(g^{1})^{2} + (g^{2})^{2} \right] \right] \right\} \\ \Lambda(\tau) &= \frac{\left[2(\tau - \tau_{0}) \left(\tau - \sinh(2\tau) \right) + \cosh(2\tau) - 2\tau\tau_{0} - 1 \right]^{1/3}}{\sinh \tau} \\ h(\tau) &= -\frac{2\pi M^{2}}{\mu^{8/3} N_{f}} \int^{\tau} dx \frac{x \coth x - 1}{(x - \tau_{0}^{2}) \sinh^{2} x} \cdot \frac{-\cosh(2x) + 4x^{2} - 4x\tau_{0} + 1 - (x - 2\tau_{0}) \sinh(2x)}{\left[\cosh(2x) + 2x^{2} - 4x\tau_{0} - 1 - 2(x - \tau_{0}) \sinh(2x)\right]^{2/3}} \\ e^{\phi(\tau)} &= \frac{4\pi}{N_{f}} \frac{1}{\tau_{0} - \tau} \qquad \qquad (0 \le \tau < \tau_{0}) \\ e^{-\phi(\tau)} f(\tau) &= \frac{\tau \coth \tau - 1}{2 \sinh \tau} (\cosh \tau - 1) \\ e^{-\phi(\tau)} k(\tau) &= \frac{\tau \coth \tau - 1}{2 \sinh \tau} (\cosh \tau + 1) \\ F(\tau) &= \frac{\sinh \tau - \tau}{2 \sinh \tau} \end{aligned}$$

• $N_f \rightarrow 0$, $N_f \tau_0$ fixed: recover KS.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Curvature singularities and interpretation

UV $(\tau \rightarrow \tau_0^-)$

- Usual D7 singularity.
- Interpretation: Landau pole nature of the duality wall.

(More later)

IR $(\tau \rightarrow 0^+)$

- Limits of metric components as in KS, but with O(τ) corrections instead of O(τ²). ⇒ Curvature singularity.
- Interpretation: Chromoelectric flux tube breaking.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Curvature singularities and interpretation

UV $(\tau \rightarrow \tau_0^-)$

- Usual D7 singularity.
- Interpretation: Landau pole nature of the duality wall.

(More later)

IR $(\tau \rightarrow 0^+)$

- Limits of metric components as in KS, but with O(τ) corrections instead of O(τ²). ⇒ Curvature singularity.
- Interpretation: Chromoelectric flux tube breaking.

< 口 > < 同 > < 回 > < 回 > .

Curvature singularities and interpretation

UV $(\tau \rightarrow \tau_0^-)$

- Usual D7 singularity.
- Interpretation: Landau pole nature of the duality wall.

(More later)

IR $(\tau \rightarrow 0^+)$

- Limits of metric components as in KS, but with O(τ) corrections instead of O(τ²). ⇒ Curvature singularity.
- Interpretation: Chromoelectric flux tube breaking.

The flavored KS field theory

 $W = \lambda (A_1 B_1 A_2 B_2 - A_1 B_2 A_2 B_1) +$ $+ h_1 \tilde{q} (A_1 B_1 + A_2 B_2) q + h_2 \tilde{Q} (B_1 A_1 + B_2 A_2) Q +$ $+ \alpha q \tilde{q} q \tilde{q} q \tilde{q} + \beta Q \tilde{Q} Q \tilde{Q}$

- $r_i D3_f$ of 1st kind (wrapped D5, no wv flux) $N_{fl} D7_f$ of 1st kind (D7, wv flux)
- $r_s D3_f$ of 2^{nd} kind (wrapped $\overline{D5}$, wv flux) N_{fs} D7_f of 2^{nd} kind (D7, no wv flux)

Stefano Cremonesi Backreacting flavors in the Klebanov-Strassler theory: a new duality cascade

The flavored KS field theory

 $W = \lambda(A_1B_1A_2B_2 - A_1B_2A_2B_1) +$ + $h_1\tilde{q}(A_1B_1 + A_2B_2)q + h_2\tilde{Q}(B_1A_1 + B_2A_2)Q +$ + $\alpha q\tilde{q}q\tilde{q} + \beta Q\tilde{Q}Q\tilde{Q}$

IIB brane engineering

- $r_l D3_f$ of 1^{st} kind (wrapped D5, no wv flux)
- $r_s D3_f$ of 2^{nd} kind (wrapped $\overline{D5}$, wv flux)

(Convention: $r_l > r_s$, l, s = 1, 2)

- $N_{fl} D7_f$ of 1st kind ($\overline{D7}$, wv flux)
- N_{fs} D7_f of 2nd kind (D7, no wv flux)

IIA brane engineering

The flavored KS field theory

$$\begin{split} W &= \lambda (A_1B_1A_2B_2 - A_1B_2A_2B_1) + \\ &+ h_1\tilde{q}(A_1B_1 + A_2B_2)q + h_2\tilde{Q}(B_1A_1 + B_2A_2)Q + \\ &+ \alpha q\tilde{q}q\tilde{q} + \beta Q\tilde{Q}Q\tilde{Q} \end{split}$$

IIB brane engineering

- $r_I D3_f$ of 1^{st} kind (wrapped D5, no wv flux)
- $r_s D3_f$ of 2^{nd} kind (wrapped $\overline{D5}$, wv flux)

(Convention: $r_l > r_s$, l, s = 1, 2)

- $N_{fl} D7_f$ of 1st kind ($\overline{D7}$, wv flux)
- N_{fs} D7_f of 2nd kind (D7, no wv flux)

IIA brane engineering

Stefano Cremonesi Backreacting flavors in the Klebanov-Strassler theory: a new duality cascade

Seiberg duality cascade and self-similarity

Field theory analysis

- Assume that g_l runs to strong coupling, g_s to weak coupling as in KS.
- At some energy scale flowing towards the IR, $\frac{1}{g_i^2} = 0$: Seiberg-dualize.
- The theory with quartic flavor couplings is self-similar: same *W* before and after duality, only ranks change.
- If the RG flow proceeds like this: cascade of Seiberg dualities.

Analysis from supergravity solutions

- Flavored KS solution: dual gauge theory with duality cascade until the IR, where nonperturbative gauge dynamics occurs.
- 'Flavored KT solution': dual gauge theory with duality cascade until some energy, below which both gauge couplings flow towards weak coupling. → Flavored KW theory (hep-th/0612118)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Seiberg duality cascade and self-similarity

Field theory analysis

- Assume that g_l runs to strong coupling, g_s to weak coupling as in KS.
- At some energy scale flowing towards the IR, $\frac{1}{g_t^2} = 0$: Seiberg-dualize.
- The theory with quartic flavor couplings is self-similar: same *W* before and after duality, only ranks change.
- If the RG flow proceeds like this: cascade of Seiberg dualities.

Analysis from supergravity solutions

- Flavored KS solution: dual gauge theory with duality cascade until the IR, where nonperturbative gauge dynamics occurs.
- 'Flavored KT solution': dual gauge theory with duality cascade until some energy, below which both gauge couplings flow towards weak coupling. → Flavored KW theory (hep-th/0612118)

< ロ > < 同 > < 回 > < 回 >

Seiberg duality cascade and self-similarity

Field theory analysis

- Assume that g_l runs to strong coupling, g_s to weak coupling as in KS.
- At some energy scale flowing towards the IR, $\frac{1}{g_t^2} = 0$: Seiberg-dualize.
- The theory with quartic flavor couplings is self-similar: same *W* before and after duality, only ranks change.
- If the RG flow proceeds like this: cascade of Seiberg dualities.

Analysis from supergravity solutions

- Flavored KS solution: dual gauge theory with duality cascade until the IR, where nonperturbative gauge dynamics occurs.

BRANE CHARGES at a given τ

GROUP RANKS at a given E

Maxwell charges

$$\begin{split} dF_{8-p} &= \star j_{Dp}^{Maxwell} & F_{8-p} \text{: gauge invariant (improved) field strength} \\ j_{Dp} \text{: magnetic current} \\ Gauge invariant, conserved, \\ not localized (carried by fluxes), \\ not quantized. \end{split}$$

- D7-charge: $N_{flav} = N_f$ constant
- D5-charge: $M_{eff}(\tau) \equiv \frac{1}{4\pi^2} \int_{S^3} F_3 = M \left[1 + \frac{N_f}{4\pi} (f+k) \right]$ running
- D3-charge: $N_{\text{eff}}(\tau) \equiv \frac{1}{(4\pi^2)^2} \int_{\mathcal{M}_5} F_5 = \frac{M^2}{\pi} \left[f (f k)F + \frac{N_f}{4\pi} fk \right]$ running

 $\begin{array}{ccc} \mathsf{BRANE} \ \mathsf{CHARGES} & & \mathsf{GROUP} \ \mathsf{RANKS} \\ \mathsf{at} \ \mathsf{a} \ \mathsf{given} \ \tau & & \mathsf{at} \ \mathsf{a} \ \mathsf{given} \ \mathcal{E} \end{array}$

Maxwell charges

$$\begin{split} dF_{8-\rho} &= \star j_{D\rho}^{Maxwell} & F_{8-\rho} \text{: gauge invariant (improved) field strength} \\ j_{D\rho} \text{: magnetic current} \\ Gauge invariant, conserved, \\ not localized (carried by fluxes), \\ not quantized. \end{split}$$

• D7-charge:
$$N_{flav} = N_f$$
 constant

• D5-charge:
$$M_{eff}(\tau) \equiv \frac{1}{4\pi^2} \int_{S^3} F_3 = M \left[1 + \frac{N_f}{4\pi} (f+k) \right]$$
 running

• D3-charge:
$$N_{\text{eff}}(\tau) \equiv \frac{1}{(4\pi^2)^2} \int_{\mathcal{M}_5} F_5 = \frac{M^2}{\pi} \left[f - (f - k)F + \frac{N_f}{4\pi} fk \right]$$
 running

 $\begin{array}{ccc} \mathsf{BRANE} \ \mathsf{CHARGES} & & \mathsf{GROUP} \ \mathsf{RANKS} \\ \text{at a given } \tau & & & \mathsf{at a given} \ \mathcal{E} \end{array}$

Maxwell charges $dF_{8-p} = \star j_{Dp}^{Maxwell}$ F_{8-p} : gauge invariant (improved) field strength
 j_{Dp} : magnetic current $Q_{Dp}^{Maxwell} \propto \int_{V_{9-p}} \star j_{Dp}^{Maxwell} = \int_{\partial V_{9-p}} F_{8-p}$ Gauge invariant, conserved,
not localized (carried by fluxes),
not quantized.

- D7-charge: $N_{flav} = N_f$ constant
- D5-charge: $M_{\text{eff}}(\tau) \equiv \frac{1}{4\pi^2} \int_{S^3} F_3 = M \left[1 + \frac{N_f}{4\pi} (f+k) \right]$ running
- D3-charge: $N_{\text{eff}}(\tau) \equiv \frac{1}{(4\pi^2)^2} \int_{\mathcal{M}_5} F_5 = \frac{M^2}{\pi} \left[f (f k)F + \frac{N_f}{4\pi} fk \right]$ running

 $\begin{array}{ccc} \mathsf{BRANE} \ \mathsf{CHARGES} & & \mathsf{GROUP} \ \mathsf{RANKS} \\ \text{at a given } \tau & & & \mathsf{at a given} \ \mathcal{E} \end{array}$

Maxwell charges

$$\begin{split} dF_{8-p} &= \star j_{Dp}^{Maxwell} & F_{8-p} \text{: gauge invariant (improved) field strength} \\ j_{Dp} \text{: magnetic current} & Gauge invariant, conserved, \\ Q_{Dp}^{Maxwell} &\propto \int_{V_{9-p}} \star j_{Dp}^{Maxwell} = \int_{\partial V_{9-p}} F_{8-p} & \text{not localized (carried by fluxes), } \\ & \text{not quantized.} \end{split}$$

• D7-charge: $N_{flav} = N_f$ constant

• D5-charge:
$$M_{eff}(\tau) \equiv \frac{1}{4\pi^2} \int_{S^3} F_3 = M \left[1 + \frac{N_f}{4\pi} (f+k) \right]$$
 running

• D3-charge: $N_{\text{eff}}(\tau) \equiv \frac{1}{(4\pi^2)^2} \int_{\mathcal{M}_5} F_5 = \frac{M^2}{\pi} \left[f - (f - k)F + \frac{N_f}{4\pi} fk \right]$ running

< ロ > < 回 > < 回 > < 回 > < 回 >

$$b_0(\tau) \equiv \frac{1}{4\pi^2} \int_{\mathbb{S}^2} B_2 = \frac{M}{2} \left(f \sin^2 \frac{\psi}{2} + k \cos^2 \frac{\psi}{2} \right)$$

Object	frac D3 (1)	frac D3 $\left(2\right)$	frac D7 (1)	frac D7 $\left(2\right)$
D3-charge	b_0	$1 - b_0$	$\frac{4(b_0-1)^2-1}{16}$	$\frac{4b_0^2 - 1}{16}$
D5-charge	1	-1	$\frac{b_0 - 1}{2}$	$\frac{b_0}{2}$
D7-charge	0	0	1	1
Number of objects	r_l	r_s	N_{fl}	N_{fs}

$$N_{f} = N_{fl} + N_{fs}$$

$$M_{eff} = r_{l} - r_{s} + \frac{b_{0} - 1}{2} N_{fl} + \frac{b_{0}}{2} N_{fs}$$

$$N_{eff} = b_{0} r_{l} + (1 - b_{0}) r_{s} + \frac{4(1 - b_{0})^{2} - 1}{16} N_{fl} + \frac{4b_{0}^{2} - 1}{16} N_{fs}$$

• One step along the cascade: $\tau \to \tau'$ such that $b_0(\tau') = b_0(\tau) - 1$ Variations of Maxwell charges match the variations of ranks in FT!

$$b_0(\tau) \equiv \frac{1}{4\pi^2} \int_{S^2} B_2 = \frac{M}{2} \left(f \sin^2 \frac{\psi}{2} + k \cos^2 \frac{\psi}{2} \right)$$

Object	frac D3 (1)	frac D3 $\left(2\right)$	frac D7 (1)	frac D7 $\left(2\right)$
D3-charge	b_0	$1 - b_0$	$\frac{4(b_0-1)^2-1}{16}$	$\frac{4b_0^2 - 1}{16}$
D5-charge	1	-1	$\frac{b_0 - 1}{2}$	$\frac{b_0}{2}$
D7-charge	0	0	1	1
Number of objects	r_l	r_s	N_{fl}	N_{fs}

$$N_{f} = N_{fl} + N_{fs}$$

$$M_{eff} = r_{l} - r_{s} + \frac{b_{0} - 1}{2} N_{fl} + \frac{b_{0}}{2} N_{fs}$$

$$N_{eff} = b_{0} r_{l} + (1 - b_{0}) r_{s} + \frac{4(1 - b_{0})^{2} - 1}{16} N_{fl} + \frac{4b_{0}^{2} - 1}{16} N_{fs}$$

One step along the cascade: τ → τ' such that b₀(τ') = b₀(τ) - 1
 Variations of Maxwell charges match the variations of ranks in FT!

Page charges

Write Bianchi id's in absence of (magnetic) sources as: exterior derivatives of some differential forms (in general not gauge invariant) =0. Then substitute RHS with $*j^{Page}$.

$$\begin{aligned} &d(F_3 - B_2 \wedge F_1) = \star j_{D5}^{Page} \\ &d(F_5 - B_2 \wedge F_3 + \frac{1}{2}B_2 \wedge B_2 \wedge F_1) = \star j_{D3}^{Page} \end{aligned}$$

$$Q_{D5}^{Page} \equiv rac{1}{4\pi^2} \int_{V_4} \star j_{D5}^{Page} = rac{1}{4\pi^2} \int_{\mathbb{S}^3} (F_3 - B_2 \wedge F_1)$$

Localized, conserved, gauge inv under small but not large gauge transf's, not quantized.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$$Q_{D3}^{Page} \equiv \frac{1}{(4\pi^2)^2} \int_{V_4} \star J_{D3}^{Page} = \frac{1}{(4\pi^2)^2} \int_{\mathcal{M}_5} (F_5 - B_2 \wedge F_3 + \frac{1}{2} B_2 \wedge B_2 \wedge F_1)$$

• Locally $F_3 - B_2 \wedge F_1 = dC_2$, but C_2 not globally defined: needs to be patched.

- Page charges are monopole numbers.
- Being quantized, Page charges are the correct quantities to be compared to ranks.

Page charges

Write Bianchi id's in absence of (magnetic) sources as: exterior derivatives of some differential forms (in general not gauge invariant) =0. Then substitute RHS with $\star j^{Page}$.

$$\begin{aligned} &d(F_3 - B_2 \wedge F_1) = \star j_{D5}^{Page} \\ &d(F_5 - B_2 \wedge F_3 + \frac{1}{2}B_2 \wedge B_2 \wedge F_1) = \star j_{D3}^{Page} \end{aligned}$$

$$\mathbf{Q}_{D5}^{Page} \equiv rac{1}{4\pi^2} \int_{V_4} \star j_{D5}^{Page} = rac{1}{4\pi^2} \int_{\mathbb{S}^3} (F_3 - B_2 \wedge F_1) \, .$$

Localized, conserved, gauge inv under small but not large gauge transf's, not quantized.

イロン イロン イヨン 一座

$$Q_{D3}^{Page} \equiv rac{1}{(4\pi^2)^2} \int_{V_4} \star j_{D3}^{Page} = rac{1}{(4\pi^2)^2} \int_{\mathcal{M}_5} (F_5 - B_2 \wedge F_3 + rac{1}{2} B_2 \wedge B_2 \wedge F_1)$$

• Locally $F_3 - B_2 \wedge F_1 = dC_2$, but C_2 not globally defined: needs to be patched.

Page charges are monopole numbers.

 Being quantized, Page charges are the correct quantities to be compared to ranks.

Page charges

Write Bianchi id's in absence of (magnetic) sources as: exterior derivatives of some differential forms (in general not gauge invariant) =0. Then substitute RHS with $\star j^{Page}$.

$$\begin{aligned} &d(F_3 - B_2 \wedge F_1) = \star j_{D5}^{Page} \\ &d(F_5 - B_2 \wedge F_3 + \frac{1}{2}B_2 \wedge B_2 \wedge F_1) = \star j_{D3}^{Page} \end{aligned}$$

$$\mathbf{Q}_{D5}^{Page} \equiv rac{1}{4\pi^2} \int_{V_4} \star j_{D5}^{Page} = rac{1}{4\pi^2} \int_{\mathbb{S}^3} (F_3 - B_2 \wedge F_1) \, .$$

Localized, conserved, gauge inv under small but not large gauge transf's, not quantized.

$$Q_{D3}^{Page} \equiv \frac{1}{(4\pi^2)^2} \int_{V_4} \star J_{D3}^{Page} = \frac{1}{(4\pi^2)^2} \int_{\mathcal{M}_5} (F_5 - B_2 \wedge F_3 + \frac{1}{2} B_2 \wedge B_2 \wedge F_1)$$

• Locally $F_3 - B_2 \wedge F_1 = dC_2$, but C_2 not globally defined: needs to be patched.

Page charges are monopole numbers.

 Being quantized, Page charges are the correct quantities to be compared to ranks.

Page charges

Write Bianchi id's in absence of (magnetic) sources as: exterior derivatives of some differential forms (in general not gauge invariant) =0. Then substitute RHS with $\star j^{Page}$.

$$\begin{aligned} &d(F_3 - B_2 \wedge F_1) = \star j_{D5}^{Page} \\ &d(F_5 - B_2 \wedge F_3 + \frac{1}{2}B_2 \wedge B_2 \wedge F_1) = \star j_{D3}^{Page} \end{aligned}$$

$$\mathbf{Q}_{D5}^{Page} \equiv rac{1}{4\pi^2} \int_{V_4} \star j_{D5}^{Page} = rac{1}{4\pi^2} \int_{\mathbb{S}^3} (F_3 - B_2 \wedge F_1) \, .$$

Localized, conserved, gauge inv under small but not large gauge transf's, not quantized.

< ロ > < 同 > < 三 > < 三 > -

$$Q_{D3}^{Page} \equiv \frac{1}{(4\pi^2)^2} \int_{V_4} \star J_{D3}^{Page} = \frac{1}{(4\pi^2)^2} \int_{\mathcal{M}_5} (F_5 - B_2 \wedge F_3 + \frac{1}{2} B_2 \wedge B_2 \wedge F_1)$$

• Locally $F_3 - B_2 \wedge F_1 = dC_2$, but C_2 not globally defined: needs to be patched.

- Page charges are monopole numbers.
- Being quantized, Page charges are the correct quantities to be compared to ranks.

Seiberg duality as a large gauge transformation

- Exact Seiberg duality along the RG flow; infinitely many Seiberg dual FT descriptions, but at any given energy scale only one is 'good'.
- Seiberg dualities in the FT are large gauge transf's on the sugra solutions.

arge gauge transformation

$$\begin{split} & \Upsilon_2 \equiv \frac{1}{2} (\sin \theta_1 d\theta_1 \wedge d\phi_1 - \sin \theta_2 d\theta_2 \wedge d\phi_2) \\ & B_2 \to B_2 - \pi n \Upsilon_2 \quad \Rightarrow \quad b_0 \to b_0 - n \end{split} \qquad (n \in \mathbb{Z}) \end{split}$$

- Leaves Maxwell charges invariant, but not B₂: changes ranks!
- Changes Page charges: $\Delta Q_{D5}^{Page} = n \frac{N_f}{2}$, $\Delta Q_{D3}^{Page} = nM + n^2 \frac{N_f}{4}$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Seiberg duality as a large gauge transformation

- Exact Seiberg duality along the RG flow; infinitely many Seiberg dual FT descriptions, but at any given energy scale only one is 'good'.
- Seiberg dualities in the FT are large gauge transf's on the sugra solutions.

arge gauge transformation

$$\begin{split} & \Upsilon_2 \equiv \frac{1}{2} (\sin \theta_1 d\theta_1 \wedge d\phi_1 - \sin \theta_2 d\theta_2 \wedge d\phi_2) \\ & B_2 \to B_2 - \pi n \Upsilon_2 \quad \Rightarrow \quad b_0 \to b_0 - n \end{split}$$

• Leaves Maxwell charges invariant, but not B₂: changes ranks!

• Changes Page charges:
$$\Delta Q_{D5}^{Page} = n \frac{N_t}{2}$$
, $\Delta Q_{D3}^{Page} = nM + n^2 \frac{N_t}{4}$.

< ロ > < 同 > < 回 > < 回 >

Seiberg duality as a large gauge transformation

- Exact Seiberg duality along the RG flow; infinitely many Seiberg dual FT descriptions, but at any given energy scale only one is 'good'.
- Seiberg dualities in the FT are large gauge transf's on the sugra solutions.

Large gauge transformation

$$\begin{split} & \Upsilon_2 \equiv \frac{1}{2} (\sin \theta_1 d\theta_1 \wedge d\phi_1 - \sin \theta_2 d\theta_2 \wedge d\phi_2) \\ & B_2 \to B_2 - \pi n \Upsilon_2 \quad \Rightarrow \quad b_0 \to b_0 - n \qquad (n \in \mathbb{Z}) \end{split}$$

Leaves Maxwell charges invariant, but not B₂: changes ranks!

• Changes Page charges:
$$\Delta Q_{D5}^{Page} = n \frac{N_f}{2}, \ \Delta Q_{D3}^{Page} = nM + n^2 \frac{N_f}{4}.$$

Page charges and group ranks

• At a given energy scale, perform a large gauge transf w/ $n = [b_0]$ and reach the good FT description.

$$\begin{aligned} Q_{D7}^{Page} &= N_{f} = N_{f1} + N_{fs} \\ Q_{D5}^{Page} &= r_{l} - r_{s} - \frac{N_{f1}}{2} \\ Q_{D3}^{Page} &= r_{s} + \frac{3N_{f1} - N_{fs}}{16} \end{aligned}$$

 \hookrightarrow Comparison with ranks in FT.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Page charges and group ranks

 At a given energy scale, perform a large gauge transf w/ n = [b₀] and reach the good FT description.

$$Q_{D7}^{Page} = N_f = N_{fl} + N_{fs}$$
$$Q_{D5}^{Page} = r_l - r_s - \frac{N_{fl}}{2}$$

 \rightarrow Comparison with ranks in FT.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Page charges and group ranks

• At a given energy scale, perform a large gauge transf w/ $n = [b_0]$ and reach the good FT description.

$$egin{aligned} {\sf Q}_{D7}^{Page} &= N_{f} = N_{fl} + N_{fs} \ {\sf Q}_{D5}^{Page} &= r_{l} - r_{s} - rac{N_{fl}}{2} \ {\sf Q}_{D3}^{Page} &= r_{s} + rac{3N_{fl} - N_{fs}}{16} \end{aligned}$$

 \hookrightarrow Comparison with ranks in FT.

Page charges and group ranks

• At a given energy scale, perform a large gauge transf w/ $n = [b_0]$ and reach the good FT description.

$$egin{aligned} {\sf Q}_{D7}^{Page} &= N_{f} = N_{fl} + N_{fs} \ {\sf Q}_{D5}^{Page} &= r_{l} - r_{s} - rac{N_{fl}}{2} \ {\sf Q}_{D3}^{Page} &= r_{s} + rac{3N_{fl} - N_{fs}}{16} \end{aligned}$$

 \hookrightarrow Comparison with ranks in FT.

< ロ > < 同 > < 回 > < 回 >

Dictionary

$$\begin{array}{l} \frac{4\pi^2}{g_l^2} + \frac{4\pi^2}{g_s^2} = \pi e^{-\phi} & \theta_l^{\rm YM} + \theta_s^{\rm YM} = 2\pi C_0 \\ \frac{4\pi^2}{g_l^2} - \frac{4\pi^2}{g_s^2} = 2\pi e^{-\phi} \left[\frac{1}{4\pi^2 \alpha'} \int_{S^2} B_2 - \frac{1}{2} \right] & \theta_l^{\rm YM} - \theta_s^{\rm YM} = \frac{1}{\pi} \int_{S^2} C_2 \end{array}$$

- R-anomalies match FT expectations.
- Running gauge couplings: duality wall.
 (Divergence of b₀ at finite proper distance from the bulk: infinitely many cascade steps to reach a finite energy scale E_{UV}.)

Dictionary

$$\begin{array}{l} \frac{4\pi^2}{g_l^2} + \frac{4\pi^2}{g_s^2} = \pi e^{-\phi} & \theta_l^{\rm YM} + \theta_s^{\rm YM} = 2\pi C_0 \\ \frac{4\pi^2}{g_l^2} - \frac{4\pi^2}{g_s^2} = 2\pi e^{-\phi} \left[\frac{1}{4\pi^2 \alpha'} \int_{\mathbb{S}^2} B_2 - \frac{1}{2} \right] & \theta_l^{\rm YM} - \theta_s^{\rm YM} = \frac{1}{\pi} \int_{\mathbb{S}^2} C_2 \end{array}$$

- R-anomalies match FT expectations.
- Running gauge couplings: duality wall.
 (Divergence of b₀ at finite proper distance from the bulk: infinitely many cascade steps to reach a finite energy scale E_{UV}.)

Dictionary

$$\begin{array}{l} \frac{4\pi^2}{g_l^2} + \frac{4\pi^2}{g_s^2} = \pi e^{-\phi} & \theta_l^{YM} + \theta_s^{YM} = 2\pi C_0 \\ \frac{4\pi^2}{g_l^2} - \frac{4\pi^2}{g_s^2} = 2\pi e^{-\phi} \left[\frac{1}{4\pi^2 \alpha'} \int_{S^2} B_2 - \frac{1}{2} \right] & \theta_l^{YM} - \theta_s^{YM} = \frac{1}{\pi} \int_{S^2} C_2 \end{array}$$

R-anomalies match FT expectations.

Running gauge couplings: duality wall.
 (Divergence of b₀ at finite proper distance from the bulk: infinitely many cascade steps to reach a finite energy scale E_{UV}.)

Dictionary

$$\frac{4\pi^2}{g_l^2} + \frac{4\pi^2}{g_s^2} = \pi e^{-\phi} \qquad \qquad \theta_l^{YM} + \theta_s^{YM} = 2\pi C_0 \\ \frac{4\pi^2}{g_l^2} - \frac{4\pi^2}{g_s^2} = 2\pi e^{-\phi} \left[\frac{1}{4\pi^2 \alpha'} \int_{S^2} B_2 - \frac{1}{2} \right] \qquad \qquad \theta_l^{YM} - \theta_s^{YM} = \frac{1}{\pi} \int_{S^2} C_2$$

- R-anomalies match FT expectations.
- Running gauge couplings: duality wall.
 (Divergence of b₀ at finite proper distance from the bulk: infinitely many cascade steps to reach a finite energy scale E_{UV}.)

